Datasets:
File size: 28,943 Bytes
bf58ec3 fe7cf7b bf58ec3 10ce80c 0ad545d 10ce80c 0ad545d 10ce80c 0ad545d 10ce80c 0ad545d 10ce80c 0ad545d bf58ec3 1cef023 bf58ec3 1cef023 bf58ec3 1cef023 bf58ec3 1cef023 bf58ec3 1cef023 bf58ec3 e191d83 bf58ec3 1cef023 c70fbbb bf58ec3 1cef023 bf58ec3 1cef023 bf58ec3 c70fbbb bf58ec3 38adbac bf58ec3 e191d83 9099d46 e191d83 9099d46 e191d83 9099d46 e191d83 bf58ec3 38adbac 1cef023 38adbac 1cef023 38adbac bf58ec3 fe7cf7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 |
---
annotations_creators:
- no-annotation
language:
- en
language_creators:
- found
license:
- other
multilinguality:
- monolingual
pretty_name: crello
size_categories:
- 10K<n<100K
source_datasets:
- original
tags:
- graphic design
- design templates
task_categories:
- unconditional-image-generation
task_ids: []
dataset_info:
features:
- name: id
dtype: string
- name: length
dtype: int64
- name: group
dtype:
class_label:
names:
'0': BG
'1': EO
'2': HC
'3': MM
'4': SM
'5': SMA
- name: format
dtype:
class_label:
names:
'0': Album Cover
'1': Book Cover
'2': Brochure
'3': Business card
'4': Calendar
'5': Card
'6': Certificate
'7': Coupon
'8': Email header
'9': FB event cover
'10': Facebook
'11': Facebook AD
'12': Facebook cover
'13': Flayer
'14': Gallery Image
'15': Gift Certificate
'16': Graphic
'17': IGTV Cover
'18': Image
'19': Infographic
'20': Instagram
'21': Instagram AD
'22': Instagram Highlight Cover
'23': Instagram Story
'24': Invitation
'25': Invoice
'26': Label
'27': Large Rectangle
'28': Leaderboard
'29': Letterhead
'30': LinkedIn Cover
'31': Logo
'32': Medium Rectangle
'33': Menu
'34': Mind Map
'35': Mobile Presentation
'36': Mood Board
'37': Newsletter
'38': Photo Book
'39': Pinterest
'40': Postcard
'41': Poster
'42': Poster US
'43': Presentation
'44': Presentation Wide
'45': Proposal
'46': Recipe Card
'47': Resume
'48': Schedule Planner
'49': Skyscraper
'50': Snapchat Geofilter
'51': Snapchat Moment Filter
'52': Storyboard
'53': T-Shirt
'54': Ticket
'55': Title
'56': Tumblr
'57': Twitch Offline Banner
'58': Twitch Profile Banner
'59': Twitter
'60': VK Community Cover
'61': VK Post with Button
'62': VK Universal Post
'63': Web Banner
'64': Youtube
'65': Youtube Thumbnail
'66': Zoom Background
- name: canvas_width
dtype:
class_label:
names:
'0': '1000'
'1': '1008'
'2': '1024'
'3': '1080'
'4': '1128'
'5': '1190'
'6': '1200'
'7': '1280'
'8': '1296'
'9': '1500'
'10': '1590'
'11': '160'
'12': '1600'
'13': '1920'
'14': '240'
'15': '241'
'16': '2560'
'17': '300'
'18': '3000'
'19': '336'
'20': '360'
'21': '396'
'22': '419'
'23': '420'
'24': '432'
'25': '500'
'26': '537'
'27': '540'
'28': '560'
'29': '576'
'30': '595'
'31': '600'
'32': '635'
'33': '728'
'34': '735'
'35': '792'
'36': '800'
'37': '841'
'38': '842'
'39': '851'
'40': '940'
- name: canvas_height
dtype:
class_label:
names:
'0': '1055'
'1': '1080'
'2': '1102'
'3': '1200'
'4': '1296'
'5': '141'
'6': '142'
'7': '1440'
'8': '1600'
'9': '1683'
'10': '1728'
'11': '191'
'12': '1920'
'13': '200'
'14': '2000'
'15': '216'
'16': '2340'
'17': '240'
'18': '250'
'19': '2560'
'20': '280'
'21': '288'
'22': '297'
'23': '298'
'24': '315'
'25': '320'
'26': '380'
'27': '400'
'28': '480'
'29': '500'
'30': '504'
'31': '512'
'32': '576'
'33': '595'
'34': '600'
'35': '612'
'36': '628'
'37': '654'
'38': '700'
'39': '720'
'40': '768'
'41': '788'
'42': '810'
'43': '841'
'44': '842'
'45': '90'
- name: category
dtype:
class_label:
names:
'0': all
'1': beauty
'2': businessFinance
'3': citiesPlaces
'4': educationScience
'5': fashionStyle
'6': foodDrinks
'7': handcraftArt
'8': holidaysCelebration
'9': homeStuff
'10': industry
'11': kidsParents
'12': leisureEntertainment
'13': medical
'14': natureWildlife
'15': pets
'16': realEstateBuilding
'17': religions
'18': socialActivityCharity
'19': sportExtreme
'20': technology
'21': transportation
'22': travelsVacations
- name: type
sequence:
class_label:
names:
'0': coloredBackground
'1': imageElement
'2': maskElement
'3': svgElement
'4': textElement
- name: left
sequence: float32
- name: top
sequence: float32
- name: width
sequence: float32
- name: height
sequence: float32
- name: opacity
sequence: float32
- name: text
sequence: string
- name: font
sequence:
class_label:
names:
'0': ''
'1': Abril Fatface
'2': Aldrich
'3': Alef
'4': Alegreya Sans
'5': Alfa Slab One
'6': Alice
'7': Allerta Stencil
'8': Allura
'9': Amatic Sc
'10': Anton
'11': Arapey
'12': Architects Daughter
'13': Arima Madurai
'14': Arimo
'15': Arizonia
'16': Arkana Script
'17': Armata
'18': Assistant
'19': Bad Script
'20': Baloo Tamma
'21': Bangers
'22': Barrio
'23': Beacon
'24': Bebas Neue
'25': Bellefair
'26': Bentham
'27': Berkshire Swash
'28': Bilbo
'29': Black Ops One
'30': Blogger
'31': Breathe
'32': Breathe Press
'33': Brusher
'34': Brusher Free Font
'35': Bubbler One
'36': Buda
'37': Bungee
'38': Bungee Shade
'39': Cabin Sketch
'40': Caesar Dressing
'41': Cantarell
'42': Carter One
'43': Caveat
'44': Cedarville Cursive
'45': Chathura
'46': Clicker Script
'47': Comfortaa
'48': Contrail One
'49': Cookie
'50': Copse
'51': Cormorant Infant
'52': Courgette
'53': Cousine
'54': Covered By Your Grace
'55': Crete Round
'56': Cutive Mono
'57': Damion
'58': Dancing Script
'59': David Libre
'60': Dawning Of A New Day
'61': Delius
'62': Delius Swash Caps
'63': Didact Gothic
'64': Dorsa
'65': Dosis
'66': Droid Serif
'67': Dukomdesign Constantine
'68': Eb Garamond
'69': Economica
'70': El Messiri
'71': Elsie
'72': Elsie Swash Caps
'73': Euphoria Script
'74': Ewert
'75': Exo 2
'76': Farsan
'77': Faster One
'78': Fauna One
'79': Finger Paint
'80': Fjalla One
'81': Forum
'82': Frank Ruhl Libre
'83': Fredericka The Great
'84': Gabriela
'85': Gaegu
'86': Geo
'87': Gfs Didot
'88': Give You Glory
'89': Glass Antiqua
'90': Gluk Glametrix
'91': Gluk Znikomitno25
'92': Graduate
'93': Grand Hotel
'94': Gravitas One
'95': Great Vibes
'96': Gruppo
'97': Handlee
'98': Happy Monkey
'99': Heebo
'100': Homemade Apple
'101': Iceberg
'102': Iceland
'103': Im Fell
'104': Im Fell Dw Pica Sc
'105': Inconsolata
'106': Italiana
'107': Italianno
'108': Jacques Francois Shadow
'109': Josefin Sans
'110': Josefin Slab
'111': Julius Sans One
'112': Junge
'113': Jura
'114': Just Me Again Down Here
'115': Kalam
'116': Katibeh
'117': Kaushan Script
'118': Kavivanar
'119': Kelly Slab
'120': Knewave
'121': Knewave Outline
'122': Kreon
'123': Kristi
'124': Kumar One
'125': Kumar One Outline
'126': Kurale
'127': La Belle Aurore
'128': Lalezar
'129': Lato
'130': Lauren
'131': League Script
'132': Lemon Tuesday
'133': Libre Baskerville
'134': Limelight
'135': Londrina Shadow
'136': Londrina Sketch
'137': Loved By The King
'138': Lovers Quarrel
'139': Marcellus Sc
'140': Marck Script
'141': Mate
'142': Maven Pro
'143': Meddon
'144': Medula One
'145': Merienda One
'146': Merriweather
'147': Mikodacs
'148': Miriam Libre
'149': Monda
'150': Monofett
'151': Monsieur La Doulaise
'152': Montserrat
'153': Montserrat Alternates
'154': Mr Dafoe
'155': Mr De Haviland
'156': Mrs Saint Delafield
'157': Mrs Sheppards
'158': Neucha
'159': Nixie One
'160': Nothing You Could Do
'161': Noticia Text
'162': Nova Square
'163': Nunito
'164': Offside
'165': Okolaks
'166': Old Standard Tt
'167': Oleo Script
'168': Open Sans
'169': Open Sans Condensed
'170': Oranienbaum
'171': Orbitron
'172': Oswald
'173': Overlock
'174': Oxygen
'175': Pacifico
'176': Pangolin
'177': Parisienne
'178': Pathway Gothic One
'179': Patrick Hand
'180': Pattaya
'181': Patua One
'182': Permanent Marker
'183': Petit Formal Script
'184': Philosopher
'185': Pinyon Script
'186': Pirou
'187': Play
'188': Playball
'189': Playfair Display
'190': Playlist Caps
'191': Playlist Script
'192': Podkova
'193': Poiret One
'194': Pompiere
'195': Port Lligat Slab
'196': Press Start 2P
'197': Prompt
'198': Pt Sans
'199': Quattrocento
'200': Quicksand
'201': Racing Sans One
'202': Radley
'203': Rakkas
'204': Raleway
'205': Raleway Dots
'206': Rammetto One
'207': Rationale
'208': Reem Kufi
'209': Reenie Beanie
'210': Righteous
'211': Rise
'212': Rissa Typeface
'213': Roboto
'214': Rochester
'215': Rock Salt
'216': Rokkitt
'217': Rosario
'218': Rubik
'219': Rubik One
'220': Ruslan Display
'221': Russo One
'222': Rye
'223': Sacramento
'224': Sansita One
'225': Satisfy
'226': Scope One
'227': Secular One
'228': Selima Script
'229': Sensei
'230': Seymour One
'231': Shadows Into Light Two
'232': Share Tech Mono
'233': Sirin Stencil
'234': Six Caps
'235': Source Serif Pro
'236': Space Mono
'237': Stalemate
'238': Stint Ultra Expanded
'239': Sue Ellen Francisco
'240': Suez One
'241': Sunday
'242': Superclarendon Regular
'243': Text Me One
'244': Tinos
'245': Titillium Web
'246': Tulpen One
'247': Underdog
'248': V T323
'249': Vampiro One
'250': Varela Round
'251': Vast Shadow
'252': Vollkorn
'253': Waiting For The Sunrise
'254': Wire One
'255': Yanone Kaffeesatz
'256': Yellowtail
'257': Yeseva One
'258': Yesteryear
'259': Zeyada
'260': Znikomit
'261': Znikomitno24
- name: font_size
sequence: float32
- name: text_align
sequence:
class_label:
names:
'0': ''
'1': center
'2': left
'3': right
- name: angle
sequence: float32
- name: capitalize
sequence:
class_label:
names:
'0': 'false'
'1': 'true'
- name: line_height
sequence: float32
- name: letter_spacing
sequence: float32
- name: color
sequence:
sequence: float32
length: 3
- name: image
sequence: image
splits:
- name: train
num_bytes: 3259312504.503
num_examples: 18659
- name: test
num_bytes: 413774119.686
num_examples: 2371
- name: validation
num_bytes: 418393287.999
num_examples: 2391
download_size: 4054319749
dataset_size: 4091479912.1879997
---
# Dataset Card for Crello
## Table of Contents
- [Dataset Card for Crello](#dataset-card-for-crello)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [CanvasVAE github](https://github.com/CyberAgentAILab/canvas-vae)
- **Repository:**
- **Paper:** [CanvasVAE: Learning to Generate Vector Graphic Documents](https://arxiv.org/abs/2108.01249)
- **Leaderboard:**
- **Point of Contact:** [Kota Yamaguchi](https://github.com/kyamagu)
### Dataset Summary
The Crello dataset is compiled for the study of vector graphic documents. The dataset contains document meta-data such as canvas size and pre-rendered elements such as images or text boxes. The original templates was collected from [crello.com](https://crello.com) (now [create.vista.com](https://create.vista.com/)) and converted to low-resolution format suitable for machine learning analysis.
### Supported Tasks and Leaderboards
[CanvasVAE](https://arxiv.org/abs/2108.01249) studies unsupervised document generation.
### Languages
Almost all design templates use English.
## Dataset Structure
### Data Instances
Each instance has scalar attributes (canvas) and sequence attributes (elements). Categorical values are stored as integer values. Check `ClassLabel` features of the dataset for the list of categorical labels.
```
{'id': '59528b4e95a7a863ddcdf902',
'length': 14,
'group': 5,
'format': 49,
'canvas_width': 11,
'canvas_height': 34,
'category': 14,
'type': [1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4],
'left': [0.0002478847454767674,
0.0,
0.0,
0.03125,
0.05624999850988388,
0.30000001192092896,
0.16875000298023224,
0.18125000596046448,
0.5625,
0.3375000059604645,
0.25623849034309387,
0.41874998807907104,
0.19995903968811035,
0.36250001192092896],
'top': [0.00042101924191229045,
0.0,
-0.0016666667070239782,
0.008333333767950535,
0.014999999664723873,
0.5633333325386047,
0.4816666543483734,
0.4116666615009308,
0.3883333206176758,
0.3883333206176758,
0.512499988079071,
0.4833333194255829,
0.4350000023841858,
0.3933333456516266],
'width': [0.9999237656593323,
0.9937499761581421,
1.0,
0.9375,
0.8812500238418579,
0.4000000059604645,
0.65625,
0.637499988079071,
0.09375,
0.10000000149011612,
0.6084214448928833,
0.29374998807907104,
0.7160975337028503,
0.28125],
'height': [1.0023325681686401,
0.9983333349227905,
1.0,
0.9833333492279053,
0.9683333039283752,
0.0416666679084301,
0.04333333298563957,
0.029999999329447746,
0.029999999329447746,
0.029999999329447746,
0.05166666582226753,
0.021666666492819786,
0.05166666582226753,
0.018333332613110542],
'opacity': [1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0],
'text': ['',
'',
'',
'',
'',
'',
'',
'',
'',
'',
'Nature',
'with',
'friends',
'Make'],
'font': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 182, 31, 31],
'font_size': [0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
31.71994972229004,
13.0,
31.644691467285156,
11.0],
'text_align': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 1],
'angle': [0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0],
'capitalize': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'line_height': [1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0],
'letter_spacing': [0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
2.0,
0.0,
2.0,
1.0],
'color': [[35.0, 80.0, 60.0],
[255.0, 255.0, 255.0],
[35.0, 31.0, 32.0],
[255.0, 255.0, 255.0],
[255.0, 255.0, 255.0],
[255.0, 255.0, 255.0],
[255.0, 255.0, 255.0],
[255.0, 255.0, 255.0],
[255.0, 255.0, 255.0],
[255.0, 255.0, 255.0],
[255.0, 255.0, 255.0],
[255.0, 255.0, 255.0],
[255.0, 255.0, 255.0],
[255.0, 255.0, 255.0]],
'image': [<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>]}
```
To get a label for categorical values, use the `int2str` method:
```python
key = "font"
example = dataset[0]
dataset.features[key].int2str(example[key])
```
### Data Fields
In the following, categorical fields are shown as `categorical` type, but the actual storage is `int64`.
**Context features (Canvas attributes)**
| Field | Type | Shape | Description |
| ------------- | ----------- | ----- | -------------------------------------------------------------- |
| id | string | () | Template ID from crello.com |
| group | categorical | () | Broad design group, such as social media posts or blog headers |
| format | categorical | () | Detailed design format, such as Instagram post or postcard |
| category | categorical | () | Topic category of the design, such as holiday celebration |
| canvas_width | categorical | () | Canvas pixel width |
| canvas_height | categorical | () | Canvas pixel height |
| length | int64 | () | Length of sequence features |
**Sequence features (Element attributes)**
| Field | Type | Shape | Description |
| -------------- | ----------- | ----- | -------------------------------------------------------------------- |
| type | categorical | () | Element type, such as vector shape, image, or text |
| left | float32 | () | Element left position normalized to [0, 1] range w.r.t. canvas_width |
| top | float32 | () | Element top position normalized to [0, 1] range w.r.t. canvas_height |
| width | float32 | () | Element width normalized to [0, 1] range w.r.t. canvas_width |
| height | float32 | () | Element height normalized to [0, 1] range w.r.t. canvas_height |
| color | int64 | (3,) | Extracted main RGB color of the element |
| opacity | float32 | () | Opacity in [0, 1] range |
| image_bytes | image | () | Pre-rendered 256x256 preview of the element encoded in PNG format |
| text | string | () | Text content in UTF-8 encoding for text element |
| font | categorical | () | Font family name for text element |
| font_size | float32 | () | Font size (height) in pixels |
| text_align | categorical | () | Horizontal text alignment, left, center, right for text element |
| angle | float32 | () | Element rotation angle (radian) w.r.t. the center of the element |
| capitalize | categorical | () | Binary flag to capitalize letters |
| line_height | float32 | () | Scaling parameter to line height, default is 1.0 |
| letter_spacing | float32 | () | Adjustment parameter for letter spacing, default is 0.0 |
Note that the color and pre-rendered images do not necessarily accurately reproduce the original design templates. The original template is accessible at the following URL if still available.
```
https://create.vista.com/artboard/?template=<template_id>
```
`left` and `top` can be negative because elements can be bigger than the canvas size.
### Data Splits
The Crello dataset has 3 splits: train, validation, and test. The current split is generated such that the same title of the original template shows up in only in one split.
| Split | Count |
| --------- | ----- |
| train | 18659 |
| validaton | 2391 |
| test | 2371 |
### Visualization
Each example can be visualized in the following approach. Note the following does not guarantee a similar appearance to the original template.
```python
import io
from typing import Any, Dict
import numpy as np
import skia
def render(dataset: datasets.Dataset, example: Dict[str, Any], max_size: float=512.) -> bytes:
"""Render parsed sequence example onto an image and return as PNG bytes."""
canvas_width = int(dataset.features["canvas_width"].int2str(example["canvas_width"]))
canvas_height = int(dataset.features["canvas_height"].int2str(example["canvas_height"]))
scale = min(1.0, max_size / canvas_width, max_size / canvas_height)
surface = skia.Surface(int(scale * canvas_width), int(scale * canvas_height))
with surface as canvas:
canvas.scale(scale, scale)
for index in range(example["length"]):
pil_image = example["image"][index]
image = skia.Image.frombytes(
pil_image.convert('RGBA').tobytes(),
pil_image.size,
skia.kRGBA_8888_ColorType)
left = example["left"][index] * canvas_width
top = example["top"][index] * canvas_height
width = example["width"][index] * canvas_width
height = example["height"][index] * canvas_height
rect = skia.Rect.MakeXYWH(left, top, width, height)
angle = example["angle"][index]
with skia.AutoCanvasRestore(canvas):
if angle != 0:
degree = 180. * angle / np.pi
canvas.rotate(degree, left + width / 2., top + height / 2.)
canvas.drawImageRect(image, rect)
image = surface.makeImageSnapshot()
with io.BytesIO() as f:
image.save(f, skia.kPNG)
return f.getvalue()
```
## Dataset Creation
### Curation Rationale
The Crello dataset is compiled for the general study of vector graphic documents, with the goal of producing a dataset that offers complete vector graphic information suitable for neural methodologies.
### Source Data
#### Initial Data Collection and Normalization
The dataset is initially scraped from the former `crello.com`, and pre-processed to
#### Who are the source language producers?
While [create.vista.com](https://create.vista.com/)) owns those templates, the templates seems to be originially created by certain group of design studios.
### Personal and Sensitive Information
The dataset does not contain any personal information about the creator, but may contain a picture of people in the design template.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset was developed for advancing the general study of vector graphic documents, especially for generative systems of graphic design. Successful systems might enable automation of creative workflow that human designers get involved in.
### Discussion of Biases
The templates contained in the dataset reflect the biases appearing in the source data, which could present gender biases in specific design categories.
### Other Known Limitations
Due to the unknown data specification of the source data, the color and pre-rendered images do not necessarily accurately reproduce the original design templates. The original template is accessible at the following URL if still available.
https://create.vista.com/artboard/?template=<template_id>
## Additional Information
### Dataset Curators
The Crello dataset was developed by Kota Yamaguchi.
### Licensing Information
The origin of the dataset is [create.vista.com](https://create.vista.com) (formally, `crello.com`).
The distributor ("We") do not own the copyrights of the original design templates.
By using Crello dataset, the user of this dataset ("You") must agree to the
[VistaCreate License Agreements](https://create.vista.com/faq/legal/licensing/license_agreements/).
The dataset is distributed under [CDLA-Permissive-2.0 license](https://cdla.dev/permissive-2-0/).
**Note**
We do not re-distribute the original files as we are not allowed by terms.
### Citation Information
@article{yamaguchi2021canvasvae,
title={CanvasVAE: Learning to Generate Vector Graphic Documents},
author={Yamaguchi, Kota},
journal={ICCV},
year={2021}
}
### Releases
3.0: v3 release (Feb 8, 2023)
- Migrate to Hugging Face Hub.
- Improve text rendering quality.
- Change split generation criteria: no compatibility with v2 splits.
- Incorporate a motion picture thumbnail in templates.
- Add `capitalize`, `line_height`, and `letter_spacing` sequence attributes.
2.0: v2 release (May 26, 2022)
- Add `text`, `font`, `font_size`, `text_align`, and `angle` sequence attributes.
- Include rendered text element in `image_bytes`.
1.0: v1 release (Aug 24, 2021)
### Contributions
Thanks to [@kyamagu](https://github.com/kyamagu) for adding this dataset. |