|
import numpy as np |
|
import json |
|
import pandas as pd |
|
|
|
QUES_TYPES = ['MCQ','MCQ(multiple)','Integer','Numeric'] |
|
|
|
models = [ |
|
"Random", |
|
"GPT3_normal", |
|
"GPT3.5_normal", |
|
"GPT4_normal", |
|
"GPT4_CoT", |
|
'GPT4_CoT_self_refine', |
|
"GPT4_CoT+OneShot", |
|
"GPT4_CoT+SC@8" |
|
] |
|
|
|
def get_aggregate(answers, question_type, single_threshold=None, multiple_threshold=None): |
|
|
|
if question_type == 'MCQ(multiple)' or question_type == 'MCQ': |
|
letter_to_idx = {'A': 0, 'B': 1, 'C': 2, 'D': 3, 'None': 4} |
|
idx_to_letter = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'None'} |
|
abcd = [0,0,0,0,0] |
|
for ans in answers: |
|
if ans == 'None': |
|
abcd[letter_to_idx[ans]] += 1 |
|
else: |
|
for c in ans: |
|
abcd[letter_to_idx[c]] += 1 |
|
if question_type == 'MCQ': |
|
abcd = abcd[:-1] |
|
answer = idx_to_letter[np.argmax(abcd)] |
|
if single_threshold is not None: |
|
answer = answer if abcd[np.argmax(abcd)]/len(answers) >= single_threshold else "None" |
|
else: |
|
if multiple_threshold is not None: |
|
options_selected = [idx_to_letter[x] for x in range(len(abcd)) if abcd[x] >= len(answers)*multiple_threshold and idx_to_letter[x] != 'None'] |
|
else: |
|
options_selected = [idx_to_letter[x] for x in range(len(abcd)) if abcd[x] >= len(answers)/2 and idx_to_letter[x] != 'None'] |
|
if len(options_selected) == 0: |
|
answer = "None" |
|
else: |
|
answer = ''.join(sorted(options_selected)) |
|
else: |
|
while "None" in answers: |
|
answers.remove("None") |
|
if len(answers) == 0: |
|
answers = ["None"] |
|
unique, counts = np.unique(answers, return_counts=True) |
|
answer = unique[np.argmax(counts)] |
|
return answer |
|
|
|
|
|
def compute_score(gold, resp, question_type, year): |
|
assert question_type in QUES_TYPES |
|
if question_type == 'MCQ(multiple)': |
|
gold = set([c for c in ['A', 'B', 'C', 'D'] if c in gold]) |
|
resp = set([c for c in ['A', 'B', 'C', 'D'] if c in resp]) |
|
if resp == gold : |
|
return 1.0 |
|
else: |
|
if len(resp-gold) == 0: |
|
return 0.25*len(resp) |
|
return 0.0 |
|
elif question_type == 'MCQ': |
|
gold = set([c for c in ['A', 'B', 'C', 'D'] if c in gold]) |
|
resp = set([c for c in ['A', 'B', 'C', 'D'] if c in resp]) |
|
return int(gold == resp) |
|
else: |
|
if resp == "None": |
|
return 0.0 |
|
g, r = float(gold), float(resp) |
|
return int(abs(g-r) <= 0.01) |
|
|
|
|
|
def construct_responses_table(): |
|
responses = {} |
|
for model in models: |
|
if "SC@" in model: |
|
pass |
|
elif "Random" == model: |
|
pass |
|
else: |
|
responses[model] = json.load(open(f"data/responses/{model}_responses/responses.json")) |
|
dataset = json.load(open('data/dataset.json')) |
|
extracts = { |
|
"Type": [], |
|
"Index": [], |
|
"Description": [], |
|
"Subject": [], |
|
"Gold": [], |
|
} |
|
for model in models: |
|
if "Random" == model: |
|
continue |
|
else: |
|
extracts[f'{model}'] = [] |
|
|
|
|
|
for i, q in enumerate(dataset): |
|
extracts['Type'].append(q['type']) |
|
extracts['Index'].append(q['index']) |
|
extracts['Description'].append(q['description']) |
|
extracts['Subject'].append(q['subject']) |
|
extracts['Gold'].append(q['gold']) |
|
|
|
for model in models: |
|
if "SC@" in model: |
|
continue |
|
elif "Random" == model: |
|
continue |
|
else: |
|
try: |
|
assert q['question'] == responses[model][i]['question'] |
|
except: |
|
|
|
print(q['question']) |
|
breakpoint() |
|
print(responses[model][i]['question']) |
|
breakpoint() |
|
try: |
|
extracts[f'{model}'].append(responses[model][i]['extract']) |
|
except: |
|
print(extracts) |
|
|
|
if "GPT4_CoT+SC" in model: |
|
num_responses = int(model.split("@")[1]) |
|
for i, q in enumerate(dataset): |
|
sc_responses = json.load(open('data/responses/GPT4_CoT+SC_responses/responses.json')) |
|
resp = sc_responses[i] |
|
answers = [resp['GPT4_CoT+SC_response']['choices'][k]['extract'] for k in range(num_responses)] |
|
answer = get_aggregate(answers, resp['type']) |
|
|
|
extracts[f'{model}'].append(answer) |
|
pd.DataFrame(extracts).to_csv('results/extracts.csv', index=False) |
|
|
|
return pd.read_csv('results/extracts.csv',dtype=str) |
|
|
|
|
|
responses = construct_responses_table() |
|
output = [] |
|
for i, response in responses.iterrows(): |
|
out = {} |
|
out["Type"] = response["Type"] |
|
out["Index"] = response["Index"] |
|
out["Description"] = response["Description"] |
|
out["Subject"] = response["Subject"] |
|
gold = response["Gold"] |
|
out["Gold"] = gold |
|
if response["Type"] == "MCQ": |
|
out["Random"] = 0.25 |
|
elif response["Type"] == "MCQ(multiple)": |
|
num_ans = len(gold) |
|
if num_ans == 1: |
|
out["Random"] = 0.0625 |
|
elif num_ans == 2: |
|
out["Random"] = 0.09375 |
|
elif num_ans == 3: |
|
out["Random"] = 0.203125 |
|
elif num_ans == 4: |
|
out["Random"] = 0.5 |
|
else: |
|
out["Random"] = 0 |
|
|
|
for model in models: |
|
if model == "Random": |
|
continue |
|
resp = response[f"{model}"] |
|
if not isinstance(resp, str): |
|
resp = "None" |
|
out[f"{model}"] = resp |
|
out[f'{model}'] = compute_score(gold,resp,out["Type"],out["Description"]) |
|
out[f'Max'] = 1 |
|
output.append(out) |
|
|
|
df = pd.DataFrame() |
|
df['Type'] = [x['Type'] for x in output] |
|
df['Index'] = [x['Index'] for x in output] |
|
df['Description'] = [x['Description'] for x in output] |
|
df['Subject'] = [x['Subject'] for x in output] |
|
df['Gold'] = [x['Gold'] for x in output] |
|
df['Random'] = [x['Random'] for x in output] |
|
for model in models: |
|
df[f"{model}"] = [ |
|
x.get(f"{model}", "None") for x in output] |
|
df[f"{model}"] = [x.get(f"{model}", 0) for x in output] |
|
|
|
|
|
|
|
df.to_csv(f"results/scores.csv", index=False) |
|
|
|
modes = ['overall', 'type_wise', 'subject_wise'] |
|
for mode in modes: |
|
col_dict = {} |
|
for model in models: |
|
col_dict[f'{model}'] = ['mean'] |
|
|
|
if mode != 'overall': |
|
col_dict[f'{models[0]}'].insert(0,'count') |
|
|
|
if mode == 'overall': |
|
grouped_multiple = df.agg(col_dict) |
|
elif mode == 'type_wise': |
|
grouped_multiple = df.groupby(['Type']).agg(col_dict) |
|
elif mode == 'subject_wise': |
|
grouped_multiple = df.groupby(['Subject']).agg(col_dict) |
|
|
|
if mode != 'overall': |
|
grouped_multiple.columns = ['count'] + models |
|
grouped_multiple = grouped_multiple.reset_index() |
|
grouped_multiple = grouped_multiple.round(3) |
|
grouped_multiple.to_csv(f"results/aggregated_scores_{mode}.csv", index=False) |
|
print("Done!") |