File size: 174,992 Bytes
b1d4de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 |
# File: WebShop-master/baseline_models/agent.py import os import random import torch import torch.nn as nn import torch.nn.functional as F from transformers import AutoTokenizer from collections import defaultdict, namedtuple from models.bert import BertConfigForWebshop, BertModelForWebshop from models.rnn import RCDQN device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') State = namedtuple('State', ('obs', 'goal', 'click', 'estimate', 'obs_str', 'goal_str', 'image_feat')) TransitionPG = namedtuple('TransitionPG', ('state', 'act', 'reward', 'value', 'valid_acts', 'done')) def discount_reward(transitions, last_values, gamma): (returns, advantages) = ([], []) R = last_values.detach() for t in reversed(range(len(transitions))): (_, _, rewards, values, _, dones) = transitions[t] R = torch.FloatTensor(rewards).to(device) + gamma * R * (1 - torch.FloatTensor(dones).to(device)) baseline = values adv = R - baseline returns.append(R) advantages.append(adv) return (returns[::-1], advantages[::-1]) class Agent: def __init__(self, args): self.tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', truncation_side='left', max_length=512) self.tokenizer.add_tokens(['[button], [button_], [clicked button], [clicked button_]'], special_tokens=True) vocab_size = len(self.tokenizer) embedding_dim = args.embedding_dim if args.network == 'rnn': self.network = RCDQN(vocab_size, embedding_dim, args.hidden_dim, args.arch_encoder, args.grad_encoder, None, args.gru_embed, args.get_image, args.bert_path) self.network.rl_forward = self.network.forward elif args.network == 'bert': config = BertConfigForWebshop(image=args.get_image, pretrained_bert=args.bert_path != 'scratch') self.network = BertModelForWebshop(config) if args.bert_path != '' and args.bert_path != 'scratch': self.network.load_state_dict(torch.load(args.bert_path, map_location=torch.device('cpu')), strict=False) else: raise ValueError('Unknown network: {}'.format(args.network)) self.network = self.network.to(device) self.save_path = args.output_dir self.clip = args.clip self.w = {'loss_pg': args.w_pg, 'loss_td': args.w_td, 'loss_il': args.w_il, 'loss_en': args.w_en} self.optimizer = torch.optim.Adam(self.network.parameters(), lr=args.learning_rate) self.gamma = args.gamma def build_state(self, ob, info): obs_ids = self.encode(ob) goal_ids = self.encode(info['goal']) click = info['valid'][0].startswith('click[') estimate = info['estimate_score'] obs_str = ob.replace('\n', '[SEP]') goal_str = info['goal'] image_feat = info.get('image_feat') return State(obs_ids, goal_ids, click, estimate, obs_str, goal_str, image_feat) def encode(self, observation, max_length=512): observation = observation.lower().replace('"', '').replace("'", '').strip() observation = observation.replace('[sep]', '[SEP]') token_ids = self.tokenizer.encode(observation, truncation=True, max_length=max_length) return token_ids def decode(self, act): act = self.tokenizer.decode(act, skip_special_tokens=True) act = act.replace(' [ ', '[').replace(' ]', ']') return act def encode_valids(self, valids, max_length=64): return [[self.encode(act, max_length=max_length) for act in valid] for valid in valids] def act(self, states, valid_acts, method, state_strs=None, eps=0.1): act_ids = self.encode_valids(valid_acts) (act_values, act_sizes, values) = self.network.rl_forward(states, act_ids, value=True, act=True) act_values = act_values.split(act_sizes) if method == 'softmax': act_probs = [F.softmax(vals, dim=0) for vals in act_values] act_idxs = [torch.multinomial(probs, num_samples=1).item() for probs in act_probs] elif method == 'greedy': act_idxs = [vals.argmax(dim=0).item() for vals in act_values] elif method == 'eps': act_idxs = [vals.argmax(dim=0).item() if random.random() > eps else random.randint(0, len(vals) - 1) for vals in act_values] acts = [acts[idx] for (acts, idx) in zip(act_ids, act_idxs)] (act_strs, act_ids) = ([], []) for (act, idx, valids) in zip(acts, act_idxs, valid_acts): if torch.is_tensor(act): act = act.tolist() if 102 in act: act = act[:act.index(102) + 1] act_ids.append(act) if idx is None: act_str = self.decode(act) else: act_str = valids[idx] act_strs.append(act_str) return (act_strs, act_ids, values) def update(self, transitions, last_values, step=None, rewards_invdy=None): (returns, advs) = discount_reward(transitions, last_values, self.gamma) stats_global = defaultdict(float) for (transition, adv) in zip(transitions, advs): stats = {} (log_valid, valid_sizes) = self.network.rl_forward(transition.state, transition.valid_acts) act_values = log_valid.split(valid_sizes) log_a = torch.stack([values[acts.index(act)] for (values, acts, act) in zip(act_values, transition.valid_acts, transition.act)]) stats['loss_pg'] = -(log_a * adv.detach()).mean() stats['loss_td'] = adv.pow(2).mean() stats['loss_il'] = -log_valid.mean() stats['loss_en'] = (log_valid * log_valid.exp()).mean() for k in stats: stats[k] = self.w[k] * stats[k] / len(transitions) stats['loss'] = sum((stats[k] for k in stats)) stats['returns'] = torch.stack(returns).mean() / len(transitions) stats['advs'] = torch.stack(advs).mean() / len(transitions) stats['loss'].backward() stats['gradnorm_unclipped'] = sum((p.grad.norm(2).item() for p in self.network.parameters() if p.grad is not None)) nn.utils.clip_grad_norm_(self.network.parameters(), self.clip) stats['gradnorm_clipped'] = sum((p.grad.norm(2).item() for p in self.network.parameters() if p.grad is not None)) for (k, v) in stats.items(): stats_global[k] += v.item() if torch.is_tensor(v) else v del stats self.optimizer.step() self.optimizer.zero_grad() return stats_global def load(self): try: self.network = torch.load(os.path.join(self.save_path, 'model.pt')) except Exception as e: print('Error saving model.', e) def save(self): try: torch.save(self.network, os.path.join(self.save_path, 'model.pt')) except Exception as e: print('Error saving model.', e) # File: WebShop-master/baseline_models/env.py import sys import json import random from os.path import join, dirname, abspath from collections import defaultdict MODEL_PATH = dirname(abspath(__file__)) SITE_PATH = join(MODEL_PATH, '../') sys.path.insert(0, SITE_PATH) from web_agent_site.envs import WebAgentTextEnv from web_agent_site.utils import * from web_agent_site.engine.goal import get_reward class WebEnv: def __init__(self, args, split, server=None, id=None): self.env = WebAgentTextEnv(observation_mode=args.state_format, server=server, filter_goals=None, limit_goals=-1, num_products=args.num, human_goals=args.human_goals, get_image=args.get_image, num_prev_obs=args.num_prev_obs, num_prev_actions=args.num_prev_actions, session_prefix=id) if args.num is None: if split == 'test': self.goal_idxs = range(500) elif split == 'eval': self.goal_idxs = range(500, 1500) elif split == 'train': self.goal_idxs = range(1500, len(self.env.server.goals)) else: self.goal_idxs = range(len(self.env.server.goals)) print(self.goal_idxs) self.steps = 0 self.step_limit = args.step_limit self.stats = defaultdict(int) self.session = None self.click_item_name = args.click_item_name self.asin2name = {k.lower(): v['Title'].lower() for (k, v) in self.env.server.product_item_dict.items()} self.name2asin = {v: k for (k, v) in self.asin2name.items()} self.attributes_fail = defaultdict(int) self.attributes_success = defaultdict(int) self.items_clicked = defaultdict(int) self.harsh_reward = args.harsh_reward self.go_to_item = args.go_to_item self.go_to_search = args.go_to_search self.ban_buy = args.ban_buy self.prev_ob = self.cur_ob = None self.get_image = args.get_image self.item_rank = -1 self.reduce_click = 1 if args.extra_search_path != '': self.extra_search = json.load(open(args.extra_search_path)) self.extra_search = {k.strip('.'): v for (k, v) in self.extra_search.items()} else: self.extra_search = None def get_search_texts(self, atts, query, inst): if self.extra_search is not None: if ', and price lower than' in inst: idx = inst.find(', and price lower than') inst_ = inst[:idx] else: inst_ = inst texts = self.extra_search.get(inst_, []) + [inst.lower()] else: texts = [query] + [f'{att} {query}' for att in atts] + [inst.lower()] return texts def get_valid_actions(self): valid_info = self.env.get_available_actions() if valid_info['has_search_bar']: atts = self.session['goal']['attributes'] query = self.session['goal']['query'] inst = self.session['goal']['instruction_text'] texts = self.get_search_texts(atts, query, inst) valids = [f'search[{text}]' for text in texts] else: valids = [] for text in valid_info['clickables']: if text == 'buy now' and self.ban_buy: cur_options = len(self.session['options']) all_options = len(self.env.server.product_item_dict[self.session['asin']]['customization_options']) if cur_options != all_options: continue if text != 'search': if self.click_item_name and text in self.asin2name: text = 'item - ' + self.asin2name[text] valids.append(f'click[{text}]') if self.reduce_click and len(valids) > 20: valids = valids[:6] + random.sample(valids[6:], 10) if len(valids) == 0: valids = ['finish'] return valids def score(self): valid_acts = self.get_valid_actions() if 'click[description]' not in valid_acts: return 0.0 product = self.env.server.product_item_dict[self.session['asin']] goal = self.session['goal'] price = self.env.server.product_prices.get(self.session['asin']) options = self.session['options'] return get_reward(product, goal, price, options) def estimate_score(self, atts, opts, verify=False): valid_acts = self.get_valid_actions() assert 'click[description]' in valid_acts desc = self.step('click[description]')[0].lower() self.step('click[< prev]') feat = self.step('click[features]')[0].lower() ob = self.step('click[< prev]')[0].lower() n_att = 0 for att in atts: if att in desc or att in feat or att in ob: n_att += 1 r_att = n_att / len(atts) n_opt = 0 for opt in opts: for act in valid_acts: if opt in act: n_opt += 1 break r_opt = n_opt / len(opts) r = (n_att + n_opt + 1) / (len(atts) + len(opts) + 1) return (r, r_att, r_opt) def step(self, action): if self.click_item_name and action.startswith('click[item - ') and (action[13:-1] in self.name2asin): valid_items = [_ for _ in self.get_valid_actions() if _.startswith('click[item - ')] if action in valid_items: self.item_rank = valid_items.index(action) + 1 else: self.item_rank = -1 action = f'click[{self.name2asin[action[13:-1]]}]' (ob, reward, done, info) = self.env.step(action) if action.startswith('click[') and action[6:-1] in self.asin2name: self.items_clicked[action[6:-1]] += 1 desc = self.env.step('click[description]')[0].lower() self.env.step('click[< prev]') feat = self.env.step('click[features]')[0].lower() self.env.step('click[< prev]') else: desc = feat = '' r_visit = 0.0 (self.cur_ob, self.prev_ob) = (ob, self.cur_ob) if info is None: info = {} self.steps += 1 if self.step_limit and self.steps >= self.step_limit: done = True if done: info['verbose'] = self.session.get('verbose_info', {'r_att': 0.0, 'r_option': 0.0, 'r_price': 0.0, 'r_type': 0.0, 'w_att': 0.0, 'w_option': 0.0, 'w_price': 0.0}) verbose = info['verbose'] verbose['r_harsh'] = reward == 1 verbose['r_exact'] = reward == 1 and self.session['goal']['asin'] == self.session['asin'] verbose['r_norm'] = reward / self.steps verbose['r_visit'] = r_visit verbose['rank_item'] = self.item_rank if self.harsh_reward: reward = verbose['r_harsh'] for (k, v) in self.session['actions'].items(): self.stats[f'action_{k}'] += v cat = self.session['goal']['category'] self.stats[f'cat_{cat}'] += 1 for att in self.session['goal']['attributes']: if att in info['verbose'].get('purchased_attrs', []): self.attributes_success[att] += 1 else: self.attributes_fail[att] += 1 info.update({'valid': self.get_valid_actions(), 'goal': self.env.instruction_text, 'score': reward * 10, 'estimate_score': self.score(), 'prev_ob': self.prev_ob, 'desc': desc, 'feat': feat}) if self.get_image: image_feat = self.env.get_image() info['image_feat'] = image_feat return (ob, (reward + r_visit) * 10, done, info) def reset(self, idx=None): if idx is None: idx = random.sample(self.goal_idxs, k=1)[0] (ob, info) = self.env.reset(idx) self.session = self.env.server.user_sessions[self.env.session] if info is None: info = {} (self.cur_ob, self.prev_ob) = (ob, None) info.update({'valid': self.get_valid_actions(), 'goal': self.env.instruction_text, 'score': 0, 'estimate_score': self.score(), 'prev_ob': self.prev_ob, 'desc': '', 'feat': ''}) self.steps = 0 if self.go_to_search or self.go_to_item: name = self.session['goal']['name'].lower() (ob, _, _, info) = self.step(f'search[{name}]') self.stats['action_go_to_search'] += 1 if self.go_to_item: asin = self.session['goal']['asin'].lower() if asin in self.env.get_available_actions()['clickables']: (ob, _, _, info) = self.step(f'click[{asin}]') self.stats['action_go_to_item'] += 1 self.item_rank = -1 return (ob, info) def close(self): self.env.close() # File: WebShop-master/baseline_models/generate_search.py import json import time import torch from tqdm import tqdm from transformers import BartForConditionalGeneration from train_search import get_data, get_dataset, tokenizer if __name__ == '__main__': model = BartForConditionalGeneration.from_pretrained('./ckpts/web_search/checkpoint-800') model.eval() model = model.to('cuda') dataset = get_dataset('web_search') dataloader = torch.utils.data.DataLoader(dataset['all'], batch_size=32) (_, all_goals) = get_data('all') all_dec = [] for batch in tqdm(dataloader): output = model.generate(input_ids=batch['input_ids'].to('cuda'), attention_mask=batch['attention_mask'].to('cuda'), num_beams=10, num_return_sequences=10, max_length=512, early_stopping=True) dec = tokenizer.batch_decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=False) assert len(dec) % 10 == 0 for i in range(len(dec) // 10): all_dec.append(dec[i * 10:(i + 1) * 10]) assert len(all_goals) == len(all_dec) d = {goal: dec for (goal, dec) in zip(all_goals, all_dec)} with open('./data/goal_query_predict.json', 'w') as f: json.dump(d, f) # File: WebShop-master/baseline_models/logger.py import os import sys import shutil import os.path as osp import json import time import datetime import tempfile from collections import defaultdict import wandb DEBUG = 10 INFO = 20 WARN = 30 ERROR = 40 DISABLED = 50 class KVWriter(object): def writekvs(self, kvs): raise NotImplementedError class SeqWriter(object): def writeseq(self, seq): raise NotImplementedError class HumanOutputFormat(KVWriter, SeqWriter): def __init__(self, filename_or_file): if isinstance(filename_or_file, str): self.file = open(filename_or_file, 'wt') self.own_file = True else: assert hasattr(filename_or_file, 'read'), 'expected file or str, got %s' % filename_or_file self.file = filename_or_file self.own_file = False def writekvs(self, kvs): key2str = {} for (key, val) in sorted(kvs.items()): if isinstance(val, float): valstr = '%-8.3g' % (val,) else: valstr = str(val) key2str[self._truncate(key)] = self._truncate(valstr) if len(key2str) == 0: print('WARNING: tried to write empty key-value dict') return else: keywidth = max(map(len, key2str.keys())) valwidth = max(map(len, key2str.values())) dashes = '-' * (keywidth + valwidth + 7) lines = [dashes] for (key, val) in sorted(key2str.items()): lines.append('| %s%s | %s%s |' % (key, ' ' * (keywidth - len(key)), val, ' ' * (valwidth - len(val)))) lines.append(dashes) self.file.write('\n'.join(lines) + '\n') self.file.flush() def _truncate(self, s): return s[:20] + '...' if len(s) > 23 else s def writeseq(self, seq): seq = list(seq) for (i, elem) in enumerate(seq): self.file.write(elem) if i < len(seq) - 1: self.file.write(' ') self.file.write('\n') self.file.flush() def close(self): if self.own_file: self.file.close() class JSONOutputFormat(KVWriter): def __init__(self, filename): self.file = open(filename, 'wt') def writekvs(self, kvs): for (k, v) in sorted(kvs.items()): if hasattr(v, 'dtype'): v = v.tolist() kvs[k] = float(v) self.file.write(json.dumps(kvs) + '\n') self.file.flush() def close(self): self.file.close() class WandBOutputFormat(KVWriter): def __init__(self, filename): group = None if filename.endswith('trial'): group = filename[:-6] wandb.init(project='web_drrn', name=filename, group=group) def writekvs(self, kvs): wandb.log(kvs) def close(self): pass class CSVOutputFormat(KVWriter): def __init__(self, filename): self.file = open(filename, 'w+t') self.keys = [] self.sep = ',' def writekvs(self, kvs): extra_keys = kvs.keys() - self.keys if extra_keys: self.keys.extend(extra_keys) self.file.seek(0) lines = self.file.readlines() self.file.seek(0) for (i, k) in enumerate(self.keys): if i > 0: self.file.write(',') self.file.write(k) self.file.write('\n') for line in lines[1:]: self.file.write(line[:-1]) self.file.write(self.sep * len(extra_keys)) self.file.write('\n') for (i, k) in enumerate(self.keys): if i > 0: self.file.write(',') v = kvs.get(k) if v is not None: self.file.write(str(v)) self.file.write('\n') self.file.flush() def close(self): self.file.close() class TensorBoardOutputFormat(KVWriter): def __init__(self, dir): os.makedirs(dir, exist_ok=True) self.dir = dir self.step = 1 prefix = 'events' path = osp.join(osp.abspath(dir), prefix) import tensorflow as tf from tensorflow.python import pywrap_tensorflow from tensorflow.core.util import event_pb2 from tensorflow.python.util import compat self.tf = tf self.event_pb2 = event_pb2 self.pywrap_tensorflow = pywrap_tensorflow self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path)) def writekvs(self, kvs): def summary_val(k, v): kwargs = {'tag': k, 'simple_value': float(v)} return self.tf.Summary.Value(**kwargs) summary = self.tf.Summary(value=[summary_val(k, v) for (k, v) in kvs.items()]) event = self.event_pb2.Event(wall_time=time.time(), summary=summary) event.step = self.step self.writer.WriteEvent(event) self.writer.Flush() self.step += 1 def close(self): if self.writer: self.writer.Close() self.writer = None def make_output_format(format, ev_dir, log_suffix='', args=None): os.makedirs(ev_dir, exist_ok=True) if format == 'stdout': return HumanOutputFormat(sys.stdout) elif format == 'log': return HumanOutputFormat(osp.join(ev_dir, 'log%s.txt' % log_suffix)) elif format == 'json': return JSONOutputFormat(osp.join(ev_dir, 'progress%s.json' % log_suffix)) elif format == 'csv': return CSVOutputFormat(osp.join(ev_dir, 'progress%s.csv' % log_suffix)) elif format == 'tensorboard': return TensorBoardOutputFormat(osp.join(ev_dir, 'tb%s' % log_suffix)) elif format == 'wandb': return WandBOutputFormat(ev_dir) else: raise ValueError('Unknown format specified: %s' % (format,)) def logkv(key, val): Logger.CURRENT.logkv(key, val) def logkv_mean(key, val): Logger.CURRENT.logkv_mean(key, val) def logkvs(d): for (k, v) in d.items(): logkv(k, v) def dumpkvs(): Logger.CURRENT.dumpkvs() def getkvs(): return Logger.CURRENT.name2val def log(*args, level=INFO): Logger.CURRENT.log(*args, level=level) def debug(*args): log(*args, level=DEBUG) def info(*args): log(*args, level=INFO) def warn(*args): log(*args, level=WARN) def error(*args): log(*args, level=ERROR) def set_level(level): Logger.CURRENT.set_level(level) def get_dir(): return Logger.CURRENT.get_dir() record_tabular = logkv dump_tabular = dumpkvs class ProfileKV: def __init__(self, n): self.n = 'wait_' + n def __enter__(self): self.t1 = time.time() def __exit__(self, type, value, traceback): Logger.CURRENT.name2val[self.n] += time.time() - self.t1 def profile(n): def decorator_with_name(func): def func_wrapper(*args, **kwargs): with ProfileKV(n): return func(*args, **kwargs) return func_wrapper return decorator_with_name class Logger(object): DEFAULT = None CURRENT = None def __init__(self, dir, output_formats): self.name2val = defaultdict(float) self.name2cnt = defaultdict(int) self.level = INFO self.dir = dir self.output_formats = output_formats def logkv(self, key, val): self.name2val[key] = val def logkv_mean(self, key, val): if val is None: self.name2val[key] = None return (oldval, cnt) = (self.name2val[key], self.name2cnt[key]) self.name2val[key] = oldval * cnt / (cnt + 1) + val / (cnt + 1) self.name2cnt[key] = cnt + 1 def dumpkvs(self): if self.level == DISABLED: return for fmt in self.output_formats: if isinstance(fmt, KVWriter): fmt.writekvs(self.name2val) self.name2val.clear() self.name2cnt.clear() def log(self, *args, level=INFO): if self.level <= level: self._do_log(args) def set_level(self, level): self.level = level def get_dir(self): return self.dir def close(self): for fmt in self.output_formats: fmt.close() def _do_log(self, args): for fmt in self.output_formats: if isinstance(fmt, SeqWriter): fmt.writeseq(map(str, args)) def configure(dir=None, format_strs=None): if dir is None: dir = os.getenv('OPENAI_LOGDIR') if dir is None: dir = osp.join(tempfile.gettempdir(), datetime.datetime.now().strftime('openai-%Y-%m-%d-%H-%M-%S-%f')) assert isinstance(dir, str) os.makedirs(dir, exist_ok=True) log_suffix = '' rank = 0 for varname in ['PMI_RANK', 'OMPI_COMM_WORLD_RANK']: if varname in os.environ: rank = int(os.environ[varname]) if rank > 0: log_suffix = '-rank%03i' % rank if format_strs is None: if rank == 0: format_strs = os.getenv('OPENAI_LOG_FORMAT', 'stdout,log,csv').split(',') else: format_strs = os.getenv('OPENAI_LOG_FORMAT_MPI', 'log').split(',') format_strs = filter(None, format_strs) output_formats = [make_output_format(f, dir, log_suffix) for f in format_strs] Logger.CURRENT = Logger(dir=dir, output_formats=output_formats) log('Logging to %s' % dir) def _configure_default_logger(): format_strs = None if 'OPENAI_LOG_FORMAT' not in os.environ: format_strs = ['stdout'] configure(format_strs=format_strs) Logger.DEFAULT = Logger.CURRENT def reset(): if Logger.CURRENT is not Logger.DEFAULT: Logger.CURRENT.close() Logger.CURRENT = Logger.DEFAULT log('Reset logger') class scoped_configure(object): def __init__(self, dir=None, format_strs=None): self.dir = dir self.format_strs = format_strs self.prevlogger = None def __enter__(self): self.prevlogger = Logger.CURRENT configure(dir=self.dir, format_strs=self.format_strs) def __exit__(self, *args): Logger.CURRENT.close() Logger.CURRENT = self.prevlogger def _demo(): info('hi') debug("shouldn't appear") set_level(DEBUG) debug('should appear') dir = '/tmp/testlogging' if os.path.exists(dir): shutil.rmtree(dir) configure(dir=dir) logkv('a', 3) logkv('b', 2.5) dumpkvs() logkv('b', -2.5) logkv('a', 5.5) dumpkvs() info('^^^ should see a = 5.5') logkv_mean('b', -22.5) logkv_mean('b', -44.4) logkv('a', 5.5) dumpkvs() info('^^^ should see b = 33.3') logkv('b', -2.5) dumpkvs() logkv('a', 'longasslongasslongasslongasslongasslongassvalue') dumpkvs() def read_json(fname): import pandas ds = [] with open(fname, 'rt') as fh: for line in fh: ds.append(json.loads(line)) return pandas.DataFrame(ds) def read_csv(fname): import pandas return pandas.read_csv(fname, index_col=None, comment='#') def read_tb(path): import pandas import numpy as np from glob import glob from collections import defaultdict import tensorflow as tf if osp.isdir(path): fnames = glob(osp.join(path, 'events.*')) elif osp.basename(path).startswith('events.'): fnames = [path] else: raise NotImplementedError('Expected tensorboard file or directory containing them. Got %s' % path) tag2pairs = defaultdict(list) maxstep = 0 for fname in fnames: for summary in tf.train.summary_iterator(fname): if summary.step > 0: for v in summary.summary.value: pair = (summary.step, v.simple_value) tag2pairs[v.tag].append(pair) maxstep = max(summary.step, maxstep) data = np.empty((maxstep, len(tag2pairs))) data[:] = np.nan tags = sorted(tag2pairs.keys()) for (colidx, tag) in enumerate(tags): pairs = tag2pairs[tag] for (step, value) in pairs: data[step - 1, colidx] = value return pandas.DataFrame(data, columns=tags) if __name__ == '__main__': _demo() # File: WebShop-master/baseline_models/models/bert.py import torch import torch.nn as nn import torch.nn.functional as F from transformers import BertModel, BertConfig, PretrainedConfig, PreTrainedModel from transformers.modeling_outputs import SequenceClassifierOutput from .modules import EncoderRNN, BiAttention, get_aggregated class BertConfigForWebshop(PretrainedConfig): model_type = 'bert' def __init__(self, pretrained_bert=True, image=False, **kwargs): self.pretrained_bert = pretrained_bert self.image = image super().__init__(**kwargs) class BertModelForWebshop(PreTrainedModel): config_class = BertConfigForWebshop def __init__(self, config): super().__init__(config) bert_config = BertConfig.from_pretrained('bert-base-uncased') if config.pretrained_bert: self.bert = BertModel.from_pretrained('bert-base-uncased') else: self.bert = BertModel(config) self.bert.resize_token_embeddings(30526) self.attn = BiAttention(768, 0.0) self.linear_1 = nn.Linear(768 * 4, 768) self.relu = nn.ReLU() self.linear_2 = nn.Linear(768, 1) if config.image: self.image_linear = nn.Linear(512, 768) else: self.image_linear = None self.linear_3 = nn.Sequential(nn.Linear(768, 128), nn.LeakyReLU(), nn.Linear(128, 1)) def forward(self, state_input_ids, state_attention_mask, action_input_ids, action_attention_mask, sizes, images=None, labels=None): sizes = sizes.tolist() state_rep = self.bert(state_input_ids, attention_mask=state_attention_mask)[0] if images is not None and self.image_linear is not None: images = self.image_linear(images) state_rep = torch.cat([images.unsqueeze(1), state_rep], dim=1) state_attention_mask = torch.cat([state_attention_mask[:, :1], state_attention_mask], dim=1) action_rep = self.bert(action_input_ids, attention_mask=action_attention_mask)[0] state_rep = torch.cat([state_rep[i:i + 1].repeat(j, 1, 1) for (i, j) in enumerate(sizes)], dim=0) state_attention_mask = torch.cat([state_attention_mask[i:i + 1].repeat(j, 1) for (i, j) in enumerate(sizes)], dim=0) act_lens = action_attention_mask.sum(1).tolist() state_action_rep = self.attn(action_rep, state_rep, state_attention_mask) state_action_rep = self.relu(self.linear_1(state_action_rep)) act_values = get_aggregated(state_action_rep, act_lens, 'mean') act_values = self.linear_2(act_values).squeeze(1) logits = [F.log_softmax(_, dim=0) for _ in act_values.split(sizes)] loss = None if labels is not None: loss = -sum([logit[label] for (logit, label) in zip(logits, labels)]) / len(logits) return SequenceClassifierOutput(loss=loss, logits=logits) def rl_forward(self, state_batch, act_batch, value=False, q=False, act=False): act_values = [] act_sizes = [] values = [] for (state, valid_acts) in zip(state_batch, act_batch): with torch.set_grad_enabled(not act): state_ids = torch.tensor([state.obs]).cuda() state_mask = (state_ids > 0).int() act_lens = [len(_) for _ in valid_acts] act_ids = [torch.tensor(_) for _ in valid_acts] act_ids = nn.utils.rnn.pad_sequence(act_ids, batch_first=True).cuda() act_mask = (act_ids > 0).int() act_size = torch.tensor([len(valid_acts)]).cuda() if self.image_linear is not None: images = [state.image_feat] images = [torch.zeros(512) if _ is None else _ for _ in images] images = torch.stack(images).cuda() else: images = None logits = self.forward(state_ids, state_mask, act_ids, act_mask, act_size, images=images).logits[0] act_values.append(logits) act_sizes.append(len(valid_acts)) if value: v = self.bert(state_ids, state_mask)[0] values.append(self.linear_3(v[0][0])) act_values = torch.cat(act_values, dim=0) act_values = torch.cat([F.log_softmax(_, dim=0) for _ in act_values.split(act_sizes)], dim=0) if value: values = torch.cat(values, dim=0) return (act_values, act_sizes, values) else: return (act_values, act_sizes) # File: WebShop-master/baseline_models/models/modules.py import itertools import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.utils import rnn def duplicate(output, mask, lens, act_sizes): output = torch.cat([output[i:i + 1].repeat(j, 1, 1) for (i, j) in enumerate(act_sizes)], dim=0) mask = torch.cat([mask[i:i + 1].repeat(j, 1) for (i, j) in enumerate(act_sizes)], dim=0) lens = list(itertools.chain.from_iterable([lens[i:i + 1] * j for (i, j) in enumerate(act_sizes)])) return (output, mask, lens) def get_aggregated(output, lens, method): if method == 'mean': return torch.stack([output[i, :j, :].mean(0) for (i, j) in enumerate(lens)], dim=0) elif method == 'last': return torch.stack([output[i, j - 1, :] for (i, j) in enumerate(lens)], dim=0) elif method == 'first': return output[:, 0, :] class EncoderRNN(nn.Module): def __init__(self, input_size, num_units, nlayers, concat, bidir, layernorm, return_last): super().__init__() self.layernorm = layernorm == 'layer' if layernorm: self.norm = nn.LayerNorm(input_size) self.rnns = [] for i in range(nlayers): if i == 0: input_size_ = input_size output_size_ = num_units else: input_size_ = num_units if not bidir else num_units * 2 output_size_ = num_units self.rnns.append(nn.GRU(input_size_, output_size_, 1, bidirectional=bidir, batch_first=True)) self.rnns = nn.ModuleList(self.rnns) self.init_hidden = nn.ParameterList([nn.Parameter(torch.zeros(size=(2 if bidir else 1, 1, num_units)), requires_grad=True) for _ in range(nlayers)]) self.concat = concat self.nlayers = nlayers self.return_last = return_last self.reset_parameters() def reset_parameters(self): with torch.no_grad(): for rnn_layer in self.rnns: for (name, p) in rnn_layer.named_parameters(): if 'weight_ih' in name: torch.nn.init.xavier_uniform_(p.data) elif 'weight_hh' in name: torch.nn.init.orthogonal_(p.data) elif 'bias' in name: p.data.fill_(0.0) else: p.data.normal_(std=0.1) def get_init(self, bsz, i): return self.init_hidden[i].expand(-1, bsz, -1).contiguous() def forward(self, inputs, input_lengths=None): (bsz, slen) = (inputs.size(0), inputs.size(1)) if self.layernorm: inputs = self.norm(inputs) output = inputs outputs = [] lens = 0 if input_lengths is not None: lens = input_lengths for i in range(self.nlayers): hidden = self.get_init(bsz, i) if input_lengths is not None: output = rnn.pack_padded_sequence(output, lens, batch_first=True, enforce_sorted=False) (output, hidden) = self.rnns[i](output, hidden) if input_lengths is not None: (output, _) = rnn.pad_packed_sequence(output, batch_first=True) if output.size(1) < slen: padding = torch.zeros(size=(1, 1, 1), dtype=output.type(), device=output.device()) output = torch.cat([output, padding.expand(output.size(0), slen - output.size(1), output.size(2))], dim=1) if self.return_last: outputs.append(hidden.permute(1, 0, 2).contiguous().view(bsz, -1)) else: outputs.append(output) if self.concat: return torch.cat(outputs, dim=2) return outputs[-1] class BiAttention(nn.Module): def __init__(self, input_size, dropout): super().__init__() self.dropout = nn.Dropout(dropout) self.input_linear = nn.Linear(input_size, 1, bias=False) self.memory_linear = nn.Linear(input_size, 1, bias=False) self.dot_scale = nn.Parameter(torch.zeros(size=(input_size,)).uniform_(1.0 / input_size ** 0.5), requires_grad=True) self.init_parameters() def init_parameters(self): return def forward(self, context, memory, mask): (bsz, input_len) = (context.size(0), context.size(1)) memory_len = memory.size(1) context = self.dropout(context) memory = self.dropout(memory) input_dot = self.input_linear(context) memory_dot = self.memory_linear(memory).view(bsz, 1, memory_len) cross_dot = torch.bmm(context * self.dot_scale, memory.permute(0, 2, 1).contiguous()) att = input_dot + memory_dot + cross_dot att = att - 1e+30 * (1 - mask[:, None]) weight_one = F.softmax(att, dim=-1) output_one = torch.bmm(weight_one, memory) weight_two = F.softmax(att.max(dim=-1)[0], dim=-1).view(bsz, 1, input_len) output_two = torch.bmm(weight_two, context) return torch.cat([context, output_one, context * output_one, output_two * output_one], dim=-1) # File: WebShop-master/baseline_models/models/rnn.py import torch import torch.nn as nn import torch.nn.functional as F from .modules import EncoderRNN, BiAttention, get_aggregated, duplicate class RCDQN(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim, arch, grad, embs=None, gru_embed='embedding', get_image=0, bert_path=''): super().__init__() self.word_dim = embedding_dim self.word_emb = nn.Embedding(vocab_size, embedding_dim) if embs is not None: print('Loading embeddings of shape {}'.format(embs.shape)) self.word_emb.weight.data.copy_(torch.from_numpy(embs)) self.hidden_dim = hidden_dim self.keep_prob = 1.0 self.rnn = EncoderRNN(self.word_dim, self.hidden_dim, 1, concat=True, bidir=True, layernorm='None', return_last=False) self.att_1 = BiAttention(self.hidden_dim * 2, 1 - self.keep_prob) self.att_2 = BiAttention(self.hidden_dim * 2, 1 - self.keep_prob) self.att_3 = BiAttention(embedding_dim, 1 - self.keep_prob) self.linear_1 = nn.Sequential(nn.Linear(self.hidden_dim * 8, self.hidden_dim), nn.LeakyReLU()) self.rnn_2 = EncoderRNN(self.hidden_dim, self.hidden_dim, 1, concat=True, bidir=True, layernorm='layer', return_last=False) self.linear_2 = nn.Sequential(nn.Linear(self.hidden_dim * 12, self.hidden_dim * 2), nn.LeakyReLU()) self.linear_3 = nn.Sequential(nn.Linear(self.hidden_dim * 2, self.hidden_dim), nn.LeakyReLU(), nn.Linear(self.hidden_dim, 1)) self.get_image = get_image if self.get_image: self.linear_image = nn.Linear(512, self.hidden_dim) def prepare(self, ids): lens = [len(_) for _ in ids] ids = [torch.tensor(_) for _ in ids] ids = nn.utils.rnn.pad_sequence(ids, batch_first=True).cuda() mask = (ids > 0).float() embed = self.word_emb(ids) output = self.rnn(embed, lens) return (ids, lens, mask, embed, output) def forward(self, state_batch, act_batch, value=False, q=False, act=False): if self.arch == 'bert': return self.bert_forward(state_batch, act_batch, value, q, act) (obs_ids, obs_lens, obs_mask, obs_embed, obs_output) = self.prepare([state.obs for state in state_batch]) (goal_ids, goal_lens, goal_mask, goal_embed, goal_output) = self.prepare([state.goal for state in state_batch]) state_output = self.att_1(obs_output, goal_output, goal_mask) state_output = self.linear_1(state_output) if self.get_image: images = [state.image_feat for state in state_batch] images = [torch.zeros(512) if _ is None else _ for _ in images] images = torch.stack([_ for _ in images]).cuda() images = self.linear_image(images) state_output = torch.cat([images.unsqueeze(1), state_output], dim=1) obs_lens = [_ + 1 for _ in obs_lens] obs_mask = torch.cat([obs_mask[:, :1], obs_mask], dim=1) state_output = self.rnn_2(state_output, obs_lens) if value: values = get_aggregated(state_output, obs_lens, 'mean') values = self.linear_3(values).squeeze(1) act_sizes = [len(_) for _ in act_batch] act_batch = list(itertools.chain.from_iterable(act_batch)) (act_ids, act_lens, act_mask, act_embed, act_output) = self.prepare(act_batch) (state_output, state_mask, state_lens) = duplicate(state_output, obs_mask, obs_lens, act_sizes) (goal_embed, goal_mask, goal_lens) = duplicate(goal_embed, goal_mask, goal_lens, act_sizes) state_act_output = self.att_2(act_output, state_output, state_mask) goal_act_output = self.att_3(act_embed, goal_embed, goal_mask) output = torch.cat([state_act_output, goal_act_output], dim=-1) output = get_aggregated(output, act_lens, 'mean') output = self.linear_2(output) act_values = self.linear_3(output).squeeze(1) if not q: act_values = torch.cat([F.log_softmax(_, dim=0) for _ in act_values.split(act_sizes)], dim=0) if value: return (act_values, act_sizes, values) else: return (act_values, act_sizes) # File: WebShop-master/baseline_models/train_choice_il.py """""" import argparse import json import logging import math import os import random from pathlib import Path import datasets import torch from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from tqdm.auto import tqdm import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import set_seed from huggingface_hub import Repository from transformers import AdamW, AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, BertModel, BertConfig, DataCollatorWithPadding, PretrainedConfig, PreTrainedModel, SchedulerType, default_data_collator, get_scheduler from transformers.utils.versions import require_version from datasets import Dataset from transformers.modeling_outputs import SequenceClassifierOutput import torch.nn as nn import torch.nn.functional as F import wandb from models.bert import BertModelForWebshop, BertConfigForWebshop logger = get_logger(__name__) require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') task_to_keys = {'cola': ('sentence', None), 'mnli': ('premise', 'hypothesis'), 'mrpc': ('sentence1', 'sentence2'), 'qnli': ('question', 'sentence'), 'qqp': ('question1', 'question2'), 'rte': ('sentence1', 'sentence2'), 'sst2': ('sentence', None), 'stsb': ('sentence1', 'sentence2'), 'wnli': ('sentence1', 'sentence2')} tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', truncation_side='left') print(len(tokenizer)) tokenizer.add_tokens(['[button]', '[button_]', '[clicked button]', '[clicked button_]'], special_tokens=True) print(len(tokenizer)) PATH = './data/il_trajs_finalized_images.jsonl' MEM_PATH = './data/il_trajs_mem_finalized_images.jsonl' HUMAN_GOAL_PATH = './data/human_goals.json' def process(s): s = s.lower().replace('"', '').replace("'", '').strip() s = s.replace('[sep]', '[SEP]') return s def process_goal(state): state = state.lower().replace('"', '').replace("'", '') state = state.replace('amazon shopping game\ninstruction:', '').replace('webshop\ninstruction:', '') state = state.replace('\n[button] search [button_]', '').strip() if ', and price lower than' in state: state = state.split(', and price lower than')[0] return state def get_data(split, mem=False, filter_search=True): path = MEM_PATH if mem else PATH print('Loading data from {}'.format(path)) with open(path, 'r') as json_file: json_list = list(json_file) human_goals = json.load(open(HUMAN_GOAL_PATH, 'r')) random.seed(233) random.shuffle(json_list) goal_range = range(len(human_goals)) if split == 'train': goal_range = range(1500, len(human_goals)) elif split == 'eval': goal_range = range(500, 1500) elif split == 'test': goal_range = range(0, 500) bad = cnt = 0 (state_list, action_list, idx_list, size_list) = ([], [], [], []) image_list = [] num_trajs = 0 for json_str in json_list: result = json.loads(json_str) s = process_goal(result['states'][0]) assert s in human_goals, s goal_idx = human_goals.index(s) if goal_idx not in goal_range: continue num_trajs += 1 if 'images' not in result: result['images'] = [0] * len(result['states']) for (state, valid_acts, idx, image) in zip(result['states'], result['available_actions'], result['action_idxs'], result['images']): cnt += 1 if filter_search and idx == -1: continue state_list.append(state) image_list.append([0.0] * 512 if image == 0 else image) if len(valid_acts) > 20: bad += 1 new_idxs = list(range(6)) + random.sample(range(6, len(valid_acts)), 10) if idx not in new_idxs: new_idxs += [idx] new_idxs = sorted(new_idxs) valid_acts = [valid_acts[i] for i in new_idxs] idx = new_idxs.index(idx) action_list.extend(valid_acts) idx_list.append(idx) size_list.append(len(valid_acts)) print('num of {} trajs: {}'.format(split, num_trajs)) print('total transitions and bad transitions: {} {}'.format(cnt, bad)) (state_list, action_list) = (list(map(process, state_list)), list(map(process, action_list))) return (state_list, action_list, idx_list, size_list, image_list) def get_dataset(split, mem=False): (states, actions, idxs, sizes, images) = get_data(split, mem) state_encodings = tokenizer(states, padding='max_length', max_length=512, truncation=True, return_tensors='pt') action_encodings = tokenizer(actions, padding='max_length', max_length=128, truncation=True, return_tensors='pt') dataset = {'state_input_ids': state_encodings['input_ids'], 'state_attention_mask': state_encodings['attention_mask'], 'action_input_ids': action_encodings['input_ids'].split(sizes), 'action_attention_mask': action_encodings['attention_mask'].split(sizes), 'sizes': sizes, 'images': torch.tensor(images), 'labels': idxs} return Dataset.from_dict(dataset) def data_collator(batch): (state_input_ids, state_attention_mask, action_input_ids, action_attention_mask, sizes, labels, images) = ([], [], [], [], [], [], []) for sample in batch: state_input_ids.append(sample['state_input_ids']) state_attention_mask.append(sample['state_attention_mask']) action_input_ids.extend(sample['action_input_ids']) action_attention_mask.extend(sample['action_attention_mask']) sizes.append(sample['sizes']) labels.append(sample['labels']) images.append(sample['images']) max_state_len = max((sum(x) for x in state_attention_mask)) max_action_len = max((sum(x) for x in action_attention_mask)) return {'state_input_ids': torch.tensor(state_input_ids)[:, :max_state_len], 'state_attention_mask': torch.tensor(state_attention_mask)[:, :max_state_len], 'action_input_ids': torch.tensor(action_input_ids)[:, :max_action_len], 'action_attention_mask': torch.tensor(action_attention_mask)[:, :max_action_len], 'sizes': torch.tensor(sizes), 'images': torch.tensor(images), 'labels': torch.tensor(labels)} def parse_args(): parser = argparse.ArgumentParser(description='Finetune a transformers model on a text classification task') parser.add_argument('--task_name', type=str, default='mprc', help='The name of the glue task to train on.', choices=list(task_to_keys.keys())) parser.add_argument('--train_file', type=str, default=None, help='A csv or a json file containing the training data.') parser.add_argument('--validation_file', type=str, default=None, help='A csv or a json file containing the validation data.') parser.add_argument('--max_length', type=int, default=128, help='The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded if `--pad_to_max_lengh` is passed.') parser.add_argument('--pad_to_max_length', action='store_true', help='If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.') parser.add_argument('--model_name_or_path', default='bert-base-uncased', type=str, help='Path to pretrained model or model identifier from huggingface.co/models.') parser.add_argument('--use_slow_tokenizer', action='store_true', help='If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).') parser.add_argument('--per_device_train_batch_size', type=int, default=1, help='Batch size (per device) for the training dataloader.') parser.add_argument('--per_device_eval_batch_size', type=int, default=8, help='Batch size (per device) for the evaluation dataloader.') parser.add_argument('--learning_rate', type=float, default=2e-05, help='Initial learning rate (after the potential warmup period) to use.') parser.add_argument('--weight_decay', type=float, default=0.0, help='Weight decay to use.') parser.add_argument('--num_train_epochs', type=int, default=10, help='Total number of training epochs to perform.') parser.add_argument('--max_train_steps', type=int, default=None, help='Total number of training steps to perform. If provided, overrides num_train_epochs.') parser.add_argument('--gradient_accumulation_steps', type=int, default=32, help='Number of updates steps to accumulate before performing a backward/update pass.') parser.add_argument('--lr_scheduler_type', type=SchedulerType, default='linear', help='The scheduler type to use.', choices=['linear', 'cosine', 'cosine_with_restarts', 'polynomial', 'constant', 'constant_with_warmup']) parser.add_argument('--num_warmup_steps', type=int, default=0, help='Number of steps for the warmup in the lr scheduler.') parser.add_argument('--output_dir', type=str, default='./ckpts/web_click', help='Where to store the final model.') parser.add_argument('--seed', type=int, default=None, help='A seed for reproducible training.') parser.add_argument('--push_to_hub', action='store_true', help='Whether or not to push the model to the Hub.') parser.add_argument('--hub_model_id', type=str, help='The name of the repository to keep in sync with the local `output_dir`.') parser.add_argument('--hub_token', type=str, help='The token to use to push to the Model Hub.') parser.add_argument('--checkpointing_steps', type=str, default='epoch', help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.") parser.add_argument('--resume_from_checkpoint', type=str, default=None, help='If the training should continue from a checkpoint folder.') parser.add_argument('--with_tracking', type=int, default=1, help='Whether to load in all available experiment trackers from the environment and use them for logging.') parser.add_argument('--mem', type=int, default=0, help='State with memory') parser.add_argument('--image', type=int, default=1, help='State with image') parser.add_argument('--pretrain', type=int, default=1, help='Pretrained BERT or not') parser.add_argument('--logging_steps', type=int, default=10, help='Logging in training') args = parser.parse_args() if args.task_name is None and args.train_file is None and (args.validation_file is None): raise ValueError('Need either a task name or a training/validation file.') else: if args.train_file is not None: extension = args.train_file.split('.')[-1] assert extension in ['csv', 'json'], '`train_file` should be a csv or a json file.' if args.validation_file is not None: extension = args.validation_file.split('.')[-1] assert extension in ['csv', 'json'], '`validation_file` should be a csv or a json file.' if args.push_to_hub: assert args.output_dir is not None, 'Need an `output_dir` to create a repo when `--push_to_hub` is passed.' return args def main(): args = parse_args() accelerator = Accelerator() wandb.init(project='bert_il', config=args, name=args.output_dir) logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() if args.seed is not None: set_seed(args.seed) config = BertConfigForWebshop(image=args.image, pretrain_bert=args.pretrain) model = BertModelForWebshop(config) train_dataset = get_dataset('train', mem=args.mem) eval_dataset = get_dataset('eval', mem=args.mem) for index in random.sample(range(len(train_dataset)), 3): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.') train_dataloader = DataLoader(train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size) eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{'params': [p for (n, p) in model.named_parameters() if not any((nd in n for nd in no_decay))], 'weight_decay': args.weight_decay}, {'params': [p for (n, p) in model.named_parameters() if any((nd in n for nd in no_decay))], 'weight_decay': 0.0}] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate) num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch else: args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) lr_scheduler = get_scheduler(name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps) (model, optimizer, train_dataloader, eval_dataloader, lr_scheduler) = accelerator.prepare(model, optimizer, train_dataloader, eval_dataloader, lr_scheduler) num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch if hasattr(args.checkpointing_steps, 'isdigit'): checkpointing_steps = args.checkpointing_steps if args.checkpointing_steps.isdigit(): checkpointing_steps = int(args.checkpointing_steps) else: checkpointing_steps = None if args.with_tracking: experiment_config = vars(args) experiment_config['lr_scheduler_type'] = experiment_config['lr_scheduler_type'].value accelerator.init_trackers('glue_no_trainer', experiment_config) metric = load_metric('accuracy') total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info('***** Running training *****') logger.info(f' Num examples = {len(train_dataset)}') logger.info(f' Num Epochs = {args.num_train_epochs}') logger.info(f' Instantaneous batch size per device = {args.per_device_train_batch_size}') logger.info(f' Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}') logger.info(f' Gradient Accumulation steps = {args.gradient_accumulation_steps}') logger.info(f' Total optimization steps = {args.max_train_steps}') progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 starting_epoch = 0 if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != '': accelerator.print(f'Resumed from checkpoint: {args.resume_from_checkpoint}') accelerator.load_state(args.resume_from_checkpoint) path = os.path.basename(args.resume_from_checkpoint) else: dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] training_difference = os.path.splitext(path)[0] if 'epoch' in training_difference: starting_epoch = int(training_difference.replace('epoch_', '')) + 1 resume_step = None else: resume_step = int(training_difference.replace('step_', '')) starting_epoch = resume_step // len(train_dataloader) resume_step -= starting_epoch * len(train_dataloader) for epoch in range(starting_epoch, args.num_train_epochs): model.train() if args.with_tracking: total_loss = total_step = 0 for (step, batch) in enumerate(train_dataloader): if args.resume_from_checkpoint and epoch == starting_epoch: if resume_step is not None and step < resume_step: completed_steps += 1 continue outputs = model(**batch) loss = outputs.loss if args.with_tracking: total_loss += loss.detach().float() total_step += 1 loss = loss / args.gradient_accumulation_steps accelerator.backward(loss) metric.add_batch(predictions=torch.stack([logit.argmax(dim=0) for logit in outputs.logits]), references=batch['labels']) if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1: optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) completed_steps += 1 if args.with_tracking and args.logging_steps > 0 and (completed_steps % args.logging_steps == 0): train_metric = metric.compute() wandb.log({'train_accuracy': train_metric, 'train_loss': total_loss / total_step, 'train_step': completed_steps}) total_loss = total_step = 0 if isinstance(checkpointing_steps, int): if completed_steps % checkpointing_steps == 0: output_dir = f'step_{completed_steps}' if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if completed_steps >= args.max_train_steps: break model.eval() samples_seen = 0 total_loss = total_step = 0 if len(metric) > 0: metric.compute() for (step, batch) in enumerate(eval_dataloader): with torch.no_grad(): outputs = model(**batch) predictions = torch.stack([logit.argmax(dim=0) for logit in outputs.logits]) (predictions, references) = accelerator.gather((predictions, batch['labels'])) if accelerator.num_processes > 1: if step == len(eval_dataloader): predictions = predictions[:len(eval_dataloader.dataset) - samples_seen] references = references[:len(eval_dataloader.dataset) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch(predictions=predictions, references=references) total_loss += outputs.loss.detach().float() total_step += 1 eval_metric = metric.compute() logger.info(f'epoch {epoch}: {eval_metric}') if args.with_tracking: wandb.log({'eval_accuracy': eval_metric, 'eval_loss': total_loss / total_step, 'epoch': epoch, 'epoch_step': completed_steps}) if args.checkpointing_steps == 'epoch': output_dir = f'epoch_{epoch}' if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) os.makedirs(output_dir, exist_ok=True) unwrapped_model = accelerator.unwrap_model(model) torch.save(unwrapped_model.state_dict(), os.path.join(output_dir, 'model.pth')) if args.output_dir is not None: with open(os.path.join(args.output_dir, 'all_results.json'), 'w') as f: json.dump({'eval_accuracy': eval_metric['accuracy']}, f) if __name__ == '__main__': main() # File: WebShop-master/baseline_models/train_rl.py import argparse import logging import time import torch from collections import defaultdict import logger from agent import Agent, TransitionPG from env import WebEnv logging.getLogger().setLevel(logging.CRITICAL) def configure_logger(log_dir, wandb): logger.configure(log_dir, format_strs=['log']) global tb type_strs = ['json', 'stdout'] if wandb: type_strs += ['wandb'] tb = logger.Logger(log_dir, [logger.make_output_format(type_str, log_dir) for type_str in type_strs]) global log log = logger.log def evaluate(agent, env, split, nb_episodes=10): with torch.no_grad(): total_score = 0 for method in ['greedy']: for ep in range(nb_episodes): log('Starting {} episode {}'.format(split, ep)) if split == 'eval': score = evaluate_episode(agent, env, split, method) elif split == 'test': score = evaluate_episode(agent, env, split, method, idx=ep) log('{} episode {} ended with score {}\n\n'.format(split, ep, score)) total_score += score avg_score = total_score / nb_episodes return avg_score def evaluate_episode(agent, env, split, method='greedy', idx=None): step = 0 done = False (ob, info) = env.reset(idx) state = agent.build_state(ob, info) log('Obs{}: {}'.format(step, ob.encode('utf-8'))) while not done: valid_acts = info['valid'] with torch.no_grad(): action_str = agent.act([state], [valid_acts], method=method)[0][0] log('Action{}: {}'.format(step, action_str)) (ob, rew, done, info) = env.step(action_str) log('Reward{}: {}, Score {}, Done {}'.format(step, rew, info['score'], done)) step += 1 log('Obs{}: {}'.format(step, ob.encode('utf-8'))) state = agent.build_state(ob, info) tb.logkv_mean(f'{split}Score', info['score']) if 'verbose' in info: for (k, v) in info['verbose'].items(): if k.startswith('r'): tb.logkv_mean(f'{split}_' + k, v) return info['score'] def agg(envs, attr): res = defaultdict(int) for env in envs: for (k, v) in getattr(env, attr).items(): res[k] += v return res def train(agent, eval_env, test_env, envs, args): start = time.time() (states, valids, transitions) = ([], [], []) state0 = None for env in envs: (ob, info) = env.reset() if state0 is None: state0 = (ob, info) states.append(agent.build_state(ob, info)) valids.append(info['valid']) for step in range(1, args.max_steps + 1): (action_strs, action_ids, values) = agent.act(states, valids, method=args.exploration_method) with torch.no_grad(): (action_values, _) = agent.network.rl_forward(states[:1], agent.encode_valids(valids[:1])) actions = sorted(zip(state0[1]['valid'], action_values.tolist()), key=lambda x: -x[1]) log('State {}: {}'.format(step, state0[0].lower().encode('utf-8'))) log('Goal {}: {}'.format(step, state0[1]['goal'].lower().encode('utf-8'))) log('Actions{}: {}'.format(step, actions)) log('>> Values{}: {}'.format(step, float(values[0]))) log('>> Action{}: {}'.format(step, action_strs[0])) state0 = None (next_states, next_valids, rewards, dones) = ([], [], [], []) for (env, action_str, action_id, state) in zip(envs, action_strs, action_ids, states): (ob, reward, done, info) = env.step(action_str) if state0 is None: state0 = (ob, info) r_att = r_opt = 0 if 'verbose' in info: r_att = info['verbose'].get('r_att', 0) r_option = info['verbose'].get('r_option ', 0) r_price = info['verbose'].get('r_price', 0) r_type = info['verbose'].get('r_type', 0) w_att = info['verbose'].get('w_att', 0) w_option = info['verbose'].get('w_option', 0) w_price = info['verbose'].get('w_price', 0) reward_str = f'{reward / 10:.2f} = ({r_att:.2f} * {w_att:.2f} + {r_option:.2f} * {w_option:.2f} + {r_price:.2f} * {w_price:.2f}) * {r_type:.2f}' else: reward_str = str(reward) log('Reward{}: {}, Done {}\n'.format(step, reward_str, done)) next_state = agent.build_state(ob, info) next_valid = info['valid'] (next_states, next_valids, rewards, dones) = (next_states + [next_state], next_valids + [next_valid], rewards + [reward], dones + [done]) if done: tb.logkv_mean('EpisodeScore', info['score']) category = env.session['goal']['category'] tb.logkv_mean(f'EpisodeScore_{category}', info['score']) if 'verbose' in info: for (k, v) in info['verbose'].items(): if k.startswith('r'): tb.logkv_mean(k, v) transitions.append(TransitionPG(states, action_ids, rewards, values, agent.encode_valids(valids), dones)) if len(transitions) >= args.bptt: (_, _, last_values) = agent.act(next_states, next_valids, method='softmax') stats = agent.update(transitions, last_values, step=step) for (k, v) in stats.items(): tb.logkv_mean(k, v) del transitions[:] torch.cuda.empty_cache() for (i, env) in enumerate(envs): if dones[i]: (ob, info) = env.reset() if i == 0: state0 = (ob, info) next_states[i] = agent.build_state(ob, info) next_valids[i] = info['valid'] (states, valids) = (next_states, next_valids) if step % args.eval_freq == 0: evaluate(agent, eval_env, 'eval') if step % args.test_freq == 0: evaluate(agent, test_env, 'test', 500) if step % args.log_freq == 0: tb.logkv('Step', step) tb.logkv('FPS', int(step * len(envs) / (time.time() - start))) for (k, v) in agg(envs, 'stats').items(): tb.logkv(k, v) items_clicked = agg(envs, 'items_clicked') tb.logkv('ItemsClicked', len(items_clicked)) tb.dumpkvs() if step % args.ckpt_freq == 0: agent.save() def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--seed', default=0, type=int) parser.add_argument('--output_dir', default='logs') parser.add_argument('--ckpt_freq', default=10000, type=int) parser.add_argument('--eval_freq', default=500, type=int) parser.add_argument('--test_freq', default=5000, type=int) parser.add_argument('--log_freq', default=100, type=int) parser.add_argument('--wandb', default=1, type=int) parser.add_argument('--num_envs', default=4, type=int) parser.add_argument('--step_limit', default=100, type=int) parser.add_argument('--max_steps', default=300000, type=int) parser.add_argument('--learning_rate', default=1e-05, type=float) parser.add_argument('--gamma', default=0.9, type=float) parser.add_argument('--clip', default=10, type=float) parser.add_argument('--bptt', default=8, type=int) parser.add_argument('--exploration_method', default='softmax', type=str, choices=['eps', 'softmax']) parser.add_argument('--w_pg', default=1, type=float) parser.add_argument('--w_td', default=1, type=float) parser.add_argument('--w_il', default=0, type=float) parser.add_argument('--w_en', default=1, type=float) parser.add_argument('--network', default='bert', type=str, choices=['bert', 'rnn']) parser.add_argument('--bert_path', default='', type=str, help='which bert to load') parser.add_argument('--embedding_dim', default=128, type=int) parser.add_argument('--hidden_dim', default=128, type=int) parser.add_argument('--grad_encoder', default=1, type=int) parser.add_argument('--get_image', default=1, type=int, help='use image in models') parser.add_argument('--num', default=None, type=int) parser.add_argument('--click_item_name', default=1, type=int) parser.add_argument('--state_format', default='text_rich', type=str) parser.add_argument('--human_goals', default=1, type=int, help='use human goals') parser.add_argument('--num_prev_obs', default=0, type=int, help='number of previous observations') parser.add_argument('--num_prev_actions', default=0, type=int, help='number of previous actions') parser.add_argument('--extra_search_path', default='./data/goal_query_predict.json', type=str, help='path for extra search queries') parser.add_argument('--ban_buy', default=0, type=int, help='ban buy action before selecting options') parser.add_argument('--score_handicap', default=0, type=int, help='provide score in state') parser.add_argument('--go_to_item', default=0, type=int) parser.add_argument('--go_to_search', default=0, type=int) parser.add_argument('--harsh_reward', default=0, type=int) parser.add_argument('--debug', default=0, type=int, help='debug mode') parser.add_argument('--f', help='a dummy argument to fool ipython', default='1') return parser.parse_known_args() def main(): (args, unknown) = parse_args() if args.debug: args.num_envs = 2 args.wandb = 0 args.human_goals = 0 args.num = 100 print(unknown) print(args) configure_logger(args.output_dir, args.wandb) agent = Agent(args) train_env = WebEnv(args, split='train', id='train_') server = train_env.env.server eval_env = WebEnv(args, split='eval', id='eval_', server=server) test_env = WebEnv(args, split='test', id='test_', server=server) envs = [WebEnv(args, split='train', server=server, id=f'train{i}_') for i in range(args.num_envs)] print('loaded') train(agent, eval_env, test_env, envs, args) if __name__ == '__main__': main() # File: WebShop-master/baseline_models/train_search_il.py import json import os import random from datasets import Dataset, DatasetDict, load_from_disk from transformers import BartForConditionalGeneration, BartTokenizer, Trainer, TrainingArguments from transformers.models.bart.modeling_bart import shift_tokens_right tokenizer = BartTokenizer.from_pretrained('facebook/bart-large') BOS_TOKEN_ID = 0 PAD_TOKEN_ID = 1 EOS_TOKEN_ID = 2 UNK_TOKEN_ID = 3 PATH = './data/goal_query_map.json' HUMAN_GOAL_PATH = './data/human_goals.json' GOAL_PATH = './data/items_human_ins.json' def process_str(s): s = s.lower().replace('"', '').replace("'", '').strip() return s def process_goal(state): state = state.lower().replace('"', '').replace("'", '') state = state.replace('amazon shopping game\ninstruction:', '').replace('webshop\ninstruction:', '') state = state.replace('\n[button] search [button_]', '').strip() if ', and price lower than' in state: state = state.split(', and price lower than')[0] return state def get_data(split): data = json.load(open(PATH)) (goals, searches) = ([], []) for (goal, search_list) in data.items(): goal = process_goal(goal) for search in search_list: search = process_str(search) goals.append(goal) searches.append(search) n = len(goals) human_goals = json.load(open(HUMAN_GOAL_PATH, 'r')) goal_range = range(len(human_goals)) if split == 'train': goal_range = range(500, len(human_goals)) elif split == 'validation': goal_range = range(500, 1500) elif split == 'test': goal_range = range(0, 500) elif split == 'all': all_data = json.load(open(GOAL_PATH)) all_goals = [] all_goals_processed = [] for ins_list in all_data.values(): for ins in ins_list: ins = ins['instruction'] all_goals.append(ins) all_goals_processed.append(process_str(ins)) return (all_goals_processed, all_goals) (goals_, searches_) = ([], []) for (goal, search) in zip(goals, searches): if goal in human_goals and human_goals.index(goal) in goal_range: goals_.append(goal) searches_.append(search) return (goals_, searches_) def get_dataset(name, flip=False, variant=None, size=None): fname = name + '-flip' if flip else name fpath = os.path.join(os.path.dirname(__file__), fname) d = {} splits = ['train', 'validation', 'test'] if name == 'web_search': splits = ['train', 'validation', 'test', 'all'] for split in splits: (input, output) = get_data(split) if name != 'nl2bash' else get_data(split, variant=variant) l = len(input) if size is None else int(len(input) * size) print('{} size: {}'.format(split, l)) if flip: (input, output) = (output, input) (input, output) = (input[:l], output[:l]) d[split] = process_dataset(input, output) d = DatasetDict(d) return d def process_dataset(input, output, max_len=256): input_encodings = tokenizer(input, padding='max_length', max_length=max_len, truncation=True, return_tensors='pt') output_encodings = tokenizer(output, padding='max_length', max_length=max_len, truncation=True, return_tensors='pt') labels = output_encodings['input_ids'] decoder_input_ids = shift_tokens_right(labels, PAD_TOKEN_ID, EOS_TOKEN_ID) labels[labels[:, :] == PAD_TOKEN_ID] = -100 dataset = Dataset.from_dict({'input_ids': input_encodings['input_ids'], 'attention_mask': input_encodings['attention_mask'], 'decoder_input_ids': decoder_input_ids, 'labels': labels}) dataset.set_format(type='torch', columns=['input_ids', 'labels', 'decoder_input_ids', 'attention_mask']) return dataset if __name__ == '__main__': dataset = get_dataset('web_search', flip=False) train_dataset = dataset['train'] print(train_dataset[0]) model = BartForConditionalGeneration.from_pretrained('facebook/bart-base') model.resize_token_embeddings(len(tokenizer)) training_args = TrainingArguments(output_dir='./ckpts/web_search', num_train_epochs=10, per_device_train_batch_size=4, per_device_eval_batch_size=4, warmup_steps=50, weight_decay=0.01, evaluation_strategy='steps', logging_dir='./logs', logging_steps=50, eval_steps=20, save_steps=200) trainer = Trainer(model=model, args=training_args, train_dataset=train_dataset, eval_dataset=dataset['validation'], compute_metrics=None) trainer.train() # File: WebShop-master/run_envs/run_web_agent_site_env.py """""" import gym from rich import print from rich.markup import escape from web_agent_site.envs import WebAgentSiteEnv from web_agent_site.models import HumanPolicy, RandomPolicy from web_agent_site.utils import DEBUG_PROD_SIZE if __name__ == '__main__': env = WebAgentSiteEnv(observation_mode='text', render=False, num_products=DEBUG_PROD_SIZE) global_step = 0 try: policy = RandomPolicy() observation = env.observation while True: print(observation) available_actions = env.get_available_actions() print('Available actions:', available_actions) action = policy.forward(observation, available_actions) (observation, reward, done, info) = env.step(action) print(f'Taking action "{escape(action)}" -> Reward = {reward}') if done: break global_step += 1 finally: env.close() # File: WebShop-master/run_envs/run_web_agent_text_env.py """""" import gym from rich import print from rich.markup import escape from web_agent_site.envs import WebAgentTextEnv from web_agent_site.models import RandomPolicy from web_agent_site.utils import DEBUG_PROD_SIZE if __name__ == '__main__': env = gym.make('WebAgentTextEnv-v0', observation_mode='text', num_products=DEBUG_PROD_SIZE) env.reset() try: policy = RandomPolicy() observation = env.observation while True: print(observation) available_actions = env.get_available_actions() print('Available actions:', available_actions) action = policy.forward(observation, available_actions) (observation, reward, done, info) = env.step(action) print(f'Taking action "{escape(action)}" -> Reward = {reward}') if done: break finally: env.close() # File: WebShop-master/search_engine/convert_product_file_format.py import sys import json from tqdm import tqdm sys.path.insert(0, '../') from web_agent_site.utils import DEFAULT_FILE_PATH from web_agent_site.engine.engine import load_products (all_products, *_) = load_products(filepath=DEFAULT_FILE_PATH) docs = [] for p in tqdm(all_products, total=len(all_products)): option_texts = [] options = p.get('options', {}) for (option_name, option_contents) in options.items(): option_contents_text = ', '.join(option_contents) option_texts.append(f'{option_name}: {option_contents_text}') option_text = ', and '.join(option_texts) doc = dict() doc['id'] = p['asin'] doc['contents'] = ' '.join([p['Title'], p['Description'], p['BulletPoints'][0], option_text]).lower() doc['product'] = p docs.append(doc) with open('./resources_100/documents.jsonl', 'w+') as f: for doc in docs[:100]: f.write(json.dumps(doc) + '\n') with open('./resources/documents.jsonl', 'w+') as f: for doc in docs: f.write(json.dumps(doc) + '\n') with open('./resources_1k/documents.jsonl', 'w+') as f: for doc in docs[:1000]: f.write(json.dumps(doc) + '\n') with open('./resources_100k/documents.jsonl', 'w+') as f: for doc in docs[:100000]: f.write(json.dumps(doc) + '\n') # File: WebShop-master/search_engine/lucene_searcher.py import json from pyserini.search.lucene import LuceneSearcher from rich import print searcher = LuceneSearcher('indexes') hits = searcher.search('rubber sole shoes', k=20) for hit in hits: doc = searcher.doc(hit.docid) print(doc) obj = json.loads(doc.raw())['product']['Title'] print(obj) print(len(hits)) # File: WebShop-master/transfer/app.py import gradio as gr import json, time, torch from transformers import BartTokenizer, BartForConditionalGeneration, AutoModel, AutoTokenizer from webshop_lite import dict_to_fake_html from predict_help import Page, convert_dict_to_actions, convert_html_to_text, parse_results_amz, parse_item_page_amz, parse_results_ws, parse_item_page_ws, parse_results_ebay, parse_item_page_ebay, WEBSHOP_URL, WEBSHOP_SESSION ENVIRONMENTS = ['amazon', 'webshop', 'ebay'] BERT_MODEL_PATH = 'webshop/il-choice-bert-image_0' bart_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large') bart_model = BartForConditionalGeneration.from_pretrained('webshop/il_search_bart') bert_tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', truncation_side='left') bert_tokenizer.add_tokens(['[button]', '[button_]', '[clicked button]', '[clicked button_]'], special_tokens=True) bert_model = AutoModel.from_pretrained(BERT_MODEL_PATH, trust_remote_code=True) def process_str(s): s = s.lower().replace('"', '').replace("'", '').strip() s = s.replace('[sep]', '[SEP]') return s def process_goal(state): state = state.lower().replace('"', '').replace("'", '') state = state.replace('amazon shopping game\ninstruction:', '').replace('webshop\ninstruction:', '') state = state.replace('\n[button] search [button_]', '').strip() if ', and price lower than' in state: state = state.split(', and price lower than')[0] return state def data_collator(batch): (state_input_ids, state_attention_mask, action_input_ids, action_attention_mask, sizes, labels, images) = ([], [], [], [], [], [], []) for sample in batch: state_input_ids.append(sample['state_input_ids']) state_attention_mask.append(sample['state_attention_mask']) action_input_ids.extend(sample['action_input_ids']) action_attention_mask.extend(sample['action_attention_mask']) sizes.append(sample['sizes']) labels.append(sample['labels']) images.append(sample['images']) max_state_len = max((sum(x) for x in state_attention_mask)) max_action_len = max((sum(x) for x in action_attention_mask)) return {'state_input_ids': torch.tensor(state_input_ids)[:, :max_state_len], 'state_attention_mask': torch.tensor(state_attention_mask)[:, :max_state_len], 'action_input_ids': torch.tensor(action_input_ids)[:, :max_action_len], 'action_attention_mask': torch.tensor(action_attention_mask)[:, :max_action_len], 'sizes': torch.tensor(sizes), 'images': torch.tensor(images), 'labels': torch.tensor(labels)} def bart_predict(input): input_ids = bart_tokenizer(input)['input_ids'] input_ids = torch.tensor(input_ids).unsqueeze(0) output = bart_model.generate(input_ids, max_length=512, num_return_sequences=5, num_beams=5) return bart_tokenizer.batch_decode(output.tolist(), skip_special_tokens=True)[0] def bert_predict(obs, info, softmax=True): valid_acts = info['valid'] assert valid_acts[0].startswith('click[') state_encodings = bert_tokenizer(process_str(obs), max_length=512, truncation=True, padding='max_length') action_encodings = bert_tokenizer(list(map(process_str, valid_acts)), max_length=512, truncation=True, padding='max_length') batch = {'state_input_ids': state_encodings['input_ids'], 'state_attention_mask': state_encodings['attention_mask'], 'action_input_ids': action_encodings['input_ids'], 'action_attention_mask': action_encodings['attention_mask'], 'sizes': len(valid_acts), 'images': info['image_feat'].tolist(), 'labels': 0} batch = data_collator([batch]) outputs = bert_model(**batch) if softmax: idx = torch.multinomial(torch.nn.functional.softmax(outputs.logits[0], dim=0), 1)[0].item() else: idx = outputs.logits[0].argmax(0).item() return valid_acts[idx] def get_return_value(env, asin, options, search_terms, page_num, product): asin_url = None if env == 'webshop': query_str = '+'.join(search_terms.split()) options_str = json.dumps(options) asin_url = f'{WEBSHOP_URL}/item_page/{WEBSHOP_SESSION}/{asin}/{query_str}/{page_num}/{options_str}' else: asin_url = f'https://www.ebay.com/itm/{asin}' if env == 'ebay' else f'https://www.amazon.com/dp/{asin}' product_reduced = {k: v for (k, v) in product.items() if k in ['asin', 'Title', 'Description', 'BulletPoints']} product_reduced['Description'] = product_reduced['Description'][:100] + '...' product_reduced['Features'] = product_reduced.pop('BulletPoints') product_reduced['Features'] = product_reduced['Features'][:100] + '...' html = '<!DOCTYPE html><html><head><title>Chosen Product</title></head><body>' html += f'''Product Image:<img src="{product['MainImage']}" height="50px" /><br>''' if len(product['MainImage']) > 0 else '' html += f'Link to Product:\n <a href="{asin_url}" style="color:blue;text-decoration:underline;" target="_blank">{asin_url}</a>\n </body></html>' return (product_reduced, options if len(options) > 0 else 'None Selected', html) def predict(obs, info): valid_acts = info['valid'] if valid_acts[0].startswith('click['): return bert_predict(obs, info) else: return 'search[' + bart_predict(process_goal(obs)) + ']' def run_episode(goal, env, verbose=True): env = env.lower() if env not in ENVIRONMENTS: print(f'[ERROR] Environment {env} not recognized') obs = 'Amazon Shopping Game\nInstruction:' + goal + '\n[button] search [button]' info = {'valid': ['search[stuff]'], 'image_feat': torch.zeros(512)} product_map = {} title_to_asin_map = {} search_results_cache = {} (visited_asins, clicked_options) = (set(), set()) (sub_page_type, page_type, page_num) = (None, None, None) (search_terms, prod_title, asin) = (None, None, None) options = {} for i in range(100): action = predict(obs, info) if verbose: print('====') print(action) action_content = action[action.find('[') + 1:action.find(']')] prev_page_type = page_type if action.startswith('search['): page_type = Page.RESULTS search_terms = action_content page_num = 1 elif action.startswith('click['): if action.startswith('click[item -'): prod_title = action_content[len('item -'):].strip() found = False for key in title_to_asin_map: if prod_title == key: asin = title_to_asin_map[key] page_type = Page.ITEM_PAGE visited_asins.add(asin) found = True break if not found: raise Exception('Product to click not found') elif any((x.value in action for x in [Page.DESC, Page.FEATURES, Page.REVIEWS])): page_type = Page.SUB_PAGE sub_page_type = Page(action_content.lower()) elif action == 'click[< prev]': if sub_page_type is not None: (page_type, sub_page_type) = (Page.ITEM_PAGE, None) elif prev_page_type == Page.ITEM_PAGE: page_type = Page.RESULTS (options, clicked_options) = ({}, set()) elif prev_page_type == Page.RESULTS and page_num > 1: page_type = Page.RESULTS page_num -= 1 elif action == 'click[next >]': page_type = Page.RESULTS page_num += 1 elif action.lower() == 'click[back to search]': page_type = Page.SEARCH elif action == 'click[buy now]': return get_return_value(env, asin, options, search_terms, page_num, product_map[asin]) elif prev_page_type == Page.ITEM_PAGE: found = False for (opt_name, opt_values) in product_map[asin]['options'].items(): if action_content in opt_values: options[opt_name] = action_content page_type = Page.ITEM_PAGE clicked_options.add(action_content) found = True break if not found: raise Exception('Unrecognized action: ' + action) else: raise Exception('Unrecognized action:' + action) if verbose: print(f'Parsing {page_type.value} page...') if page_type == Page.RESULTS: if search_terms in search_results_cache: data = search_results_cache[search_terms] if verbose: print(f'Loading cached results page for "{search_terms}"') else: begin = time.time() if env == 'amazon': data = parse_results_amz(search_terms, page_num, verbose) if env == 'webshop': data = parse_results_ws(search_terms, page_num, verbose) if env == 'ebay': data = parse_results_ebay(search_terms, page_num, verbose) end = time.time() if verbose: print(f'Parsing search results took {end - begin} seconds') search_results_cache[search_terms] = data for d in data: title_to_asin_map[d['Title']] = d['asin'] elif page_type == Page.ITEM_PAGE or page_type == Page.SUB_PAGE: if asin in product_map: if verbose: print('Loading cached item page for', asin) data = product_map[asin] else: begin = time.time() if env == 'amazon': data = parse_item_page_amz(asin, verbose) if env == 'webshop': data = parse_item_page_ws(asin, search_terms, page_num, options, verbose) if env == 'ebay': data = parse_item_page_ebay(asin, verbose) end = time.time() if verbose: print('Parsing item page took', end - begin, 'seconds') product_map[asin] = data elif page_type == Page.SEARCH: if verbose: print('Executing search') obs = 'Amazon Shopping Game\nInstruction:' + goal + '\n[button] search [button]' info = {'valid': ['search[stuff]'], 'image_feat': torch.zeros(512)} continue else: raise Exception('Page of type `', page_type, '` not found') begin = time.time() html_str = dict_to_fake_html(data, page_type, asin, sub_page_type, options, product_map, goal) obs = convert_html_to_text(html_str, simple=False, clicked_options=clicked_options, visited_asins=visited_asins) end = time.time() if verbose: print('[Page Info -> WebShop HTML -> Observation] took', end - begin, 'seconds') begin = time.time() prod_arg = product_map if page_type == Page.ITEM_PAGE else data info = convert_dict_to_actions(page_type, prod_arg, asin, page_num) end = time.time() if verbose: print('Extracting available actions took', end - begin, 'seconds') if i == 50: return get_return_value(env, asin, options, search_terms, page_num, product_map[asin]) gr.Interface(fn=run_episode, inputs=[gr.inputs.Textbox(lines=7, label='Input Text'), gr.inputs.Radio(['Amazon', 'eBay'], type='value', default='Amazon', label='Environment')], outputs=[gr.outputs.JSON(label='Selected Product'), gr.outputs.JSON(label='Selected Options'), gr.outputs.HTML()], examples=[['I want to find a gold floor lamp with a glass shade and a nickel finish that i can use for my living room, and price lower than 270.00 dollars', 'Amazon'], ['I need some cute heart-shaped glittery cupcake picks as a gift to bring to a baby shower', 'Amazon'], ['I want to buy ballet shoes which have rubber sole in grey suede color and a size of 6', 'Amazon'], ['I would like a 7 piece king comforter set decorated with flowers and is machine washable', 'Amazon'], ["I'm trying to find white bluetooth speakers that are not only water resistant but also come with stereo sound", 'eBay'], ['find me the soy free 3.5 ounce 4-pack of dang thai rice chips, and make sure they are the aged cheddar flavor. i also need the ones in the resealable bags', 'eBay'], ['I am looking for a milk chocolate of 1 pound size in a single pack for valentine day', 'eBay'], ["I'm looking for a mini pc intel core desktop computer which supports with windows 11", 'eBay']], title='WebShop', article="<p style='padding-top:15px;text-align:center;'>To learn more about this project, check out the <a href='https://webshop-pnlp.github.io/' target='_blank'>project page</a>!</p>", description="<p style='text-align:center;'>Sim-to-real transfer of agent trained on WebShop to search a desired product on Amazon from any natural language query!</p>").launch(inline=False) # File: WebShop-master/transfer/predict_help.py from bs4 import BeautifulSoup from bs4.element import Comment from enum import Enum import re, time from urllib.parse import urlencode import json, requests, torch class Page(Enum): DESC = 'description' FEATURES = 'features' ITEM_PAGE = 'item_page' RESULTS = 'results' REVIEWS = 'reviews' SEARCH = 'search' SUB_PAGE = 'item_sub_page' HEADER_ = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.64 Safari/537.36' DEBUG_HTML = 'temp.html' NUM_PROD_LIMIT = 10 WEBSHOP_URL = 'http://3.83.245.205:3000' WEBSHOP_SESSION = 'abc' def parse_results_ebay(query, page_num=None, verbose=True): query_string = '+'.join(query.split()) page_num = 1 if page_num is None else page_num url = f'https://www.ebay.com/sch/i.html?_nkw={query_string}&_pgn={page_num}' if verbose: print(f'Search Results URL: {url}') webpage = requests.get(url, headers={'User-Agent': HEADER_, 'Accept-Language': 'en-US, en;q=0.5'}) soup = BeautifulSoup(webpage.text, 'html.parser') products = soup.select('.s-item__wrapper.clearfix') results = [] for item in products[:NUM_PROD_LIMIT]: title = item.select_one('.s-item__title').text.strip() if 'shop on ebay' in title.lower(): continue link = item.select_one('.s-item__link')['href'] asin = link.split('?')[0][len('https://www.ebay.com/itm/'):] try: price = item.select_one('.s-item__price').text if 'to' in price: prices = price.split(' to ') price = [p.strip('$') for p in prices] except: price = None results.append({'asin': asin, 'Title': title, 'Price': price}) if verbose: print(f'Scraped {len(results)} products') return results def parse_item_page_ebay(asin, verbose=True): product_dict = {} product_dict['asin'] = asin url = f'https://www.ebay.com/itm/{asin}' if verbose: print(f'Item Page URL: {url}') begin = time.time() webpage = requests.get(url, headers={'User-Agent': HEADER_, 'Accept-Language': 'en-US, en;q=0.5'}) end = time.time() if verbose: print(f'Item page scraping took {end - begin} seconds') soup = BeautifulSoup(webpage.content, 'html.parser') try: product_dict['Title'] = soup.find('h1', {'class': 'x-item-title__mainTitle'}).text.strip() except: product_dict['Title'] = 'N/A' try: price_str = soup.find('div', {'class': 'mainPrice'}).text prices = re.findall('\\d*\\.?\\d+', price_str) product_dict['Price'] = prices[0] except: product_dict['Price'] = 'N/A' try: img_div = soup.find('div', {'id': 'mainImgHldr'}) img_link = img_div.find('img', {'id': 'icImg'})['src'] product_dict['MainImage'] = img_link except: product_dict['MainImage'] = '' try: rating = soup.find('span', {'class': 'reviews-star-rating'})['title'].split()[0] except: rating = None product_dict['Rating'] = rating (options, options_to_images) = ({}, {}) try: option_blocks = soup.findAll('select', {'class': 'msku-sel'}) for block in option_blocks: name = block['name'].strip().strip(':') option_tags = block.findAll('option') opt_list = [] for option_tag in option_tags: if 'select' not in option_tag.text.lower(): opt_list.append(option_tag.text) options[name] = opt_list except: options = {} (product_dict['options'], product_dict['option_to_image']) = (options, options_to_images) desc = None try: desc_link = soup.find('iframe', {'id': 'desc_ifr'})['src'] desc_webpage = requests.get(desc_link, headers={'User-Agent': HEADER_, 'Accept-Language': 'en-US, en;q=0.5'}) desc_soup = BeautifulSoup(desc_webpage.content, 'html.parser') desc = ' '.join(desc_soup.text.split()) except: desc = 'N/A' product_dict['Description'] = desc features = None try: features = soup.find('div', {'class': 'x-about-this-item'}).text except: features = 'N/A' product_dict['BulletPoints'] = features return product_dict def parse_results_ws(query, page_num=None, verbose=True): query_string = '+'.join(query.split()) page_num = 1 if page_num is None else page_num url = f'{WEBSHOP_URL}/search_results/{WEBSHOP_SESSION}/{query_string}/{page_num}' if verbose: print(f'Search Results URL: {url}') webpage = requests.get(url, headers={'User-Agent': HEADER_, 'Accept-Language': 'en-US, en;q=0.5'}) soup = BeautifulSoup(webpage.content, 'html.parser') products = soup.findAll('div', {'class': 'list-group-item'}) results = [] for product in products: asin = product.find('a', {'class': 'product-link'}) title = product.find('h4', {'class': 'product-title'}) price = product.find('h5', {'class': 'product-price'}) if '\n' in title: title = title.text.split('\n')[0].strip() else: title = title.text.strip().strip('\n') if 'to' in price.text: prices = price.text.split(' to ') price = [float(p.strip().strip('\n$')) for p in prices] else: price = float(price.text.strip().strip('\n$')) results.append({'asin': asin.text, 'Title': title, 'Price': price}) if verbose: print(f'Scraped {len(results)} products') return results def parse_item_page_ws(asin, query, page_num, options, verbose=True): product_dict = {} product_dict['asin'] = asin query_string = '+'.join(query.split()) options_string = json.dumps(options) url = f'{WEBSHOP_URL}/item_page/{WEBSHOP_SESSION}/{asin}/{query_string}/{page_num}/{options_string}' if verbose: print(f'Item Page URL: {url}') webpage = requests.get(url, headers={'User-Agent': HEADER_, 'Accept-Language': 'en-US, en;q=0.5'}) soup = BeautifulSoup(webpage.content, 'html.parser') product_dict['Title'] = soup.find('h2').text h4_headers = soup.findAll('h4') for header in h4_headers: text = header.text if 'Price' in text: product_dict['Price'] = text.split(':')[1].strip().strip('$') elif 'Rating' in text: product_dict['Rating'] = text.split(':')[1].strip() product_dict['MainImage'] = soup.find('img')['src'] (options, options_to_image) = ({}, {}) option_blocks = soup.findAll('div', {'class': 'radio-toolbar'}) for block in option_blocks: name = block.find('input')['name'] labels = block.findAll('label') inputs = block.findAll('input') opt_list = [] for (label, input) in zip(labels, inputs): opt = label.text opt_img_path = input['onclick'].split('href=')[1].strip("';") opt_img_url = f'{WEBSHOP_URL}{opt_img_path}' opt_list.append(opt) options_to_image[opt] = opt_img_url options[name] = opt_list product_dict['options'] = options product_dict['option_to_image'] = options_to_image url = f'{WEBSHOP_URL}/item_sub_page/{WEBSHOP_SESSION}/{asin}/{query_string}/{page_num}/Description/{options_string}' if verbose: print(f'Item Description URL: {url}') webpage = requests.get(url, headers={'User-Agent': HEADER_, 'Accept-Language': 'en-US, en;q=0.5'}) soup = BeautifulSoup(webpage.content, 'html.parser') product_dict['Description'] = soup.find(name='p', attrs={'class': 'product-info'}).text.strip() url = f'{WEBSHOP_URL}/item_sub_page/{WEBSHOP_SESSION}/{asin}/{query_string}/{page_num}/Features/{options_string}' if verbose: print(f'Item Features URL: {url}') webpage = requests.get(url, headers={'User-Agent': HEADER_, 'Accept-Language': 'en-US, en;q=0.5'}) soup = BeautifulSoup(webpage.content, 'html.parser') bullets = soup.find(name='ul').findAll(name='li') product_dict['BulletPoints'] = '\n'.join([b.text.strip() for b in bullets]) return product_dict def parse_results_amz(query, page_num=None, verbose=True): url = 'https://www.amazon.com/s?k=' + query.replace(' ', '+') if page_num is not None: url += '&page=' + str(page_num) if verbose: print(f'Search Results URL: {url}') webpage = requests.get(url, headers={'User-Agent': HEADER_, 'Accept-Language': 'en-US, en;q=0.5'}) soup = BeautifulSoup(webpage.content, 'html.parser') products = soup.findAll('div', {'data-component-type': 's-search-result'}) if products is None: temp = open(DEBUG_HTML, 'w') temp.write(str(soup)) temp.close() raise Exception("Couldn't find search results page, outputted html for inspection") results = [] for product in products[:NUM_PROD_LIMIT]: asin = product['data-asin'] title = product.find('h2', {'class': 'a-size-mini'}) price_div = product.find('div', {'class': 's-price-instructions-style'}) price = price_div.find('span', {'class': 'a-offscreen'}) result = {'asin': asin, 'Title': title.text.strip(), 'Price': price.text.strip().strip('$')} results.append(result) if verbose: print('Scraped', len(results), 'products') return results def parse_item_page_amz(asin, verbose=True): product_dict = {} product_dict['asin'] = asin url = f'https://www.amazon.com/dp/{asin}' if verbose: print('Item Page URL:', url) begin = time.time() webpage = requests.get(url, headers={'User-Agent': HEADER_, 'Accept-Language': 'en-US, en;q=0.5'}) end = time.time() if verbose: print(f'Item page scraping took {end - begin} seconds') soup = BeautifulSoup(webpage.content, 'html.parser') try: title = soup.find('span', attrs={'id': 'productTitle'}) title = title.string.strip().replace(',', '') except AttributeError: title = 'N/A' product_dict['Title'] = title try: parent_price_span = soup.find(name='span', class_='apexPriceToPay') price_span = parent_price_span.find(name='span', class_='a-offscreen') price = float(price_span.getText().replace('$', '')) except AttributeError: price = 'N/A' product_dict['Price'] = price try: rating = soup.find(name='span', attrs={'id': 'acrPopover'}) if rating is None: rating = 'N/A' else: rating = rating.text except AttributeError: rating = 'N/A' product_dict['Rating'] = rating.strip('\n').strip() try: features = soup.find(name='div', attrs={'id': 'feature-bullets'}).text except AttributeError: features = 'N/A' product_dict['BulletPoints'] = features try: desc_body = soup.find(name='div', attrs={'id': 'productDescription_feature_div'}) desc_div = desc_body.find(name='div', attrs={'id': 'productDescription'}) desc_ps = desc_div.findAll(name='p') desc = ' '.join([p.text for p in desc_ps]) except AttributeError: desc = 'N/A' product_dict['Description'] = desc.strip() try: imgtag = soup.find('img', {'id': 'landingImage'}) imageurl = dict(imgtag.attrs)['src'] except AttributeError: imageurl = '' product_dict['MainImage'] = imageurl (options, options_to_image) = ({}, {}) try: option_body = soup.find(name='div', attrs={'id': 'softlinesTwister_feature_div'}) if option_body is None: option_body = soup.find(name='div', attrs={'id': 'twister_feature_div'}) option_blocks = option_body.findAll(name='ul') for block in option_blocks: name = json.loads(block['data-a-button-group'])['name'] opt_list = [] for li in block.findAll('li'): img = li.find(name='img') if img is not None: opt = img['alt'].strip() opt_img = img['src'] if len(opt) > 0: options_to_image[opt] = opt_img else: opt = li.text.strip() if len(opt) > 0: opt_list.append(opt) options[name.replace('_name', '').replace('twister_', '')] = opt_list except AttributeError: options = {} (product_dict['options'], product_dict['option_to_image']) = (options, options_to_image) return product_dict def convert_html_to_text(html, simple=False, clicked_options=None, visited_asins=None): def tag_visible(element): ignore = {'style', 'script', 'head', 'title', 'meta', '[document]'} return element.parent.name not in ignore and (not isinstance(element, Comment)) html_obj = BeautifulSoup(html, 'html.parser') texts = html_obj.findAll(text=True) visible_texts = filter(tag_visible, texts) if simple: return ' [SEP] '.join((t.strip() for t in visible_texts if t != '\n')) else: observation = '' for t in visible_texts: if t == '\n': continue if t.parent.name == 'button': processed_t = f'[button] {t} [button]' elif t.parent.name == 'label': if f'{t}' in clicked_options: processed_t = f' [clicked button] {t} [clicked button]' observation = f'You have clicked {t}.\n' + observation else: processed_t = f' [button] {t} [button]' elif t.parent.get('class') == ['product-link']: if f'{t}' in visited_asins: processed_t = f'\n[clicked button] {t} [clicked button]' else: processed_t = f'\n[button] {t} [button]' else: processed_t = str(t) observation += processed_t + '\n' return observation def convert_dict_to_actions(page_type, products=None, asin=None, page_num=None) -> dict: info = {'valid': []} if page_type == Page.RESULTS: info['valid'] = ['click[back to search]'] if products is None or page_num is None: print(page_num) print(products) raise Exception('Provide `products`, `page_num` to get `results` valid actions') if len(products) > 10: info['valid'].append('click[next >]') if page_num > 1: info['valid'].append('click[< prev]') for product in products: info['valid'].append('click[item - ' + product['Title'] + ']') if page_type == Page.ITEM_PAGE: if products is None or asin is None: raise Exception('Provide `products` and `asin` to get `item_page` valid actions') info['valid'] = ['click[back to search]', 'click[< prev]', 'click[description]', 'click[features]', 'click[buy now]'] if 'options' in products[asin]: for (key, values) in products[asin]['options'].items(): for value in values: info['valid'].append('click[' + value + ']') if page_type == Page.SUB_PAGE: info['valid'] = ['click[back to search]', 'click[< prev]'] info['image_feat'] = torch.zeros(512) return info # File: WebShop-master/transfer/webshop_lite.py import os from flask import render_template_string, Flask from predict_help import Page app = Flask(__name__) app.debug = True SESSION_ID = 'ABC' TEMPLATE_DIR = '../web_agent_site/templates/' KEYWORDS = ['placeholder (not needed)'] QUERY = '' product_map = {} def read_html_template(path): with open(path) as f: template = f.read() return template @app.route('/', methods=['GET', 'POST']) def index(session_id, **kwargs): print('Hello world') @app.route('/', methods=['GET', 'POST']) def search_results(data): path = os.path.join(TEMPLATE_DIR, 'results_page.html') html = render_template_string(read_html_template(path=path), session_id=SESSION_ID, products=data, keywords=KEYWORDS, page=1, total=len(data), instruction_text=QUERY) return html @app.route('/', methods=['GET', 'POST']) def item_page(session_id, asin, keywords, page, options): path = os.path.join(TEMPLATE_DIR, 'item_page.html') html = render_template_string(read_html_template(path=path), session_id=session_id, product_info=product_map[asin], keywords=keywords, page=page, asin=asin, options=options, instruction_text=QUERY) return html @app.route('/', methods=['GET', 'POST']) def item_sub_page(session_id, asin, keywords, page, sub_page, options): path = os.path.join(TEMPLATE_DIR, sub_page.value.lower() + '_page.html') html = render_template_string(read_html_template(path), session_id=session_id, product_info=product_map[asin], keywords=keywords, page=page, asin=asin, options=options, instruction_text=QUERY) return html @app.route('/', methods=['GET', 'POST']) def done(asin, options, session_id, **kwargs): path = os.path.join(TEMPLATE_DIR, 'done_page.html') html = render_template_string(read_html_template(path), session_id=session_id, reward=1, asin=asin, options=product_map[asin]['options'], reward_info=kwargs.get('reward_info'), goal_attrs=kwargs.get('goal_attrs'), purchased_attrs=kwargs.get('purchased_attrs'), goal=kwargs.get('goal'), mturk_code=kwargs.get('mturk_code'), query=kwargs.get('query'), category=kwargs.get('category'), product_category=kwargs.get('product_category')) return html def dict_to_fake_html(data, page_type, asin=None, sub_page_type=None, options=None, prod_map={}, query=''): global QUERY, product_map QUERY = query product_map = prod_map with app.app_context(), app.test_request_context(): if page_type == Page.RESULTS: return search_results(data) if page_type == Page.ITEM_PAGE: return item_page(SESSION_ID, asin, KEYWORDS, 1, options) if page_type == Page.SUB_PAGE: if sub_page_type is not None: return item_sub_page(SESSION_ID, asin, KEYWORDS, 1, sub_page_type, options) else: raise Exception('Sub page of type', sub_page_type, 'unrecognized') # File: WebShop-master/web_agent_site/app.py import argparse, json, logging, random from pathlib import Path from ast import literal_eval from flask import Flask, request, redirect, url_for from rich import print from web_agent_site.engine.engine import load_products, init_search_engine, convert_web_app_string_to_var, get_top_n_product_from_keywords, get_product_per_page, map_action_to_html, END_BUTTON from web_agent_site.engine.goal import get_reward, get_goals from web_agent_site.utils import generate_mturk_code, setup_logger, DEFAULT_FILE_PATH, DEBUG_PROD_SIZE app = Flask(__name__) search_engine = None all_products = None product_item_dict = None product_prices = None attribute_to_asins = None goals = None weights = None user_sessions = dict() user_log_dir = None SHOW_ATTRS_TAB = False @app.route('/') def home(): return redirect(url_for('index', session_id='abc')) @app.route('/<session_id>', methods=['GET', 'POST']) def index(session_id): global user_log_dir global all_products, product_item_dict, product_prices, attribute_to_asins, search_engine, goals, weights, user_sessions if search_engine is None: (all_products, product_item_dict, product_prices, attribute_to_asins) = load_products(filepath=DEFAULT_FILE_PATH, num_products=DEBUG_PROD_SIZE) search_engine = init_search_engine(num_products=DEBUG_PROD_SIZE) goals = get_goals(all_products, product_prices) random.seed(233) random.shuffle(goals) weights = [goal['weight'] for goal in goals] if session_id not in user_sessions and 'fixed' in session_id: goal_dix = int(session_id.split('_')[-1]) goal = goals[goal_dix] instruction_text = goal['instruction_text'] user_sessions[session_id] = {'goal': goal, 'done': False} if user_log_dir is not None: setup_logger(session_id, user_log_dir) elif session_id not in user_sessions: goal = random.choices(goals, weights)[0] instruction_text = goal['instruction_text'] user_sessions[session_id] = {'goal': goal, 'done': False} if user_log_dir is not None: setup_logger(session_id, user_log_dir) else: instruction_text = user_sessions[session_id]['goal']['instruction_text'] if request.method == 'POST' and 'search_query' in request.form: keywords = request.form['search_query'].lower().split(' ') return redirect(url_for('search_results', session_id=session_id, keywords=keywords, page=1)) if user_log_dir is not None: logger = logging.getLogger(session_id) logger.info(json.dumps(dict(page='index', url=request.url, goal=user_sessions[session_id]['goal']))) return map_action_to_html('start', session_id=session_id, instruction_text=instruction_text) @app.route('/search_results/<session_id>/<keywords>/<page>', methods=['GET', 'POST']) def search_results(session_id, keywords, page): instruction_text = user_sessions[session_id]['goal']['instruction_text'] page = convert_web_app_string_to_var('page', page) keywords = convert_web_app_string_to_var('keywords', keywords) top_n_products = get_top_n_product_from_keywords(keywords, search_engine, all_products, product_item_dict, attribute_to_asins) products = get_product_per_page(top_n_products, page) html = map_action_to_html('search', session_id=session_id, products=products, keywords=keywords, page=page, total=len(top_n_products), instruction_text=instruction_text) logger = logging.getLogger(session_id) logger.info(json.dumps(dict(page='search_results', url=request.url, goal=user_sessions[session_id]['goal'], content=dict(keywords=keywords, search_result_asins=[p['asin'] for p in products], page=page)))) return html @app.route('/item_page/<session_id>/<asin>/<keywords>/<page>/<options>', methods=['GET', 'POST']) def item_page(session_id, asin, keywords, page, options): options = literal_eval(options) product_info = product_item_dict[asin] goal_instruction = user_sessions[session_id]['goal']['instruction_text'] product_info['goal_instruction'] = goal_instruction html = map_action_to_html('click', session_id=session_id, product_info=product_info, keywords=keywords, page=page, asin=asin, options=options, instruction_text=goal_instruction, show_attrs=SHOW_ATTRS_TAB) logger = logging.getLogger(session_id) logger.info(json.dumps(dict(page='item_page', url=request.url, goal=user_sessions[session_id]['goal'], content=dict(keywords=keywords, page=page, asin=asin, options=options)))) return html @app.route('/item_sub_page/<session_id>/<asin>/<keywords>/<page>/<sub_page>/<options>', methods=['GET', 'POST']) def item_sub_page(session_id, asin, keywords, page, sub_page, options): options = literal_eval(options) product_info = product_item_dict[asin] goal_instruction = user_sessions[session_id]['goal']['instruction_text'] product_info['goal_instruction'] = goal_instruction html = map_action_to_html(f'click[{sub_page}]', session_id=session_id, product_info=product_info, keywords=keywords, page=page, asin=asin, options=options, instruction_text=goal_instruction) logger = logging.getLogger(session_id) logger.info(json.dumps(dict(page='item_sub_page', url=request.url, goal=user_sessions[session_id]['goal'], content=dict(keywords=keywords, page=page, asin=asin, options=options)))) return html @app.route('/done/<session_id>/<asin>/<options>', methods=['GET', 'POST']) def done(session_id, asin, options): options = literal_eval(options) goal = user_sessions[session_id]['goal'] purchased_product = product_item_dict[asin] price = product_prices[asin] (reward, reward_info) = get_reward(purchased_product, goal, price=price, options=options, verbose=True) user_sessions[session_id]['done'] = True user_sessions[session_id]['reward'] = reward print(user_sessions) logger = logging.getLogger(session_id) logger.info(json.dumps(dict(page='done', url=request.url, goal=goal, content=dict(asin=asin, options=options, price=price), reward=reward, reward_info=reward_info))) del logging.root.manager.loggerDict[session_id] return map_action_to_html(f'click[{END_BUTTON}]', session_id=session_id, reward=reward, asin=asin, options=options, reward_info=reward_info, query=purchased_product['query'], category=purchased_product['category'], product_category=purchased_product['product_category'], goal_attrs=user_sessions[session_id]['goal']['attributes'], purchased_attrs=purchased_product['Attributes'], goal=goal, mturk_code=generate_mturk_code(session_id)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='WebShop flask app backend configuration') parser.add_argument('--log', action='store_true', help='Log actions on WebShop in trajectory file') parser.add_argument('--attrs', action='store_true', help='Show attributes tab in item page') args = parser.parse_args() if args.log: user_log_dir = Path('user_session_logs/mturk') user_log_dir.mkdir(parents=True, exist_ok=True) SHOW_ATTRS_TAB = args.attrs app.run(host='0.0.0.0', port=3000) # File: WebShop-master/web_agent_site/attributes/annotate.py import yaml from pathlib import Path from rich import print ATTR_DIR = './data/attributes' ATTR_PATHS = ['narrow_2-gram.yaml', 'narrow_1-gram.yaml', 'broad_2-gram.yaml', 'broad_1-gram.yaml'] ATTR_PATHS = [Path(ATTR_DIR) / af for af in ATTR_PATHS] def annotate(attr_path): with open(attr_path) as f: attrs_by_cat = yaml.safe_load(f) unique_attrs = set() all_attrs = [] for (_, attrs) in attrs_by_cat.items(): attrs = [a.split('|')[0].strip() for a in attrs] unique_attrs.update(attrs) all_attrs += attrs print(f'Total unique attributes: {len(unique_attrs)}') total = len(all_attrs) num_left = len(all_attrs) annotated_attrs_by_cat = dict() for (category, attrs) in attrs_by_cat.items(): print(f'Category: [ {category} ] | Number of attributes: {len(attrs)}\n') annotated_attrs = [] for (i, attr) in enumerate(attrs): (attr, score) = attr.split(' | ') print(f"{'[' + str(i) + ']':<5} [bold green]{attr:<30}[/bold green] | [red]{category}[/red] | {score}") tags = input('Annotate [1: ITEM, 2: PROP, 3: USE, ⎵: next example, q: next category] > ') print('\n') tags = tags.strip() annotated_attrs.append(f'{attr} | {score} | {tags}') if 'q' in tags: break num_left -= len(attrs) print(f'{num_left} / {total} total attributes left.') ans = input('Starting the next category... [y/n] > ') if ans == 'n': break def main(): for attr_path in ATTR_PATHS: annotate(attr_path) if __name__ == '__main__': '' main() # File: WebShop-master/web_agent_site/attributes/generate_attrs.py import json import yaml import random from pathlib import Path from collections import defaultdict from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction import text as sk_text import pandas as pd from tqdm import tqdm from rich import print ITEMS_PATH = './data/ITEMS_mar1.json' REVIEWS_PATH = './data/reviews.json' ATTR_DIR = './data/attributes' random.seed(0) def get_stop_words(): extra_stop_words = set([str(i) for i in range(1000)]) stop_words = sk_text.ENGLISH_STOP_WORDS.union(extra_stop_words) return stop_words def load_products(num=None): with open(ITEMS_PATH) as f: all_products = json.load(f) if num is not None: random.shuffle(all_products) all_products = all_products[:num] products = dict() asins = set() for p in all_products: asin = p['asin'] if asin in asins: continue asins.add(asin) products[asin] = p with open(REVIEWS_PATH) as f: reviews = json.load(f) reviews = {r['asin']: r for r in reviews} for (asin, p) in products.items(): if asin in reviews: p['review'] = reviews[asin] else: p['review'] = None return products def get_top_attrs(attributes, k): attr_to_asins = defaultdict(list) for (asin, attr_scores) in attributes.items(): top_attr_scoress = attr_scores[:k] for (attr, score) in top_attr_scoress: attr_to_asins[attr].append(asin) total = len([asin for (asin, _) in attributes.items()]) top_attrs = [(attr, len(asins) / total) for (attr, asins) in attr_to_asins.items()] top_attrs = sorted(top_attrs, key=lambda x: -x[1]) top_attrs = [f'{attr} | {score:.4f}' for (attr, score) in top_attrs] return top_attrs def get_corpus(products, keys=('name', 'small_description'), category_type='category'): all_products = list(products.values()) asins_by_cat = defaultdict(set) corpus_by_cat = defaultdict(list) for p in all_products: category = p[category_type] asin = p['asin'] if asin in asins_by_cat[category]: continue asins_by_cat[category].add(asin) text = [] for key in keys: if key == 'review': rs = p['review']['reviews'] if r is not None: text_ = ' '.join([r['review'].lower() for r in rs]) else: text_ = '' else: text_ = p[key].lower() text.append(text_) text = ' '.join(text) corpus_by_cat[category].append((asin, text)) return corpus_by_cat def generate_ngram_attrs(corpus_by_cat, ngram_range, k, attrs): vectorizer = TfidfVectorizer(stop_words=get_stop_words(), ngram_range=ngram_range, max_features=1000) top_attrs_by_cat = dict() for (category, corpus) in tqdm(corpus_by_cat.items(), total=len(corpus_by_cat)): asins = [_[0] for _ in corpus] texts = [_[1] for _ in corpus] vec = vectorizer.fit_transform(texts).todense() df = pd.DataFrame(vec, columns=vectorizer.get_feature_names_out()) attrs_by_cat = dict() for (asin, (row_name, row)) in zip(asins, df.iterrows()): attr_scores = sorted(list(zip(row.index, row)), key=lambda x: -x[1]) attrs_by_cat[asin] = attr_scores attrs[asin] = attr_scores top_attrs_by_cat[category.lower()] = get_top_attrs(attrs_by_cat, k=k) print(top_attrs_by_cat.keys()) return top_attrs_by_cat def generate_attrs(corpus_by_cat, k, save_name): attrs = dict() for n in range(1, 3): ngram_range = (n, n) top_attrs_by_cat = generate_ngram_attrs(corpus_by_cat, ngram_range, k, attrs) if save_name is not None: save_path = Path(ATTR_DIR) / f'{save_name}_{n}-gram.yaml' with open(save_path, 'w') as f: yaml.dump(top_attrs_by_cat, f, default_flow_style=False) print(f'Saved: {save_path}') save_path = Path(ATTR_DIR) / f'{save_name}_attrs_unfiltered.json' with open(save_path, 'w') as f: json.dump(attrs, f) print(f'Saved: {save_path}') if __name__ == '__main__': '' products = load_products(num=40000) corpus_by_cat_broad = get_corpus(products, category_type='category') generate_attrs(corpus_by_cat_broad, k=5, save_name='broad') corpus_by_cat_narrow = get_corpus(products, category_type='query') generate_attrs(corpus_by_cat_narrow, k=5, save_name='narrow') # File: WebShop-master/web_agent_site/engine/engine.py """""" import os import re import json import random from collections import defaultdict from ast import literal_eval from decimal import Decimal import cleantext from tqdm import tqdm from rank_bm25 import BM25Okapi from flask import render_template_string from rich import print from pyserini.search.lucene import LuceneSearcher from web_agent_site.utils import BASE_DIR, DEFAULT_FILE_PATH, DEFAULT_REVIEW_PATH, DEFAULT_ATTR_PATH, HUMAN_ATTR_PATH TEMPLATE_DIR = os.path.join(BASE_DIR, 'templates') SEARCH_RETURN_N = 50 PRODUCT_WINDOW = 10 TOP_K_ATTR = 10 END_BUTTON = 'Buy Now' NEXT_PAGE = 'Next >' PREV_PAGE = '< Prev' BACK_TO_SEARCH = 'Back to Search' ACTION_TO_TEMPLATE = {'Description': 'description_page.html', 'Features': 'features_page.html', 'Reviews': 'review_page.html', 'Attributes': 'attributes_page.html'} def map_action_to_html(action, **kwargs): (action_name, action_arg) = parse_action(action) if action_name == 'start': path = os.path.join(TEMPLATE_DIR, 'search_page.html') html = render_template_string(read_html_template(path=path), session_id=kwargs['session_id'], instruction_text=kwargs['instruction_text']) elif action_name == 'search': path = os.path.join(TEMPLATE_DIR, 'results_page.html') html = render_template_string(read_html_template(path=path), session_id=kwargs['session_id'], products=kwargs['products'], keywords=kwargs['keywords'], page=kwargs['page'], total=kwargs['total'], instruction_text=kwargs['instruction_text']) elif action_name == 'click' and action_arg == END_BUTTON: path = os.path.join(TEMPLATE_DIR, 'done_page.html') html = render_template_string(read_html_template(path), session_id=kwargs['session_id'], reward=kwargs['reward'], asin=kwargs['asin'], options=kwargs['options'], reward_info=kwargs.get('reward_info'), goal_attrs=kwargs.get('goal_attrs'), purchased_attrs=kwargs.get('purchased_attrs'), goal=kwargs.get('goal'), mturk_code=kwargs.get('mturk_code'), query=kwargs.get('query'), category=kwargs.get('category'), product_category=kwargs.get('product_category')) elif action_name == 'click' and action_arg in ACTION_TO_TEMPLATE: path = os.path.join(TEMPLATE_DIR, ACTION_TO_TEMPLATE[action_arg]) html = render_template_string(read_html_template(path), session_id=kwargs['session_id'], product_info=kwargs['product_info'], keywords=kwargs['keywords'], page=kwargs['page'], asin=kwargs['asin'], options=kwargs['options'], instruction_text=kwargs.get('instruction_text')) elif action_name == 'click': path = os.path.join(TEMPLATE_DIR, 'item_page.html') html = render_template_string(read_html_template(path), session_id=kwargs['session_id'], product_info=kwargs['product_info'], keywords=kwargs['keywords'], page=kwargs['page'], asin=kwargs['asin'], options=kwargs['options'], instruction_text=kwargs.get('instruction_text'), show_attrs=kwargs['show_attrs']) else: raise ValueError('Action name not recognized.') return html def read_html_template(path): with open(path) as f: template = f.read() return template def parse_action(action): pattern = re.compile('(.+)\\[(.+)\\]') m = re.match(pattern, action) if m is None: action_name = action action_arg = None else: (action_name, action_arg) = m.groups() return (action_name, action_arg) def convert_web_app_string_to_var(name, string): if name == 'keywords': keywords = string if keywords.startswith('['): keywords = literal_eval(keywords) else: keywords = [keywords] var = keywords elif name == 'page': page = string page = int(page) var = page else: raise ValueError('Name of variable not recognized.') return var def get_top_n_product_from_keywords(keywords, search_engine, all_products, product_item_dict, attribute_to_asins=None): if keywords[0] == '<r>': top_n_products = random.sample(all_products, k=SEARCH_RETURN_N) elif keywords[0] == '<a>': attribute = ' '.join(keywords[1:]).strip() asins = attribute_to_asins[attribute] top_n_products = [p for p in all_products if p['asin'] in asins] elif keywords[0] == '<c>': category = keywords[1].strip() top_n_products = [p for p in all_products if p['category'] == category] elif keywords[0] == '<q>': query = ' '.join(keywords[1:]).strip() top_n_products = [p for p in all_products if p['query'] == query] else: keywords = ' '.join(keywords) hits = search_engine.search(keywords, k=SEARCH_RETURN_N) docs = [search_engine.doc(hit.docid) for hit in hits] top_n_asins = [json.loads(doc.raw())['id'] for doc in docs] top_n_products = [product_item_dict[asin] for asin in top_n_asins if asin in product_item_dict] return top_n_products def get_product_per_page(top_n_products, page): return top_n_products[(page - 1) * PRODUCT_WINDOW:page * PRODUCT_WINDOW] def generate_product_prices(all_products): product_prices = dict() for product in all_products: asin = product['asin'] pricing = product['pricing'] if not pricing: price = 100.0 elif len(pricing) == 1: price = pricing[0] else: price = random.uniform(*pricing[:2]) product_prices[asin] = price return product_prices def init_search_engine(num_products=None): if num_products == 100: indexes = 'indexes_100' elif num_products == 1000: indexes = 'indexes_1k' elif num_products == 100000: indexes = 'indexes_100k' elif num_products is None: indexes = 'indexes' else: raise NotImplementedError(f'num_products being {num_products} is not supported yet.') search_engine = LuceneSearcher(os.path.join(BASE_DIR, f'../search_engine/{indexes}')) return search_engine def clean_product_keys(products): for product in products: product.pop('product_information', None) product.pop('brand', None) product.pop('brand_url', None) product.pop('list_price', None) product.pop('availability_quantity', None) product.pop('availability_status', None) product.pop('total_reviews', None) product.pop('total_answered_questions', None) product.pop('seller_id', None) product.pop('seller_name', None) product.pop('fulfilled_by_amazon', None) product.pop('fast_track_message', None) product.pop('aplus_present', None) product.pop('small_description_old', None) print('Keys cleaned.') return products def load_products(filepath, num_products=None, human_goals=True): with open(filepath) as f: products = json.load(f) print('Products loaded.') products = clean_product_keys(products) all_reviews = dict() all_ratings = dict() if human_goals: with open(HUMAN_ATTR_PATH) as f: human_attributes = json.load(f) with open(DEFAULT_ATTR_PATH) as f: attributes = json.load(f) with open(HUMAN_ATTR_PATH) as f: human_attributes = json.load(f) print('Attributes loaded.') asins = set() all_products = [] attribute_to_asins = defaultdict(set) if num_products is not None: products = products[:num_products] for (i, p) in tqdm(enumerate(products), total=len(products)): asin = p['asin'] if asin == 'nan' or len(asin) > 10: continue if asin in asins: continue else: asins.add(asin) products[i]['category'] = p['category'] products[i]['query'] = p['query'] products[i]['product_category'] = p['product_category'] products[i]['Title'] = p['name'] products[i]['Description'] = p['full_description'] products[i]['Reviews'] = all_reviews.get(asin, []) products[i]['Rating'] = all_ratings.get(asin, 'N.A.') for r in products[i]['Reviews']: if 'score' not in r: r['score'] = r.pop('stars') if 'review' not in r: r['body'] = '' else: r['body'] = r.pop('review') products[i]['BulletPoints'] = p['small_description'] if isinstance(p['small_description'], list) else [p['small_description']] pricing = p.get('pricing') if pricing is None or not pricing: pricing = [100.0] price_tag = '$100.0' else: pricing = [float(Decimal(re.sub('[^\\d.]', '', price))) for price in pricing.split('$')[1:]] if len(pricing) == 1: price_tag = f'${pricing[0]}' else: price_tag = f'${pricing[0]} to ${pricing[1]}' pricing = pricing[:2] products[i]['pricing'] = pricing products[i]['Price'] = price_tag options = dict() customization_options = p['customization_options'] option_to_image = dict() if customization_options: for (option_name, option_contents) in customization_options.items(): if option_contents is None: continue option_name = option_name.lower() option_values = [] for option_content in option_contents: option_value = option_content['value'].strip().replace('/', ' | ').lower() option_image = option_content.get('image', None) option_values.append(option_value) option_to_image[option_value] = option_image options[option_name] = option_values products[i]['options'] = options products[i]['option_to_image'] = option_to_image if asin in attributes and 'attributes' in attributes[asin]: products[i]['Attributes'] = attributes[asin]['attributes'] else: products[i]['Attributes'] = ['DUMMY_ATTR'] if human_goals: if asin in human_attributes: products[i]['instructions'] = human_attributes[asin] else: products[i]['instruction_text'] = attributes[asin].get('instruction', None) products[i]['instruction_attributes'] = attributes[asin].get('instruction_attributes', None) products[i]['MainImage'] = p['images'][0] products[i]['query'] = p['query'].lower().strip() all_products.append(products[i]) for p in all_products: for a in p['Attributes']: attribute_to_asins[a].add(p['asin']) product_item_dict = {p['asin']: p for p in all_products} product_prices = generate_product_prices(all_products) return (all_products, product_item_dict, product_prices, attribute_to_asins) # File: WebShop-master/web_agent_site/engine/goal.py """""" import itertools import random import spacy from collections import defaultdict from rich import print from thefuzz import fuzz from web_agent_site.engine.normalize import normalize_color nlp = spacy.load('en_core_web_sm') PRICE_RANGE = [10.0 * i for i in range(1, 100)] def get_goals(all_products, product_prices, human_goals=True): if human_goals: return get_human_goals(all_products, product_prices) else: return get_synthetic_goals(all_products, product_prices) def get_human_goals(all_products, product_prices): goals = [] cnt_atts = defaultdict(int) cnt = 0 for item in all_products: asin = item['asin'] if 'instructions' not in item: continue for product in item['instructions']: attributes = product['instruction_attributes'] if len(attributes) == 0: cnt += 1 continue if product_prices is not None: price = product_prices[asin] price_range = [p for p in PRICE_RANGE if p > price][:4] if len(price_range) >= 2: (_, price_upper) = sorted(random.sample(price_range, 2)) price_text = f', and price lower than {price_upper:.2f} dollars' else: price_upper = 1000000 price_text = '' else: price_upper = 1000000 goals.append({'asin': asin, 'category': item['category'], 'query': item['query'], 'name': item['name'], 'product_category': item['product_category'], 'instruction_text': product['instruction'].strip('.') + price_text, 'attributes': attributes, 'price_upper': price_upper, 'goal_options': product['instruction_options']}) for att in attributes: cnt_atts[att] += 1 for goal in goals: goal['weight'] = 1 print(cnt, 'skipped') return goals def get_synthetic_goals(all_products, product_prices): goals = [] cnt_atts = defaultdict(int) for product in all_products: if 'instruction_text' not in product or product['instruction_text'] is None: continue product_goals = [] asin = product['asin'] attributes = product['instruction_attributes'] assert len(attributes) > 0 if product_prices is not None: price = product_prices[asin] price_range = [p for p in PRICE_RANGE if p > price][:4] if len(price_range) >= 2: (_, price_upper) = sorted(random.sample(price_range, 2)) price_text = f', and price lower than {price_upper:.2f} dollars' else: price_upper = 1000000 price_text = '' else: price_upper = 1000000 price_text = '' instruction_text = product['instruction_text'] options = product['options'] option_names = sorted(options) combinations = list(itertools.product(*(options[option_name] for option_name in option_names))) for combination in combinations: goal_options = dict() for (i, o) in enumerate(combination): goal_options[option_names[i]] = o option_text = ', and '.join([f'{k}: {v}' for (k, v) in goal_options.items()]) option_text = ' with ' + option_text if option_text else '' product_goals.append({'asin': asin, 'category': product['category'], 'query': product['query'], 'name': product['name'], 'product_category': product['product_category'], 'instruction_text': f'{instruction_text}{option_text}{price_text}', 'attributes': attributes, 'price_upper': price_upper, 'goal_options': goal_options, 'name': product['Title']}) for att in attributes: cnt_atts[att] += 1 goals += product_goals for goal in goals: goal['weight'] = sum((1.0 / cnt_atts[att] for att in goal['attributes'])) / len(goal['attributes']) return goals def get_type_reward(purchased_product, goal): query_match = purchased_product['query'] == goal['query'] purchased_product_category = [x.strip() for x in purchased_product['product_category'].split('›')] goal_product_category = [x.strip() for x in goal['product_category'].split('›')] category_match = len(set(purchased_product_category) & set(goal_product_category)) >= 2 purchased_type = purchased_product['name'] desired_type = goal['name'] purchased_type_parse = nlp(purchased_type) desired_type_parse = nlp(desired_type) purchased_type_parse = [t.text.lower() for t in purchased_type_parse if t.pos_ in ('PNOUN', 'NOUN', 'PROPN')] desired_type_parse = [t.text.lower() for t in desired_type_parse if t.pos_ in ('PNOUN', 'NOUN', 'PROPN')] n_intersect_type = len(set(purchased_type_parse) & set(desired_type_parse)) if len(desired_type_parse) == 0: title_score = 0.2 else: title_score = n_intersect_type / len(desired_type_parse) r_type = 1.0 match = query_match or category_match or title_score > 0.2 if not match: r_type = 0.5 if title_score < 0.1: r_type = 0.1 if title_score == 0.0: r_type = 0.0 return dict(r_type=r_type, query_match=query_match, category_match=category_match, title_score=title_score) def get_attribute_reward(purchased_product, goal): purchased_attrs = purchased_product['Attributes'] goal_attrs = goal['attributes'] num_attr_matches = 0 for g_attr in goal_attrs: matched = False for p_attr in purchased_attrs: score = fuzz.token_set_ratio(p_attr, g_attr) if score > 85: num_attr_matches += 1 matched = True break if not matched and (g_attr in purchased_product['Title'].lower() or g_attr in ' '.join(purchased_product['BulletPoints']).lower() or g_attr in purchased_product['Description'].lower()): num_attr_matches += 1 matched = True r_attr = num_attr_matches / len(goal_attrs) return (r_attr, num_attr_matches) def get_option_reward(purchased_options, goal_options): purchased_options = [normalize_color(o) for o in purchased_options] goal_options = [normalize_color(o) for o in goal_options] num_option_matches = 0 for g_option in goal_options: for p_option in purchased_options: score = fuzz.token_set_ratio(p_option, g_option) if score > 85: num_option_matches += 1 break r_option = num_option_matches / len(goal_options) if len(goal_options) > 0 else None return (r_option, num_option_matches) def get_reward(purchased_product, goal, price, options, **kwargs): r_type_dict = get_type_reward(purchased_product, goal) r_price = price <= goal['price_upper'] if goal['price_upper'] > 0 else None (r_att, num_attr_matches) = get_attribute_reward(purchased_product, goal) (r_option, num_option_matches) = get_option_reward(list(options.values()), goal['goal_options'].items() if isinstance(goal['goal_options'], dict) else goal['goal_options']) total_reward = (num_attr_matches + num_option_matches + r_price) / (len(goal['attributes']) + len(goal['goal_options']) + 1) total_reward *= r_type_dict['r_type'] if kwargs.get('verbose', False): info = {'r_type': r_type_dict['r_type'], 'r_att': r_att, 'w_att': len(goal['attributes']) / (len(goal['attributes']) + len(goal['goal_options']) + 1), 'query_match': r_type_dict['query_match'], 'category_match': r_type_dict['category_match'], 'title_score': r_type_dict['title_score']} if r_option is not None: info['r_option'] = r_option info['w_option'] = len(goal['goal_options']) / (len(goal['attributes']) + len(goal['goal_options']) + 1) if r_price is not None: info['r_price'] = r_price info['w_price'] = 1 / (len(goal['attributes']) + len(goal['goal_options']) + 1) return (total_reward, info) return total_reward # File: WebShop-master/web_agent_site/engine/normalize.py import re from typing import Tuple COLOR_SET = ['alabaster', 'apricot', 'aqua', 'ash', 'asphalt', 'azure', 'banana', 'beige', 'black', 'blue', 'blush', 'bordeaux', 'bronze', 'brown', 'burgundy', 'camel', 'camo', 'caramel', 'champagne', 'charcoal', 'cheetah', 'chestnut', 'chocolate', 'christmas', 'coffee', 'cognac', 'copper', 'coral', 'cranberry', 'cream', 'crystal', 'dark', 'denim', 'eggplant', 'elephant', 'espresso', 'fuchsia', 'gold', 'granite', 'grape', 'graphite', 'grass', 'gray', 'green', 'grey', 'heather', 'indigo', 'ivory', 'ivy', 'khaki', 'lavender', 'lemon', 'leopard', 'light', 'lilac', 'lime', 'magenta', 'maroon', 'mauve', 'merlot', 'midnight', 'mint', 'mocha', 'multicolor', 'mushroom', 'mustard', 'natural', 'navy', 'nude', 'olive', 'orange', 'peach', 'pewter', 'pink', 'plum', 'purple', 'rainbow', 'red', 'rose', 'royal', 'rust', 'sand', 'sapphire', 'seashell', 'silver', 'skull', 'slate', 'steel', 'stone', 'stonewash', 'sunflower', 'tan', 'taupe', 'teal', 'tiger', 'turquoise', 'violet', 'walnut', 'wheat', 'white', 'wine', 'yellow'] SIZE_SET = ['xx-large', '3x-large', '4x-large', '5x-large', 'x-large', 'x-small', 'medium', 'large', 'small', 'queen', 'twin', 'full', 'king', 'one size', 'pack'] SIZE_PATTERNS = [re.compile('(.*)neck(.*)sleeve'), re.compile('(.*) women \\| (.*) men'), re.compile('(.*)w x(.*)l'), re.compile('(.*)w by (.*)l'), re.compile('(.*)w x(.*)h'), re.compile('(.*)wide'), re.compile('(.*)x-wide'), re.compile('(.*)narrow'), re.compile('(.*)petite'), re.compile('(.*)inch'), re.compile('(.*)plus'), re.compile('(.*)mm'), re.compile('women(.*)'), re.compile('(.*)x(.*)'), re.compile('(.*)ft'), re.compile('(.*)feet'), re.compile('(.*)meter'), re.compile('(.*)yards'), re.compile('(.*)\\*(.*)'), re.compile('(.*)\\-(.*)'), re.compile('(\\d+)"$'), re.compile('(\\d+)f$'), re.compile('(\\d+)m$'), re.compile('(\\d+)cm$'), re.compile('(\\d+)g$')] SIZE_PATTERNS = [re.compile(s) for s in SIZE_SET] + SIZE_PATTERNS def normalize_color(color_string: str) -> str: for norm_color in COLOR_SET: if norm_color in color_string: return norm_color return color_string def normalize_color_size(product_prices: dict) -> Tuple[dict, dict]: (all_colors, all_sizes) = (set(), set()) for ((_, color, size), _) in product_prices.items(): all_colors.add(color.lower()) all_sizes.add(size.lower()) color_mapping = {'N.A.': 'not_matched'} for c in all_colors: matched = False for base in COLOR_SET: if base in c: color_mapping[c] = base matched = True break if not matched: color_mapping[c] = 'not_matched' size_mapping = {'N.A.': 'not_matched'} for s in all_sizes: matched = False for pattern in SIZE_PATTERNS: m = re.search(pattern, s) if m is not None: matched = True size_mapping[s] = pattern.pattern break if not matched: if s.replace('.', '', 1).isdigit(): size_mapping[s] = 'numeric_size' matched = True if not matched: size_mapping[s] = 'not_matched' return (color_mapping, size_mapping) # File: WebShop-master/web_agent_site/envs/__init__.py from gym.envs.registration import register from web_agent_site.envs.web_agent_site_env import WebAgentSiteEnv from web_agent_site.envs.web_agent_text_env import WebAgentTextEnv register(id='WebAgentSiteEnv-v0', entry_point='web_agent_site.envs:WebAgentSiteEnv') register(id='WebAgentTextEnv-v0', entry_point='web_agent_site.envs:WebAgentTextEnv') # File: WebShop-master/web_agent_site/envs/web_agent_site_env.py import gym import random import requests import string import time from bs4 import BeautifulSoup from bs4.element import Comment from gym import spaces from os.path import join, dirname, abspath from selenium import webdriver from selenium.webdriver.chrome.service import Service from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.keys import Keys from selenium.common.exceptions import ElementNotInteractableException from web_agent_site.engine.engine import parse_action, END_BUTTON class WebAgentSiteEnv(gym.Env): def __init__(self, observation_mode='html', **kwargs): super(WebAgentSiteEnv, self).__init__() self.observation_mode = observation_mode self.kwargs = kwargs service = Service(join(dirname(abspath(__file__)), 'chromedriver')) options = Options() if 'render' not in kwargs or not kwargs['render']: options.add_argument('--headless') self.browser = webdriver.Chrome(service=service, options=options) self.text_to_clickable = None self.assigned_session = kwargs.get('session') self.session = None self.reset() def step(self, action): reward = 0.0 done = False info = None (action_name, action_arg) = parse_action(action) if action_name == 'search': try: search_bar = self.browser.find_element_by_id('search_input') except Exception: pass else: search_bar.send_keys(action_arg) search_bar.submit() elif action_name == 'click': try: self.text_to_clickable[action_arg].click() except ElementNotInteractableException: button = self.text_to_clickable[action_arg] self.browser.execute_script('arguments[0].click();', button) reward = self.get_reward() if action_arg == END_BUTTON: done = True elif action_name == 'end': done = True else: print('Invalid action. No action performed.') if 'pause' in self.kwargs: time.sleep(self.kwargs['pause']) return (self.observation, reward, done, info) def get_available_actions(self): try: search_bar = self.browser.find_element_by_id('search_input') except Exception: has_search_bar = False else: has_search_bar = True buttons = self.browser.find_elements_by_class_name('btn') product_links = self.browser.find_elements_by_class_name('product-link') buying_options = self.browser.find_elements_by_css_selector("input[type='radio']") self.text_to_clickable = {f'{b.text}': b for b in buttons + product_links} for opt in buying_options: opt_value = opt.get_attribute('value') self.text_to_clickable[f'{opt_value}'] = opt return dict(has_search_bar=has_search_bar, clickables=list(self.text_to_clickable.keys())) def _parse_html(self, html=None, url=None): if html is None: if url is not None: html = requests.get(url) else: html = self.state['html'] html_obj = BeautifulSoup(html, 'html.parser') return html_obj def get_reward(self): html_obj = self._parse_html() r = html_obj.find(id='reward') r = float(r.findChildren('pre')[0].string) if r is not None else 0.0 return r def get_instruction_text(self): html_obj = self._parse_html(self.browser.page_source) instruction_text = html_obj.find(id='instruction-text').h4.text return instruction_text def convert_html_to_text(self, html): texts = self._parse_html(html).findAll(text=True) visible_texts = filter(tag_visible, texts) observation = ' [SEP] '.join((t.strip() for t in visible_texts if t != '\n')) return observation @property def state(self): return dict(url=self.browser.current_url, html=self.browser.page_source, instruction_text=self.instruction_text) @property def observation(self): html = self.state['html'] if self.observation_mode == 'html': return html elif self.observation_mode == 'text': return self.convert_html_to_text(html) else: raise ValueError(f'Observation mode {self.observation_mode} not supported.') @property def action_space(self): return NotImplementedError @property def observation_space(self): return NotImplementedError def reset(self): if self.assigned_session is not None: self.session = self.assigned_session else: self.session = ''.join(random.choices(string.ascii_lowercase, k=5)) init_url = f'http://127.0.0.1:3000/{self.session}' self.browser.get(init_url) self.instruction_text = self.get_instruction_text() return (self.observation, None) def render(self, mode='human'): return NotImplementedError def close(self): self.browser.close() print('Browser closed.') def tag_visible(element): ignore = {'style', 'script', 'head', 'title', 'meta', '[document]'} return element.parent.name not in ignore and (not isinstance(element, Comment)) # File: WebShop-master/web_agent_site/envs/web_agent_text_env.py import gym import json import random import string import time import torch import numpy as np from bs4 import BeautifulSoup from bs4.element import Comment from collections import defaultdict from flask import Flask from web_agent_site.engine.engine import load_products, init_search_engine, get_top_n_product_from_keywords, map_action_to_html, parse_action, get_product_per_page, ACTION_TO_TEMPLATE, END_BUTTON, NEXT_PAGE, PREV_PAGE, BACK_TO_SEARCH from web_agent_site.engine.goal import get_reward, get_goals from web_agent_site.utils import DEFAULT_FILE_PATH, FEAT_CONV, FEAT_IDS, random_idx app = Flask(__name__) class WebAgentTextEnv(gym.Env): def __init__(self, observation_mode='html', file_path=DEFAULT_FILE_PATH, server=None, **kwargs): super(WebAgentTextEnv, self).__init__() self.observation_mode = observation_mode self.kwargs = kwargs self.file_path = file_path self.base_url = 'http://127.0.0.1:3000' self.server = SimServer(self.base_url, self.file_path, self.kwargs.get('filter_goals'), self.kwargs.get('limit_goals', -1), self.kwargs.get('num_products'), self.kwargs.get('human_goals'), self.kwargs.get('show_attrs', False)) if server is None else server self.browser = SimBrowser(self.server) self.session = self.kwargs.get('session') self.session_prefix = self.kwargs.get('session_prefix') if self.kwargs.get('get_image', 0): self.feats = torch.load(FEAT_CONV) self.ids = torch.load(FEAT_IDS) self.ids = {url: idx for (idx, url) in enumerate(self.ids)} self.prev_obs = [] self.prev_actions = [] self.num_prev_obs = self.kwargs.get('num_prev_obs', 0) self.num_prev_actions = self.kwargs.get('num_prev_actions', 0) self.reset() def step(self, action): info = None self.get_available_actions() (action_name, action_arg) = parse_action(action) if action_arg is not None: action_arg = action_arg.lower() if action_name == 'search' and action_arg is not None and (action_arg != ''): status = self.browser.search(action_arg) elif action_name == 'click' and action_arg in self.text_to_clickable.keys() and (action_arg != 'search'): status = self.browser.click(action_arg, self.text_to_clickable) else: status = dict(reward=0, done=False) ob = self.observation text_list = [ob] self.prev_actions.append(action) for i in range(1, 1 + max(self.num_prev_obs, self.num_prev_actions)): if len(self.prev_actions) >= i and self.num_prev_actions >= i: text_list.append(self.prev_actions[-i]) if len(self.prev_obs) >= i and self.num_prev_obs >= i: text_list.append(self.prev_obs[-i]) state = ' [SEP] '.join(text_list[::-1]) self.prev_obs.append(ob) return (state, status['reward'], status['done'], info) def get_available_actions(self): html_obj = self._parse_html() search_bar = html_obj.find(id='search_input') has_search_bar = True if search_bar is not None else False buttons = html_obj.find_all(class_='btn') product_links = html_obj.find_all(class_='product-link') buying_options = html_obj.select('input[type="radio"]') self.text_to_clickable = {f'{b.get_text()}'.lower(): b for b in buttons + product_links} for opt in buying_options: opt_value = opt.get('value') self.text_to_clickable[f'{opt_value}'] = opt return dict(has_search_bar=has_search_bar, clickables=list(self.text_to_clickable.keys())) def get_image(self): html_obj = self._parse_html(self.browser.page_source) image_url = html_obj.find(id='product-image') if image_url is not None: image_url = image_url['src'] if image_url in self.ids: image_idx = self.ids[image_url] image = self.feats[image_idx] return image return torch.zeros(512) def get_instruction_text(self): html_obj = self._parse_html(self.browser.page_source) instruction_text = html_obj.find(id='instruction-text').h4.text return instruction_text def _parse_html(self, html=None): if html is None: html = self.state['html'] html_obj = BeautifulSoup(html, 'html.parser') return html_obj @property def observation(self): html = self.state['html'] if self.observation_mode == 'html': return html elif self.observation_mode == 'text': return self.convert_html_to_text(html, simple=True) elif self.observation_mode == 'text_rich': return self.convert_html_to_text(html, simple=False) elif self.observation_mode == 'url': return self.state['url'] else: raise ValueError(f'Observation mode {self.observation_mode} not supported.') @property def state(self): return dict(url=self.browser.current_url, html=self.browser.page_source, instruction_text=self.instruction_text) def convert_html_to_text(self, html, simple=False): texts = self._parse_html(html).findAll(text=True) visible_texts = filter(tag_visible, texts) if simple: return ' [SEP] '.join((t.strip() for t in visible_texts if t != '\n')) else: observation = '' for t in visible_texts: if t == '\n': continue if t.parent.name == 'button': processed_t = f'[button] {t} [button_]' elif t.parent.name == 'label': if f'"{t}"' in self.state['url']: processed_t = f' [clicked button] {t} [clicked button_]' observation = f'You have clicked {t}.\n' + observation else: processed_t = f' [button] {t} [button_]' elif t.parent.get('class') == ['product-link']: if f'{t}' in self.server.user_sessions[self.session]['asins']: processed_t = f'\n[clicked button] {t} [clicked button_]' else: processed_t = f'\n[button] {t} [button_]' else: processed_t = str(t) observation += processed_t + '\n' return observation def reset(self, session=None, instruction_text=None): session_int = None if session is not None: self.session = str(session) if isinstance(session, int): session_int = session else: self.session = ''.join(random.choices(string.ascii_lowercase, k=10)) if self.session_prefix is not None: self.session = self.session_prefix + self.session init_url = f'{self.base_url}/{self.session}' self.browser.get(init_url, session_id=self.session, session_int=session_int) self.text_to_clickable = None self.instruction_text = self.get_instruction_text() if instruction_text is None else instruction_text obs = self.observation self.prev_obs = [obs] self.prev_actions = [] return (obs, None) def render(self, mode='human'): pass def close(self): pass def tag_visible(element): ignore = {'style', 'script', 'head', 'title', 'meta', '[document]'} return element.parent.name not in ignore and (not isinstance(element, Comment)) class SimServer: def __init__(self, base_url, file_path, filter_goals=None, limit_goals=-1, num_products=None, human_goals=0, show_attrs=False): self.base_url = base_url (self.all_products, self.product_item_dict, self.product_prices, _) = load_products(filepath=file_path, num_products=num_products, human_goals=human_goals) self.search_engine = init_search_engine(num_products=num_products) self.goals = get_goals(self.all_products, self.product_prices, human_goals) self.show_attrs = show_attrs random.seed(233) random.shuffle(self.goals) if filter_goals is not None: self.goals = [goal for (i, goal) in enumerate(self.goals) if filter_goals(i, goal)] if limit_goals != -1 and limit_goals < len(self.goals): self.weights = [goal['weight'] for goal in self.goals] self.cum_weights = [0] + np.cumsum(self.weights).tolist() idxs = [] while len(idxs) < limit_goals: idx = random_idx(self.cum_weights) if idx not in idxs: idxs.append(idx) self.goals = [self.goals[i] for i in idxs] print(f'Loaded {len(self.goals)} goals.') self.weights = [goal['weight'] for goal in self.goals] self.cum_weights = [0] + np.cumsum(self.weights).tolist() self.user_sessions = dict() self.search_time = 0 self.render_time = 0 self.sample_time = 0 self.assigned_instruction_text = None @app.route('/', methods=['GET', 'POST']) def index(self, session_id, **kwargs): html = map_action_to_html('start', session_id=session_id, instruction_text=kwargs['instruction_text']) url = f'{self.base_url}/{session_id}' return (html, url) @app.route('/', methods=['GET', 'POST']) def search_results(self, session_id, **kwargs): session = self.user_sessions[session_id] keywords = kwargs['keywords'] assert isinstance(keywords, list) page = 1 if 'page' not in kwargs else kwargs['page'] session['page'] = page session['keywords'] = keywords session['actions']['search'] += 1 session['asin'] = None session['options'] = {} old_time = time.time() top_n_products = get_top_n_product_from_keywords(keywords, self.search_engine, self.all_products, self.product_item_dict) self.search_time += time.time() - old_time products = get_product_per_page(top_n_products, page) keywords_url_string = '+'.join(keywords) url = f'{self.base_url}/search_results/{session_id}/{keywords_url_string}/{page}' old_time = time.time() html = map_action_to_html('search', session_id=session_id, products=products, keywords=session['keywords'], page=page, total=len(top_n_products), instruction_text=session['goal']['instruction_text']) self.render_time += time.time() - old_time return (html, url) @app.route('/', methods=['GET', 'POST']) def item_page(self, session_id, **kwargs): session = self.user_sessions[session_id] clickable_name = kwargs['clickable_name'] text_to_clickable = kwargs['text_to_clickable'] clickable = text_to_clickable[clickable_name] if clickable.get('class') is not None and clickable.get('class')[0] == 'product-link': session['asin'] = clickable_name.upper() session['actions']['asin'] += 1 session['asins'].add(session['asin']) elif clickable.get('name') is not None: clickable_key = clickable['name'].lower() session['options'][clickable_key] = clickable_name session['actions']['options'] += 1 product_info = self.product_item_dict[session['asin']] keywords_url_string = '+'.join(session['keywords']) option_string = json.dumps(session['options']) url = f"{self.base_url}/item_page/{session_id}/{session['asin']}/{keywords_url_string}/{session['page']}/{option_string}" html = map_action_to_html('click', session_id=session_id, product_info=product_info, keywords=session['keywords'], page=session['page'], asin=session['asin'], options=session['options'], instruction_text=session['goal']['instruction_text'], show_attrs=self.show_attrs) return (html, url) @app.route('/', methods=['GET', 'POST']) def item_sub_page(self, session_id, **kwargs): session = self.user_sessions[session_id] clickable_name = kwargs['clickable_name'] for k in ACTION_TO_TEMPLATE: if clickable_name.lower() == k.lower(): clickable_name = k break product_info = self.product_item_dict[session['asin']] session['actions'][clickable_name] += 1 keywords_url_string = '+'.join(session['keywords']) url = f"{self.base_url}/item_sub_page/{session_id}/{session['asin']}/{keywords_url_string}/{session['page']}/{clickable_name}/{session['options']}" html = map_action_to_html(f'click[{clickable_name}]', session_id=session_id, product_info=product_info, keywords=session['keywords'], page=session['page'], asin=session['asin'], options=session['options'], instruction_text=session['goal']['instruction_text']) return (html, url) @app.route('/', methods=['GET', 'POST']) def done(self, session_id, **kwargs): session = self.user_sessions[session_id] goal = self.user_sessions[session_id]['goal'] purchased_product = self.product_item_dict[session['asin']] session['actions']['purchase'] += 1 price = self.product_prices.get(session['asin']) (reward, info) = get_reward(purchased_product, goal, price=price, options=session['options'], verbose=True) self.user_sessions[session_id]['verbose_info'] = info self.user_sessions[session_id]['done'] = True self.user_sessions[session_id]['reward'] = reward url = f"{self.base_url}/done/{session_id}/{session['asin']}/{session['options']}" html = map_action_to_html(f'click[{END_BUTTON}]', session_id=session_id, reward=reward, asin=session['asin'], options=session['options'], instruction_text=session['goal']['instruction_text']) return (html, url, reward) def receive(self, session_id, current_url, session_int=None, **kwargs): status = dict(reward=0.0, done=False) with app.app_context(), app.test_request_context(): if session_id not in self.user_sessions: idx = session_int if session_int is not None and isinstance(session_int, int) else random_idx(self.cum_weights) goal = self.goals[idx] instruction_text = goal['instruction_text'] self.user_sessions[session_id] = {'goal': goal, 'done': False} else: instruction_text = self.user_sessions[session_id]['goal']['instruction_text'] if self.assigned_instruction_text is not None: instruction_text = self.assigned_instruction_text self.user_sessions[session_id]['goal']['instruction_text'] = instruction_text session = self.user_sessions[session_id] if not kwargs: kwargs['instruction_text'] = instruction_text (html, url) = self.index(session_id, **kwargs) self.user_sessions[session_id].update({'keywords': None, 'page': None, 'asin': None, 'asins': set(), 'options': dict(), 'actions': defaultdict(int)}) elif 'keywords' in kwargs: (html, url) = self.search_results(session_id, **kwargs) elif 'clickable_name' in kwargs: clickable_name = kwargs['clickable_name'].lower() if clickable_name == END_BUTTON.lower(): (html, url, reward) = self.done(session_id, **kwargs) status['reward'] = reward status['done'] = True elif clickable_name == BACK_TO_SEARCH.lower(): (html, url, status) = self.receive(session_id, current_url) elif clickable_name == NEXT_PAGE.lower() and self.get_page_name(current_url) == 'search_results': (html, url, status) = self.receive(session_id, current_url, keywords=session['keywords'], page=session['page'] + 1) elif clickable_name == PREV_PAGE.lower() and self.get_page_name(current_url) == 'search_results': (html, url, status) = self.receive(session_id, current_url, keywords=session['keywords'], page=session['page'] - 1) elif clickable_name == PREV_PAGE.lower() and self.get_page_name(current_url) == 'item_sub_page': (html, url) = self.item_page(session_id, **kwargs) elif clickable_name == PREV_PAGE.lower() and self.get_page_name(current_url) == 'item_page': (html, url) = self.search_results(session_id, keywords=session['keywords'], page=session['page'], **kwargs) elif clickable_name in [k.lower() for k in ACTION_TO_TEMPLATE]: (html, url) = self.item_sub_page(session_id, **kwargs) else: (html, url) = self.item_page(session_id, **kwargs) return (html, url, status) def get_page_name(self, url): if url is None: return None page_names = ['search_results', 'item_page', 'item_sub_page', 'done'] for page_name in page_names: if page_name in url: return page_name return '' class SimBrowser: def __init__(self, server): self.server = server self.current_url = None self.page_source = None self.session_id = None def get(self, url, session_id=None, session_int=None): self.session_id = url.split('/')[-1] if session_id is None else session_id (self.page_source, _, _) = self.server.receive(self.session_id, self.current_url, session_int=session_int) self.current_url = url def click(self, clickable_name, text_to_clickable): (self.page_source, self.current_url, status) = self.server.receive(self.session_id, current_url=self.current_url, clickable_name=clickable_name, text_to_clickable=text_to_clickable) return status def search(self, keywords): if isinstance(keywords, str): keywords = keywords.split(' ') (self.page_source, self.current_url, status) = self.server.receive(self.session_id, current_url=self.current_url, keywords=keywords) return status # File: WebShop-master/web_agent_site/models/models.py """""" import random random.seed(4) class BasePolicy: def __init__(self): pass def forward(observation, available_actions): raise NotImplementedError class HumanPolicy(BasePolicy): def __init__(self): super().__init__() def forward(self, observation, available_actions): action = input('> ') return action class RandomPolicy(BasePolicy): def __init__(self): super().__init__() def forward(self, observation, available_actions): if available_actions['has_search_bar']: action = 'search[shoes]' else: action_arg = random.choice(available_actions['clickables']) action = f'click[{action_arg}]' return action # File: WebShop-master/web_agent_site/utils.py import bisect import hashlib import logging import random from os.path import dirname, abspath, join BASE_DIR = dirname(abspath(__file__)) DEBUG_PROD_SIZE = None DEFAULT_ATTR_PATH = join(BASE_DIR, '../data/items_ins_v2_1000.json') DEFAULT_FILE_PATH = join(BASE_DIR, '../data/items_shuffle_1000.json') DEFAULT_REVIEW_PATH = join(BASE_DIR, '../data/reviews.json') FEAT_CONV = join(BASE_DIR, '../data/feat_conv.pt') FEAT_IDS = join(BASE_DIR, '../data/feat_ids.pt') HUMAN_ATTR_PATH = join(BASE_DIR, '../data/items_human_ins.json') HUMAN_ATTR_PATH = join(BASE_DIR, '../data/items_human_ins.json') def random_idx(cum_weights): pos = random.uniform(0, cum_weights[-1]) idx = bisect.bisect(cum_weights, pos) idx = min(idx, len(cum_weights) - 2) return idx def setup_logger(session_id, user_log_dir): logger = logging.getLogger(session_id) formatter = logging.Formatter('%(message)s') file_handler = logging.FileHandler(user_log_dir / f'{session_id}.jsonl', mode='w') file_handler.setFormatter(formatter) logger.setLevel(logging.INFO) logger.addHandler(file_handler) return logger def generate_mturk_code(session_id: str) -> str: sha = hashlib.sha1(session_id.encode()) return sha.hexdigest()[:10].upper() |