File size: 166,640 Bytes
b1d4de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 |
# File: optimum-quanto-main/bench/generation/evaluate_configurations.py import argparse import json import torch from evaluate_model import evaluate from gen_barchart import gen_barchart from transformers import AutoConfig from optimum.quanto import qtype def evaluate_model_configurations(model_id: str, metric: str, device: torch.device, batch_size: int=32, dtype: torch.dtype=torch.float16): weights = ['int4', 'int8', 'float8'] activations = ['none', 'float8'] def short_name(qtype: qtype): return {'none': 'f16' if dtype == torch.float16 else 'bf16', 'int4': 'i4', 'int8': 'i8', 'float8': 'f8'}[qtype] results = {} config_name = f"W{short_name('none')}A{short_name('none')}" print(f'{model_id}[{config_name}]:') results[config_name] = evaluate(model_id, metric, 'quanto', 'none', 'none', batch_size, device, dtype) for w in weights: for a in activations: config_name = f'W{short_name(w)}A{short_name(a)}' print(f'{model_id}[{config_name}]:') results[config_name] = evaluate(model_id, metric, 'quanto', w, a, batch_size, device, dtype) return results def main(): parser = argparse.ArgumentParser(description='Evaluate quantized model predictions on Lambada Dataset') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--model', type=str, default='facebook/opt-350m', help='The name of the trained Model.') parser.add_argument('--device', type=str, default=None, help='The device to use for generation.') parser.add_argument('--metric', type=str, default='prediction', choices=['latency', 'prediction', 'perplexity']) parser.add_argument('--batch_size', type=int, default=32, help='The batch size during evaluation.') parser.add_argument('--dtype', type=str, help='Use the following dtype to load the model.') parser.add_argument('--json', action='store_true', help='Dump the results to a json file.') parser.add_argument('--png', action='store_true', help='Generate a PNG.') args = parser.parse_args() torch.manual_seed(args.seed) if args.device is None: if torch.cuda.is_available(): device = torch.device('cuda') elif torch.backends.mps.is_available(): device = torch.device('mps') else: device = torch.device('cpu') else: device = torch.device(args.device) if args.dtype is None: config = AutoConfig.from_pretrained(args.model) dtype = getattr(config, 'torch_dtype', torch.float16) else: dtype = torch.float16 if args.dtype == 'fp16' else torch.bfloat16 results = evaluate_model_configurations(args.model, args.metric, device, batch_size=args.batch_size, dtype=dtype) if args.json: model_name = args.model.split('/')[-1] json_path = f'{model_name}-{args.metric}.json' with open(json_path, 'w') as fp: json.dump({model_name: results}, fp, indent=4) if args.png: if args.metric == 'latency': title = f'{args.model}: Mean latency per token' label = 'Latency (ms)' elif args.metric == 'prediction': title = f'{args.model}: Prediction accuracy on Lambada dataset' label = 'Accuracy' elif args.metric == 'perplexity': title = f'{args.model}: Perplexity evaluated on WikiText dataset' label = 'Perplexity' gen_barchart(args.model, title, label, results, dtype) if __name__ == '__main__': main() # File: optimum-quanto-main/bench/generation/evaluate_model.py import argparse import torch from datasets import load_dataset from metrics.latency import latency from metrics.perplexity import perplexity from metrics.prediction import prediction_accuracy from setup.awq import setup as awq_setup from setup.bnb import setup as bnb_setup from setup.hqq import setup as hqq_setup from setup.quanto import setup as quanto_setup from transformers import AutoConfig @torch.no_grad() def calibrate(model, tokenizer, batch_size, batches): samples = batch_size * batches cal_dataset = load_dataset('lambada', split=['validation'])[0] model.eval() total = 0 for batch in cal_dataset.iter(batch_size=batch_size): inputs = tokenizer(batch['text'], return_tensors='pt', padding=True) input_ids = inputs.input_ids.to(model.device) attention_mask = inputs.attention_mask.to(model.device) model(input_ids, attention_mask=attention_mask) total += input_ids.size(0) if total >= samples: break def evaluate(model_id: str, metric: str, quantizer: str, weights: str, activations: str, batch_size: int, device: torch.device, dtype: torch.dtype=None): if quantizer == 'quanto': if dtype is None: config = AutoConfig.from_pretrained(model_id) dtype = getattr(config, 'torch_dtype', torch.float16) (model, tokenizer) = quanto_setup(model_id, weights, activations, batch_size, device, dtype) elif quantizer == 'awq': (model, tokenizer) = awq_setup(model_id, weights, activations, group_size=128) elif quantizer == 'bnb': (model, tokenizer) = bnb_setup(model_id, weights, activations, device) elif quantizer == 'hqq': (model, tokenizer) = hqq_setup(model_id, weights, activations, device) else: raise ValueError(f'Unsupported quantizer {quantizer}') dtype = next(model.parameters()).dtype weights = dtype if weights == 'none' else weights activations = dtype if activations == 'none' else activations print(f'Evaluating {model_id} {metric} with {weights} weights and {activations} activations.') if metric == 'latency': return latency(model, tokenizer, device, batch_size=1, prompt_length=512, nb_tokens=512, iterations=3) elif metric == 'prediction': return prediction_accuracy(model, tokenizer, batch_size) elif metric == 'perplexity': return perplexity(model, tokenizer) def main(): parser = argparse.ArgumentParser(description='Evaluate quantized model metrics') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--model', type=str, default='facebook/opt-350m', help='The name of the trained Model.') parser.add_argument('--device', type=str, default=None, help='The device to use for generation.') parser.add_argument('--metric', type=str, default='prediction', choices=['latency', 'prediction', 'perplexity']) parser.add_argument('--quantizer', type=str, default='quanto', choices=['quanto', 'awq', 'bnb', 'hqq']) parser.add_argument('--weights', type=str, default='none', choices=['none', 'int4', 'int8', 'float8']) parser.add_argument('--activations', type=str, default='none', choices=['none', 'int8', 'float8']) parser.add_argument('--batch_size', type=int, default=32, help='The batch size during evaluation.') parser.add_argument('--dtype', type=str, default='none', choices=['none', 'fp16', 'bf16']) args = parser.parse_args() torch.manual_seed(args.seed) if args.device is None: if torch.cuda.is_available(): device = torch.device('cuda') elif torch.backends.mps.is_available(): device = torch.device('mps') else: device = torch.device('cpu') else: device = torch.device(args.device) dtype = {'none': None, 'fp16': torch.float16, 'bf16': torch.bfloat16}[args.dtype] evaluate(args.model, args.metric, args.quantizer, args.weights, args.activations, args.batch_size, device, dtype) if __name__ == '__main__': main() # File: optimum-quanto-main/bench/generation/gen_barchart.py import argparse import json import matplotlib.pyplot as plt import numpy as np import torch def save_bar_chart(title, labels, ylabel, series, save_path): x = np.arange(len(labels)) width = 0.15 multiplier = 0 (fig, ax) = plt.subplots(layout='constrained') fig.set_figwidth(10) max_value = 0 for (attribute, measurement) in series.items(): max_value = max(max_value, max(measurement)) offset = width * multiplier rects = ax.bar(x + offset, measurement, width, label=attribute) ax.bar_label(rects, padding=5) multiplier += 1 ax.set_ylabel(ylabel) ax.set_title(title) ax.set_xticks(x + width, labels) ax.legend(loc='upper left', ncols=4) ax.set_ylim(0, max_value * 1.2) plt.savefig(save_path) def gen_barchart(model_id, title, label, results, dtype): dtype_str = 'f16' if dtype is torch.float16 else 'bf16' activations = (dtype_str, 'f8') weights = ('i4', 'i8', 'f8') series = {} reference = round(results[f'W{dtype_str}A{dtype_str}'], 2) series[f'Weights {dtype_str}'] = [reference] * len(activations) for w in weights: name = f'Weights {w}' series[name] = [] for a in activations: result = results[f'W{w}A{a}'] series[name].append(round(result, 2)) model_name = model_id.replace('/', '-') metric_name = label.replace(' ', '_').replace('(', '_').replace(')', '_') save_bar_chart(title=title, labels=[f'Activations {a}' for a in activations], series=series, ylabel=label, save_path=f'{model_name}_{dtype_str}_{metric_name}.png') def main(): parser = argparse.ArgumentParser() parser.add_argument('benchmark', type=str, help='A benchmark result file (.json).') parser.add_argument('--title', type=str, required=True, help='The graph title.') parser.add_argument('--label', type=str, required=True, help='The graph vertical label.') args = parser.parse_args() with open(args.benchmark) as f: benchmark = json.load(f) for (model_id, results) in benchmark.items(): gen_barchart(model_id, args.title, args.label, results) if __name__ == '__main__': main() # File: optimum-quanto-main/bench/generation/metrics/latency.py import gc import time import numpy as np import torch from tqdm.auto import tqdm from transformers import GenerationConfig def latency(model, tokenizer, device, batch_size=1, prompt_length=512, nb_tokens=512, iterations=10): def synchronize(device): if device.type == 'cuda': torch.cuda.synchronize() elif device.type == 'mps': torch.mps.synchronize() else: torch.cpu.synchronize() def timing_event(device): if device.type == 'cuda': return torch.cuda.Event(enable_timing=True) elif device.type == 'mps': return torch.mps.Event(enable_timing=True) class CPUEvent: def __init__(self): self.time = None def record(self): self.time = time.time() def elapsed_time(self, other): assert self.time is not None assert other.time is not None return (other.time - self.time) * 1000 return CPUEvent() generation_config = GenerationConfig(max_new_tokens=nb_tokens, min_new_tokens=nb_tokens, use_cache=True, pad_token_id=tokenizer.pad_token_id, num_beams=1, do_sample=False, eos_token_id=None) if getattr(model, 'generation_config', None) is not None: model.generation_config.eos_token_id = None synchronize(device) if device.type == 'cuda': torch.cuda.reset_peak_memory_stats() memory = get_device_memory(device) if memory is not None: print(f'Device memory: {memory / 2 ** 30:.4f} GB') latencies = [] input_ids = torch.randint(1, model.config.vocab_size - 1, size=(batch_size, prompt_length)).to(device) masks = torch.ones(batch_size, prompt_length, dtype=torch.int32).to(device) for _ in tqdm(range(iterations)): start_event = timing_event(device) end_event = timing_event(device) synchronize(device) start_event.record() _ = model.generate(input_ids, attention_mask=masks, generation_config=generation_config) end_event.record() synchronize(device) latency_ms = start_event.elapsed_time(end_event) latencies.append(latency_ms) if device.type == 'cuda': peak_memory = torch.cuda.max_memory_allocated() print(f'Peak memory during benchmark: {peak_memory / 2 ** 30:.4f} GB') mean_latency = np.mean(latencies) / generation_config.min_new_tokens print(f'Average latency per token: {mean_latency} ms') return mean_latency def get_device_memory(device): gc.collect() if device.type == 'cuda': torch.cuda.empty_cache() return torch.cuda.memory_allocated() elif device.type == 'mps': torch.mps.empty_cache() return torch.mps.current_allocated_memory() return None # File: optimum-quanto-main/bench/generation/metrics/perplexity.py import sys import numpy as np import torch from datasets import load_dataset from tqdm import tqdm class Perplexity: def __init__(self, model, tokenizer, dataset_path='wikitext', dataset_name=None, split='test', text_column='text'): self._model = model self._tokenizer = tokenizer self._dataset_path = dataset_path self._dataset_name = dataset_name self._split = split self._text_column = text_column self._text = self._prepare_data() def _prepare_data(self): if self._dataset_path == 'wikitext': self._dataset_name = 'wikitext-2-raw-v1' data = load_dataset(self._dataset_path, self._dataset_name, split=self._split) text_list = [' \n' if s == '' else s for s in data[self._text_column]] return ''.join(text_list) @staticmethod def softmax(logits): e_x = np.exp(logits - np.max(logits)) return e_x / e_x.sum(axis=0) def calculate_perplexity(self, n_ctx=512, n_batch=512): self._tokenizer.model_max_length = sys.maxsize tokens = self._tokenizer(self._text, truncation=False, return_tensors='pt').input_ids.to(self._model.device) nll = 0.0 count = 0 curr_ppl = 0 all_perplexity = [] with tqdm(range(len(tokens[0]) // n_ctx), desc='Perplexity: - ') as progress: for i in progress: (nll, count) = self._process_batch(i, n_ctx, n_batch, tokens, nll, count) curr_ppl = np.exp(nll / count) all_perplexity.append(curr_ppl) progress.set_description(f'Perplexity: {curr_ppl:.4f}') return all_perplexity def _process_batch(self, i, n_ctx, n_batch, tokens, nll, count): start = i * n_ctx end = start + n_ctx num_batches = (n_ctx + n_batch - 1) // n_batch logits = [] for j in range(num_batches): batch_start = start + j * n_batch batch_size = min(end - batch_start, n_batch) token_org = tokens[0][batch_start].item() if j == 0: tokens[0][batch_start] = self._tokenizer.bos_token_id batch_logits = self._compute_batch_logits(tokens, batch_start, batch_size) tokens[0][batch_start] = token_org logits.append(batch_logits) for j in range(min(512, n_ctx // 2), n_ctx - 1): tok_logits = logits[0][0][j].cpu().numpy() prob = self.softmax(tok_logits)[tokens[0][start + j + 1]] nll += -np.log(prob, where=prob > 0) count += 1 return (nll, count) def _compute_batch_logits(self, tokens, batch_start, batch_size): with torch.no_grad(): outputs = self._model(tokens[:, batch_start:batch_start + batch_size]) return outputs.logits.detach() def perplexity(model, tokenizer, stride: int=512): print('Evaluating perplexity') ppl = Perplexity(model, tokenizer) ppl_value = np.mean(ppl.calculate_perplexity(n_ctx=stride)) return ppl_value # File: optimum-quanto-main/bench/generation/metrics/prediction.py import time import torch from datasets import load_dataset @torch.no_grad() def prediction_accuracy(model, tokenizer, batch_size, samples=None): test_dataset = load_dataset('lambada', split=['test'])[0] model.eval() (total, hit) = (0, 0) start = time.time() for batch in test_dataset.iter(batch_size=batch_size): inputs = tokenizer(batch['text'], return_tensors='pt', padding=True) input_ids = inputs.input_ids.to(model.device) attention_mask = inputs.attention_mask.to(model.device) labels = input_ids[:, -1] outputs = model(input_ids[:, :-1], attention_mask=attention_mask[:, :-1]) preds = outputs.logits[:, -1, :].argmax(dim=-1) total += labels.size(0) hit += (preds == labels).sum().item() if samples is not None and total >= samples: break end = time.time() acc = hit / total print(f'{total} sequences evaluated in {end - start:.2f} s. accuracy = {acc:.2f}') return acc # File: optimum-quanto-main/bench/generation/setup/awq.py from awq import AutoAWQForCausalLM from transformers import AutoTokenizer def prepare_inputs_for_generation(input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs): if past_key_values is not None: cache_length = past_length = past_key_values[0][0].shape[2] max_cache_length = None if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):] elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] if max_cache_length is not None and attention_mask is not None and (cache_length + input_ids.shape[1] > max_cache_length): attention_mask = attention_mask[:, -max_cache_length:] position_ids = kwargs.get('position_ids', None) if attention_mask is not None and position_ids is None: position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1]:] if inputs_embeds is not None and past_key_values is None: model_inputs = {'inputs_embeds': inputs_embeds} else: model_inputs = {'input_ids': input_ids} model_inputs.update({'position_ids': position_ids, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache'), 'attention_mask': attention_mask}) return model_inputs def setup(model_id: str, weights: str, activations: str, group_size: int=64, version='GEMV_FAST'): if activations != 'none': raise ValueError('Activation quantization is not supported by HQQ') if weights != 'int4': raise ValueError('AWQ only supports int4 weights.') quant_config = {'zero_point': True, 'q_group_size': group_size, 'w_bit': 4, 'version': version} model = AutoAWQForCausalLM.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) tokenizer.pad_token_id = tokenizer.eos_token_id tokenizer.padding_side = 'left' model.quantize(tokenizer, quant_config=quant_config) quant_path = model_id.replace('/', '-') + f'_{group_size}_{version}' model.save_quantized(quant_path) model = AutoAWQForCausalLM.from_quantized(quant_path) model.model.prepare_inputs_for_generation = prepare_inputs_for_generation model.device = next(model.parameters()).device return (model, tokenizer) # File: optimum-quanto-main/bench/generation/setup/bnb.py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig def setup(model_id: str, weights: str, activations: str, device: torch.device): if activations != 'none': raise ValueError('Activation quantization is not supported by BitsAndBytes') if weights == 'int4': quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type='fp4') elif weights == 'int8': quantization_config = BitsAndBytesConfig(load_in_8bit=True) else: raise ValueError('BitsAndBytes only supports int4 and int8 weights.') dtype = torch.float32 if device.type == 'cpu' else torch.float16 tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token_id = tokenizer.eos_token_id tokenizer.padding_side = 'left' quantization_config.bnb_4bit_compute_dtype = dtype model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, low_cpu_mem_usage=True, quantization_config=quantization_config) return (model, tokenizer) # File: optimum-quanto-main/bench/generation/setup/hqq.py import torch from hqq.core.quantize import BaseQuantizeConfig from hqq.engine.hf import HQQModelForCausalLM from transformers import AutoTokenizer def setup(model_id: str, weights: str, activations: str, device: torch.device, group_size: int=64): if activations != 'none': raise ValueError('Activation quantization is not supported by HQQ') if weights == 'int4': quant_config = BaseQuantizeConfig(nbits=4, group_size=group_size) elif weights == 'int8': quant_config = BaseQuantizeConfig(nbits=8, group_size=group_size) else: raise ValueError('HQQ only supports int4 and int8 weights.') model = HQQModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16) model.quantize_model(quant_config=quant_config, compute_dtype=torch.float16, device=device) tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) tokenizer.pad_token_id = tokenizer.eos_token_id tokenizer.padding_side = 'left' return (model, tokenizer) # File: optimum-quanto-main/bench/generation/setup/quanto.py import time import torch from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer from optimum.quanto import Calibration, freeze, qfloat8, qint4, qint8, quantize @torch.no_grad() def calibrate(model, tokenizer, batch_size, batches): samples = batch_size * batches cal_dataset = load_dataset('lambada', split=['validation'])[0] model.eval() total = 0 for batch in cal_dataset.iter(batch_size=batch_size): inputs = tokenizer(batch['text'], return_tensors='pt', padding=True) input_ids = inputs.input_ids.to(model.device) attention_mask = inputs.attention_mask.to(model.device) model(input_ids, attention_mask=attention_mask) total += input_ids.size(0) if total >= samples: break def setup(model_id: str, weights: str, activations: str, batch_size: int, device: torch.device, dtype: torch.dtype): weights = keyword_to_qtype(weights) activations = keyword_to_qtype(activations) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token_id = tokenizer.eos_token_id tokenizer.padding_side = 'left' model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, low_cpu_mem_usage=True).to(device) if weights is not None or activations is not None: print('Quantizing') start = time.time() quantization_root = model if hasattr(model, 'model'): quantization_root = model.model quantize(quantization_root, weights=weights, activations=activations) if activations is not None: print('Calibrating') with Calibration(): calibrate(model, tokenizer, batch_size, batches=4) print('Freezing') freeze(model) print(f'Finished: {time.time() - start:.2f}') return (model, tokenizer) def keyword_to_qtype(k): return {'none': None, 'int4': qint4, 'int8': qint8, 'float8': qfloat8}[k] # File: optimum-quanto-main/bench/kernels/benchmark.py import argparse import time from contextlib import nullcontext import numpy as np import torch from tqdm.auto import tqdm from optimum.quanto.library import disable_extensions def get_unpack_bench(bits, device): qmax = 2 ** bits a = torch.randint(0, qmax, [10240, 10240], dtype=torch.uint8).to(device) def bench_fn(): return torch.ops.quanto.unpack(a, bits) return bench_fn def timing(get_bench_func, device, iterations=10): def synchronize(device): if device.type == 'cuda': torch.cuda.synchronize() elif device.type == 'mps': torch.mps.synchronize() else: torch.cpu.synchronize() def timing_event(device): if device.type == 'cuda': return torch.cuda.Event(enable_timing=True) elif device.type == 'mps': return torch.mps.Event(enable_timing=True) class CPUEvent: def __init__(self): self.time = None def record(self): self.time = time.time() def elapsed_time(self, other): assert self.time is not None assert other.time is not None return (other.time - self.time) * 1000 return CPUEvent() synchronize(device) bench_func = get_bench_func(device) bench_func() latencies = np.empty((iterations, 2)) for i in tqdm(range(iterations)): for (j, context) in enumerate([disable_extensions(), nullcontext()]): start_event = timing_event(device) end_event = timing_event(device) synchronize(device) start_event.record() with context: bench_func() end_event.record() synchronize(device) latencies[i, j] = start_event.elapsed_time(end_event) return (np.mean(latencies[:, 0]), np.mean(latencies[:, 1])) GET_BENCH_FUNCTIONS = {'unpack_2bit': lambda device: get_unpack_bench(2, device), 'unpack_4bit': lambda device: get_unpack_bench(4, device)} def main(): parser = argparse.ArgumentParser(description='Kernel benchmark') parser.add_argument('--kernel', type=str, default=None, help='The kernel to benchmark. None to test all of them') parser.add_argument('--device', type=str, default=None, help='The device to use for benchmark.') parser.add_argument('--it', type=int, default=10, help='The number of benchmark iterations') args = parser.parse_args() if args.device is None: if torch.cuda.is_available(): device = torch.device('cuda') elif torch.backends.mps.is_available(): device = torch.device('mps') else: device = torch.device('cpu') else: device = torch.device(args.device) all_kernels = GET_BENCH_FUNCTIONS.keys() kernels = all_kernels if args.kernel is None else [args.kernel] for kernel in kernels: get_bench_fn = GET_BENCH_FUNCTIONS[kernel] (python_ms, ext_ms) = timing(get_bench_fn, device, iterations=args.it) ratio = python_ms / ext_ms print(f'\n{kernel}[{device.type}]: python = {python_ms:.3f} ms, ext = {ext_ms:.3f} ms, ratio = {ratio:.1f}x') if __name__ == '__main__': main() # File: optimum-quanto-main/bench/kernels/benchmark_marlin_fp8.py import argparse from typing import Optional import numpy as np import torch from optimum.quanto.tensor.weights.marlin.packed import pack_fp8_as_int32 M_SHAPES = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192] N_SHAPES = [4096] K_SHAPES = [4096] def run_benchmark(m: Optional[int], n: Optional[int], k: Optional[int], n_runs: int, n_warmup: int, dtype: torch.dtype=torch.float16): print(f'\n----------- m={m}, n={n}, k={k}') n_tokens = m in_features = k out_features = n assert m is not None device = torch.device('cuda') inputs = torch.rand(n_tokens, in_features, dtype=dtype, device=device) other_shape = (in_features, out_features) other_data = torch.rand(other_shape, dtype=dtype, device=device).to(torch.float8_e4m3fn) other_data_int32 = pack_fp8_as_int32(other_data) perm = torch.empty(0, dtype=torch.int, device=device) other_data_repack = torch.ops.quanto.gptq_marlin_repack(b_q_weight=other_data_int32, perm=perm, size_k=in_features, size_n=out_features, num_bits=8) other_scale = torch.rand(1, dtype=dtype, device=device) other_scale = other_scale.repeat(1, out_features) workspace = torch.zeros(out_features // 64 * 16, dtype=torch.int, device=device) latencies_marlin_fp8 = [] latencies_torch = [] with torch.no_grad(): for i in range(n_runs): start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) torch.cuda.synchronize(device) start_event.record() _ = torch.ops.quanto.fp8_marlin_gemm(a=inputs, b_q_weight=other_data_repack, b_scales=other_scale, workspace=workspace, num_bits=8, size_m=n_tokens, size_n=out_features, size_k=in_features) end_event.record() torch.cuda.synchronize(device) latency_ms = start_event.elapsed_time(end_event) if i >= n_warmup: latencies_marlin_fp8.append(latency_ms) start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) torch.cuda.synchronize(device) start_event.record() other = other_data.to(dtype) * other_scale _ = torch.matmul(inputs, other) end_event.record() torch.cuda.synchronize(device) latency_ms = start_event.elapsed_time(end_event) if i >= n_warmup: latencies_torch.append(latency_ms) mean_latency_torch = np.mean(latencies_torch) mean_latency_marlin_fp8 = np.mean(latencies_marlin_fp8) print('mean_latency_torch:', mean_latency_torch) print('mean_latency_marlin_fp8:', mean_latency_marlin_fp8) return (mean_latency_torch, mean_latency_marlin_fp8) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Marlin FP8 kernel benchmark') parser.add_argument('--nruns', type=int, default=20, help='The number of benchmark iterations') parser.add_argument('--nwarmup', type=int, default=2, help='The number of warmup iterations (deducted from nruns)') parser.add_argument('--m', type=int, help='m dimension of A=m*k', default=None) parser.add_argument('--n', type=int, help='n dimension of B=k*n (out_features)', default=None) parser.add_argument('--k', type=int, help='k dimension of A=m*k and B=k*n (in_features), hidden_size', default=None) args = parser.parse_args() if args.m is not None: def shape_generator(): yield (args.m, args.n, args.k) else: def shape_generator(): for m in M_SHAPES: for n in N_SHAPES: for k in K_SHAPES: yield (m, n, k) result = 'm,n_out,k_in,torch_latency_ms,marlin_fp8_latency_ms\n' for (m, n, k) in shape_generator(): (mean_latency_torch, mean_latency_marlin_fp8) = run_benchmark(m, n, k, args.nruns, args.nwarmup) result += ','.join([str(m), str(n), str(k), f'{mean_latency_torch:.4f}', f'{mean_latency_marlin_fp8:.4f}']) + '\n' print('\nResults:') print(result) # File: optimum-quanto-main/external/awq/pack_intweight.py import torch def pack_intweight(unpacked_qweight, interleave, kstride): N = unpacked_qweight.shape[0] K = unpacked_qweight.shape[1] Packed_Kernel = unpacked_qweight.cpu().numpy().reshape(N, K // 32, 32) Packed_Kernel = Packed_Kernel.reshape(N, K // 32, 4, 4, 2).transpose(0, 1, 3, 2, 4) Packed_Kernel = Packed_Kernel.reshape(N, K // 32, 32) Packed_Kernel = Packed_Kernel.reshape(N, K // 32, 4, 8) Packed_Kernel = Packed_Kernel.reshape(N, K // 32, 4, 4, 2).transpose(0, 1, 2, 4, 3) Packed_Kernel = Packed_Kernel.reshape(N, K) Packed_Kernel = Packed_Kernel.reshape(N // interleave, interleave, K // kstride, kstride) Packed_Kernel = Packed_Kernel.transpose(0, 2, 1, 3) Packed_Kernel = Packed_Kernel.reshape(N // interleave, K // kstride, kstride, interleave) Packed_Kernel = Packed_Kernel[..., 0] | Packed_Kernel[..., 1] << 4 | Packed_Kernel[..., 2] << 8 | Packed_Kernel[..., 3] << 12 Packed_Kernel = Packed_Kernel.reshape(N // interleave, K) qweight = torch.tensor(Packed_Kernel.astype('int16')).to(unpacked_qweight.device).contiguous() return qweight # File: optimum-quanto-main/external/awq/packing_utils.py import torch AWQ_ORDER = [0, 2, 4, 6, 1, 3, 5, 7] AWQ_REVERSE_ORDER = [0, 4, 1, 5, 2, 6, 3, 7] def pack_awq(intweight: torch.Tensor, reorder=False): bits = 4 pack_num = 32 // bits qweight = torch.zeros(intweight.shape[0], intweight.shape[1] // pack_num, dtype=torch.int32, device=intweight.device) for col in range(intweight.shape[1] // pack_num): if reorder: order_map = [0, 2, 4, 6, 1, 3, 5, 7] else: order_map = [0, 1, 2, 3, 4, 5, 6, 7] for i in range(pack_num): qweight_col = intweight[:, col * pack_num + order_map[i]] qweight[:, col] |= qweight_col << i * bits return qweight def unpack_awq(qweight: torch.Tensor, bits: int): shifts = torch.arange(0, 32, bits, device=qweight.device) iweights = torch.bitwise_right_shift(qweight[:, :, None], shifts[None, None, :]).to(torch.int8) iweights = iweights.view(iweights.shape[0], -1) return iweights def reverse_awq_order(iweights: torch.Tensor, bits: int): reverse_order_tensor = torch.arange(iweights.shape[-1], dtype=torch.int32, device=iweights.device) reverse_order_tensor = reverse_order_tensor.view(-1, 32 // bits) reverse_order_tensor = reverse_order_tensor[:, AWQ_REVERSE_ORDER] reverse_order_tensor = reverse_order_tensor.view(-1) iweights = iweights[:, reverse_order_tensor] return iweights def pack_exllama(iweights: torch.Tensor, izeros: torch.Tensor, bits: int): shifts = torch.arange(0, 32, bits, device=iweights.device) iweights = iweights.view(iweights.shape[0] // (32 // bits), 32 // bits, -1) qweight = torch.bitwise_left_shift(iweights, shifts[None, :, None]).sum(dim=1).to(torch.int32) izeros = izeros.view(-1, izeros.shape[1] // (32 // bits), 32 // bits) qzeros = torch.bitwise_left_shift(izeros, shifts[None, None, :]).sum(dim=-1).to(torch.int32) return (qweight, qzeros) def unpack_reorder_pack(qweight, qzeros, bits): (iweight, izeros) = unpack_awq(qweight, qzeros, bits) (iweight, izeros) = reverse_awq_order(iweight, izeros, bits) iweight = torch.bitwise_and(iweight, 2 ** bits - 1) izeros = torch.bitwise_and(izeros, 2 ** bits - 1) izeros = izeros - 1 (qweight, qzeros) = pack_exllama(iweight, izeros, bits) return (qweight, qzeros) def dequantize_gemm(qweight, qzeros, scales, bits, group_size): (iweight, izeros) = unpack_awq(qweight, qzeros, bits) (iweight, izeros) = reverse_awq_order(iweight, izeros, bits) iweight = torch.bitwise_and(iweight, 2 ** bits - 1) izeros = torch.bitwise_and(izeros, 2 ** bits - 1) scales = scales.repeat_interleave(group_size, dim=0) izeros = izeros.repeat_interleave(group_size, dim=0) iweight = (iweight - izeros) * scales return iweight # File: optimum-quanto-main/external/smoothquant/smoothquant.py import argparse import functools import os import torch import torch.nn as nn from datasets import load_dataset from tqdm import tqdm from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.models.bloom.modeling_bloom import BloomBlock from transformers.models.opt.modeling_opt import OPTDecoderLayer from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaRMSNorm from transformers.models.mistral.modeling_mistral import MistralDecoderLayer, MistralRMSNorm def get_act_scales(model, tokenizer, dataset, num_samples=512, seq_len=512): model.eval() device = next(model.parameters()).device act_scales = {} def stat_tensor(name, tensor): hidden_dim = tensor.shape[-1] tensor = tensor.view(-1, hidden_dim).abs().detach() comming_max = torch.max(tensor, dim=0)[0].float().cpu() if name in act_scales: act_scales[name] = torch.max(act_scales[name], comming_max) else: act_scales[name] = comming_max def stat_input_hook(m, x, y, name): if isinstance(x, tuple): x = x[0] stat_tensor(name, x) hooks = [] for (name, m) in model.named_modules(): if isinstance(m, nn.Linear): hooks.append(m.register_forward_hook(functools.partial(stat_input_hook, name=name))) for i in tqdm(range(num_samples)): input_ids = tokenizer(dataset[i]['text'], return_tensors='pt', max_length=seq_len, truncation=True).input_ids.to(device) model(input_ids) for h in hooks: h.remove() return act_scales @torch.no_grad() def smooth_ln_fcs(ln, fcs, act_scales, alpha=0.5): if not isinstance(fcs, list): fcs = [fcs] assert isinstance(ln, (nn.LayerNorm, LlamaRMSNorm, MistralRMSNorm)) for fc in fcs: assert isinstance(fc, nn.Linear) assert ln.weight.numel() == fc.in_features == act_scales.numel() (device, dtype) = (fcs[0].weight.device, fcs[0].weight.dtype) act_scales = act_scales.to(device=device, dtype=dtype) weight_scales = torch.cat([fc.weight.abs().max(dim=0, keepdim=True)[0] for fc in fcs], dim=0) weight_scales = weight_scales.max(dim=0)[0].clamp(min=1e-05) scales = (act_scales.pow(alpha) / weight_scales.pow(1 - alpha)).clamp(min=1e-05).to(device).to(dtype) ln.weight.div_(scales) if getattr(ln, 'bias', None) is not None: ln.bias.div_(scales) for fc in fcs: fc.weight.mul_(scales.view(1, -1)) @torch.no_grad() def smooth_lm(model, scales, alpha=0.5): for (name, module) in model.named_modules(): if isinstance(module, OPTDecoderLayer): attn_ln = module.self_attn_layer_norm qkv = [module.self_attn.q_proj, module.self_attn.k_proj, module.self_attn.v_proj] qkv_input_scales = scales[name + '.self_attn.q_proj'] smooth_ln_fcs(attn_ln, qkv, qkv_input_scales, alpha) ffn_ln = module.final_layer_norm fc1 = module.fc1 fc1_input_scales = scales[name + '.fc1'] smooth_ln_fcs(ffn_ln, fc1, fc1_input_scales, alpha) elif isinstance(module, BloomBlock): attn_ln = module.input_layernorm qkv = module.self_attention.query_key_value qkv_input_scales = scales[name + '.self_attention.query_key_value'] smooth_ln_fcs(attn_ln, qkv, qkv_input_scales, alpha) ffn_ln = module.post_attention_layernorm fc1 = module.mlp.dense_h_to_4h fc1_input_scales = scales[name + '.mlp.dense_h_to_4h'] smooth_ln_fcs(ffn_ln, fc1, fc1_input_scales, alpha) elif isinstance(module, (LlamaDecoderLayer, MistralDecoderLayer)): attn_ln = module.input_layernorm qkv = [module.self_attn.q_proj, module.self_attn.k_proj, module.self_attn.v_proj] qkv_input_scales = scales[name + '.self_attn.q_proj'] smooth_ln_fcs(attn_ln, qkv, qkv_input_scales, alpha) ffn_ln = module.post_attention_layernorm fc = [module.mlp.gate_proj, module.mlp.up_proj] fc_input_scales = scales[name + '.mlp.gate_proj'] smooth_ln_fcs(ffn_ln, fc, fc_input_scales, alpha) def main(): parser = argparse.ArgumentParser() parser.add_argument('--model', type=str, default='facebook/opt-125m', help='model name') parser.add_argument('--save-path', type=str, default=None, help='smoothed model model save path') parser.add_argument('--num-samples', type=int, default=512) parser.add_argument('--seq-len', type=int, default=512) parser.add_argument('--device', type=str, default=None, help='The device to use for generation.') args = parser.parse_args() if args.device is None: if torch.cuda.is_available(): device = torch.device('cuda') elif torch.backends.mps.is_available(): device = torch.device('mps') else: device = torch.device('cpu') else: device = torch.device(args.device) dataset = load_dataset('lambada', split=f'validation[:{args.num_samples}]').shuffle() tokenizer = AutoTokenizer.from_pretrained(args.model, model_max_length=args.seq_len) model = AutoModelForCausalLM.from_pretrained(args.model, torch_dtype='auto').to(device) act_scales = get_act_scales(model, tokenizer, dataset, args.num_samples, args.seq_len) smooth_lm(model, act_scales, 0.5) save_path = args.save_path if save_path is None: save_path = os.path.join('smoothed_models', args.model) model.save_pretrained(save_path) tokenizer.save_pretrained(save_path) if __name__ == '__main__': main() # File: optimum-quanto-main/optimum/quanto/calibrate.py from typing import Optional import torch from torch.nn.modules.module import register_module_forward_hook, register_module_forward_pre_hook from torch.overrides import TorchFunctionMode from .nn import QModuleMixin from .tensor import ActivationQBytesTensor, QTensor, axis_to_dim, dtype_info, qint8, qtype __all__ = ['Calibration', 'absmax_scale'] def _updated_scale(scale, new_scale, momentum): if torch.all(scale == 1): return new_scale return momentum * scale + new_scale * (1.0 - momentum) def absmax_scale(base: torch.Tensor, qtype: qtype=qint8, axis: Optional[int]=None) -> torch.Tensor: base = torch.abs(base) if axis is None: qranges = torch.max(base) else: dim = axis_to_dim(base, axis) qranges = torch.amax(base, dim=dim, keepdim=True) info = dtype_info(qtype.dtype) return qranges / info.max class Calibration(TorchFunctionMode): def __init__(self, *args, momentum: float=0.9, streamline=True, debug=False, **kwargs): super().__init__(*args, **kwargs) self.momentum = momentum self.streamline = streamline if streamline: self.modules_qactivations = {} self.streamline_hooks = {} self.debug = debug def __torch_function__(self, func, types, args=(), kwargs=None): kwargs = kwargs if kwargs is not None else {} qinput = QTensor in types output = func(*args, **kwargs) if self.streamline and qinput: for (i, arg) in enumerate(args): module = getattr(arg, 'src_module', None) if module is not None: if isinstance(output, ActivationQBytesTensor): self.modules_qactivations[module] = True elif isinstance(output, torch.Tensor): qactivations_required = self.modules_qactivations.get(module, False) self.modules_qactivations[module] = qactivations_required return output def __enter__(self): super().__enter__() self.pre_handle = register_module_forward_pre_hook(self.calibrate_input) self.post_handle = register_module_forward_hook(self.calibrate_output) def __exit__(self, exc_type, exc_val, exc_tb): super().__exit__(exc_type, exc_val, exc_tb) self.pre_handle.remove() self.post_handle.remove() if self.streamline: for handle in self.streamline_hooks.values(): handle.remove() def calibrate_input(self, module: torch.nn.Module, input, momentum: float=0.9): if isinstance(module, QModuleMixin) and module.activation_qtype is not None: input = input[0] if isinstance(input, ActivationQBytesTensor): module.input_scale = torch.max(input._scale) else: input_scale = absmax_scale(input, module.activation_qtype) module.input_scale = _updated_scale(module.input_scale, input_scale, momentum) if self.streamline and module not in self.streamline_hooks: self.streamline_hooks[module] = module.register_forward_hook(self.tag_outputs) return input def calibrate_output(self, module: torch.nn.Module, input: torch.Tensor, output: torch.Tensor): if isinstance(module, QModuleMixin) and module.activation_qtype is not None: output_scale = absmax_scale(output, module.activation_qtype, axis=None) module.output_scale = _updated_scale(module.output_scale, output_scale, self.momentum) return output else: if self.streamline: for (name, child) in module.named_children(): if isinstance(child, QModuleMixin) and child.activation_qtype is not None: qactivations_required = self.modules_qactivations.get(child, False) if not qactivations_required: child.disable_output_quantization() if self.debug: for (name, child) in module.named_children(): if isinstance(child, QModuleMixin): classname = child.__class__.__name__ trace = f'{name}({classname}) activations are' if child.activation_qtype is None: trace += ' not quantized.' else: trace += f' quantized to {child.activation_qtype} with scale {child.output_scale}.' print(trace) def tag_outputs(self, module: torch.nn.Module, input: torch.Tensor, output: torch.Tensor): output.src_module = module # File: optimum-quanto-main/optimum/quanto/library/extensions/cpp/__init__.py import os import torch from ..extension import Extension __all__ = [] ext = Extension('quanto_cpp', root_dir=os.path.dirname(__file__), sources=['unpack.cpp', 'pybind_module.cpp'], extra_cflags=['-O3']) @torch.library.impl('quanto_ext::unpack', ['CPU']) def unpack_cpp(t: torch.Tensor, bits: int): return ext.lib.unpack(t, bits) # File: optimum-quanto-main/optimum/quanto/library/extensions/cuda/__init__.py import os import torch from ..extension import Extension __all__ = [] def get_max_cuda_arch(): capability_list = [] supported_sm = [int(arch.split('_')[1]) for arch in torch.cuda.get_arch_list() if 'sm_' in arch] if supported_sm: max_supported_sm = max(((sm // 10, sm % 10) for sm in supported_sm)) for i in range(torch.cuda.device_count()): capability = torch.cuda.get_device_capability(i) capability = min(max_supported_sm, capability) if capability not in capability_list: capability_list.append(capability) max_capability = max(sorted(capability_list)) if len(capability_list) > 0 else (0, 0) return f'{max_capability[0]}{max_capability[1]}0' extra_cflags = ['-g', '-O3', '-fopenmp', '-lgomp', '-std=c++17', '-DENABLE_BF16'] extra_cuda_cflags = ['-O3', '-std=c++17', '-DENABLE_BF16', '-U__CUDA_NO_HALF_OPERATORS__', '-U__CUDA_NO_HALF_CONVERSIONS__', '-U__CUDA_NO_BFLOAT16_OPERATORS__', '-U__CUDA_NO_BFLOAT16_CONVERSIONS__', '-U__CUDA_NO_BFLOAT162_OPERATORS__', '-U__CUDA_NO_BFLOAT162_CONVERSIONS__', '--expt-relaxed-constexpr', '--expt-extended-lambda', '--use_fast_math', '--threads=8'] quanto_cuda_arch = get_max_cuda_arch() extra_cuda_cflags += [f'-DQUANTO_CUDA_ARCH={quanto_cuda_arch}'] module_path = os.path.dirname(__file__) sources = ['unpack.cu', 'awq/v2/gemm_cuda.cu', 'awq/v2/gemv_cuda.cu', 'marlin/fp8_marlin.cu', 'marlin/gptq_marlin_repack.cu', 'pybind_module.cpp'] ext = Extension('quanto_cuda', root_dir=os.path.dirname(__file__), sources=sources, extra_cflags=extra_cflags, extra_cuda_cflags=extra_cuda_cflags) @torch.library.impl('quanto_ext::unpack', ['CUDA']) def unpack_cuda(t: torch.Tensor, bits: int): return ext.lib.unpack(t, bits) torch.library.define('quanto::gemm', '(Tensor input, Tensor other, Tensor other_scale, Tensor other_shift, int rows, int out_cols, int in_cols, int bits, int group_size) -> Tensor') @torch.library.impl('quanto::gemm', ['CUDA']) def gemm_cuda(input: torch.Tensor, other: torch.Tensor, scales: torch.Tensor, shift: torch.Tensor, rows: int, out_cols: int, in_cols: int, bits: int, group_size: int): assert out_cols >= 128 assert input.dtype == torch.float16 assert input.numel() == rows * in_cols assert other.dtype == torch.int16 assert scales.dtype == torch.float16 assert scales.shape[-1] == out_cols assert shift.dtype == torch.float16 assert shift.shape[-1] == out_cols assert bits == 4 assert group_size == 128 if rows < 8: return ext.lib.awq_v2_gemv_f16i4(input, other, scales, shift, rows, out_cols, in_cols, group_size) return ext.lib.awq_v2_gemm_f16i4(input, other, scales, shift) @torch.library.custom_op('quanto::fp8_marlin_gemm', mutates_args=(), device_types=['cuda']) def fp8_marlin_gemm(a: torch.Tensor, b_q_weight: torch.Tensor, b_scales: torch.Tensor, workspace: torch.Tensor, num_bits: int, size_m: int, size_n: int, size_k: int) -> torch.Tensor: assert b_scales.dtype == torch.float16 or b_scales.dtype == torch.bfloat16 assert b_q_weight.dim() == 2 assert b_q_weight.dtype == torch.int32 return ext.lib.fp8_marlin_gemm(a, b_q_weight, b_scales, workspace, num_bits, size_m, size_n, size_k) @torch.library.custom_op('quanto::gptq_marlin_repack', mutates_args=(), device_types=['cuda']) def gptq_marlin_repack(b_q_weight: torch.Tensor, perm: torch.Tensor, size_k: int, size_n: int, num_bits: int) -> torch.Tensor: assert b_q_weight.dim() == 2 assert b_q_weight.dtype == torch.int32 return ext.lib.gptq_marlin_repack(b_q_weight, perm, size_k, size_n, num_bits) # File: optimum-quanto-main/optimum/quanto/library/extensions/extension.py import os import shutil import warnings from typing import List import torch from torch.utils.cpp_extension import load class Extension(object): def __init__(self, name: str, root_dir: str, sources: List[str], extra_cflags: List[str]=None, extra_cuda_cflags: List[str]=None): self.name = name self.sources = [f'{root_dir}/{source}' for source in sources] self.extra_cflags = extra_cflags self.extra_cuda_cflags = extra_cuda_cflags self.build_directory = os.path.join(root_dir, 'build') self._lib = None @property def lib(self): if self._lib is None: version_file = os.path.join(self.build_directory, 'pytorch_version.txt') if os.path.exists(version_file): with open(version_file, 'r') as f: pytorch_build_version = f.read().rstrip() if pytorch_build_version != torch.__version__: shutil.rmtree(self.build_directory) warnings.warn(f'{self.name} was compiled with pytorch {pytorch_build_version}, but {torch.__version__} is installed: it will be recompiled.') os.makedirs(self.build_directory, exist_ok=True) self._lib = load(name=self.name, sources=self.sources, extra_cflags=self.extra_cflags, extra_cuda_cflags=self.extra_cuda_cflags, build_directory=self.build_directory) if not os.path.exists(version_file): with open(version_file, 'w') as f: f.write(torch.__version__) return self._lib # File: optimum-quanto-main/optimum/quanto/library/extensions/mps/__init__.py import os import torch from ..extension import Extension __all__ = [] ext = Extension('quanto_mps', root_dir=os.path.dirname(__file__), sources=['unpack.mm', 'pybind_module.cpp'], extra_cflags=['-std=c++17']) @torch.library.impl('quanto_ext::unpack', 'MPS') def unpack_mps(t: torch.Tensor, bits: int): return ext.lib.unpack(t, bits) # File: optimum-quanto-main/optimum/quanto/library/ops.py import warnings from contextlib import contextmanager import torch _ext_enabled = True @contextmanager def disable_extensions(): try: global _ext_enabled _ext_enabled = False yield finally: _ext_enabled = True def define(name, schema): for libname in ['quanto', 'quanto_py', 'quanto_ext']: torch.library.define(f'{libname}::{name}', schema) @torch.library.impl(f'quanto::{name}', 'default') def impl(*args, **kwargs): if _ext_enabled: try: return getattr(torch.ops.quanto_ext, name)(*args, **kwargs) except Exception as e: if isinstance(e, NotImplementedError): message = f'No optimized kernel found for quanto::{name}.' else: message = f'An exception was raised while calling the optimized kernel for quanto::{name}: {e}' warnings.warn(message + ' Falling back to default implementation.') return getattr(torch.ops.quanto_py, name)(*args, **kwargs) define('unpack', '(Tensor self, int bits) -> Tensor') # File: optimum-quanto-main/optimum/quanto/library/python/unpack.py import torch @torch.library.impl('quanto_py::unpack', 'default') def unpack(packed: torch.Tensor, bits: int) -> torch.Tensor: unpacked = [] values_per_item = 8 // bits def rshift(t: torch.Tensor, bits: int): if t.device.type == 'mps': return t // 2 ** bits return t >> bits for i in range(values_per_item): mask = 2 ** (bits * (i + 1)) - 1 unpacked.append(rshift(packed & mask, bits * i)) return torch.cat(unpacked).to(torch.uint8) # File: optimum-quanto-main/optimum/quanto/library/qbytes_mm.py import torch from packaging import version __all__ = [] torch.library.define('quanto::qbytes_mm', '(Tensor A, Tensor B, Tensor scales) -> Tensor') def qbytes_mm(activations: torch.Tensor, weights: torch.Tensor, output_scales: torch.Tensor) -> torch.Tensor: activations = activations.to(output_scales.dtype) if weights.dtype.is_floating_point: weights = weights.to(output_scales.dtype) weights = output_scales * weights return torch.matmul(activations, weights.t()) def qbytes_int_mm(activations: torch.Tensor, weights: torch.Tensor, output_scales: torch.Tensor) -> torch.Tensor: in_features = activations.shape[-1] out_features = weights.shape[0] weights = weights.t() if activations.ndim == 2: out_data = torch._int_mm(activations, weights) else: output_shape = activations.shape[:-1] + (out_features,) out_data = torch._int_mm(activations.view(-1, in_features), weights) out_data = out_data.view(output_shape) fp32_output = out_data.to(torch.float32) * output_scales.t() return fp32_output.to(output_scales.dtype) def qbytes_int8pack_mm(activations: torch.Tensor, weights: torch.Tensor, output_scales: torch.Tensor) -> torch.Tensor: output_scales = output_scales.flatten() if activations.ndim == 2: return torch._weight_int8pack_mm(activations, weights, output_scales) else: in_features = activations.shape[-1] out_features = weights.shape[0] output_shape = activations.shape[:-1] + (out_features,) out_data = torch._weight_int8pack_mm(activations.view(-1, in_features), weights, output_scales) return out_data.view(output_shape) @torch.library.impl('quanto::qbytes_mm', 'default') def qbytes_mm_impl_default(activations: torch.Tensor, weights: torch.Tensor, output_scales: torch.Tensor) -> torch.Tensor: return qbytes_mm(activations, weights, output_scales) @torch.library.impl('quanto::qbytes_mm', 'CUDA') def qbytes_mm_impl_cuda(activations: torch.Tensor, weights: torch.Tensor, output_scales: torch.Tensor) -> torch.Tensor: assert activations.ndim in (2, 3) in_features = activations.shape[-1] tokens = activations.shape[0] if activations.ndim == 2 else activations.shape[0] * activations.shape[1] out_features = weights.shape[0] if activations.dtype == torch.int8 and weights.dtype == torch.int8 and (tokens > 16) and (tokens % 8 == 0) and (in_features % 8 == 0) and (out_features % 8 == 0): return qbytes_int_mm(activations, weights, output_scales) return qbytes_mm(activations, weights, output_scales) @torch.library.impl('quanto::qbytes_mm', 'CPU') def qbytes_mm_impl_cpu(activations: torch.Tensor, weights: torch.Tensor, output_scales: torch.Tensor) -> torch.Tensor: if version.parse(torch.__version__).release > version.parse('2.4.0').release and activations.dtype == torch.int8 and (weights.dtype == torch.int8): return qbytes_int_mm(activations, weights, output_scales) in_features = activations.shape[-1] if activations.dtype == torch.bfloat16 and weights.dtype == torch.int8 and (in_features % 4 == 0): if type(activations) is not torch.Tensor: activations = activations.dequantize() return qbytes_int8pack_mm(activations, weights, output_scales) return qbytes_mm(activations, weights, output_scales) @torch.library.impl('quanto_py::qbytes_mm', 'MPS') def qbytes_mm_impl_mps(activations: torch.Tensor, weights: torch.Tensor, output_scales: torch.Tensor) -> torch.Tensor: in_features = activations.shape[-1] out_features = weights.shape[0] if version.parse(torch.__version__).release >= version.parse('2.4.0').release and activations.dtype == torch.bfloat16 and (weights.dtype == torch.int8) and (in_features % 32 == 0) and (out_features % 32 == 0): if type(activations) is not torch.Tensor: activations = activations.dequantize() return qbytes_int8pack_mm(activations, weights, output_scales) return qbytes_mm(activations, weights, output_scales) # File: optimum-quanto-main/optimum/quanto/library/quantize.py from typing import Union import torch from ..tensor import dtype_info, group @torch.library.custom_op('quanto::quantize_symmetric', mutates_args=()) def quantize_symmetric(base: torch.Tensor, dtype: torch.dtype, axis: Union[int, None], scale: torch.Tensor) -> torch.Tensor: if axis is None: if scale.ndim > 0: raise ValueError('Scale must be a scalar when quantizing per-tensor') else: if base.ndim == 1: raise ValueError('1D Tensors cannot be quantized per-axis') if axis == base.ndim - 1: axis = -1 if axis not in (0, -1): raise ValueError('Quantization is only supported along the first or last axis.') if base.shape[axis] == 1: raise ValueError(f'Cannot quantize Tensor of shape {base.shape} along axis {axis} of size 1') if torch.squeeze(scale).ndim > 1: raise ValueError('Quantizing along multiple axis is not supported') if scale.ndim != base.ndim: raise ValueError('When quantizing per-axis, the scale must be broadcastable to the base (Tip: try to add missing dims of length zero).') data = base / scale if not dtype.is_floating_point: data = torch.round(data) info = dtype_info(dtype) return torch.clamp(data, min=info.min, max=info.max).to(dtype) @torch.library.custom_op('quanto::quantize_affine', mutates_args=()) def quantize_affine(base: torch.Tensor, bits: int, axis: int, group_size: Union[int, None], scale: torch.Tensor, shift: torch.Tensor) -> torch.Tensor: if axis not in (0, -1): raise ValueError('QBitsTensor axis parameter must be 0 (first axis) or -1 (last axis)') if group_size is not None: base = group(base, axis=axis, group_size=group_size) if shift.dtype.is_floating_point: data = torch.round((base + shift) / scale) else: data = torch.round(base / scale) + shift return torch.clamp(data, min=0, max=2 ** bits - 1).to(torch.uint8) # File: optimum-quanto-main/optimum/quanto/models/__init__.py import importlib import os from collections.abc import Mapping from typing import Any, Dict, List, Optional, Union def is_transformers_available() -> bool: return importlib.util.find_spec('transformers') is not None def is_diffusers_available() -> bool: return importlib.util.find_spec('diffusers') is not None if is_transformers_available(): from .transformers_models import * if is_diffusers_available(): from .diffusers_models import * # File: optimum-quanto-main/optimum/quanto/models/diffusers_models.py import json import os from pathlib import Path from typing import Any, List, Optional, Union from huggingface_hub import ModelHubMixin, snapshot_download from ..quantize import Optimizer, freeze, qtype, quantization_map, quantize, requantize from . import is_diffusers_available __all__ = ['QuantizedDiffusersModel', 'QuantizedPixArtTransformer2DModel'] if not is_diffusers_available(): raise ImportError(f'{__all__} require the diffusers library') from diffusers import PixArtTransformer2DModel from diffusers.models.model_loading_utils import load_state_dict from diffusers.models.modeling_utils import ModelMixin from diffusers.utils import CONFIG_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFETENSORS_WEIGHTS_NAME, _get_checkpoint_shard_files, is_accelerate_available from .shared_dict import ShardedStateDict class QuantizedDiffusersModel(ModelHubMixin): BASE_NAME = 'quanto' base_class = None def __init__(self, model: ModelMixin): if not isinstance(model, ModelMixin) or len(quantization_map(model)) == 0: raise ValueError('The source model must be a quantized diffusers model.') self._wrapped = model def __getattr__(self, name: str) -> Any: try: return super().__getattr__(name) except AttributeError: wrapped = self.__dict__['_wrapped'] return getattr(wrapped, name) def forward(self, *args, **kwargs): return self._wrapped.forward(*args, **kwargs) def __call__(self, *args, **kwargs): return self._wrapped.forward(*args, **kwargs) @staticmethod def _qmap_name(): return f'{QuantizedDiffusersModel.BASE_NAME}_qmap.json' @classmethod def quantize(cls, model: ModelMixin, weights: Optional[Union[str, qtype]]=None, activations: Optional[Union[str, qtype]]=None, optimizer: Optional[Optimizer]=None, include: Optional[Union[str, List[str]]]=None, exclude: Optional[Union[str, List[str]]]=None): if not isinstance(model, ModelMixin): raise ValueError('The source model must be a diffusers model.') quantize(model, weights=weights, activations=activations, optimizer=optimizer, include=include, exclude=exclude) freeze(model) return cls(model) @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs): if cls.base_class is None: raise ValueError('The `base_class` attribute needs to be configured.') if not is_accelerate_available(): raise ValueError('Reloading a quantized diffusers model requires the accelerate library.') from accelerate import init_empty_weights if os.path.isdir(pretrained_model_name_or_path): working_dir = pretrained_model_name_or_path else: working_dir = snapshot_download(pretrained_model_name_or_path, **kwargs) qmap_path = os.path.join(working_dir, cls._qmap_name()) if not os.path.exists(qmap_path): raise ValueError(f'No quantization map found in {pretrained_model_name_or_path}: is this a quantized model ?') model_config_path = os.path.join(working_dir, CONFIG_NAME) if not os.path.exists(model_config_path): raise ValueError(f'{CONFIG_NAME} not found in {pretrained_model_name_or_path}.') with open(qmap_path, 'r', encoding='utf-8') as f: qmap = json.load(f) with open(model_config_path, 'r', encoding='utf-8') as f: original_model_cls_name = json.load(f)['_class_name'] configured_cls_name = cls.base_class.__name__ if configured_cls_name != original_model_cls_name: raise ValueError(f'Configured base class ({configured_cls_name}) differs from what was derived from the provided configuration ({original_model_cls_name}).') config = cls.base_class.load_config(pretrained_model_name_or_path, **kwargs) with init_empty_weights(): model = cls.base_class.from_config(config) checkpoint_file = os.path.join(working_dir, SAFE_WEIGHTS_INDEX_NAME) if os.path.exists(checkpoint_file): (_, sharded_metadata) = _get_checkpoint_shard_files(working_dir, checkpoint_file) state_dict = ShardedStateDict(working_dir, sharded_metadata['weight_map']) else: checkpoint_file = os.path.join(working_dir, SAFETENSORS_WEIGHTS_NAME) if not os.path.exists(checkpoint_file): raise ValueError(f'No safetensor weights found in {pretrained_model_name_or_path}.') state_dict = load_state_dict(checkpoint_file) requantize(model, state_dict=state_dict, quantization_map=qmap) model.eval() return cls(model) def _save_pretrained(self, save_directory: Path) -> None: self._wrapped.save_pretrained(save_directory) qmap_name = os.path.join(save_directory, self._qmap_name()) qmap = quantization_map(self._wrapped) with open(qmap_name, 'w', encoding='utf8') as f: json.dump(qmap, f, indent=4) class QuantizedPixArtTransformer2DModel(QuantizedDiffusersModel): base_class = PixArtTransformer2DModel # File: optimum-quanto-main/optimum/quanto/models/shared_dict.py import os from collections.abc import Mapping from typing import Any, Dict from safetensors import safe_open class ShardedStateDict(Mapping): def __init__(self, base_dir: str, tensor_index: Dict[str, str]): self._base_dir = base_dir self._index = tensor_index self._handles = {} def __iter__(self): yield from self._index def __len__(self): return self._index.__len__() def __getitem__(self, key: Any) -> Any: filename = self._index.__getitem__(key) if filename not in self._handles: f = safe_open(os.path.join(self._base_dir, filename), framework='pytorch') self._handles[filename] = f f = self._handles[filename] return f.get_tensor(key) def __contains__(self, key: object) -> bool: return self._index.__contains__(key) def keys(self): return self._index.keys() # File: optimum-quanto-main/optimum/quanto/models/transformers_models.py import json import os from pathlib import Path from typing import Any, List, Optional, Union from huggingface_hub import ModelHubMixin, snapshot_download from ..nn import QModuleMixin from ..quantize import Optimizer, freeze, qtype, quantization_map, quantize, requantize from . import is_transformers_available from .shared_dict import ShardedStateDict __all__ = ['QuantizedTransformersModel', 'QuantizedModelForCausalLM'] if not is_transformers_available(): raise ImportError(f'{__all__} require the transformers library') from transformers import AutoConfig, AutoModelForCausalLM, PreTrainedModel from transformers.modeling_utils import get_checkpoint_shard_files, load_state_dict from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, is_accelerate_available class QuantizedTransformersModel(ModelHubMixin): BASE_NAME = 'quanto' auto_class = None def __init__(self, model: PreTrainedModel): if not isinstance(model, PreTrainedModel) or len(quantization_map(model)) == 0: raise ValueError('The source model must be a quantized transformers model.') self._wrapped = model def __getattr__(self, name: str) -> Any: try: return super().__getattr__(name) except AttributeError: wrapped = self.__dict__['_wrapped'] return getattr(wrapped, name) def forward(self, *args, **kwargs): return self._wrapped.forward(*args, **kwargs) @staticmethod def _qmap_name(): return f'{QuantizedTransformersModel.BASE_NAME}_qmap.json' @classmethod def quantize(cls, model: PreTrainedModel, weights: Optional[Union[str, qtype]]=None, activations: Optional[Union[str, qtype]]=None, optimizer: Optional[Optimizer]=None, include: Optional[Union[str, List[str]]]=None, exclude: Optional[Union[str, List[str]]]=None): if not isinstance(model, PreTrainedModel): raise ValueError('The source model must be a transformers model.') quantize(model, weights=weights, activations=activations, optimizer=optimizer, include=include, exclude=exclude) freeze(model) return cls(model) @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs): if cls.auto_class is None: raise ValueError('Quantized models cannot be reloaded using {cls}: use a specialized quantized class such as QuantizedModelForCausalLM instead.') if not is_accelerate_available(): raise ValueError('Reloading a quantized transformers model requires the accelerate library.') from accelerate import init_empty_weights if os.path.isdir(pretrained_model_name_or_path): working_dir = pretrained_model_name_or_path else: working_dir = snapshot_download(pretrained_model_name_or_path, **kwargs) qmap_path = os.path.join(working_dir, cls._qmap_name()) if not os.path.exists(qmap_path): raise ValueError(f'No quantization map found in {pretrained_model_name_or_path}: is this a quantized model ?') with open(qmap_path, 'r', encoding='utf-8') as f: qmap = json.load(f) config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) with init_empty_weights(): model = cls.auto_class.from_config(config) checkpoint_file = os.path.join(working_dir, SAFE_WEIGHTS_INDEX_NAME) if os.path.exists(checkpoint_file): (checkpoint_file, sharded_metadata) = get_checkpoint_shard_files(working_dir, checkpoint_file) state_dict = ShardedStateDict(working_dir, sharded_metadata['weight_map']) else: checkpoint_file = os.path.join(working_dir, SAFE_WEIGHTS_NAME) if not os.path.exists(checkpoint_file): raise ValueError(f'No safetensor weights found in {pretrained_model_name_or_path}.') state_dict = load_state_dict(checkpoint_file) requantize(model, state_dict=state_dict, quantization_map=qmap) if getattr(model.config, 'tie_word_embeddings', True): model.tie_weights() model.eval() return cls(model) def _save_pretrained(self, save_directory: Path) -> None: model = self._wrapped if getattr(model.config, 'tie_word_embeddings', True): if isinstance(model.get_input_embeddings(), QModuleMixin) or isinstance(model.get_output_embeddings(), QModuleMixin): model.config.tie_word_embeddings = False self._wrapped.save_pretrained(save_directory, safe_serialization=True) qmap_name = os.path.join(save_directory, self._qmap_name()) qmap = quantization_map(self._wrapped) with open(qmap_name, 'w', encoding='utf8') as f: json.dump(qmap, f, indent=4) class QuantizedModelForCausalLM(QuantizedTransformersModel): auto_class = AutoModelForCausalLM # File: optimum-quanto-main/optimum/quanto/nn/qconv2d.py from typing import Optional import torch from ..tensor import Optimizer, qtype from .qmodule import QModuleMixin, register_qmodule __all__ = ['QConv2d'] @register_qmodule(torch.nn.Conv2d) class QConv2d(QModuleMixin, torch.nn.Conv2d): @classmethod def qcreate(cls, module, weights: qtype, activations: Optional[qtype]=None, optimizer: Optional[Optimizer]=None, device: Optional[torch.device]=None): return cls(in_channels=module.in_channels, out_channels=module.out_channels, kernel_size=module.kernel_size, stride=module.stride, padding=module.padding, dilation=module.dilation, groups=module.groups, bias=module.bias is not None, padding_mode=module.padding_mode, dtype=module.weight.dtype, device=device, weights=weights, activations=activations, optimizer=optimizer) def forward(self, input: torch.Tensor) -> torch.Tensor: return self._conv_forward(input, self.qweight, self.bias) # File: optimum-quanto-main/optimum/quanto/nn/qlayernorm.py from typing import Optional import torch from ..tensor import Optimizer, qtype from .qmodule import QModuleMixin, register_qmodule __all__ = ['QLayerNorm'] @register_qmodule(torch.nn.LayerNorm) class QLayerNorm(QModuleMixin, torch.nn.LayerNorm): @classmethod def qcreate(cls, module, weights: Optional[qtype]=None, activations: Optional[qtype]=None, optimizer: Optional[Optimizer]=None, device: Optional[torch.device]=None): if activations is None: return None return cls(module.normalized_shape, module.eps, module.elementwise_affine, module.bias is not None, dtype=module.weight.dtype, device=device, weights=None, activations=activations, optimizer=None) def forward(self, input: torch.Tensor) -> torch.Tensor: return torch.nn.functional.layer_norm(input, self.normalized_shape, self.weight, self.bias, self.eps) # File: optimum-quanto-main/optimum/quanto/nn/qlinear.py from typing import Optional import torch from ..tensor import Optimizer, qtype from .qmodule import QModuleMixin, register_qmodule __all__ = ['QLinear'] @register_qmodule(torch.nn.Linear) class QLinear(QModuleMixin, torch.nn.Linear): @classmethod def qcreate(cls, module, weights: qtype, activations: Optional[qtype]=None, optimizer: Optional[Optimizer]=None, device: Optional[torch.device]=None): return cls(module.in_features, module.out_features, module.bias is not None, dtype=module.weight.dtype, device=device, weights=weights, activations=activations, optimizer=optimizer, quantize_input=True) def forward(self, input: torch.Tensor) -> torch.Tensor: return torch.nn.functional.linear(input, self.qweight, bias=self.bias) # File: optimum-quanto-main/optimum/quanto/nn/qmodule.py from abc import ABC from typing import Optional, Union import torch from ..tensor import ActivationQBytesTensor, Optimizer, QBitsTensor, QTensor, WeightQBytesTensor, qint2, qint4, qtype, qtypes, quantize_activation, quantize_weight __all__ = ['QModuleMixin', 'register_qmodule', 'quantize_module'] _QMODULE_TABLE = {} def register_qmodule(module_cls): def wrapper(cls): _QMODULE_TABLE[module_cls] = cls return cls return wrapper def quantize_module(module, weights: Optional[Union[qtype, str]]=None, activations: Optional[Union[qtype, str]]=None, optimizer: Optional[Optimizer]=None): for cls in _QMODULE_TABLE: if isinstance(module, cls): qcls = _QMODULE_TABLE[cls] return qcls.from_module(module, weights=weights, activations=activations, optimizer=optimizer) return None class QModuleMixin(ABC): def __init__(self, *args, weights: Optional[Union[qtype, str]]=None, activations: Optional[Union[qtype, str]]=None, optimizer: Optional[Optimizer]=None, quantize_input: Optional[bool]=False, device: Optional[torch.device]=None, **kwargs): mro = self.__class__.__mro__ if torch.nn.Module not in mro: raise TypeError('Quantized modules must inherit from a torch.nn.Module class') if mro.index(__class__) > mro.index(torch.nn.Module): raise TypeError('QModuleMixin must be placed before any torch.nn.Module class in quantized module inheritance.') super().__init__(*args, device=device, **kwargs) if weights is not None and (not isinstance(weights, qtype)): weights = qtypes[weights] if activations is not None and (not isinstance(activations, qtype)): activations = qtypes[activations] self.weight_qtype = weights self.weight_group_size = None if self.weight_qtype in (qint2, qint4): out_features = self.weight.shape[0] in_features = self.weight.numel() // out_features group_size = 128 if in_features > group_size: while in_features % group_size != 0 and group_size > 32: group_size -= 32 if in_features % group_size == 0: self.weight_group_size = group_size self.activation_qtype = activations self._quantize_hooks = {} if activations is not None: if quantize_input: self._quantize_hooks['input'] = self.register_forward_pre_hook(self.quantize_input) self._quantize_hooks['output'] = self.register_forward_hook(self.quantize_output) self.optimizer = optimizer self.register_buffer('input_scale', torch.ones((), dtype=self.weight.dtype, device=device)) self.register_buffer('output_scale', torch.ones((), dtype=self.weight.dtype, device=device)) def disable_output_quantization(self): if 'output' in self._quantize_hooks: self._quantize_hooks['output'].remove() def _save_to_state_dict(self, destination, prefix, keep_vars): if self.weight_qtype is None or not self.frozen: destination[prefix + 'weight'] = self.weight if keep_vars else self.weight.detach() else: self.weight.save_to_state_dict(destination, prefix + 'weight.', keep_vars) if self.bias is not None: destination[prefix + 'bias'] = self.bias if keep_vars else self.bias.detach() destination[prefix + 'input_scale'] = self.input_scale if keep_vars else self.input_scale.detach() destination[prefix + 'output_scale'] = self.output_scale if keep_vars else self.output_scale.detach() def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): weight_name = prefix + 'weight' if self.weight_qtype is not None and weight_name not in state_dict: weight_prefix = weight_name + '.' if self.weight_qtype.bits == 8: deserialized_weight = WeightQBytesTensor.load_from_state_dict(state_dict, weight_prefix, qtype=self.weight_qtype, axis=0, size=self.weight.size(), stride=self.weight.stride(), activation_qtype=self.activation_qtype, missing_keys=missing_keys) else: deserialized_weight = QBitsTensor.load_from_state_dict(state_dict, weight_prefix, qtype=self.weight_qtype, axis=0, group_size=self.weight_group_size, size=self.weight.size(), stride=self.weight.stride(), missing_keys=missing_keys) if deserialized_weight is not None: deserialized_weight = deserialized_weight.optimize() assign_to_params_buffers = local_metadata.get('assign_to_params_buffers', False) if assign_to_params_buffers and deserialized_weight is not None: self.weight = torch.nn.Parameter(deserialized_weight) elif deserialized_weight is not None: if type(self.weight.data) is not type(deserialized_weight): self.weight = torch.nn.Parameter(deserialized_weight.to(self.weight.device)) else: self.weight = torch.nn.Parameter(deserialized_weight.to(self.weight.device)) super()._load_from_state_dict(state_dict, prefix, local_metadata, False, missing_keys, unexpected_keys, error_msgs) @classmethod def from_module(cls, module: torch.nn.Module, weights: Optional[qtype]=None, activations: Optional[qtype]=None, optimizer: Optional[Optimizer]=None): qmodule = cls.qcreate(module, weights, activations, optimizer, device='meta') if qmodule is None: return None qmodule = qmodule.to_empty(device=module.weight.device) qmodule.input_scale = torch.ones_like(qmodule.input_scale) qmodule.output_scale = torch.ones_like(qmodule.output_scale) with torch.no_grad(): qmodule.weight = module.weight if module.bias is not None: qmodule.bias = module.bias return qmodule.to(module.weight.device) @classmethod def qcreate(cls, module: torch.nn.Module, weights: Optional[qtype], activations: Optional[qtype]=None, optimizer: Optional[Optimizer]=None, device: Optional[torch.device]=None): raise NotImplementedError @property def qweight(self): if self.weight_qtype is None: return None if isinstance(self.weight, QTensor): return self.weight return quantize_weight(self.weight, qtype=self.weight_qtype, axis=0, group_size=self.weight_group_size, optimizer=self.optimizer, activation_qtype=self.activation_qtype) def qforward(self, input: torch.Tensor) -> torch.Tensor: raise NotImplementedError def quantize_input(self, module: torch.nn.Module, input: torch.Tensor) -> torch.Tensor: input = input[0] if isinstance(input, ActivationQBytesTensor): if input.qtype != self.activation_qtype: raise ValueError(f'Models with heterogeneous quantized activations are not supported: expected {self.activation_qtype.name} input but got {input.qtype.name} instead.') else: input = quantize_activation(input, qtype=self.activation_qtype, scale=self.input_scale) return input def quantize_output(self, module: torch.nn.Module, input: torch.Tensor, output: torch.Tensor) -> torch.Tensor: return quantize_activation(output, qtype=self.activation_qtype, scale=self.output_scale) def freeze(self): qweight = self.qweight if qweight is not None: self.weight = torch.nn.Parameter(qweight) @property def frozen(self): return isinstance(self.weight, QTensor) # File: optimum-quanto-main/optimum/quanto/quantize.py from fnmatch import fnmatch from typing import Any, Dict, List, Optional, Union import torch from .nn import QModuleMixin, quantize_module from .tensor import Optimizer, qtype __all__ = ['quantize', 'freeze', 'requantize', 'quantization_map'] def set_module_by_name(parent_module, name, child_module): module_names = name.split('.') if len(module_names) == 1: setattr(parent_module, name, child_module) else: parent_module_name = name[:name.rindex('.')] parent_module = parent_module.get_submodule(parent_module_name) setattr(parent_module, module_names[-1], child_module) def _quantize_submodule(model: torch.nn.Module, name: str, module: torch.nn.Module, weights: Optional[Union[str, qtype]]=None, activations: Optional[Union[str, qtype]]=None, optimizer: Optional[Optimizer]=None): qmodule = quantize_module(module, weights=weights, activations=activations, optimizer=optimizer) if qmodule is not None: set_module_by_name(model, name, qmodule) qmodule.name = name for (name, param) in module.named_parameters(): setattr(module, name, None) del param def quantize(model: torch.nn.Module, weights: Optional[Union[str, qtype]]=None, activations: Optional[Union[str, qtype]]=None, optimizer: Optional[Optimizer]=None, include: Optional[Union[str, List[str]]]=None, exclude: Optional[Union[str, List[str]]]=None): if include is not None: include = [include] if isinstance(include, str) else include if exclude is not None: exclude = [exclude] if isinstance(exclude, str) else exclude for (name, m) in model.named_modules(): if include is not None and (not any((fnmatch(name, pattern) for pattern in include))): continue if exclude is not None and any((fnmatch(name, pattern) for pattern in exclude)): continue _quantize_submodule(model, name, m, weights=weights, activations=activations, optimizer=optimizer) def requantize(model: torch.nn.Module, state_dict: Dict[str, Any], quantization_map: Dict[str, Dict[str, str]], device: torch.device=None): if device is None: device = next(model.parameters()).device if device.type == 'meta': device = torch.device('cpu') for (name, m) in model.named_modules(): qconfig = quantization_map.get(name, None) if qconfig is not None: weights = qconfig['weights'] if weights == 'none': weights = None activations = qconfig['activations'] if activations == 'none': activations = None _quantize_submodule(model, name, m, weights=weights, activations=activations) for (name, m) in model.named_modules(): def move_tensor(t, device): if t.device.type == 'meta': return torch.empty_like(t, device=device) return t.to(device) for (name, param) in m.named_parameters(recurse=False): setattr(m, name, torch.nn.Parameter(move_tensor(param, 'cpu'))) for (name, param) in m.named_buffers(recurse=False): setattr(m, name, move_tensor(param, 'cpu')) model.to(device) model.load_state_dict(state_dict, strict=False) def freeze(model): for (name, m) in model.named_modules(): if isinstance(m, QModuleMixin): m.freeze() def quantization_map(model: torch.nn.Module) -> Dict[str, Dict[str, str]]: config = {} for (name, m) in model.named_modules(): if isinstance(m, QModuleMixin): config[name] = {'weights': m.weight_qtype.name, 'activations': 'none' if m.activation_qtype is None else m.activation_qtype.name} return config # File: optimum-quanto-main/optimum/quanto/subpackage/commands/base.py from optimum.commands import BaseOptimumCLICommand, CommandInfo from optimum.commands.optimum_cli import optimum_cli_subcommand from .quantize import QuantizeCommand __all__ = ['QuantoCommand'] @optimum_cli_subcommand() class QuantoCommand(BaseOptimumCLICommand): COMMAND = CommandInfo(name='quanto', help='Hugging Face models quantization tools') SUBCOMMANDS = (CommandInfo(name='quantize', help='Quantize Hugging Face models.', subcommand_class=QuantizeCommand),) # File: optimum-quanto-main/optimum/quanto/subpackage/commands/quantize.py """""" from typing import TYPE_CHECKING import torch from optimum.commands import BaseOptimumCLICommand from optimum.exporters import TasksManager from ...models import QuantizedTransformersModel if TYPE_CHECKING: from argparse import ArgumentParser SUPPORTED_LIBRARIES = ['transformers'] def parse_quantize_args(parser: 'ArgumentParser'): required_group = parser.add_argument_group('Required arguments') required_group.add_argument('output', type=str, help='The path to save the quantized model.') required_group.add_argument('-m', '--model', type=str, required=True, help='Hugging Face Hub model id or path to a local model.') required_group.add_argument('--weights', type=str, default='int8', choices=['int2', 'int4', 'int8', 'float8'], help='The Hugging Face library to use to load the model.') optional_group = parser.add_argument_group('Optional arguments') optional_group.add_argument('--revision', type=str, default=None, help='The Hugging Face model revision.') optional_group.add_argument('--trust_remote_code', action='store_true', default=False, help='Trust remote code when loading the model.') optional_group.add_argument('--library', type=str, default=None, choices=SUPPORTED_LIBRARIES, help='The Hugging Face library to use to load the model.') optional_group.add_argument('--task', type=str, default=None, help='The model task (useful for models supporting multiple tasks).') optional_group.add_argument('--torch_dtype', type=str, default='auto', choices=['auto', 'fp16', 'bf16'], help='The torch dtype to use when loading the model weights.') optional_group.add_argument('--device', type=str, default='cpu', help='The device to use when loading the model.') class QuantizeCommand(BaseOptimumCLICommand): @staticmethod def parse_args(parser: 'ArgumentParser'): return parse_quantize_args(parser) def run(self): model_name_or_path = self.args.model library_name = self.args.library if library_name is None: library_name = TasksManager.infer_library_from_model(model_name_or_path) if library_name not in SUPPORTED_LIBRARIES: raise ValueError(f'{library_name} models are not supported by this CLI, but can be quantized using the python API directly.') task = self.args.task if task is None: task = TasksManager.infer_task_from_model(model_name_or_path) torch_dtype = self.args.torch_dtype if torch_dtype != 'auto': torch_dtype = torch.float16 if self.args.torch_dtype == 'fp16' else torch.bfloat16 model = TasksManager.get_model_from_task(task, model_name_or_path, revision=self.args.revision, trust_remote_code=self.args.trust_remote_code, framework='pt', torch_dtype=torch_dtype, device=torch.device(self.args.device), library_name=library_name, low_cpu_mem_usage=True) weights = f'q{self.args.weights}' qmodel = QuantizedTransformersModel.quantize(model, weights=weights) qmodel.save_pretrained(self.args.output) # File: optimum-quanto-main/optimum/quanto/tensor/activations/qbytes.py import ast import torch from torch.autograd import Function from ..qbytes import QBytesTensor from ..qtensor import qfallback from ..qtype import qtype, qtypes __all__ = ['ActivationQBytesTensor'] class ActivationQBytesQuantizer(Function): @staticmethod def forward(ctx, base: torch.Tensor, qtype: qtype, scale: torch.Tensor) -> torch.Tensor: if qtype.bits != 8: raise ValueError('QBytesTensor can only be of 8-bit qtype') size = base.size() stride = base.stride() data = torch.ops.quanto.quantize_symmetric(base, dtype=qtype.dtype, axis=None, scale=scale) return ActivationQBytesTensor(qtype, size, stride, data, scale) @staticmethod def backward(ctx, gO): return (gO, None, None, None, None, None) class ActivationQBytesTensor(QBytesTensor): @staticmethod def __new__(cls, qtype, size, stride, data, scale, requires_grad=False): assert data.device == scale.device return torch.Tensor._make_wrapper_subclass(cls, size, strides=stride, dtype=scale.dtype, device=data.device, requires_grad=requires_grad) def __init__(self, qtype, size, stride, data, scale, requires_grad=False): super().__init__(qtype, None, size, stride, data, scale, requires_grad) @classmethod def quantize(cls, base: torch.Tensor, qtype: qtype, scale: torch.Tensor) -> torch.Tensor: return ActivationQBytesQuantizer.apply(base, qtype, scale) def __tensor_flatten__(self): inner_tensors = ['_data', '_scale'] meta = {'qtype': self._qtype.name, 'size': str(list(self.size())), 'stride': str(list(self.stride()))} return (inner_tensors, meta) @staticmethod def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): assert len(inner_tensors) == 2 assert len(meta) == 3 (data, scale) = (inner_tensors['_data'], inner_tensors['_scale']) qtype = qtypes[meta['qtype']] size = ast.literal_eval(meta['size']) stride = ast.literal_eval(meta['stride']) return ActivationQBytesTensor(qtype, size, stride, data, scale) @classmethod def __torch_dispatch__(cls, op, types, args, kwargs=None): from .qbytes_ops import get_qbytestensor_op_dispatch kwargs = kwargs or {} op = op.overloadpacket qdispatch = get_qbytestensor_op_dispatch(op) if qdispatch is not None: return qdispatch(*args, **kwargs) return qfallback(op, *args, **kwargs) # File: optimum-quanto-main/optimum/quanto/tensor/activations/qbytes_ops.py import numbers from functools import partial from typing import Callable, List import torch from ..core import dtype_info from ..qtensor import QTensor, qfallback from ..qtype import qint8 from .qbytes import ActivationQBytesTensor from .quantization import quantize_activation __all__ = ['get_qbytestensor_op_dispatch', 'register_qbytestensor_op'] _QBYTESTENSOR_OP_TABLE = {} def register_qbytestensor_op(aten_ops: List[Callable]): def wrapper(op): for aten_op in aten_ops: _QBYTESTENSOR_OP_TABLE[aten_op] = partial(op, aten_op) return wrapper def get_qbytestensor_op_dispatch(aten_op): return _QBYTESTENSOR_OP_TABLE.get(aten_op, None) def is_scalar(t): return isinstance(t, numbers.Number) or (type(t) is torch.Tensor and len(t.shape) == 0) @register_qbytestensor_op([torch.ops.aten._to_copy, torch.ops.aten.to]) def _to_copy(op, t, dtype=None, **kwargs): out_data = op(t._data, dtype=t._data.dtype, **kwargs) out_scale = op(t._scale, dtype=dtype, **kwargs) return ActivationQBytesTensor(t.qtype, t.size(), t.stride(), out_data, out_scale) @register_qbytestensor_op([torch.ops.aten.detach]) def detach(op, t): out_data = op(t._data) out_scale = op(t._scale) return ActivationQBytesTensor(t.qtype, t.size(), t.stride(), out_data, out_scale) @register_qbytestensor_op([torch.ops.aten.cat]) def cat(op, inputs, dim=0): if len(inputs) == 2: (t1, t2) = inputs if isinstance(t1, ActivationQBytesTensor) and isinstance(t2, ActivationQBytesTensor) and torch.equal(t1._scale, t2._scale) and (t1.qtype == t2.qtype): if t1.qtype.is_floating_point or t2.qtype.is_floating_point: return qfallback(op, inputs, dim) out_data = op([t1._data, t2._data], dim) return ActivationQBytesTensor(t1.qtype, out_data.size(), out_data.stride(), out_data, t1._scale) return qfallback(op, inputs, dim) @register_qbytestensor_op([torch.ops.aten.lt]) def lt(op, input, other): if isinstance(input, ActivationQBytesTensor) and isinstance(other, ActivationQBytesTensor) and torch.equal(input._scale, other._scale): return op(input._data, other._data) return qfallback(op, input, other) @register_qbytestensor_op([torch.ops.aten.clone]) def clone(op, t, memory_format=torch.preserve_format): data_shape = t._data.shape out_data = t._data.reshape(t.shape) out_data = op(t._data, memory_format=memory_format) out_stride = out_data.stride() out_data = out_data.reshape(data_shape) out_scale = op(t._scale, memory_format=memory_format) return ActivationQBytesTensor(t.qtype, t.size(), out_stride, out_data, out_scale) @register_qbytestensor_op([torch.ops.aten.copy_]) def copy_(op, dest, src): assert dest.qtype == src.qtype dest._data = op(dest._data, src._data) dest._scale = op(dest._scale, src._scale) return dest @register_qbytestensor_op([torch.ops.aten.div]) def div(op, input, other): if not is_scalar(other): return op(input.dequantize(), other) return ActivationQBytesTensor(input.qtype, input.size(), input.stride(), input._data, op(input._scale, other)) @register_qbytestensor_op([torch.ops.aten.neg]) def neg(op, input, *args, **kwargs): if input.qtype.is_floating_point: return op(input.dequantize(), *args, **kwargs) out_data = op(input._data, *args, **kwargs) return ActivationQBytesTensor(input.qtype, input.size(), input.stride(), out_data, input._scale) @register_qbytestensor_op([torch.ops.aten.expand, torch.ops.aten.permute, torch.ops.aten.select, torch.ops.aten.slice, torch.ops.aten.unsqueeze]) def unary_type_agnostic_op(op, input, *args, **kwargs): if input.axis is not None: return op(input.dequantize(), *args, **kwargs) out_data = op(input._data, *args, **kwargs) return ActivationQBytesTensor(input.qtype, out_data.size(), out_data.stride(), out_data, input._scale) @register_qbytestensor_op([torch.ops.aten.is_same_size]) def is_same_size(op, input, other): a = input._data if isinstance(input, ActivationQBytesTensor) else input b = other._data if isinstance(other, ActivationQBytesTensor) else other return op(a, b) def cannot_mm(t: QTensor): return t.axis is not None and t.size() != t._data.size() @register_qbytestensor_op([torch.ops.aten.bmm]) def bmm(op, input, other): if not isinstance(input, ActivationQBytesTensor): return op(input, other.dequantize()) if not isinstance(other, QTensor) or input.axis is not None: return op(input.dequantize(), other) if input.qtype != qint8 or other.qtype != qint8 or cannot_mm(other): return qfallback(op, input, other) out_data = op(input._data.to(torch.float32), other._data.to(torch.float32)) out_scale = (input._scale * other._scale).to(torch.float32) return (out_data * out_scale).to(input._scale.dtype) @register_qbytestensor_op([torch.ops.aten.mul]) def mul(op, input, other): if is_scalar(input): return ActivationQBytesTensor(other.qtype, other.size(), other.stride(), other._data, input * other._scale) if is_scalar(other): return ActivationQBytesTensor(input.qtype, input.size(), input.stride(), input._data, other * input._scale) return qfallback(op, input, other) @register_qbytestensor_op([torch.ops.aten.relu]) def relu(op, input): if input.qtype.is_floating_point: return qfallback(op, input) out_data = op(input._data) return ActivationQBytesTensor(input.qtype, input.size(), input.stride(), out_data, input._scale) @register_qbytestensor_op([torch.ops.aten._softmax]) def _softmax(op, input, dim, half_to_float): float_data = op(input.dequantize(), dim, half_to_float) out_scale = torch.tensor(1 / dtype_info(input.qtype.dtype).max, dtype=input._scale.dtype).to(input.device) return quantize_activation(float_data, qtype=input.qtype, scale=out_scale) @register_qbytestensor_op([torch.ops.aten.stack]) def stack(op, inputs, dim=0): if len(inputs) == 2: (t1, t2) = inputs if isinstance(t1, ActivationQBytesTensor) and isinstance(t2, ActivationQBytesTensor) and (t1.axis is None) and (t2.axis is None) and torch.equal(t1._scale, t2._scale) and (t1.qtype == t2.qtype): out_data = op([t1._data, t2._data], dim) return ActivationQBytesTensor(t1.qtype, out_data.size(), out_data.stride(), out_data, t1._scale) return qfallback(inputs, dim) @register_qbytestensor_op([torch.ops.aten.split]) def split(op, input, *args, **kwargs): if input.axis is not None: return qfallback(op, input, *args, **kwargs) out_datas = op(input._data, *args, **kwargs) return [ActivationQBytesTensor(input.qtype, input.size(), input.stride(), out_data, input._scale) for out_data in out_datas] @register_qbytestensor_op([torch.ops.aten.transpose]) def transpose(op, input, *args): out_data = op(input._data, *args) out_size = out_data.size() out_stride = out_data.stride() out_scale = input._scale return ActivationQBytesTensor(input.qtype, out_size, out_stride, out_data, out_scale) @register_qbytestensor_op([torch.ops.aten.t]) def transpose2d(op, input): out_data = op(input._data) out_scale = input._scale (dim0, dim1) = input.size() out_size = torch.Size([dim1, dim0]) out_stride = input.stride()[::-1] return ActivationQBytesTensor(input.qtype, out_size, out_stride, out_data, out_scale) @register_qbytestensor_op([torch.ops.aten.view, torch.ops.aten._unsafe_view]) def view(op, input, *shape): if input.axis is None: out_data = op(input._data, *shape) return ActivationQBytesTensor(input.qtype, out_data.size(), out_data.stride(), out_data, input._scale) return qfallback(op, input, *shape) @register_qbytestensor_op([torch.ops.aten.where]) def where(op, condition, input, other): if isinstance(condition, QTensor) or isinstance(other, QTensor): raise NotImplementedError float_data = op(condition, input.dequantize(), other) if input.axis is None: return quantize_activation(float_data, qtype=input.qtype, scale=input._scale) return float_data # File: optimum-quanto-main/optimum/quanto/tensor/activations/quantization.py import torch from ..qtype import qtype from .qbytes import ActivationQBytesTensor __all__ = ['quantize_activation'] def quantize_activation(t: torch.Tensor, qtype: qtype, scale: torch.Tensor): if scale.numel() != 1: raise ValueError('Parameter scale must be a scalar because activations can only be quantized per-tensor') return ActivationQBytesTensor.quantize(t, qtype, scale) # File: optimum-quanto-main/optimum/quanto/tensor/core.py import torch __all__ = ['axis_to_dim', 'dtype_info'] def dtype_info(dtype): info = torch.finfo if dtype.is_floating_point else torch.iinfo return info(dtype) def axis_to_dim(t, axis): dim = list(range(t.ndim)) if axis == -1: dim = dim[:-1] else: dim.remove(axis) return dim # File: optimum-quanto-main/optimum/quanto/tensor/function.py import torch __all__ = ['QuantizedLinearFunction'] class QuantizedLinearFunction(torch.autograd.Function): @staticmethod def forward(ctx, input, other, bias=None): ctx.save_for_backward(input, other) output = torch.matmul(input, other.t()) if bias is not None: output = output + bias return output def backward(ctx, gO): input_gO = other_gO = bias_gO = None (input, other) = ctx.saved_tensors (out_features, in_features) = other.shape if ctx.needs_input_grad[0]: input_gO = torch.matmul(gO, other) if ctx.needs_input_grad[1]: other_gO = torch.matmul(gO.view(-1, out_features).t(), input.view(-1, in_features)) if ctx.needs_input_grad[2]: dim = tuple(range(gO.ndim - 1)) bias_gO = gO.sum(dim) return (input_gO, other_gO, bias_gO) # File: optimum-quanto-main/optimum/quanto/tensor/optimizers/absmax_optimizer.py from typing import Optional, Tuple, Union import torch from .symmetric_optimizer import SymmetricOptimizer __all__ = ['AbsmaxOptimizer'] class AbsmaxOptimizer(SymmetricOptimizer): def optimize(self, base: torch.Tensor, qmax: float, axis: Optional[int]=None) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: base = torch.abs(base) if axis is None: rmax = torch.max(base) else: dim = list(range(1, base.ndim)) if axis == 0 else list(range(0, base.ndim - 1)) rmax = torch.amax(torch.abs(base), dim=dim, keepdim=True) return rmax / qmax # File: optimum-quanto-main/optimum/quanto/tensor/optimizers/affine_optimizer.py from typing import Optional, Tuple import torch from ..qbits import group from .optimizer import Optimizer __all__ = ['AffineOptimizer'] class AffineOptimizer(Optimizer): def __call__(self, base: torch.Tensor, bits: int, axis: int, group_size: Optional[int]=None) -> Tuple[torch.Tensor, torch.Tensor]: if axis not in [0, -1]: raise ValueError('axis parameter must be 0 (first axis) or -1 (last axis)') if group_size is not None: base = group(base, axis, group_size) (scale, shift) = self.optimize(base, bits, axis) assert scale.dtype == base.dtype assert shift.dtype == base.dtype return (scale, shift) def optimize(self, base: torch.Tensor, bits: int, axis: int) -> Tuple[torch.Tensor, torch.Tensor]: raise NotImplementedError # File: optimum-quanto-main/optimum/quanto/tensor/optimizers/hqq_optimizer.py from typing import Optional, Tuple, Union import torch from ..qbits import QBitsTensor from ..qtype import qint2, qint4 from .max_optimizer import MaxOptimizer __all__ = ['HqqOptimizer'] def shrink_lp_op(x: torch.Tensor, beta: float, lp_norm: float) -> torch.Tensor: if lp_norm == 1: return torch.sign(x) * torch.nn.functional.relu(torch.abs(x) - 1.0 / beta) else: return torch.sign(x) * torch.nn.functional.relu(torch.abs(x) - 1.0 / beta * torch.pow(torch.abs(x), lp_norm - 1)) class HqqOptimizer(MaxOptimizer): def __init__(self, lp_norm: Optional[float]=0.7, beta: Optional[int]=10.0, kappa: Optional[float]=1.01, iters: Optional[int]=20, verbose: Optional[bool]=False) -> None: self.lp_norm = lp_norm self.beta = beta self.kappa = kappa self.iters = iters self.verbose = verbose def optimize(self, base: torch.Tensor, bits: int, axis: int) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: (scale, shift) = super().optimize(base, bits, axis) best_error = None beta = self.beta qtype = qint2 if bits == 2 else qint4 base_q = QBitsTensor.quantize(base, qtype, axis, None, scale, shift) for i in range(self.iters): error = base - base_q if best_error is None: best_error = float(torch.abs(base - base_q).mean()) if self.verbose: print(f'Start error: {best_error:.6f}') e = shrink_lp_op(error, beta, self.lp_norm) mean_axis = 0 if axis == -1 else -1 hqq_shift = torch.mean(base_q._data * scale - (base - e), axis=mean_axis, keepdim=True) base_q = QBitsTensor.quantize(base, qtype, axis, None, scale, hqq_shift) mean_error = float(torch.abs(base - base_q).mean()) if self.verbose: print(f'HQQ error at it #{i}: {mean_error:.6f}') if mean_error < best_error: best_error = mean_error shift = hqq_shift beta *= self.kappa else: break return (scale, shift) # File: optimum-quanto-main/optimum/quanto/tensor/optimizers/max_optimizer.py from typing import Tuple, Union import torch from .affine_optimizer import AffineOptimizer __all__ = ['MaxOptimizer'] class MaxOptimizer(AffineOptimizer): def optimize(self, base: torch.Tensor, bits: int, axis: int) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: dim = list(range(1, base.ndim)) if axis == 0 else list(range(0, base.ndim - 1)) rmin = torch.amin(base, dim=dim, keepdim=True) rmax = torch.amax(base, dim=dim, keepdim=True) qmin = -2 ** (bits - 1) qmax = 2 ** (bits - 1) - 1 scale = (rmax - rmin) / (qmax - qmin) shift = -rmin return (scale, shift) # File: optimum-quanto-main/optimum/quanto/tensor/optimizers/symmetric_optimizer.py from typing import Optional import torch from .optimizer import Optimizer __all__ = ['SymmetricOptimizer'] class SymmetricOptimizer(Optimizer): def __call__(self, base: torch.Tensor, qmax: float, axis: Optional[int]=None) -> torch.Tensor: if axis not in [None, 0, -1]: raise ValueError('axis parameter must be None, 0 (first axis) or -1 (last axis)') if qmax <= 0.0: raise ValueError('qmax must be set to the maximum positive value that can be represented by the quantized type.') scale = self.optimize(base, qmax, axis) assert scale.dtype == base.dtype return scale def optimize(self, base: torch.Tensor, qmax: float, axis: Optional[int]=None) -> torch.Tensor: raise NotImplementedError # File: optimum-quanto-main/optimum/quanto/tensor/qbits/awq/packed.py import ast from copy import copy from enum import Enum import numpy as np import torch from torch.utils import _pytree as pytree __all__ = ['AWQPackedTensor', 'AWQPacking'] AWQ_ORDER = [0, 2, 4, 6, 1, 3, 5, 7] AWQ_REVERSE_ORDER = [0, 4, 1, 5, 2, 6, 3, 7] def pack(unpacked: torch.Tensor, reorder=False): bits = 4 pack_num = 32 // bits packed = torch.zeros(unpacked.shape[0], unpacked.shape[1] // pack_num, dtype=torch.int32, device=unpacked.device) for col in range(unpacked.shape[1] // pack_num): if reorder: order_map = AWQ_ORDER else: order_map = [0, 1, 2, 3, 4, 5, 6, 7] for i in range(pack_num): packed_col = unpacked[:, col * pack_num + order_map[i]].to(torch.int32) packed[:, col] |= packed_col << i * bits return packed def reverse_awq_order(t: torch.Tensor): bits = 4 reverse_order_tensor = torch.arange(t.shape[-1], dtype=torch.int32, device=t.device) reverse_order_tensor = reverse_order_tensor.view(-1, 32 // bits) reverse_order_tensor = reverse_order_tensor[:, AWQ_REVERSE_ORDER] reverse_order_tensor = reverse_order_tensor.view(-1) t = t[:, reverse_order_tensor] return t def unpack(packed: torch.Tensor, reorder=False): bits = 4 shifts = torch.arange(0, 32, bits, device=packed.device) unpacked = torch.bitwise_right_shift(packed[:, :, None], shifts[None, None, :]).to(torch.int8) unpacked = unpacked.view(unpacked.shape[0], -1) if reorder: unpacked = reverse_awq_order(unpacked) unpacked = torch.bitwise_and(unpacked, 2 ** bits - 1) return unpacked def pack_v2(unpacked: torch.Tensor) -> torch.Tensor: assert unpacked.device.type == 'cuda' assert unpacked.ndim == 2 (N, K) = unpacked.shape I = 4 S = 64 packed = unpacked.reshape(N, K // 32, 4, 4, 2).permute(0, 1, 3, 2, 4) packed = packed.permute(0, 1, 2, 4, 3) packed = packed.reshape(N, K) packed = packed.reshape(N // I, I, K // S, S) packed = packed.permute(0, 2, 1, 3) packed = packed.reshape(N // I, K // S, S, I) packed = packed.to(torch.int32) packed = packed[..., 0] | packed[..., 1] << 4 | packed[..., 2] << 8 | packed[..., 3] << 12 packed = packed.reshape(N // I, K) return packed.to(torch.int16).contiguous() def unpack_v2(packed): assert packed.device.type == 'cuda' assert packed.ndim == 2 I = 4 S = 64 (N_div_I, K) = packed.shape N = N_div_I * I unpacked = packed.reshape(N // I, K // S, S, 1) unpacked = unpacked.cpu().numpy().astype(np.uint16) unpacked = torch.cat([torch.tensor((unpacked & 15).astype(np.uint8)).to(packed.device), torch.tensor(((unpacked & 240) >> 4).astype(np.uint8)).to(packed.device), torch.tensor(((unpacked & 3840) >> 8).astype(np.uint8)).to(packed.device), torch.tensor(((unpacked & 61440) >> 12).astype(np.uint8)).to(packed.device)], axis=-1) unpacked = unpacked.reshape(N // I, K // S, I, S) unpacked = unpacked.permute(0, 2, 1, 3) unpacked = unpacked.reshape(N, K) unpacked = unpacked.reshape(N, K // 32, 4, 2, 4).permute(0, 1, 2, 4, 3) unpacked = unpacked.permute(0, 1, 3, 2, 4) unpacked = unpacked.reshape(N, K) return unpacked class AWQPacking(Enum): V1 = 1 V2 = 2 class AWQPackedTensor(torch.Tensor): @staticmethod def __new__(cls, data, packing, reorder, size, stride, requires_grad=False): assert data.device.type == 'cuda' assert data.dtype == torch.int32 if packing == AWQPacking.V1 else torch.int16 assert requires_grad is False return torch.Tensor._make_wrapper_subclass(cls, size, strides=stride, dtype=torch.uint8, device=data.device, requires_grad=requires_grad) def __init__(self, data, packing, reorder, size, stride, requires_grad=False): self._data = data self._packing = packing self._reorder = reorder def __repr__(self): return f'AWQPackedTensor({self._data}, packing={self._packing}, reorder={self._reorder})' @classmethod def pack(cls, t, packing=AWQPacking.V1, reorder=False): if packing == AWQPacking.V1: data = pack(t, reorder=reorder) else: data = pack_v2(t) return AWQPackedTensor(data, packing, reorder, t.size(), t.stride()) def unpack(self): if self._packing == AWQPacking.V1: return unpack(self._data, self._reorder) return unpack_v2(self._data) @property def dtype(self): return torch.uint8 def __tensor_flatten__(self): inner_tensors = ['_data'] meta = {'packing': str(self._packing), 'reorder': str(self._reorder), 'size': str(list(self.size())), 'stride': str(self.stride())} return (inner_tensors, meta) @staticmethod def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): assert len(inner_tensors) == 1 assert len(meta) == 4 data = inner_tensors['_data'] packing = ast.literal_eval(meta['packing']) reorder = ast.literal_eval(meta['reorder']) size = ast.literal_eval(meta['size']) stride = ast.literal_eval(meta['stride']) return AWQPackedTensor(data, packing, reorder, size, stride) __torch_function__ = torch._C._disabled_torch_function_impl @classmethod def __torch_dispatch__(cls, op, types, args, kwargs=None): if op.overloadpacket is torch.ops.aten.detach: t = args[0] data = op(t._data) return AWQPackedTensor(data, t._packing, t._reorder, t.size(), t.stride()) elif op.overloadpacket in (torch.ops.aten._to_copy, torch.ops.aten.to): t = args[0] dtype = kwargs.get('dtype', torch.uint8) if dtype != torch.uint8: raise ValueError(f'AWQPackedTensor are torch.uint8 only and cannot be moved to {dtype}.') device = kwargs.get('device', t.device) if device.type == 'cuda': data_kwargs = copy(kwargs) data_kwargs['dtype'] = t._data.dtype data = op(t._data, **data_kwargs) return AWQPackedTensor(data, t._packing, t._reorder, t.size(), t.stride()) (args, kwargs) = pytree.tree_map_only(AWQPackedTensor, lambda x: x.unpack(), (args, kwargs or {})) return op(*args, **kwargs) def numpy(self): return self.unpack().cpu().numpy() # File: optimum-quanto-main/optimum/quanto/tensor/qbits/awq/qbits.py import ast import torch from torch.autograd import Function from ...function import QuantizedLinearFunction from ...qtype import qtypes from ..group import group, ungroup from ..qbits import QBitsTensor from .packed import AWQPackedTensor, AWQPacking __all__ = ['AWQBitsTensor'] class AWQBitsDequantizer(Function): @staticmethod def forward(ctx, t): unpacked = t._data.unpack() scale = t._scale shift = t._shift unpacked = group(unpacked, axis=0, group_size=t._group_size) n_scales = scale.numel() scale = scale.t().reshape((n_scales, 1)) shift = shift.t().reshape((n_scales, 1)) dqt = scale * unpacked + shift return ungroup(dqt, axis=t.axis, orig_shape=t.shape) @staticmethod def backward(ctx, gO): return gO class AWQBitsLinearFunction(QuantizedLinearFunction): @staticmethod def forward(ctx, input, other, bias): ctx.save_for_backward(input, other) if type(input) is not torch.Tensor: input = input.dequantize() (out_features, in_features) = other.shape rows = input.numel() // in_features output = torch.ops.quanto.gemm(input, other._data._data, other._scale, other._shift, rows=rows, out_cols=out_features, in_cols=in_features, bits=4, group_size=other._group_size) if bias is not None: output = output + bias return output class AWQBitsTensor(QBitsTensor): @staticmethod def __new__(cls, qtype, axis, group_size, size, stride, data, scale, shift, requires_grad=False): assert data.device.type == 'cuda' assert data.device == scale.device assert data.device == shift.device return torch.Tensor._make_wrapper_subclass(cls, size, strides=stride, dtype=scale.dtype, device=data.device, requires_grad=requires_grad) def __init__(self, qtype, axis, group_size, size, stride, data, scale, shift, requires_grad=False): assert axis == 0 if not isinstance(data, AWQPackedTensor): assert type(data) is torch.Tensor ungrouped = ungroup(data, axis=0, orig_shape=size) data = AWQPackedTensor.pack(ungrouped, packing=AWQPacking.V2) (out_features, in_features) = size scale = scale.reshape(out_features, in_features // group_size).t().contiguous() shift = shift.reshape(out_features, in_features // group_size).t() if not shift.dtype.is_floating_point: shift = scale * shift shift = -shift.contiguous() super().__init__(qtype, axis, group_size, size, stride, data, scale, shift) def dequantize(self): return AWQBitsDequantizer.apply(self) def qbits_tensor(self): data = group(self._data.unpack(), axis=self.axis, group_size=self._group_size) n_scales = self._scale.numel() scale = self._scale.t().reshape((n_scales, 1)) shift = -self._shift.t().reshape((n_scales, 1)) return QBitsTensor(self._qtype, self._axis, self._group_size, self.size(), self.stride(), data, scale, shift) def __tensor_flatten__(self): inner_tensors = ['_data', '_scale', '_shift'] meta = {'qtype': self._qtype.name, 'axis': str(self._axis), 'group_size': str(self._group_size), 'size': str(list(self.size())), 'stride': str(list(self.stride()))} return (inner_tensors, meta) @staticmethod def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): assert len(inner_tensors) == 3 assert len(meta) == 5 (data, scale, shift) = (inner_tensors['_data'], inner_tensors['_scale'], inner_tensors['_shift']) qtype = qtypes[meta['qtype']] axis = ast.literal_eval(meta['axis']) group_size = ast.literal_eval(meta['group_size']) size = ast.literal_eval(meta['size']) stride = ast.literal_eval(meta['stride']) return AWQBitsTensor(qtype, axis, group_size, size, stride, data, scale, shift) @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): kwargs = kwargs or {} if func is torch.nn.functional.linear: def qlinear(input, other, bias=None): return AWQBitsLinearFunction.apply(input, other, bias) return qlinear(*args, **kwargs) with torch._C.DisableTorchFunctionSubclass(): return func(*args, **kwargs) # File: optimum-quanto-main/optimum/quanto/tensor/qbits/group.py import math from typing import List import torch __all__ = ['group', 'ungroup', 'grouped_shape'] def grouped_shape(shape: List, axis: int, group_size: int) -> List: if axis not in (0, -1): raise ValueError('Axis must be 0 or -1 for group-wise quantization') n_groups = math.prod(shape) // group_size return (n_groups, group_size) if axis == 0 else (group_size, n_groups) def group(base: torch.Tensor, axis: int, group_size: int): if axis not in (0, -1): raise ValueError('Axis must be 0 or -1 for group-wise quantization') axis_dim = base.shape[axis] axis_numel = base.numel() // axis_dim if group_size > axis_numel or axis_numel % group_size != 0: raise ValueError(f'Group size ({group_size}) must be a divisor of ({axis_numel})') axis_groups = axis_numel // group_size if axis == 0: return base.reshape([-1, group_size]) grouped = base.reshape((axis_groups, group_size, axis_dim)) grouped = grouped.permute(1, 2, 0) return grouped.reshape(group_size, axis_dim * axis_groups) def ungroup(grouped: torch.Tensor, axis: int, orig_shape: torch.Size): if grouped.shape == orig_shape: return grouped if axis == 0: return grouped.reshape(orig_shape) group_size = grouped.shape[0] if axis == -1 else grouped.shape[-1] axis_dim = orig_shape[axis] axis_groups = grouped.numel() // axis_dim // group_size ungrouped = grouped.reshape(group_size, axis_dim, axis_groups) ungrouped = ungrouped.permute(2, 0, 1) return ungrouped.reshape(orig_shape) # File: optimum-quanto-main/optimum/quanto/tensor/qbits/packed.py import ast import torch from torch.utils import _pytree as pytree __all__ = ['PackedTensor'] def pack_weights(intweights: torch.Tensor, bits: int) -> torch.Tensor: original_shape = intweights.shape values_per_item = 8 // bits row_dim = (original_shape[0] + values_per_item - 1) // values_per_item if len(original_shape) == 1: packed_tensor_shape = (row_dim,) else: packed_tensor_shape = (row_dim, *original_shape[1:]) packed = torch.zeros(packed_tensor_shape, device=intweights.device, dtype=torch.uint8) unpacked = intweights.to(torch.uint8) def lshift(t: torch.Tensor, bits: int): if t.device.type == 'mps': return t * 2 ** bits return t << bits it = min(values_per_item, original_shape[0] // row_dim + 1) for i in range(it): start = i * row_dim end = min(start + row_dim, original_shape[0]) packed[:end - start] |= lshift(unpacked[start:end], bits * i) return packed class PackedTensor(torch.Tensor): @staticmethod def __new__(cls, data, bits, size, stride, requires_grad=False): assert data.dtype == torch.uint8 assert requires_grad is False return torch.Tensor._make_wrapper_subclass(cls, size, strides=stride, dtype=torch.uint8, device=data.device, requires_grad=requires_grad) def __init__(self, data, bits, size, stride, requires_grad=False): self._bits = bits self._data = data def __repr__(self): autograd_info = f', grad_fn={self.grad_fn}' if self.grad_fn else ', requires_grad=True' if self.requires_grad else '' return f'PackedTensor({self._data}, bits={self._bits}, public_dtype={self.dtype}{autograd_info})' @classmethod def pack(cls, t, bits=4): assert bits in (2, 4) assert t.dtype == torch.uint8 data = pack_weights(t, bits) return PackedTensor(data, bits, t.size(), t.stride()) def unpack(self): unpacked_data = torch.ops.quanto.unpack(self._data, self._bits) return unpacked_data[:self.shape[0]] @property def bits(self): return self._bits @property def dtype(self): return torch.uint8 @staticmethod def load_from_state_dict(state_dict, prefix, bits, size, stride, missing_keys): if prefix + '_data' not in state_dict: missing_keys.append(prefix + '_data') return inner_tensors_dict = {'_data': state_dict.pop(prefix + '_data')} meta = [name.replace(prefix, '') for name in state_dict.keys() if name.startswith(prefix)] meta = {'bits': str(bits), 'size': str(list(size)), 'stride': str(stride)} return PackedTensor.__tensor_unflatten__(inner_tensors_dict, meta, None, None) def __tensor_flatten__(self): inner_tensors = ['_data'] meta = {'bits': str(self._bits), 'size': str(list(self.size())), 'stride': str(self.stride())} return (inner_tensors, meta) @staticmethod def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): assert len(inner_tensors) == 1 assert len(meta) == 3 data = inner_tensors['_data'] bits = ast.literal_eval(meta['bits']) size = ast.literal_eval(meta['size']) stride = ast.literal_eval(meta['stride']) return PackedTensor(data, bits, size, stride) __torch_function__ = torch._C._disabled_torch_function_impl @classmethod def __torch_dispatch__(cls, op, types, args, kwargs=None): if op.overloadpacket is torch.ops.aten.detach: t = args[0] data = op(t._data) return PackedTensor(data, t._bits, t.size(), t.stride()) elif op.overloadpacket in (torch.ops.aten._to_copy, torch.ops.aten.to): t = args[0] dtype = kwargs.get('dtype', torch.uint8) if dtype != torch.uint8: raise ValueError(f'PackedTensor are torch.uint8 only and cannot be moved to {dtype}.') data = op(t._data, **kwargs) return PackedTensor(data, t._bits, t.size(), t.stride()) (args, kwargs) = pytree.tree_map_only(PackedTensor, lambda x: x.unpack(), (args, kwargs or {})) return op(*args, **kwargs) def numpy(self): return self.unpack().cpu().numpy() # File: optimum-quanto-main/optimum/quanto/tensor/qbits/qbits.py import ast import torch from packaging import version from torch.autograd import Function from ..function import QuantizedLinearFunction from ..qtensor import QTensor, qfallback from ..qtype import qint2, qint4, qtype, qtypes from .group import grouped_shape, ungroup from .packed import PackedTensor __all__ = ['QBitsTensor'] class QBitsQuantizer(Function): @staticmethod def forward(ctx, base: torch.Tensor, qtype: qtype, axis: int, group_size: int, scale: torch.Tensor, shift: torch.Tensor): if qtype not in (qint2, qint4): raise ValueError('QBitsTensor can only be of qint2 or qint4 qtype') if axis not in (0, -1): raise ValueError('QBitsTensor axis parameter must be 0 (first axis) or -1 (last axis)') size = base.size() stride = base.stride() data = torch.ops.quanto.quantize_affine(base, bits=qtype.bits, axis=axis, group_size=group_size, scale=scale, shift=shift) return QBitsTensor.create(qtype, axis, group_size, size, stride, data, scale, shift) @staticmethod def backward(ctx, gO): return (gO, None, None, None, None, None) class QBitsDequantizer(Function): @staticmethod def forward(ctx, t): data = t._data.unpack() shift = t._shift if not shift.dtype.is_floating_point: data = data.to(torch.int8) - shift.to(torch.int8) if t.qtype.is_floating_point: dqt = t._scale * data.to(t._scale.dtype) else: dqt = t._scale * data if shift.dtype.is_floating_point: dqt -= shift if t.axis is None: return dqt return ungroup(dqt, axis=t.axis, orig_shape=t.shape) @staticmethod def backward(ctx, gO): return gO class QBitsTensor(QTensor): @staticmethod def create(qtype, axis, group_size, size, stride, data, scale, shift, requires_grad=False): from .awq import AWQBitsTensor from .tinygemm import TinyGemmQBitsTensor if qtype == qint4 and size[0] >= 128 and (scale.dtype == torch.float16) and (axis == 0) and (group_size == 128) and (len(size) == 2) and (data.device.type == 'cuda') and (torch.cuda.get_device_capability(data.device)[0] >= 8): if type(data) is PackedTensor: data = data.unpack() return AWQBitsTensor(qtype, axis, group_size, size, stride, data, scale, shift, requires_grad) if qtype == qint4 and scale.dtype == torch.bfloat16 and (axis == 0) and (group_size == 128) and (len(size) == 2): if data.device.type == 'cpu' or (data.device.type == 'cuda' and version.parse(torch.version.cuda).release >= (12, 1) and (torch.cuda.get_device_capability(data.device)[0] >= 8)): if type(data) is PackedTensor: data = data.unpack() return TinyGemmQBitsTensor(qtype, axis, group_size, size, stride, data, (scale, shift), requires_grad) return QBitsTensor(qtype, axis, group_size, size, stride, data, scale, shift, requires_grad) @staticmethod def __new__(cls, qtype, axis, group_size, size, stride, data, scale, shift, requires_grad=False): assert data.device == scale.device assert data.device == shift.device return torch.Tensor._make_wrapper_subclass(cls, size, strides=stride, dtype=scale.dtype, device=data.device, requires_grad=requires_grad) def __init__(self, qtype, axis, group_size, size, stride, data, scale, shift, requires_grad=False): super().__init__(qtype, axis) if type(data) is torch.Tensor: data = PackedTensor.pack(data, qtype.bits) self._data = data self._scale = scale self._shift = shift self._group_size = group_size def __repr__(self): return f'{type(self).__name__}({self._data}, scale={self._scale}, shift={self._shift}, dtype={self.dtype})' @classmethod def quantize(cls, base: torch.Tensor, qtype: qtype, axis: int, group_size: int, scale: torch.Tensor, shift: torch.Tensor): return QBitsQuantizer.apply(base, qtype, axis, group_size, scale, shift) def dequantize(self): return QBitsDequantizer.apply(self) @staticmethod def load_from_state_dict(state_dict, prefix, qtype, axis, group_size, size, stride, missing_keys): if group_size is None: data_size = size data_stride = stride else: data_size = grouped_shape(size, axis, group_size) assert len(data_size) == 2 data_stride = (data_size[1], 1) inner_tensors_dict = {'_data': PackedTensor.load_from_state_dict(state_dict, prefix + '_data.', qtype.bits, data_size, data_stride, missing_keys=missing_keys)} missing = inner_tensors_dict['_data'] is None for name in ['_scale', '_shift']: if prefix + name not in state_dict: missing_keys.append(prefix + name) missing = True else: inner_tensors_dict[name] = state_dict.pop(prefix + name) if missing: return None meta = {'qtype': qtype.name, 'axis': str(axis), 'group_size': str(group_size), 'size': str(list(size)), 'stride': str(list(stride))} return QBitsTensor.__tensor_unflatten__(inner_tensors_dict, meta, None, None) def optimize(self): if type(self) is not QBitsTensor: return self data = self._data.unpack() return QBitsTensor.create(self.qtype, self.axis, self._group_size, self.size(), self.stride(), data, self._scale, self._shift, self.requires_grad) def save_to_state_dict(self, destination, prefix, keep_vars): if type(self) is QBitsTensor: super().save_to_state_dict(destination, prefix, keep_vars) else: self.qbits_tensor().save_to_state_dict(destination, prefix, keep_vars) def qbits_tensor(self): raise NotImplementedError def __tensor_flatten__(self): inner_tensors = ['_data', '_scale', '_shift'] meta = {'qtype': self._qtype.name, 'axis': str(self._axis), 'group_size': str(self._group_size), 'size': str(list(self.size())), 'stride': str(list(self.stride()))} return (inner_tensors, meta) @staticmethod def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): assert len(inner_tensors) == 3 assert len(meta) == 5 (data, scale, shift) = (inner_tensors['_data'], inner_tensors['_scale'], inner_tensors['_shift']) qtype = qtypes[meta['qtype']] axis = ast.literal_eval(meta['axis']) group_size = ast.literal_eval(meta['group_size']) size = ast.literal_eval(meta['size']) stride = ast.literal_eval(meta['stride']) return QBitsTensor(qtype, axis, group_size, size, stride, data, scale, shift) @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): kwargs = kwargs or {} if func is torch.nn.functional.linear: def qlinear(input, other, bias=None): return QuantizedLinearFunction.apply(input, other, bias) return qlinear(*args, **kwargs) elif func is torch.equal: (input, other) = args return input.equal(other) with torch._C.DisableTorchFunctionSubclass(): return func(*args, **kwargs) @classmethod def __torch_dispatch__(cls, op, types, args, kwargs=None): from .qbits_ops import get_qbitstensor_op_dispatch op = op.overloadpacket qdispatch = get_qbitstensor_op_dispatch(op) if qdispatch is not None: return qdispatch(*args, **kwargs) return qfallback(op, *args, **kwargs) # File: optimum-quanto-main/optimum/quanto/tensor/qbits/qbits_ops.py from functools import partial from typing import Callable, List import torch from .qbits import QBitsTensor __all__ = ['get_qbitstensor_op_dispatch', 'register_qbitstensor_op'] _QBITSTENSOR_OP_TABLE = {} def register_qbitstensor_op(aten_ops: List[Callable]): def wrapper(op): for aten_op in aten_ops: _QBITSTENSOR_OP_TABLE[aten_op] = partial(op, aten_op) return wrapper def get_qbitstensor_op_dispatch(aten_op): return _QBITSTENSOR_OP_TABLE.get(aten_op, None) @register_qbitstensor_op([torch.ops.aten._to_copy]) def _to_copy(op, t, dtype=None, device=None, **kwargs): if dtype is not None and dtype != t.dtype: raise ValueError('The dtype of a QBitsTensor cannot be changed') if type(t) is not QBitsTensor and t.device.type != device.type: t = t.qbits_tensor() scale = op(t._scale, dtype=dtype, device=device, **kwargs) data = op(t._data, device=device, **kwargs) shift = op(t._shift, device=device, **kwargs) return QBitsTensor.create(t._qtype, t._axis, t._group_size, t.size(), t.stride(), data, scale, shift) @register_qbitstensor_op([torch.ops.aten.detach]) def detach(op, t): (inner_tensor_names, meta) = t.__tensor_flatten__() detached_tensors = {} for inner_name in inner_tensor_names: detached_tensors[inner_name] = op(getattr(t, inner_name)) return t.__class__.__tensor_unflatten__(detached_tensors, meta, t.size(), t.stride()) # File: optimum-quanto-main/optimum/quanto/tensor/qbits/tinygemm/packed.py import ast from copy import copy import torch from packaging import version from torch.utils import _pytree as pytree __all__ = ['TinyGemmPackedTensor'] class TinyGemmPackedTensor(torch.Tensor): @staticmethod def __new__(cls, data, size, stride, requires_grad=False): assert data.dtype == torch.int32 assert requires_grad is False return torch.Tensor._make_wrapper_subclass(cls, size, strides=stride, dtype=torch.uint8, device=data.device, requires_grad=requires_grad) def __init__(self, data, size, stride, requires_grad=False): self._data = data def __repr__(self): return f'TinyGemmPackedTensor({self._data})' @classmethod def pack(cls, t): inner_ktiles = 2 t = t.to(torch.int32).contiguous() if version.parse(torch.__version__).release >= version.parse('2.5.0').release: t_uint8 = (t[:, ::2] << 4 | t[:, 1::2]).to(torch.uint8) data = torch._convert_weight_to_int4pack(t_uint8, innerKTiles=inner_ktiles) else: data = torch._convert_weight_to_int4pack(t, innerKTiles=inner_ktiles) return TinyGemmPackedTensor(data, t.size(), t.stride()) def unpack(self): (out_features, in_features) = self.size() group_size = 32 scale_and_shift_shape = (in_features // group_size, out_features, 2) id_scale_and_shift = torch.ones(scale_and_shift_shape, dtype=torch.bfloat16, device=self.device) id_scale_and_shift[:, :, 1] = 8 identity = torch.eye(in_features, dtype=torch.bfloat16, device=self.device) unpacked_data = torch._weight_int4pack_mm(identity, self._data, group_size, id_scale_and_shift) return unpacked_data.t().to(torch.uint8) @property def dtype(self): return torch.uint8 def __tensor_flatten__(self): inner_tensors = ['_data'] meta = {'size': str(list(self.size())), 'stride': str(self.stride())} return (inner_tensors, meta) @staticmethod def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): assert len(inner_tensors) == 1 assert len(meta) == 2 data = inner_tensors['_data'] size = ast.literal_eval(meta['size']) stride = ast.literal_eval(meta['stride']) return TinyGemmPackedTensor(data, size, stride) __torch_function__ = torch._C._disabled_torch_function_impl @classmethod def __torch_dispatch__(cls, op, types, args, kwargs=None): if op.overloadpacket is torch.ops.aten.detach: t = args[0] data = op(t._data) return TinyGemmPackedTensor(data, t.size(), t.stride()) elif op.overloadpacket in (torch.ops.aten._to_copy, torch.ops.aten.to): t = args[0] dtype = kwargs.get('dtype', torch.uint8) if dtype != torch.uint8: raise ValueError(f'TinyGemmPackedTensor are torch.uint8 only and cannot be moved to {dtype}.') data_kwargs = copy(kwargs) data_kwargs['dtype'] = t._data.dtype if kwargs.get('device', t.device).type != t.device.type: unpacked = t.unpack() unpacked = op(unpacked, **data_kwargs) return TinyGemmPackedTensor.pack(unpacked) data = op(t._data, **data_kwargs) return TinyGemmPackedTensor(data, t.size(), t.stride()) (args, kwargs) = pytree.tree_map_only(TinyGemmPackedTensor, lambda x: x.unpack(), (args, kwargs or {})) return op(*args, **kwargs) def numpy(self): return self.unpack().cpu().numpy() # File: optimum-quanto-main/optimum/quanto/tensor/qbits/tinygemm/qbits.py import ast import torch from torch.autograd import Function from ...function import QuantizedLinearFunction from ...qtype import qtypes from ..group import group, ungroup from ..qbits import QBitsTensor from .packed import TinyGemmPackedTensor __all__ = ['TinyGemmQBitsTensor'] class TinyGemmQBitsDequantizer(Function): @staticmethod def forward(ctx, t): qbt = t.qbits_tensor() return qbt.dequantize() @staticmethod def backward(ctx, gO): return gO class TinyGemmQBitsLinearFunction(QuantizedLinearFunction): @staticmethod def forward(ctx, input, other, bias): ctx.save_for_backward(input, other) if type(input) is not torch.Tensor: input = input.dequantize() in_features = input.shape[-1] out_features = other.shape[0] output_shape = input.shape[:-1] + (out_features,) output = torch._weight_int4pack_mm(input.view(-1, in_features), other._data._data, other._group_size, other._scale_shift) output = output.view(output_shape) if bias is not None: output = output + bias return output class TinyGemmQBitsTensor(QBitsTensor): @staticmethod def __new__(cls, qtype, axis, group_size, size, stride, data, scale_shift, requires_grad=False): if isinstance(scale_shift, torch.Tensor): dtype = scale_shift.dtype assert data.device == scale_shift.device else: assert isinstance(scale_shift, (tuple, list)) (scale, shift) = scale_shift dtype = scale.dtype assert shift.dtype == dtype assert data.device == scale.device assert data.device == shift.device return torch.Tensor._make_wrapper_subclass(cls, size, strides=stride, dtype=dtype, device=data.device, requires_grad=requires_grad) def __init__(self, qtype, axis, group_size, size, stride, data, scale_shift, requires_grad=False): assert axis == 0 if not isinstance(data, TinyGemmPackedTensor): assert type(data) is torch.Tensor assert isinstance(scale_shift, (tuple, list)) ungrouped = ungroup(data, axis=0, orig_shape=size) self._data = TinyGemmPackedTensor.pack(ungrouped) (out_features, in_features) = size (scale, shift) = scale_shift scale = scale.reshape(out_features, in_features // group_size, 1) shift = shift.reshape(out_features, in_features // group_size, 1) if not shift.dtype.is_floating_point: shift = scale * shift min_range = -shift half_qrange = 2 ** (qtype.bits - 1) * scale shift = min_range + half_qrange self._scale_shift = torch.cat([scale, shift], 2).transpose(0, 1).contiguous() else: self._data = data self._scale_shift = scale_shift self._qtype = qtype self._axis = axis self._group_size = group_size def dequantize(self): return TinyGemmQBitsDequantizer.apply(self) def qbits_tensor(self): data = group(self._data.unpack(), axis=self.axis, group_size=self._group_size) n_scales = self._scale_shift.numel() // 2 scale = self._scale_shift[:, :, 0].t().reshape((n_scales, 1)) shift = self._scale_shift[:, :, 1].t().reshape((n_scales, 1)) half_qrange = 2 ** (self.qtype.bits - 1) * scale shift = half_qrange - shift return QBitsTensor(self._qtype, self._axis, self._group_size, self.size(), self.stride(), data, scale, shift) def __tensor_flatten__(self): inner_tensors = ['_data', '_scale_shift'] meta = {'qtype': self._qtype.name, 'axis': str(self._axis), 'group_size': str(self._group_size), 'size': str(list(self.size())), 'stride': str(list(self.stride()))} return (inner_tensors, meta) @staticmethod def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): assert len(inner_tensors) == 2 assert len(meta) == 5 (data, scale_shift) = (inner_tensors['_data'], inner_tensors['_scale_shift']) qtype = qtypes[meta['qtype']] axis = ast.literal_eval(meta['axis']) group_size = ast.literal_eval(meta['group_size']) size = ast.literal_eval(meta['size']) stride = ast.literal_eval(meta['stride']) return TinyGemmQBitsTensor(qtype, axis, group_size, size, stride, data, scale_shift) @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): kwargs = kwargs or {} if func is torch.nn.functional.linear: def qlinear(input, other, bias=None): return TinyGemmQBitsLinearFunction.apply(input, other, bias) return qlinear(*args, **kwargs) with torch._C.DisableTorchFunctionSubclass(): return func(*args, **kwargs) # File: optimum-quanto-main/optimum/quanto/tensor/qbytes.py from torch.autograd import Function from .qtensor import QTensor __all__ = ['QBytesTensor'] class QBytesDequantizer(Function): @staticmethod def forward(ctx, t): if t.qtype.is_floating_point: dqt = t._scale * t._data.to(t._scale.dtype) else: dqt = t._scale * t._data return dqt @staticmethod def backward(ctx, gO): return gO class QBytesTensor(QTensor): def __init__(self, qtype, axis, size, stride, data, scale, requires_grad=False): super().__init__(qtype, axis) self._data = data self._scale = scale def __repr__(self): return f'{self.__class__}({self._data}, scale={self._scale}, dtype={self.dtype})' def dequantize(self): return QBytesDequantizer.apply(self) # File: optimum-quanto-main/optimum/quanto/tensor/qtensor.py import torch from torch.utils import _pytree as pytree __all__ = ['QTensor', 'qfallback'] def qfallback(callable, *args, **kwargs): (args, kwargs) = pytree.tree_map_only(QTensor, lambda x: x.dequantize(), (args, kwargs or {})) return callable(*args, **kwargs) class QTensor(torch.Tensor): def __init__(self, qtype, axis): self._qtype = qtype self._axis = axis def dequantize(self): raise NotImplementedError def save_to_state_dict(self, destination, prefix, keep_vars): def serialize_tensor_subclass(t, destination, prefix, keep_vars): (inner_tensors, meta) = t.__tensor_flatten__() for name in inner_tensors: inner_tensor = getattr(t, name) if type(inner_tensor) is torch.Tensor: destination[prefix + name] = inner_tensor if keep_vars else inner_tensor.detach() else: serialize_tensor_subclass(inner_tensor, destination, prefix + name + '.', keep_vars) serialize_tensor_subclass(self, destination, prefix, keep_vars) @property def axis(self): return self._axis @property def qtype(self): return self._qtype def numpy(self): return self.dequantize().cpu().numpy() def equal(self, other): if type(self) is not type(other): return False (self_tensors, self_meta) = self.__tensor_flatten__() (_, other_meta) = other.__tensor_flatten__() for (name, value) in self_meta.items(): if other_meta[name] != value: return False for name in self_tensors: self_t = getattr(self, name) other_t = getattr(other, name) if self_t.device.type == 'cpu' and self_t.dtype in (torch.float8_e4m3fn, torch.float8_e5m2): if self_t.dtype != other_t.dtype: return False if not torch.equal(self_t.to(torch.float32), other_t.to(torch.float32)): return False elif not torch.equal(self_t, other_t): return False return True # File: optimum-quanto-main/optimum/quanto/tensor/qtype.py from dataclasses import dataclass import torch @dataclass class qtype: name: str is_floating_point: bool bits: int dtype: torch.dtype qmin: float qmax: float def __str__(self): return f'quanto.{self.name}' def __hash__(self): return hash(str(self)) def qint(bits): qmin = -2 ** (bits - 1) qmax = 2 ** (bits - 1) - 1 return qtype(f'qint{bits}', is_floating_point=False, bits=bits, dtype=torch.int8, qmin=qmin, qmax=qmax) qint2 = qint(2) qint4 = qint(4) qint8 = qint(8) def qfloat(dtype: torch.dtype): finfo = torch.finfo(dtype) qmin = finfo.min qmax = finfo.max return qtype(f'q{finfo.dtype}', is_floating_point=True, bits=8, dtype=dtype, qmin=qmin, qmax=qmax) qfloat8_e4m3fn = qfloat(torch.float8_e4m3fn) qfloat8_e5m2 = qfloat(torch.float8_e5m2) qfloat8 = qfloat8_e4m3fn qtypes = {name: q for (name, q) in locals().items() if isinstance(q, qtype)} __all__ = ['qtype', 'qtypes'] + [str(name) for name in qtypes.keys()] # File: optimum-quanto-main/optimum/quanto/tensor/weights/marlin/marlin.py import ast import torch from ...function import QuantizedLinearFunction from ...qtype import qfloat8_e4m3fn, qtypes from ..qbytes import WeightQBytesTensor from .packed import MarlinF8PackedTensor, get_scale_perms class MarlinF8QBytesLinearFunction(QuantizedLinearFunction): @staticmethod def forward(ctx, input, other, bias=None): ctx.save_for_backward(input, other) input_shape = input.shape if input.ndim > 2: input = input.view(-1, input_shape[-1]) output = torch.ops.quanto.fp8_marlin_gemm(input, b_q_weight=other._data._data, b_scales=other._scale, workspace=other._workspace, num_bits=8, size_m=input.shape[0], size_n=other._scale.shape[1], size_k=input.shape[1]) if len(input_shape) > 2: output = output.reshape(input_shape[:-1] + (other._scale.shape[1],)) return output class MarlinF8QBytesTensor(WeightQBytesTensor): @staticmethod def __new__(cls, qtype, axis, size, stride, data, scale, requires_grad=False): assert data.device.type == 'cuda' assert data.device == scale.device return torch.Tensor._make_wrapper_subclass(cls, size, strides=stride, dtype=scale.dtype, device=data.device, requires_grad=requires_grad) def __init__(self, qtype, axis, size, stride, data, scale, requires_grad=False): assert axis == 0 assert data.ndim == 2 out_features = size[0] self._workspace = torch.zeros(out_features // 64 * 16, dtype=torch.int, device=data.device) if data.dtype != torch.int32: assert scale.shape == (out_features, 1) scale_perm_single = get_scale_perms() scale = scale.reshape((-1, len(scale_perm_single)))[:, scale_perm_single] scale = scale.reshape(-1, out_features).contiguous() data_packed = MarlinF8PackedTensor.pack(data) else: data_packed = data super().__init__(qtype, axis, size, stride, data_packed, scale, activation_qtype=qfloat8_e4m3fn, requires_grad=requires_grad) def dequantize(self): float8_data = self._data.unpack() scale_perm_single = get_scale_perms() scale_perm_single_rev = torch.empty_like(scale_perm_single) scale_perm_single_rev[scale_perm_single] = torch.arange(len(scale_perm_single)) scale_reordered = self._scale.reshape((-1, len(scale_perm_single_rev)))[:, scale_perm_single_rev] scale_reordered = scale_reordered.reshape(-1, self._scale.shape[1]).contiguous() return float8_data.to(scale_reordered.dtype) * scale_reordered.T def __repr__(self): return f'MarlinF8QBytesTensor({self._data}, scale={self._scale}, dtype={self.dtype})' def weight_qbytes_tensor(self): data = self._data.unpack() scale_perm_single = get_scale_perms() scale_perm_single_rev = torch.empty_like(scale_perm_single) scale_perm_single_rev[scale_perm_single] = torch.arange(len(scale_perm_single)) scale_reordered = self._scale.reshape((-1, len(scale_perm_single_rev)))[:, scale_perm_single_rev] scale_reordered = scale_reordered.reshape(-1, self._scale.shape[1]).t().contiguous() return WeightQBytesTensor(self._qtype, self._axis, self.size(), self.stride(), data, scale_reordered, self.activation_qtype) def __tensor_flatten__(self): inner_tensors = ['_data', '_scale'] meta = {'qtype': self._qtype.name, 'axis': str(self._axis), 'size': str(list(self.size())), 'stride': str(list(self.stride()))} return (inner_tensors, meta) @staticmethod def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): assert len(inner_tensors) == 2 assert len(meta) == 4 (data, scale) = (inner_tensors['_data'], inner_tensors['_scale']) qtype = qtypes[meta['qtype']] axis = ast.literal_eval(meta['axis']) size = ast.literal_eval(meta['size']) stride = ast.literal_eval(meta['stride']) return MarlinF8QBytesTensor(qtype, axis, size, stride, data, scale) @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): kwargs = kwargs or {} if func is torch.nn.functional.linear: def qlinear(input, other, bias=None): return MarlinF8QBytesLinearFunction.apply(input, other, bias) return qlinear(*args, **kwargs) elif func is torch.equal: (input, other) = args return input.equal(other) with torch._C.DisableTorchFunctionSubclass(): return func(*args, **kwargs) # File: optimum-quanto-main/optimum/quanto/tensor/weights/marlin/packed.py import ast from copy import copy import torch from torch.utils import _pytree as pytree def pack_fp8_as_int32(fp8_tensor: torch.Tensor) -> torch.Tensor: assert fp8_tensor.dtype == torch.float8_e4m3fn if fp8_tensor.shape[0] % 4 != 0: raise ValueError(f'Leading tensor dimension is not divisable by 4: {fp8_tensor.shape[0]}') reshaped = fp8_tensor.reshape(-1, 4, *fp8_tensor.shape[1:]) byte_tensor = reshaped.view(torch.uint8) packed = torch.zeros(fp8_tensor.shape[0] // 4, fp8_tensor.shape[1], dtype=torch.int32, device=fp8_tensor.device) for i in range(4): packed.bitwise_or_(byte_tensor[:, i].to(torch.int32) << i * 8) return packed def unpack_int32_to_fp8(int32_tensor: torch.Tensor) -> torch.Tensor: bits = 8 unpacked = [] for i in range(4): mask = 2 ** (bits * (i + 1)) - 1 tmp = (int32_tensor & mask) >> bits * i tmp = tmp.to(torch.uint8) unpacked.append(tmp) unpacked = torch.cat(unpacked).view(torch.float8_e4m3fn) return unpacked def get_scale_perms() -> torch.Tensor: scale_perm_single = [] for i in range(4): scale_perm_single.extend([2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]]) return torch.tensor(scale_perm_single, dtype=torch.int64) def get_row_permutation(n_rows: int) -> torch.Tensor: modulo = n_rows // 4 * 16 - 8 b = n_rows // 2 rows_idx = [i * 16 % modulo for i in range(b)] rows_idx[-1] = rows_idx[-2] + 16 if b > 2 else 8 rows_idx = torch.tensor(rows_idx) rows_idx = torch.cat((rows_idx, rows_idx + 1)) rows_idx = torch.tile(rows_idx[:, None], (1, 4)) rows_idx = rows_idx + torch.tensor([[0, 2, 4, 6]]) rows_idx = rows_idx.reshape(-1) rows_idx_rev = torch.empty_like(rows_idx) rows_idx_rev[rows_idx] = torch.arange(len(rows_idx)) return rows_idx_rev def get_column_permutation(n_col: int) -> torch.Tensor: tile_size = 256 n_blocks = n_col // tile_size a = torch.arange(tile_size) rest = a % 8 frac = a // 8 original_index = 32 * rest + frac original_index = torch.arange(n_blocks)[:, None] * 256 + original_index original_index = original_index.reshape(-1) original_index = original_index.reshape(4 * n_blocks, 64) tmp1 = torch.arange(4) tmp1 = tmp1.repeat(n_blocks, 1).T.reshape(-1) tmp2 = torch.arange(n_blocks) * 4 tmp2 = tmp2.repeat(4) remap_col_index = tmp1 + tmp2 original_index = original_index[remap_col_index] original_index = original_index.reshape(-1) return original_index class MarlinF8PackedTensor(torch.Tensor): def __new__(cls, data, size, stride, requires_grad=False): assert data.device.type == 'cuda' assert data.dtype == torch.int32 assert requires_grad is False return torch.Tensor._make_wrapper_subclass(cls, size, strides=stride, dtype=torch.int32, device=data.device, requires_grad=requires_grad) def __init__(self, data, size, stride, requires_grad=False): self._data = data def __repr__(self): return f'MarlinF8PackedTensor({self._data})' @classmethod def pack(cls, tensor: torch.Tensor): (out_features, in_features) = tensor.shape data_int32 = pack_fp8_as_int32(tensor.T) perm = torch.empty(0, dtype=torch.int, device=tensor.device) data_int32 = torch.ops.quanto.gptq_marlin_repack(b_q_weight=data_int32, perm=perm, size_k=in_features, size_n=out_features, num_bits=8) return cls(data_int32, size=tensor.size(), stride=tensor.stride()) def unpack(self) -> torch.Tensor: float8_data = unpack_int32_to_fp8(self._data) uint8_data = float8_data.view(torch.uint8) (n_rows, n_col) = uint8_data.shape column_map = get_column_permutation(n_col=n_col) uint8_data = uint8_data.T.contiguous() uint8_data = uint8_data[column_map] uint8_data = uint8_data.T.contiguous() uint8_data = uint8_data.reshape(uint8_data.shape[0] * 4, -1) row_map = get_row_permutation(n_rows=n_rows) uint8_data = uint8_data[row_map] float8_data = uint8_data.view(torch.float8_e4m3fn) float8_data = float8_data.T return float8_data @property def dtype(self): return torch.int32 def __tensor_flatten__(self): inner_tensors = ['_data'] meta = {'size': str(list(self.size())), 'stride': str(self.stride())} return (inner_tensors, meta) @staticmethod def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): assert len(inner_tensors) == 1 assert len(meta) == 2 data = inner_tensors['_data'] size = ast.literal_eval(meta['size']) stride = ast.literal_eval(meta['stride']) return MarlinF8PackedTensor(data, size, stride) __torch_function__ = torch._C._disabled_torch_function_impl @classmethod def __torch_dispatch__(cls, op, types, args, kwargs=None): if op.overloadpacket is torch.ops.aten.detach: t = args[0] data = op(t._data) return cls(data, t.size(), t.stride()) elif op.overloadpacket in (torch.ops.aten._to_copy, torch.ops.aten.to): t = args[0] dtype = kwargs.get('dtype', torch.uint8) if dtype != torch.float8_e4m3fn: raise ValueError(f'MarlinF8PackedTensor are torch.int32 only and cannot be moved to {dtype}.') device = kwargs.get('device', t.device) if device.type == 'cuda': data_kwargs = copy(kwargs) data_kwargs['dtype'] = t._data.dtype data = op(t._data, **data_kwargs) return cls(data, t.size(), t.stride()) else: (args, kwargs) = pytree.tree_map_only(cls, lambda x: x.unpack(), (args, kwargs or {})) return op(*args, **kwargs) # File: optimum-quanto-main/optimum/quanto/tensor/weights/qbytes.py import ast from typing import Optional import torch from torch.autograd import Function from ..function import QuantizedLinearFunction from ..qbytes import QBytesTensor from ..qtensor import qfallback from ..qtype import qtype, qtypes __all__ = ['WeightQBytesTensor'] class WeightQBytesQuantizer(Function): @staticmethod def forward(ctx, base: torch.Tensor, qtype: qtype, axis: int, scale: torch.Tensor, activation_qtype: Optional[qtype]) -> torch.Tensor: if qtype.bits != 8: raise ValueError('QBytesTensor can only be of 8-bit qtype') data = torch.ops.quanto.quantize_symmetric(base, dtype=qtype.dtype, axis=axis, scale=scale) return WeightQBytesTensor.create(qtype, axis, size=base.size(), stride=base.stride(), data=data, scale=scale, activation_qtype=activation_qtype) @staticmethod def backward(ctx, gO): return (gO, None, None, None, None, None) class WeightQBytesLinearFunction(QuantizedLinearFunction): @staticmethod def forward(ctx, input, other, bias=None): ctx.save_for_backward(input, other) if isinstance(input, QBytesTensor): output = torch.ops.quanto.qbytes_mm(input._data, other._data, input._scale * other._scale) else: output = torch.ops.quanto.qbytes_mm(input, other._data, other._scale) if bias is not None: output = output + bias return output class WeightQBytesTensor(QBytesTensor): @staticmethod def create(qtype, axis, size, stride, data, scale, activation_qtype: Optional[qtype]=None, requires_grad=False): from .marlin import MarlinF8QBytesTensor if qtype == qtypes['qfloat8_e4m3fn'] and activation_qtype is None and (scale.dtype in [torch.float16, torch.bfloat16]) and (len(size) == 2) and (data.device.type == 'cuda') and (axis == 0) and (torch.cuda.get_device_capability(data.device)[0] >= 8): if data.dtype == torch.int32 or (data.shape[0] % 64 == 0 and data.shape[1] % 16 == 0): return MarlinF8QBytesTensor(qtype, axis, size, stride, data, scale, requires_grad) return WeightQBytesTensor(qtype, axis, size, stride, data, scale, activation_qtype, requires_grad) @staticmethod def __new__(cls, qtype, axis, size, stride, data, scale, activation_qtype, requires_grad=False): assert data.device == scale.device return torch.Tensor._make_wrapper_subclass(cls, size, strides=stride, dtype=scale.dtype, device=data.device, requires_grad=requires_grad) def __init__(self, qtype, axis, size, stride, data, scale, activation_qtype, requires_grad=False): super().__init__(qtype, axis, size, stride, data, scale, requires_grad=requires_grad) self.activation_qtype = activation_qtype @classmethod def quantize(cls, base: torch.Tensor, qtype: qtype, axis: int, scale: torch.Tensor, activation_qtype: Optional[qtype]=None) -> torch.Tensor: return WeightQBytesQuantizer.apply(base, qtype, axis, scale, activation_qtype) @staticmethod def load_from_state_dict(state_dict, prefix, qtype, axis, size, stride, activation_qtype, missing_keys): inner_tensors_dict = {} missing = False for name in ['_data', '_scale']: if prefix + name not in state_dict: missing_keys.append(prefix + name) missing = True else: inner_tensors_dict[name] = state_dict.pop(prefix + name) if missing: return None meta = {'qtype': qtype.name, 'axis': str(axis), 'size': str(list(size)), 'stride': str(list(stride)), 'activation_qtype': 'none' if activation_qtype is None else activation_qtype.name} return WeightQBytesTensor.__tensor_unflatten__(inner_tensors_dict, meta, None, None) def optimize(self): if type(self) is not WeightQBytesTensor: return self return WeightQBytesTensor.create(self.qtype, self.axis, self.size(), self.stride(), self._data, self._scale, self.activation_qtype, self.requires_grad) def save_to_state_dict(self, destination, prefix, keep_vars): if type(self) is WeightQBytesTensor: super().save_to_state_dict(destination, prefix, keep_vars) else: self.weight_qbytes_tensor().save_to_state_dict(destination, prefix, keep_vars) def weight_qbytes_tensor(self): raise NotImplementedError def __tensor_flatten__(self): inner_tensors = ['_data', '_scale'] meta = {'qtype': self._qtype.name, 'axis': str(self._axis), 'size': str(list(self.size())), 'stride': str(list(self.stride())), 'activation_qtype': 'none' if self.activation_qtype is None else self.activation_qtype.name} return (inner_tensors, meta) @staticmethod def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): assert len(inner_tensors) == 2 assert len(meta) == 5 (data, scale) = (inner_tensors['_data'], inner_tensors['_scale']) qtype = qtypes[meta['qtype']] axis = ast.literal_eval(meta['axis']) size = ast.literal_eval(meta['size']) stride = ast.literal_eval(meta['stride']) activation_qtype = None if meta['activation_qtype'] == 'none' else qtypes[meta['activation_qtype']] return WeightQBytesTensor(qtype, axis, size, stride, data, scale, activation_qtype) @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): kwargs = kwargs or {} if func is torch.nn.functional.linear: def qlinear(input, other, bias=None): return WeightQBytesLinearFunction.apply(input, other, bias) return qlinear(*args, **kwargs) elif func is torch.equal: (input, other) = args return input.equal(other) with torch._C.DisableTorchFunctionSubclass(): return func(*args, **kwargs) @classmethod def __torch_dispatch__(cls, op, types, args, kwargs=None): op = op.overloadpacket if op is torch.ops.aten.detach: t = args[0] (inner_tensor_names, meta) = t.__tensor_flatten__() detached_tensors = {} for inner_name in inner_tensor_names: detached_tensors[inner_name] = op(getattr(t, inner_name)) return cls.__tensor_unflatten__(detached_tensors, meta, t.size(), t.stride()) elif op in [torch.ops.aten._to_copy, torch.ops.aten.to]: t = args[0] dtype = kwargs.pop('dtype', t.dtype) device = kwargs.pop('device', t.device) if dtype != t.dtype: raise ValueError('The dtype of a weights Tensor cannot be changed') if type(t) is not WeightQBytesTensor and t.device.type != device.type: t = t.weight_qbytes_tensor() out_data = op(t._data, device=device, **kwargs) out_scale = op(t._scale, device=device, **kwargs) return WeightQBytesTensor.create(t.qtype, t.axis, t.size(), t.stride(), out_data, out_scale, activation_qtype=t.activation_qtype, requires_grad=t.requires_grad) elif op is torch.ops.aten.t and cls is WeightQBytesTensor: t = args[0] out_data = op(t._data) out_scale = t._scale out_axis = t.axis (dim0, dim1) = t.size() out_size = torch.Size([dim1, dim0]) out_stride = t.stride()[::-1] if t.axis is not None: out_scale = op(out_scale) out_axis = 0 if out_axis == -1 else -1 return WeightQBytesTensor(t.qtype, out_axis, out_size, out_stride, out_data, out_scale, t.activation_qtype) kwargs = kwargs or {} return qfallback(op, *args, **kwargs) # File: optimum-quanto-main/optimum/quanto/tensor/weights/quantization.py from typing import Optional import torch from ..optimizers import AbsmaxOptimizer, AffineOptimizer, MaxOptimizer, Optimizer, SymmetricOptimizer from ..qbits import QBitsTensor from ..qtype import qtype from .qbytes import WeightQBytesTensor __all__ = ['quantize_weight'] default_affine_optimizer = MaxOptimizer() default_symmetric_optimizer = AbsmaxOptimizer() def quantize_weight(t: torch.Tensor, qtype: qtype, axis: int, group_size: Optional[int]=None, optimizer: Optional[Optimizer]=None, zeropoint: bool=False, activation_qtype: Optional[qtype]=None): if axis not in (0, -1): raise ValueError('axis parameter must be 0 (first axis) or -1 (last axis)') if qtype.bits == 8: if optimizer is None: optimizer = default_symmetric_optimizer elif not isinstance(optimizer, SymmetricOptimizer): raise ValueError('A SymmetricOptimizer is expected') if group_size is not None: raise ValueError('group_size cannot be specified for 8-bit qtypes.') if axis is not None and t.shape[axis] == 1: axis = None scale = optimizer(t, qtype.qmax, axis) return WeightQBytesTensor.quantize(t, qtype, axis, scale, activation_qtype) if optimizer is None: optimizer = default_affine_optimizer elif not isinstance(optimizer, AffineOptimizer): raise ValueError('An AffineOptimizer is expected') (scale, shift) = optimizer(t, qtype.bits, axis, group_size) if zeropoint: shift = torch.clamp(torch.round(shift / scale), 0, 2 ** qtype.bits - 1).to(torch.uint8) return QBitsTensor.quantize(t, qtype, axis, group_size, scale, shift) |