docs / huggingface_dataspeech.txt
danidarko's picture
Upload 59 files
b1d4de0 verified
# File: dataspeech-main/dataspeech/cpu_enrichments/rate.py
from g2p import make_g2p
transducer = make_g2p('eng', 'eng-ipa')
def rate_apply(batch, rank=None, audio_column_name='audio', text_column_name='text'):
if isinstance(batch[text_column_name], list):
speaking_rates = []
phonemes_list = []
if 'speech_duration' in batch:
for (text, audio_duration) in zip(batch[text_column_name], batch['speech_duration']):
phonemes = transducer(text).output_string
audio_duration = audio_duration if audio_duration != 0 else 0.01
speaking_rate = len(phonemes) / audio_duration
speaking_rates.append(speaking_rate)
phonemes_list.append(phonemes)
else:
for (text, audio) in zip(batch[text_column_name], batch[audio_column_name]):
phonemes = transducer(text).output_string
sample_rate = audio['sampling_rate']
audio_length = len(audio['array'].squeeze()) / sample_rate
speaking_rate = len(phonemes) / audio_length
speaking_rates.append(speaking_rate)
phonemes_list.append(phonemes)
batch['speaking_rate'] = speaking_rates
batch['phonemes'] = phonemes_list
else:
phonemes = transducer(batch[text_column_name]).output_string
if 'speech_duration' in batch:
audio_length = batch['speech_duration'] if batch['speech_duration'] != 0 else 0.01
else:
sample_rate = batch[audio_column_name]['sampling_rate']
audio_length = len(batch[audio_column_name]['array'].squeeze()) / sample_rate
speaking_rate = len(phonemes) / audio_length
batch['speaking_rate'] = speaking_rate
batch['phonemes'] = phonemes
return batch
# File: dataspeech-main/dataspeech/gpu_enrichments/pitch.py
import torch
import penn
hopsize = 0.01
fmin = 30.0
fmax = 1000.0
checkpoint = None
center = 'half-hop'
interp_unvoiced_at = 0.065
def pitch_apply(batch, rank=None, audio_column_name='audio', output_column_name='utterance_pitch', penn_batch_size=4096):
if isinstance(batch[audio_column_name], list):
utterance_pitch_mean = []
utterance_pitch_std = []
for sample in batch[audio_column_name]:
(pitch, periodicity) = penn.from_audio(torch.tensor(sample['array'][None, :]).float(), sample['sampling_rate'], hopsize=hopsize, fmin=fmin, fmax=fmax, checkpoint=checkpoint, batch_size=penn_batch_size, center=center, interp_unvoiced_at=interp_unvoiced_at, gpu=(rank or 0) % torch.cuda.device_count() if torch.cuda.device_count() > 0 else rank)
utterance_pitch_mean.append(pitch.mean().cpu())
utterance_pitch_std.append(pitch.std().cpu())
batch[f'{output_column_name}_mean'] = utterance_pitch_mean
batch[f'{output_column_name}_std'] = utterance_pitch_std
else:
sample = batch[audio_column_name]
(pitch, periodicity) = penn.from_audio(torch.tensor(sample['array'][None, :]).float(), sample['sampling_rate'], hopsize=hopsize, fmin=fmin, fmax=fmax, checkpoint=checkpoint, batch_size=penn_batch_size, center=center, interp_unvoiced_at=interp_unvoiced_at, gpu=(rank or 0) % torch.cuda.device_count() if torch.cuda.device_count() > 0 else rank)
batch[f'{output_column_name}_mean'] = pitch.mean().cpu()
batch[f'{output_column_name}_std'] = pitch.std().cpu()
return batch
# File: dataspeech-main/dataspeech/gpu_enrichments/snr_and_reverb.py
from pyannote.audio import Model
from pathlib import Path
from brouhaha.pipeline import RegressiveActivityDetectionPipeline
import torch
from huggingface_hub import hf_hub_download
import numpy as np
model = None
ratio = 16000 / 270
def snr_apply(batch, rank=None, audio_column_name='audio', batch_size=32):
global model
if model is None:
model = Model.from_pretrained(Path(hf_hub_download(repo_id='ylacombe/brouhaha-best', filename='best.ckpt')), strict=False)
if rank is not None or torch.cuda.device_count() > 0:
device = f'cuda:{(rank or 0) % torch.cuda.device_count()}'
model.to(device)
pipeline = RegressiveActivityDetectionPipeline(segmentation=model, batch_size=batch_size)
if rank:
pipeline.to(torch.device(device))
device = pipeline._models['segmentation'].device
if isinstance(batch[audio_column_name], list):
snr = []
c50 = []
vad_durations = []
for sample in batch[audio_column_name]:
res = pipeline({'sample_rate': sample['sampling_rate'], 'waveform': torch.tensor(sample['array'][None, :]).to(device).float()})
mask = np.full(res['snr'].shape, False)
for (segment, _) in res['annotation'].itertracks():
start = int(segment.start * ratio)
end = int(segment.end * ratio)
mask[start:end] = True
mask = ~((res['snr'] == 0.0) & (res['c50'] == 0.0)) & mask
vad_duration = sum(map(lambda x: x[0].duration, res['annotation'].itertracks()))
snr.append(res['snr'][mask].mean())
c50.append(res['c50'][mask].mean())
vad_durations.append(np.float32(vad_duration))
batch['snr'] = snr
batch['c50'] = c50
batch['speech_duration'] = vad_durations
else:
res = pipeline({'sample_rate': batch[audio_column_name]['sampling_rate'], 'waveform': torch.tensor(batch[audio_column_name]['array'][None, :]).to(device).float()})
mask = np.full(res['snr'].shape, False)
for (segment, _) in res['annotation'].itertracks():
start = int(segment.start * ratio)
end = int(segment.end * ratio)
mask[start:end] = True
mask = ~((res['snr'] == 0.0) & (res['c50'] == 0.0)) & mask
vad_duration = sum(map(lambda x: x[0].duration, res['annotation'].itertracks()))
batch['snr'] = res['snr'][mask].mean()
batch['c50'] = res['c50'][mask].mean()
batch['speech_duration'] = vad_duration
return batch
# File: dataspeech-main/dataspeech/gpu_enrichments/squim.py
from torchaudio.pipelines import SQUIM_OBJECTIVE
import torch
import torchaudio
model = None
max_audio_length = 15 * SQUIM_OBJECTIVE.sample_rate
def squim_apply(batch, rank=None, audio_column_name='audio'):
global model
if model is None:
model = SQUIM_OBJECTIVE.get_model()
if rank is not None or torch.cuda.device_count() > 0:
device = f'cuda:{(rank or 0) % torch.cuda.device_count()}'
model.to(device)
else:
device = 'cpu'
if isinstance(batch[audio_column_name], list):
sdr = []
pesq = []
stoi = []
for sample in batch[audio_column_name]:
waveform = torchaudio.functional.resample(torch.tensor(sample['array'])[None, :].to(device).float(), sample['sampling_rate'], SQUIM_OBJECTIVE.sample_rate)
with torch.no_grad():
waveform = waveform[:, :min(max_audio_length, waveform.shape[1])]
(stoi_sample, pesq_sample, sdr_sample) = model(waveform)
sdr.append(sdr_sample.cpu()[0])
pesq.append(pesq_sample.cpu()[0])
stoi.append(stoi_sample.cpu()[0])
batch['sdr'] = sdr
batch['pesq'] = pesq
batch['stoi'] = stoi
else:
waveform = torchaudio.functional.resample(torch.tensor(batch[audio_column_name]['array'][None, :]).to(device).float(), batch[audio_column_name]['sampling_rate'], SQUIM_OBJECTIVE.sample_rate)
with torch.no_grad():
(stoi_sample, pesq_sample, sdr_sample) = model(waveform)
batch['sdr'] = sdr_sample.cpu()[0]
batch['pesq'] = pesq_sample.cpu()[0]
batch['stoi'] = stoi_sample.cpu()[0]
return batch
# File: dataspeech-main/main.py
from datasets import load_dataset, Audio
from multiprocess import set_start_method
from dataspeech import rate_apply, pitch_apply, snr_apply, squim_apply
import torch
import argparse
if __name__ == '__main__':
set_start_method('spawn')
parser = argparse.ArgumentParser()
parser.add_argument('dataset_name', type=str, help='Path or name of the dataset. See: https://huggingface.co/docs/datasets/v2.17.0/en/package_reference/loading_methods#datasets.load_dataset.path')
parser.add_argument('--configuration', default=None, type=str, help='Dataset configuration to use, if necessary.')
parser.add_argument('--output_dir', default=None, type=str, help='If specified, save the dataset on disk with this path.')
parser.add_argument('--repo_id', default=None, type=str, help='If specified, push the dataset to the hub.')
parser.add_argument('--audio_column_name', default='audio', type=str, help='Column name of the audio column to be enriched.')
parser.add_argument('--text_column_name', default='text', type=str, help='Text column name.')
parser.add_argument('--rename_column', action='store_true', help="If activated, rename audio and text column names to 'audio' and 'text'. Useful if you want to merge datasets afterwards.")
parser.add_argument('--cpu_num_workers', default=1, type=int, help="Number of CPU workers for transformations that don't use GPUs or if no GPU are available.")
parser.add_argument('--cpu_writer_batch_size', default=1000, type=int, help="writer_batch_size for transformations that don't use GPUs. See: https://huggingface.co/docs/datasets/v2.17.0/en/package_reference/main_classes#datasets.Dataset.map.writer_batch_size")
parser.add_argument('--batch_size', default=2, type=int, help='This parameters specify how many samples are passed by workers for operations that are using GPUs.')
parser.add_argument('--penn_batch_size', default=4096, type=int, help="Pitch estimation chunks audio into smaller pieces and processes them in batch. This specify the batch size. If you are using a gpu, pick a batch size that doesn't cause memory errors.")
parser.add_argument('--num_workers_per_gpu_for_pitch', default=1, type=int, help='Number of workers per GPU for the pitch estimation if GPUs are available. Defaults to 1 if some are avaiable. Useful if you want multiple processes per GPUs to maximise GPU usage.')
parser.add_argument('--num_workers_per_gpu_for_snr', default=1, type=int, help='Number of workers per GPU for the SNR and reverberation estimation if GPUs are available. Defaults to 1 if some are avaiable. Useful if you want multiple processes per GPUs to maximise GPU usage.')
parser.add_argument('--apply_squim_quality_estimation', action='store_true', help='If set, will also use torchaudio-squim estimation (SI-SNR, STOI and PESQ).')
parser.add_argument('--num_workers_per_gpu_for_squim', default=1, type=int, help='Number of workers per GPU for the SI-SNR, STOI and PESQ estimation if GPUs are available. Defaults to 1 if some are avaiable. Useful if you want multiple processes per GPUs to maximise GPU usage.')
args = parser.parse_args()
if args.configuration:
dataset = load_dataset(args.dataset_name, args.configuration, num_proc=args.cpu_num_workers)
else:
dataset = load_dataset(args.dataset_name, num_proc=args.cpu_num_workers)
audio_column_name = 'audio' if args.rename_column else args.audio_column_name
text_column_name = 'text' if args.rename_column else args.text_column_name
if args.rename_column:
dataset = dataset.rename_columns({args.audio_column_name: 'audio', args.text_column_name: 'text'})
if args.apply_squim_quality_estimation:
print('Compute SI-SDR, PESQ, STOI')
squim_dataset = dataset.map(squim_apply, batched=True, batch_size=args.batch_size, with_rank=True if torch.cuda.device_count() > 0 else False, num_proc=torch.cuda.device_count() * args.num_workers_per_gpu_for_squim if torch.cuda.device_count() > 0 else args.cpu_num_workers, remove_columns=[audio_column_name], fn_kwargs={'audio_column_name': audio_column_name})
print('Compute pitch')
pitch_dataset = dataset.cast_column(audio_column_name, Audio(sampling_rate=16000)).map(pitch_apply, batched=True, batch_size=args.batch_size, with_rank=True if torch.cuda.device_count() > 0 else False, num_proc=torch.cuda.device_count() * args.num_workers_per_gpu_for_pitch if torch.cuda.device_count() > 0 else args.cpu_num_workers, remove_columns=[audio_column_name], fn_kwargs={'audio_column_name': audio_column_name, 'penn_batch_size': args.penn_batch_size})
print('Compute snr and reverb')
snr_dataset = dataset.map(snr_apply, batched=True, batch_size=args.batch_size, with_rank=True if torch.cuda.device_count() > 0 else False, num_proc=torch.cuda.device_count() * args.num_workers_per_gpu_for_snr if torch.cuda.device_count() > 0 else args.cpu_num_workers, remove_columns=[audio_column_name], fn_kwargs={'audio_column_name': audio_column_name})
print('Compute speaking rate')
if 'speech_duration' in snr_dataset[next(iter(snr_dataset.keys()))].features:
rate_dataset = snr_dataset.map(rate_apply, with_rank=False, num_proc=args.cpu_num_workers, writer_batch_size=args.cpu_writer_batch_size, fn_kwargs={'audio_column_name': audio_column_name, 'text_column_name': text_column_name})
else:
rate_dataset = dataset.map(rate_apply, with_rank=False, num_proc=args.cpu_num_workers, writer_batch_size=args.cpu_writer_batch_size, remove_columns=[audio_column_name], fn_kwargs={'audio_column_name': audio_column_name, 'text_column_name': text_column_name})
for split in dataset.keys():
dataset[split] = pitch_dataset[split].add_column('snr', snr_dataset[split]['snr']).add_column('c50', snr_dataset[split]['c50'])
if 'speech_duration' in snr_dataset[split]:
dataset[split] = dataset[split].add_column('speech_duration', snr_dataset[split]['speech_duration'])
dataset[split] = dataset[split].add_column('speaking_rate', rate_dataset[split]['speaking_rate']).add_column('phonemes', rate_dataset[split]['phonemes'])
if args.apply_squim_quality_estimation:
dataset[split] = dataset[split].add_column('stoi', squim_dataset[split]['stoi']).add_column('si-sdr', squim_dataset[split]['sdr']).add_column('pesq', squim_dataset[split]['pesq'])
if args.output_dir:
print('Saving to disk...')
dataset.save_to_disk(args.output_dir)
if args.repo_id:
print('Pushing to the hub...')
if args.configuration:
dataset.push_to_hub(args.repo_id, args.configuration)
else:
dataset.push_to_hub(args.repo_id)