File size: 23,763 Bytes
b1d4de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
# File: alignment-handbook-main/src/alignment/__init__.py __version__ = '0.3.0.dev0' from .configs import DataArguments, DPOConfig, H4ArgumentParser, ModelArguments, SFTConfig from .data import apply_chat_template, get_datasets from .decontaminate import decontaminate_humaneval from .model_utils import get_checkpoint, get_kbit_device_map, get_peft_config, get_quantization_config, get_tokenizer, is_adapter_model __all__ = ['DataArguments', 'DPOConfig', 'H4ArgumentParser', 'ModelArguments', 'SFTConfig', 'apply_chat_template', 'get_datasets', 'decontaminate_humaneval', 'get_checkpoint', 'get_kbit_device_map', 'get_peft_config', 'get_quantization_config', 'get_tokenizer', 'is_adapter_model'] # File: alignment-handbook-main/src/alignment/configs.py import dataclasses import os import sys from dataclasses import dataclass, field from typing import Any, Dict, List, NewType, Optional, Tuple from transformers import MODEL_FOR_CAUSAL_LM_MAPPING, HfArgumentParser import trl MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys()) MODEL_TYPES = tuple((conf.model_type for conf in MODEL_CONFIG_CLASSES)) DataClassType = NewType('DataClassType', Any) class H4ArgumentParser(HfArgumentParser): def parse_yaml_and_args(self, yaml_arg: str, other_args: Optional[List[str]]=None) -> List[dataclass]: arg_list = self.parse_yaml_file(os.path.abspath(yaml_arg)) outputs = [] other_args = {arg.split('=')[0].strip('-'): arg.split('=')[1] for arg in other_args} used_args = {} for (data_yaml, data_class) in zip(arg_list, self.dataclass_types): keys = {f.name for f in dataclasses.fields(data_yaml) if f.init} inputs = {k: v for (k, v) in vars(data_yaml).items() if k in keys} for (arg, val) in other_args.items(): if arg in keys: base_type = data_yaml.__dataclass_fields__[arg].type inputs[arg] = val if base_type in [int, float]: inputs[arg] = base_type(val) if base_type == List[str]: inputs[arg] = [str(v) for v in val.split(',')] if base_type is bool: if val in ['true', 'True']: inputs[arg] = True else: inputs[arg] = False if arg not in used_args: used_args[arg] = val else: raise ValueError(f'Duplicate argument provided: {arg}, may cause unexpected behavior') obj = data_class(**inputs) outputs.append(obj) return outputs def parse(self) -> DataClassType | Tuple[DataClassType]: if len(sys.argv) == 2 and sys.argv[1].endswith('.yaml'): output = self.parse_yaml_file(os.path.abspath(sys.argv[1])) elif len(sys.argv) > 2 and sys.argv[1].endswith('.yaml'): output = self.parse_yaml_and_args(os.path.abspath(sys.argv[1]), sys.argv[2:]) else: output = self.parse_args_into_dataclasses() if len(output) == 1: output = output[0] return output @dataclass class ModelArguments: base_model_revision: Optional[str] = field(default=None, metadata={'help': 'The base model checkpoint for weights initialization with PEFT adapters.'}) model_name_or_path: Optional[str] = field(default=None, metadata={'help': "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."}) model_revision: str = field(default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}) model_code_revision: str = field(default=None, metadata={'help': 'The branch of the IFT model'}) torch_dtype: Optional[str] = field(default=None, metadata={'help': "Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the dtype will be automatically derived from the model's weights.", 'choices': ['auto', 'bfloat16', 'float16', 'float32']}) tokenizer_name_or_path: Optional[str] = field(default=None, metadata={'help': 'The path to the tokenizer. Useful if you want to use a different tokenizer to the one stored in `model_name_or_path`.'}) trust_remote_code: bool = field(default=False, metadata={'help': 'Trust remote code when loading a model.'}) attn_implementation: Optional[str] = field(default=None, metadata={'help': 'Which attention implementation to use; you can use --attn_implementation=flash_attention_2, in which case you must install this manually by running `pip install flash-attn --no-build-isolation`'}) use_peft: bool = field(default=False, metadata={'help': 'Whether to use PEFT or not for training.'}) lora_r: Optional[int] = field(default=16, metadata={'help': 'LoRA R value.'}) lora_alpha: Optional[int] = field(default=32, metadata={'help': 'LoRA alpha.'}) lora_dropout: Optional[float] = field(default=0.05, metadata={'help': 'LoRA dropout.'}) lora_target_modules: Optional[List[str]] = field(default=None, metadata={'help': 'LoRA target modules.'}) lora_modules_to_save: Optional[List[str]] = field(default=None, metadata={'help': 'Model layers to unfreeze & train'}) load_in_8bit: bool = field(default=False, metadata={'help': 'use 8 bit precision'}) load_in_4bit: bool = field(default=False, metadata={'help': 'use 4 bit precision'}) bnb_4bit_quant_type: Optional[str] = field(default='nf4', metadata={'help': 'precise the quantization type (fp4 or nf4)'}) use_bnb_nested_quant: bool = field(default=False, metadata={'help': 'use nested quantization'}) bnb_4bit_quant_storage: Optional[str] = field(default='uint8', metadata={'help': 'storage type to pack the quanitzed 4-bit prarams.'}) def __post_init__(self): if self.load_in_8bit and self.load_in_4bit: raise ValueError("You can't use 8 bit and 4 bit precision at the same time") @dataclass class DataArguments: chat_template: Optional[str] = field(default=None, metadata={'help': 'The chat template to use.'}) dataset_mixer: Optional[Dict[str, float]] = field(default=None, metadata={'help': 'Datasets and their proportions to be used for training ift/rl.'}) text_column: Optional[str] = field(default='text', metadata={'help': 'The column name to use for the text in the dataset (only used for continued pretraining).'}) dataset_splits: Optional[List[str]] = field(default_factory=lambda : ['train', 'test'], metadata={'help': 'List of train test splits to use in the dataset'}) dataset_configs: Optional[List[str]] = field(default=None, metadata={'help': "List of dataset config names. If given must be the same length as 'dataset_mixer' keys."}) preprocessing_num_workers: Optional[int] = field(default=None, metadata={'help': 'The number of processes to use for the preprocessing.'}) truncation_side: Optional[str] = field(default=None, metadata={'help': 'Truncation side to use for the tokenizer.'}) auto_insert_empty_system_msg: bool = field(default=True, metadata={'help': 'Whether to automatically insert an empty system message as the first message if `system` is mentioned in the chat template.'}) @dataclass class SFTConfig(trl.SFTConfig): hub_model_revision: Optional[str] = field(default='main', metadata={'help': 'The Hub model branch to push the model to.'}) logging_first_step: bool = field(default=True, metadata={'help': 'Whether to log and evaluate the first global_step or not.'}) @dataclass class DPOConfig(trl.DPOConfig): hub_model_revision: Optional[str] = field(default='main', metadata={'help': 'The Hub model branch to push the model to.'}) logging_first_step: bool = field(default=True, metadata={'help': 'Whether to log and evaluate the first global_step or not.'}) optim: Optional[str] = field(default='rmsprop') remove_unused_columns: bool = field(default=False) # File: alignment-handbook-main/src/alignment/data.py import os from typing import Any, List, Literal, Optional from datasets import DatasetDict, concatenate_datasets, load_dataset, load_from_disk from datasets.builder import DatasetGenerationError from .configs import DataArguments DEFAULT_CHAT_TEMPLATE = "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}" def maybe_insert_system_message(messages, tokenizer): if messages[0]['role'] == 'system': return chat_template = tokenizer.chat_template if chat_template is None: chat_template = tokenizer.get_chat_template() if 'system' in chat_template or '<|im_start|>' in chat_template: messages.insert(0, {'role': 'system', 'content': ''}) def apply_chat_template(example, tokenizer, task: Literal['sft', 'generation', 'rm', 'dpo'], auto_insert_empty_system_msg: bool=True): if task in ['sft', 'generation']: messages = example['messages'] if auto_insert_empty_system_msg: maybe_insert_system_message(messages, tokenizer) example['text'] = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True if task == 'generation' else False) elif task == 'rm': if all((k in example.keys() for k in ('chosen', 'rejected'))): chosen_messages = example['chosen'] rejected_messages = example['rejected'] if auto_insert_empty_system_msg: maybe_insert_system_message(chosen_messages, tokenizer) maybe_insert_system_message(rejected_messages, tokenizer) example['text_chosen'] = tokenizer.apply_chat_template(chosen_messages, tokenize=False) example['text_rejected'] = tokenizer.apply_chat_template(rejected_messages, tokenize=False) else: raise ValueError(f'Could not format example as dialogue for `rm` task! Require `[chosen, rejected]` keys but found {list(example.keys())}') elif task in ['dpo', 'orpo']: if all((k in example.keys() for k in ('chosen', 'rejected'))): if not is_openai_format(example['chosen']) or not is_openai_format(example['rejected']): raise ValueError(f'Could not format example as dialogue for `{task}` task! Require OpenAI format for all messages') if 'prompt' in example and is_openai_format(example['prompt']): prompt_messages = example['prompt'] chosen_messages = example['chosen'] rejected_messages = example['rejected'] else: prompt_messages = example['chosen'][:-1] chosen_messages = example['chosen'][-1:] rejected_messages = example['rejected'][-1:] if auto_insert_empty_system_msg: maybe_insert_system_message(prompt_messages, tokenizer) example['text_prompt'] = tokenizer.apply_chat_template(prompt_messages, tokenize=False) example['text_chosen'] = tokenizer.apply_chat_template(chosen_messages, tokenize=False) example['text_rejected'] = tokenizer.apply_chat_template(rejected_messages, tokenize=False) else: raise ValueError(f'Could not format example as dialogue for `{task}` task! Require either the `[chosen, rejected]` or `[prompt, chosen, rejected]` keys but found {list(example.keys())}') else: raise ValueError(f"Task {task} not supported, please ensure that the provided task is one of ['sft', 'generation', 'rm', 'dpo', 'orpo']") return example def is_openai_format(messages: Any) -> bool: if isinstance(messages, list) and all((isinstance(message, dict) for message in messages)): return all(('role' in message and 'content' in message for message in messages)) return False def get_datasets(data_config: DataArguments | dict, splits: Optional[List[str]]=None, configs: Optional[List[str]]=None, columns_to_keep: Optional[List[str]]=None, shuffle: bool=True) -> DatasetDict: if type(data_config) is DataArguments: dataset_mixer = data_config.dataset_mixer elif isinstance(data_config, dict): dataset_mixer = data_config else: raise ValueError(f'Data config {data_config} not recognized.') raw_datasets = mix_datasets(dataset_mixer, splits=splits, configs=configs, columns_to_keep=columns_to_keep, shuffle=shuffle) return raw_datasets def mix_datasets(dataset_mixer: dict, splits: Optional[List[str]]=None, configs: Optional[List[str]]=None, columns_to_keep: Optional[List[str]]=None, shuffle=True) -> DatasetDict: splits = ['train', 'test'] if splits is None else splits configs = [None] * len(dataset_mixer) if not configs else configs columns_to_keep = [] if columns_to_keep is None else columns_to_keep if configs is not None and len(configs) != len(dataset_mixer): raise ValueError('The number of given dataset config names must be the same as the given number of datasets.') raw_datasets = DatasetDict() raw_train_datasets = [] raw_val_datasets = [] fracs = [] for ((ds, frac), ds_config) in zip(dataset_mixer.items(), configs): fracs.append(frac) for split in splits: try: dataset = load_dataset(ds, ds_config, split=split) except DatasetGenerationError: dataset = load_from_disk(os.path.join(ds, split)) dataset = dataset.remove_columns([col for col in dataset.column_names if col not in columns_to_keep]) if 'train' in split: raw_train_datasets.append(dataset) elif 'test' in split: raw_val_datasets.append(dataset) else: raise ValueError(f'Split type {split} not recognized as one of test or train.') if any((frac < 0 for frac in fracs)): raise ValueError('Dataset fractions cannot be negative.') if len(raw_train_datasets) > 0: train_subsets = [] for (dataset, frac) in zip(raw_train_datasets, fracs): train_subset = dataset.select(range(int(frac * len(dataset)))) train_subsets.append(train_subset) if shuffle: raw_datasets['train'] = concatenate_datasets(train_subsets).shuffle(seed=42) else: raw_datasets['train'] = concatenate_datasets(train_subsets) if len(raw_val_datasets) > 0: if shuffle: raw_datasets['test'] = concatenate_datasets(raw_val_datasets).shuffle(seed=42) else: raw_datasets['test'] = concatenate_datasets(raw_val_datasets) if len(raw_datasets) == 0: raise ValueError(f'Dataset {dataset_mixer} not recognized with splits {splits}. Check the dataset has been correctly formatted.') return raw_datasets # File: alignment-handbook-main/src/alignment/decontaminate.py from typing import Any, Dict, List from datasets import load_dataset HUMAN_EVAL_STRINGS_OK = ['return x + y', 'return len(string)', 'return n**2', 'return .join(strings)'] def extract_docstring(prompt: str) -> str: if '"""' in prompt: if prompt.count('"""') == 2: return prompt.split('"""')[1].strip() elif prompt.count('"""') == 4: return prompt.split('"""')[3].strip() else: raise ValueError() elif "'''" in prompt: assert prompt.count("'''") == 2 return prompt.split("'''")[1].strip() else: raise ValueError() def human_eval_docstrings() -> List[str]: ds = load_dataset('openai_humaneval', split='test') docstrings = [extract_docstring(v['prompt']) for v in ds] return docstrings def load_dataset_column(dataset: str, column: str, split: str, name=None) -> List[str]: ds = load_dataset(dataset, split=split, name=name) res = [sample[column].strip() for sample in ds] return [sample for sample in res if len(sample) > 0] FILTER_OUT = {'human_eval_docstrings': human_eval_docstrings(), 'human_eval_solutions': [s for s in load_dataset_column('openai_humaneval', 'canonical_solution', 'test') if s not in HUMAN_EVAL_STRINGS_OK]} def normalize_whitespace(text: str) -> str: return ' '.join(text.split()) def decontaminate_humaneval(samples: List[Dict[str, Any]], text_column: str='text', filter_out: Dict[str, List[str]]=FILTER_OUT) -> List[Dict[str, Any]]: output = [] for content in samples[text_column]: content = normalize_whitespace(content.lower()) matched = False for (_, substrings) in filter_out.items(): for substring in substrings: if normalize_whitespace(substring.lower()) in content: matched = True break if matched: break output.append(not matched) return output # File: alignment-handbook-main/src/alignment/model_utils.py import os from pathlib import Path from typing import Dict import torch from transformers import AutoTokenizer, BitsAndBytesConfig, PreTrainedTokenizer from transformers.trainer_utils import get_last_checkpoint from accelerate import Accelerator from huggingface_hub import list_repo_files from huggingface_hub.utils._errors import RepositoryNotFoundError from huggingface_hub.utils._validators import HFValidationError from peft import LoraConfig, PeftConfig from .configs import DataArguments, DPOConfig, ModelArguments, SFTConfig from .data import DEFAULT_CHAT_TEMPLATE def get_current_device() -> int: return Accelerator().local_process_index if torch.cuda.is_available() else 'cpu' def get_kbit_device_map() -> Dict[str, int] | None: return {'': get_current_device()} if torch.cuda.is_available() else None def get_quantization_config(model_args: ModelArguments) -> BitsAndBytesConfig | None: if model_args.load_in_4bit: compute_dtype = torch.float16 if model_args.torch_dtype not in {'auto', None}: compute_dtype = getattr(torch, model_args.torch_dtype) quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_quant_type=model_args.bnb_4bit_quant_type, bnb_4bit_use_double_quant=model_args.use_bnb_nested_quant, bnb_4bit_quant_storage=model_args.bnb_4bit_quant_storage).to_dict() elif model_args.load_in_8bit: quantization_config = BitsAndBytesConfig(load_in_8bit=True).to_dict() else: quantization_config = None return quantization_config def get_tokenizer(model_args: ModelArguments, data_args: DataArguments, auto_set_chat_template: bool=True) -> PreTrainedTokenizer: tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path if model_args.tokenizer_name_or_path is None else model_args.tokenizer_name_or_path, revision=model_args.model_revision, trust_remote_code=model_args.trust_remote_code) if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id if data_args.truncation_side is not None: tokenizer.truncation_side = data_args.truncation_side if tokenizer.model_max_length > 100000: tokenizer.model_max_length = 2048 if data_args.chat_template is not None: tokenizer.chat_template = data_args.chat_template elif auto_set_chat_template and tokenizer.get_chat_template() is None: tokenizer.chat_template = DEFAULT_CHAT_TEMPLATE return tokenizer def get_peft_config(model_args: ModelArguments) -> PeftConfig | None: if model_args.use_peft is False: return None peft_config = LoraConfig(r=model_args.lora_r, lora_alpha=model_args.lora_alpha, lora_dropout=model_args.lora_dropout, bias='none', task_type='CAUSAL_LM', target_modules=model_args.lora_target_modules, modules_to_save=model_args.lora_modules_to_save) return peft_config def is_adapter_model(model_name_or_path: str, revision: str='main') -> bool: try: repo_files = list_repo_files(model_name_or_path, revision=revision) except (HFValidationError, RepositoryNotFoundError): repo_files = os.listdir(model_name_or_path) return 'adapter_model.safetensors' in repo_files or 'adapter_model.bin' in repo_files def get_checkpoint(training_args: SFTConfig | DPOConfig) -> Path | None: last_checkpoint = None if os.path.isdir(training_args.output_dir): last_checkpoint = get_last_checkpoint(training_args.output_dir) return last_checkpoint # File: alignment-handbook-main/src/alignment/release.py import argparse import re import packaging.version REPLACE_PATTERNS = {'init': (re.compile('^__version__\\s+=\\s+"([^"]+)"\\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile('^(\\s*)version\\s*=\\s*"[^"]+",', re.MULTILINE), '\\1version="VERSION",'), 'citation': (re.compile('^version:\\s+[^ ]+', re.MULTILINE), 'version: VERSION'), 'readme': (re.compile('version\\s+=\\s+\\{[^}]+\\}', re.MULTILINE), 'version = {VERSION}')} README_FILE = 'README.md' REPLACE_FILES = {'init': 'src/alignment/__init__.py', 'setup': 'setup.py', 'citation': 'CITATION.cff', 'readme': README_FILE} def update_version_in_file(fname, version, pattern): with open(fname, 'r', encoding='utf-8', newline='\n') as f: code = f.read() (re_pattern, replace) = REPLACE_PATTERNS[pattern] replace = replace.replace('VERSION', version) code = re_pattern.sub(replace, code) with open(fname, 'w', encoding='utf-8', newline='\n') as f: f.write(code) def global_version_update(version, patch=False): for (pattern, fname) in REPLACE_FILES.items(): update_version_in_file(fname, version, pattern) def get_version(): with open(REPLACE_FILES['init'], 'r') as f: code = f.read() default_version = REPLACE_PATTERNS['init'][0].search(code).groups()[0] return packaging.version.parse(default_version) def pre_release_work(patch=False): default_version = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!") if default_version.is_devrelease: default_version = default_version.base_version elif patch: default_version = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: default_version = f'{default_version.major}.{default_version.minor + 1}.0' version = input(f'Which version are you releasing? [{default_version}]') if len(version) == 0: version = default_version print(f'Updating version to {version}.') global_version_update(version, patch=patch) def post_release_work(): current_version = get_version() dev_version = f'{current_version.major}.{current_version.minor + 1}.0.dev0' current_version = current_version.base_version version = input(f'Which version are we developing now? [{dev_version}]') if len(version) == 0: version = dev_version print(f'Updating version to {version}.') global_version_update(version) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') args = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work() |