diff --git "a/huggingface_diffusers.txt" "b/huggingface_diffusers.txt" new file mode 100644--- /dev/null +++ "b/huggingface_diffusers.txt" @@ -0,0 +1,94512 @@ +# File: diffusers-main/src/diffusers/__init__.py +__version__ = '0.31.0.dev0' +from typing import TYPE_CHECKING +from .utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_k_diffusion_available, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_sentencepiece_available, is_torch_available, is_torchsde_available, is_transformers_available +_import_structure = {'configuration_utils': ['ConfigMixin'], 'loaders': ['FromOriginalModelMixin'], 'models': [], 'pipelines': [], 'schedulers': [], 'utils': ['OptionalDependencyNotAvailable', 'is_flax_available', 'is_inflect_available', 'is_invisible_watermark_available', 'is_k_diffusion_available', 'is_k_diffusion_version', 'is_librosa_available', 'is_note_seq_available', 'is_onnx_available', 'is_scipy_available', 'is_torch_available', 'is_torchsde_available', 'is_transformers_available', 'is_transformers_version', 'is_unidecode_available', 'logging']} +try: + if not is_onnx_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils import dummy_onnx_objects + _import_structure['utils.dummy_onnx_objects'] = [name for name in dir(dummy_onnx_objects) if not name.startswith('_')] +else: + _import_structure['pipelines'].extend(['OnnxRuntimeModel']) +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils import dummy_pt_objects + _import_structure['utils.dummy_pt_objects'] = [name for name in dir(dummy_pt_objects) if not name.startswith('_')] +else: + _import_structure['models'].extend(['AsymmetricAutoencoderKL', 'AuraFlowTransformer2DModel', 'AutoencoderKL', 'AutoencoderKLCogVideoX', 'AutoencoderKLTemporalDecoder', 'AutoencoderOobleck', 'AutoencoderTiny', 'CogVideoXTransformer3DModel', 'ConsistencyDecoderVAE', 'ControlNetModel', 'ControlNetXSAdapter', 'DiTTransformer2DModel', 'FluxControlNetModel', 'FluxMultiControlNetModel', 'FluxTransformer2DModel', 'HunyuanDiT2DControlNetModel', 'HunyuanDiT2DModel', 'HunyuanDiT2DMultiControlNetModel', 'I2VGenXLUNet', 'Kandinsky3UNet', 'LatteTransformer3DModel', 'LuminaNextDiT2DModel', 'ModelMixin', 'MotionAdapter', 'MultiAdapter', 'PixArtTransformer2DModel', 'PriorTransformer', 'SD3ControlNetModel', 'SD3MultiControlNetModel', 'SD3Transformer2DModel', 'SparseControlNetModel', 'StableAudioDiTModel', 'StableCascadeUNet', 'T2IAdapter', 'T5FilmDecoder', 'Transformer2DModel', 'UNet1DModel', 'UNet2DConditionModel', 'UNet2DModel', 'UNet3DConditionModel', 'UNetControlNetXSModel', 'UNetMotionModel', 'UNetSpatioTemporalConditionModel', 'UVit2DModel', 'VQModel']) + _import_structure['optimization'] = ['get_constant_schedule', 'get_constant_schedule_with_warmup', 'get_cosine_schedule_with_warmup', 'get_cosine_with_hard_restarts_schedule_with_warmup', 'get_linear_schedule_with_warmup', 'get_polynomial_decay_schedule_with_warmup', 'get_scheduler'] + _import_structure['pipelines'].extend(['AudioPipelineOutput', 'AutoPipelineForImage2Image', 'AutoPipelineForInpainting', 'AutoPipelineForText2Image', 'ConsistencyModelPipeline', 'DanceDiffusionPipeline', 'DDIMPipeline', 'DDPMPipeline', 'DiffusionPipeline', 'DiTPipeline', 'ImagePipelineOutput', 'KarrasVePipeline', 'LDMPipeline', 'LDMSuperResolutionPipeline', 'PNDMPipeline', 'RePaintPipeline', 'ScoreSdeVePipeline', 'StableDiffusionMixin']) + _import_structure['schedulers'].extend(['AmusedScheduler', 'CMStochasticIterativeScheduler', 'CogVideoXDDIMScheduler', 'CogVideoXDPMScheduler', 'DDIMInverseScheduler', 'DDIMParallelScheduler', 'DDIMScheduler', 'DDPMParallelScheduler', 'DDPMScheduler', 'DDPMWuerstchenScheduler', 'DEISMultistepScheduler', 'DPMSolverMultistepInverseScheduler', 'DPMSolverMultistepScheduler', 'DPMSolverSinglestepScheduler', 'EDMDPMSolverMultistepScheduler', 'EDMEulerScheduler', 'EulerAncestralDiscreteScheduler', 'EulerDiscreteScheduler', 'FlowMatchEulerDiscreteScheduler', 'FlowMatchHeunDiscreteScheduler', 'HeunDiscreteScheduler', 'IPNDMScheduler', 'KarrasVeScheduler', 'KDPM2AncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'LCMScheduler', 'PNDMScheduler', 'RePaintScheduler', 'SASolverScheduler', 'SchedulerMixin', 'ScoreSdeVeScheduler', 'TCDScheduler', 'UnCLIPScheduler', 'UniPCMultistepScheduler', 'VQDiffusionScheduler']) + _import_structure['training_utils'] = ['EMAModel'] +try: + if not (is_torch_available() and is_scipy_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils import dummy_torch_and_scipy_objects + _import_structure['utils.dummy_torch_and_scipy_objects'] = [name for name in dir(dummy_torch_and_scipy_objects) if not name.startswith('_')] +else: + _import_structure['schedulers'].extend(['LMSDiscreteScheduler']) +try: + if not (is_torch_available() and is_torchsde_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils import dummy_torch_and_torchsde_objects + _import_structure['utils.dummy_torch_and_torchsde_objects'] = [name for name in dir(dummy_torch_and_torchsde_objects) if not name.startswith('_')] +else: + _import_structure['schedulers'].extend(['CosineDPMSolverMultistepScheduler', 'DPMSolverSDEScheduler']) +try: + if not (is_torch_available() and is_transformers_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils import dummy_torch_and_transformers_objects + _import_structure['utils.dummy_torch_and_transformers_objects'] = [name for name in dir(dummy_torch_and_transformers_objects) if not name.startswith('_')] +else: + _import_structure['pipelines'].extend(['AltDiffusionImg2ImgPipeline', 'AltDiffusionPipeline', 'AmusedImg2ImgPipeline', 'AmusedInpaintPipeline', 'AmusedPipeline', 'AnimateDiffControlNetPipeline', 'AnimateDiffPAGPipeline', 'AnimateDiffPipeline', 'AnimateDiffSDXLPipeline', 'AnimateDiffSparseControlNetPipeline', 'AnimateDiffVideoToVideoControlNetPipeline', 'AnimateDiffVideoToVideoPipeline', 'AudioLDM2Pipeline', 'AudioLDM2ProjectionModel', 'AudioLDM2UNet2DConditionModel', 'AudioLDMPipeline', 'AuraFlowPipeline', 'BlipDiffusionControlNetPipeline', 'BlipDiffusionPipeline', 'CLIPImageProjection', 'CogVideoXPipeline', 'CogVideoXVideoToVideoPipeline', 'CycleDiffusionPipeline', 'FluxControlNetPipeline', 'FluxImg2ImgPipeline', 'FluxInpaintPipeline', 'FluxPipeline', 'HunyuanDiTControlNetPipeline', 'HunyuanDiTPAGPipeline', 'HunyuanDiTPipeline', 'I2VGenXLPipeline', 'IFImg2ImgPipeline', 'IFImg2ImgSuperResolutionPipeline', 'IFInpaintingPipeline', 'IFInpaintingSuperResolutionPipeline', 'IFPipeline', 'IFSuperResolutionPipeline', 'ImageTextPipelineOutput', 'Kandinsky3Img2ImgPipeline', 'Kandinsky3Pipeline', 'KandinskyCombinedPipeline', 'KandinskyImg2ImgCombinedPipeline', 'KandinskyImg2ImgPipeline', 'KandinskyInpaintCombinedPipeline', 'KandinskyInpaintPipeline', 'KandinskyPipeline', 'KandinskyPriorPipeline', 'KandinskyV22CombinedPipeline', 'KandinskyV22ControlnetImg2ImgPipeline', 'KandinskyV22ControlnetPipeline', 'KandinskyV22Img2ImgCombinedPipeline', 'KandinskyV22Img2ImgPipeline', 'KandinskyV22InpaintCombinedPipeline', 'KandinskyV22InpaintPipeline', 'KandinskyV22Pipeline', 'KandinskyV22PriorEmb2EmbPipeline', 'KandinskyV22PriorPipeline', 'LatentConsistencyModelImg2ImgPipeline', 'LatentConsistencyModelPipeline', 'LattePipeline', 'LDMTextToImagePipeline', 'LEditsPPPipelineStableDiffusion', 'LEditsPPPipelineStableDiffusionXL', 'LuminaText2ImgPipeline', 'MarigoldDepthPipeline', 'MarigoldNormalsPipeline', 'MusicLDMPipeline', 'PaintByExamplePipeline', 'PIAPipeline', 'PixArtAlphaPipeline', 'PixArtSigmaPAGPipeline', 'PixArtSigmaPipeline', 'SemanticStableDiffusionPipeline', 'ShapEImg2ImgPipeline', 'ShapEPipeline', 'StableAudioPipeline', 'StableAudioProjectionModel', 'StableCascadeCombinedPipeline', 'StableCascadeDecoderPipeline', 'StableCascadePriorPipeline', 'StableDiffusion3ControlNetInpaintingPipeline', 'StableDiffusion3ControlNetPipeline', 'StableDiffusion3Img2ImgPipeline', 'StableDiffusion3InpaintPipeline', 'StableDiffusion3PAGPipeline', 'StableDiffusion3Pipeline', 'StableDiffusionAdapterPipeline', 'StableDiffusionAttendAndExcitePipeline', 'StableDiffusionControlNetImg2ImgPipeline', 'StableDiffusionControlNetInpaintPipeline', 'StableDiffusionControlNetPAGPipeline', 'StableDiffusionControlNetPipeline', 'StableDiffusionControlNetXSPipeline', 'StableDiffusionDepth2ImgPipeline', 'StableDiffusionDiffEditPipeline', 'StableDiffusionGLIGENPipeline', 'StableDiffusionGLIGENTextImagePipeline', 'StableDiffusionImageVariationPipeline', 'StableDiffusionImg2ImgPipeline', 'StableDiffusionInpaintPipeline', 'StableDiffusionInpaintPipelineLegacy', 'StableDiffusionInstructPix2PixPipeline', 'StableDiffusionLatentUpscalePipeline', 'StableDiffusionLDM3DPipeline', 'StableDiffusionModelEditingPipeline', 'StableDiffusionPAGPipeline', 'StableDiffusionPanoramaPipeline', 'StableDiffusionParadigmsPipeline', 'StableDiffusionPipeline', 'StableDiffusionPipelineSafe', 'StableDiffusionPix2PixZeroPipeline', 'StableDiffusionSAGPipeline', 'StableDiffusionUpscalePipeline', 'StableDiffusionXLAdapterPipeline', 'StableDiffusionXLControlNetImg2ImgPipeline', 'StableDiffusionXLControlNetInpaintPipeline', 'StableDiffusionXLControlNetPAGImg2ImgPipeline', 'StableDiffusionXLControlNetPAGPipeline', 'StableDiffusionXLControlNetPipeline', 'StableDiffusionXLControlNetXSPipeline', 'StableDiffusionXLImg2ImgPipeline', 'StableDiffusionXLInpaintPipeline', 'StableDiffusionXLInstructPix2PixPipeline', 'StableDiffusionXLPAGImg2ImgPipeline', 'StableDiffusionXLPAGInpaintPipeline', 'StableDiffusionXLPAGPipeline', 'StableDiffusionXLPipeline', 'StableUnCLIPImg2ImgPipeline', 'StableUnCLIPPipeline', 'StableVideoDiffusionPipeline', 'TextToVideoSDPipeline', 'TextToVideoZeroPipeline', 'TextToVideoZeroSDXLPipeline', 'UnCLIPImageVariationPipeline', 'UnCLIPPipeline', 'UniDiffuserModel', 'UniDiffuserPipeline', 'UniDiffuserTextDecoder', 'VersatileDiffusionDualGuidedPipeline', 'VersatileDiffusionImageVariationPipeline', 'VersatileDiffusionPipeline', 'VersatileDiffusionTextToImagePipeline', 'VideoToVideoSDPipeline', 'VQDiffusionPipeline', 'WuerstchenCombinedPipeline', 'WuerstchenDecoderPipeline', 'WuerstchenPriorPipeline']) +try: + if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils import dummy_torch_and_transformers_and_k_diffusion_objects + _import_structure['utils.dummy_torch_and_transformers_and_k_diffusion_objects'] = [name for name in dir(dummy_torch_and_transformers_and_k_diffusion_objects) if not name.startswith('_')] +else: + _import_structure['pipelines'].extend(['StableDiffusionKDiffusionPipeline', 'StableDiffusionXLKDiffusionPipeline']) +try: + if not (is_torch_available() and is_transformers_available() and is_sentencepiece_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils import dummy_torch_and_transformers_and_sentencepiece_objects + _import_structure['utils.dummy_torch_and_transformers_and_sentencepiece_objects'] = [name for name in dir(dummy_torch_and_transformers_and_sentencepiece_objects) if not name.startswith('_')] +else: + _import_structure['pipelines'].extend(['KolorsImg2ImgPipeline', 'KolorsPAGPipeline', 'KolorsPipeline']) +try: + if not (is_torch_available() and is_transformers_available() and is_onnx_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils import dummy_torch_and_transformers_and_onnx_objects + _import_structure['utils.dummy_torch_and_transformers_and_onnx_objects'] = [name for name in dir(dummy_torch_and_transformers_and_onnx_objects) if not name.startswith('_')] +else: + _import_structure['pipelines'].extend(['OnnxStableDiffusionImg2ImgPipeline', 'OnnxStableDiffusionInpaintPipeline', 'OnnxStableDiffusionInpaintPipelineLegacy', 'OnnxStableDiffusionPipeline', 'OnnxStableDiffusionUpscalePipeline', 'StableDiffusionOnnxPipeline']) +try: + if not (is_torch_available() and is_librosa_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils import dummy_torch_and_librosa_objects + _import_structure['utils.dummy_torch_and_librosa_objects'] = [name for name in dir(dummy_torch_and_librosa_objects) if not name.startswith('_')] +else: + _import_structure['pipelines'].extend(['AudioDiffusionPipeline', 'Mel']) +try: + if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils import dummy_transformers_and_torch_and_note_seq_objects + _import_structure['utils.dummy_transformers_and_torch_and_note_seq_objects'] = [name for name in dir(dummy_transformers_and_torch_and_note_seq_objects) if not name.startswith('_')] +else: + _import_structure['pipelines'].extend(['SpectrogramDiffusionPipeline']) +try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils import dummy_flax_objects + _import_structure['utils.dummy_flax_objects'] = [name for name in dir(dummy_flax_objects) if not name.startswith('_')] +else: + _import_structure['models.controlnet_flax'] = ['FlaxControlNetModel'] + _import_structure['models.modeling_flax_utils'] = ['FlaxModelMixin'] + _import_structure['models.unets.unet_2d_condition_flax'] = ['FlaxUNet2DConditionModel'] + _import_structure['models.vae_flax'] = ['FlaxAutoencoderKL'] + _import_structure['pipelines'].extend(['FlaxDiffusionPipeline']) + _import_structure['schedulers'].extend(['FlaxDDIMScheduler', 'FlaxDDPMScheduler', 'FlaxDPMSolverMultistepScheduler', 'FlaxEulerDiscreteScheduler', 'FlaxKarrasVeScheduler', 'FlaxLMSDiscreteScheduler', 'FlaxPNDMScheduler', 'FlaxSchedulerMixin', 'FlaxScoreSdeVeScheduler']) +try: + if not (is_flax_available() and is_transformers_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils import dummy_flax_and_transformers_objects + _import_structure['utils.dummy_flax_and_transformers_objects'] = [name for name in dir(dummy_flax_and_transformers_objects) if not name.startswith('_')] +else: + _import_structure['pipelines'].extend(['FlaxStableDiffusionControlNetPipeline', 'FlaxStableDiffusionImg2ImgPipeline', 'FlaxStableDiffusionInpaintPipeline', 'FlaxStableDiffusionPipeline', 'FlaxStableDiffusionXLPipeline']) +try: + if not is_note_seq_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils import dummy_note_seq_objects + _import_structure['utils.dummy_note_seq_objects'] = [name for name in dir(dummy_note_seq_objects) if not name.startswith('_')] +else: + _import_structure['pipelines'].extend(['MidiProcessor']) +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + from .configuration_utils import ConfigMixin + try: + if not is_onnx_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from .utils.dummy_onnx_objects import * + else: + from .pipelines import OnnxRuntimeModel + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from .utils.dummy_pt_objects import * + else: + from .models import AsymmetricAutoencoderKL, AuraFlowTransformer2DModel, AutoencoderKL, AutoencoderKLCogVideoX, AutoencoderKLTemporalDecoder, AutoencoderOobleck, AutoencoderTiny, CogVideoXTransformer3DModel, ConsistencyDecoderVAE, ControlNetModel, ControlNetXSAdapter, DiTTransformer2DModel, FluxControlNetModel, FluxMultiControlNetModel, FluxTransformer2DModel, HunyuanDiT2DControlNetModel, HunyuanDiT2DModel, HunyuanDiT2DMultiControlNetModel, I2VGenXLUNet, Kandinsky3UNet, LatteTransformer3DModel, LuminaNextDiT2DModel, ModelMixin, MotionAdapter, MultiAdapter, PixArtTransformer2DModel, PriorTransformer, SD3ControlNetModel, SD3MultiControlNetModel, SD3Transformer2DModel, SparseControlNetModel, StableAudioDiTModel, T2IAdapter, T5FilmDecoder, Transformer2DModel, UNet1DModel, UNet2DConditionModel, UNet2DModel, UNet3DConditionModel, UNetControlNetXSModel, UNetMotionModel, UNetSpatioTemporalConditionModel, UVit2DModel, VQModel + from .optimization import get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler + from .pipelines import AudioPipelineOutput, AutoPipelineForImage2Image, AutoPipelineForInpainting, AutoPipelineForText2Image, BlipDiffusionControlNetPipeline, BlipDiffusionPipeline, CLIPImageProjection, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, StableDiffusionMixin + from .schedulers import AmusedScheduler, CMStochasticIterativeScheduler, CogVideoXDDIMScheduler, CogVideoXDPMScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DDPMWuerstchenScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EDMDPMSolverMultistepScheduler, EDMEulerScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, FlowMatchEulerDiscreteScheduler, FlowMatchHeunDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPM2AncestralDiscreteScheduler, KDPM2DiscreteScheduler, LCMScheduler, PNDMScheduler, RePaintScheduler, SASolverScheduler, SchedulerMixin, ScoreSdeVeScheduler, TCDScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler + from .training_utils import EMAModel + try: + if not (is_torch_available() and is_scipy_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from .utils.dummy_torch_and_scipy_objects import * + else: + from .schedulers import LMSDiscreteScheduler + try: + if not (is_torch_available() and is_torchsde_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from .utils.dummy_torch_and_torchsde_objects import * + else: + from .schedulers import CosineDPMSolverMultistepScheduler, DPMSolverSDEScheduler + try: + if not (is_torch_available() and is_transformers_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from .utils.dummy_torch_and_transformers_objects import * + else: + from .pipelines import AltDiffusionImg2ImgPipeline, AltDiffusionPipeline, AmusedImg2ImgPipeline, AmusedInpaintPipeline, AmusedPipeline, AnimateDiffControlNetPipeline, AnimateDiffPAGPipeline, AnimateDiffPipeline, AnimateDiffSDXLPipeline, AnimateDiffSparseControlNetPipeline, AnimateDiffVideoToVideoControlNetPipeline, AnimateDiffVideoToVideoPipeline, AudioLDM2Pipeline, AudioLDM2ProjectionModel, AudioLDM2UNet2DConditionModel, AudioLDMPipeline, AuraFlowPipeline, CLIPImageProjection, CogVideoXPipeline, CogVideoXVideoToVideoPipeline, CycleDiffusionPipeline, FluxControlNetPipeline, FluxImg2ImgPipeline, FluxInpaintPipeline, FluxPipeline, HunyuanDiTControlNetPipeline, HunyuanDiTPAGPipeline, HunyuanDiTPipeline, I2VGenXLPipeline, IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, Kandinsky3Img2ImgPipeline, Kandinsky3Pipeline, KandinskyCombinedPipeline, KandinskyImg2ImgCombinedPipeline, KandinskyImg2ImgPipeline, KandinskyInpaintCombinedPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyV22CombinedPipeline, KandinskyV22ControlnetImg2ImgPipeline, KandinskyV22ControlnetPipeline, KandinskyV22Img2ImgCombinedPipeline, KandinskyV22Img2ImgPipeline, KandinskyV22InpaintCombinedPipeline, KandinskyV22InpaintPipeline, KandinskyV22Pipeline, KandinskyV22PriorEmb2EmbPipeline, KandinskyV22PriorPipeline, LatentConsistencyModelImg2ImgPipeline, LatentConsistencyModelPipeline, LattePipeline, LDMTextToImagePipeline, LEditsPPPipelineStableDiffusion, LEditsPPPipelineStableDiffusionXL, LuminaText2ImgPipeline, MarigoldDepthPipeline, MarigoldNormalsPipeline, MusicLDMPipeline, PaintByExamplePipeline, PIAPipeline, PixArtAlphaPipeline, PixArtSigmaPAGPipeline, PixArtSigmaPipeline, SemanticStableDiffusionPipeline, ShapEImg2ImgPipeline, ShapEPipeline, StableAudioPipeline, StableAudioProjectionModel, StableCascadeCombinedPipeline, StableCascadeDecoderPipeline, StableCascadePriorPipeline, StableDiffusion3ControlNetPipeline, StableDiffusion3Img2ImgPipeline, StableDiffusion3InpaintPipeline, StableDiffusion3PAGPipeline, StableDiffusion3Pipeline, StableDiffusionAdapterPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImg2ImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPAGPipeline, StableDiffusionControlNetPipeline, StableDiffusionControlNetXSPipeline, StableDiffusionDepth2ImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionGLIGENPipeline, StableDiffusionGLIGENTextImagePipeline, StableDiffusionImageVariationPipeline, StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPix2PixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDM3DPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPAGPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPix2PixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableDiffusionXLAdapterPipeline, StableDiffusionXLControlNetImg2ImgPipeline, StableDiffusionXLControlNetInpaintPipeline, StableDiffusionXLControlNetPAGImg2ImgPipeline, StableDiffusionXLControlNetPAGPipeline, StableDiffusionXLControlNetPipeline, StableDiffusionXLControlNetXSPipeline, StableDiffusionXLImg2ImgPipeline, StableDiffusionXLInpaintPipeline, StableDiffusionXLInstructPix2PixPipeline, StableDiffusionXLPAGImg2ImgPipeline, StableDiffusionXLPAGInpaintPipeline, StableDiffusionXLPAGPipeline, StableDiffusionXLPipeline, StableUnCLIPImg2ImgPipeline, StableUnCLIPPipeline, StableVideoDiffusionPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, TextToVideoZeroSDXLPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, WuerstchenCombinedPipeline, WuerstchenDecoderPipeline, WuerstchenPriorPipeline + try: + if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * + else: + from .pipelines import StableDiffusionKDiffusionPipeline, StableDiffusionXLKDiffusionPipeline + try: + if not (is_torch_available() and is_transformers_available() and is_sentencepiece_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from .utils.dummy_torch_and_transformers_and_sentencepiece_objects import * + else: + from .pipelines import KolorsImg2ImgPipeline, KolorsPAGPipeline, KolorsPipeline + try: + if not (is_torch_available() and is_transformers_available() and is_onnx_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from .utils.dummy_torch_and_transformers_and_onnx_objects import * + else: + from .pipelines import OnnxStableDiffusionImg2ImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline + try: + if not (is_torch_available() and is_librosa_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from .utils.dummy_torch_and_librosa_objects import * + else: + from .pipelines import AudioDiffusionPipeline, Mel + try: + if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from .utils.dummy_transformers_and_torch_and_note_seq_objects import * + else: + from .pipelines import SpectrogramDiffusionPipeline + try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from .utils.dummy_flax_objects import * + else: + from .models.controlnet_flax import FlaxControlNetModel + from .models.modeling_flax_utils import FlaxModelMixin + from .models.unets.unet_2d_condition_flax import FlaxUNet2DConditionModel + from .models.vae_flax import FlaxAutoencoderKL + from .pipelines import FlaxDiffusionPipeline + from .schedulers import FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxEulerDiscreteScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler + try: + if not (is_flax_available() and is_transformers_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from .utils.dummy_flax_and_transformers_objects import * + else: + from .pipelines import FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImg2ImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, FlaxStableDiffusionXLPipeline + try: + if not is_note_seq_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from .utils.dummy_note_seq_objects import * + else: + from .pipelines import MidiProcessor +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__, extra_objects={'__version__': __version__}) + +# File: diffusers-main/src/diffusers/callbacks.py +from typing import Any, Dict, List +from .configuration_utils import ConfigMixin, register_to_config +from .utils import CONFIG_NAME + +class PipelineCallback(ConfigMixin): + config_name = CONFIG_NAME + + @register_to_config + def __init__(self, cutoff_step_ratio=1.0, cutoff_step_index=None): + super().__init__() + if cutoff_step_ratio is None and cutoff_step_index is None or (cutoff_step_ratio is not None and cutoff_step_index is not None): + raise ValueError('Either cutoff_step_ratio or cutoff_step_index should be provided, not both or none.') + if cutoff_step_ratio is not None and (not isinstance(cutoff_step_ratio, float) or not 0.0 <= cutoff_step_ratio <= 1.0): + raise ValueError('cutoff_step_ratio must be a float between 0.0 and 1.0.') + + @property + def tensor_inputs(self) -> List[str]: + raise NotImplementedError(f'You need to set the attribute `tensor_inputs` for {self.__class__}') + + def callback_fn(self, pipeline, step_index, timesteps, callback_kwargs) -> Dict[str, Any]: + raise NotImplementedError(f'You need to implement the method `callback_fn` for {self.__class__}') + + def __call__(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]: + return self.callback_fn(pipeline, step_index, timestep, callback_kwargs) + +class MultiPipelineCallbacks: + + def __init__(self, callbacks: List[PipelineCallback]): + self.callbacks = callbacks + + @property + def tensor_inputs(self) -> List[str]: + return [input for callback in self.callbacks for input in callback.tensor_inputs] + + def __call__(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]: + for callback in self.callbacks: + callback_kwargs = callback(pipeline, step_index, timestep, callback_kwargs) + return callback_kwargs + +class SDCFGCutoffCallback(PipelineCallback): + tensor_inputs = ['prompt_embeds'] + + def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]: + cutoff_step_ratio = self.config.cutoff_step_ratio + cutoff_step_index = self.config.cutoff_step_index + cutoff_step = cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio) + if step_index == cutoff_step: + prompt_embeds = callback_kwargs[self.tensor_inputs[0]] + prompt_embeds = prompt_embeds[-1:] + pipeline._guidance_scale = 0.0 + callback_kwargs[self.tensor_inputs[0]] = prompt_embeds + return callback_kwargs + +class SDXLCFGCutoffCallback(PipelineCallback): + tensor_inputs = ['prompt_embeds', 'add_text_embeds', 'add_time_ids'] + + def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]: + cutoff_step_ratio = self.config.cutoff_step_ratio + cutoff_step_index = self.config.cutoff_step_index + cutoff_step = cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio) + if step_index == cutoff_step: + prompt_embeds = callback_kwargs[self.tensor_inputs[0]] + prompt_embeds = prompt_embeds[-1:] + add_text_embeds = callback_kwargs[self.tensor_inputs[1]] + add_text_embeds = add_text_embeds[-1:] + add_time_ids = callback_kwargs[self.tensor_inputs[2]] + add_time_ids = add_time_ids[-1:] + pipeline._guidance_scale = 0.0 + callback_kwargs[self.tensor_inputs[0]] = prompt_embeds + callback_kwargs[self.tensor_inputs[1]] = add_text_embeds + callback_kwargs[self.tensor_inputs[2]] = add_time_ids + return callback_kwargs + +class IPAdapterScaleCutoffCallback(PipelineCallback): + tensor_inputs = [] + + def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]: + cutoff_step_ratio = self.config.cutoff_step_ratio + cutoff_step_index = self.config.cutoff_step_index + cutoff_step = cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio) + if step_index == cutoff_step: + pipeline.set_ip_adapter_scale(0.0) + return callback_kwargs + +# File: diffusers-main/src/diffusers/commands/__init__.py +from abc import ABC, abstractmethod +from argparse import ArgumentParser + +class BaseDiffusersCLICommand(ABC): + + @staticmethod + @abstractmethod + def register_subcommand(parser: ArgumentParser): + raise NotImplementedError() + + @abstractmethod + def run(self): + raise NotImplementedError() + +# File: diffusers-main/src/diffusers/commands/diffusers_cli.py +from argparse import ArgumentParser +from .env import EnvironmentCommand +from .fp16_safetensors import FP16SafetensorsCommand + +def main(): + parser = ArgumentParser('Diffusers CLI tool', usage='diffusers-cli []') + commands_parser = parser.add_subparsers(help='diffusers-cli command helpers') + EnvironmentCommand.register_subcommand(commands_parser) + FP16SafetensorsCommand.register_subcommand(commands_parser) + args = parser.parse_args() + if not hasattr(args, 'func'): + parser.print_help() + exit(1) + service = args.func(args) + service.run() +if __name__ == '__main__': + main() + +# File: diffusers-main/src/diffusers/commands/env.py +import platform +import subprocess +from argparse import ArgumentParser +import huggingface_hub +from .. import __version__ as version +from ..utils import is_accelerate_available, is_bitsandbytes_available, is_flax_available, is_google_colab, is_peft_available, is_safetensors_available, is_torch_available, is_transformers_available, is_xformers_available +from . import BaseDiffusersCLICommand + +def info_command_factory(_): + return EnvironmentCommand() + +class EnvironmentCommand(BaseDiffusersCLICommand): + + @staticmethod + def register_subcommand(parser: ArgumentParser) -> None: + download_parser = parser.add_parser('env') + download_parser.set_defaults(func=info_command_factory) + + def run(self) -> dict: + hub_version = huggingface_hub.__version__ + safetensors_version = 'not installed' + if is_safetensors_available(): + import safetensors + safetensors_version = safetensors.__version__ + pt_version = 'not installed' + pt_cuda_available = 'NA' + if is_torch_available(): + import torch + pt_version = torch.__version__ + pt_cuda_available = torch.cuda.is_available() + flax_version = 'not installed' + jax_version = 'not installed' + jaxlib_version = 'not installed' + jax_backend = 'NA' + if is_flax_available(): + import flax + import jax + import jaxlib + flax_version = flax.__version__ + jax_version = jax.__version__ + jaxlib_version = jaxlib.__version__ + jax_backend = jax.lib.xla_bridge.get_backend().platform + transformers_version = 'not installed' + if is_transformers_available(): + import transformers + transformers_version = transformers.__version__ + accelerate_version = 'not installed' + if is_accelerate_available(): + import accelerate + accelerate_version = accelerate.__version__ + peft_version = 'not installed' + if is_peft_available(): + import peft + peft_version = peft.__version__ + bitsandbytes_version = 'not installed' + if is_bitsandbytes_available(): + import bitsandbytes + bitsandbytes_version = bitsandbytes.__version__ + xformers_version = 'not installed' + if is_xformers_available(): + import xformers + xformers_version = xformers.__version__ + platform_info = platform.platform() + is_google_colab_str = 'Yes' if is_google_colab() else 'No' + accelerator = 'NA' + if platform.system() in {'Linux', 'Windows'}: + try: + sp = subprocess.Popen(['nvidia-smi', '--query-gpu=gpu_name,memory.total', '--format=csv,noheader'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) + (out_str, _) = sp.communicate() + out_str = out_str.decode('utf-8') + if len(out_str) > 0: + accelerator = out_str.strip() + except FileNotFoundError: + pass + elif platform.system() == 'Darwin': + try: + sp = subprocess.Popen(['system_profiler', 'SPDisplaysDataType'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) + (out_str, _) = sp.communicate() + out_str = out_str.decode('utf-8') + start = out_str.find('Chipset Model:') + if start != -1: + start += len('Chipset Model:') + end = out_str.find('\n', start) + accelerator = out_str[start:end].strip() + start = out_str.find('VRAM (Total):') + if start != -1: + start += len('VRAM (Total):') + end = out_str.find('\n', start) + accelerator += ' VRAM: ' + out_str[start:end].strip() + except FileNotFoundError: + pass + else: + print('It seems you are running an unusual OS. Could you fill in the accelerator manually?') + info = {'🤗 Diffusers version': version, 'Platform': platform_info, 'Running on Google Colab?': is_google_colab_str, 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f'{pt_version} ({pt_cuda_available})', 'Flax version (CPU?/GPU?/TPU?)': f'{flax_version} ({jax_backend})', 'Jax version': jax_version, 'JaxLib version': jaxlib_version, 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'PEFT version': peft_version, 'Bitsandbytes version': bitsandbytes_version, 'Safetensors version': safetensors_version, 'xFormers version': xformers_version, 'Accelerator': accelerator, 'Using GPU in script?': '', 'Using distributed or parallel set-up in script?': ''} + print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n') + print(self.format_dict(info)) + return info + + @staticmethod + def format_dict(d: dict) -> str: + return '\n'.join([f'- {prop}: {val}' for (prop, val) in d.items()]) + '\n' + +# File: diffusers-main/src/diffusers/commands/fp16_safetensors.py +"""""" +import glob +import json +import warnings +from argparse import ArgumentParser, Namespace +from importlib import import_module +import huggingface_hub +import torch +from huggingface_hub import hf_hub_download +from packaging import version +from ..utils import logging +from . import BaseDiffusersCLICommand + +def conversion_command_factory(args: Namespace): + if args.use_auth_token: + warnings.warn('The `--use_auth_token` flag is deprecated and will be removed in a future version. Authentication is now handled automatically if user is logged in.') + return FP16SafetensorsCommand(args.ckpt_id, args.fp16, args.use_safetensors) + +class FP16SafetensorsCommand(BaseDiffusersCLICommand): + + @staticmethod + def register_subcommand(parser: ArgumentParser): + conversion_parser = parser.add_parser('fp16_safetensors') + conversion_parser.add_argument('--ckpt_id', type=str, help="Repo id of the checkpoints on which to run the conversion. Example: 'openai/shap-e'.") + conversion_parser.add_argument('--fp16', action='store_true', help='If serializing the variables in FP16 precision.') + conversion_parser.add_argument('--use_safetensors', action='store_true', help='If serializing in the safetensors format.') + conversion_parser.add_argument('--use_auth_token', action='store_true', help='When working with checkpoints having private visibility. When used `huggingface-cli login` needs to be run beforehand.') + conversion_parser.set_defaults(func=conversion_command_factory) + + def __init__(self, ckpt_id: str, fp16: bool, use_safetensors: bool): + self.logger = logging.get_logger('diffusers-cli/fp16_safetensors') + self.ckpt_id = ckpt_id + self.local_ckpt_dir = f'/tmp/{ckpt_id}' + self.fp16 = fp16 + self.use_safetensors = use_safetensors + if not self.use_safetensors and (not self.fp16): + raise NotImplementedError('When `use_safetensors` and `fp16` both are False, then this command is of no use.') + + def run(self): + if version.parse(huggingface_hub.__version__) < version.parse('0.9.0'): + raise ImportError('The huggingface_hub version must be >= 0.9.0 to use this command. Please update your huggingface_hub installation.') + else: + from huggingface_hub import create_commit + from huggingface_hub._commit_api import CommitOperationAdd + model_index = hf_hub_download(repo_id=self.ckpt_id, filename='model_index.json') + with open(model_index, 'r') as f: + pipeline_class_name = json.load(f)['_class_name'] + pipeline_class = getattr(import_module('diffusers'), pipeline_class_name) + self.logger.info(f'Pipeline class imported: {pipeline_class_name}.') + pipeline = pipeline_class.from_pretrained(self.ckpt_id, torch_dtype=torch.float16 if self.fp16 else torch.float32) + pipeline.save_pretrained(self.local_ckpt_dir, safe_serialization=True if self.use_safetensors else False, variant='fp16' if self.fp16 else None) + self.logger.info(f'Pipeline locally saved to {self.local_ckpt_dir}.') + if self.fp16: + modified_paths = glob.glob(f'{self.local_ckpt_dir}/*/*.fp16.*') + elif self.use_safetensors: + modified_paths = glob.glob(f'{self.local_ckpt_dir}/*/*.safetensors') + commit_message = f'Serialize variables with FP16: {self.fp16} and safetensors: {self.use_safetensors}.' + operations = [] + for path in modified_paths: + operations.append(CommitOperationAdd(path_in_repo='/'.join(path.split('/')[4:]), path_or_fileobj=path)) + commit_description = "Variables converted by the [`diffusers`' `fp16_safetensors` CLI](https://github.com/huggingface/diffusers/blob/main/src/diffusers/commands/fp16_safetensors.py)." + hub_pr_url = create_commit(repo_id=self.ckpt_id, operations=operations, commit_message=commit_message, commit_description=commit_description, repo_type='model', create_pr=True).pr_url + self.logger.info(f'PR created here: {hub_pr_url}.') + +# File: diffusers-main/src/diffusers/configuration_utils.py +"""""" +import dataclasses +import functools +import importlib +import inspect +import json +import os +import re +from collections import OrderedDict +from pathlib import Path +from typing import Any, Dict, Tuple, Union +import numpy as np +from huggingface_hub import create_repo, hf_hub_download +from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, validate_hf_hub_args +from requests import HTTPError +from . import __version__ +from .utils import HUGGINGFACE_CO_RESOLVE_ENDPOINT, DummyObject, deprecate, extract_commit_hash, http_user_agent, logging +logger = logging.get_logger(__name__) +_re_configuration_file = re.compile('config\\.(.*)\\.json') + +class FrozenDict(OrderedDict): + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + for (key, value) in self.items(): + setattr(self, key, value) + self.__frozen = True + + def __delitem__(self, *args, **kwargs): + raise Exception(f'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.') + + def setdefault(self, *args, **kwargs): + raise Exception(f'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.') + + def pop(self, *args, **kwargs): + raise Exception(f'You cannot use ``pop`` on a {self.__class__.__name__} instance.') + + def update(self, *args, **kwargs): + raise Exception(f'You cannot use ``update`` on a {self.__class__.__name__} instance.') + + def __setattr__(self, name, value): + if hasattr(self, '__frozen') and self.__frozen: + raise Exception(f'You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.') + super().__setattr__(name, value) + + def __setitem__(self, name, value): + if hasattr(self, '__frozen') and self.__frozen: + raise Exception(f'You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.') + super().__setitem__(name, value) + +class ConfigMixin: + config_name = None + ignore_for_config = [] + has_compatibles = False + _deprecated_kwargs = [] + + def register_to_config(self, **kwargs): + if self.config_name is None: + raise NotImplementedError(f'Make sure that {self.__class__} has defined a class name `config_name`') + kwargs.pop('kwargs', None) + if not hasattr(self, '_internal_dict'): + internal_dict = kwargs + else: + previous_dict = dict(self._internal_dict) + internal_dict = {**self._internal_dict, **kwargs} + logger.debug(f'Updating config from {previous_dict} to {internal_dict}') + self._internal_dict = FrozenDict(internal_dict) + + def __getattr__(self, name: str) -> Any: + is_in_config = '_internal_dict' in self.__dict__ and hasattr(self.__dict__['_internal_dict'], name) + is_attribute = name in self.__dict__ + if is_in_config and (not is_attribute): + deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'scheduler.config.{name}'." + deprecate('direct config name access', '1.0.0', deprecation_message, standard_warn=False) + return self._internal_dict[name] + raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'") + + def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool=False, **kwargs): + if os.path.isfile(save_directory): + raise AssertionError(f'Provided path ({save_directory}) should be a directory, not a file') + os.makedirs(save_directory, exist_ok=True) + output_config_file = os.path.join(save_directory, self.config_name) + self.to_json_file(output_config_file) + logger.info(f'Configuration saved in {output_config_file}') + if push_to_hub: + commit_message = kwargs.pop('commit_message', None) + private = kwargs.pop('private', False) + create_pr = kwargs.pop('create_pr', False) + token = kwargs.pop('token', None) + repo_id = kwargs.pop('repo_id', save_directory.split(os.path.sep)[-1]) + repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id + self._upload_folder(save_directory, repo_id, token=token, commit_message=commit_message, create_pr=create_pr) + + @classmethod + def from_config(cls, config: Union[FrozenDict, Dict[str, Any]]=None, return_unused_kwargs=False, **kwargs): + if 'pretrained_model_name_or_path' in kwargs: + config = kwargs.pop('pretrained_model_name_or_path') + if config is None: + raise ValueError('Please make sure to provide a config as the first positional argument.') + if not isinstance(config, dict): + deprecation_message = 'It is deprecated to pass a pretrained model name or path to `from_config`.' + if 'Scheduler' in cls.__name__: + deprecation_message += f'If you were trying to load a scheduler, please use {cls}.from_pretrained(...) instead. Otherwise, please make sure to pass a configuration dictionary instead. This functionality will be removed in v1.0.0.' + elif 'Model' in cls.__name__: + deprecation_message += f'If you were trying to load a model, please use {cls}.load_config(...) followed by {cls}.from_config(...) instead. Otherwise, please make sure to pass a configuration dictionary instead. This functionality will be removed in v1.0.0.' + deprecate('config-passed-as-path', '1.0.0', deprecation_message, standard_warn=False) + (config, kwargs) = cls.load_config(pretrained_model_name_or_path=config, return_unused_kwargs=True, **kwargs) + (init_dict, unused_kwargs, hidden_dict) = cls.extract_init_dict(config, **kwargs) + if 'dtype' in unused_kwargs: + init_dict['dtype'] = unused_kwargs.pop('dtype') + for deprecated_kwarg in cls._deprecated_kwargs: + if deprecated_kwarg in unused_kwargs: + init_dict[deprecated_kwarg] = unused_kwargs.pop(deprecated_kwarg) + model = cls(**init_dict) + if '_class_name' in hidden_dict: + hidden_dict['_class_name'] = cls.__name__ + model.register_to_config(**hidden_dict) + unused_kwargs = {**unused_kwargs, **hidden_dict} + if return_unused_kwargs: + return (model, unused_kwargs) + else: + return model + + @classmethod + def get_config_dict(cls, *args, **kwargs): + deprecation_message = f' The function get_config_dict is deprecated. Please use {cls}.load_config instead. This function will be removed in version v1.0.0' + deprecate('get_config_dict', '1.0.0', deprecation_message, standard_warn=False) + return cls.load_config(*args, **kwargs) + + @classmethod + @validate_hf_hub_args + def load_config(cls, pretrained_model_name_or_path: Union[str, os.PathLike], return_unused_kwargs=False, return_commit_hash=False, **kwargs) -> Tuple[Dict[str, Any], Dict[str, Any]]: + cache_dir = kwargs.pop('cache_dir', None) + local_dir = kwargs.pop('local_dir', None) + local_dir_use_symlinks = kwargs.pop('local_dir_use_symlinks', 'auto') + force_download = kwargs.pop('force_download', False) + proxies = kwargs.pop('proxies', None) + token = kwargs.pop('token', None) + local_files_only = kwargs.pop('local_files_only', False) + revision = kwargs.pop('revision', None) + _ = kwargs.pop('mirror', None) + subfolder = kwargs.pop('subfolder', None) + user_agent = kwargs.pop('user_agent', {}) + user_agent = {**user_agent, 'file_type': 'config'} + user_agent = http_user_agent(user_agent) + pretrained_model_name_or_path = str(pretrained_model_name_or_path) + if cls.config_name is None: + raise ValueError('`self.config_name` is not defined. Note that one should not load a config from `ConfigMixin`. Please make sure to define `config_name` in a class inheriting from `ConfigMixin`') + if os.path.isfile(pretrained_model_name_or_path): + config_file = pretrained_model_name_or_path + elif os.path.isdir(pretrained_model_name_or_path): + if subfolder is not None and os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)): + config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name) + elif os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)): + config_file = os.path.join(pretrained_model_name_or_path, cls.config_name) + else: + raise EnvironmentError(f'Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}.') + else: + try: + config_file = hf_hub_download(pretrained_model_name_or_path, filename=cls.config_name, cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, user_agent=user_agent, subfolder=subfolder, revision=revision, local_dir=local_dir, local_dir_use_symlinks=local_dir_use_symlinks) + except RepositoryNotFoundError: + raise EnvironmentError(f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a token having permission to this repo with `token` or log in with `huggingface-cli login`.") + except RevisionNotFoundError: + raise EnvironmentError(f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for this model name. Check the model page at 'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.") + except EntryNotFoundError: + raise EnvironmentError(f'{pretrained_model_name_or_path} does not appear to have a file named {cls.config_name}.') + except HTTPError as err: + raise EnvironmentError(f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}') + except ValueError: + raise EnvironmentError(f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a directory containing a {cls.config_name} file.\nCheckout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'.") + except EnvironmentError: + raise EnvironmentError(f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from 'https://huggingface.co/models', make sure you don't have a local directory with the same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory containing a {cls.config_name} file") + try: + config_dict = cls._dict_from_json_file(config_file) + commit_hash = extract_commit_hash(config_file) + except (json.JSONDecodeError, UnicodeDecodeError): + raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.") + if not (return_unused_kwargs or return_commit_hash): + return config_dict + outputs = (config_dict,) + if return_unused_kwargs: + outputs += (kwargs,) + if return_commit_hash: + outputs += (commit_hash,) + return outputs + + @staticmethod + def _get_init_keys(input_class): + return set(dict(inspect.signature(input_class.__init__).parameters).keys()) + + @classmethod + def extract_init_dict(cls, config_dict, **kwargs): + used_defaults = config_dict.get('_use_default_values', []) + config_dict = {k: v for (k, v) in config_dict.items() if k not in used_defaults and k != '_use_default_values'} + original_dict = dict(config_dict.items()) + expected_keys = cls._get_init_keys(cls) + expected_keys.remove('self') + if 'kwargs' in expected_keys: + expected_keys.remove('kwargs') + if hasattr(cls, '_flax_internal_args'): + for arg in cls._flax_internal_args: + expected_keys.remove(arg) + if len(cls.ignore_for_config) > 0: + expected_keys = expected_keys - set(cls.ignore_for_config) + diffusers_library = importlib.import_module(__name__.split('.')[0]) + if cls.has_compatibles: + compatible_classes = [c for c in cls._get_compatibles() if not isinstance(c, DummyObject)] + else: + compatible_classes = [] + expected_keys_comp_cls = set() + for c in compatible_classes: + expected_keys_c = cls._get_init_keys(c) + expected_keys_comp_cls = expected_keys_comp_cls.union(expected_keys_c) + expected_keys_comp_cls = expected_keys_comp_cls - cls._get_init_keys(cls) + config_dict = {k: v for (k, v) in config_dict.items() if k not in expected_keys_comp_cls} + orig_cls_name = config_dict.pop('_class_name', cls.__name__) + if isinstance(orig_cls_name, str) and orig_cls_name != cls.__name__ and hasattr(diffusers_library, orig_cls_name): + orig_cls = getattr(diffusers_library, orig_cls_name) + unexpected_keys_from_orig = cls._get_init_keys(orig_cls) - expected_keys + config_dict = {k: v for (k, v) in config_dict.items() if k not in unexpected_keys_from_orig} + elif not isinstance(orig_cls_name, str) and (not isinstance(orig_cls_name, (list, tuple))): + raise ValueError('Make sure that the `_class_name` is of type string or list of string (for custom pipelines).') + config_dict = {k: v for (k, v) in config_dict.items() if not k.startswith('_')} + init_dict = {} + for key in expected_keys: + if key in kwargs and key in config_dict: + config_dict[key] = kwargs.pop(key) + if key in kwargs: + init_dict[key] = kwargs.pop(key) + elif key in config_dict: + init_dict[key] = config_dict.pop(key) + if len(config_dict) > 0: + logger.warning(f'The config attributes {config_dict} were passed to {cls.__name__}, but are not expected and will be ignored. Please verify your {cls.config_name} configuration file.') + passed_keys = set(init_dict.keys()) + if len(expected_keys - passed_keys) > 0: + logger.info(f'{expected_keys - passed_keys} was not found in config. Values will be initialized to default values.') + unused_kwargs = {**config_dict, **kwargs} + hidden_config_dict = {k: v for (k, v) in original_dict.items() if k not in init_dict} + return (init_dict, unused_kwargs, hidden_config_dict) + + @classmethod + def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]): + with open(json_file, 'r', encoding='utf-8') as reader: + text = reader.read() + return json.loads(text) + + def __repr__(self): + return f'{self.__class__.__name__} {self.to_json_string()}' + + @property + def config(self) -> Dict[str, Any]: + return self._internal_dict + + def to_json_string(self) -> str: + config_dict = self._internal_dict if hasattr(self, '_internal_dict') else {} + config_dict['_class_name'] = self.__class__.__name__ + config_dict['_diffusers_version'] = __version__ + + def to_json_saveable(value): + if isinstance(value, np.ndarray): + value = value.tolist() + elif isinstance(value, Path): + value = value.as_posix() + return value + config_dict = {k: to_json_saveable(v) for (k, v) in config_dict.items()} + config_dict.pop('_ignore_files', None) + config_dict.pop('_use_default_values', None) + return json.dumps(config_dict, indent=2, sort_keys=True) + '\n' + + def to_json_file(self, json_file_path: Union[str, os.PathLike]): + with open(json_file_path, 'w', encoding='utf-8') as writer: + writer.write(self.to_json_string()) + +def register_to_config(init): + + @functools.wraps(init) + def inner_init(self, *args, **kwargs): + init_kwargs = {k: v for (k, v) in kwargs.items() if not k.startswith('_')} + config_init_kwargs = {k: v for (k, v) in kwargs.items() if k.startswith('_')} + if not isinstance(self, ConfigMixin): + raise RuntimeError(f'`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does not inherit from `ConfigMixin`.') + ignore = getattr(self, 'ignore_for_config', []) + new_kwargs = {} + signature = inspect.signature(init) + parameters = {name: p.default for (i, (name, p)) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore} + for (arg, name) in zip(args, parameters.keys()): + new_kwargs[name] = arg + new_kwargs.update({k: init_kwargs.get(k, default) for (k, default) in parameters.items() if k not in ignore and k not in new_kwargs}) + if len(set(new_kwargs.keys()) - set(init_kwargs)) > 0: + new_kwargs['_use_default_values'] = list(set(new_kwargs.keys()) - set(init_kwargs)) + new_kwargs = {**config_init_kwargs, **new_kwargs} + getattr(self, 'register_to_config')(**new_kwargs) + init(self, *args, **init_kwargs) + return inner_init + +def flax_register_to_config(cls): + original_init = cls.__init__ + + @functools.wraps(original_init) + def init(self, *args, **kwargs): + if not isinstance(self, ConfigMixin): + raise RuntimeError(f'`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does not inherit from `ConfigMixin`.') + init_kwargs = dict(kwargs.items()) + fields = dataclasses.fields(self) + default_kwargs = {} + for field in fields: + if field.name in self._flax_internal_args: + continue + if type(field.default) == dataclasses._MISSING_TYPE: + default_kwargs[field.name] = None + else: + default_kwargs[field.name] = getattr(self, field.name) + new_kwargs = {**default_kwargs, **init_kwargs} + if 'dtype' in new_kwargs: + new_kwargs.pop('dtype') + for (i, arg) in enumerate(args): + name = fields[i].name + new_kwargs[name] = arg + if len(set(new_kwargs.keys()) - set(init_kwargs)) > 0: + new_kwargs['_use_default_values'] = list(set(new_kwargs.keys()) - set(init_kwargs)) + getattr(self, 'register_to_config')(**new_kwargs) + original_init(self, *args, **kwargs) + cls.__init__ = init + return cls + +class LegacyConfigMixin(ConfigMixin): + + @classmethod + def from_config(cls, config: Union[FrozenDict, Dict[str, Any]]=None, return_unused_kwargs=False, **kwargs): + from .models.model_loading_utils import _fetch_remapped_cls_from_config + remapped_class = _fetch_remapped_cls_from_config(config, cls) + return remapped_class.from_config(config, return_unused_kwargs, **kwargs) + +# File: diffusers-main/src/diffusers/dependency_versions_check.py +from .dependency_versions_table import deps +from .utils.versions import require_version, require_version_core +pkgs_to_check_at_runtime = 'python requests filelock numpy'.split() +for pkg in pkgs_to_check_at_runtime: + if pkg in deps: + require_version_core(deps[pkg]) + else: + raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") + +def dep_version_check(pkg, hint=None): + require_version(deps[pkg], hint) + +# File: diffusers-main/src/diffusers/dependency_versions_table.py +deps = {'Pillow': 'Pillow', 'accelerate': 'accelerate>=0.31.0', 'compel': 'compel==0.1.8', 'datasets': 'datasets', 'filelock': 'filelock', 'flax': 'flax>=0.4.1', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.23.2', 'requests-mock': 'requests-mock==1.10.0', 'importlib_metadata': 'importlib_metadata', 'invisible-watermark': 'invisible-watermark>=0.2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.4.1', 'jaxlib': 'jaxlib>=0.4.1', 'Jinja2': 'Jinja2', 'k-diffusion': 'k-diffusion>=0.0.12', 'torchsde': 'torchsde', 'note_seq': 'note_seq', 'librosa': 'librosa', 'numpy': 'numpy', 'parameterized': 'parameterized', 'peft': 'peft>=0.6.0', 'protobuf': 'protobuf>=3.20.3,<4', 'pytest': 'pytest', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ruff': 'ruff==0.1.5', 'safetensors': 'safetensors>=0.3.1', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'GitPython': 'GitPython<3.1.19', 'scipy': 'scipy', 'onnx': 'onnx', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'tensorboard': 'tensorboard', 'torch': 'torch>=1.4', 'torchvision': 'torchvision', 'transformers': 'transformers>=4.41.2', 'urllib3': 'urllib3<=2.0.0', 'black': 'black'} + +# File: diffusers-main/src/diffusers/experimental/rl/value_guided_sampling.py +import numpy as np +import torch +import tqdm +from ...models.unets.unet_1d import UNet1DModel +from ...pipelines import DiffusionPipeline +from ...utils.dummy_pt_objects import DDPMScheduler +from ...utils.torch_utils import randn_tensor + +class ValueGuidedRLPipeline(DiffusionPipeline): + + def __init__(self, value_function: UNet1DModel, unet: UNet1DModel, scheduler: DDPMScheduler, env): + super().__init__() + self.register_modules(value_function=value_function, unet=unet, scheduler=scheduler, env=env) + self.data = env.get_dataset() + self.means = {} + for key in self.data.keys(): + try: + self.means[key] = self.data[key].mean() + except: + pass + self.stds = {} + for key in self.data.keys(): + try: + self.stds[key] = self.data[key].std() + except: + pass + self.state_dim = env.observation_space.shape[0] + self.action_dim = env.action_space.shape[0] + + def normalize(self, x_in, key): + return (x_in - self.means[key]) / self.stds[key] + + def de_normalize(self, x_in, key): + return x_in * self.stds[key] + self.means[key] + + def to_torch(self, x_in): + if isinstance(x_in, dict): + return {k: self.to_torch(v) for (k, v) in x_in.items()} + elif torch.is_tensor(x_in): + return x_in.to(self.unet.device) + return torch.tensor(x_in, device=self.unet.device) + + def reset_x0(self, x_in, cond, act_dim): + for (key, val) in cond.items(): + x_in[:, key, act_dim:] = val.clone() + return x_in + + def run_diffusion(self, x, conditions, n_guide_steps, scale): + batch_size = x.shape[0] + y = None + for i in tqdm.tqdm(self.scheduler.timesteps): + timesteps = torch.full((batch_size,), i, device=self.unet.device, dtype=torch.long) + for _ in range(n_guide_steps): + with torch.enable_grad(): + x.requires_grad_() + y = self.value_function(x.permute(0, 2, 1), timesteps).sample + grad = torch.autograd.grad([y.sum()], [x])[0] + posterior_variance = self.scheduler._get_variance(i) + model_std = torch.exp(0.5 * posterior_variance) + grad = model_std * grad + grad[timesteps < 2] = 0 + x = x.detach() + x = x + scale * grad + x = self.reset_x0(x, conditions, self.action_dim) + prev_x = self.unet(x.permute(0, 2, 1), timesteps).sample.permute(0, 2, 1) + x = self.scheduler.step(prev_x, i, x)['prev_sample'] + x = self.reset_x0(x, conditions, self.action_dim) + x = self.to_torch(x) + return (x, y) + + def __call__(self, obs, batch_size=64, planning_horizon=32, n_guide_steps=2, scale=0.1): + obs = self.normalize(obs, 'observations') + obs = obs[None].repeat(batch_size, axis=0) + conditions = {0: self.to_torch(obs)} + shape = (batch_size, planning_horizon, self.state_dim + self.action_dim) + x1 = randn_tensor(shape, device=self.unet.device) + x = self.reset_x0(x1, conditions, self.action_dim) + x = self.to_torch(x) + (x, y) = self.run_diffusion(x, conditions, n_guide_steps, scale) + sorted_idx = y.argsort(0, descending=True).squeeze() + sorted_values = x[sorted_idx] + actions = sorted_values[:, :, :self.action_dim] + actions = actions.detach().cpu().numpy() + denorm_actions = self.de_normalize(actions, key='actions') + if y is not None: + selected_index = 0 + else: + selected_index = np.random.randint(0, batch_size) + denorm_actions = denorm_actions[selected_index, 0] + return denorm_actions + +# File: diffusers-main/src/diffusers/image_processor.py +import math +import warnings +from typing import List, Optional, Tuple, Union +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from PIL import Image, ImageFilter, ImageOps +from .configuration_utils import ConfigMixin, register_to_config +from .utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate +PipelineImageInput = Union[PIL.Image.Image, np.ndarray, torch.Tensor, List[PIL.Image.Image], List[np.ndarray], List[torch.Tensor]] +PipelineDepthInput = PipelineImageInput + +def is_valid_image(image): + return isinstance(image, PIL.Image.Image) or (isinstance(image, (np.ndarray, torch.Tensor)) and image.ndim in (2, 3)) + +def is_valid_image_imagelist(images): + if isinstance(images, (np.ndarray, torch.Tensor)) and images.ndim == 4: + return True + elif is_valid_image(images): + return True + elif isinstance(images, list): + return all((is_valid_image(image) for image in images)) + return False + +class VaeImageProcessor(ConfigMixin): + config_name = CONFIG_NAME + + @register_to_config + def __init__(self, do_resize: bool=True, vae_scale_factor: int=8, vae_latent_channels: int=4, resample: str='lanczos', do_normalize: bool=True, do_binarize: bool=False, do_convert_rgb: bool=False, do_convert_grayscale: bool=False): + super().__init__() + if do_convert_rgb and do_convert_grayscale: + raise ValueError('`do_convert_rgb` and `do_convert_grayscale` can not both be set to `True`, if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.', ' if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`') + + @staticmethod + def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]: + if images.ndim == 3: + images = images[None, ...] + images = (images * 255).round().astype('uint8') + if images.shape[-1] == 1: + pil_images = [Image.fromarray(image.squeeze(), mode='L') for image in images] + else: + pil_images = [Image.fromarray(image) for image in images] + return pil_images + + @staticmethod + def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray: + if not isinstance(images, list): + images = [images] + images = [np.array(image).astype(np.float32) / 255.0 for image in images] + images = np.stack(images, axis=0) + return images + + @staticmethod + def numpy_to_pt(images: np.ndarray) -> torch.Tensor: + if images.ndim == 3: + images = images[..., None] + images = torch.from_numpy(images.transpose(0, 3, 1, 2)) + return images + + @staticmethod + def pt_to_numpy(images: torch.Tensor) -> np.ndarray: + images = images.cpu().permute(0, 2, 3, 1).float().numpy() + return images + + @staticmethod + def normalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]: + return 2.0 * images - 1.0 + + @staticmethod + def denormalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]: + return (images / 2 + 0.5).clamp(0, 1) + + @staticmethod + def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image: + image = image.convert('RGB') + return image + + @staticmethod + def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image: + image = image.convert('L') + return image + + @staticmethod + def blur(image: PIL.Image.Image, blur_factor: int=4) -> PIL.Image.Image: + image = image.filter(ImageFilter.GaussianBlur(blur_factor)) + return image + + @staticmethod + def get_crop_region(mask_image: PIL.Image.Image, width: int, height: int, pad=0): + mask_image = mask_image.convert('L') + mask = np.array(mask_image) + (h, w) = mask.shape + crop_left = 0 + for i in range(w): + if not (mask[:, i] == 0).all(): + break + crop_left += 1 + crop_right = 0 + for i in reversed(range(w)): + if not (mask[:, i] == 0).all(): + break + crop_right += 1 + crop_top = 0 + for i in range(h): + if not (mask[i] == 0).all(): + break + crop_top += 1 + crop_bottom = 0 + for i in reversed(range(h)): + if not (mask[i] == 0).all(): + break + crop_bottom += 1 + (x1, y1, x2, y2) = (int(max(crop_left - pad, 0)), int(max(crop_top - pad, 0)), int(min(w - crop_right + pad, w)), int(min(h - crop_bottom + pad, h))) + ratio_crop_region = (x2 - x1) / (y2 - y1) + ratio_processing = width / height + if ratio_crop_region > ratio_processing: + desired_height = (x2 - x1) / ratio_processing + desired_height_diff = int(desired_height - (y2 - y1)) + y1 -= desired_height_diff // 2 + y2 += desired_height_diff - desired_height_diff // 2 + if y2 >= mask_image.height: + diff = y2 - mask_image.height + y2 -= diff + y1 -= diff + if y1 < 0: + y2 -= y1 + y1 -= y1 + if y2 >= mask_image.height: + y2 = mask_image.height + else: + desired_width = (y2 - y1) * ratio_processing + desired_width_diff = int(desired_width - (x2 - x1)) + x1 -= desired_width_diff // 2 + x2 += desired_width_diff - desired_width_diff // 2 + if x2 >= mask_image.width: + diff = x2 - mask_image.width + x2 -= diff + x1 -= diff + if x1 < 0: + x2 -= x1 + x1 -= x1 + if x2 >= mask_image.width: + x2 = mask_image.width + return (x1, y1, x2, y2) + + def _resize_and_fill(self, image: PIL.Image.Image, width: int, height: int) -> PIL.Image.Image: + ratio = width / height + src_ratio = image.width / image.height + src_w = width if ratio < src_ratio else image.width * height // image.height + src_h = height if ratio >= src_ratio else image.height * width // image.width + resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION['lanczos']) + res = Image.new('RGB', (width, height)) + res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) + if ratio < src_ratio: + fill_height = height // 2 - src_h // 2 + if fill_height > 0: + res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0)) + res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h)) + elif ratio > src_ratio: + fill_width = width // 2 - src_w // 2 + if fill_width > 0: + res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0)) + res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0)) + return res + + def _resize_and_crop(self, image: PIL.Image.Image, width: int, height: int) -> PIL.Image.Image: + ratio = width / height + src_ratio = image.width / image.height + src_w = width if ratio > src_ratio else image.width * height // image.height + src_h = height if ratio <= src_ratio else image.height * width // image.width + resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION['lanczos']) + res = Image.new('RGB', (width, height)) + res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) + return res + + def resize(self, image: Union[PIL.Image.Image, np.ndarray, torch.Tensor], height: int, width: int, resize_mode: str='default') -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]: + if resize_mode != 'default' and (not isinstance(image, PIL.Image.Image)): + raise ValueError(f'Only PIL image input is supported for resize_mode {resize_mode}') + if isinstance(image, PIL.Image.Image): + if resize_mode == 'default': + image = image.resize((width, height), resample=PIL_INTERPOLATION[self.config.resample]) + elif resize_mode == 'fill': + image = self._resize_and_fill(image, width, height) + elif resize_mode == 'crop': + image = self._resize_and_crop(image, width, height) + else: + raise ValueError(f'resize_mode {resize_mode} is not supported') + elif isinstance(image, torch.Tensor): + image = torch.nn.functional.interpolate(image, size=(height, width)) + elif isinstance(image, np.ndarray): + image = self.numpy_to_pt(image) + image = torch.nn.functional.interpolate(image, size=(height, width)) + image = self.pt_to_numpy(image) + return image + + def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image: + image[image < 0.5] = 0 + image[image >= 0.5] = 1 + return image + + def get_default_height_width(self, image: Union[PIL.Image.Image, np.ndarray, torch.Tensor], height: Optional[int]=None, width: Optional[int]=None) -> Tuple[int, int]: + if height is None: + if isinstance(image, PIL.Image.Image): + height = image.height + elif isinstance(image, torch.Tensor): + height = image.shape[2] + else: + height = image.shape[1] + if width is None: + if isinstance(image, PIL.Image.Image): + width = image.width + elif isinstance(image, torch.Tensor): + width = image.shape[3] + else: + width = image.shape[2] + (width, height) = (x - x % self.config.vae_scale_factor for x in (width, height)) + return (height, width) + + def preprocess(self, image: PipelineImageInput, height: Optional[int]=None, width: Optional[int]=None, resize_mode: str='default', crops_coords: Optional[Tuple[int, int, int, int]]=None) -> torch.Tensor: + supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor) + if self.config.do_convert_grayscale and isinstance(image, (torch.Tensor, np.ndarray)) and (image.ndim == 3): + if isinstance(image, torch.Tensor): + image = image.unsqueeze(1) + elif image.shape[-1] == 1: + image = np.expand_dims(image, axis=0) + else: + image = np.expand_dims(image, axis=-1) + if isinstance(image, list) and isinstance(image[0], np.ndarray) and (image[0].ndim == 4): + warnings.warn('Passing `image` as a list of 4d np.ndarray is deprecated.Please concatenate the list along the batch dimension and pass it as a single 4d np.ndarray', FutureWarning) + image = np.concatenate(image, axis=0) + if isinstance(image, list) and isinstance(image[0], torch.Tensor) and (image[0].ndim == 4): + warnings.warn('Passing `image` as a list of 4d torch.Tensor is deprecated.Please concatenate the list along the batch dimension and pass it as a single 4d torch.Tensor', FutureWarning) + image = torch.cat(image, axis=0) + if not is_valid_image_imagelist(image): + raise ValueError(f"Input is in incorrect format. Currently, we only support {', '.join((str(x) for x in supported_formats))}") + if not isinstance(image, list): + image = [image] + if isinstance(image[0], PIL.Image.Image): + if crops_coords is not None: + image = [i.crop(crops_coords) for i in image] + if self.config.do_resize: + (height, width) = self.get_default_height_width(image[0], height, width) + image = [self.resize(i, height, width, resize_mode=resize_mode) for i in image] + if self.config.do_convert_rgb: + image = [self.convert_to_rgb(i) for i in image] + elif self.config.do_convert_grayscale: + image = [self.convert_to_grayscale(i) for i in image] + image = self.pil_to_numpy(image) + image = self.numpy_to_pt(image) + elif isinstance(image[0], np.ndarray): + image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0) + image = self.numpy_to_pt(image) + (height, width) = self.get_default_height_width(image, height, width) + if self.config.do_resize: + image = self.resize(image, height, width) + elif isinstance(image[0], torch.Tensor): + image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0) + if self.config.do_convert_grayscale and image.ndim == 3: + image = image.unsqueeze(1) + channel = image.shape[1] + if channel == self.config.vae_latent_channels: + return image + (height, width) = self.get_default_height_width(image, height, width) + if self.config.do_resize: + image = self.resize(image, height, width) + do_normalize = self.config.do_normalize + if do_normalize and image.min() < 0: + warnings.warn(f'Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]', FutureWarning) + do_normalize = False + if do_normalize: + image = self.normalize(image) + if self.config.do_binarize: + image = self.binarize(image) + return image + + def postprocess(self, image: torch.Tensor, output_type: str='pil', do_denormalize: Optional[List[bool]]=None) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]: + if not isinstance(image, torch.Tensor): + raise ValueError(f'Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor') + if output_type not in ['latent', 'pt', 'np', 'pil']: + deprecation_message = f'the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: `pil`, `np`, `pt`, `latent`' + deprecate('Unsupported output_type', '1.0.0', deprecation_message, standard_warn=False) + output_type = 'np' + if output_type == 'latent': + return image + if do_denormalize is None: + do_denormalize = [self.config.do_normalize] * image.shape[0] + image = torch.stack([self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]) + if output_type == 'pt': + return image + image = self.pt_to_numpy(image) + if output_type == 'np': + return image + if output_type == 'pil': + return self.numpy_to_pil(image) + + def apply_overlay(self, mask: PIL.Image.Image, init_image: PIL.Image.Image, image: PIL.Image.Image, crop_coords: Optional[Tuple[int, int, int, int]]=None) -> PIL.Image.Image: + (width, height) = (image.width, image.height) + init_image = self.resize(init_image, width=width, height=height) + mask = self.resize(mask, width=width, height=height) + init_image_masked = PIL.Image.new('RGBa', (width, height)) + init_image_masked.paste(init_image.convert('RGBA').convert('RGBa'), mask=ImageOps.invert(mask.convert('L'))) + init_image_masked = init_image_masked.convert('RGBA') + if crop_coords is not None: + (x, y, x2, y2) = crop_coords + w = x2 - x + h = y2 - y + base_image = PIL.Image.new('RGBA', (width, height)) + image = self.resize(image, height=h, width=w, resize_mode='crop') + base_image.paste(image, (x, y)) + image = base_image.convert('RGB') + image = image.convert('RGBA') + image.alpha_composite(init_image_masked) + image = image.convert('RGB') + return image + +class VaeImageProcessorLDM3D(VaeImageProcessor): + config_name = CONFIG_NAME + + @register_to_config + def __init__(self, do_resize: bool=True, vae_scale_factor: int=8, resample: str='lanczos', do_normalize: bool=True): + super().__init__() + + @staticmethod + def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]: + if images.ndim == 3: + images = images[None, ...] + images = (images * 255).round().astype('uint8') + if images.shape[-1] == 1: + pil_images = [Image.fromarray(image.squeeze(), mode='L') for image in images] + else: + pil_images = [Image.fromarray(image[:, :, :3]) for image in images] + return pil_images + + @staticmethod + def depth_pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray: + if not isinstance(images, list): + images = [images] + images = [np.array(image).astype(np.float32) / (2 ** 16 - 1) for image in images] + images = np.stack(images, axis=0) + return images + + @staticmethod + def rgblike_to_depthmap(image: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]: + return image[:, :, 1] * 2 ** 8 + image[:, :, 2] + + def numpy_to_depth(self, images: np.ndarray) -> List[PIL.Image.Image]: + if images.ndim == 3: + images = images[None, ...] + images_depth = images[:, :, :, 3:] + if images.shape[-1] == 6: + images_depth = (images_depth * 255).round().astype('uint8') + pil_images = [Image.fromarray(self.rgblike_to_depthmap(image_depth), mode='I;16') for image_depth in images_depth] + elif images.shape[-1] == 4: + images_depth = (images_depth * 65535.0).astype(np.uint16) + pil_images = [Image.fromarray(image_depth, mode='I;16') for image_depth in images_depth] + else: + raise Exception('Not supported') + return pil_images + + def postprocess(self, image: torch.Tensor, output_type: str='pil', do_denormalize: Optional[List[bool]]=None) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]: + if not isinstance(image, torch.Tensor): + raise ValueError(f'Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor') + if output_type not in ['latent', 'pt', 'np', 'pil']: + deprecation_message = f'the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: `pil`, `np`, `pt`, `latent`' + deprecate('Unsupported output_type', '1.0.0', deprecation_message, standard_warn=False) + output_type = 'np' + if do_denormalize is None: + do_denormalize = [self.config.do_normalize] * image.shape[0] + image = torch.stack([self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]) + image = self.pt_to_numpy(image) + if output_type == 'np': + if image.shape[-1] == 6: + image_depth = np.stack([self.rgblike_to_depthmap(im[:, :, 3:]) for im in image], axis=0) + else: + image_depth = image[:, :, :, 3:] + return (image[:, :, :, :3], image_depth) + if output_type == 'pil': + return (self.numpy_to_pil(image), self.numpy_to_depth(image)) + else: + raise Exception(f'This type {output_type} is not supported') + + def preprocess(self, rgb: Union[torch.Tensor, PIL.Image.Image, np.ndarray], depth: Union[torch.Tensor, PIL.Image.Image, np.ndarray], height: Optional[int]=None, width: Optional[int]=None, target_res: Optional[int]=None) -> torch.Tensor: + supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor) + if self.config.do_convert_grayscale and isinstance(rgb, (torch.Tensor, np.ndarray)) and (rgb.ndim == 3): + raise Exception('This is not yet supported') + if isinstance(rgb, supported_formats): + rgb = [rgb] + depth = [depth] + elif not (isinstance(rgb, list) and all((isinstance(i, supported_formats) for i in rgb))): + raise ValueError(f"Input is in incorrect format: {[type(i) for i in rgb]}. Currently, we only support {', '.join(supported_formats)}") + if isinstance(rgb[0], PIL.Image.Image): + if self.config.do_convert_rgb: + raise Exception('This is not yet supported') + if self.config.do_resize or target_res: + (height, width) = self.get_default_height_width(rgb[0], height, width) if not target_res else target_res + rgb = [self.resize(i, height, width) for i in rgb] + depth = [self.resize(i, height, width) for i in depth] + rgb = self.pil_to_numpy(rgb) + rgb = self.numpy_to_pt(rgb) + depth = self.depth_pil_to_numpy(depth) + depth = self.numpy_to_pt(depth) + elif isinstance(rgb[0], np.ndarray): + rgb = np.concatenate(rgb, axis=0) if rgb[0].ndim == 4 else np.stack(rgb, axis=0) + rgb = self.numpy_to_pt(rgb) + (height, width) = self.get_default_height_width(rgb, height, width) + if self.config.do_resize: + rgb = self.resize(rgb, height, width) + depth = np.concatenate(depth, axis=0) if rgb[0].ndim == 4 else np.stack(depth, axis=0) + depth = self.numpy_to_pt(depth) + (height, width) = self.get_default_height_width(depth, height, width) + if self.config.do_resize: + depth = self.resize(depth, height, width) + elif isinstance(rgb[0], torch.Tensor): + raise Exception('This is not yet supported') + do_normalize = self.config.do_normalize + if rgb.min() < 0 and do_normalize: + warnings.warn(f'Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] when passing as pytorch tensor or numpy Array. You passed `image` with value range [{rgb.min()},{rgb.max()}]', FutureWarning) + do_normalize = False + if do_normalize: + rgb = self.normalize(rgb) + depth = self.normalize(depth) + if self.config.do_binarize: + rgb = self.binarize(rgb) + depth = self.binarize(depth) + return (rgb, depth) + +class IPAdapterMaskProcessor(VaeImageProcessor): + config_name = CONFIG_NAME + + @register_to_config + def __init__(self, do_resize: bool=True, vae_scale_factor: int=8, resample: str='lanczos', do_normalize: bool=False, do_binarize: bool=True, do_convert_grayscale: bool=True): + super().__init__(do_resize=do_resize, vae_scale_factor=vae_scale_factor, resample=resample, do_normalize=do_normalize, do_binarize=do_binarize, do_convert_grayscale=do_convert_grayscale) + + @staticmethod + def downsample(mask: torch.Tensor, batch_size: int, num_queries: int, value_embed_dim: int): + o_h = mask.shape[1] + o_w = mask.shape[2] + ratio = o_w / o_h + mask_h = int(math.sqrt(num_queries / ratio)) + mask_h = int(mask_h) + int(num_queries % int(mask_h) != 0) + mask_w = num_queries // mask_h + mask_downsample = F.interpolate(mask.unsqueeze(0), size=(mask_h, mask_w), mode='bicubic').squeeze(0) + if mask_downsample.shape[0] < batch_size: + mask_downsample = mask_downsample.repeat(batch_size, 1, 1) + mask_downsample = mask_downsample.view(mask_downsample.shape[0], -1) + downsampled_area = mask_h * mask_w + if downsampled_area < num_queries: + warnings.warn('The aspect ratio of the mask does not match the aspect ratio of the output image. Please update your masks or adjust the output size for optimal performance.', UserWarning) + mask_downsample = F.pad(mask_downsample, (0, num_queries - mask_downsample.shape[1]), value=0.0) + if downsampled_area > num_queries: + warnings.warn('The aspect ratio of the mask does not match the aspect ratio of the output image. Please update your masks or adjust the output size for optimal performance.', UserWarning) + mask_downsample = mask_downsample[:, :num_queries] + mask_downsample = mask_downsample.view(mask_downsample.shape[0], mask_downsample.shape[1], 1).repeat(1, 1, value_embed_dim) + return mask_downsample + +class PixArtImageProcessor(VaeImageProcessor): + + @register_to_config + def __init__(self, do_resize: bool=True, vae_scale_factor: int=8, resample: str='lanczos', do_normalize: bool=True, do_binarize: bool=False, do_convert_grayscale: bool=False): + super().__init__(do_resize=do_resize, vae_scale_factor=vae_scale_factor, resample=resample, do_normalize=do_normalize, do_binarize=do_binarize, do_convert_grayscale=do_convert_grayscale) + + @staticmethod + def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]: + ar = float(height / width) + closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar)) + default_hw = ratios[closest_ratio] + return (int(default_hw[0]), int(default_hw[1])) + + @staticmethod + def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor: + (orig_height, orig_width) = (samples.shape[2], samples.shape[3]) + if orig_height != new_height or orig_width != new_width: + ratio = max(new_height / orig_height, new_width / orig_width) + resized_width = int(orig_width * ratio) + resized_height = int(orig_height * ratio) + samples = F.interpolate(samples, size=(resized_height, resized_width), mode='bilinear', align_corners=False) + start_x = (resized_width - new_width) // 2 + end_x = start_x + new_width + start_y = (resized_height - new_height) // 2 + end_y = start_y + new_height + samples = samples[:, :, start_y:end_y, start_x:end_x] + return samples + +# File: diffusers-main/src/diffusers/loaders/__init__.py +from typing import TYPE_CHECKING +from ..utils import DIFFUSERS_SLOW_IMPORT, _LazyModule, deprecate +from ..utils.import_utils import is_peft_available, is_torch_available, is_transformers_available + +def text_encoder_lora_state_dict(text_encoder): + deprecate('text_encoder_load_state_dict in `models`', '0.27.0', '`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.') + state_dict = {} + for (name, module) in text_encoder_attn_modules(text_encoder): + for (k, v) in module.q_proj.lora_linear_layer.state_dict().items(): + state_dict[f'{name}.q_proj.lora_linear_layer.{k}'] = v + for (k, v) in module.k_proj.lora_linear_layer.state_dict().items(): + state_dict[f'{name}.k_proj.lora_linear_layer.{k}'] = v + for (k, v) in module.v_proj.lora_linear_layer.state_dict().items(): + state_dict[f'{name}.v_proj.lora_linear_layer.{k}'] = v + for (k, v) in module.out_proj.lora_linear_layer.state_dict().items(): + state_dict[f'{name}.out_proj.lora_linear_layer.{k}'] = v + return state_dict +if is_transformers_available(): + + def text_encoder_attn_modules(text_encoder): + deprecate('text_encoder_attn_modules in `models`', '0.27.0', '`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.') + from transformers import CLIPTextModel, CLIPTextModelWithProjection + attn_modules = [] + if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)): + for (i, layer) in enumerate(text_encoder.text_model.encoder.layers): + name = f'text_model.encoder.layers.{i}.self_attn' + mod = layer.self_attn + attn_modules.append((name, mod)) + else: + raise ValueError(f'do not know how to get attention modules for: {text_encoder.__class__.__name__}') + return attn_modules +_import_structure = {} +if is_torch_available(): + _import_structure['single_file_model'] = ['FromOriginalModelMixin'] + _import_structure['unet'] = ['UNet2DConditionLoadersMixin'] + _import_structure['utils'] = ['AttnProcsLayers'] + if is_transformers_available(): + _import_structure['single_file'] = ['FromSingleFileMixin'] + _import_structure['lora_pipeline'] = ['AmusedLoraLoaderMixin', 'StableDiffusionLoraLoaderMixin', 'SD3LoraLoaderMixin', 'StableDiffusionXLLoraLoaderMixin', 'LoraLoaderMixin', 'FluxLoraLoaderMixin'] + _import_structure['textual_inversion'] = ['TextualInversionLoaderMixin'] + _import_structure['ip_adapter'] = ['IPAdapterMixin'] +_import_structure['peft'] = ['PeftAdapterMixin'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + if is_torch_available(): + from .single_file_model import FromOriginalModelMixin + from .unet import UNet2DConditionLoadersMixin + from .utils import AttnProcsLayers + if is_transformers_available(): + from .ip_adapter import IPAdapterMixin + from .lora_pipeline import AmusedLoraLoaderMixin, FluxLoraLoaderMixin, LoraLoaderMixin, SD3LoraLoaderMixin, StableDiffusionLoraLoaderMixin, StableDiffusionXLLoraLoaderMixin + from .single_file import FromSingleFileMixin + from .textual_inversion import TextualInversionLoaderMixin + from .peft import PeftAdapterMixin +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + +# File: diffusers-main/src/diffusers/loaders/ip_adapter.py +from pathlib import Path +from typing import Dict, List, Optional, Union +import torch +import torch.nn.functional as F +from huggingface_hub.utils import validate_hf_hub_args +from safetensors import safe_open +from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_state_dict +from ..utils import USE_PEFT_BACKEND, _get_model_file, is_accelerate_available, is_torch_version, is_transformers_available, logging +from .unet_loader_utils import _maybe_expand_lora_scales +if is_transformers_available(): + from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection + from ..models.attention_processor import AttnProcessor, AttnProcessor2_0, IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0 +logger = logging.get_logger(__name__) + +class IPAdapterMixin: + + @validate_hf_hub_args + def load_ip_adapter(self, pretrained_model_name_or_path_or_dict: Union[str, List[str], Dict[str, torch.Tensor]], subfolder: Union[str, List[str]], weight_name: Union[str, List[str]], image_encoder_folder: Optional[str]='image_encoder', **kwargs): + if not isinstance(weight_name, list): + weight_name = [weight_name] + if not isinstance(pretrained_model_name_or_path_or_dict, list): + pretrained_model_name_or_path_or_dict = [pretrained_model_name_or_path_or_dict] + if len(pretrained_model_name_or_path_or_dict) == 1: + pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict * len(weight_name) + if not isinstance(subfolder, list): + subfolder = [subfolder] + if len(subfolder) == 1: + subfolder = subfolder * len(weight_name) + if len(weight_name) != len(pretrained_model_name_or_path_or_dict): + raise ValueError('`weight_name` and `pretrained_model_name_or_path_or_dict` must have the same length.') + if len(weight_name) != len(subfolder): + raise ValueError('`weight_name` and `subfolder` must have the same length.') + cache_dir = kwargs.pop('cache_dir', None) + force_download = kwargs.pop('force_download', False) + proxies = kwargs.pop('proxies', None) + local_files_only = kwargs.pop('local_files_only', None) + token = kwargs.pop('token', None) + revision = kwargs.pop('revision', None) + low_cpu_mem_usage = kwargs.pop('low_cpu_mem_usage', _LOW_CPU_MEM_USAGE_DEFAULT) + if low_cpu_mem_usage and (not is_accelerate_available()): + low_cpu_mem_usage = False + logger.warning('Cannot initialize model with low cpu memory usage because `accelerate` was not found in the environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip install accelerate\n```\n.') + if low_cpu_mem_usage is True and (not is_torch_version('>=', '1.9.0')): + raise NotImplementedError('Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set `low_cpu_mem_usage=False`.') + user_agent = {'file_type': 'attn_procs_weights', 'framework': 'pytorch'} + state_dicts = [] + for (pretrained_model_name_or_path_or_dict, weight_name, subfolder) in zip(pretrained_model_name_or_path_or_dict, weight_name, subfolder): + if not isinstance(pretrained_model_name_or_path_or_dict, dict): + model_file = _get_model_file(pretrained_model_name_or_path_or_dict, weights_name=weight_name, cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent) + if weight_name.endswith('.safetensors'): + state_dict = {'image_proj': {}, 'ip_adapter': {}} + with safe_open(model_file, framework='pt', device='cpu') as f: + for key in f.keys(): + if key.startswith('image_proj.'): + state_dict['image_proj'][key.replace('image_proj.', '')] = f.get_tensor(key) + elif key.startswith('ip_adapter.'): + state_dict['ip_adapter'][key.replace('ip_adapter.', '')] = f.get_tensor(key) + else: + state_dict = load_state_dict(model_file) + else: + state_dict = pretrained_model_name_or_path_or_dict + keys = list(state_dict.keys()) + if keys != ['image_proj', 'ip_adapter']: + raise ValueError('Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.') + state_dicts.append(state_dict) + if hasattr(self, 'image_encoder') and getattr(self, 'image_encoder', None) is None: + if image_encoder_folder is not None: + if not isinstance(pretrained_model_name_or_path_or_dict, dict): + logger.info(f'loading image_encoder from {pretrained_model_name_or_path_or_dict}') + if image_encoder_folder.count('/') == 0: + image_encoder_subfolder = Path(subfolder, image_encoder_folder).as_posix() + else: + image_encoder_subfolder = Path(image_encoder_folder).as_posix() + image_encoder = CLIPVisionModelWithProjection.from_pretrained(pretrained_model_name_or_path_or_dict, subfolder=image_encoder_subfolder, low_cpu_mem_usage=low_cpu_mem_usage, cache_dir=cache_dir, local_files_only=local_files_only).to(self.device, dtype=self.dtype) + self.register_modules(image_encoder=image_encoder) + else: + raise ValueError('`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict.') + else: + logger.warning('image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter.Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead.') + if hasattr(self, 'feature_extractor') and getattr(self, 'feature_extractor', None) is None: + default_clip_size = 224 + clip_image_size = self.image_encoder.config.image_size if self.image_encoder is not None else default_clip_size + feature_extractor = CLIPImageProcessor(size=clip_image_size, crop_size=clip_image_size) + self.register_modules(feature_extractor=feature_extractor) + unet = getattr(self, self.unet_name) if not hasattr(self, 'unet') else self.unet + unet._load_ip_adapter_weights(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage) + extra_loras = unet._load_ip_adapter_loras(state_dicts) + if extra_loras != {}: + if not USE_PEFT_BACKEND: + logger.warning('PEFT backend is required to load these weights.') + else: + peft_config = getattr(unet, 'peft_config', {}) + for (k, lora) in extra_loras.items(): + if f'faceid_{k}' not in peft_config: + self.load_lora_weights(lora, adapter_name=f'faceid_{k}') + self.set_adapters([f'faceid_{k}'], adapter_weights=[1.0]) + + def set_ip_adapter_scale(self, scale): + unet = getattr(self, self.unet_name) if not hasattr(self, 'unet') else self.unet + if not isinstance(scale, list): + scale = [scale] + scale_configs = _maybe_expand_lora_scales(unet, scale, default_scale=0.0) + for (attn_name, attn_processor) in unet.attn_processors.items(): + if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)): + if len(scale_configs) != len(attn_processor.scale): + raise ValueError(f'Cannot assign {len(scale_configs)} scale_configs to {len(attn_processor.scale)} IP-Adapter.') + elif len(scale_configs) == 1: + scale_configs = scale_configs * len(attn_processor.scale) + for (i, scale_config) in enumerate(scale_configs): + if isinstance(scale_config, dict): + for (k, s) in scale_config.items(): + if attn_name.startswith(k): + attn_processor.scale[i] = s + else: + attn_processor.scale[i] = scale_config + + def unload_ip_adapter(self): + if hasattr(self, 'image_encoder') and getattr(self, 'image_encoder', None) is not None: + self.image_encoder = None + self.register_to_config(image_encoder=[None, None]) + if not hasattr(self, 'safety_checker'): + if hasattr(self, 'feature_extractor') and getattr(self, 'feature_extractor', None) is not None: + self.feature_extractor = None + self.register_to_config(feature_extractor=[None, None]) + self.unet.encoder_hid_proj = None + self.unet.config.encoder_hid_dim_type = None + if hasattr(self.unet, 'text_encoder_hid_proj') and self.unet.text_encoder_hid_proj is not None: + self.unet.encoder_hid_proj = self.unet.text_encoder_hid_proj + self.unet.text_encoder_hid_proj = None + self.unet.config.encoder_hid_dim_type = 'text_proj' + attn_procs = {} + for (name, value) in self.unet.attn_processors.items(): + attn_processor_class = AttnProcessor2_0() if hasattr(F, 'scaled_dot_product_attention') else AttnProcessor() + attn_procs[name] = attn_processor_class if isinstance(value, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)) else value.__class__() + self.unet.set_attn_processor(attn_procs) + +# File: diffusers-main/src/diffusers/loaders/lora_base.py +import copy +import inspect +import os +from pathlib import Path +from typing import Callable, Dict, List, Optional, Union +import safetensors +import torch +import torch.nn as nn +from huggingface_hub import model_info +from huggingface_hub.constants import HF_HUB_OFFLINE +from ..models.modeling_utils import ModelMixin, load_state_dict +from ..utils import USE_PEFT_BACKEND, _get_model_file, delete_adapter_layers, deprecate, is_accelerate_available, is_peft_available, is_transformers_available, logging, recurse_remove_peft_layers, set_adapter_layers, set_weights_and_activate_adapters +if is_transformers_available(): + from transformers import PreTrainedModel +if is_peft_available(): + from peft.tuners.tuners_utils import BaseTunerLayer +if is_accelerate_available(): + from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module +logger = logging.get_logger(__name__) + +def fuse_text_encoder_lora(text_encoder, lora_scale=1.0, safe_fusing=False, adapter_names=None): + merge_kwargs = {'safe_merge': safe_fusing} + for module in text_encoder.modules(): + if isinstance(module, BaseTunerLayer): + if lora_scale != 1.0: + module.scale_layer(lora_scale) + supported_merge_kwargs = list(inspect.signature(module.merge).parameters) + if 'adapter_names' in supported_merge_kwargs: + merge_kwargs['adapter_names'] = adapter_names + elif 'adapter_names' not in supported_merge_kwargs and adapter_names is not None: + raise ValueError('The `adapter_names` argument is not supported with your PEFT version. Please upgrade to the latest version of PEFT. `pip install -U peft`') + module.merge(**merge_kwargs) + +def unfuse_text_encoder_lora(text_encoder): + for module in text_encoder.modules(): + if isinstance(module, BaseTunerLayer): + module.unmerge() + +def set_adapters_for_text_encoder(adapter_names: Union[List[str], str], text_encoder: Optional['PreTrainedModel']=None, text_encoder_weights: Optional[Union[float, List[float], List[None]]]=None): + if text_encoder is None: + raise ValueError('The pipeline does not have a default `pipe.text_encoder` class. Please make sure to pass a `text_encoder` instead.') + + def process_weights(adapter_names, weights): + if not isinstance(weights, list): + weights = [weights] * len(adapter_names) + if len(adapter_names) != len(weights): + raise ValueError(f'Length of adapter names {len(adapter_names)} is not equal to the length of the weights {len(weights)}') + weights = [w if w is not None else 1.0 for w in weights] + return weights + adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names + text_encoder_weights = process_weights(adapter_names, text_encoder_weights) + set_weights_and_activate_adapters(text_encoder, adapter_names, text_encoder_weights) + +def disable_lora_for_text_encoder(text_encoder: Optional['PreTrainedModel']=None): + if text_encoder is None: + raise ValueError('Text Encoder not found.') + set_adapter_layers(text_encoder, enabled=False) + +def enable_lora_for_text_encoder(text_encoder: Optional['PreTrainedModel']=None): + if text_encoder is None: + raise ValueError('Text Encoder not found.') + set_adapter_layers(text_encoder, enabled=True) + +def _remove_text_encoder_monkey_patch(text_encoder): + recurse_remove_peft_layers(text_encoder) + if getattr(text_encoder, 'peft_config', None) is not None: + del text_encoder.peft_config + text_encoder._hf_peft_config_loaded = None + +class LoraBaseMixin: + _lora_loadable_modules = [] + num_fused_loras = 0 + + def load_lora_weights(self, **kwargs): + raise NotImplementedError('`load_lora_weights()` is not implemented.') + + @classmethod + def save_lora_weights(cls, **kwargs): + raise NotImplementedError('`save_lora_weights()` not implemented.') + + @classmethod + def lora_state_dict(cls, **kwargs): + raise NotImplementedError('`lora_state_dict()` is not implemented.') + + @classmethod + def _optionally_disable_offloading(cls, _pipeline): + is_model_cpu_offload = False + is_sequential_cpu_offload = False + if _pipeline is not None and _pipeline.hf_device_map is None: + for (_, component) in _pipeline.components.items(): + if isinstance(component, nn.Module) and hasattr(component, '_hf_hook'): + if not is_model_cpu_offload: + is_model_cpu_offload = isinstance(component._hf_hook, CpuOffload) + if not is_sequential_cpu_offload: + is_sequential_cpu_offload = isinstance(component._hf_hook, AlignDevicesHook) or (hasattr(component._hf_hook, 'hooks') and isinstance(component._hf_hook.hooks[0], AlignDevicesHook)) + logger.info('Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again.') + remove_hook_from_module(component, recurse=is_sequential_cpu_offload) + return (is_model_cpu_offload, is_sequential_cpu_offload) + + @classmethod + def _fetch_state_dict(cls, pretrained_model_name_or_path_or_dict, weight_name, use_safetensors, local_files_only, cache_dir, force_download, proxies, token, revision, subfolder, user_agent, allow_pickle): + from .lora_pipeline import LORA_WEIGHT_NAME, LORA_WEIGHT_NAME_SAFE + model_file = None + if not isinstance(pretrained_model_name_or_path_or_dict, dict): + if use_safetensors and weight_name is None or (weight_name is not None and weight_name.endswith('.safetensors')): + try: + if weight_name is None: + weight_name = cls._best_guess_weight_name(pretrained_model_name_or_path_or_dict, file_extension='.safetensors', local_files_only=local_files_only) + model_file = _get_model_file(pretrained_model_name_or_path_or_dict, weights_name=weight_name or LORA_WEIGHT_NAME_SAFE, cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent) + state_dict = safetensors.torch.load_file(model_file, device='cpu') + except (IOError, safetensors.SafetensorError) as e: + if not allow_pickle: + raise e + model_file = None + pass + if model_file is None: + if weight_name is None: + weight_name = cls._best_guess_weight_name(pretrained_model_name_or_path_or_dict, file_extension='.bin', local_files_only=local_files_only) + model_file = _get_model_file(pretrained_model_name_or_path_or_dict, weights_name=weight_name or LORA_WEIGHT_NAME, cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent) + state_dict = load_state_dict(model_file) + else: + state_dict = pretrained_model_name_or_path_or_dict + return state_dict + + @classmethod + def _best_guess_weight_name(cls, pretrained_model_name_or_path_or_dict, file_extension='.safetensors', local_files_only=False): + from .lora_pipeline import LORA_WEIGHT_NAME, LORA_WEIGHT_NAME_SAFE + if local_files_only or HF_HUB_OFFLINE: + raise ValueError('When using the offline mode, you must specify a `weight_name`.') + targeted_files = [] + if os.path.isfile(pretrained_model_name_or_path_or_dict): + return + elif os.path.isdir(pretrained_model_name_or_path_or_dict): + targeted_files = [f for f in os.listdir(pretrained_model_name_or_path_or_dict) if f.endswith(file_extension)] + else: + files_in_repo = model_info(pretrained_model_name_or_path_or_dict).siblings + targeted_files = [f.rfilename for f in files_in_repo if f.rfilename.endswith(file_extension)] + if len(targeted_files) == 0: + return + unallowed_substrings = {'scheduler', 'optimizer', 'checkpoint'} + targeted_files = list(filter(lambda x: all((substring not in x for substring in unallowed_substrings)), targeted_files)) + if any((f.endswith(LORA_WEIGHT_NAME) for f in targeted_files)): + targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME), targeted_files)) + elif any((f.endswith(LORA_WEIGHT_NAME_SAFE) for f in targeted_files)): + targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME_SAFE), targeted_files)) + if len(targeted_files) > 1: + raise ValueError(f"Provided path contains more than one weights file in the {file_extension} format. Either specify `weight_name` in `load_lora_weights` or make sure there's only one `.safetensors` or `.bin` file in {pretrained_model_name_or_path_or_dict}.") + weight_name = targeted_files[0] + return weight_name + + def unload_lora_weights(self): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method.') + for component in self._lora_loadable_modules: + model = getattr(self, component, None) + if model is not None: + if issubclass(model.__class__, ModelMixin): + model.unload_lora() + elif issubclass(model.__class__, PreTrainedModel): + _remove_text_encoder_monkey_patch(model) + + def fuse_lora(self, components: List[str]=[], lora_scale: float=1.0, safe_fusing: bool=False, adapter_names: Optional[List[str]]=None, **kwargs): + if 'fuse_unet' in kwargs: + depr_message = 'Passing `fuse_unet` to `fuse_lora()` is deprecated and will be ignored. Please use the `components` argument and provide a list of the components whose LoRAs are to be fused. `fuse_unet` will be removed in a future version.' + deprecate('fuse_unet', '1.0.0', depr_message) + if 'fuse_transformer' in kwargs: + depr_message = 'Passing `fuse_transformer` to `fuse_lora()` is deprecated and will be ignored. Please use the `components` argument and provide a list of the components whose LoRAs are to be fused. `fuse_transformer` will be removed in a future version.' + deprecate('fuse_transformer', '1.0.0', depr_message) + if 'fuse_text_encoder' in kwargs: + depr_message = 'Passing `fuse_text_encoder` to `fuse_lora()` is deprecated and will be ignored. Please use the `components` argument and provide a list of the components whose LoRAs are to be fused. `fuse_text_encoder` will be removed in a future version.' + deprecate('fuse_text_encoder', '1.0.0', depr_message) + if len(components) == 0: + raise ValueError('`components` cannot be an empty list.') + for fuse_component in components: + if fuse_component not in self._lora_loadable_modules: + raise ValueError(f'{fuse_component} is not found in self._lora_loadable_modules={self._lora_loadable_modules!r}.') + model = getattr(self, fuse_component, None) + if model is not None: + if issubclass(model.__class__, ModelMixin): + model.fuse_lora(lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names) + if issubclass(model.__class__, PreTrainedModel): + fuse_text_encoder_lora(model, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names) + self.num_fused_loras += 1 + + def unfuse_lora(self, components: List[str]=[], **kwargs): + if 'unfuse_unet' in kwargs: + depr_message = 'Passing `unfuse_unet` to `unfuse_lora()` is deprecated and will be ignored. Please use the `components` argument. `unfuse_unet` will be removed in a future version.' + deprecate('unfuse_unet', '1.0.0', depr_message) + if 'unfuse_transformer' in kwargs: + depr_message = 'Passing `unfuse_transformer` to `unfuse_lora()` is deprecated and will be ignored. Please use the `components` argument. `unfuse_transformer` will be removed in a future version.' + deprecate('unfuse_transformer', '1.0.0', depr_message) + if 'unfuse_text_encoder' in kwargs: + depr_message = 'Passing `unfuse_text_encoder` to `unfuse_lora()` is deprecated and will be ignored. Please use the `components` argument. `unfuse_text_encoder` will be removed in a future version.' + deprecate('unfuse_text_encoder', '1.0.0', depr_message) + if len(components) == 0: + raise ValueError('`components` cannot be an empty list.') + for fuse_component in components: + if fuse_component not in self._lora_loadable_modules: + raise ValueError(f'{fuse_component} is not found in self._lora_loadable_modules={self._lora_loadable_modules!r}.') + model = getattr(self, fuse_component, None) + if model is not None: + if issubclass(model.__class__, (ModelMixin, PreTrainedModel)): + for module in model.modules(): + if isinstance(module, BaseTunerLayer): + module.unmerge() + self.num_fused_loras -= 1 + + def set_adapters(self, adapter_names: Union[List[str], str], adapter_weights: Optional[Union[float, Dict, List[float], List[Dict]]]=None): + adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names + adapter_weights = copy.deepcopy(adapter_weights) + if not isinstance(adapter_weights, list): + adapter_weights = [adapter_weights] * len(adapter_names) + if len(adapter_names) != len(adapter_weights): + raise ValueError(f'Length of adapter names {len(adapter_names)} is not equal to the length of the weights {len(adapter_weights)}') + list_adapters = self.get_list_adapters() + all_adapters = {adapter for adapters in list_adapters.values() for adapter in adapters} + invert_list_adapters = {adapter: [part for (part, adapters) in list_adapters.items() if adapter in adapters] for adapter in all_adapters} + _component_adapter_weights = {} + for component in self._lora_loadable_modules: + model = getattr(self, component) + for (adapter_name, weights) in zip(adapter_names, adapter_weights): + if isinstance(weights, dict): + component_adapter_weights = weights.pop(component, None) + if component_adapter_weights is not None and (not hasattr(self, component)): + logger.warning(f'Lora weight dict contains {component} weights but will be ignored because pipeline does not have {component}.') + if component_adapter_weights is not None and component not in invert_list_adapters[adapter_name]: + logger.warning(f"Lora weight dict for adapter '{adapter_name}' contains {component},but this will be ignored because {adapter_name} does not contain weights for {component}.Valid parts for {adapter_name} are: {invert_list_adapters[adapter_name]}.") + else: + component_adapter_weights = weights + _component_adapter_weights.setdefault(component, []) + _component_adapter_weights[component].append(component_adapter_weights) + if issubclass(model.__class__, ModelMixin): + model.set_adapters(adapter_names, _component_adapter_weights[component]) + elif issubclass(model.__class__, PreTrainedModel): + set_adapters_for_text_encoder(adapter_names, model, _component_adapter_weights[component]) + + def disable_lora(self): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method.') + for component in self._lora_loadable_modules: + model = getattr(self, component, None) + if model is not None: + if issubclass(model.__class__, ModelMixin): + model.disable_lora() + elif issubclass(model.__class__, PreTrainedModel): + disable_lora_for_text_encoder(model) + + def enable_lora(self): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method.') + for component in self._lora_loadable_modules: + model = getattr(self, component, None) + if model is not None: + if issubclass(model.__class__, ModelMixin): + model.enable_lora() + elif issubclass(model.__class__, PreTrainedModel): + enable_lora_for_text_encoder(model) + + def delete_adapters(self, adapter_names: Union[List[str], str]): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method.') + if isinstance(adapter_names, str): + adapter_names = [adapter_names] + for component in self._lora_loadable_modules: + model = getattr(self, component, None) + if model is not None: + if issubclass(model.__class__, ModelMixin): + model.delete_adapters(adapter_names) + elif issubclass(model.__class__, PreTrainedModel): + for adapter_name in adapter_names: + delete_adapter_layers(model, adapter_name) + + def get_active_adapters(self) -> List[str]: + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`') + active_adapters = [] + for component in self._lora_loadable_modules: + model = getattr(self, component, None) + if model is not None and issubclass(model.__class__, ModelMixin): + for module in model.modules(): + if isinstance(module, BaseTunerLayer): + active_adapters = module.active_adapters + break + return active_adapters + + def get_list_adapters(self) -> Dict[str, List[str]]: + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`') + set_adapters = {} + for component in self._lora_loadable_modules: + model = getattr(self, component, None) + if model is not None and issubclass(model.__class__, (ModelMixin, PreTrainedModel)) and hasattr(model, 'peft_config'): + set_adapters[component] = list(model.peft_config.keys()) + return set_adapters + + def set_lora_device(self, adapter_names: List[str], device: Union[torch.device, str, int]) -> None: + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method.') + for component in self._lora_loadable_modules: + model = getattr(self, component, None) + if model is not None: + for module in model.modules(): + if isinstance(module, BaseTunerLayer): + for adapter_name in adapter_names: + module.lora_A[adapter_name].to(device) + module.lora_B[adapter_name].to(device) + if hasattr(module, 'lora_magnitude_vector') and module.lora_magnitude_vector is not None: + if adapter_name in module.lora_magnitude_vector: + module.lora_magnitude_vector[adapter_name] = module.lora_magnitude_vector[adapter_name].to(device) + + @staticmethod + def pack_weights(layers, prefix): + layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers + layers_state_dict = {f'{prefix}.{module_name}': param for (module_name, param) in layers_weights.items()} + return layers_state_dict + + @staticmethod + def write_lora_layers(state_dict: Dict[str, torch.Tensor], save_directory: str, is_main_process: bool, weight_name: str, save_function: Callable, safe_serialization: bool): + from .lora_pipeline import LORA_WEIGHT_NAME, LORA_WEIGHT_NAME_SAFE + if os.path.isfile(save_directory): + logger.error(f'Provided path ({save_directory}) should be a directory, not a file') + return + if save_function is None: + if safe_serialization: + + def save_function(weights, filename): + return safetensors.torch.save_file(weights, filename, metadata={'format': 'pt'}) + else: + save_function = torch.save + os.makedirs(save_directory, exist_ok=True) + if weight_name is None: + if safe_serialization: + weight_name = LORA_WEIGHT_NAME_SAFE + else: + weight_name = LORA_WEIGHT_NAME + save_path = Path(save_directory, weight_name).as_posix() + save_function(state_dict, save_path) + logger.info(f'Model weights saved in {save_path}') + + @property + def lora_scale(self) -> float: + return self._lora_scale if hasattr(self, '_lora_scale') else 1.0 + +# File: diffusers-main/src/diffusers/loaders/lora_conversion_utils.py +import re +import torch +from ..utils import is_peft_version, logging +logger = logging.get_logger(__name__) + +def _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config, delimiter='_', block_slice_pos=5): + all_keys = list(state_dict.keys()) + sgm_patterns = ['input_blocks', 'middle_block', 'output_blocks'] + is_in_sgm_format = False + for key in all_keys: + if any((p in key for p in sgm_patterns)): + is_in_sgm_format = True + break + if not is_in_sgm_format: + return state_dict + new_state_dict = {} + inner_block_map = ['resnets', 'attentions', 'upsamplers'] + (input_block_ids, middle_block_ids, output_block_ids) = (set(), set(), set()) + for layer in all_keys: + if 'text' in layer: + new_state_dict[layer] = state_dict.pop(layer) + else: + layer_id = int(layer.split(delimiter)[:block_slice_pos][-1]) + if sgm_patterns[0] in layer: + input_block_ids.add(layer_id) + elif sgm_patterns[1] in layer: + middle_block_ids.add(layer_id) + elif sgm_patterns[2] in layer: + output_block_ids.add(layer_id) + else: + raise ValueError(f'Checkpoint not supported because layer {layer} not supported.') + input_blocks = {layer_id: [key for key in state_dict if f'input_blocks{delimiter}{layer_id}' in key] for layer_id in input_block_ids} + middle_blocks = {layer_id: [key for key in state_dict if f'middle_block{delimiter}{layer_id}' in key] for layer_id in middle_block_ids} + output_blocks = {layer_id: [key for key in state_dict if f'output_blocks{delimiter}{layer_id}' in key] for layer_id in output_block_ids} + for i in input_block_ids: + block_id = (i - 1) // (unet_config.layers_per_block + 1) + layer_in_block_id = (i - 1) % (unet_config.layers_per_block + 1) + for key in input_blocks[i]: + inner_block_id = int(key.split(delimiter)[block_slice_pos]) + inner_block_key = inner_block_map[inner_block_id] if 'op' not in key else 'downsamplers' + inner_layers_in_block = str(layer_in_block_id) if 'op' not in key else '0' + new_key = delimiter.join(key.split(delimiter)[:block_slice_pos - 1] + [str(block_id), inner_block_key, inner_layers_in_block] + key.split(delimiter)[block_slice_pos + 1:]) + new_state_dict[new_key] = state_dict.pop(key) + for i in middle_block_ids: + key_part = None + if i == 0: + key_part = [inner_block_map[0], '0'] + elif i == 1: + key_part = [inner_block_map[1], '0'] + elif i == 2: + key_part = [inner_block_map[0], '1'] + else: + raise ValueError(f'Invalid middle block id {i}.') + for key in middle_blocks[i]: + new_key = delimiter.join(key.split(delimiter)[:block_slice_pos - 1] + key_part + key.split(delimiter)[block_slice_pos:]) + new_state_dict[new_key] = state_dict.pop(key) + for i in output_block_ids: + block_id = i // (unet_config.layers_per_block + 1) + layer_in_block_id = i % (unet_config.layers_per_block + 1) + for key in output_blocks[i]: + inner_block_id = int(key.split(delimiter)[block_slice_pos]) + inner_block_key = inner_block_map[inner_block_id] + inner_layers_in_block = str(layer_in_block_id) if inner_block_id < 2 else '0' + new_key = delimiter.join(key.split(delimiter)[:block_slice_pos - 1] + [str(block_id), inner_block_key, inner_layers_in_block] + key.split(delimiter)[block_slice_pos + 1:]) + new_state_dict[new_key] = state_dict.pop(key) + if len(state_dict) > 0: + raise ValueError('At this point all state dict entries have to be converted.') + return new_state_dict + +def _convert_non_diffusers_lora_to_diffusers(state_dict, unet_name='unet', text_encoder_name='text_encoder'): + unet_state_dict = {} + te_state_dict = {} + te2_state_dict = {} + network_alphas = {} + dora_present_in_unet = any(('dora_scale' in k and 'lora_unet_' in k for k in state_dict)) + dora_present_in_te = any(('dora_scale' in k and ('lora_te_' in k or 'lora_te1_' in k) for k in state_dict)) + dora_present_in_te2 = any(('dora_scale' in k and 'lora_te2_' in k for k in state_dict)) + if dora_present_in_unet or dora_present_in_te or dora_present_in_te2: + if is_peft_version('<', '0.9.0'): + raise ValueError('You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`.') + all_lora_keys = list(state_dict.keys()) + for key in all_lora_keys: + if not key.endswith('lora_down.weight'): + continue + lora_name = key.split('.')[0] + lora_name_up = lora_name + '.lora_up.weight' + lora_name_alpha = lora_name + '.alpha' + if lora_name.startswith('lora_unet_'): + diffusers_name = _convert_unet_lora_key(key) + unet_state_dict[diffusers_name] = state_dict.pop(key) + unet_state_dict[diffusers_name.replace('.down.', '.up.')] = state_dict.pop(lora_name_up) + if dora_present_in_unet: + dora_scale_key_to_replace = '_lora.down.' if '_lora.down.' in diffusers_name else '.lora.down.' + unet_state_dict[diffusers_name.replace(dora_scale_key_to_replace, '.lora_magnitude_vector.')] = state_dict.pop(key.replace('lora_down.weight', 'dora_scale')) + elif lora_name.startswith(('lora_te_', 'lora_te1_', 'lora_te2_')): + diffusers_name = _convert_text_encoder_lora_key(key, lora_name) + if lora_name.startswith(('lora_te_', 'lora_te1_')): + te_state_dict[diffusers_name] = state_dict.pop(key) + te_state_dict[diffusers_name.replace('.down.', '.up.')] = state_dict.pop(lora_name_up) + else: + te2_state_dict[diffusers_name] = state_dict.pop(key) + te2_state_dict[diffusers_name.replace('.down.', '.up.')] = state_dict.pop(lora_name_up) + if dora_present_in_te or dora_present_in_te2: + dora_scale_key_to_replace_te = '_lora.down.' if '_lora.down.' in diffusers_name else '.lora_linear_layer.' + if lora_name.startswith(('lora_te_', 'lora_te1_')): + te_state_dict[diffusers_name.replace(dora_scale_key_to_replace_te, '.lora_magnitude_vector.')] = state_dict.pop(key.replace('lora_down.weight', 'dora_scale')) + elif lora_name.startswith('lora_te2_'): + te2_state_dict[diffusers_name.replace(dora_scale_key_to_replace_te, '.lora_magnitude_vector.')] = state_dict.pop(key.replace('lora_down.weight', 'dora_scale')) + if lora_name_alpha in state_dict: + alpha = state_dict.pop(lora_name_alpha).item() + network_alphas.update(_get_alpha_name(lora_name_alpha, diffusers_name, alpha)) + if len(state_dict) > 0: + raise ValueError(f"The following keys have not been correctly renamed: \n\n {', '.join(state_dict.keys())}") + logger.info('Non-diffusers checkpoint detected.') + unet_state_dict = {f'{unet_name}.{module_name}': params for (module_name, params) in unet_state_dict.items()} + te_state_dict = {f'{text_encoder_name}.{module_name}': params for (module_name, params) in te_state_dict.items()} + te2_state_dict = {f'text_encoder_2.{module_name}': params for (module_name, params) in te2_state_dict.items()} if len(te2_state_dict) > 0 else None + if te2_state_dict is not None: + te_state_dict.update(te2_state_dict) + new_state_dict = {**unet_state_dict, **te_state_dict} + return (new_state_dict, network_alphas) + +def _convert_unet_lora_key(key): + diffusers_name = key.replace('lora_unet_', '').replace('_', '.') + diffusers_name = diffusers_name.replace('input.blocks', 'down_blocks') + diffusers_name = diffusers_name.replace('down.blocks', 'down_blocks') + diffusers_name = diffusers_name.replace('middle.block', 'mid_block') + diffusers_name = diffusers_name.replace('mid.block', 'mid_block') + diffusers_name = diffusers_name.replace('output.blocks', 'up_blocks') + diffusers_name = diffusers_name.replace('up.blocks', 'up_blocks') + diffusers_name = diffusers_name.replace('transformer.blocks', 'transformer_blocks') + diffusers_name = diffusers_name.replace('to.q.lora', 'to_q_lora') + diffusers_name = diffusers_name.replace('to.k.lora', 'to_k_lora') + diffusers_name = diffusers_name.replace('to.v.lora', 'to_v_lora') + diffusers_name = diffusers_name.replace('to.out.0.lora', 'to_out_lora') + diffusers_name = diffusers_name.replace('proj.in', 'proj_in') + diffusers_name = diffusers_name.replace('proj.out', 'proj_out') + diffusers_name = diffusers_name.replace('emb.layers', 'time_emb_proj') + if 'emb' in diffusers_name and 'time.emb.proj' not in diffusers_name: + pattern = '\\.\\d+(?=\\D*$)' + diffusers_name = re.sub(pattern, '', diffusers_name, count=1) + if '.in.' in diffusers_name: + diffusers_name = diffusers_name.replace('in.layers.2', 'conv1') + if '.out.' in diffusers_name: + diffusers_name = diffusers_name.replace('out.layers.3', 'conv2') + if 'downsamplers' in diffusers_name or 'upsamplers' in diffusers_name: + diffusers_name = diffusers_name.replace('op', 'conv') + if 'skip' in diffusers_name: + diffusers_name = diffusers_name.replace('skip.connection', 'conv_shortcut') + if 'time.emb.proj' in diffusers_name: + diffusers_name = diffusers_name.replace('time.emb.proj', 'time_emb_proj') + if 'conv.shortcut' in diffusers_name: + diffusers_name = diffusers_name.replace('conv.shortcut', 'conv_shortcut') + if 'transformer_blocks' in diffusers_name: + if 'attn1' in diffusers_name or 'attn2' in diffusers_name: + diffusers_name = diffusers_name.replace('attn1', 'attn1.processor') + diffusers_name = diffusers_name.replace('attn2', 'attn2.processor') + elif 'ff' in diffusers_name: + pass + elif any((key in diffusers_name for key in ('proj_in', 'proj_out'))): + pass + else: + pass + return diffusers_name + +def _convert_text_encoder_lora_key(key, lora_name): + if lora_name.startswith(('lora_te_', 'lora_te1_')): + key_to_replace = 'lora_te_' if lora_name.startswith('lora_te_') else 'lora_te1_' + else: + key_to_replace = 'lora_te2_' + diffusers_name = key.replace(key_to_replace, '').replace('_', '.') + diffusers_name = diffusers_name.replace('text.model', 'text_model') + diffusers_name = diffusers_name.replace('self.attn', 'self_attn') + diffusers_name = diffusers_name.replace('q.proj.lora', 'to_q_lora') + diffusers_name = diffusers_name.replace('k.proj.lora', 'to_k_lora') + diffusers_name = diffusers_name.replace('v.proj.lora', 'to_v_lora') + diffusers_name = diffusers_name.replace('out.proj.lora', 'to_out_lora') + diffusers_name = diffusers_name.replace('text.projection', 'text_projection') + if 'self_attn' in diffusers_name or 'text_projection' in diffusers_name: + pass + elif 'mlp' in diffusers_name: + diffusers_name = diffusers_name.replace('.lora.', '.lora_linear_layer.') + return diffusers_name + +def _get_alpha_name(lora_name_alpha, diffusers_name, alpha): + if lora_name_alpha.startswith('lora_unet_'): + prefix = 'unet.' + elif lora_name_alpha.startswith(('lora_te_', 'lora_te1_')): + prefix = 'text_encoder.' + else: + prefix = 'text_encoder_2.' + new_name = prefix + diffusers_name.split('.lora.')[0] + '.alpha' + return {new_name: alpha} + +def _convert_kohya_flux_lora_to_diffusers(state_dict): + + def _convert_to_ai_toolkit(sds_sd, ait_sd, sds_key, ait_key): + if sds_key + '.lora_down.weight' not in sds_sd: + return + down_weight = sds_sd.pop(sds_key + '.lora_down.weight') + rank = down_weight.shape[0] + alpha = sds_sd.pop(sds_key + '.alpha').item() + scale = alpha / rank + scale_down = scale + scale_up = 1.0 + while scale_down * 2 < scale_up: + scale_down *= 2 + scale_up /= 2 + ait_sd[ait_key + '.lora_A.weight'] = down_weight * scale_down + ait_sd[ait_key + '.lora_B.weight'] = sds_sd.pop(sds_key + '.lora_up.weight') * scale_up + + def _convert_to_ai_toolkit_cat(sds_sd, ait_sd, sds_key, ait_keys, dims=None): + if sds_key + '.lora_down.weight' not in sds_sd: + return + down_weight = sds_sd.pop(sds_key + '.lora_down.weight') + up_weight = sds_sd.pop(sds_key + '.lora_up.weight') + sd_lora_rank = down_weight.shape[0] + alpha = sds_sd.pop(sds_key + '.alpha') + scale = alpha / sd_lora_rank + scale_down = scale + scale_up = 1.0 + while scale_down * 2 < scale_up: + scale_down *= 2 + scale_up /= 2 + down_weight = down_weight * scale_down + up_weight = up_weight * scale_up + num_splits = len(ait_keys) + if dims is None: + dims = [up_weight.shape[0] // num_splits] * num_splits + else: + assert sum(dims) == up_weight.shape[0] + is_sparse = False + if sd_lora_rank % num_splits == 0: + ait_rank = sd_lora_rank // num_splits + is_sparse = True + i = 0 + for j in range(len(dims)): + for k in range(len(dims)): + if j == k: + continue + is_sparse = is_sparse and torch.all(up_weight[i:i + dims[j], k * ait_rank:(k + 1) * ait_rank] == 0) + i += dims[j] + if is_sparse: + logger.info(f'weight is sparse: {sds_key}') + ait_down_keys = [k + '.lora_A.weight' for k in ait_keys] + ait_up_keys = [k + '.lora_B.weight' for k in ait_keys] + if not is_sparse: + ait_sd.update({k: down_weight for k in ait_down_keys}) + ait_sd.update({k: v for (k, v) in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))}) + else: + ait_sd.update({k: v for (k, v) in zip(ait_down_keys, torch.chunk(down_weight, num_splits, dim=0))}) + i = 0 + for j in range(len(dims)): + ait_sd[ait_up_keys[j]] = up_weight[i:i + dims[j], j * ait_rank:(j + 1) * ait_rank].contiguous() + i += dims[j] + + def _convert_sd_scripts_to_ai_toolkit(sds_sd): + ait_sd = {} + for i in range(19): + _convert_to_ai_toolkit(sds_sd, ait_sd, f'lora_unet_double_blocks_{i}_img_attn_proj', f'transformer.transformer_blocks.{i}.attn.to_out.0') + _convert_to_ai_toolkit_cat(sds_sd, ait_sd, f'lora_unet_double_blocks_{i}_img_attn_qkv', [f'transformer.transformer_blocks.{i}.attn.to_q', f'transformer.transformer_blocks.{i}.attn.to_k', f'transformer.transformer_blocks.{i}.attn.to_v']) + _convert_to_ai_toolkit(sds_sd, ait_sd, f'lora_unet_double_blocks_{i}_img_mlp_0', f'transformer.transformer_blocks.{i}.ff.net.0.proj') + _convert_to_ai_toolkit(sds_sd, ait_sd, f'lora_unet_double_blocks_{i}_img_mlp_2', f'transformer.transformer_blocks.{i}.ff.net.2') + _convert_to_ai_toolkit(sds_sd, ait_sd, f'lora_unet_double_blocks_{i}_img_mod_lin', f'transformer.transformer_blocks.{i}.norm1.linear') + _convert_to_ai_toolkit(sds_sd, ait_sd, f'lora_unet_double_blocks_{i}_txt_attn_proj', f'transformer.transformer_blocks.{i}.attn.to_add_out') + _convert_to_ai_toolkit_cat(sds_sd, ait_sd, f'lora_unet_double_blocks_{i}_txt_attn_qkv', [f'transformer.transformer_blocks.{i}.attn.add_q_proj', f'transformer.transformer_blocks.{i}.attn.add_k_proj', f'transformer.transformer_blocks.{i}.attn.add_v_proj']) + _convert_to_ai_toolkit(sds_sd, ait_sd, f'lora_unet_double_blocks_{i}_txt_mlp_0', f'transformer.transformer_blocks.{i}.ff_context.net.0.proj') + _convert_to_ai_toolkit(sds_sd, ait_sd, f'lora_unet_double_blocks_{i}_txt_mlp_2', f'transformer.transformer_blocks.{i}.ff_context.net.2') + _convert_to_ai_toolkit(sds_sd, ait_sd, f'lora_unet_double_blocks_{i}_txt_mod_lin', f'transformer.transformer_blocks.{i}.norm1_context.linear') + for i in range(38): + _convert_to_ai_toolkit_cat(sds_sd, ait_sd, f'lora_unet_single_blocks_{i}_linear1', [f'transformer.single_transformer_blocks.{i}.attn.to_q', f'transformer.single_transformer_blocks.{i}.attn.to_k', f'transformer.single_transformer_blocks.{i}.attn.to_v', f'transformer.single_transformer_blocks.{i}.proj_mlp'], dims=[3072, 3072, 3072, 12288]) + _convert_to_ai_toolkit(sds_sd, ait_sd, f'lora_unet_single_blocks_{i}_linear2', f'transformer.single_transformer_blocks.{i}.proj_out') + _convert_to_ai_toolkit(sds_sd, ait_sd, f'lora_unet_single_blocks_{i}_modulation_lin', f'transformer.single_transformer_blocks.{i}.norm.linear') + if len(sds_sd) > 0: + logger.warning(f'Unsuppored keys for ai-toolkit: {sds_sd.keys()}') + return ait_sd + return _convert_sd_scripts_to_ai_toolkit(state_dict) + +def _convert_xlabs_flux_lora_to_diffusers(old_state_dict): + new_state_dict = {} + orig_keys = list(old_state_dict.keys()) + + def handle_qkv(sds_sd, ait_sd, sds_key, ait_keys, dims=None): + down_weight = sds_sd.pop(sds_key) + up_weight = sds_sd.pop(sds_key.replace('.down.weight', '.up.weight')) + num_splits = len(ait_keys) + if dims is None: + dims = [up_weight.shape[0] // num_splits] * num_splits + else: + assert sum(dims) == up_weight.shape[0] + ait_down_keys = [k + '.lora_A.weight' for k in ait_keys] + ait_up_keys = [k + '.lora_B.weight' for k in ait_keys] + ait_sd.update({k: down_weight for k in ait_down_keys}) + ait_sd.update({k: v for (k, v) in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))}) + for old_key in orig_keys: + if old_key.startswith(('diffusion_model.double_blocks', 'double_blocks')): + block_num = re.search('double_blocks\\.(\\d+)', old_key).group(1) + new_key = f'transformer.transformer_blocks.{block_num}' + if 'processor.proj_lora1' in old_key: + new_key += '.attn.to_out.0' + elif 'processor.proj_lora2' in old_key: + new_key += '.attn.to_add_out' + elif 'processor.qkv_lora2' in old_key and 'up' not in old_key: + handle_qkv(old_state_dict, new_state_dict, old_key, [f'transformer.transformer_blocks.{block_num}.attn.add_q_proj', f'transformer.transformer_blocks.{block_num}.attn.add_k_proj', f'transformer.transformer_blocks.{block_num}.attn.add_v_proj']) + elif 'processor.qkv_lora1' in old_key and 'up' not in old_key: + handle_qkv(old_state_dict, new_state_dict, old_key, [f'transformer.transformer_blocks.{block_num}.attn.to_q', f'transformer.transformer_blocks.{block_num}.attn.to_k', f'transformer.transformer_blocks.{block_num}.attn.to_v']) + if 'down' in old_key: + new_key += '.lora_A.weight' + elif 'up' in old_key: + new_key += '.lora_B.weight' + elif old_key.startswith('diffusion_model.single_blocks', 'single_blocks'): + block_num = re.search('single_blocks\\.(\\d+)', old_key).group(1) + new_key = f'transformer.single_transformer_blocks.{block_num}' + if 'proj_lora1' in old_key or 'proj_lora2' in old_key: + new_key += '.proj_out' + elif 'qkv_lora1' in old_key or 'qkv_lora2' in old_key: + new_key += '.norm.linear' + if 'down' in old_key: + new_key += '.lora_A.weight' + elif 'up' in old_key: + new_key += '.lora_B.weight' + else: + new_key = old_key + if 'qkv' not in old_key: + new_state_dict[new_key] = old_state_dict.pop(old_key) + if len(old_state_dict) > 0: + raise ValueError(f'`old_state_dict` should be at this point but has: {list(old_state_dict.keys())}.') + return new_state_dict + +# File: diffusers-main/src/diffusers/loaders/lora_pipeline.py +import os +from typing import Callable, Dict, List, Optional, Union +import torch +from huggingface_hub.utils import validate_hf_hub_args +from ..utils import USE_PEFT_BACKEND, convert_state_dict_to_diffusers, convert_state_dict_to_peft, convert_unet_state_dict_to_peft, deprecate, get_adapter_name, get_peft_kwargs, is_peft_version, is_transformers_available, logging, scale_lora_layers +from .lora_base import LoraBaseMixin +from .lora_conversion_utils import _convert_kohya_flux_lora_to_diffusers, _convert_non_diffusers_lora_to_diffusers, _convert_xlabs_flux_lora_to_diffusers, _maybe_map_sgm_blocks_to_diffusers +if is_transformers_available(): + from ..models.lora import text_encoder_attn_modules, text_encoder_mlp_modules +logger = logging.get_logger(__name__) +TEXT_ENCODER_NAME = 'text_encoder' +UNET_NAME = 'unet' +TRANSFORMER_NAME = 'transformer' +LORA_WEIGHT_NAME = 'pytorch_lora_weights.bin' +LORA_WEIGHT_NAME_SAFE = 'pytorch_lora_weights.safetensors' + +class StableDiffusionLoraLoaderMixin(LoraBaseMixin): + _lora_loadable_modules = ['unet', 'text_encoder'] + unet_name = UNET_NAME + text_encoder_name = TEXT_ENCODER_NAME + + def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method.') + if isinstance(pretrained_model_name_or_path_or_dict, dict): + pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() + (state_dict, network_alphas) = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) + is_correct_format = all(('lora' in key or 'dora_scale' in key for key in state_dict.keys())) + if not is_correct_format: + raise ValueError('Invalid LoRA checkpoint.') + self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=getattr(self, self.unet_name) if not hasattr(self, 'unet') else self.unet, adapter_name=adapter_name, _pipeline=self) + self.load_lora_into_text_encoder(state_dict, network_alphas=network_alphas, text_encoder=getattr(self, self.text_encoder_name) if not hasattr(self, 'text_encoder') else self.text_encoder, lora_scale=self.lora_scale, adapter_name=adapter_name, _pipeline=self) + + @classmethod + @validate_hf_hub_args + def lora_state_dict(cls, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): + cache_dir = kwargs.pop('cache_dir', None) + force_download = kwargs.pop('force_download', False) + proxies = kwargs.pop('proxies', None) + local_files_only = kwargs.pop('local_files_only', None) + token = kwargs.pop('token', None) + revision = kwargs.pop('revision', None) + subfolder = kwargs.pop('subfolder', None) + weight_name = kwargs.pop('weight_name', None) + unet_config = kwargs.pop('unet_config', None) + use_safetensors = kwargs.pop('use_safetensors', None) + allow_pickle = False + if use_safetensors is None: + use_safetensors = True + allow_pickle = True + user_agent = {'file_type': 'attn_procs_weights', 'framework': 'pytorch'} + state_dict = cls._fetch_state_dict(pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, weight_name=weight_name, use_safetensors=use_safetensors, local_files_only=local_files_only, cache_dir=cache_dir, force_download=force_download, proxies=proxies, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, allow_pickle=allow_pickle) + network_alphas = None + if all((k.startswith('lora_te_') or k.startswith('lora_unet_') or k.startswith('lora_te1_') or k.startswith('lora_te2_') for k in state_dict.keys())): + if unet_config is not None: + state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config) + (state_dict, network_alphas) = _convert_non_diffusers_lora_to_diffusers(state_dict) + return (state_dict, network_alphas) + + @classmethod + def load_lora_into_unet(cls, state_dict, network_alphas, unet, adapter_name=None, _pipeline=None): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method.') + keys = list(state_dict.keys()) + only_text_encoder = all((key.startswith(cls.text_encoder_name) for key in keys)) + if not only_text_encoder: + logger.info(f'Loading {cls.unet_name}.') + unet.load_attn_procs(state_dict, network_alphas=network_alphas, adapter_name=adapter_name, _pipeline=_pipeline) + + @classmethod + def load_lora_into_text_encoder(cls, state_dict, network_alphas, text_encoder, prefix=None, lora_scale=1.0, adapter_name=None, _pipeline=None): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method.') + from peft import LoraConfig + keys = list(state_dict.keys()) + prefix = cls.text_encoder_name if prefix is None else prefix + if any((cls.text_encoder_name in key for key in keys)): + text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split('.')[0] == prefix] + text_encoder_lora_state_dict = {k.replace(f'{prefix}.', ''): v for (k, v) in state_dict.items() if k in text_encoder_keys} + if len(text_encoder_lora_state_dict) > 0: + logger.info(f'Loading {prefix}.') + rank = {} + text_encoder_lora_state_dict = convert_state_dict_to_diffusers(text_encoder_lora_state_dict) + text_encoder_lora_state_dict = convert_state_dict_to_peft(text_encoder_lora_state_dict) + for (name, _) in text_encoder_attn_modules(text_encoder): + for module in ('out_proj', 'q_proj', 'k_proj', 'v_proj'): + rank_key = f'{name}.{module}.lora_B.weight' + if rank_key not in text_encoder_lora_state_dict: + continue + rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] + for (name, _) in text_encoder_mlp_modules(text_encoder): + for module in ('fc1', 'fc2'): + rank_key = f'{name}.{module}.lora_B.weight' + if rank_key not in text_encoder_lora_state_dict: + continue + rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] + if network_alphas is not None: + alpha_keys = [k for k in network_alphas.keys() if k.startswith(prefix) and k.split('.')[0] == prefix] + network_alphas = {k.replace(f'{prefix}.', ''): v for (k, v) in network_alphas.items() if k in alpha_keys} + lora_config_kwargs = get_peft_kwargs(rank, network_alphas, text_encoder_lora_state_dict, is_unet=False) + if 'use_dora' in lora_config_kwargs: + if lora_config_kwargs['use_dora']: + if is_peft_version('<', '0.9.0'): + raise ValueError('You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`.') + elif is_peft_version('<', '0.9.0'): + lora_config_kwargs.pop('use_dora') + lora_config = LoraConfig(**lora_config_kwargs) + if adapter_name is None: + adapter_name = get_adapter_name(text_encoder) + (is_model_cpu_offload, is_sequential_cpu_offload) = cls._optionally_disable_offloading(_pipeline) + text_encoder.load_adapter(adapter_name=adapter_name, adapter_state_dict=text_encoder_lora_state_dict, peft_config=lora_config) + scale_lora_layers(text_encoder, weight=lora_scale) + text_encoder.to(device=text_encoder.device, dtype=text_encoder.dtype) + if is_model_cpu_offload: + _pipeline.enable_model_cpu_offload() + elif is_sequential_cpu_offload: + _pipeline.enable_sequential_cpu_offload() + + @classmethod + def save_lora_weights(cls, save_directory: Union[str, os.PathLike], unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]]=None, text_encoder_lora_layers: Dict[str, torch.nn.Module]=None, is_main_process: bool=True, weight_name: str=None, save_function: Callable=None, safe_serialization: bool=True): + state_dict = {} + if not (unet_lora_layers or text_encoder_lora_layers): + raise ValueError('You must pass at least one of `unet_lora_layers` and `text_encoder_lora_layers`.') + if unet_lora_layers: + state_dict.update(cls.pack_weights(unet_lora_layers, cls.unet_name)) + if text_encoder_lora_layers: + state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name)) + cls.write_lora_layers(state_dict=state_dict, save_directory=save_directory, is_main_process=is_main_process, weight_name=weight_name, save_function=save_function, safe_serialization=safe_serialization) + + def fuse_lora(self, components: List[str]=['unet', 'text_encoder'], lora_scale: float=1.0, safe_fusing: bool=False, adapter_names: Optional[List[str]]=None, **kwargs): + super().fuse_lora(components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names) + + def unfuse_lora(self, components: List[str]=['unet', 'text_encoder'], **kwargs): + super().unfuse_lora(components=components) + +class StableDiffusionXLLoraLoaderMixin(LoraBaseMixin): + _lora_loadable_modules = ['unet', 'text_encoder', 'text_encoder_2'] + unet_name = UNET_NAME + text_encoder_name = TEXT_ENCODER_NAME + + def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name: Optional[str]=None, **kwargs): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method.') + if isinstance(pretrained_model_name_or_path_or_dict, dict): + pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() + (state_dict, network_alphas) = self.lora_state_dict(pretrained_model_name_or_path_or_dict, unet_config=self.unet.config, **kwargs) + is_correct_format = all(('lora' in key or 'dora_scale' in key for key in state_dict.keys())) + if not is_correct_format: + raise ValueError('Invalid LoRA checkpoint.') + self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet, adapter_name=adapter_name, _pipeline=self) + text_encoder_state_dict = {k: v for (k, v) in state_dict.items() if 'text_encoder.' in k} + if len(text_encoder_state_dict) > 0: + self.load_lora_into_text_encoder(text_encoder_state_dict, network_alphas=network_alphas, text_encoder=self.text_encoder, prefix='text_encoder', lora_scale=self.lora_scale, adapter_name=adapter_name, _pipeline=self) + text_encoder_2_state_dict = {k: v for (k, v) in state_dict.items() if 'text_encoder_2.' in k} + if len(text_encoder_2_state_dict) > 0: + self.load_lora_into_text_encoder(text_encoder_2_state_dict, network_alphas=network_alphas, text_encoder=self.text_encoder_2, prefix='text_encoder_2', lora_scale=self.lora_scale, adapter_name=adapter_name, _pipeline=self) + + @classmethod + @validate_hf_hub_args + def lora_state_dict(cls, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): + cache_dir = kwargs.pop('cache_dir', None) + force_download = kwargs.pop('force_download', False) + proxies = kwargs.pop('proxies', None) + local_files_only = kwargs.pop('local_files_only', None) + token = kwargs.pop('token', None) + revision = kwargs.pop('revision', None) + subfolder = kwargs.pop('subfolder', None) + weight_name = kwargs.pop('weight_name', None) + unet_config = kwargs.pop('unet_config', None) + use_safetensors = kwargs.pop('use_safetensors', None) + allow_pickle = False + if use_safetensors is None: + use_safetensors = True + allow_pickle = True + user_agent = {'file_type': 'attn_procs_weights', 'framework': 'pytorch'} + state_dict = cls._fetch_state_dict(pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, weight_name=weight_name, use_safetensors=use_safetensors, local_files_only=local_files_only, cache_dir=cache_dir, force_download=force_download, proxies=proxies, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, allow_pickle=allow_pickle) + network_alphas = None + if all((k.startswith('lora_te_') or k.startswith('lora_unet_') or k.startswith('lora_te1_') or k.startswith('lora_te2_') for k in state_dict.keys())): + if unet_config is not None: + state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config) + (state_dict, network_alphas) = _convert_non_diffusers_lora_to_diffusers(state_dict) + return (state_dict, network_alphas) + + @classmethod + def load_lora_into_unet(cls, state_dict, network_alphas, unet, adapter_name=None, _pipeline=None): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method.') + keys = list(state_dict.keys()) + only_text_encoder = all((key.startswith(cls.text_encoder_name) for key in keys)) + if not only_text_encoder: + logger.info(f'Loading {cls.unet_name}.') + unet.load_attn_procs(state_dict, network_alphas=network_alphas, adapter_name=adapter_name, _pipeline=_pipeline) + + @classmethod + def load_lora_into_text_encoder(cls, state_dict, network_alphas, text_encoder, prefix=None, lora_scale=1.0, adapter_name=None, _pipeline=None): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method.') + from peft import LoraConfig + keys = list(state_dict.keys()) + prefix = cls.text_encoder_name if prefix is None else prefix + if any((cls.text_encoder_name in key for key in keys)): + text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split('.')[0] == prefix] + text_encoder_lora_state_dict = {k.replace(f'{prefix}.', ''): v for (k, v) in state_dict.items() if k in text_encoder_keys} + if len(text_encoder_lora_state_dict) > 0: + logger.info(f'Loading {prefix}.') + rank = {} + text_encoder_lora_state_dict = convert_state_dict_to_diffusers(text_encoder_lora_state_dict) + text_encoder_lora_state_dict = convert_state_dict_to_peft(text_encoder_lora_state_dict) + for (name, _) in text_encoder_attn_modules(text_encoder): + for module in ('out_proj', 'q_proj', 'k_proj', 'v_proj'): + rank_key = f'{name}.{module}.lora_B.weight' + if rank_key not in text_encoder_lora_state_dict: + continue + rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] + for (name, _) in text_encoder_mlp_modules(text_encoder): + for module in ('fc1', 'fc2'): + rank_key = f'{name}.{module}.lora_B.weight' + if rank_key not in text_encoder_lora_state_dict: + continue + rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] + if network_alphas is not None: + alpha_keys = [k for k in network_alphas.keys() if k.startswith(prefix) and k.split('.')[0] == prefix] + network_alphas = {k.replace(f'{prefix}.', ''): v for (k, v) in network_alphas.items() if k in alpha_keys} + lora_config_kwargs = get_peft_kwargs(rank, network_alphas, text_encoder_lora_state_dict, is_unet=False) + if 'use_dora' in lora_config_kwargs: + if lora_config_kwargs['use_dora']: + if is_peft_version('<', '0.9.0'): + raise ValueError('You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`.') + elif is_peft_version('<', '0.9.0'): + lora_config_kwargs.pop('use_dora') + lora_config = LoraConfig(**lora_config_kwargs) + if adapter_name is None: + adapter_name = get_adapter_name(text_encoder) + (is_model_cpu_offload, is_sequential_cpu_offload) = cls._optionally_disable_offloading(_pipeline) + text_encoder.load_adapter(adapter_name=adapter_name, adapter_state_dict=text_encoder_lora_state_dict, peft_config=lora_config) + scale_lora_layers(text_encoder, weight=lora_scale) + text_encoder.to(device=text_encoder.device, dtype=text_encoder.dtype) + if is_model_cpu_offload: + _pipeline.enable_model_cpu_offload() + elif is_sequential_cpu_offload: + _pipeline.enable_sequential_cpu_offload() + + @classmethod + def save_lora_weights(cls, save_directory: Union[str, os.PathLike], unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]]=None, text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]]=None, text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]]=None, is_main_process: bool=True, weight_name: str=None, save_function: Callable=None, safe_serialization: bool=True): + state_dict = {} + if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers): + raise ValueError('You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`.') + if unet_lora_layers: + state_dict.update(cls.pack_weights(unet_lora_layers, 'unet')) + if text_encoder_lora_layers: + state_dict.update(cls.pack_weights(text_encoder_lora_layers, 'text_encoder')) + if text_encoder_2_lora_layers: + state_dict.update(cls.pack_weights(text_encoder_2_lora_layers, 'text_encoder_2')) + cls.write_lora_layers(state_dict=state_dict, save_directory=save_directory, is_main_process=is_main_process, weight_name=weight_name, save_function=save_function, safe_serialization=safe_serialization) + + def fuse_lora(self, components: List[str]=['unet', 'text_encoder', 'text_encoder_2'], lora_scale: float=1.0, safe_fusing: bool=False, adapter_names: Optional[List[str]]=None, **kwargs): + super().fuse_lora(components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names) + + def unfuse_lora(self, components: List[str]=['unet', 'text_encoder', 'text_encoder_2'], **kwargs): + super().unfuse_lora(components=components) + +class SD3LoraLoaderMixin(LoraBaseMixin): + _lora_loadable_modules = ['transformer', 'text_encoder', 'text_encoder_2'] + transformer_name = TRANSFORMER_NAME + text_encoder_name = TEXT_ENCODER_NAME + + @classmethod + @validate_hf_hub_args + def lora_state_dict(cls, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): + cache_dir = kwargs.pop('cache_dir', None) + force_download = kwargs.pop('force_download', False) + proxies = kwargs.pop('proxies', None) + local_files_only = kwargs.pop('local_files_only', None) + token = kwargs.pop('token', None) + revision = kwargs.pop('revision', None) + subfolder = kwargs.pop('subfolder', None) + weight_name = kwargs.pop('weight_name', None) + use_safetensors = kwargs.pop('use_safetensors', None) + allow_pickle = False + if use_safetensors is None: + use_safetensors = True + allow_pickle = True + user_agent = {'file_type': 'attn_procs_weights', 'framework': 'pytorch'} + state_dict = cls._fetch_state_dict(pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, weight_name=weight_name, use_safetensors=use_safetensors, local_files_only=local_files_only, cache_dir=cache_dir, force_download=force_download, proxies=proxies, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, allow_pickle=allow_pickle) + return state_dict + + def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method.') + if isinstance(pretrained_model_name_or_path_or_dict, dict): + pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() + state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) + is_correct_format = all(('lora' in key or 'dora_scale' in key for key in state_dict.keys())) + if not is_correct_format: + raise ValueError('Invalid LoRA checkpoint.') + self.load_lora_into_transformer(state_dict, transformer=getattr(self, self.transformer_name) if not hasattr(self, 'transformer') else self.transformer, adapter_name=adapter_name, _pipeline=self) + text_encoder_state_dict = {k: v for (k, v) in state_dict.items() if 'text_encoder.' in k} + if len(text_encoder_state_dict) > 0: + self.load_lora_into_text_encoder(text_encoder_state_dict, network_alphas=None, text_encoder=self.text_encoder, prefix='text_encoder', lora_scale=self.lora_scale, adapter_name=adapter_name, _pipeline=self) + text_encoder_2_state_dict = {k: v for (k, v) in state_dict.items() if 'text_encoder_2.' in k} + if len(text_encoder_2_state_dict) > 0: + self.load_lora_into_text_encoder(text_encoder_2_state_dict, network_alphas=None, text_encoder=self.text_encoder_2, prefix='text_encoder_2', lora_scale=self.lora_scale, adapter_name=adapter_name, _pipeline=self) + + @classmethod + def load_lora_into_transformer(cls, state_dict, transformer, adapter_name=None, _pipeline=None): + from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict + keys = list(state_dict.keys()) + transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)] + state_dict = {k.replace(f'{cls.transformer_name}.', ''): v for (k, v) in state_dict.items() if k in transformer_keys} + if len(state_dict.keys()) > 0: + first_key = next(iter(state_dict.keys())) + if 'lora_A' not in first_key: + state_dict = convert_unet_state_dict_to_peft(state_dict) + if adapter_name in getattr(transformer, 'peft_config', {}): + raise ValueError(f'Adapter name {adapter_name} already in use in the transformer - please select a new adapter name.') + rank = {} + for (key, val) in state_dict.items(): + if 'lora_B' in key: + rank[key] = val.shape[1] + lora_config_kwargs = get_peft_kwargs(rank, network_alpha_dict=None, peft_state_dict=state_dict) + if 'use_dora' in lora_config_kwargs: + if lora_config_kwargs['use_dora'] and is_peft_version('<', '0.9.0'): + raise ValueError('You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`.') + else: + lora_config_kwargs.pop('use_dora') + lora_config = LoraConfig(**lora_config_kwargs) + if adapter_name is None: + adapter_name = get_adapter_name(transformer) + (is_model_cpu_offload, is_sequential_cpu_offload) = cls._optionally_disable_offloading(_pipeline) + inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name) + incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name) + if incompatible_keys is not None: + unexpected_keys = getattr(incompatible_keys, 'unexpected_keys', None) + if unexpected_keys: + logger.warning(f'Loading adapter weights from state_dict led to unexpected keys not found in the model: {unexpected_keys}. ') + if is_model_cpu_offload: + _pipeline.enable_model_cpu_offload() + elif is_sequential_cpu_offload: + _pipeline.enable_sequential_cpu_offload() + + @classmethod + def load_lora_into_text_encoder(cls, state_dict, network_alphas, text_encoder, prefix=None, lora_scale=1.0, adapter_name=None, _pipeline=None): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method.') + from peft import LoraConfig + keys = list(state_dict.keys()) + prefix = cls.text_encoder_name if prefix is None else prefix + if any((cls.text_encoder_name in key for key in keys)): + text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split('.')[0] == prefix] + text_encoder_lora_state_dict = {k.replace(f'{prefix}.', ''): v for (k, v) in state_dict.items() if k in text_encoder_keys} + if len(text_encoder_lora_state_dict) > 0: + logger.info(f'Loading {prefix}.') + rank = {} + text_encoder_lora_state_dict = convert_state_dict_to_diffusers(text_encoder_lora_state_dict) + text_encoder_lora_state_dict = convert_state_dict_to_peft(text_encoder_lora_state_dict) + for (name, _) in text_encoder_attn_modules(text_encoder): + for module in ('out_proj', 'q_proj', 'k_proj', 'v_proj'): + rank_key = f'{name}.{module}.lora_B.weight' + if rank_key not in text_encoder_lora_state_dict: + continue + rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] + for (name, _) in text_encoder_mlp_modules(text_encoder): + for module in ('fc1', 'fc2'): + rank_key = f'{name}.{module}.lora_B.weight' + if rank_key not in text_encoder_lora_state_dict: + continue + rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] + if network_alphas is not None: + alpha_keys = [k for k in network_alphas.keys() if k.startswith(prefix) and k.split('.')[0] == prefix] + network_alphas = {k.replace(f'{prefix}.', ''): v for (k, v) in network_alphas.items() if k in alpha_keys} + lora_config_kwargs = get_peft_kwargs(rank, network_alphas, text_encoder_lora_state_dict, is_unet=False) + if 'use_dora' in lora_config_kwargs: + if lora_config_kwargs['use_dora']: + if is_peft_version('<', '0.9.0'): + raise ValueError('You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`.') + elif is_peft_version('<', '0.9.0'): + lora_config_kwargs.pop('use_dora') + lora_config = LoraConfig(**lora_config_kwargs) + if adapter_name is None: + adapter_name = get_adapter_name(text_encoder) + (is_model_cpu_offload, is_sequential_cpu_offload) = cls._optionally_disable_offloading(_pipeline) + text_encoder.load_adapter(adapter_name=adapter_name, adapter_state_dict=text_encoder_lora_state_dict, peft_config=lora_config) + scale_lora_layers(text_encoder, weight=lora_scale) + text_encoder.to(device=text_encoder.device, dtype=text_encoder.dtype) + if is_model_cpu_offload: + _pipeline.enable_model_cpu_offload() + elif is_sequential_cpu_offload: + _pipeline.enable_sequential_cpu_offload() + + @classmethod + def save_lora_weights(cls, save_directory: Union[str, os.PathLike], transformer_lora_layers: Dict[str, torch.nn.Module]=None, text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]]=None, text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]]=None, is_main_process: bool=True, weight_name: str=None, save_function: Callable=None, safe_serialization: bool=True): + state_dict = {} + if not (transformer_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers): + raise ValueError('You must pass at least one of `transformer_lora_layers`, `text_encoder_lora_layers`, `text_encoder_2_lora_layers`.') + if transformer_lora_layers: + state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) + if text_encoder_lora_layers: + state_dict.update(cls.pack_weights(text_encoder_lora_layers, 'text_encoder')) + if text_encoder_2_lora_layers: + state_dict.update(cls.pack_weights(text_encoder_2_lora_layers, 'text_encoder_2')) + cls.write_lora_layers(state_dict=state_dict, save_directory=save_directory, is_main_process=is_main_process, weight_name=weight_name, save_function=save_function, safe_serialization=safe_serialization) + + def fuse_lora(self, components: List[str]=['transformer', 'text_encoder', 'text_encoder_2'], lora_scale: float=1.0, safe_fusing: bool=False, adapter_names: Optional[List[str]]=None, **kwargs): + super().fuse_lora(components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names) + + def unfuse_lora(self, components: List[str]=['transformer', 'text_encoder', 'text_encoder_2'], **kwargs): + super().unfuse_lora(components=components) + +class FluxLoraLoaderMixin(LoraBaseMixin): + _lora_loadable_modules = ['transformer', 'text_encoder'] + transformer_name = TRANSFORMER_NAME + text_encoder_name = TEXT_ENCODER_NAME + + @classmethod + @validate_hf_hub_args + def lora_state_dict(cls, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], return_alphas: bool=False, **kwargs): + cache_dir = kwargs.pop('cache_dir', None) + force_download = kwargs.pop('force_download', False) + proxies = kwargs.pop('proxies', None) + local_files_only = kwargs.pop('local_files_only', None) + token = kwargs.pop('token', None) + revision = kwargs.pop('revision', None) + subfolder = kwargs.pop('subfolder', None) + weight_name = kwargs.pop('weight_name', None) + use_safetensors = kwargs.pop('use_safetensors', None) + allow_pickle = False + if use_safetensors is None: + use_safetensors = True + allow_pickle = True + user_agent = {'file_type': 'attn_procs_weights', 'framework': 'pytorch'} + state_dict = cls._fetch_state_dict(pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, weight_name=weight_name, use_safetensors=use_safetensors, local_files_only=local_files_only, cache_dir=cache_dir, force_download=force_download, proxies=proxies, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, allow_pickle=allow_pickle) + is_kohya = any(('.lora_down.weight' in k for k in state_dict)) + if is_kohya: + state_dict = _convert_kohya_flux_lora_to_diffusers(state_dict) + return (state_dict, None) if return_alphas else state_dict + is_xlabs = any(('processor' in k for k in state_dict)) + if is_xlabs: + state_dict = _convert_xlabs_flux_lora_to_diffusers(state_dict) + return (state_dict, None) if return_alphas else state_dict + keys = list(state_dict.keys()) + network_alphas = {} + for k in keys: + if 'alpha' in k: + alpha_value = state_dict.get(k) + if torch.is_tensor(alpha_value) and torch.is_floating_point(alpha_value) or isinstance(alpha_value, float): + network_alphas[k] = state_dict.pop(k) + else: + raise ValueError(f'The alpha key ({k}) seems to be incorrect. If you think this error is unexpected, please open as issue.') + if return_alphas: + return (state_dict, network_alphas) + else: + return state_dict + + def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method.') + if isinstance(pretrained_model_name_or_path_or_dict, dict): + pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() + (state_dict, network_alphas) = self.lora_state_dict(pretrained_model_name_or_path_or_dict, return_alphas=True, **kwargs) + is_correct_format = all(('lora' in key or 'dora_scale' in key for key in state_dict.keys())) + if not is_correct_format: + raise ValueError('Invalid LoRA checkpoint.') + self.load_lora_into_transformer(state_dict, network_alphas=network_alphas, transformer=getattr(self, self.transformer_name) if not hasattr(self, 'transformer') else self.transformer, adapter_name=adapter_name, _pipeline=self) + text_encoder_state_dict = {k: v for (k, v) in state_dict.items() if 'text_encoder.' in k} + if len(text_encoder_state_dict) > 0: + self.load_lora_into_text_encoder(text_encoder_state_dict, network_alphas=network_alphas, text_encoder=self.text_encoder, prefix='text_encoder', lora_scale=self.lora_scale, adapter_name=adapter_name, _pipeline=self) + + @classmethod + def load_lora_into_transformer(cls, state_dict, network_alphas, transformer, adapter_name=None, _pipeline=None): + from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict + keys = list(state_dict.keys()) + transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)] + state_dict = {k.replace(f'{cls.transformer_name}.', ''): v for (k, v) in state_dict.items() if k in transformer_keys} + if len(state_dict.keys()) > 0: + first_key = next(iter(state_dict.keys())) + if 'lora_A' not in first_key: + state_dict = convert_unet_state_dict_to_peft(state_dict) + if adapter_name in getattr(transformer, 'peft_config', {}): + raise ValueError(f'Adapter name {adapter_name} already in use in the transformer - please select a new adapter name.') + rank = {} + for (key, val) in state_dict.items(): + if 'lora_B' in key: + rank[key] = val.shape[1] + if network_alphas is not None and len(network_alphas) >= 1: + prefix = cls.transformer_name + alpha_keys = [k for k in network_alphas.keys() if k.startswith(prefix) and k.split('.')[0] == prefix] + network_alphas = {k.replace(f'{prefix}.', ''): v for (k, v) in network_alphas.items() if k in alpha_keys} + lora_config_kwargs = get_peft_kwargs(rank, network_alpha_dict=network_alphas, peft_state_dict=state_dict) + if 'use_dora' in lora_config_kwargs: + if lora_config_kwargs['use_dora'] and is_peft_version('<', '0.9.0'): + raise ValueError('You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`.') + else: + lora_config_kwargs.pop('use_dora') + lora_config = LoraConfig(**lora_config_kwargs) + if adapter_name is None: + adapter_name = get_adapter_name(transformer) + (is_model_cpu_offload, is_sequential_cpu_offload) = cls._optionally_disable_offloading(_pipeline) + inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name) + incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name) + if incompatible_keys is not None: + unexpected_keys = getattr(incompatible_keys, 'unexpected_keys', None) + if unexpected_keys: + logger.warning(f'Loading adapter weights from state_dict led to unexpected keys not found in the model: {unexpected_keys}. ') + if is_model_cpu_offload: + _pipeline.enable_model_cpu_offload() + elif is_sequential_cpu_offload: + _pipeline.enable_sequential_cpu_offload() + + @classmethod + def load_lora_into_text_encoder(cls, state_dict, network_alphas, text_encoder, prefix=None, lora_scale=1.0, adapter_name=None, _pipeline=None): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method.') + from peft import LoraConfig + keys = list(state_dict.keys()) + prefix = cls.text_encoder_name if prefix is None else prefix + if any((cls.text_encoder_name in key for key in keys)): + text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split('.')[0] == prefix] + text_encoder_lora_state_dict = {k.replace(f'{prefix}.', ''): v for (k, v) in state_dict.items() if k in text_encoder_keys} + if len(text_encoder_lora_state_dict) > 0: + logger.info(f'Loading {prefix}.') + rank = {} + text_encoder_lora_state_dict = convert_state_dict_to_diffusers(text_encoder_lora_state_dict) + text_encoder_lora_state_dict = convert_state_dict_to_peft(text_encoder_lora_state_dict) + for (name, _) in text_encoder_attn_modules(text_encoder): + for module in ('out_proj', 'q_proj', 'k_proj', 'v_proj'): + rank_key = f'{name}.{module}.lora_B.weight' + if rank_key not in text_encoder_lora_state_dict: + continue + rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] + for (name, _) in text_encoder_mlp_modules(text_encoder): + for module in ('fc1', 'fc2'): + rank_key = f'{name}.{module}.lora_B.weight' + if rank_key not in text_encoder_lora_state_dict: + continue + rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] + if network_alphas is not None: + alpha_keys = [k for k in network_alphas.keys() if k.startswith(prefix) and k.split('.')[0] == prefix] + network_alphas = {k.replace(f'{prefix}.', ''): v for (k, v) in network_alphas.items() if k in alpha_keys} + lora_config_kwargs = get_peft_kwargs(rank, network_alphas, text_encoder_lora_state_dict, is_unet=False) + if 'use_dora' in lora_config_kwargs: + if lora_config_kwargs['use_dora']: + if is_peft_version('<', '0.9.0'): + raise ValueError('You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`.') + elif is_peft_version('<', '0.9.0'): + lora_config_kwargs.pop('use_dora') + lora_config = LoraConfig(**lora_config_kwargs) + if adapter_name is None: + adapter_name = get_adapter_name(text_encoder) + (is_model_cpu_offload, is_sequential_cpu_offload) = cls._optionally_disable_offloading(_pipeline) + text_encoder.load_adapter(adapter_name=adapter_name, adapter_state_dict=text_encoder_lora_state_dict, peft_config=lora_config) + scale_lora_layers(text_encoder, weight=lora_scale) + text_encoder.to(device=text_encoder.device, dtype=text_encoder.dtype) + if is_model_cpu_offload: + _pipeline.enable_model_cpu_offload() + elif is_sequential_cpu_offload: + _pipeline.enable_sequential_cpu_offload() + + @classmethod + def save_lora_weights(cls, save_directory: Union[str, os.PathLike], transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]]=None, text_encoder_lora_layers: Dict[str, torch.nn.Module]=None, is_main_process: bool=True, weight_name: str=None, save_function: Callable=None, safe_serialization: bool=True): + state_dict = {} + if not (transformer_lora_layers or text_encoder_lora_layers): + raise ValueError('You must pass at least one of `transformer_lora_layers` and `text_encoder_lora_layers`.') + if transformer_lora_layers: + state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) + if text_encoder_lora_layers: + state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name)) + cls.write_lora_layers(state_dict=state_dict, save_directory=save_directory, is_main_process=is_main_process, weight_name=weight_name, save_function=save_function, safe_serialization=safe_serialization) + + def fuse_lora(self, components: List[str]=['transformer', 'text_encoder'], lora_scale: float=1.0, safe_fusing: bool=False, adapter_names: Optional[List[str]]=None, **kwargs): + super().fuse_lora(components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names) + + def unfuse_lora(self, components: List[str]=['transformer', 'text_encoder'], **kwargs): + super().unfuse_lora(components=components) + +class AmusedLoraLoaderMixin(StableDiffusionLoraLoaderMixin): + _lora_loadable_modules = ['transformer', 'text_encoder'] + transformer_name = TRANSFORMER_NAME + text_encoder_name = TEXT_ENCODER_NAME + + @classmethod + def load_lora_into_transformer(cls, state_dict, network_alphas, transformer, adapter_name=None, _pipeline=None): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method.') + from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict + keys = list(state_dict.keys()) + transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)] + state_dict = {k.replace(f'{cls.transformer_name}.', ''): v for (k, v) in state_dict.items() if k in transformer_keys} + if network_alphas is not None: + alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.transformer_name)] + network_alphas = {k.replace(f'{cls.transformer_name}.', ''): v for (k, v) in network_alphas.items() if k in alpha_keys} + if len(state_dict.keys()) > 0: + if adapter_name in getattr(transformer, 'peft_config', {}): + raise ValueError(f'Adapter name {adapter_name} already in use in the transformer - please select a new adapter name.') + rank = {} + for (key, val) in state_dict.items(): + if 'lora_B' in key: + rank[key] = val.shape[1] + lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict) + if 'use_dora' in lora_config_kwargs: + if lora_config_kwargs['use_dora'] and is_peft_version('<', '0.9.0'): + raise ValueError('You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`.') + else: + lora_config_kwargs.pop('use_dora') + lora_config = LoraConfig(**lora_config_kwargs) + if adapter_name is None: + adapter_name = get_adapter_name(transformer) + (is_model_cpu_offload, is_sequential_cpu_offload) = cls._optionally_disable_offloading(_pipeline) + inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name) + incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name) + if incompatible_keys is not None: + unexpected_keys = getattr(incompatible_keys, 'unexpected_keys', None) + if unexpected_keys: + logger.warning(f'Loading adapter weights from state_dict led to unexpected keys not found in the model: {unexpected_keys}. ') + if is_model_cpu_offload: + _pipeline.enable_model_cpu_offload() + elif is_sequential_cpu_offload: + _pipeline.enable_sequential_cpu_offload() + + @classmethod + def load_lora_into_text_encoder(cls, state_dict, network_alphas, text_encoder, prefix=None, lora_scale=1.0, adapter_name=None, _pipeline=None): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method.') + from peft import LoraConfig + keys = list(state_dict.keys()) + prefix = cls.text_encoder_name if prefix is None else prefix + if any((cls.text_encoder_name in key for key in keys)): + text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split('.')[0] == prefix] + text_encoder_lora_state_dict = {k.replace(f'{prefix}.', ''): v for (k, v) in state_dict.items() if k in text_encoder_keys} + if len(text_encoder_lora_state_dict) > 0: + logger.info(f'Loading {prefix}.') + rank = {} + text_encoder_lora_state_dict = convert_state_dict_to_diffusers(text_encoder_lora_state_dict) + text_encoder_lora_state_dict = convert_state_dict_to_peft(text_encoder_lora_state_dict) + for (name, _) in text_encoder_attn_modules(text_encoder): + for module in ('out_proj', 'q_proj', 'k_proj', 'v_proj'): + rank_key = f'{name}.{module}.lora_B.weight' + if rank_key not in text_encoder_lora_state_dict: + continue + rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] + for (name, _) in text_encoder_mlp_modules(text_encoder): + for module in ('fc1', 'fc2'): + rank_key = f'{name}.{module}.lora_B.weight' + if rank_key not in text_encoder_lora_state_dict: + continue + rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] + if network_alphas is not None: + alpha_keys = [k for k in network_alphas.keys() if k.startswith(prefix) and k.split('.')[0] == prefix] + network_alphas = {k.replace(f'{prefix}.', ''): v for (k, v) in network_alphas.items() if k in alpha_keys} + lora_config_kwargs = get_peft_kwargs(rank, network_alphas, text_encoder_lora_state_dict, is_unet=False) + if 'use_dora' in lora_config_kwargs: + if lora_config_kwargs['use_dora']: + if is_peft_version('<', '0.9.0'): + raise ValueError('You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`.') + elif is_peft_version('<', '0.9.0'): + lora_config_kwargs.pop('use_dora') + lora_config = LoraConfig(**lora_config_kwargs) + if adapter_name is None: + adapter_name = get_adapter_name(text_encoder) + (is_model_cpu_offload, is_sequential_cpu_offload) = cls._optionally_disable_offloading(_pipeline) + text_encoder.load_adapter(adapter_name=adapter_name, adapter_state_dict=text_encoder_lora_state_dict, peft_config=lora_config) + scale_lora_layers(text_encoder, weight=lora_scale) + text_encoder.to(device=text_encoder.device, dtype=text_encoder.dtype) + if is_model_cpu_offload: + _pipeline.enable_model_cpu_offload() + elif is_sequential_cpu_offload: + _pipeline.enable_sequential_cpu_offload() + + @classmethod + def save_lora_weights(cls, save_directory: Union[str, os.PathLike], text_encoder_lora_layers: Dict[str, torch.nn.Module]=None, transformer_lora_layers: Dict[str, torch.nn.Module]=None, is_main_process: bool=True, weight_name: str=None, save_function: Callable=None, safe_serialization: bool=True): + state_dict = {} + if not (transformer_lora_layers or text_encoder_lora_layers): + raise ValueError('You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.') + if transformer_lora_layers: + state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) + if text_encoder_lora_layers: + state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name)) + cls.write_lora_layers(state_dict=state_dict, save_directory=save_directory, is_main_process=is_main_process, weight_name=weight_name, save_function=save_function, safe_serialization=safe_serialization) + +class LoraLoaderMixin(StableDiffusionLoraLoaderMixin): + + def __init__(self, *args, **kwargs): + deprecation_message = 'LoraLoaderMixin is deprecated and this will be removed in a future version. Please use `StableDiffusionLoraLoaderMixin`, instead.' + deprecate('LoraLoaderMixin', '1.0.0', deprecation_message) + super().__init__(*args, **kwargs) + +# File: diffusers-main/src/diffusers/loaders/peft.py +import inspect +from functools import partial +from typing import Dict, List, Optional, Union +from ..utils import MIN_PEFT_VERSION, USE_PEFT_BACKEND, check_peft_version, delete_adapter_layers, is_peft_available, set_adapter_layers, set_weights_and_activate_adapters +from .unet_loader_utils import _maybe_expand_lora_scales +_SET_ADAPTER_SCALE_FN_MAPPING = {'UNet2DConditionModel': _maybe_expand_lora_scales, 'UNetMotionModel': _maybe_expand_lora_scales, 'SD3Transformer2DModel': lambda model_cls, weights: weights, 'FluxTransformer2DModel': lambda model_cls, weights: weights} + +class PeftAdapterMixin: + _hf_peft_config_loaded = False + + def set_adapters(self, adapter_names: Union[List[str], str], weights: Optional[Union[float, Dict, List[float], List[Dict], List[None]]]=None): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for `set_adapters()`.') + adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names + if not isinstance(weights, list): + weights = [weights] * len(adapter_names) + if len(adapter_names) != len(weights): + raise ValueError(f'Length of adapter names {len(adapter_names)} is not equal to the length of their weights {len(weights)}.') + weights = [w if w is not None else 1.0 for w in weights] + scale_expansion_fn = _SET_ADAPTER_SCALE_FN_MAPPING[self.__class__.__name__] + weights = scale_expansion_fn(self, weights) + set_weights_and_activate_adapters(self, adapter_names, weights) + + def add_adapter(self, adapter_config, adapter_name: str='default') -> None: + check_peft_version(min_version=MIN_PEFT_VERSION) + if not is_peft_available(): + raise ImportError('PEFT is not available. Please install PEFT to use this function: `pip install peft`.') + from peft import PeftConfig, inject_adapter_in_model + if not self._hf_peft_config_loaded: + self._hf_peft_config_loaded = True + elif adapter_name in self.peft_config: + raise ValueError(f'Adapter with name {adapter_name} already exists. Please use a different name.') + if not isinstance(adapter_config, PeftConfig): + raise ValueError(f'adapter_config should be an instance of PeftConfig. Got {type(adapter_config)} instead.') + adapter_config.base_model_name_or_path = None + inject_adapter_in_model(adapter_config, self, adapter_name) + self.set_adapter(adapter_name) + + def set_adapter(self, adapter_name: Union[str, List[str]]) -> None: + check_peft_version(min_version=MIN_PEFT_VERSION) + if not self._hf_peft_config_loaded: + raise ValueError('No adapter loaded. Please load an adapter first.') + if isinstance(adapter_name, str): + adapter_name = [adapter_name] + missing = set(adapter_name) - set(self.peft_config) + if len(missing) > 0: + raise ValueError(f"Following adapter(s) could not be found: {', '.join(missing)}. Make sure you are passing the correct adapter name(s). current loaded adapters are: {list(self.peft_config.keys())}") + from peft.tuners.tuners_utils import BaseTunerLayer + _adapters_has_been_set = False + for (_, module) in self.named_modules(): + if isinstance(module, BaseTunerLayer): + if hasattr(module, 'set_adapter'): + module.set_adapter(adapter_name) + elif not hasattr(module, 'set_adapter') and len(adapter_name) != 1: + raise ValueError('You are trying to set multiple adapters and you have a PEFT version that does not support multi-adapter inference. Please upgrade to the latest version of PEFT. `pip install -U peft` or `pip install -U git+https://github.com/huggingface/peft.git`') + else: + module.active_adapter = adapter_name + _adapters_has_been_set = True + if not _adapters_has_been_set: + raise ValueError('Did not succeeded in setting the adapter. Please make sure you are using a model that supports adapters.') + + def disable_adapters(self) -> None: + check_peft_version(min_version=MIN_PEFT_VERSION) + if not self._hf_peft_config_loaded: + raise ValueError('No adapter loaded. Please load an adapter first.') + from peft.tuners.tuners_utils import BaseTunerLayer + for (_, module) in self.named_modules(): + if isinstance(module, BaseTunerLayer): + if hasattr(module, 'enable_adapters'): + module.enable_adapters(enabled=False) + else: + module.disable_adapters = True + + def enable_adapters(self) -> None: + check_peft_version(min_version=MIN_PEFT_VERSION) + if not self._hf_peft_config_loaded: + raise ValueError('No adapter loaded. Please load an adapter first.') + from peft.tuners.tuners_utils import BaseTunerLayer + for (_, module) in self.named_modules(): + if isinstance(module, BaseTunerLayer): + if hasattr(module, 'enable_adapters'): + module.enable_adapters(enabled=True) + else: + module.disable_adapters = False + + def active_adapters(self) -> List[str]: + check_peft_version(min_version=MIN_PEFT_VERSION) + if not is_peft_available(): + raise ImportError('PEFT is not available. Please install PEFT to use this function: `pip install peft`.') + if not self._hf_peft_config_loaded: + raise ValueError('No adapter loaded. Please load an adapter first.') + from peft.tuners.tuners_utils import BaseTunerLayer + for (_, module) in self.named_modules(): + if isinstance(module, BaseTunerLayer): + return module.active_adapter + + def fuse_lora(self, lora_scale=1.0, safe_fusing=False, adapter_names=None): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for `fuse_lora()`.') + self.lora_scale = lora_scale + self._safe_fusing = safe_fusing + self.apply(partial(self._fuse_lora_apply, adapter_names=adapter_names)) + + def _fuse_lora_apply(self, module, adapter_names=None): + from peft.tuners.tuners_utils import BaseTunerLayer + merge_kwargs = {'safe_merge': self._safe_fusing} + if isinstance(module, BaseTunerLayer): + if self.lora_scale != 1.0: + module.scale_layer(self.lora_scale) + supported_merge_kwargs = list(inspect.signature(module.merge).parameters) + if 'adapter_names' in supported_merge_kwargs: + merge_kwargs['adapter_names'] = adapter_names + elif 'adapter_names' not in supported_merge_kwargs and adapter_names is not None: + raise ValueError('The `adapter_names` argument is not supported with your PEFT version. Please upgrade to the latest version of PEFT. `pip install -U peft`') + module.merge(**merge_kwargs) + + def unfuse_lora(self): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for `unfuse_lora()`.') + self.apply(self._unfuse_lora_apply) + + def _unfuse_lora_apply(self, module): + from peft.tuners.tuners_utils import BaseTunerLayer + if isinstance(module, BaseTunerLayer): + module.unmerge() + + def unload_lora(self): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for `unload_lora()`.') + from ..utils import recurse_remove_peft_layers + recurse_remove_peft_layers(self) + if hasattr(self, 'peft_config'): + del self.peft_config + + def disable_lora(self): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method.') + set_adapter_layers(self, enabled=False) + + def enable_lora(self): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method.') + set_adapter_layers(self, enabled=True) + + def delete_adapters(self, adapter_names: Union[List[str], str]): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method.') + if isinstance(adapter_names, str): + adapter_names = [adapter_names] + for adapter_name in adapter_names: + delete_adapter_layers(self, adapter_name) + if hasattr(self, 'peft_config'): + self.peft_config.pop(adapter_name, None) + +# File: diffusers-main/src/diffusers/loaders/single_file.py +import importlib +import inspect +import os +import torch +from huggingface_hub import snapshot_download +from huggingface_hub.utils import LocalEntryNotFoundError, validate_hf_hub_args +from packaging import version +from ..utils import deprecate, is_transformers_available, logging +from .single_file_utils import SingleFileComponentError, _is_legacy_scheduler_kwargs, _is_model_weights_in_cached_folder, _legacy_load_clip_tokenizer, _legacy_load_safety_checker, _legacy_load_scheduler, create_diffusers_clip_model_from_ldm, create_diffusers_t5_model_from_checkpoint, fetch_diffusers_config, fetch_original_config, is_clip_model_in_single_file, is_t5_in_single_file, load_single_file_checkpoint +logger = logging.get_logger(__name__) +SINGLE_FILE_OPTIONAL_COMPONENTS = ['safety_checker'] +if is_transformers_available(): + import transformers + from transformers import PreTrainedModel, PreTrainedTokenizer + +def load_single_file_sub_model(library_name, class_name, name, checkpoint, pipelines, is_pipeline_module, cached_model_config_path, original_config=None, local_files_only=False, torch_dtype=None, is_legacy_loading=False, **kwargs): + if is_pipeline_module: + pipeline_module = getattr(pipelines, library_name) + class_obj = getattr(pipeline_module, class_name) + else: + library = importlib.import_module(library_name) + class_obj = getattr(library, class_name) + if is_transformers_available(): + transformers_version = version.parse(version.parse(transformers.__version__).base_version) + else: + transformers_version = 'N/A' + is_transformers_model = is_transformers_available() and issubclass(class_obj, PreTrainedModel) and (transformers_version >= version.parse('4.20.0')) + is_tokenizer = is_transformers_available() and issubclass(class_obj, PreTrainedTokenizer) and (transformers_version >= version.parse('4.20.0')) + diffusers_module = importlib.import_module(__name__.split('.')[0]) + is_diffusers_single_file_model = issubclass(class_obj, diffusers_module.FromOriginalModelMixin) + is_diffusers_model = issubclass(class_obj, diffusers_module.ModelMixin) + is_diffusers_scheduler = issubclass(class_obj, diffusers_module.SchedulerMixin) + if is_diffusers_single_file_model: + load_method = getattr(class_obj, 'from_single_file') + if original_config: + cached_model_config_path = None + loaded_sub_model = load_method(pretrained_model_link_or_path_or_dict=checkpoint, original_config=original_config, config=cached_model_config_path, subfolder=name, torch_dtype=torch_dtype, local_files_only=local_files_only, **kwargs) + elif is_transformers_model and is_clip_model_in_single_file(class_obj, checkpoint): + loaded_sub_model = create_diffusers_clip_model_from_ldm(class_obj, checkpoint=checkpoint, config=cached_model_config_path, subfolder=name, torch_dtype=torch_dtype, local_files_only=local_files_only, is_legacy_loading=is_legacy_loading) + elif is_transformers_model and is_t5_in_single_file(checkpoint): + loaded_sub_model = create_diffusers_t5_model_from_checkpoint(class_obj, checkpoint=checkpoint, config=cached_model_config_path, subfolder=name, torch_dtype=torch_dtype, local_files_only=local_files_only) + elif is_tokenizer and is_legacy_loading: + loaded_sub_model = _legacy_load_clip_tokenizer(class_obj, checkpoint=checkpoint, config=cached_model_config_path, local_files_only=local_files_only) + elif is_diffusers_scheduler and (is_legacy_loading or _is_legacy_scheduler_kwargs(kwargs)): + loaded_sub_model = _legacy_load_scheduler(class_obj, checkpoint=checkpoint, component_name=name, original_config=original_config, **kwargs) + else: + if not hasattr(class_obj, 'from_pretrained'): + raise ValueError(f'The component {class_obj.__name__} cannot be loaded as it does not seem to have a supported loading method.') + loading_kwargs = {} + loading_kwargs.update({'pretrained_model_name_or_path': cached_model_config_path, 'subfolder': name, 'local_files_only': local_files_only}) + if issubclass(class_obj, torch.nn.Module): + loading_kwargs.update({'torch_dtype': torch_dtype}) + if is_diffusers_model or is_transformers_model: + if not _is_model_weights_in_cached_folder(cached_model_config_path, name): + raise SingleFileComponentError(f'Failed to load {class_name}. Weights for this component appear to be missing in the checkpoint.') + load_method = getattr(class_obj, 'from_pretrained') + loaded_sub_model = load_method(**loading_kwargs) + return loaded_sub_model + +def _map_component_types_to_config_dict(component_types): + diffusers_module = importlib.import_module(__name__.split('.')[0]) + config_dict = {} + component_types.pop('self', None) + if is_transformers_available(): + transformers_version = version.parse(version.parse(transformers.__version__).base_version) + else: + transformers_version = 'N/A' + for (component_name, component_value) in component_types.items(): + is_diffusers_model = issubclass(component_value[0], diffusers_module.ModelMixin) + is_scheduler_enum = component_value[0].__name__ == 'KarrasDiffusionSchedulers' + is_scheduler = issubclass(component_value[0], diffusers_module.SchedulerMixin) + is_transformers_model = is_transformers_available() and issubclass(component_value[0], PreTrainedModel) and (transformers_version >= version.parse('4.20.0')) + is_transformers_tokenizer = is_transformers_available() and issubclass(component_value[0], PreTrainedTokenizer) and (transformers_version >= version.parse('4.20.0')) + if is_diffusers_model and component_name not in SINGLE_FILE_OPTIONAL_COMPONENTS: + config_dict[component_name] = ['diffusers', component_value[0].__name__] + elif is_scheduler_enum or is_scheduler: + if is_scheduler_enum: + config_dict[component_name] = ['diffusers', 'DDIMScheduler'] + elif is_scheduler: + config_dict[component_name] = ['diffusers', component_value[0].__name__] + elif (is_transformers_model or is_transformers_tokenizer) and component_name not in SINGLE_FILE_OPTIONAL_COMPONENTS: + config_dict[component_name] = ['transformers', component_value[0].__name__] + else: + config_dict[component_name] = [None, None] + return config_dict + +def _infer_pipeline_config_dict(pipeline_class): + parameters = inspect.signature(pipeline_class.__init__).parameters + required_parameters = {k: v for (k, v) in parameters.items() if v.default == inspect._empty} + component_types = pipeline_class._get_signature_types() + component_types = {k: v for (k, v) in component_types.items() if k in required_parameters} + config_dict = _map_component_types_to_config_dict(component_types) + return config_dict + +def _download_diffusers_model_config_from_hub(pretrained_model_name_or_path, cache_dir, revision, proxies, force_download=None, local_files_only=None, token=None): + allow_patterns = ['**/*.json', '*.json', '*.txt', '**/*.txt', '**/*.model'] + cached_model_path = snapshot_download(pretrained_model_name_or_path, cache_dir=cache_dir, revision=revision, proxies=proxies, force_download=force_download, local_files_only=local_files_only, token=token, allow_patterns=allow_patterns) + return cached_model_path + +class FromSingleFileMixin: + + @classmethod + @validate_hf_hub_args + def from_single_file(cls, pretrained_model_link_or_path, **kwargs): + original_config_file = kwargs.pop('original_config_file', None) + config = kwargs.pop('config', None) + original_config = kwargs.pop('original_config', None) + if original_config_file is not None: + deprecation_message = '`original_config_file` argument is deprecated and will be removed in future versions.please use the `original_config` argument instead.' + deprecate('original_config_file', '1.0.0', deprecation_message) + original_config = original_config_file + force_download = kwargs.pop('force_download', False) + proxies = kwargs.pop('proxies', None) + token = kwargs.pop('token', None) + cache_dir = kwargs.pop('cache_dir', None) + local_files_only = kwargs.pop('local_files_only', False) + revision = kwargs.pop('revision', None) + torch_dtype = kwargs.pop('torch_dtype', None) + is_legacy_loading = False + scaling_factor = kwargs.get('scaling_factor', None) + if scaling_factor is not None: + deprecation_message = 'Passing the `scaling_factor` argument to `from_single_file is deprecated and will be ignored in future versions.' + deprecate('scaling_factor', '1.0.0', deprecation_message) + if original_config is not None: + original_config = fetch_original_config(original_config, local_files_only=local_files_only) + from ..pipelines.pipeline_utils import _get_pipeline_class + pipeline_class = _get_pipeline_class(cls, config=None) + checkpoint = load_single_file_checkpoint(pretrained_model_link_or_path, force_download=force_download, proxies=proxies, token=token, cache_dir=cache_dir, local_files_only=local_files_only, revision=revision) + if config is None: + config = fetch_diffusers_config(checkpoint) + default_pretrained_model_config_name = config['pretrained_model_name_or_path'] + else: + default_pretrained_model_config_name = config + if not os.path.isdir(default_pretrained_model_config_name): + if default_pretrained_model_config_name.count('/') > 1: + raise ValueError(f'The provided config "{config}" is neither a valid local path nor a valid repo id. Please check the parameter.') + try: + cached_model_config_path = _download_diffusers_model_config_from_hub(default_pretrained_model_config_name, cache_dir=cache_dir, revision=revision, proxies=proxies, force_download=force_download, local_files_only=local_files_only, token=token) + config_dict = pipeline_class.load_config(cached_model_config_path) + except LocalEntryNotFoundError: + if original_config is None: + logger.warning('`local_files_only` is True but no local configs were found for this checkpoint.\nAttempting to download the necessary config files for this pipeline.\n') + cached_model_config_path = _download_diffusers_model_config_from_hub(default_pretrained_model_config_name, cache_dir=cache_dir, revision=revision, proxies=proxies, force_download=force_download, local_files_only=False, token=token) + config_dict = pipeline_class.load_config(cached_model_config_path) + else: + logger.warning('Detected legacy `from_single_file` loading behavior. Attempting to create the pipeline based on inferred components.\nThis may lead to errors if the model components are not correctly inferred. \nTo avoid this warning, please explicity pass the `config` argument to `from_single_file` with a path to a local diffusers model repo \ne.g. `from_single_file(, config=) \nor run `from_single_file` with `local_files_only=False` first to update the local cache directory with the necessary config files.\n') + is_legacy_loading = True + cached_model_config_path = None + config_dict = _infer_pipeline_config_dict(pipeline_class) + config_dict['_class_name'] = pipeline_class.__name__ + else: + cached_model_config_path = default_pretrained_model_config_name + config_dict = pipeline_class.load_config(cached_model_config_path) + config_dict.pop('_ignore_files', None) + (expected_modules, optional_kwargs) = pipeline_class._get_signature_keys(cls) + passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} + passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} + (init_dict, unused_kwargs, _) = pipeline_class.extract_init_dict(config_dict, **kwargs) + init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict} + init_kwargs = {**init_kwargs, **passed_pipe_kwargs} + from diffusers import pipelines + + def load_module(name, value): + if value[0] is None: + return False + if name in passed_class_obj and passed_class_obj[name] is None: + return False + if name in SINGLE_FILE_OPTIONAL_COMPONENTS: + return False + return True + init_dict = {k: v for (k, v) in init_dict.items() if load_module(k, v)} + for (name, (library_name, class_name)) in logging.tqdm(sorted(init_dict.items()), desc='Loading pipeline components...'): + loaded_sub_model = None + is_pipeline_module = hasattr(pipelines, library_name) + if name in passed_class_obj: + loaded_sub_model = passed_class_obj[name] + else: + try: + loaded_sub_model = load_single_file_sub_model(library_name=library_name, class_name=class_name, name=name, checkpoint=checkpoint, is_pipeline_module=is_pipeline_module, cached_model_config_path=cached_model_config_path, pipelines=pipelines, torch_dtype=torch_dtype, original_config=original_config, local_files_only=local_files_only, is_legacy_loading=is_legacy_loading, **kwargs) + except SingleFileComponentError as e: + raise SingleFileComponentError(f"{e.message}\nPlease load the component before passing it in as an argument to `from_single_file`.\n\n{name} = {class_name}.from_pretrained('...')\npipe = {pipeline_class.__name__}.from_single_file(, {name}={name})\n\n") + init_kwargs[name] = loaded_sub_model + missing_modules = set(expected_modules) - set(init_kwargs.keys()) + passed_modules = list(passed_class_obj.keys()) + optional_modules = pipeline_class._optional_components + if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules): + for module in missing_modules: + init_kwargs[module] = passed_class_obj.get(module, None) + elif len(missing_modules) > 0: + passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs + raise ValueError(f'Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed.') + load_safety_checker = kwargs.pop('load_safety_checker', None) + if load_safety_checker is not None: + deprecation_message = 'Please pass instances of `StableDiffusionSafetyChecker` and `AutoImageProcessor`using the `safety_checker` and `feature_extractor` arguments in `from_single_file`' + deprecate('load_safety_checker', '1.0.0', deprecation_message) + safety_checker_components = _legacy_load_safety_checker(local_files_only, torch_dtype) + init_kwargs.update(safety_checker_components) + pipe = pipeline_class(**init_kwargs) + return pipe + +# File: diffusers-main/src/diffusers/loaders/single_file_model.py +import importlib +import inspect +import re +from contextlib import nullcontext +from typing import Optional +from huggingface_hub.utils import validate_hf_hub_args +from ..utils import deprecate, is_accelerate_available, logging +from .single_file_utils import SingleFileComponentError, convert_animatediff_checkpoint_to_diffusers, convert_controlnet_checkpoint, convert_flux_transformer_checkpoint_to_diffusers, convert_ldm_unet_checkpoint, convert_ldm_vae_checkpoint, convert_sd3_transformer_checkpoint_to_diffusers, convert_stable_cascade_unet_single_file_to_diffusers, create_controlnet_diffusers_config_from_ldm, create_unet_diffusers_config_from_ldm, create_vae_diffusers_config_from_ldm, fetch_diffusers_config, fetch_original_config, load_single_file_checkpoint +logger = logging.get_logger(__name__) +if is_accelerate_available(): + from accelerate import init_empty_weights + from ..models.modeling_utils import load_model_dict_into_meta +SINGLE_FILE_LOADABLE_CLASSES = {'StableCascadeUNet': {'checkpoint_mapping_fn': convert_stable_cascade_unet_single_file_to_diffusers}, 'UNet2DConditionModel': {'checkpoint_mapping_fn': convert_ldm_unet_checkpoint, 'config_mapping_fn': create_unet_diffusers_config_from_ldm, 'default_subfolder': 'unet', 'legacy_kwargs': {'num_in_channels': 'in_channels'}}, 'AutoencoderKL': {'checkpoint_mapping_fn': convert_ldm_vae_checkpoint, 'config_mapping_fn': create_vae_diffusers_config_from_ldm, 'default_subfolder': 'vae'}, 'ControlNetModel': {'checkpoint_mapping_fn': convert_controlnet_checkpoint, 'config_mapping_fn': create_controlnet_diffusers_config_from_ldm}, 'SD3Transformer2DModel': {'checkpoint_mapping_fn': convert_sd3_transformer_checkpoint_to_diffusers, 'default_subfolder': 'transformer'}, 'MotionAdapter': {'checkpoint_mapping_fn': convert_animatediff_checkpoint_to_diffusers}, 'SparseControlNetModel': {'checkpoint_mapping_fn': convert_animatediff_checkpoint_to_diffusers}, 'FluxTransformer2DModel': {'checkpoint_mapping_fn': convert_flux_transformer_checkpoint_to_diffusers, 'default_subfolder': 'transformer'}} + +def _get_single_file_loadable_mapping_class(cls): + diffusers_module = importlib.import_module(__name__.split('.')[0]) + for loadable_class_str in SINGLE_FILE_LOADABLE_CLASSES: + loadable_class = getattr(diffusers_module, loadable_class_str) + if issubclass(cls, loadable_class): + return loadable_class_str + return None + +def _get_mapping_function_kwargs(mapping_fn, **kwargs): + parameters = inspect.signature(mapping_fn).parameters + mapping_kwargs = {} + for parameter in parameters: + if parameter in kwargs: + mapping_kwargs[parameter] = kwargs[parameter] + return mapping_kwargs + +class FromOriginalModelMixin: + + @classmethod + @validate_hf_hub_args + def from_single_file(cls, pretrained_model_link_or_path_or_dict: Optional[str]=None, **kwargs): + mapping_class_name = _get_single_file_loadable_mapping_class(cls) + if mapping_class_name is None: + raise ValueError(f"FromOriginalModelMixin is currently only compatible with {', '.join(SINGLE_FILE_LOADABLE_CLASSES.keys())}") + pretrained_model_link_or_path = kwargs.get('pretrained_model_link_or_path', None) + if pretrained_model_link_or_path is not None: + deprecation_message = 'Please use `pretrained_model_link_or_path_or_dict` argument instead for model classes' + deprecate('pretrained_model_link_or_path', '1.0.0', deprecation_message) + pretrained_model_link_or_path_or_dict = pretrained_model_link_or_path + config = kwargs.pop('config', None) + original_config = kwargs.pop('original_config', None) + if config is not None and original_config is not None: + raise ValueError('`from_single_file` cannot accept both `config` and `original_config` arguments. Please provide only one of these arguments') + force_download = kwargs.pop('force_download', False) + proxies = kwargs.pop('proxies', None) + token = kwargs.pop('token', None) + cache_dir = kwargs.pop('cache_dir', None) + local_files_only = kwargs.pop('local_files_only', None) + subfolder = kwargs.pop('subfolder', None) + revision = kwargs.pop('revision', None) + torch_dtype = kwargs.pop('torch_dtype', None) + if isinstance(pretrained_model_link_or_path_or_dict, dict): + checkpoint = pretrained_model_link_or_path_or_dict + else: + checkpoint = load_single_file_checkpoint(pretrained_model_link_or_path_or_dict, force_download=force_download, proxies=proxies, token=token, cache_dir=cache_dir, local_files_only=local_files_only, revision=revision) + mapping_functions = SINGLE_FILE_LOADABLE_CLASSES[mapping_class_name] + checkpoint_mapping_fn = mapping_functions['checkpoint_mapping_fn'] + if original_config: + if 'config_mapping_fn' in mapping_functions: + config_mapping_fn = mapping_functions['config_mapping_fn'] + else: + config_mapping_fn = None + if config_mapping_fn is None: + raise ValueError(f'`original_config` has been provided for {mapping_class_name} but no mapping functionwas found to convert the original config to a Diffusers config in`diffusers.loaders.single_file_utils`') + if isinstance(original_config, str): + original_config = fetch_original_config(original_config, local_files_only=local_files_only) + config_mapping_kwargs = _get_mapping_function_kwargs(config_mapping_fn, **kwargs) + diffusers_model_config = config_mapping_fn(original_config=original_config, checkpoint=checkpoint, **config_mapping_kwargs) + else: + if config: + if isinstance(config, str): + default_pretrained_model_config_name = config + else: + raise ValueError('Invalid `config` argument. Please provide a string representing a repo idor path to a local Diffusers model repo.') + else: + config = fetch_diffusers_config(checkpoint) + default_pretrained_model_config_name = config['pretrained_model_name_or_path'] + if 'default_subfolder' in mapping_functions: + subfolder = mapping_functions['default_subfolder'] + subfolder = subfolder or config.pop('subfolder', None) + diffusers_model_config = cls.load_config(pretrained_model_name_or_path=default_pretrained_model_config_name, subfolder=subfolder, local_files_only=local_files_only) + (expected_kwargs, optional_kwargs) = cls._get_signature_keys(cls) + if 'legacy_kwargs' in mapping_functions: + legacy_kwargs = mapping_functions['legacy_kwargs'] + for (legacy_key, new_key) in legacy_kwargs.items(): + if legacy_key in kwargs: + kwargs[new_key] = kwargs.pop(legacy_key) + model_kwargs = {k: kwargs.get(k) for k in kwargs if k in expected_kwargs or k in optional_kwargs} + diffusers_model_config.update(model_kwargs) + checkpoint_mapping_kwargs = _get_mapping_function_kwargs(checkpoint_mapping_fn, **kwargs) + diffusers_format_checkpoint = checkpoint_mapping_fn(config=diffusers_model_config, checkpoint=checkpoint, **checkpoint_mapping_kwargs) + if not diffusers_format_checkpoint: + raise SingleFileComponentError(f'Failed to load {mapping_class_name}. Weights for this component appear to be missing in the checkpoint.') + ctx = init_empty_weights if is_accelerate_available() else nullcontext + with ctx(): + model = cls.from_config(diffusers_model_config) + if is_accelerate_available(): + unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype) + else: + (_, unexpected_keys) = model.load_state_dict(diffusers_format_checkpoint, strict=False) + if model._keys_to_ignore_on_load_unexpected is not None: + for pat in model._keys_to_ignore_on_load_unexpected: + unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] + if len(unexpected_keys) > 0: + logger.warning(f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}") + if torch_dtype is not None: + model.to(torch_dtype) + model.eval() + return model + +# File: diffusers-main/src/diffusers/loaders/single_file_utils.py +"""""" +import os +import re +from contextlib import nullcontext +from io import BytesIO +from urllib.parse import urlparse +import requests +import torch +import yaml +from ..models.modeling_utils import load_state_dict +from ..schedulers import DDIMScheduler, DPMSolverMultistepScheduler, EDMDPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler +from ..utils import SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, deprecate, is_accelerate_available, is_transformers_available, logging +from ..utils.hub_utils import _get_model_file +if is_transformers_available(): + from transformers import AutoImageProcessor +if is_accelerate_available(): + from accelerate import init_empty_weights + from ..models.modeling_utils import load_model_dict_into_meta +logger = logging.get_logger(__name__) +CHECKPOINT_KEY_NAMES = {'v2': 'model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight', 'xl_base': 'conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.bias', 'xl_refiner': 'conditioner.embedders.0.model.transformer.resblocks.9.mlp.c_proj.bias', 'upscale': 'model.diffusion_model.input_blocks.10.0.skip_connection.bias', 'controlnet': 'control_model.time_embed.0.weight', 'playground-v2-5': 'edm_mean', 'inpainting': 'model.diffusion_model.input_blocks.0.0.weight', 'clip': 'cond_stage_model.transformer.text_model.embeddings.position_embedding.weight', 'clip_sdxl': 'conditioner.embedders.0.transformer.text_model.embeddings.position_embedding.weight', 'clip_sd3': 'text_encoders.clip_l.transformer.text_model.embeddings.position_embedding.weight', 'open_clip': 'cond_stage_model.model.token_embedding.weight', 'open_clip_sdxl': 'conditioner.embedders.1.model.positional_embedding', 'open_clip_sdxl_refiner': 'conditioner.embedders.0.model.text_projection', 'open_clip_sd3': 'text_encoders.clip_g.transformer.text_model.embeddings.position_embedding.weight', 'stable_cascade_stage_b': 'down_blocks.1.0.channelwise.0.weight', 'stable_cascade_stage_c': 'clip_txt_mapper.weight', 'sd3': 'model.diffusion_model.joint_blocks.0.context_block.adaLN_modulation.1.bias', 'animatediff': 'down_blocks.0.motion_modules.0.temporal_transformer.transformer_blocks.0.attention_blocks.0.pos_encoder.pe', 'animatediff_v2': 'mid_block.motion_modules.0.temporal_transformer.norm.bias', 'animatediff_sdxl_beta': 'up_blocks.2.motion_modules.0.temporal_transformer.norm.weight', 'animatediff_scribble': 'controlnet_cond_embedding.conv_in.weight', 'animatediff_rgb': 'controlnet_cond_embedding.weight', 'flux': ['double_blocks.0.img_attn.norm.key_norm.scale', 'model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale']} +DIFFUSERS_DEFAULT_PIPELINE_PATHS = {'xl_base': {'pretrained_model_name_or_path': 'stabilityai/stable-diffusion-xl-base-1.0'}, 'xl_refiner': {'pretrained_model_name_or_path': 'stabilityai/stable-diffusion-xl-refiner-1.0'}, 'xl_inpaint': {'pretrained_model_name_or_path': 'diffusers/stable-diffusion-xl-1.0-inpainting-0.1'}, 'playground-v2-5': {'pretrained_model_name_or_path': 'playgroundai/playground-v2.5-1024px-aesthetic'}, 'upscale': {'pretrained_model_name_or_path': 'stabilityai/stable-diffusion-x4-upscaler'}, 'inpainting': {'pretrained_model_name_or_path': 'Lykon/dreamshaper-8-inpainting'}, 'inpainting_v2': {'pretrained_model_name_or_path': 'stabilityai/stable-diffusion-2-inpainting'}, 'controlnet': {'pretrained_model_name_or_path': 'lllyasviel/control_v11p_sd15_canny'}, 'v2': {'pretrained_model_name_or_path': 'stabilityai/stable-diffusion-2-1'}, 'v1': {'pretrained_model_name_or_path': 'Lykon/dreamshaper-8'}, 'stable_cascade_stage_b': {'pretrained_model_name_or_path': 'stabilityai/stable-cascade', 'subfolder': 'decoder'}, 'stable_cascade_stage_b_lite': {'pretrained_model_name_or_path': 'stabilityai/stable-cascade', 'subfolder': 'decoder_lite'}, 'stable_cascade_stage_c': {'pretrained_model_name_or_path': 'stabilityai/stable-cascade-prior', 'subfolder': 'prior'}, 'stable_cascade_stage_c_lite': {'pretrained_model_name_or_path': 'stabilityai/stable-cascade-prior', 'subfolder': 'prior_lite'}, 'sd3': {'pretrained_model_name_or_path': 'stabilityai/stable-diffusion-3-medium-diffusers'}, 'animatediff_v1': {'pretrained_model_name_or_path': 'guoyww/animatediff-motion-adapter-v1-5'}, 'animatediff_v2': {'pretrained_model_name_or_path': 'guoyww/animatediff-motion-adapter-v1-5-2'}, 'animatediff_v3': {'pretrained_model_name_or_path': 'guoyww/animatediff-motion-adapter-v1-5-3'}, 'animatediff_sdxl_beta': {'pretrained_model_name_or_path': 'guoyww/animatediff-motion-adapter-sdxl-beta'}, 'animatediff_scribble': {'pretrained_model_name_or_path': 'guoyww/animatediff-sparsectrl-scribble'}, 'animatediff_rgb': {'pretrained_model_name_or_path': 'guoyww/animatediff-sparsectrl-rgb'}, 'flux-dev': {'pretrained_model_name_or_path': 'black-forest-labs/FLUX.1-dev'}, 'flux-schnell': {'pretrained_model_name_or_path': 'black-forest-labs/FLUX.1-schnell'}} +DIFFUSERS_TO_LDM_DEFAULT_IMAGE_SIZE_MAP = {'xl_base': 1024, 'xl_refiner': 1024, 'xl_inpaint': 1024, 'playground-v2-5': 1024, 'upscale': 512, 'inpainting': 512, 'inpainting_v2': 512, 'controlnet': 512, 'v2': 768, 'v1': 512} +DIFFUSERS_TO_LDM_MAPPING = {'unet': {'layers': {'time_embedding.linear_1.weight': 'time_embed.0.weight', 'time_embedding.linear_1.bias': 'time_embed.0.bias', 'time_embedding.linear_2.weight': 'time_embed.2.weight', 'time_embedding.linear_2.bias': 'time_embed.2.bias', 'conv_in.weight': 'input_blocks.0.0.weight', 'conv_in.bias': 'input_blocks.0.0.bias', 'conv_norm_out.weight': 'out.0.weight', 'conv_norm_out.bias': 'out.0.bias', 'conv_out.weight': 'out.2.weight', 'conv_out.bias': 'out.2.bias'}, 'class_embed_type': {'class_embedding.linear_1.weight': 'label_emb.0.0.weight', 'class_embedding.linear_1.bias': 'label_emb.0.0.bias', 'class_embedding.linear_2.weight': 'label_emb.0.2.weight', 'class_embedding.linear_2.bias': 'label_emb.0.2.bias'}, 'addition_embed_type': {'add_embedding.linear_1.weight': 'label_emb.0.0.weight', 'add_embedding.linear_1.bias': 'label_emb.0.0.bias', 'add_embedding.linear_2.weight': 'label_emb.0.2.weight', 'add_embedding.linear_2.bias': 'label_emb.0.2.bias'}}, 'controlnet': {'layers': {'time_embedding.linear_1.weight': 'time_embed.0.weight', 'time_embedding.linear_1.bias': 'time_embed.0.bias', 'time_embedding.linear_2.weight': 'time_embed.2.weight', 'time_embedding.linear_2.bias': 'time_embed.2.bias', 'conv_in.weight': 'input_blocks.0.0.weight', 'conv_in.bias': 'input_blocks.0.0.bias', 'controlnet_cond_embedding.conv_in.weight': 'input_hint_block.0.weight', 'controlnet_cond_embedding.conv_in.bias': 'input_hint_block.0.bias', 'controlnet_cond_embedding.conv_out.weight': 'input_hint_block.14.weight', 'controlnet_cond_embedding.conv_out.bias': 'input_hint_block.14.bias'}, 'class_embed_type': {'class_embedding.linear_1.weight': 'label_emb.0.0.weight', 'class_embedding.linear_1.bias': 'label_emb.0.0.bias', 'class_embedding.linear_2.weight': 'label_emb.0.2.weight', 'class_embedding.linear_2.bias': 'label_emb.0.2.bias'}, 'addition_embed_type': {'add_embedding.linear_1.weight': 'label_emb.0.0.weight', 'add_embedding.linear_1.bias': 'label_emb.0.0.bias', 'add_embedding.linear_2.weight': 'label_emb.0.2.weight', 'add_embedding.linear_2.bias': 'label_emb.0.2.bias'}}, 'vae': {'encoder.conv_in.weight': 'encoder.conv_in.weight', 'encoder.conv_in.bias': 'encoder.conv_in.bias', 'encoder.conv_out.weight': 'encoder.conv_out.weight', 'encoder.conv_out.bias': 'encoder.conv_out.bias', 'encoder.conv_norm_out.weight': 'encoder.norm_out.weight', 'encoder.conv_norm_out.bias': 'encoder.norm_out.bias', 'decoder.conv_in.weight': 'decoder.conv_in.weight', 'decoder.conv_in.bias': 'decoder.conv_in.bias', 'decoder.conv_out.weight': 'decoder.conv_out.weight', 'decoder.conv_out.bias': 'decoder.conv_out.bias', 'decoder.conv_norm_out.weight': 'decoder.norm_out.weight', 'decoder.conv_norm_out.bias': 'decoder.norm_out.bias', 'quant_conv.weight': 'quant_conv.weight', 'quant_conv.bias': 'quant_conv.bias', 'post_quant_conv.weight': 'post_quant_conv.weight', 'post_quant_conv.bias': 'post_quant_conv.bias'}, 'openclip': {'layers': {'text_model.embeddings.position_embedding.weight': 'positional_embedding', 'text_model.embeddings.token_embedding.weight': 'token_embedding.weight', 'text_model.final_layer_norm.weight': 'ln_final.weight', 'text_model.final_layer_norm.bias': 'ln_final.bias', 'text_projection.weight': 'text_projection'}, 'transformer': {'text_model.encoder.layers.': 'resblocks.', 'layer_norm1': 'ln_1', 'layer_norm2': 'ln_2', '.fc1.': '.c_fc.', '.fc2.': '.c_proj.', '.self_attn': '.attn', 'transformer.text_model.final_layer_norm.': 'ln_final.', 'transformer.text_model.embeddings.token_embedding.weight': 'token_embedding.weight', 'transformer.text_model.embeddings.position_embedding.weight': 'positional_embedding'}}} +SD_2_TEXT_ENCODER_KEYS_TO_IGNORE = ['cond_stage_model.model.transformer.resblocks.23.attn.in_proj_bias', 'cond_stage_model.model.transformer.resblocks.23.attn.in_proj_weight', 'cond_stage_model.model.transformer.resblocks.23.attn.out_proj.bias', 'cond_stage_model.model.transformer.resblocks.23.attn.out_proj.weight', 'cond_stage_model.model.transformer.resblocks.23.ln_1.bias', 'cond_stage_model.model.transformer.resblocks.23.ln_1.weight', 'cond_stage_model.model.transformer.resblocks.23.ln_2.bias', 'cond_stage_model.model.transformer.resblocks.23.ln_2.weight', 'cond_stage_model.model.transformer.resblocks.23.mlp.c_fc.bias', 'cond_stage_model.model.transformer.resblocks.23.mlp.c_fc.weight', 'cond_stage_model.model.transformer.resblocks.23.mlp.c_proj.bias', 'cond_stage_model.model.transformer.resblocks.23.mlp.c_proj.weight', 'cond_stage_model.model.text_projection'] +SCHEDULER_DEFAULT_CONFIG = {'beta_schedule': 'scaled_linear', 'beta_start': 0.00085, 'beta_end': 0.012, 'interpolation_type': 'linear', 'num_train_timesteps': 1000, 'prediction_type': 'epsilon', 'sample_max_value': 1.0, 'set_alpha_to_one': False, 'skip_prk_steps': True, 'steps_offset': 1, 'timestep_spacing': 'leading'} +LDM_VAE_KEYS = ['first_stage_model.', 'vae.'] +LDM_VAE_DEFAULT_SCALING_FACTOR = 0.18215 +PLAYGROUND_VAE_SCALING_FACTOR = 0.5 +LDM_UNET_KEY = 'model.diffusion_model.' +LDM_CONTROLNET_KEY = 'control_model.' +LDM_CLIP_PREFIX_TO_REMOVE = ['cond_stage_model.transformer.', 'conditioner.embedders.0.transformer.'] +LDM_OPEN_CLIP_TEXT_PROJECTION_DIM = 1024 +SCHEDULER_LEGACY_KWARGS = ['prediction_type', 'scheduler_type'] +VALID_URL_PREFIXES = ['https://huggingface.co/', 'huggingface.co/', 'hf.co/', 'https://hf.co/'] + +class SingleFileComponentError(Exception): + + def __init__(self, message=None): + self.message = message + super().__init__(self.message) + +def is_valid_url(url): + result = urlparse(url) + if result.scheme and result.netloc: + return True + return False + +def _extract_repo_id_and_weights_name(pretrained_model_name_or_path): + if not is_valid_url(pretrained_model_name_or_path): + raise ValueError('Invalid `pretrained_model_name_or_path` provided. Please set it to a valid URL.') + pattern = '([^/]+)/([^/]+)/(?:blob/main/)?(.+)' + weights_name = None + repo_id = (None,) + for prefix in VALID_URL_PREFIXES: + pretrained_model_name_or_path = pretrained_model_name_or_path.replace(prefix, '') + match = re.match(pattern, pretrained_model_name_or_path) + if not match: + logger.warning('Unable to identify the repo_id and weights_name from the provided URL.') + return (repo_id, weights_name) + repo_id = f'{match.group(1)}/{match.group(2)}' + weights_name = match.group(3) + return (repo_id, weights_name) + +def _is_model_weights_in_cached_folder(cached_folder, name): + pretrained_model_name_or_path = os.path.join(cached_folder, name) + weights_exist = False + for weights_name in [WEIGHTS_NAME, SAFETENSORS_WEIGHTS_NAME]: + if os.path.isfile(os.path.join(pretrained_model_name_or_path, weights_name)): + weights_exist = True + return weights_exist + +def _is_legacy_scheduler_kwargs(kwargs): + return any((k in SCHEDULER_LEGACY_KWARGS for k in kwargs.keys())) + +def load_single_file_checkpoint(pretrained_model_link_or_path, force_download=False, proxies=None, token=None, cache_dir=None, local_files_only=None, revision=None): + if os.path.isfile(pretrained_model_link_or_path): + pretrained_model_link_or_path = pretrained_model_link_or_path + else: + (repo_id, weights_name) = _extract_repo_id_and_weights_name(pretrained_model_link_or_path) + pretrained_model_link_or_path = _get_model_file(repo_id, weights_name=weights_name, force_download=force_download, cache_dir=cache_dir, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision) + checkpoint = load_state_dict(pretrained_model_link_or_path) + while 'state_dict' in checkpoint: + checkpoint = checkpoint['state_dict'] + return checkpoint + +def fetch_original_config(original_config_file, local_files_only=False): + if os.path.isfile(original_config_file): + with open(original_config_file, 'r') as fp: + original_config_file = fp.read() + elif is_valid_url(original_config_file): + if local_files_only: + raise ValueError('`local_files_only` is set to True, but a URL was provided as `original_config_file`. Please provide a valid local file path.') + original_config_file = BytesIO(requests.get(original_config_file).content) + else: + raise ValueError('Invalid `original_config_file` provided. Please set it to a valid file path or URL.') + original_config = yaml.safe_load(original_config_file) + return original_config + +def is_clip_model(checkpoint): + if CHECKPOINT_KEY_NAMES['clip'] in checkpoint: + return True + return False + +def is_clip_sdxl_model(checkpoint): + if CHECKPOINT_KEY_NAMES['clip_sdxl'] in checkpoint: + return True + return False + +def is_clip_sd3_model(checkpoint): + if CHECKPOINT_KEY_NAMES['clip_sd3'] in checkpoint: + return True + return False + +def is_open_clip_model(checkpoint): + if CHECKPOINT_KEY_NAMES['open_clip'] in checkpoint: + return True + return False + +def is_open_clip_sdxl_model(checkpoint): + if CHECKPOINT_KEY_NAMES['open_clip_sdxl'] in checkpoint: + return True + return False + +def is_open_clip_sd3_model(checkpoint): + if CHECKPOINT_KEY_NAMES['open_clip_sd3'] in checkpoint: + return True + return False + +def is_open_clip_sdxl_refiner_model(checkpoint): + if CHECKPOINT_KEY_NAMES['open_clip_sdxl_refiner'] in checkpoint: + return True + return False + +def is_clip_model_in_single_file(class_obj, checkpoint): + is_clip_in_checkpoint = any([is_clip_model(checkpoint), is_clip_sd3_model(checkpoint), is_open_clip_model(checkpoint), is_open_clip_sdxl_model(checkpoint), is_open_clip_sdxl_refiner_model(checkpoint), is_open_clip_sd3_model(checkpoint)]) + if (class_obj.__name__ == 'CLIPTextModel' or class_obj.__name__ == 'CLIPTextModelWithProjection') and is_clip_in_checkpoint: + return True + return False + +def infer_diffusers_model_type(checkpoint): + if CHECKPOINT_KEY_NAMES['inpainting'] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES['inpainting']].shape[1] == 9: + if CHECKPOINT_KEY_NAMES['v2'] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES['v2']].shape[-1] == 1024: + model_type = 'inpainting_v2' + elif CHECKPOINT_KEY_NAMES['xl_base'] in checkpoint: + model_type = 'xl_inpaint' + else: + model_type = 'inpainting' + elif CHECKPOINT_KEY_NAMES['v2'] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES['v2']].shape[-1] == 1024: + model_type = 'v2' + elif CHECKPOINT_KEY_NAMES['playground-v2-5'] in checkpoint: + model_type = 'playground-v2-5' + elif CHECKPOINT_KEY_NAMES['xl_base'] in checkpoint: + model_type = 'xl_base' + elif CHECKPOINT_KEY_NAMES['xl_refiner'] in checkpoint: + model_type = 'xl_refiner' + elif CHECKPOINT_KEY_NAMES['upscale'] in checkpoint: + model_type = 'upscale' + elif CHECKPOINT_KEY_NAMES['controlnet'] in checkpoint: + model_type = 'controlnet' + elif CHECKPOINT_KEY_NAMES['stable_cascade_stage_c'] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES['stable_cascade_stage_c']].shape[0] == 1536: + model_type = 'stable_cascade_stage_c_lite' + elif CHECKPOINT_KEY_NAMES['stable_cascade_stage_c'] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES['stable_cascade_stage_c']].shape[0] == 2048: + model_type = 'stable_cascade_stage_c' + elif CHECKPOINT_KEY_NAMES['stable_cascade_stage_b'] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES['stable_cascade_stage_b']].shape[-1] == 576: + model_type = 'stable_cascade_stage_b_lite' + elif CHECKPOINT_KEY_NAMES['stable_cascade_stage_b'] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES['stable_cascade_stage_b']].shape[-1] == 640: + model_type = 'stable_cascade_stage_b' + elif CHECKPOINT_KEY_NAMES['sd3'] in checkpoint: + model_type = 'sd3' + elif CHECKPOINT_KEY_NAMES['animatediff'] in checkpoint: + if CHECKPOINT_KEY_NAMES['animatediff_scribble'] in checkpoint: + model_type = 'animatediff_scribble' + elif CHECKPOINT_KEY_NAMES['animatediff_rgb'] in checkpoint: + model_type = 'animatediff_rgb' + elif CHECKPOINT_KEY_NAMES['animatediff_v2'] in checkpoint: + model_type = 'animatediff_v2' + elif checkpoint[CHECKPOINT_KEY_NAMES['animatediff_sdxl_beta']].shape[-1] == 320: + model_type = 'animatediff_sdxl_beta' + elif checkpoint[CHECKPOINT_KEY_NAMES['animatediff']].shape[1] == 24: + model_type = 'animatediff_v1' + else: + model_type = 'animatediff_v3' + elif any((key in checkpoint for key in CHECKPOINT_KEY_NAMES['flux'])): + if any((g in checkpoint for g in ['guidance_in.in_layer.bias', 'model.diffusion_model.guidance_in.in_layer.bias'])): + model_type = 'flux-dev' + else: + model_type = 'flux-schnell' + else: + model_type = 'v1' + return model_type + +def fetch_diffusers_config(checkpoint): + model_type = infer_diffusers_model_type(checkpoint) + model_path = DIFFUSERS_DEFAULT_PIPELINE_PATHS[model_type] + return model_path + +def set_image_size(checkpoint, image_size=None): + if image_size: + return image_size + model_type = infer_diffusers_model_type(checkpoint) + image_size = DIFFUSERS_TO_LDM_DEFAULT_IMAGE_SIZE_MAP[model_type] + return image_size + +def conv_attn_to_linear(checkpoint): + keys = list(checkpoint.keys()) + attn_keys = ['query.weight', 'key.weight', 'value.weight'] + for key in keys: + if '.'.join(key.split('.')[-2:]) in attn_keys: + if checkpoint[key].ndim > 2: + checkpoint[key] = checkpoint[key][:, :, 0, 0] + elif 'proj_attn.weight' in key: + if checkpoint[key].ndim > 2: + checkpoint[key] = checkpoint[key][:, :, 0] + +def create_unet_diffusers_config_from_ldm(original_config, checkpoint, image_size=None, upcast_attention=None, num_in_channels=None): + if image_size is not None: + deprecation_message = 'Configuring UNet2DConditionModel with the `image_size` argument to `from_single_file`is deprecated and will be ignored in future versions.' + deprecate('image_size', '1.0.0', deprecation_message) + image_size = set_image_size(checkpoint, image_size=image_size) + if 'unet_config' in original_config['model']['params'] and original_config['model']['params']['unet_config'] is not None: + unet_params = original_config['model']['params']['unet_config']['params'] + else: + unet_params = original_config['model']['params']['network_config']['params'] + if num_in_channels is not None: + deprecation_message = 'Configuring UNet2DConditionModel with the `num_in_channels` argument to `from_single_file`is deprecated and will be ignored in future versions.' + deprecate('image_size', '1.0.0', deprecation_message) + in_channels = num_in_channels + else: + in_channels = unet_params['in_channels'] + vae_params = original_config['model']['params']['first_stage_config']['params']['ddconfig'] + block_out_channels = [unet_params['model_channels'] * mult for mult in unet_params['channel_mult']] + down_block_types = [] + resolution = 1 + for i in range(len(block_out_channels)): + block_type = 'CrossAttnDownBlock2D' if resolution in unet_params['attention_resolutions'] else 'DownBlock2D' + down_block_types.append(block_type) + if i != len(block_out_channels) - 1: + resolution *= 2 + up_block_types = [] + for i in range(len(block_out_channels)): + block_type = 'CrossAttnUpBlock2D' if resolution in unet_params['attention_resolutions'] else 'UpBlock2D' + up_block_types.append(block_type) + resolution //= 2 + if unet_params['transformer_depth'] is not None: + transformer_layers_per_block = unet_params['transformer_depth'] if isinstance(unet_params['transformer_depth'], int) else list(unet_params['transformer_depth']) + else: + transformer_layers_per_block = 1 + vae_scale_factor = 2 ** (len(vae_params['ch_mult']) - 1) + head_dim = unet_params['num_heads'] if 'num_heads' in unet_params else None + use_linear_projection = unet_params['use_linear_in_transformer'] if 'use_linear_in_transformer' in unet_params else False + if use_linear_projection: + if head_dim is None: + head_dim_mult = unet_params['model_channels'] // unet_params['num_head_channels'] + head_dim = [head_dim_mult * c for c in list(unet_params['channel_mult'])] + class_embed_type = None + addition_embed_type = None + addition_time_embed_dim = None + projection_class_embeddings_input_dim = None + context_dim = None + if unet_params['context_dim'] is not None: + context_dim = unet_params['context_dim'] if isinstance(unet_params['context_dim'], int) else unet_params['context_dim'][0] + if 'num_classes' in unet_params: + if unet_params['num_classes'] == 'sequential': + if context_dim in [2048, 1280]: + addition_embed_type = 'text_time' + addition_time_embed_dim = 256 + else: + class_embed_type = 'projection' + assert 'adm_in_channels' in unet_params + projection_class_embeddings_input_dim = unet_params['adm_in_channels'] + config = {'sample_size': image_size // vae_scale_factor, 'in_channels': in_channels, 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'layers_per_block': unet_params['num_res_blocks'], 'cross_attention_dim': context_dim, 'attention_head_dim': head_dim, 'use_linear_projection': use_linear_projection, 'class_embed_type': class_embed_type, 'addition_embed_type': addition_embed_type, 'addition_time_embed_dim': addition_time_embed_dim, 'projection_class_embeddings_input_dim': projection_class_embeddings_input_dim, 'transformer_layers_per_block': transformer_layers_per_block} + if upcast_attention is not None: + deprecation_message = 'Configuring UNet2DConditionModel with the `upcast_attention` argument to `from_single_file`is deprecated and will be ignored in future versions.' + deprecate('image_size', '1.0.0', deprecation_message) + config['upcast_attention'] = upcast_attention + if 'disable_self_attentions' in unet_params: + config['only_cross_attention'] = unet_params['disable_self_attentions'] + if 'num_classes' in unet_params and isinstance(unet_params['num_classes'], int): + config['num_class_embeds'] = unet_params['num_classes'] + config['out_channels'] = unet_params['out_channels'] + config['up_block_types'] = up_block_types + return config + +def create_controlnet_diffusers_config_from_ldm(original_config, checkpoint, image_size=None, **kwargs): + if image_size is not None: + deprecation_message = 'Configuring ControlNetModel with the `image_size` argumentis deprecated and will be ignored in future versions.' + deprecate('image_size', '1.0.0', deprecation_message) + image_size = set_image_size(checkpoint, image_size=image_size) + unet_params = original_config['model']['params']['control_stage_config']['params'] + diffusers_unet_config = create_unet_diffusers_config_from_ldm(original_config, image_size=image_size) + controlnet_config = {'conditioning_channels': unet_params['hint_channels'], 'in_channels': diffusers_unet_config['in_channels'], 'down_block_types': diffusers_unet_config['down_block_types'], 'block_out_channels': diffusers_unet_config['block_out_channels'], 'layers_per_block': diffusers_unet_config['layers_per_block'], 'cross_attention_dim': diffusers_unet_config['cross_attention_dim'], 'attention_head_dim': diffusers_unet_config['attention_head_dim'], 'use_linear_projection': diffusers_unet_config['use_linear_projection'], 'class_embed_type': diffusers_unet_config['class_embed_type'], 'addition_embed_type': diffusers_unet_config['addition_embed_type'], 'addition_time_embed_dim': diffusers_unet_config['addition_time_embed_dim'], 'projection_class_embeddings_input_dim': diffusers_unet_config['projection_class_embeddings_input_dim'], 'transformer_layers_per_block': diffusers_unet_config['transformer_layers_per_block']} + return controlnet_config + +def create_vae_diffusers_config_from_ldm(original_config, checkpoint, image_size=None, scaling_factor=None): + if image_size is not None: + deprecation_message = 'Configuring AutoencoderKL with the `image_size` argumentis deprecated and will be ignored in future versions.' + deprecate('image_size', '1.0.0', deprecation_message) + image_size = set_image_size(checkpoint, image_size=image_size) + if 'edm_mean' in checkpoint and 'edm_std' in checkpoint: + latents_mean = checkpoint['edm_mean'] + latents_std = checkpoint['edm_std'] + else: + latents_mean = None + latents_std = None + vae_params = original_config['model']['params']['first_stage_config']['params']['ddconfig'] + if scaling_factor is None and latents_mean is not None and (latents_std is not None): + scaling_factor = PLAYGROUND_VAE_SCALING_FACTOR + elif scaling_factor is None and 'scale_factor' in original_config['model']['params']: + scaling_factor = original_config['model']['params']['scale_factor'] + elif scaling_factor is None: + scaling_factor = LDM_VAE_DEFAULT_SCALING_FACTOR + block_out_channels = [vae_params['ch'] * mult for mult in vae_params['ch_mult']] + down_block_types = ['DownEncoderBlock2D'] * len(block_out_channels) + up_block_types = ['UpDecoderBlock2D'] * len(block_out_channels) + config = {'sample_size': image_size, 'in_channels': vae_params['in_channels'], 'out_channels': vae_params['out_ch'], 'down_block_types': down_block_types, 'up_block_types': up_block_types, 'block_out_channels': block_out_channels, 'latent_channels': vae_params['z_channels'], 'layers_per_block': vae_params['num_res_blocks'], 'scaling_factor': scaling_factor} + if latents_mean is not None and latents_std is not None: + config.update({'latents_mean': latents_mean, 'latents_std': latents_std}) + return config + +def update_unet_resnet_ldm_to_diffusers(ldm_keys, new_checkpoint, checkpoint, mapping=None): + for ldm_key in ldm_keys: + diffusers_key = ldm_key.replace('in_layers.0', 'norm1').replace('in_layers.2', 'conv1').replace('out_layers.0', 'norm2').replace('out_layers.3', 'conv2').replace('emb_layers.1', 'time_emb_proj').replace('skip_connection', 'conv_shortcut') + if mapping: + diffusers_key = diffusers_key.replace(mapping['old'], mapping['new']) + new_checkpoint[diffusers_key] = checkpoint.get(ldm_key) + +def update_unet_attention_ldm_to_diffusers(ldm_keys, new_checkpoint, checkpoint, mapping): + for ldm_key in ldm_keys: + diffusers_key = ldm_key.replace(mapping['old'], mapping['new']) + new_checkpoint[diffusers_key] = checkpoint.get(ldm_key) + +def update_vae_resnet_ldm_to_diffusers(keys, new_checkpoint, checkpoint, mapping): + for ldm_key in keys: + diffusers_key = ldm_key.replace(mapping['old'], mapping['new']).replace('nin_shortcut', 'conv_shortcut') + new_checkpoint[diffusers_key] = checkpoint.get(ldm_key) + +def update_vae_attentions_ldm_to_diffusers(keys, new_checkpoint, checkpoint, mapping): + for ldm_key in keys: + diffusers_key = ldm_key.replace(mapping['old'], mapping['new']).replace('norm.weight', 'group_norm.weight').replace('norm.bias', 'group_norm.bias').replace('q.weight', 'to_q.weight').replace('q.bias', 'to_q.bias').replace('k.weight', 'to_k.weight').replace('k.bias', 'to_k.bias').replace('v.weight', 'to_v.weight').replace('v.bias', 'to_v.bias').replace('proj_out.weight', 'to_out.0.weight').replace('proj_out.bias', 'to_out.0.bias') + new_checkpoint[diffusers_key] = checkpoint.get(ldm_key) + shape = new_checkpoint[diffusers_key].shape + if len(shape) == 3: + new_checkpoint[diffusers_key] = new_checkpoint[diffusers_key][:, :, 0] + elif len(shape) == 4: + new_checkpoint[diffusers_key] = new_checkpoint[diffusers_key][:, :, 0, 0] + +def convert_stable_cascade_unet_single_file_to_diffusers(checkpoint, **kwargs): + is_stage_c = 'clip_txt_mapper.weight' in checkpoint + if is_stage_c: + state_dict = {} + for key in checkpoint.keys(): + if key.endswith('in_proj_weight'): + weights = checkpoint[key].chunk(3, 0) + state_dict[key.replace('attn.in_proj_weight', 'to_q.weight')] = weights[0] + state_dict[key.replace('attn.in_proj_weight', 'to_k.weight')] = weights[1] + state_dict[key.replace('attn.in_proj_weight', 'to_v.weight')] = weights[2] + elif key.endswith('in_proj_bias'): + weights = checkpoint[key].chunk(3, 0) + state_dict[key.replace('attn.in_proj_bias', 'to_q.bias')] = weights[0] + state_dict[key.replace('attn.in_proj_bias', 'to_k.bias')] = weights[1] + state_dict[key.replace('attn.in_proj_bias', 'to_v.bias')] = weights[2] + elif key.endswith('out_proj.weight'): + weights = checkpoint[key] + state_dict[key.replace('attn.out_proj.weight', 'to_out.0.weight')] = weights + elif key.endswith('out_proj.bias'): + weights = checkpoint[key] + state_dict[key.replace('attn.out_proj.bias', 'to_out.0.bias')] = weights + else: + state_dict[key] = checkpoint[key] + else: + state_dict = {} + for key in checkpoint.keys(): + if key.endswith('in_proj_weight'): + weights = checkpoint[key].chunk(3, 0) + state_dict[key.replace('attn.in_proj_weight', 'to_q.weight')] = weights[0] + state_dict[key.replace('attn.in_proj_weight', 'to_k.weight')] = weights[1] + state_dict[key.replace('attn.in_proj_weight', 'to_v.weight')] = weights[2] + elif key.endswith('in_proj_bias'): + weights = checkpoint[key].chunk(3, 0) + state_dict[key.replace('attn.in_proj_bias', 'to_q.bias')] = weights[0] + state_dict[key.replace('attn.in_proj_bias', 'to_k.bias')] = weights[1] + state_dict[key.replace('attn.in_proj_bias', 'to_v.bias')] = weights[2] + elif key.endswith('out_proj.weight'): + weights = checkpoint[key] + state_dict[key.replace('attn.out_proj.weight', 'to_out.0.weight')] = weights + elif key.endswith('out_proj.bias'): + weights = checkpoint[key] + state_dict[key.replace('attn.out_proj.bias', 'to_out.0.bias')] = weights + elif key.endswith('clip_mapper.weight'): + weights = checkpoint[key] + state_dict[key.replace('clip_mapper.weight', 'clip_txt_pooled_mapper.weight')] = weights + elif key.endswith('clip_mapper.bias'): + weights = checkpoint[key] + state_dict[key.replace('clip_mapper.bias', 'clip_txt_pooled_mapper.bias')] = weights + else: + state_dict[key] = checkpoint[key] + return state_dict + +def convert_ldm_unet_checkpoint(checkpoint, config, extract_ema=False, **kwargs): + unet_state_dict = {} + keys = list(checkpoint.keys()) + unet_key = LDM_UNET_KEY + if sum((k.startswith('model_ema') for k in keys)) > 100 and extract_ema: + logger.warning('Checkpoint has both EMA and non-EMA weights.') + logger.warning('In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag.') + for key in keys: + if key.startswith('model.diffusion_model'): + flat_ema_key = 'model_ema.' + ''.join(key.split('.')[1:]) + unet_state_dict[key.replace(unet_key, '')] = checkpoint.get(flat_ema_key) + else: + if sum((k.startswith('model_ema') for k in keys)) > 100: + logger.warning('In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA weights (usually better for inference), please make sure to add the `--extract_ema` flag.') + for key in keys: + if key.startswith(unet_key): + unet_state_dict[key.replace(unet_key, '')] = checkpoint.get(key) + new_checkpoint = {} + ldm_unet_keys = DIFFUSERS_TO_LDM_MAPPING['unet']['layers'] + for (diffusers_key, ldm_key) in ldm_unet_keys.items(): + if ldm_key not in unet_state_dict: + continue + new_checkpoint[diffusers_key] = unet_state_dict[ldm_key] + if 'class_embed_type' in config and config['class_embed_type'] in ['timestep', 'projection']: + class_embed_keys = DIFFUSERS_TO_LDM_MAPPING['unet']['class_embed_type'] + for (diffusers_key, ldm_key) in class_embed_keys.items(): + new_checkpoint[diffusers_key] = unet_state_dict[ldm_key] + if 'addition_embed_type' in config and config['addition_embed_type'] == 'text_time': + addition_embed_keys = DIFFUSERS_TO_LDM_MAPPING['unet']['addition_embed_type'] + for (diffusers_key, ldm_key) in addition_embed_keys.items(): + new_checkpoint[diffusers_key] = unet_state_dict[ldm_key] + if 'num_class_embeds' in config: + if config['num_class_embeds'] is not None and 'label_emb.weight' in unet_state_dict: + new_checkpoint['class_embedding.weight'] = unet_state_dict['label_emb.weight'] + num_input_blocks = len({'.'.join(layer.split('.')[:2]) for layer in unet_state_dict if 'input_blocks' in layer}) + input_blocks = {layer_id: [key for key in unet_state_dict if f'input_blocks.{layer_id}' in key] for layer_id in range(num_input_blocks)} + num_middle_blocks = len({'.'.join(layer.split('.')[:2]) for layer in unet_state_dict if 'middle_block' in layer}) + middle_blocks = {layer_id: [key for key in unet_state_dict if f'middle_block.{layer_id}' in key] for layer_id in range(num_middle_blocks)} + num_output_blocks = len({'.'.join(layer.split('.')[:2]) for layer in unet_state_dict if 'output_blocks' in layer}) + output_blocks = {layer_id: [key for key in unet_state_dict if f'output_blocks.{layer_id}' in key] for layer_id in range(num_output_blocks)} + for i in range(1, num_input_blocks): + block_id = (i - 1) // (config['layers_per_block'] + 1) + layer_in_block_id = (i - 1) % (config['layers_per_block'] + 1) + resnets = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key and f'input_blocks.{i}.0.op' not in key] + update_unet_resnet_ldm_to_diffusers(resnets, new_checkpoint, unet_state_dict, {'old': f'input_blocks.{i}.0', 'new': f'down_blocks.{block_id}.resnets.{layer_in_block_id}'}) + if f'input_blocks.{i}.0.op.weight' in unet_state_dict: + new_checkpoint[f'down_blocks.{block_id}.downsamplers.0.conv.weight'] = unet_state_dict.get(f'input_blocks.{i}.0.op.weight') + new_checkpoint[f'down_blocks.{block_id}.downsamplers.0.conv.bias'] = unet_state_dict.get(f'input_blocks.{i}.0.op.bias') + attentions = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key] + if attentions: + update_unet_attention_ldm_to_diffusers(attentions, new_checkpoint, unet_state_dict, {'old': f'input_blocks.{i}.1', 'new': f'down_blocks.{block_id}.attentions.{layer_in_block_id}'}) + for key in middle_blocks.keys(): + diffusers_key = max(key - 1, 0) + if key % 2 == 0: + update_unet_resnet_ldm_to_diffusers(middle_blocks[key], new_checkpoint, unet_state_dict, mapping={'old': f'middle_block.{key}', 'new': f'mid_block.resnets.{diffusers_key}'}) + else: + update_unet_attention_ldm_to_diffusers(middle_blocks[key], new_checkpoint, unet_state_dict, mapping={'old': f'middle_block.{key}', 'new': f'mid_block.attentions.{diffusers_key}'}) + for i in range(num_output_blocks): + block_id = i // (config['layers_per_block'] + 1) + layer_in_block_id = i % (config['layers_per_block'] + 1) + resnets = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key and f'output_blocks.{i}.0.op' not in key] + update_unet_resnet_ldm_to_diffusers(resnets, new_checkpoint, unet_state_dict, {'old': f'output_blocks.{i}.0', 'new': f'up_blocks.{block_id}.resnets.{layer_in_block_id}'}) + attentions = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key and f'output_blocks.{i}.1.conv' not in key] + if attentions: + update_unet_attention_ldm_to_diffusers(attentions, new_checkpoint, unet_state_dict, {'old': f'output_blocks.{i}.1', 'new': f'up_blocks.{block_id}.attentions.{layer_in_block_id}'}) + if f'output_blocks.{i}.1.conv.weight' in unet_state_dict: + new_checkpoint[f'up_blocks.{block_id}.upsamplers.0.conv.weight'] = unet_state_dict[f'output_blocks.{i}.1.conv.weight'] + new_checkpoint[f'up_blocks.{block_id}.upsamplers.0.conv.bias'] = unet_state_dict[f'output_blocks.{i}.1.conv.bias'] + if f'output_blocks.{i}.2.conv.weight' in unet_state_dict: + new_checkpoint[f'up_blocks.{block_id}.upsamplers.0.conv.weight'] = unet_state_dict[f'output_blocks.{i}.2.conv.weight'] + new_checkpoint[f'up_blocks.{block_id}.upsamplers.0.conv.bias'] = unet_state_dict[f'output_blocks.{i}.2.conv.bias'] + return new_checkpoint + +def convert_controlnet_checkpoint(checkpoint, config, **kwargs): + if 'time_embed.0.weight' in checkpoint: + controlnet_state_dict = checkpoint + else: + controlnet_state_dict = {} + keys = list(checkpoint.keys()) + controlnet_key = LDM_CONTROLNET_KEY + for key in keys: + if key.startswith(controlnet_key): + controlnet_state_dict[key.replace(controlnet_key, '')] = checkpoint.get(key) + new_checkpoint = {} + ldm_controlnet_keys = DIFFUSERS_TO_LDM_MAPPING['controlnet']['layers'] + for (diffusers_key, ldm_key) in ldm_controlnet_keys.items(): + if ldm_key not in controlnet_state_dict: + continue + new_checkpoint[diffusers_key] = controlnet_state_dict[ldm_key] + num_input_blocks = len({'.'.join(layer.split('.')[:2]) for layer in controlnet_state_dict if 'input_blocks' in layer}) + input_blocks = {layer_id: [key for key in controlnet_state_dict if f'input_blocks.{layer_id}' in key] for layer_id in range(num_input_blocks)} + for i in range(1, num_input_blocks): + block_id = (i - 1) // (config['layers_per_block'] + 1) + layer_in_block_id = (i - 1) % (config['layers_per_block'] + 1) + resnets = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key and f'input_blocks.{i}.0.op' not in key] + update_unet_resnet_ldm_to_diffusers(resnets, new_checkpoint, controlnet_state_dict, {'old': f'input_blocks.{i}.0', 'new': f'down_blocks.{block_id}.resnets.{layer_in_block_id}'}) + if f'input_blocks.{i}.0.op.weight' in controlnet_state_dict: + new_checkpoint[f'down_blocks.{block_id}.downsamplers.0.conv.weight'] = controlnet_state_dict.get(f'input_blocks.{i}.0.op.weight') + new_checkpoint[f'down_blocks.{block_id}.downsamplers.0.conv.bias'] = controlnet_state_dict.get(f'input_blocks.{i}.0.op.bias') + attentions = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key] + if attentions: + update_unet_attention_ldm_to_diffusers(attentions, new_checkpoint, controlnet_state_dict, {'old': f'input_blocks.{i}.1', 'new': f'down_blocks.{block_id}.attentions.{layer_in_block_id}'}) + for i in range(num_input_blocks): + new_checkpoint[f'controlnet_down_blocks.{i}.weight'] = controlnet_state_dict.get(f'zero_convs.{i}.0.weight') + new_checkpoint[f'controlnet_down_blocks.{i}.bias'] = controlnet_state_dict.get(f'zero_convs.{i}.0.bias') + num_middle_blocks = len({'.'.join(layer.split('.')[:2]) for layer in controlnet_state_dict if 'middle_block' in layer}) + middle_blocks = {layer_id: [key for key in controlnet_state_dict if f'middle_block.{layer_id}' in key] for layer_id in range(num_middle_blocks)} + for key in middle_blocks.keys(): + diffusers_key = max(key - 1, 0) + if key % 2 == 0: + update_unet_resnet_ldm_to_diffusers(middle_blocks[key], new_checkpoint, controlnet_state_dict, mapping={'old': f'middle_block.{key}', 'new': f'mid_block.resnets.{diffusers_key}'}) + else: + update_unet_attention_ldm_to_diffusers(middle_blocks[key], new_checkpoint, controlnet_state_dict, mapping={'old': f'middle_block.{key}', 'new': f'mid_block.attentions.{diffusers_key}'}) + new_checkpoint['controlnet_mid_block.weight'] = controlnet_state_dict.get('middle_block_out.0.weight') + new_checkpoint['controlnet_mid_block.bias'] = controlnet_state_dict.get('middle_block_out.0.bias') + cond_embedding_blocks = {'.'.join(layer.split('.')[:2]) for layer in controlnet_state_dict if 'input_hint_block' in layer and 'input_hint_block.0' not in layer and ('input_hint_block.14' not in layer)} + num_cond_embedding_blocks = len(cond_embedding_blocks) + for idx in range(1, num_cond_embedding_blocks + 1): + diffusers_idx = idx - 1 + cond_block_id = 2 * idx + new_checkpoint[f'controlnet_cond_embedding.blocks.{diffusers_idx}.weight'] = controlnet_state_dict.get(f'input_hint_block.{cond_block_id}.weight') + new_checkpoint[f'controlnet_cond_embedding.blocks.{diffusers_idx}.bias'] = controlnet_state_dict.get(f'input_hint_block.{cond_block_id}.bias') + return new_checkpoint + +def convert_ldm_vae_checkpoint(checkpoint, config): + vae_state_dict = {} + keys = list(checkpoint.keys()) + vae_key = '' + for ldm_vae_key in LDM_VAE_KEYS: + if any((k.startswith(ldm_vae_key) for k in keys)): + vae_key = ldm_vae_key + for key in keys: + if key.startswith(vae_key): + vae_state_dict[key.replace(vae_key, '')] = checkpoint.get(key) + new_checkpoint = {} + vae_diffusers_ldm_map = DIFFUSERS_TO_LDM_MAPPING['vae'] + for (diffusers_key, ldm_key) in vae_diffusers_ldm_map.items(): + if ldm_key not in vae_state_dict: + continue + new_checkpoint[diffusers_key] = vae_state_dict[ldm_key] + num_down_blocks = len(config['down_block_types']) + down_blocks = {layer_id: [key for key in vae_state_dict if f'down.{layer_id}' in key] for layer_id in range(num_down_blocks)} + for i in range(num_down_blocks): + resnets = [key for key in down_blocks[i] if f'down.{i}' in key and f'down.{i}.downsample' not in key] + update_vae_resnet_ldm_to_diffusers(resnets, new_checkpoint, vae_state_dict, mapping={'old': f'down.{i}.block', 'new': f'down_blocks.{i}.resnets'}) + if f'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: + new_checkpoint[f'encoder.down_blocks.{i}.downsamplers.0.conv.weight'] = vae_state_dict.get(f'encoder.down.{i}.downsample.conv.weight') + new_checkpoint[f'encoder.down_blocks.{i}.downsamplers.0.conv.bias'] = vae_state_dict.get(f'encoder.down.{i}.downsample.conv.bias') + mid_resnets = [key for key in vae_state_dict if 'encoder.mid.block' in key] + num_mid_res_blocks = 2 + for i in range(1, num_mid_res_blocks + 1): + resnets = [key for key in mid_resnets if f'encoder.mid.block_{i}' in key] + update_vae_resnet_ldm_to_diffusers(resnets, new_checkpoint, vae_state_dict, mapping={'old': f'mid.block_{i}', 'new': f'mid_block.resnets.{i - 1}'}) + mid_attentions = [key for key in vae_state_dict if 'encoder.mid.attn' in key] + update_vae_attentions_ldm_to_diffusers(mid_attentions, new_checkpoint, vae_state_dict, mapping={'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'}) + num_up_blocks = len(config['up_block_types']) + up_blocks = {layer_id: [key for key in vae_state_dict if f'up.{layer_id}' in key] for layer_id in range(num_up_blocks)} + for i in range(num_up_blocks): + block_id = num_up_blocks - 1 - i + resnets = [key for key in up_blocks[block_id] if f'up.{block_id}' in key and f'up.{block_id}.upsample' not in key] + update_vae_resnet_ldm_to_diffusers(resnets, new_checkpoint, vae_state_dict, mapping={'old': f'up.{block_id}.block', 'new': f'up_blocks.{i}.resnets'}) + if f'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: + new_checkpoint[f'decoder.up_blocks.{i}.upsamplers.0.conv.weight'] = vae_state_dict[f'decoder.up.{block_id}.upsample.conv.weight'] + new_checkpoint[f'decoder.up_blocks.{i}.upsamplers.0.conv.bias'] = vae_state_dict[f'decoder.up.{block_id}.upsample.conv.bias'] + mid_resnets = [key for key in vae_state_dict if 'decoder.mid.block' in key] + num_mid_res_blocks = 2 + for i in range(1, num_mid_res_blocks + 1): + resnets = [key for key in mid_resnets if f'decoder.mid.block_{i}' in key] + update_vae_resnet_ldm_to_diffusers(resnets, new_checkpoint, vae_state_dict, mapping={'old': f'mid.block_{i}', 'new': f'mid_block.resnets.{i - 1}'}) + mid_attentions = [key for key in vae_state_dict if 'decoder.mid.attn' in key] + update_vae_attentions_ldm_to_diffusers(mid_attentions, new_checkpoint, vae_state_dict, mapping={'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'}) + conv_attn_to_linear(new_checkpoint) + return new_checkpoint + +def convert_ldm_clip_checkpoint(checkpoint, remove_prefix=None): + keys = list(checkpoint.keys()) + text_model_dict = {} + remove_prefixes = [] + remove_prefixes.extend(LDM_CLIP_PREFIX_TO_REMOVE) + if remove_prefix: + remove_prefixes.append(remove_prefix) + for key in keys: + for prefix in remove_prefixes: + if key.startswith(prefix): + diffusers_key = key.replace(prefix, '') + text_model_dict[diffusers_key] = checkpoint.get(key) + return text_model_dict + +def convert_open_clip_checkpoint(text_model, checkpoint, prefix='cond_stage_model.model.'): + text_model_dict = {} + text_proj_key = prefix + 'text_projection' + if text_proj_key in checkpoint: + text_proj_dim = int(checkpoint[text_proj_key].shape[0]) + elif hasattr(text_model.config, 'projection_dim'): + text_proj_dim = text_model.config.projection_dim + else: + text_proj_dim = LDM_OPEN_CLIP_TEXT_PROJECTION_DIM + keys = list(checkpoint.keys()) + keys_to_ignore = SD_2_TEXT_ENCODER_KEYS_TO_IGNORE + openclip_diffusers_ldm_map = DIFFUSERS_TO_LDM_MAPPING['openclip']['layers'] + for (diffusers_key, ldm_key) in openclip_diffusers_ldm_map.items(): + ldm_key = prefix + ldm_key + if ldm_key not in checkpoint: + continue + if ldm_key in keys_to_ignore: + continue + if ldm_key.endswith('text_projection'): + text_model_dict[diffusers_key] = checkpoint[ldm_key].T.contiguous() + else: + text_model_dict[diffusers_key] = checkpoint[ldm_key] + for key in keys: + if key in keys_to_ignore: + continue + if not key.startswith(prefix + 'transformer.'): + continue + diffusers_key = key.replace(prefix + 'transformer.', '') + transformer_diffusers_to_ldm_map = DIFFUSERS_TO_LDM_MAPPING['openclip']['transformer'] + for (new_key, old_key) in transformer_diffusers_to_ldm_map.items(): + diffusers_key = diffusers_key.replace(old_key, new_key).replace('.in_proj_weight', '').replace('.in_proj_bias', '') + if key.endswith('.in_proj_weight'): + weight_value = checkpoint.get(key) + text_model_dict[diffusers_key + '.q_proj.weight'] = weight_value[:text_proj_dim, :].clone().detach() + text_model_dict[diffusers_key + '.k_proj.weight'] = weight_value[text_proj_dim:text_proj_dim * 2, :].clone().detach() + text_model_dict[diffusers_key + '.v_proj.weight'] = weight_value[text_proj_dim * 2:, :].clone().detach() + elif key.endswith('.in_proj_bias'): + weight_value = checkpoint.get(key) + text_model_dict[diffusers_key + '.q_proj.bias'] = weight_value[:text_proj_dim].clone().detach() + text_model_dict[diffusers_key + '.k_proj.bias'] = weight_value[text_proj_dim:text_proj_dim * 2].clone().detach() + text_model_dict[diffusers_key + '.v_proj.bias'] = weight_value[text_proj_dim * 2:].clone().detach() + else: + text_model_dict[diffusers_key] = checkpoint.get(key) + return text_model_dict + +def create_diffusers_clip_model_from_ldm(cls, checkpoint, subfolder='', config=None, torch_dtype=None, local_files_only=None, is_legacy_loading=False): + if config: + config = {'pretrained_model_name_or_path': config} + else: + config = fetch_diffusers_config(checkpoint) + if is_legacy_loading: + logger.warning('Detected legacy CLIP loading behavior. Please run `from_single_file` with `local_files_only=False once to update the local cache directory with the necessary CLIP model config files. Attempting to load CLIP model from legacy cache directory.') + if is_clip_model(checkpoint) or is_clip_sdxl_model(checkpoint): + clip_config = 'openai/clip-vit-large-patch14' + config['pretrained_model_name_or_path'] = clip_config + subfolder = '' + elif is_open_clip_model(checkpoint): + clip_config = 'stabilityai/stable-diffusion-2' + config['pretrained_model_name_or_path'] = clip_config + subfolder = 'text_encoder' + else: + clip_config = 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k' + config['pretrained_model_name_or_path'] = clip_config + subfolder = '' + model_config = cls.config_class.from_pretrained(**config, subfolder=subfolder, local_files_only=local_files_only) + ctx = init_empty_weights if is_accelerate_available() else nullcontext + with ctx(): + model = cls(model_config) + position_embedding_dim = model.text_model.embeddings.position_embedding.weight.shape[-1] + if is_clip_model(checkpoint): + diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint) + elif is_clip_sdxl_model(checkpoint) and checkpoint[CHECKPOINT_KEY_NAMES['clip_sdxl']].shape[-1] == position_embedding_dim: + diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint) + elif is_clip_sd3_model(checkpoint) and checkpoint[CHECKPOINT_KEY_NAMES['clip_sd3']].shape[-1] == position_embedding_dim: + diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint, 'text_encoders.clip_l.transformer.') + diffusers_format_checkpoint['text_projection.weight'] = torch.eye(position_embedding_dim) + elif is_open_clip_model(checkpoint): + prefix = 'cond_stage_model.model.' + diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix) + elif is_open_clip_sdxl_model(checkpoint) and checkpoint[CHECKPOINT_KEY_NAMES['open_clip_sdxl']].shape[-1] == position_embedding_dim: + prefix = 'conditioner.embedders.1.model.' + diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix) + elif is_open_clip_sdxl_refiner_model(checkpoint): + prefix = 'conditioner.embedders.0.model.' + diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix) + elif is_open_clip_sd3_model(checkpoint) and checkpoint[CHECKPOINT_KEY_NAMES['open_clip_sd3']].shape[-1] == position_embedding_dim: + diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint, 'text_encoders.clip_g.transformer.') + else: + raise ValueError('The provided checkpoint does not seem to contain a valid CLIP model.') + if is_accelerate_available(): + unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype) + else: + (_, unexpected_keys) = model.load_state_dict(diffusers_format_checkpoint, strict=False) + if model._keys_to_ignore_on_load_unexpected is not None: + for pat in model._keys_to_ignore_on_load_unexpected: + unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] + if len(unexpected_keys) > 0: + logger.warning(f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}") + if torch_dtype is not None: + model.to(torch_dtype) + model.eval() + return model + +def _legacy_load_scheduler(cls, checkpoint, component_name, original_config=None, **kwargs): + scheduler_type = kwargs.get('scheduler_type', None) + prediction_type = kwargs.get('prediction_type', None) + if scheduler_type is not None: + deprecation_message = 'Please pass an instance of a Scheduler object directly to the `scheduler` argument in `from_single_file`\n\nExample:\n\nfrom diffusers import StableDiffusionPipeline, DDIMScheduler\n\nscheduler = DDIMScheduler()\npipe = StableDiffusionPipeline.from_single_file(, scheduler=scheduler)\n' + deprecate('scheduler_type', '1.0.0', deprecation_message) + if prediction_type is not None: + deprecation_message = 'Please configure an instance of a Scheduler with the appropriate `prediction_type` and pass the object directly to the `scheduler` argument in `from_single_file`.\n\nExample:\n\nfrom diffusers import StableDiffusionPipeline, DDIMScheduler\n\nscheduler = DDIMScheduler(prediction_type="v_prediction")\npipe = StableDiffusionPipeline.from_single_file(, scheduler=scheduler)\n' + deprecate('prediction_type', '1.0.0', deprecation_message) + scheduler_config = SCHEDULER_DEFAULT_CONFIG + model_type = infer_diffusers_model_type(checkpoint=checkpoint) + global_step = checkpoint['global_step'] if 'global_step' in checkpoint else None + if original_config: + num_train_timesteps = getattr(original_config['model']['params'], 'timesteps', 1000) + else: + num_train_timesteps = 1000 + scheduler_config['num_train_timesteps'] = num_train_timesteps + if model_type == 'v2': + if prediction_type is None: + prediction_type = 'epsilon' if global_step == 875000 else 'v_prediction' + else: + prediction_type = prediction_type or 'epsilon' + scheduler_config['prediction_type'] = prediction_type + if model_type in ['xl_base', 'xl_refiner']: + scheduler_type = 'euler' + elif model_type == 'playground': + scheduler_type = 'edm_dpm_solver_multistep' + else: + if original_config: + beta_start = original_config['model']['params'].get('linear_start') + beta_end = original_config['model']['params'].get('linear_end') + else: + beta_start = 0.02 + beta_end = 0.085 + scheduler_config['beta_start'] = beta_start + scheduler_config['beta_end'] = beta_end + scheduler_config['beta_schedule'] = 'scaled_linear' + scheduler_config['clip_sample'] = False + scheduler_config['set_alpha_to_one'] = False + if component_name == 'low_res_scheduler': + return cls.from_config({'beta_end': 0.02, 'beta_schedule': 'scaled_linear', 'beta_start': 0.0001, 'clip_sample': True, 'num_train_timesteps': 1000, 'prediction_type': 'epsilon', 'trained_betas': None, 'variance_type': 'fixed_small'}) + if scheduler_type is None: + return cls.from_config(scheduler_config) + elif scheduler_type == 'pndm': + scheduler_config['skip_prk_steps'] = True + scheduler = PNDMScheduler.from_config(scheduler_config) + elif scheduler_type == 'lms': + scheduler = LMSDiscreteScheduler.from_config(scheduler_config) + elif scheduler_type == 'heun': + scheduler = HeunDiscreteScheduler.from_config(scheduler_config) + elif scheduler_type == 'euler': + scheduler = EulerDiscreteScheduler.from_config(scheduler_config) + elif scheduler_type == 'euler-ancestral': + scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config) + elif scheduler_type == 'dpm': + scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config) + elif scheduler_type == 'ddim': + scheduler = DDIMScheduler.from_config(scheduler_config) + elif scheduler_type == 'edm_dpm_solver_multistep': + scheduler_config = {'algorithm_type': 'dpmsolver++', 'dynamic_thresholding_ratio': 0.995, 'euler_at_final': False, 'final_sigmas_type': 'zero', 'lower_order_final': True, 'num_train_timesteps': 1000, 'prediction_type': 'epsilon', 'rho': 7.0, 'sample_max_value': 1.0, 'sigma_data': 0.5, 'sigma_max': 80.0, 'sigma_min': 0.002, 'solver_order': 2, 'solver_type': 'midpoint', 'thresholding': False} + scheduler = EDMDPMSolverMultistepScheduler(**scheduler_config) + else: + raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!") + return scheduler + +def _legacy_load_clip_tokenizer(cls, checkpoint, config=None, local_files_only=False): + if config: + config = {'pretrained_model_name_or_path': config} + else: + config = fetch_diffusers_config(checkpoint) + if is_clip_model(checkpoint) or is_clip_sdxl_model(checkpoint): + clip_config = 'openai/clip-vit-large-patch14' + config['pretrained_model_name_or_path'] = clip_config + subfolder = '' + elif is_open_clip_model(checkpoint): + clip_config = 'stabilityai/stable-diffusion-2' + config['pretrained_model_name_or_path'] = clip_config + subfolder = 'tokenizer' + else: + clip_config = 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k' + config['pretrained_model_name_or_path'] = clip_config + subfolder = '' + tokenizer = cls.from_pretrained(**config, subfolder=subfolder, local_files_only=local_files_only) + return tokenizer + +def _legacy_load_safety_checker(local_files_only, torch_dtype): + from ..pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker + feature_extractor = AutoImageProcessor.from_pretrained('CompVis/stable-diffusion-safety-checker', local_files_only=local_files_only, torch_dtype=torch_dtype) + safety_checker = StableDiffusionSafetyChecker.from_pretrained('CompVis/stable-diffusion-safety-checker', local_files_only=local_files_only, torch_dtype=torch_dtype) + return {'safety_checker': safety_checker, 'feature_extractor': feature_extractor} + +def swap_scale_shift(weight, dim): + (shift, scale) = weight.chunk(2, dim=0) + new_weight = torch.cat([scale, shift], dim=0) + return new_weight + +def convert_sd3_transformer_checkpoint_to_diffusers(checkpoint, **kwargs): + converted_state_dict = {} + keys = list(checkpoint.keys()) + for k in keys: + if 'model.diffusion_model.' in k: + checkpoint[k.replace('model.diffusion_model.', '')] = checkpoint.pop(k) + num_layers = list(set((int(k.split('.', 2)[1]) for k in checkpoint if 'joint_blocks' in k)))[-1] + 1 + caption_projection_dim = 1536 + converted_state_dict['pos_embed.pos_embed'] = checkpoint.pop('pos_embed') + converted_state_dict['pos_embed.proj.weight'] = checkpoint.pop('x_embedder.proj.weight') + converted_state_dict['pos_embed.proj.bias'] = checkpoint.pop('x_embedder.proj.bias') + converted_state_dict['time_text_embed.timestep_embedder.linear_1.weight'] = checkpoint.pop('t_embedder.mlp.0.weight') + converted_state_dict['time_text_embed.timestep_embedder.linear_1.bias'] = checkpoint.pop('t_embedder.mlp.0.bias') + converted_state_dict['time_text_embed.timestep_embedder.linear_2.weight'] = checkpoint.pop('t_embedder.mlp.2.weight') + converted_state_dict['time_text_embed.timestep_embedder.linear_2.bias'] = checkpoint.pop('t_embedder.mlp.2.bias') + converted_state_dict['context_embedder.weight'] = checkpoint.pop('context_embedder.weight') + converted_state_dict['context_embedder.bias'] = checkpoint.pop('context_embedder.bias') + converted_state_dict['time_text_embed.text_embedder.linear_1.weight'] = checkpoint.pop('y_embedder.mlp.0.weight') + converted_state_dict['time_text_embed.text_embedder.linear_1.bias'] = checkpoint.pop('y_embedder.mlp.0.bias') + converted_state_dict['time_text_embed.text_embedder.linear_2.weight'] = checkpoint.pop('y_embedder.mlp.2.weight') + converted_state_dict['time_text_embed.text_embedder.linear_2.bias'] = checkpoint.pop('y_embedder.mlp.2.bias') + for i in range(num_layers): + (sample_q, sample_k, sample_v) = torch.chunk(checkpoint.pop(f'joint_blocks.{i}.x_block.attn.qkv.weight'), 3, dim=0) + (context_q, context_k, context_v) = torch.chunk(checkpoint.pop(f'joint_blocks.{i}.context_block.attn.qkv.weight'), 3, dim=0) + (sample_q_bias, sample_k_bias, sample_v_bias) = torch.chunk(checkpoint.pop(f'joint_blocks.{i}.x_block.attn.qkv.bias'), 3, dim=0) + (context_q_bias, context_k_bias, context_v_bias) = torch.chunk(checkpoint.pop(f'joint_blocks.{i}.context_block.attn.qkv.bias'), 3, dim=0) + converted_state_dict[f'transformer_blocks.{i}.attn.to_q.weight'] = torch.cat([sample_q]) + converted_state_dict[f'transformer_blocks.{i}.attn.to_q.bias'] = torch.cat([sample_q_bias]) + converted_state_dict[f'transformer_blocks.{i}.attn.to_k.weight'] = torch.cat([sample_k]) + converted_state_dict[f'transformer_blocks.{i}.attn.to_k.bias'] = torch.cat([sample_k_bias]) + converted_state_dict[f'transformer_blocks.{i}.attn.to_v.weight'] = torch.cat([sample_v]) + converted_state_dict[f'transformer_blocks.{i}.attn.to_v.bias'] = torch.cat([sample_v_bias]) + converted_state_dict[f'transformer_blocks.{i}.attn.add_q_proj.weight'] = torch.cat([context_q]) + converted_state_dict[f'transformer_blocks.{i}.attn.add_q_proj.bias'] = torch.cat([context_q_bias]) + converted_state_dict[f'transformer_blocks.{i}.attn.add_k_proj.weight'] = torch.cat([context_k]) + converted_state_dict[f'transformer_blocks.{i}.attn.add_k_proj.bias'] = torch.cat([context_k_bias]) + converted_state_dict[f'transformer_blocks.{i}.attn.add_v_proj.weight'] = torch.cat([context_v]) + converted_state_dict[f'transformer_blocks.{i}.attn.add_v_proj.bias'] = torch.cat([context_v_bias]) + converted_state_dict[f'transformer_blocks.{i}.attn.to_out.0.weight'] = checkpoint.pop(f'joint_blocks.{i}.x_block.attn.proj.weight') + converted_state_dict[f'transformer_blocks.{i}.attn.to_out.0.bias'] = checkpoint.pop(f'joint_blocks.{i}.x_block.attn.proj.bias') + if not i == num_layers - 1: + converted_state_dict[f'transformer_blocks.{i}.attn.to_add_out.weight'] = checkpoint.pop(f'joint_blocks.{i}.context_block.attn.proj.weight') + converted_state_dict[f'transformer_blocks.{i}.attn.to_add_out.bias'] = checkpoint.pop(f'joint_blocks.{i}.context_block.attn.proj.bias') + converted_state_dict[f'transformer_blocks.{i}.norm1.linear.weight'] = checkpoint.pop(f'joint_blocks.{i}.x_block.adaLN_modulation.1.weight') + converted_state_dict[f'transformer_blocks.{i}.norm1.linear.bias'] = checkpoint.pop(f'joint_blocks.{i}.x_block.adaLN_modulation.1.bias') + if not i == num_layers - 1: + converted_state_dict[f'transformer_blocks.{i}.norm1_context.linear.weight'] = checkpoint.pop(f'joint_blocks.{i}.context_block.adaLN_modulation.1.weight') + converted_state_dict[f'transformer_blocks.{i}.norm1_context.linear.bias'] = checkpoint.pop(f'joint_blocks.{i}.context_block.adaLN_modulation.1.bias') + else: + converted_state_dict[f'transformer_blocks.{i}.norm1_context.linear.weight'] = swap_scale_shift(checkpoint.pop(f'joint_blocks.{i}.context_block.adaLN_modulation.1.weight'), dim=caption_projection_dim) + converted_state_dict[f'transformer_blocks.{i}.norm1_context.linear.bias'] = swap_scale_shift(checkpoint.pop(f'joint_blocks.{i}.context_block.adaLN_modulation.1.bias'), dim=caption_projection_dim) + converted_state_dict[f'transformer_blocks.{i}.ff.net.0.proj.weight'] = checkpoint.pop(f'joint_blocks.{i}.x_block.mlp.fc1.weight') + converted_state_dict[f'transformer_blocks.{i}.ff.net.0.proj.bias'] = checkpoint.pop(f'joint_blocks.{i}.x_block.mlp.fc1.bias') + converted_state_dict[f'transformer_blocks.{i}.ff.net.2.weight'] = checkpoint.pop(f'joint_blocks.{i}.x_block.mlp.fc2.weight') + converted_state_dict[f'transformer_blocks.{i}.ff.net.2.bias'] = checkpoint.pop(f'joint_blocks.{i}.x_block.mlp.fc2.bias') + if not i == num_layers - 1: + converted_state_dict[f'transformer_blocks.{i}.ff_context.net.0.proj.weight'] = checkpoint.pop(f'joint_blocks.{i}.context_block.mlp.fc1.weight') + converted_state_dict[f'transformer_blocks.{i}.ff_context.net.0.proj.bias'] = checkpoint.pop(f'joint_blocks.{i}.context_block.mlp.fc1.bias') + converted_state_dict[f'transformer_blocks.{i}.ff_context.net.2.weight'] = checkpoint.pop(f'joint_blocks.{i}.context_block.mlp.fc2.weight') + converted_state_dict[f'transformer_blocks.{i}.ff_context.net.2.bias'] = checkpoint.pop(f'joint_blocks.{i}.context_block.mlp.fc2.bias') + converted_state_dict['proj_out.weight'] = checkpoint.pop('final_layer.linear.weight') + converted_state_dict['proj_out.bias'] = checkpoint.pop('final_layer.linear.bias') + converted_state_dict['norm_out.linear.weight'] = swap_scale_shift(checkpoint.pop('final_layer.adaLN_modulation.1.weight'), dim=caption_projection_dim) + converted_state_dict['norm_out.linear.bias'] = swap_scale_shift(checkpoint.pop('final_layer.adaLN_modulation.1.bias'), dim=caption_projection_dim) + return converted_state_dict + +def is_t5_in_single_file(checkpoint): + if 'text_encoders.t5xxl.transformer.shared.weight' in checkpoint: + return True + return False + +def convert_sd3_t5_checkpoint_to_diffusers(checkpoint): + keys = list(checkpoint.keys()) + text_model_dict = {} + remove_prefixes = ['text_encoders.t5xxl.transformer.'] + for key in keys: + for prefix in remove_prefixes: + if key.startswith(prefix): + diffusers_key = key.replace(prefix, '') + text_model_dict[diffusers_key] = checkpoint.get(key) + return text_model_dict + +def create_diffusers_t5_model_from_checkpoint(cls, checkpoint, subfolder='', config=None, torch_dtype=None, local_files_only=None): + if config: + config = {'pretrained_model_name_or_path': config} + else: + config = fetch_diffusers_config(checkpoint) + model_config = cls.config_class.from_pretrained(**config, subfolder=subfolder, local_files_only=local_files_only) + ctx = init_empty_weights if is_accelerate_available() else nullcontext + with ctx(): + model = cls(model_config) + diffusers_format_checkpoint = convert_sd3_t5_checkpoint_to_diffusers(checkpoint) + if is_accelerate_available(): + unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype) + if model._keys_to_ignore_on_load_unexpected is not None: + for pat in model._keys_to_ignore_on_load_unexpected: + unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] + if len(unexpected_keys) > 0: + logger.warning(f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}") + else: + model.load_state_dict(diffusers_format_checkpoint) + use_keep_in_fp32_modules = cls._keep_in_fp32_modules is not None and torch_dtype == torch.float16 + if use_keep_in_fp32_modules: + keep_in_fp32_modules = model._keep_in_fp32_modules + else: + keep_in_fp32_modules = [] + if keep_in_fp32_modules is not None: + for (name, param) in model.named_parameters(): + if any((module_to_keep_in_fp32 in name.split('.') for module_to_keep_in_fp32 in keep_in_fp32_modules)): + param.data = param.data.to(torch.float32) + return model + +def convert_animatediff_checkpoint_to_diffusers(checkpoint, **kwargs): + converted_state_dict = {} + for (k, v) in checkpoint.items(): + if 'pos_encoder' in k: + continue + else: + converted_state_dict[k.replace('.norms.0', '.norm1').replace('.norms.1', '.norm2').replace('.ff_norm', '.norm3').replace('.attention_blocks.0', '.attn1').replace('.attention_blocks.1', '.attn2').replace('.temporal_transformer', '')] = v + return converted_state_dict + +def convert_flux_transformer_checkpoint_to_diffusers(checkpoint, **kwargs): + converted_state_dict = {} + keys = list(checkpoint.keys()) + for k in keys: + if 'model.diffusion_model.' in k: + checkpoint[k.replace('model.diffusion_model.', '')] = checkpoint.pop(k) + num_layers = list(set((int(k.split('.', 2)[1]) for k in checkpoint if 'double_blocks.' in k)))[-1] + 1 + num_single_layers = list(set((int(k.split('.', 2)[1]) for k in checkpoint if 'single_blocks.' in k)))[-1] + 1 + mlp_ratio = 4.0 + inner_dim = 3072 + + def swap_scale_shift(weight): + (shift, scale) = weight.chunk(2, dim=0) + new_weight = torch.cat([scale, shift], dim=0) + return new_weight + converted_state_dict['time_text_embed.timestep_embedder.linear_1.weight'] = checkpoint.pop('time_in.in_layer.weight') + converted_state_dict['time_text_embed.timestep_embedder.linear_1.bias'] = checkpoint.pop('time_in.in_layer.bias') + converted_state_dict['time_text_embed.timestep_embedder.linear_2.weight'] = checkpoint.pop('time_in.out_layer.weight') + converted_state_dict['time_text_embed.timestep_embedder.linear_2.bias'] = checkpoint.pop('time_in.out_layer.bias') + converted_state_dict['time_text_embed.text_embedder.linear_1.weight'] = checkpoint.pop('vector_in.in_layer.weight') + converted_state_dict['time_text_embed.text_embedder.linear_1.bias'] = checkpoint.pop('vector_in.in_layer.bias') + converted_state_dict['time_text_embed.text_embedder.linear_2.weight'] = checkpoint.pop('vector_in.out_layer.weight') + converted_state_dict['time_text_embed.text_embedder.linear_2.bias'] = checkpoint.pop('vector_in.out_layer.bias') + has_guidance = any(('guidance' in k for k in checkpoint)) + if has_guidance: + converted_state_dict['time_text_embed.guidance_embedder.linear_1.weight'] = checkpoint.pop('guidance_in.in_layer.weight') + converted_state_dict['time_text_embed.guidance_embedder.linear_1.bias'] = checkpoint.pop('guidance_in.in_layer.bias') + converted_state_dict['time_text_embed.guidance_embedder.linear_2.weight'] = checkpoint.pop('guidance_in.out_layer.weight') + converted_state_dict['time_text_embed.guidance_embedder.linear_2.bias'] = checkpoint.pop('guidance_in.out_layer.bias') + converted_state_dict['context_embedder.weight'] = checkpoint.pop('txt_in.weight') + converted_state_dict['context_embedder.bias'] = checkpoint.pop('txt_in.bias') + converted_state_dict['x_embedder.weight'] = checkpoint.pop('img_in.weight') + converted_state_dict['x_embedder.bias'] = checkpoint.pop('img_in.bias') + for i in range(num_layers): + block_prefix = f'transformer_blocks.{i}.' + converted_state_dict[f'{block_prefix}norm1.linear.weight'] = checkpoint.pop(f'double_blocks.{i}.img_mod.lin.weight') + converted_state_dict[f'{block_prefix}norm1.linear.bias'] = checkpoint.pop(f'double_blocks.{i}.img_mod.lin.bias') + converted_state_dict[f'{block_prefix}norm1_context.linear.weight'] = checkpoint.pop(f'double_blocks.{i}.txt_mod.lin.weight') + converted_state_dict[f'{block_prefix}norm1_context.linear.bias'] = checkpoint.pop(f'double_blocks.{i}.txt_mod.lin.bias') + (sample_q, sample_k, sample_v) = torch.chunk(checkpoint.pop(f'double_blocks.{i}.img_attn.qkv.weight'), 3, dim=0) + (context_q, context_k, context_v) = torch.chunk(checkpoint.pop(f'double_blocks.{i}.txt_attn.qkv.weight'), 3, dim=0) + (sample_q_bias, sample_k_bias, sample_v_bias) = torch.chunk(checkpoint.pop(f'double_blocks.{i}.img_attn.qkv.bias'), 3, dim=0) + (context_q_bias, context_k_bias, context_v_bias) = torch.chunk(checkpoint.pop(f'double_blocks.{i}.txt_attn.qkv.bias'), 3, dim=0) + converted_state_dict[f'{block_prefix}attn.to_q.weight'] = torch.cat([sample_q]) + converted_state_dict[f'{block_prefix}attn.to_q.bias'] = torch.cat([sample_q_bias]) + converted_state_dict[f'{block_prefix}attn.to_k.weight'] = torch.cat([sample_k]) + converted_state_dict[f'{block_prefix}attn.to_k.bias'] = torch.cat([sample_k_bias]) + converted_state_dict[f'{block_prefix}attn.to_v.weight'] = torch.cat([sample_v]) + converted_state_dict[f'{block_prefix}attn.to_v.bias'] = torch.cat([sample_v_bias]) + converted_state_dict[f'{block_prefix}attn.add_q_proj.weight'] = torch.cat([context_q]) + converted_state_dict[f'{block_prefix}attn.add_q_proj.bias'] = torch.cat([context_q_bias]) + converted_state_dict[f'{block_prefix}attn.add_k_proj.weight'] = torch.cat([context_k]) + converted_state_dict[f'{block_prefix}attn.add_k_proj.bias'] = torch.cat([context_k_bias]) + converted_state_dict[f'{block_prefix}attn.add_v_proj.weight'] = torch.cat([context_v]) + converted_state_dict[f'{block_prefix}attn.add_v_proj.bias'] = torch.cat([context_v_bias]) + converted_state_dict[f'{block_prefix}attn.norm_q.weight'] = checkpoint.pop(f'double_blocks.{i}.img_attn.norm.query_norm.scale') + converted_state_dict[f'{block_prefix}attn.norm_k.weight'] = checkpoint.pop(f'double_blocks.{i}.img_attn.norm.key_norm.scale') + converted_state_dict[f'{block_prefix}attn.norm_added_q.weight'] = checkpoint.pop(f'double_blocks.{i}.txt_attn.norm.query_norm.scale') + converted_state_dict[f'{block_prefix}attn.norm_added_k.weight'] = checkpoint.pop(f'double_blocks.{i}.txt_attn.norm.key_norm.scale') + converted_state_dict[f'{block_prefix}ff.net.0.proj.weight'] = checkpoint.pop(f'double_blocks.{i}.img_mlp.0.weight') + converted_state_dict[f'{block_prefix}ff.net.0.proj.bias'] = checkpoint.pop(f'double_blocks.{i}.img_mlp.0.bias') + converted_state_dict[f'{block_prefix}ff.net.2.weight'] = checkpoint.pop(f'double_blocks.{i}.img_mlp.2.weight') + converted_state_dict[f'{block_prefix}ff.net.2.bias'] = checkpoint.pop(f'double_blocks.{i}.img_mlp.2.bias') + converted_state_dict[f'{block_prefix}ff_context.net.0.proj.weight'] = checkpoint.pop(f'double_blocks.{i}.txt_mlp.0.weight') + converted_state_dict[f'{block_prefix}ff_context.net.0.proj.bias'] = checkpoint.pop(f'double_blocks.{i}.txt_mlp.0.bias') + converted_state_dict[f'{block_prefix}ff_context.net.2.weight'] = checkpoint.pop(f'double_blocks.{i}.txt_mlp.2.weight') + converted_state_dict[f'{block_prefix}ff_context.net.2.bias'] = checkpoint.pop(f'double_blocks.{i}.txt_mlp.2.bias') + converted_state_dict[f'{block_prefix}attn.to_out.0.weight'] = checkpoint.pop(f'double_blocks.{i}.img_attn.proj.weight') + converted_state_dict[f'{block_prefix}attn.to_out.0.bias'] = checkpoint.pop(f'double_blocks.{i}.img_attn.proj.bias') + converted_state_dict[f'{block_prefix}attn.to_add_out.weight'] = checkpoint.pop(f'double_blocks.{i}.txt_attn.proj.weight') + converted_state_dict[f'{block_prefix}attn.to_add_out.bias'] = checkpoint.pop(f'double_blocks.{i}.txt_attn.proj.bias') + for i in range(num_single_layers): + block_prefix = f'single_transformer_blocks.{i}.' + converted_state_dict[f'{block_prefix}norm.linear.weight'] = checkpoint.pop(f'single_blocks.{i}.modulation.lin.weight') + converted_state_dict[f'{block_prefix}norm.linear.bias'] = checkpoint.pop(f'single_blocks.{i}.modulation.lin.bias') + mlp_hidden_dim = int(inner_dim * mlp_ratio) + split_size = (inner_dim, inner_dim, inner_dim, mlp_hidden_dim) + (q, k, v, mlp) = torch.split(checkpoint.pop(f'single_blocks.{i}.linear1.weight'), split_size, dim=0) + (q_bias, k_bias, v_bias, mlp_bias) = torch.split(checkpoint.pop(f'single_blocks.{i}.linear1.bias'), split_size, dim=0) + converted_state_dict[f'{block_prefix}attn.to_q.weight'] = torch.cat([q]) + converted_state_dict[f'{block_prefix}attn.to_q.bias'] = torch.cat([q_bias]) + converted_state_dict[f'{block_prefix}attn.to_k.weight'] = torch.cat([k]) + converted_state_dict[f'{block_prefix}attn.to_k.bias'] = torch.cat([k_bias]) + converted_state_dict[f'{block_prefix}attn.to_v.weight'] = torch.cat([v]) + converted_state_dict[f'{block_prefix}attn.to_v.bias'] = torch.cat([v_bias]) + converted_state_dict[f'{block_prefix}proj_mlp.weight'] = torch.cat([mlp]) + converted_state_dict[f'{block_prefix}proj_mlp.bias'] = torch.cat([mlp_bias]) + converted_state_dict[f'{block_prefix}attn.norm_q.weight'] = checkpoint.pop(f'single_blocks.{i}.norm.query_norm.scale') + converted_state_dict[f'{block_prefix}attn.norm_k.weight'] = checkpoint.pop(f'single_blocks.{i}.norm.key_norm.scale') + converted_state_dict[f'{block_prefix}proj_out.weight'] = checkpoint.pop(f'single_blocks.{i}.linear2.weight') + converted_state_dict[f'{block_prefix}proj_out.bias'] = checkpoint.pop(f'single_blocks.{i}.linear2.bias') + converted_state_dict['proj_out.weight'] = checkpoint.pop('final_layer.linear.weight') + converted_state_dict['proj_out.bias'] = checkpoint.pop('final_layer.linear.bias') + converted_state_dict['norm_out.linear.weight'] = swap_scale_shift(checkpoint.pop('final_layer.adaLN_modulation.1.weight')) + converted_state_dict['norm_out.linear.bias'] = swap_scale_shift(checkpoint.pop('final_layer.adaLN_modulation.1.bias')) + return converted_state_dict + +# File: diffusers-main/src/diffusers/loaders/textual_inversion.py +from typing import Dict, List, Optional, Union +import safetensors +import torch +from huggingface_hub.utils import validate_hf_hub_args +from torch import nn +from ..models.modeling_utils import load_state_dict +from ..utils import _get_model_file, is_accelerate_available, is_transformers_available, logging +if is_transformers_available(): + from transformers import PreTrainedModel, PreTrainedTokenizer +if is_accelerate_available(): + from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module +logger = logging.get_logger(__name__) +TEXT_INVERSION_NAME = 'learned_embeds.bin' +TEXT_INVERSION_NAME_SAFE = 'learned_embeds.safetensors' + +@validate_hf_hub_args +def load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs): + cache_dir = kwargs.pop('cache_dir', None) + force_download = kwargs.pop('force_download', False) + proxies = kwargs.pop('proxies', None) + local_files_only = kwargs.pop('local_files_only', None) + token = kwargs.pop('token', None) + revision = kwargs.pop('revision', None) + subfolder = kwargs.pop('subfolder', None) + weight_name = kwargs.pop('weight_name', None) + use_safetensors = kwargs.pop('use_safetensors', None) + allow_pickle = False + if use_safetensors is None: + use_safetensors = True + allow_pickle = True + user_agent = {'file_type': 'text_inversion', 'framework': 'pytorch'} + state_dicts = [] + for pretrained_model_name_or_path in pretrained_model_name_or_paths: + if not isinstance(pretrained_model_name_or_path, (dict, torch.Tensor)): + model_file = None + if use_safetensors and weight_name is None or (weight_name is not None and weight_name.endswith('.safetensors')): + try: + model_file = _get_model_file(pretrained_model_name_or_path, weights_name=weight_name or TEXT_INVERSION_NAME_SAFE, cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent) + state_dict = safetensors.torch.load_file(model_file, device='cpu') + except Exception as e: + if not allow_pickle: + raise e + model_file = None + if model_file is None: + model_file = _get_model_file(pretrained_model_name_or_path, weights_name=weight_name or TEXT_INVERSION_NAME, cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent) + state_dict = load_state_dict(model_file) + else: + state_dict = pretrained_model_name_or_path + state_dicts.append(state_dict) + return state_dicts + +class TextualInversionLoaderMixin: + + def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: 'PreTrainedTokenizer'): + if not isinstance(prompt, List): + prompts = [prompt] + else: + prompts = prompt + prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts] + if not isinstance(prompt, List): + return prompts[0] + return prompts + + def _maybe_convert_prompt(self, prompt: str, tokenizer: 'PreTrainedTokenizer'): + tokens = tokenizer.tokenize(prompt) + unique_tokens = set(tokens) + for token in unique_tokens: + if token in tokenizer.added_tokens_encoder: + replacement = token + i = 1 + while f'{token}_{i}' in tokenizer.added_tokens_encoder: + replacement += f' {token}_{i}' + i += 1 + prompt = prompt.replace(token, replacement) + return prompt + + def _check_text_inv_inputs(self, tokenizer, text_encoder, pretrained_model_name_or_paths, tokens): + if tokenizer is None: + raise ValueError(f'{self.__class__.__name__} requires `self.tokenizer` or passing a `tokenizer` of type `PreTrainedTokenizer` for calling `{self.load_textual_inversion.__name__}`') + if text_encoder is None: + raise ValueError(f'{self.__class__.__name__} requires `self.text_encoder` or passing a `text_encoder` of type `PreTrainedModel` for calling `{self.load_textual_inversion.__name__}`') + if len(pretrained_model_name_or_paths) > 1 and len(pretrained_model_name_or_paths) != len(tokens): + raise ValueError(f'You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)} Make sure both lists have the same length.') + valid_tokens = [t for t in tokens if t is not None] + if len(set(valid_tokens)) < len(valid_tokens): + raise ValueError(f'You have passed a list of tokens that contains duplicates: {tokens}') + + @staticmethod + def _retrieve_tokens_and_embeddings(tokens, state_dicts, tokenizer): + all_tokens = [] + all_embeddings = [] + for (state_dict, token) in zip(state_dicts, tokens): + if isinstance(state_dict, torch.Tensor): + if token is None: + raise ValueError('You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`.') + loaded_token = token + embedding = state_dict + elif len(state_dict) == 1: + (loaded_token, embedding) = next(iter(state_dict.items())) + elif 'string_to_param' in state_dict: + loaded_token = state_dict['name'] + embedding = state_dict['string_to_param']['*'] + else: + raise ValueError(f'Loaded state dictionary is incorrect: {state_dict}. \n\nPlease verify that the loaded state dictionary of the textual embedding either only has a single key or includes the `string_to_param` input key.') + if token is not None and loaded_token != token: + logger.info(f'The loaded token: {loaded_token} is overwritten by the passed token {token}.') + else: + token = loaded_token + if token in tokenizer.get_vocab(): + raise ValueError(f'Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder.') + all_tokens.append(token) + all_embeddings.append(embedding) + return (all_tokens, all_embeddings) + + @staticmethod + def _extend_tokens_and_embeddings(tokens, embeddings, tokenizer): + all_tokens = [] + all_embeddings = [] + for (embedding, token) in zip(embeddings, tokens): + if f'{token}_1' in tokenizer.get_vocab(): + multi_vector_tokens = [token] + i = 1 + while f'{token}_{i}' in tokenizer.added_tokens_encoder: + multi_vector_tokens.append(f'{token}_{i}') + i += 1 + raise ValueError(f'Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder.') + is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1 + if is_multi_vector: + all_tokens += [token] + [f'{token}_{i}' for i in range(1, embedding.shape[0])] + all_embeddings += [e for e in embedding] + else: + all_tokens += [token] + all_embeddings += [embedding[0]] if len(embedding.shape) > 1 else [embedding] + return (all_tokens, all_embeddings) + + @validate_hf_hub_args + def load_textual_inversion(self, pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]], token: Optional[Union[str, List[str]]]=None, tokenizer: Optional['PreTrainedTokenizer']=None, text_encoder: Optional['PreTrainedModel']=None, **kwargs): + tokenizer = tokenizer or getattr(self, 'tokenizer', None) + text_encoder = text_encoder or getattr(self, 'text_encoder', None) + pretrained_model_name_or_paths = [pretrained_model_name_or_path] if not isinstance(pretrained_model_name_or_path, list) else pretrained_model_name_or_path + tokens = [token] if not isinstance(token, list) else token + if tokens[0] is None: + tokens = tokens * len(pretrained_model_name_or_paths) + self._check_text_inv_inputs(tokenizer, text_encoder, pretrained_model_name_or_paths, tokens) + state_dicts = load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs) + if len(tokens) > 1 and len(state_dicts) == 1: + if isinstance(state_dicts[0], torch.Tensor): + state_dicts = list(state_dicts[0]) + if len(tokens) != len(state_dicts): + raise ValueError(f'You have passed a state_dict contains {len(state_dicts)} embeddings, and list of tokens of length {len(tokens)} Make sure both have the same length.') + (tokens, embeddings) = self._retrieve_tokens_and_embeddings(tokens, state_dicts, tokenizer) + (tokens, embeddings) = self._extend_tokens_and_embeddings(tokens, embeddings, tokenizer) + expected_emb_dim = text_encoder.get_input_embeddings().weight.shape[-1] + if any((expected_emb_dim != emb.shape[-1] for emb in embeddings)): + raise ValueError('Loaded embeddings are of incorrect shape. Expected each textual inversion embedding to be of shape {input_embeddings.shape[-1]}, but are {embeddings.shape[-1]} ') + is_model_cpu_offload = False + is_sequential_cpu_offload = False + if self.hf_device_map is None: + for (_, component) in self.components.items(): + if isinstance(component, nn.Module): + if hasattr(component, '_hf_hook'): + is_model_cpu_offload = isinstance(getattr(component, '_hf_hook'), CpuOffload) + is_sequential_cpu_offload = isinstance(getattr(component, '_hf_hook'), AlignDevicesHook) or (hasattr(component._hf_hook, 'hooks') and isinstance(component._hf_hook.hooks[0], AlignDevicesHook)) + logger.info('Accelerate hooks detected. Since you have called `load_textual_inversion()`, the previous hooks will be first removed. Then the textual inversion parameters will be loaded and the hooks will be applied again.') + remove_hook_from_module(component, recurse=is_sequential_cpu_offload) + device = text_encoder.device + dtype = text_encoder.dtype + text_encoder.resize_token_embeddings(len(tokenizer) + len(tokens)) + input_embeddings = text_encoder.get_input_embeddings().weight + for (token, embedding) in zip(tokens, embeddings): + tokenizer.add_tokens(token) + token_id = tokenizer.convert_tokens_to_ids(token) + input_embeddings.data[token_id] = embedding + logger.info(f'Loaded textual inversion embedding for {token}.') + input_embeddings.to(dtype=dtype, device=device) + if is_model_cpu_offload: + self.enable_model_cpu_offload() + elif is_sequential_cpu_offload: + self.enable_sequential_cpu_offload() + + def unload_textual_inversion(self, tokens: Optional[Union[str, List[str]]]=None, tokenizer: Optional['PreTrainedTokenizer']=None, text_encoder: Optional['PreTrainedModel']=None): + tokenizer = tokenizer or getattr(self, 'tokenizer', None) + text_encoder = text_encoder or getattr(self, 'text_encoder', None) + token_ids = [] + last_special_token_id = None + if tokens: + if isinstance(tokens, str): + tokens = [tokens] + for (added_token_id, added_token) in tokenizer.added_tokens_decoder.items(): + if not added_token.special: + if added_token.content in tokens: + token_ids.append(added_token_id) + else: + last_special_token_id = added_token_id + if len(token_ids) == 0: + raise ValueError('No tokens to remove found') + else: + tokens = [] + for (added_token_id, added_token) in tokenizer.added_tokens_decoder.items(): + if not added_token.special: + token_ids.append(added_token_id) + tokens.append(added_token.content) + else: + last_special_token_id = added_token_id + for (token_id, token_to_remove) in zip(token_ids, tokens): + del tokenizer._added_tokens_decoder[token_id] + del tokenizer._added_tokens_encoder[token_to_remove] + key_id = 1 + for token_id in tokenizer.added_tokens_decoder: + if token_id > last_special_token_id and token_id > last_special_token_id + key_id: + token = tokenizer._added_tokens_decoder[token_id] + tokenizer._added_tokens_decoder[last_special_token_id + key_id] = token + del tokenizer._added_tokens_decoder[token_id] + tokenizer._added_tokens_encoder[token.content] = last_special_token_id + key_id + key_id += 1 + tokenizer._update_trie() + text_embedding_dim = text_encoder.get_input_embeddings().embedding_dim + temp_text_embedding_weights = text_encoder.get_input_embeddings().weight + text_embedding_weights = temp_text_embedding_weights[:last_special_token_id + 1] + to_append = [] + for i in range(last_special_token_id + 1, temp_text_embedding_weights.shape[0]): + if i not in token_ids: + to_append.append(temp_text_embedding_weights[i].unsqueeze(0)) + if len(to_append) > 0: + to_append = torch.cat(to_append, dim=0) + text_embedding_weights = torch.cat([text_embedding_weights, to_append], dim=0) + text_embeddings_filtered = nn.Embedding(text_embedding_weights.shape[0], text_embedding_dim) + text_embeddings_filtered.weight.data = text_embedding_weights + text_encoder.set_input_embeddings(text_embeddings_filtered) + +# File: diffusers-main/src/diffusers/loaders/unet.py +import os +from collections import defaultdict +from contextlib import nullcontext +from pathlib import Path +from typing import Callable, Dict, Union +import safetensors +import torch +import torch.nn.functional as F +from huggingface_hub.utils import validate_hf_hub_args +from torch import nn +from ..models.embeddings import ImageProjection, IPAdapterFaceIDImageProjection, IPAdapterFaceIDPlusImageProjection, IPAdapterFullImageProjection, IPAdapterPlusImageProjection, MultiIPAdapterImageProjection +from ..models.modeling_utils import load_model_dict_into_meta, load_state_dict +from ..utils import USE_PEFT_BACKEND, _get_model_file, convert_unet_state_dict_to_peft, get_adapter_name, get_peft_kwargs, is_accelerate_available, is_peft_version, is_torch_version, logging +from .lora_pipeline import LORA_WEIGHT_NAME, LORA_WEIGHT_NAME_SAFE, TEXT_ENCODER_NAME, UNET_NAME +from .utils import AttnProcsLayers +if is_accelerate_available(): + from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module +logger = logging.get_logger(__name__) +CUSTOM_DIFFUSION_WEIGHT_NAME = 'pytorch_custom_diffusion_weights.bin' +CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = 'pytorch_custom_diffusion_weights.safetensors' + +class UNet2DConditionLoadersMixin: + text_encoder_name = TEXT_ENCODER_NAME + unet_name = UNET_NAME + + @validate_hf_hub_args + def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): + cache_dir = kwargs.pop('cache_dir', None) + force_download = kwargs.pop('force_download', False) + proxies = kwargs.pop('proxies', None) + local_files_only = kwargs.pop('local_files_only', None) + token = kwargs.pop('token', None) + revision = kwargs.pop('revision', None) + subfolder = kwargs.pop('subfolder', None) + weight_name = kwargs.pop('weight_name', None) + use_safetensors = kwargs.pop('use_safetensors', None) + adapter_name = kwargs.pop('adapter_name', None) + _pipeline = kwargs.pop('_pipeline', None) + network_alphas = kwargs.pop('network_alphas', None) + allow_pickle = False + if use_safetensors is None: + use_safetensors = True + allow_pickle = True + user_agent = {'file_type': 'attn_procs_weights', 'framework': 'pytorch'} + model_file = None + if not isinstance(pretrained_model_name_or_path_or_dict, dict): + if use_safetensors and weight_name is None or (weight_name is not None and weight_name.endswith('.safetensors')): + try: + model_file = _get_model_file(pretrained_model_name_or_path_or_dict, weights_name=weight_name or LORA_WEIGHT_NAME_SAFE, cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent) + state_dict = safetensors.torch.load_file(model_file, device='cpu') + except IOError as e: + if not allow_pickle: + raise e + pass + if model_file is None: + model_file = _get_model_file(pretrained_model_name_or_path_or_dict, weights_name=weight_name or LORA_WEIGHT_NAME, cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent) + state_dict = load_state_dict(model_file) + else: + state_dict = pretrained_model_name_or_path_or_dict + is_custom_diffusion = any(('custom_diffusion' in k for k in state_dict.keys())) + is_lora = all(('lora' in k or k.endswith('.alpha') for k in state_dict.keys())) + is_model_cpu_offload = False + is_sequential_cpu_offload = False + if is_custom_diffusion: + attn_processors = self._process_custom_diffusion(state_dict=state_dict) + elif is_lora: + (is_model_cpu_offload, is_sequential_cpu_offload) = self._process_lora(state_dict=state_dict, unet_identifier_key=self.unet_name, network_alphas=network_alphas, adapter_name=adapter_name, _pipeline=_pipeline) + else: + raise ValueError(f'{model_file} does not seem to be in the correct format expected by Custom Diffusion training.') + if is_custom_diffusion and _pipeline is not None: + (is_model_cpu_offload, is_sequential_cpu_offload) = self._optionally_disable_offloading(_pipeline=_pipeline) + self.set_attn_processor(attn_processors) + self.to(dtype=self.dtype, device=self.device) + if is_model_cpu_offload: + _pipeline.enable_model_cpu_offload() + elif is_sequential_cpu_offload: + _pipeline.enable_sequential_cpu_offload() + + def _process_custom_diffusion(self, state_dict): + from ..models.attention_processor import CustomDiffusionAttnProcessor + attn_processors = {} + custom_diffusion_grouped_dict = defaultdict(dict) + for (key, value) in state_dict.items(): + if len(value) == 0: + custom_diffusion_grouped_dict[key] = {} + else: + if 'to_out' in key: + (attn_processor_key, sub_key) = ('.'.join(key.split('.')[:-3]), '.'.join(key.split('.')[-3:])) + else: + (attn_processor_key, sub_key) = ('.'.join(key.split('.')[:-2]), '.'.join(key.split('.')[-2:])) + custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value + for (key, value_dict) in custom_diffusion_grouped_dict.items(): + if len(value_dict) == 0: + attn_processors[key] = CustomDiffusionAttnProcessor(train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None) + else: + cross_attention_dim = value_dict['to_k_custom_diffusion.weight'].shape[1] + hidden_size = value_dict['to_k_custom_diffusion.weight'].shape[0] + train_q_out = True if 'to_q_custom_diffusion.weight' in value_dict else False + attn_processors[key] = CustomDiffusionAttnProcessor(train_kv=True, train_q_out=train_q_out, hidden_size=hidden_size, cross_attention_dim=cross_attention_dim) + attn_processors[key].load_state_dict(value_dict) + return attn_processors + + def _process_lora(self, state_dict, unet_identifier_key, network_alphas, adapter_name, _pipeline): + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for this method.') + from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict + keys = list(state_dict.keys()) + unet_keys = [k for k in keys if k.startswith(unet_identifier_key)] + unet_state_dict = {k.replace(f'{unet_identifier_key}.', ''): v for (k, v) in state_dict.items() if k in unet_keys} + if network_alphas is not None: + alpha_keys = [k for k in network_alphas.keys() if k.startswith(unet_identifier_key)] + network_alphas = {k.replace(f'{unet_identifier_key}.', ''): v for (k, v) in network_alphas.items() if k in alpha_keys} + is_model_cpu_offload = False + is_sequential_cpu_offload = False + state_dict_to_be_used = unet_state_dict if len(unet_state_dict) > 0 else state_dict + if len(state_dict_to_be_used) > 0: + if adapter_name in getattr(self, 'peft_config', {}): + raise ValueError(f'Adapter name {adapter_name} already in use in the Unet - please select a new adapter name.') + state_dict = convert_unet_state_dict_to_peft(state_dict_to_be_used) + if network_alphas is not None: + network_alphas = convert_unet_state_dict_to_peft(network_alphas) + rank = {} + for (key, val) in state_dict.items(): + if 'lora_B' in key: + rank[key] = val.shape[1] + lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict, is_unet=True) + if 'use_dora' in lora_config_kwargs: + if lora_config_kwargs['use_dora']: + if is_peft_version('<', '0.9.0'): + raise ValueError('You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`.') + elif is_peft_version('<', '0.9.0'): + lora_config_kwargs.pop('use_dora') + lora_config = LoraConfig(**lora_config_kwargs) + if adapter_name is None: + adapter_name = get_adapter_name(self) + (is_model_cpu_offload, is_sequential_cpu_offload) = self._optionally_disable_offloading(_pipeline) + inject_adapter_in_model(lora_config, self, adapter_name=adapter_name) + incompatible_keys = set_peft_model_state_dict(self, state_dict, adapter_name) + if incompatible_keys is not None: + unexpected_keys = getattr(incompatible_keys, 'unexpected_keys', None) + if unexpected_keys: + logger.warning(f'Loading adapter weights from state_dict led to unexpected keys not found in the model: {unexpected_keys}. ') + return (is_model_cpu_offload, is_sequential_cpu_offload) + + @classmethod + def _optionally_disable_offloading(cls, _pipeline): + is_model_cpu_offload = False + is_sequential_cpu_offload = False + if _pipeline is not None and _pipeline.hf_device_map is None: + for (_, component) in _pipeline.components.items(): + if isinstance(component, nn.Module) and hasattr(component, '_hf_hook'): + if not is_model_cpu_offload: + is_model_cpu_offload = isinstance(component._hf_hook, CpuOffload) + if not is_sequential_cpu_offload: + is_sequential_cpu_offload = isinstance(component._hf_hook, AlignDevicesHook) or (hasattr(component._hf_hook, 'hooks') and isinstance(component._hf_hook.hooks[0], AlignDevicesHook)) + logger.info('Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again.') + remove_hook_from_module(component, recurse=is_sequential_cpu_offload) + return (is_model_cpu_offload, is_sequential_cpu_offload) + + def save_attn_procs(self, save_directory: Union[str, os.PathLike], is_main_process: bool=True, weight_name: str=None, save_function: Callable=None, safe_serialization: bool=True, **kwargs): + from ..models.attention_processor import CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor + if os.path.isfile(save_directory): + logger.error(f'Provided path ({save_directory}) should be a directory, not a file') + return + is_custom_diffusion = any((isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor)) for (_, x) in self.attn_processors.items())) + if is_custom_diffusion: + state_dict = self._get_custom_diffusion_state_dict() + if save_function is None and safe_serialization: + empty_state_dict = {k: v for (k, v) in state_dict.items() if not isinstance(v, torch.Tensor)} + if len(empty_state_dict) > 0: + logger.warning(f'Safetensors does not support saving dicts with non-tensor values. The following keys will be ignored: {empty_state_dict.keys()}') + state_dict = {k: v for (k, v) in state_dict.items() if isinstance(v, torch.Tensor)} + else: + if not USE_PEFT_BACKEND: + raise ValueError('PEFT backend is required for saving LoRAs using the `save_attn_procs()` method.') + from peft.utils import get_peft_model_state_dict + state_dict = get_peft_model_state_dict(self) + if save_function is None: + if safe_serialization: + + def save_function(weights, filename): + return safetensors.torch.save_file(weights, filename, metadata={'format': 'pt'}) + else: + save_function = torch.save + os.makedirs(save_directory, exist_ok=True) + if weight_name is None: + if safe_serialization: + weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE + else: + weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME + save_path = Path(save_directory, weight_name).as_posix() + save_function(state_dict, save_path) + logger.info(f'Model weights saved in {save_path}') + + def _get_custom_diffusion_state_dict(self): + from ..models.attention_processor import CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor + model_to_save = AttnProcsLayers({y: x for (y, x) in self.attn_processors.items() if isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor))}) + state_dict = model_to_save.state_dict() + for (name, attn) in self.attn_processors.items(): + if len(attn.state_dict()) == 0: + state_dict[name] = {} + return state_dict + + def _convert_ip_adapter_image_proj_to_diffusers(self, state_dict, low_cpu_mem_usage=False): + if low_cpu_mem_usage: + if is_accelerate_available(): + from accelerate import init_empty_weights + else: + low_cpu_mem_usage = False + logger.warning('Cannot initialize model with low cpu memory usage because `accelerate` was not found in the environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip install accelerate\n```\n.') + if low_cpu_mem_usage is True and (not is_torch_version('>=', '1.9.0')): + raise NotImplementedError('Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set `low_cpu_mem_usage=False`.') + updated_state_dict = {} + image_projection = None + init_context = init_empty_weights if low_cpu_mem_usage else nullcontext + if 'proj.weight' in state_dict: + num_image_text_embeds = 4 + clip_embeddings_dim = state_dict['proj.weight'].shape[-1] + cross_attention_dim = state_dict['proj.weight'].shape[0] // 4 + with init_context(): + image_projection = ImageProjection(cross_attention_dim=cross_attention_dim, image_embed_dim=clip_embeddings_dim, num_image_text_embeds=num_image_text_embeds) + for (key, value) in state_dict.items(): + diffusers_name = key.replace('proj', 'image_embeds') + updated_state_dict[diffusers_name] = value + elif 'proj.3.weight' in state_dict: + clip_embeddings_dim = state_dict['proj.0.weight'].shape[0] + cross_attention_dim = state_dict['proj.3.weight'].shape[0] + with init_context(): + image_projection = IPAdapterFullImageProjection(cross_attention_dim=cross_attention_dim, image_embed_dim=clip_embeddings_dim) + for (key, value) in state_dict.items(): + diffusers_name = key.replace('proj.0', 'ff.net.0.proj') + diffusers_name = diffusers_name.replace('proj.2', 'ff.net.2') + diffusers_name = diffusers_name.replace('proj.3', 'norm') + updated_state_dict[diffusers_name] = value + elif 'perceiver_resampler.proj_in.weight' in state_dict: + id_embeddings_dim = state_dict['proj.0.weight'].shape[1] + embed_dims = state_dict['perceiver_resampler.proj_in.weight'].shape[0] + hidden_dims = state_dict['perceiver_resampler.proj_in.weight'].shape[1] + output_dims = state_dict['perceiver_resampler.proj_out.weight'].shape[0] + heads = state_dict['perceiver_resampler.layers.0.0.to_q.weight'].shape[0] // 64 + with init_context(): + image_projection = IPAdapterFaceIDPlusImageProjection(embed_dims=embed_dims, output_dims=output_dims, hidden_dims=hidden_dims, heads=heads, id_embeddings_dim=id_embeddings_dim) + for (key, value) in state_dict.items(): + diffusers_name = key.replace('perceiver_resampler.', '') + diffusers_name = diffusers_name.replace('0.to', 'attn.to') + diffusers_name = diffusers_name.replace('0.1.0.', '0.ff.0.') + diffusers_name = diffusers_name.replace('0.1.1.weight', '0.ff.1.net.0.proj.weight') + diffusers_name = diffusers_name.replace('0.1.3.weight', '0.ff.1.net.2.weight') + diffusers_name = diffusers_name.replace('1.1.0.', '1.ff.0.') + diffusers_name = diffusers_name.replace('1.1.1.weight', '1.ff.1.net.0.proj.weight') + diffusers_name = diffusers_name.replace('1.1.3.weight', '1.ff.1.net.2.weight') + diffusers_name = diffusers_name.replace('2.1.0.', '2.ff.0.') + diffusers_name = diffusers_name.replace('2.1.1.weight', '2.ff.1.net.0.proj.weight') + diffusers_name = diffusers_name.replace('2.1.3.weight', '2.ff.1.net.2.weight') + diffusers_name = diffusers_name.replace('3.1.0.', '3.ff.0.') + diffusers_name = diffusers_name.replace('3.1.1.weight', '3.ff.1.net.0.proj.weight') + diffusers_name = diffusers_name.replace('3.1.3.weight', '3.ff.1.net.2.weight') + diffusers_name = diffusers_name.replace('layers.0.0', 'layers.0.ln0') + diffusers_name = diffusers_name.replace('layers.0.1', 'layers.0.ln1') + diffusers_name = diffusers_name.replace('layers.1.0', 'layers.1.ln0') + diffusers_name = diffusers_name.replace('layers.1.1', 'layers.1.ln1') + diffusers_name = diffusers_name.replace('layers.2.0', 'layers.2.ln0') + diffusers_name = diffusers_name.replace('layers.2.1', 'layers.2.ln1') + diffusers_name = diffusers_name.replace('layers.3.0', 'layers.3.ln0') + diffusers_name = diffusers_name.replace('layers.3.1', 'layers.3.ln1') + if 'norm1' in diffusers_name: + updated_state_dict[diffusers_name.replace('0.norm1', '0')] = value + elif 'norm2' in diffusers_name: + updated_state_dict[diffusers_name.replace('0.norm2', '1')] = value + elif 'to_kv' in diffusers_name: + v_chunk = value.chunk(2, dim=0) + updated_state_dict[diffusers_name.replace('to_kv', 'to_k')] = v_chunk[0] + updated_state_dict[diffusers_name.replace('to_kv', 'to_v')] = v_chunk[1] + elif 'to_out' in diffusers_name: + updated_state_dict[diffusers_name.replace('to_out', 'to_out.0')] = value + elif 'proj.0.weight' == diffusers_name: + updated_state_dict['proj.net.0.proj.weight'] = value + elif 'proj.0.bias' == diffusers_name: + updated_state_dict['proj.net.0.proj.bias'] = value + elif 'proj.2.weight' == diffusers_name: + updated_state_dict['proj.net.2.weight'] = value + elif 'proj.2.bias' == diffusers_name: + updated_state_dict['proj.net.2.bias'] = value + else: + updated_state_dict[diffusers_name] = value + elif 'norm.weight' in state_dict: + id_embeddings_dim_in = state_dict['proj.0.weight'].shape[1] + id_embeddings_dim_out = state_dict['proj.0.weight'].shape[0] + multiplier = id_embeddings_dim_out // id_embeddings_dim_in + norm_layer = 'norm.weight' + cross_attention_dim = state_dict[norm_layer].shape[0] + num_tokens = state_dict['proj.2.weight'].shape[0] // cross_attention_dim + with init_context(): + image_projection = IPAdapterFaceIDImageProjection(cross_attention_dim=cross_attention_dim, image_embed_dim=id_embeddings_dim_in, mult=multiplier, num_tokens=num_tokens) + for (key, value) in state_dict.items(): + diffusers_name = key.replace('proj.0', 'ff.net.0.proj') + diffusers_name = diffusers_name.replace('proj.2', 'ff.net.2') + updated_state_dict[diffusers_name] = value + else: + num_image_text_embeds = state_dict['latents'].shape[1] + embed_dims = state_dict['proj_in.weight'].shape[1] + output_dims = state_dict['proj_out.weight'].shape[0] + hidden_dims = state_dict['latents'].shape[2] + attn_key_present = any(('attn' in k for k in state_dict)) + heads = state_dict['layers.0.attn.to_q.weight'].shape[0] // 64 if attn_key_present else state_dict['layers.0.0.to_q.weight'].shape[0] // 64 + with init_context(): + image_projection = IPAdapterPlusImageProjection(embed_dims=embed_dims, output_dims=output_dims, hidden_dims=hidden_dims, heads=heads, num_queries=num_image_text_embeds) + for (key, value) in state_dict.items(): + diffusers_name = key.replace('0.to', '2.to') + diffusers_name = diffusers_name.replace('0.0.norm1', '0.ln0') + diffusers_name = diffusers_name.replace('0.0.norm2', '0.ln1') + diffusers_name = diffusers_name.replace('1.0.norm1', '1.ln0') + diffusers_name = diffusers_name.replace('1.0.norm2', '1.ln1') + diffusers_name = diffusers_name.replace('2.0.norm1', '2.ln0') + diffusers_name = diffusers_name.replace('2.0.norm2', '2.ln1') + diffusers_name = diffusers_name.replace('3.0.norm1', '3.ln0') + diffusers_name = diffusers_name.replace('3.0.norm2', '3.ln1') + if 'to_kv' in diffusers_name: + parts = diffusers_name.split('.') + parts[2] = 'attn' + diffusers_name = '.'.join(parts) + v_chunk = value.chunk(2, dim=0) + updated_state_dict[diffusers_name.replace('to_kv', 'to_k')] = v_chunk[0] + updated_state_dict[diffusers_name.replace('to_kv', 'to_v')] = v_chunk[1] + elif 'to_q' in diffusers_name: + parts = diffusers_name.split('.') + parts[2] = 'attn' + diffusers_name = '.'.join(parts) + updated_state_dict[diffusers_name] = value + elif 'to_out' in diffusers_name: + parts = diffusers_name.split('.') + parts[2] = 'attn' + diffusers_name = '.'.join(parts) + updated_state_dict[diffusers_name.replace('to_out', 'to_out.0')] = value + else: + diffusers_name = diffusers_name.replace('0.1.0', '0.ff.0') + diffusers_name = diffusers_name.replace('0.1.1', '0.ff.1.net.0.proj') + diffusers_name = diffusers_name.replace('0.1.3', '0.ff.1.net.2') + diffusers_name = diffusers_name.replace('1.1.0', '1.ff.0') + diffusers_name = diffusers_name.replace('1.1.1', '1.ff.1.net.0.proj') + diffusers_name = diffusers_name.replace('1.1.3', '1.ff.1.net.2') + diffusers_name = diffusers_name.replace('2.1.0', '2.ff.0') + diffusers_name = diffusers_name.replace('2.1.1', '2.ff.1.net.0.proj') + diffusers_name = diffusers_name.replace('2.1.3', '2.ff.1.net.2') + diffusers_name = diffusers_name.replace('3.1.0', '3.ff.0') + diffusers_name = diffusers_name.replace('3.1.1', '3.ff.1.net.0.proj') + diffusers_name = diffusers_name.replace('3.1.3', '3.ff.1.net.2') + updated_state_dict[diffusers_name] = value + if not low_cpu_mem_usage: + image_projection.load_state_dict(updated_state_dict, strict=True) + else: + load_model_dict_into_meta(image_projection, updated_state_dict, device=self.device, dtype=self.dtype) + return image_projection + + def _convert_ip_adapter_attn_to_diffusers(self, state_dicts, low_cpu_mem_usage=False): + from ..models.attention_processor import IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0 + if low_cpu_mem_usage: + if is_accelerate_available(): + from accelerate import init_empty_weights + else: + low_cpu_mem_usage = False + logger.warning('Cannot initialize model with low cpu memory usage because `accelerate` was not found in the environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip install accelerate\n```\n.') + if low_cpu_mem_usage is True and (not is_torch_version('>=', '1.9.0')): + raise NotImplementedError('Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set `low_cpu_mem_usage=False`.') + attn_procs = {} + key_id = 1 + init_context = init_empty_weights if low_cpu_mem_usage else nullcontext + for name in self.attn_processors.keys(): + cross_attention_dim = None if name.endswith('attn1.processor') else self.config.cross_attention_dim + if name.startswith('mid_block'): + hidden_size = self.config.block_out_channels[-1] + elif name.startswith('up_blocks'): + block_id = int(name[len('up_blocks.')]) + hidden_size = list(reversed(self.config.block_out_channels))[block_id] + elif name.startswith('down_blocks'): + block_id = int(name[len('down_blocks.')]) + hidden_size = self.config.block_out_channels[block_id] + if cross_attention_dim is None or 'motion_modules' in name: + attn_processor_class = self.attn_processors[name].__class__ + attn_procs[name] = attn_processor_class() + else: + attn_processor_class = IPAdapterAttnProcessor2_0 if hasattr(F, 'scaled_dot_product_attention') else IPAdapterAttnProcessor + num_image_text_embeds = [] + for state_dict in state_dicts: + if 'proj.weight' in state_dict['image_proj']: + num_image_text_embeds += [4] + elif 'proj.3.weight' in state_dict['image_proj']: + num_image_text_embeds += [257] + elif 'perceiver_resampler.proj_in.weight' in state_dict['image_proj']: + num_image_text_embeds += [4] + elif 'norm.weight' in state_dict['image_proj']: + num_image_text_embeds += [4] + else: + num_image_text_embeds += [state_dict['image_proj']['latents'].shape[1]] + with init_context(): + attn_procs[name] = attn_processor_class(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, num_tokens=num_image_text_embeds) + value_dict = {} + for (i, state_dict) in enumerate(state_dicts): + value_dict.update({f'to_k_ip.{i}.weight': state_dict['ip_adapter'][f'{key_id}.to_k_ip.weight']}) + value_dict.update({f'to_v_ip.{i}.weight': state_dict['ip_adapter'][f'{key_id}.to_v_ip.weight']}) + if not low_cpu_mem_usage: + attn_procs[name].load_state_dict(value_dict) + else: + device = next(iter(value_dict.values())).device + dtype = next(iter(value_dict.values())).dtype + load_model_dict_into_meta(attn_procs[name], value_dict, device=device, dtype=dtype) + key_id += 2 + return attn_procs + + def _load_ip_adapter_weights(self, state_dicts, low_cpu_mem_usage=False): + if not isinstance(state_dicts, list): + state_dicts = [state_dicts] + if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == 'text_proj' and (not hasattr(self, 'text_encoder_hid_proj')): + self.text_encoder_hid_proj = self.encoder_hid_proj + self.encoder_hid_proj = None + attn_procs = self._convert_ip_adapter_attn_to_diffusers(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage) + self.set_attn_processor(attn_procs) + image_projection_layers = [] + for state_dict in state_dicts: + image_projection_layer = self._convert_ip_adapter_image_proj_to_diffusers(state_dict['image_proj'], low_cpu_mem_usage=low_cpu_mem_usage) + image_projection_layers.append(image_projection_layer) + self.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers) + self.config.encoder_hid_dim_type = 'ip_image_proj' + self.to(dtype=self.dtype, device=self.device) + + def _load_ip_adapter_loras(self, state_dicts): + lora_dicts = {} + for (key_id, name) in enumerate(self.attn_processors.keys()): + for (i, state_dict) in enumerate(state_dicts): + if f'{key_id}.to_k_lora.down.weight' in state_dict['ip_adapter']: + if i not in lora_dicts: + lora_dicts[i] = {} + lora_dicts[i].update({f'unet.{name}.to_k_lora.down.weight': state_dict['ip_adapter'][f'{key_id}.to_k_lora.down.weight']}) + lora_dicts[i].update({f'unet.{name}.to_q_lora.down.weight': state_dict['ip_adapter'][f'{key_id}.to_q_lora.down.weight']}) + lora_dicts[i].update({f'unet.{name}.to_v_lora.down.weight': state_dict['ip_adapter'][f'{key_id}.to_v_lora.down.weight']}) + lora_dicts[i].update({f'unet.{name}.to_out_lora.down.weight': state_dict['ip_adapter'][f'{key_id}.to_out_lora.down.weight']}) + lora_dicts[i].update({f'unet.{name}.to_k_lora.up.weight': state_dict['ip_adapter'][f'{key_id}.to_k_lora.up.weight']}) + lora_dicts[i].update({f'unet.{name}.to_q_lora.up.weight': state_dict['ip_adapter'][f'{key_id}.to_q_lora.up.weight']}) + lora_dicts[i].update({f'unet.{name}.to_v_lora.up.weight': state_dict['ip_adapter'][f'{key_id}.to_v_lora.up.weight']}) + lora_dicts[i].update({f'unet.{name}.to_out_lora.up.weight': state_dict['ip_adapter'][f'{key_id}.to_out_lora.up.weight']}) + return lora_dicts + +# File: diffusers-main/src/diffusers/loaders/unet_loader_utils.py +import copy +from typing import TYPE_CHECKING, Dict, List, Union +from ..utils import logging +if TYPE_CHECKING: + from ..models import UNet2DConditionModel +logger = logging.get_logger(__name__) + +def _translate_into_actual_layer_name(name): + if name == 'mid': + return 'mid_block.attentions.0' + (updown, block, attn) = name.split('.') + updown = updown.replace('down', 'down_blocks').replace('up', 'up_blocks') + block = block.replace('block_', '') + attn = 'attentions.' + attn + return '.'.join((updown, block, attn)) + +def _maybe_expand_lora_scales(unet: 'UNet2DConditionModel', weight_scales: List[Union[float, Dict]], default_scale=1.0): + blocks_with_transformer = {'down': [i for (i, block) in enumerate(unet.down_blocks) if hasattr(block, 'attentions')], 'up': [i for (i, block) in enumerate(unet.up_blocks) if hasattr(block, 'attentions')]} + transformer_per_block = {'down': unet.config.layers_per_block, 'up': unet.config.layers_per_block + 1} + expanded_weight_scales = [_maybe_expand_lora_scales_for_one_adapter(weight_for_adapter, blocks_with_transformer, transformer_per_block, unet.state_dict(), default_scale=default_scale) for weight_for_adapter in weight_scales] + return expanded_weight_scales + +def _maybe_expand_lora_scales_for_one_adapter(scales: Union[float, Dict], blocks_with_transformer: Dict[str, int], transformer_per_block: Dict[str, int], state_dict: None, default_scale: float=1.0): + if sorted(blocks_with_transformer.keys()) != ['down', 'up']: + raise ValueError("blocks_with_transformer needs to be a dict with keys `'down' and `'up'`") + if sorted(transformer_per_block.keys()) != ['down', 'up']: + raise ValueError("transformer_per_block needs to be a dict with keys `'down' and `'up'`") + if not isinstance(scales, dict): + return scales + scales = copy.deepcopy(scales) + if 'mid' not in scales: + scales['mid'] = default_scale + elif isinstance(scales['mid'], list): + if len(scales['mid']) == 1: + scales['mid'] = scales['mid'][0] + else: + raise ValueError(f"Expected 1 scales for mid, got {len(scales['mid'])}.") + for updown in ['up', 'down']: + if updown not in scales: + scales[updown] = default_scale + if not isinstance(scales[updown], dict): + scales[updown] = {f'block_{i}': copy.deepcopy(scales[updown]) for i in blocks_with_transformer[updown]} + for i in blocks_with_transformer[updown]: + block = f'block_{i}' + if block not in scales[updown]: + scales[updown][block] = default_scale + if not isinstance(scales[updown][block], list): + scales[updown][block] = [scales[updown][block] for _ in range(transformer_per_block[updown])] + elif len(scales[updown][block]) == 1: + scales[updown][block] = scales[updown][block] * transformer_per_block[updown] + elif len(scales[updown][block]) != transformer_per_block[updown]: + raise ValueError(f'Expected {transformer_per_block[updown]} scales for {updown}.{block}, got {len(scales[updown][block])}.') + for i in blocks_with_transformer[updown]: + block = f'block_{i}' + for (tf_idx, value) in enumerate(scales[updown][block]): + scales[f'{updown}.{block}.{tf_idx}'] = value + del scales[updown] + for layer in scales.keys(): + if not any((_translate_into_actual_layer_name(layer) in module for module in state_dict.keys())): + raise ValueError(f"Can't set lora scale for layer {layer}. It either doesn't exist in this unet or it has no attentions.") + return {_translate_into_actual_layer_name(name): weight for (name, weight) in scales.items()} + +# File: diffusers-main/src/diffusers/loaders/utils.py +from typing import Dict +import torch + +class AttnProcsLayers(torch.nn.Module): + + def __init__(self, state_dict: Dict[str, torch.Tensor]): + super().__init__() + self.layers = torch.nn.ModuleList(state_dict.values()) + self.mapping = dict(enumerate(state_dict.keys())) + self.rev_mapping = {v: k for (k, v) in enumerate(state_dict.keys())} + self.split_keys = ['.processor', '.self_attn'] + + def map_to(module, state_dict, *args, **kwargs): + new_state_dict = {} + for (key, value) in state_dict.items(): + num = int(key.split('.')[1]) + new_key = key.replace(f'layers.{num}', module.mapping[num]) + new_state_dict[new_key] = value + return new_state_dict + + def remap_key(key, state_dict): + for k in self.split_keys: + if k in key: + return key.split(k)[0] + k + raise ValueError(f'There seems to be a problem with the state_dict: {set(state_dict.keys())}. {key} has to have one of {self.split_keys}.') + + def map_from(module, state_dict, *args, **kwargs): + all_keys = list(state_dict.keys()) + for key in all_keys: + replace_key = remap_key(key, state_dict) + new_key = key.replace(replace_key, f'layers.{module.rev_mapping[replace_key]}') + state_dict[new_key] = state_dict[key] + del state_dict[key] + self._register_state_dict_hook(map_to) + self._register_load_state_dict_pre_hook(map_from, with_module=True) + +# File: diffusers-main/src/diffusers/models/__init__.py +from typing import TYPE_CHECKING +from ..utils import DIFFUSERS_SLOW_IMPORT, _LazyModule, is_flax_available, is_torch_available +_import_structure = {} +if is_torch_available(): + _import_structure['adapter'] = ['MultiAdapter', 'T2IAdapter'] + _import_structure['autoencoders.autoencoder_asym_kl'] = ['AsymmetricAutoencoderKL'] + _import_structure['autoencoders.autoencoder_kl'] = ['AutoencoderKL'] + _import_structure['autoencoders.autoencoder_kl_cogvideox'] = ['AutoencoderKLCogVideoX'] + _import_structure['autoencoders.autoencoder_kl_temporal_decoder'] = ['AutoencoderKLTemporalDecoder'] + _import_structure['autoencoders.autoencoder_oobleck'] = ['AutoencoderOobleck'] + _import_structure['autoencoders.autoencoder_tiny'] = ['AutoencoderTiny'] + _import_structure['autoencoders.consistency_decoder_vae'] = ['ConsistencyDecoderVAE'] + _import_structure['autoencoders.vq_model'] = ['VQModel'] + _import_structure['controlnet'] = ['ControlNetModel'] + _import_structure['controlnet_flux'] = ['FluxControlNetModel', 'FluxMultiControlNetModel'] + _import_structure['controlnet_hunyuan'] = ['HunyuanDiT2DControlNetModel', 'HunyuanDiT2DMultiControlNetModel'] + _import_structure['controlnet_sd3'] = ['SD3ControlNetModel', 'SD3MultiControlNetModel'] + _import_structure['controlnet_sparsectrl'] = ['SparseControlNetModel'] + _import_structure['controlnet_xs'] = ['ControlNetXSAdapter', 'UNetControlNetXSModel'] + _import_structure['embeddings'] = ['ImageProjection'] + _import_structure['modeling_utils'] = ['ModelMixin'] + _import_structure['transformers.auraflow_transformer_2d'] = ['AuraFlowTransformer2DModel'] + _import_structure['transformers.cogvideox_transformer_3d'] = ['CogVideoXTransformer3DModel'] + _import_structure['transformers.dit_transformer_2d'] = ['DiTTransformer2DModel'] + _import_structure['transformers.dual_transformer_2d'] = ['DualTransformer2DModel'] + _import_structure['transformers.hunyuan_transformer_2d'] = ['HunyuanDiT2DModel'] + _import_structure['transformers.latte_transformer_3d'] = ['LatteTransformer3DModel'] + _import_structure['transformers.lumina_nextdit2d'] = ['LuminaNextDiT2DModel'] + _import_structure['transformers.pixart_transformer_2d'] = ['PixArtTransformer2DModel'] + _import_structure['transformers.prior_transformer'] = ['PriorTransformer'] + _import_structure['transformers.stable_audio_transformer'] = ['StableAudioDiTModel'] + _import_structure['transformers.t5_film_transformer'] = ['T5FilmDecoder'] + _import_structure['transformers.transformer_2d'] = ['Transformer2DModel'] + _import_structure['transformers.transformer_flux'] = ['FluxTransformer2DModel'] + _import_structure['transformers.transformer_sd3'] = ['SD3Transformer2DModel'] + _import_structure['transformers.transformer_temporal'] = ['TransformerTemporalModel'] + _import_structure['unets.unet_1d'] = ['UNet1DModel'] + _import_structure['unets.unet_2d'] = ['UNet2DModel'] + _import_structure['unets.unet_2d_condition'] = ['UNet2DConditionModel'] + _import_structure['unets.unet_3d_condition'] = ['UNet3DConditionModel'] + _import_structure['unets.unet_i2vgen_xl'] = ['I2VGenXLUNet'] + _import_structure['unets.unet_kandinsky3'] = ['Kandinsky3UNet'] + _import_structure['unets.unet_motion_model'] = ['MotionAdapter', 'UNetMotionModel'] + _import_structure['unets.unet_spatio_temporal_condition'] = ['UNetSpatioTemporalConditionModel'] + _import_structure['unets.unet_stable_cascade'] = ['StableCascadeUNet'] + _import_structure['unets.uvit_2d'] = ['UVit2DModel'] +if is_flax_available(): + _import_structure['controlnet_flax'] = ['FlaxControlNetModel'] + _import_structure['unets.unet_2d_condition_flax'] = ['FlaxUNet2DConditionModel'] + _import_structure['vae_flax'] = ['FlaxAutoencoderKL'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + if is_torch_available(): + from .adapter import MultiAdapter, T2IAdapter + from .autoencoders import AsymmetricAutoencoderKL, AutoencoderKL, AutoencoderKLCogVideoX, AutoencoderKLTemporalDecoder, AutoencoderOobleck, AutoencoderTiny, ConsistencyDecoderVAE, VQModel + from .controlnet import ControlNetModel + from .controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel + from .controlnet_hunyuan import HunyuanDiT2DControlNetModel, HunyuanDiT2DMultiControlNetModel + from .controlnet_sd3 import SD3ControlNetModel, SD3MultiControlNetModel + from .controlnet_sparsectrl import SparseControlNetModel + from .controlnet_xs import ControlNetXSAdapter, UNetControlNetXSModel + from .embeddings import ImageProjection + from .modeling_utils import ModelMixin + from .transformers import AuraFlowTransformer2DModel, CogVideoXTransformer3DModel, DiTTransformer2DModel, DualTransformer2DModel, FluxTransformer2DModel, HunyuanDiT2DModel, LatteTransformer3DModel, LuminaNextDiT2DModel, PixArtTransformer2DModel, PriorTransformer, SD3Transformer2DModel, StableAudioDiTModel, T5FilmDecoder, Transformer2DModel, TransformerTemporalModel + from .unets import I2VGenXLUNet, Kandinsky3UNet, MotionAdapter, StableCascadeUNet, UNet1DModel, UNet2DConditionModel, UNet2DModel, UNet3DConditionModel, UNetMotionModel, UNetSpatioTemporalConditionModel, UVit2DModel + if is_flax_available(): + from .controlnet_flax import FlaxControlNetModel + from .unets import FlaxUNet2DConditionModel + from .vae_flax import FlaxAutoencoderKL +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + +# File: diffusers-main/src/diffusers/models/activations.py +import torch +import torch.nn.functional as F +from torch import nn +from ..utils import deprecate +from ..utils.import_utils import is_torch_npu_available +if is_torch_npu_available(): + import torch_npu +ACTIVATION_FUNCTIONS = {'swish': nn.SiLU(), 'silu': nn.SiLU(), 'mish': nn.Mish(), 'gelu': nn.GELU(), 'relu': nn.ReLU()} + +def get_activation(act_fn: str) -> nn.Module: + act_fn = act_fn.lower() + if act_fn in ACTIVATION_FUNCTIONS: + return ACTIVATION_FUNCTIONS[act_fn] + else: + raise ValueError(f'Unsupported activation function: {act_fn}') + +class FP32SiLU(nn.Module): + + def __init__(self): + super().__init__() + + def forward(self, inputs: torch.Tensor) -> torch.Tensor: + return F.silu(inputs.float(), inplace=False).to(inputs.dtype) + +class GELU(nn.Module): + + def __init__(self, dim_in: int, dim_out: int, approximate: str='none', bias: bool=True): + super().__init__() + self.proj = nn.Linear(dim_in, dim_out, bias=bias) + self.approximate = approximate + + def gelu(self, gate: torch.Tensor) -> torch.Tensor: + if gate.device.type != 'mps': + return F.gelu(gate, approximate=self.approximate) + return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype) + + def forward(self, hidden_states): + hidden_states = self.proj(hidden_states) + hidden_states = self.gelu(hidden_states) + return hidden_states + +class GEGLU(nn.Module): + + def __init__(self, dim_in: int, dim_out: int, bias: bool=True): + super().__init__() + self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias) + + def gelu(self, gate: torch.Tensor) -> torch.Tensor: + if gate.device.type != 'mps': + return F.gelu(gate) + return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) + + def forward(self, hidden_states, *args, **kwargs): + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + hidden_states = self.proj(hidden_states) + if is_torch_npu_available(): + return torch_npu.npu_geglu(hidden_states, dim=-1, approximate=1)[0] + else: + (hidden_states, gate) = hidden_states.chunk(2, dim=-1) + return hidden_states * self.gelu(gate) + +class SwiGLU(nn.Module): + + def __init__(self, dim_in: int, dim_out: int, bias: bool=True): + super().__init__() + self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias) + self.activation = nn.SiLU() + + def forward(self, hidden_states): + hidden_states = self.proj(hidden_states) + (hidden_states, gate) = hidden_states.chunk(2, dim=-1) + return hidden_states * self.activation(gate) + +class ApproximateGELU(nn.Module): + + def __init__(self, dim_in: int, dim_out: int, bias: bool=True): + super().__init__() + self.proj = nn.Linear(dim_in, dim_out, bias=bias) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.proj(x) + return x * torch.sigmoid(1.702 * x) + +# File: diffusers-main/src/diffusers/models/adapter.py +import os +from typing import Callable, List, Optional, Union +import torch +import torch.nn as nn +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import logging +from .modeling_utils import ModelMixin +logger = logging.get_logger(__name__) + +class MultiAdapter(ModelMixin): + + def __init__(self, adapters: List['T2IAdapter']): + super(MultiAdapter, self).__init__() + self.num_adapter = len(adapters) + self.adapters = nn.ModuleList(adapters) + if len(adapters) == 0: + raise ValueError('Expecting at least one adapter') + if len(adapters) == 1: + raise ValueError('For a single adapter, please use the `T2IAdapter` class instead of `MultiAdapter`') + first_adapter_total_downscale_factor = adapters[0].total_downscale_factor + first_adapter_downscale_factor = adapters[0].downscale_factor + for idx in range(1, len(adapters)): + if adapters[idx].total_downscale_factor != first_adapter_total_downscale_factor or adapters[idx].downscale_factor != first_adapter_downscale_factor: + raise ValueError(f'Expecting all adapters to have the same downscaling behavior, but got:\nadapters[0].total_downscale_factor={first_adapter_total_downscale_factor}\nadapters[0].downscale_factor={first_adapter_downscale_factor}\nadapter[`{idx}`].total_downscale_factor={adapters[idx].total_downscale_factor}\nadapter[`{idx}`].downscale_factor={adapters[idx].downscale_factor}') + self.total_downscale_factor = first_adapter_total_downscale_factor + self.downscale_factor = first_adapter_downscale_factor + + def forward(self, xs: torch.Tensor, adapter_weights: Optional[List[float]]=None) -> List[torch.Tensor]: + if adapter_weights is None: + adapter_weights = torch.tensor([1 / self.num_adapter] * self.num_adapter) + else: + adapter_weights = torch.tensor(adapter_weights) + accume_state = None + for (x, w, adapter) in zip(xs, adapter_weights, self.adapters): + features = adapter(x) + if accume_state is None: + accume_state = features + for i in range(len(accume_state)): + accume_state[i] = w * accume_state[i] + else: + for i in range(len(features)): + accume_state[i] += w * features[i] + return accume_state + + def save_pretrained(self, save_directory: Union[str, os.PathLike], is_main_process: bool=True, save_function: Callable=None, safe_serialization: bool=True, variant: Optional[str]=None): + idx = 0 + model_path_to_save = save_directory + for adapter in self.adapters: + adapter.save_pretrained(model_path_to_save, is_main_process=is_main_process, save_function=save_function, safe_serialization=safe_serialization, variant=variant) + idx += 1 + model_path_to_save = model_path_to_save + f'_{idx}' + + @classmethod + def from_pretrained(cls, pretrained_model_path: Optional[Union[str, os.PathLike]], **kwargs): + idx = 0 + adapters = [] + model_path_to_load = pretrained_model_path + while os.path.isdir(model_path_to_load): + adapter = T2IAdapter.from_pretrained(model_path_to_load, **kwargs) + adapters.append(adapter) + idx += 1 + model_path_to_load = pretrained_model_path + f'_{idx}' + logger.info(f'{len(adapters)} adapters loaded from {pretrained_model_path}.') + if len(adapters) == 0: + raise ValueError(f"No T2IAdapters found under {os.path.dirname(pretrained_model_path)}. Expected at least {pretrained_model_path + '_0'}.") + return cls(adapters) + +class T2IAdapter(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, in_channels: int=3, channels: List[int]=[320, 640, 1280, 1280], num_res_blocks: int=2, downscale_factor: int=8, adapter_type: str='full_adapter'): + super().__init__() + if adapter_type == 'full_adapter': + self.adapter = FullAdapter(in_channels, channels, num_res_blocks, downscale_factor) + elif adapter_type == 'full_adapter_xl': + self.adapter = FullAdapterXL(in_channels, channels, num_res_blocks, downscale_factor) + elif adapter_type == 'light_adapter': + self.adapter = LightAdapter(in_channels, channels, num_res_blocks, downscale_factor) + else: + raise ValueError(f"Unsupported adapter_type: '{adapter_type}'. Choose either 'full_adapter' or 'full_adapter_xl' or 'light_adapter'.") + + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + return self.adapter(x) + + @property + def total_downscale_factor(self): + return self.adapter.total_downscale_factor + + @property + def downscale_factor(self): + return self.adapter.unshuffle.downscale_factor + +class FullAdapter(nn.Module): + + def __init__(self, in_channels: int=3, channels: List[int]=[320, 640, 1280, 1280], num_res_blocks: int=2, downscale_factor: int=8): + super().__init__() + in_channels = in_channels * downscale_factor ** 2 + self.unshuffle = nn.PixelUnshuffle(downscale_factor) + self.conv_in = nn.Conv2d(in_channels, channels[0], kernel_size=3, padding=1) + self.body = nn.ModuleList([AdapterBlock(channels[0], channels[0], num_res_blocks), *[AdapterBlock(channels[i - 1], channels[i], num_res_blocks, down=True) for i in range(1, len(channels))]]) + self.total_downscale_factor = downscale_factor * 2 ** (len(channels) - 1) + + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + x = self.unshuffle(x) + x = self.conv_in(x) + features = [] + for block in self.body: + x = block(x) + features.append(x) + return features + +class FullAdapterXL(nn.Module): + + def __init__(self, in_channels: int=3, channels: List[int]=[320, 640, 1280, 1280], num_res_blocks: int=2, downscale_factor: int=16): + super().__init__() + in_channels = in_channels * downscale_factor ** 2 + self.unshuffle = nn.PixelUnshuffle(downscale_factor) + self.conv_in = nn.Conv2d(in_channels, channels[0], kernel_size=3, padding=1) + self.body = [] + for i in range(len(channels)): + if i == 1: + self.body.append(AdapterBlock(channels[i - 1], channels[i], num_res_blocks)) + elif i == 2: + self.body.append(AdapterBlock(channels[i - 1], channels[i], num_res_blocks, down=True)) + else: + self.body.append(AdapterBlock(channels[i], channels[i], num_res_blocks)) + self.body = nn.ModuleList(self.body) + self.total_downscale_factor = downscale_factor * 2 + + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + x = self.unshuffle(x) + x = self.conv_in(x) + features = [] + for block in self.body: + x = block(x) + features.append(x) + return features + +class AdapterBlock(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, num_res_blocks: int, down: bool=False): + super().__init__() + self.downsample = None + if down: + self.downsample = nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True) + self.in_conv = None + if in_channels != out_channels: + self.in_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) + self.resnets = nn.Sequential(*[AdapterResnetBlock(out_channels) for _ in range(num_res_blocks)]) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self.downsample is not None: + x = self.downsample(x) + if self.in_conv is not None: + x = self.in_conv(x) + x = self.resnets(x) + return x + +class AdapterResnetBlock(nn.Module): + + def __init__(self, channels: int): + super().__init__() + self.block1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1) + self.act = nn.ReLU() + self.block2 = nn.Conv2d(channels, channels, kernel_size=1) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + h = self.act(self.block1(x)) + h = self.block2(h) + return h + x + +class LightAdapter(nn.Module): + + def __init__(self, in_channels: int=3, channels: List[int]=[320, 640, 1280], num_res_blocks: int=4, downscale_factor: int=8): + super().__init__() + in_channels = in_channels * downscale_factor ** 2 + self.unshuffle = nn.PixelUnshuffle(downscale_factor) + self.body = nn.ModuleList([LightAdapterBlock(in_channels, channels[0], num_res_blocks), *[LightAdapterBlock(channels[i], channels[i + 1], num_res_blocks, down=True) for i in range(len(channels) - 1)], LightAdapterBlock(channels[-1], channels[-1], num_res_blocks, down=True)]) + self.total_downscale_factor = downscale_factor * 2 ** len(channels) + + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + x = self.unshuffle(x) + features = [] + for block in self.body: + x = block(x) + features.append(x) + return features + +class LightAdapterBlock(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, num_res_blocks: int, down: bool=False): + super().__init__() + mid_channels = out_channels // 4 + self.downsample = None + if down: + self.downsample = nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True) + self.in_conv = nn.Conv2d(in_channels, mid_channels, kernel_size=1) + self.resnets = nn.Sequential(*[LightAdapterResnetBlock(mid_channels) for _ in range(num_res_blocks)]) + self.out_conv = nn.Conv2d(mid_channels, out_channels, kernel_size=1) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self.downsample is not None: + x = self.downsample(x) + x = self.in_conv(x) + x = self.resnets(x) + x = self.out_conv(x) + return x + +class LightAdapterResnetBlock(nn.Module): + + def __init__(self, channels: int): + super().__init__() + self.block1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1) + self.act = nn.ReLU() + self.block2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + h = self.act(self.block1(x)) + h = self.block2(h) + return h + x + +# File: diffusers-main/src/diffusers/models/attention.py +from typing import Any, Dict, List, Optional, Tuple +import torch +import torch.nn.functional as F +from torch import nn +from ..utils import deprecate, logging +from ..utils.torch_utils import maybe_allow_in_graph +from .activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, SwiGLU +from .attention_processor import Attention, JointAttnProcessor2_0 +from .embeddings import SinusoidalPositionalEmbedding +from .normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm +logger = logging.get_logger(__name__) + +def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int): + if hidden_states.shape[chunk_dim] % chunk_size != 0: + raise ValueError(f'`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.') + num_chunks = hidden_states.shape[chunk_dim] // chunk_size + ff_output = torch.cat([ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], dim=chunk_dim) + return ff_output + +@maybe_allow_in_graph +class GatedSelfAttentionDense(nn.Module): + + def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int): + super().__init__() + self.linear = nn.Linear(context_dim, query_dim) + self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) + self.ff = FeedForward(query_dim, activation_fn='geglu') + self.norm1 = nn.LayerNorm(query_dim) + self.norm2 = nn.LayerNorm(query_dim) + self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.0))) + self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.0))) + self.enabled = True + + def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: + if not self.enabled: + return x + n_visual = x.shape[1] + objs = self.linear(objs) + x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] + x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) + return x + +@maybe_allow_in_graph +class JointTransformerBlock(nn.Module): + + def __init__(self, dim, num_attention_heads, attention_head_dim, context_pre_only=False): + super().__init__() + self.context_pre_only = context_pre_only + context_norm_type = 'ada_norm_continous' if context_pre_only else 'ada_norm_zero' + self.norm1 = AdaLayerNormZero(dim) + if context_norm_type == 'ada_norm_continous': + self.norm1_context = AdaLayerNormContinuous(dim, dim, elementwise_affine=False, eps=1e-06, bias=True, norm_type='layer_norm') + elif context_norm_type == 'ada_norm_zero': + self.norm1_context = AdaLayerNormZero(dim) + else: + raise ValueError(f'Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`') + if hasattr(F, 'scaled_dot_product_attention'): + processor = JointAttnProcessor2_0() + else: + raise ValueError('The current PyTorch version does not support the `scaled_dot_product_attention` function.') + self.attn = Attention(query_dim=dim, cross_attention_dim=None, added_kv_proj_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, context_pre_only=context_pre_only, bias=True, processor=processor) + self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-06) + self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn='gelu-approximate') + if not context_pre_only: + self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-06) + self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn='gelu-approximate') + else: + self.norm2_context = None + self.ff_context = None + self._chunk_size = None + self._chunk_dim = 0 + + def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int=0): + self._chunk_size = chunk_size + self._chunk_dim = dim + + def forward(self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor): + (norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp) = self.norm1(hidden_states, emb=temb) + if self.context_pre_only: + norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb) + else: + (norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp) = self.norm1_context(encoder_hidden_states, emb=temb) + (attn_output, context_attn_output) = self.attn(hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states) + attn_output = gate_msa.unsqueeze(1) * attn_output + hidden_states = hidden_states + attn_output + norm_hidden_states = self.norm2(hidden_states) + norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] + if self._chunk_size is not None: + ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) + else: + ff_output = self.ff(norm_hidden_states) + ff_output = gate_mlp.unsqueeze(1) * ff_output + hidden_states = hidden_states + ff_output + if self.context_pre_only: + encoder_hidden_states = None + else: + context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output + encoder_hidden_states = encoder_hidden_states + context_attn_output + norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) + norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] + if self._chunk_size is not None: + context_ff_output = _chunked_feed_forward(self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size) + else: + context_ff_output = self.ff_context(norm_encoder_hidden_states) + encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output + return (encoder_hidden_states, hidden_states) + +@maybe_allow_in_graph +class BasicTransformerBlock(nn.Module): + + def __init__(self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout=0.0, cross_attention_dim: Optional[int]=None, activation_fn: str='geglu', num_embeds_ada_norm: Optional[int]=None, attention_bias: bool=False, only_cross_attention: bool=False, double_self_attention: bool=False, upcast_attention: bool=False, norm_elementwise_affine: bool=True, norm_type: str='layer_norm', norm_eps: float=1e-05, final_dropout: bool=False, attention_type: str='default', positional_embeddings: Optional[str]=None, num_positional_embeddings: Optional[int]=None, ada_norm_continous_conditioning_embedding_dim: Optional[int]=None, ada_norm_bias: Optional[int]=None, ff_inner_dim: Optional[int]=None, ff_bias: bool=True, attention_out_bias: bool=True): + super().__init__() + self.dim = dim + self.num_attention_heads = num_attention_heads + self.attention_head_dim = attention_head_dim + self.dropout = dropout + self.cross_attention_dim = cross_attention_dim + self.activation_fn = activation_fn + self.attention_bias = attention_bias + self.double_self_attention = double_self_attention + self.norm_elementwise_affine = norm_elementwise_affine + self.positional_embeddings = positional_embeddings + self.num_positional_embeddings = num_positional_embeddings + self.only_cross_attention = only_cross_attention + self.use_ada_layer_norm_zero = num_embeds_ada_norm is not None and norm_type == 'ada_norm_zero' + self.use_ada_layer_norm = num_embeds_ada_norm is not None and norm_type == 'ada_norm' + self.use_ada_layer_norm_single = norm_type == 'ada_norm_single' + self.use_layer_norm = norm_type == 'layer_norm' + self.use_ada_layer_norm_continuous = norm_type == 'ada_norm_continuous' + if norm_type in ('ada_norm', 'ada_norm_zero') and num_embeds_ada_norm is None: + raise ValueError(f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.') + self.norm_type = norm_type + self.num_embeds_ada_norm = num_embeds_ada_norm + if positional_embeddings and num_positional_embeddings is None: + raise ValueError('If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined.') + if positional_embeddings == 'sinusoidal': + self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) + else: + self.pos_embed = None + if norm_type == 'ada_norm': + self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) + elif norm_type == 'ada_norm_zero': + self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) + elif norm_type == 'ada_norm_continuous': + self.norm1 = AdaLayerNormContinuous(dim, ada_norm_continous_conditioning_embedding_dim, norm_elementwise_affine, norm_eps, ada_norm_bias, 'rms_norm') + else: + self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) + self.attn1 = Attention(query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=cross_attention_dim if only_cross_attention else None, upcast_attention=upcast_attention, out_bias=attention_out_bias) + if cross_attention_dim is not None or double_self_attention: + if norm_type == 'ada_norm': + self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) + elif norm_type == 'ada_norm_continuous': + self.norm2 = AdaLayerNormContinuous(dim, ada_norm_continous_conditioning_embedding_dim, norm_elementwise_affine, norm_eps, ada_norm_bias, 'rms_norm') + else: + self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) + self.attn2 = Attention(query_dim=dim, cross_attention_dim=cross_attention_dim if not double_self_attention else None, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, out_bias=attention_out_bias) + else: + if norm_type == 'ada_norm_single': + self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) + else: + self.norm2 = None + self.attn2 = None + if norm_type == 'ada_norm_continuous': + self.norm3 = AdaLayerNormContinuous(dim, ada_norm_continous_conditioning_embedding_dim, norm_elementwise_affine, norm_eps, ada_norm_bias, 'layer_norm') + elif norm_type in ['ada_norm_zero', 'ada_norm', 'layer_norm']: + self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) + elif norm_type == 'layer_norm_i2vgen': + self.norm3 = None + self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout, inner_dim=ff_inner_dim, bias=ff_bias) + if attention_type == 'gated' or attention_type == 'gated-text-image': + self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) + if norm_type == 'ada_norm_single': + self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim ** 0.5) + self._chunk_size = None + self._chunk_dim = 0 + + def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int=0): + self._chunk_size = chunk_size + self._chunk_dim = dim + + def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, encoder_attention_mask: Optional[torch.Tensor]=None, timestep: Optional[torch.LongTensor]=None, cross_attention_kwargs: Dict[str, Any]=None, class_labels: Optional[torch.LongTensor]=None, added_cond_kwargs: Optional[Dict[str, torch.Tensor]]=None) -> torch.Tensor: + if cross_attention_kwargs is not None: + if cross_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.') + batch_size = hidden_states.shape[0] + if self.norm_type == 'ada_norm': + norm_hidden_states = self.norm1(hidden_states, timestep) + elif self.norm_type == 'ada_norm_zero': + (norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp) = self.norm1(hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype) + elif self.norm_type in ['layer_norm', 'layer_norm_i2vgen']: + norm_hidden_states = self.norm1(hidden_states) + elif self.norm_type == 'ada_norm_continuous': + norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs['pooled_text_emb']) + elif self.norm_type == 'ada_norm_single': + (shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp) = (self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)).chunk(6, dim=1) + norm_hidden_states = self.norm1(hidden_states) + norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa + else: + raise ValueError('Incorrect norm used') + if self.pos_embed is not None: + norm_hidden_states = self.pos_embed(norm_hidden_states) + cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} + gligen_kwargs = cross_attention_kwargs.pop('gligen', None) + attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs) + if self.norm_type == 'ada_norm_zero': + attn_output = gate_msa.unsqueeze(1) * attn_output + elif self.norm_type == 'ada_norm_single': + attn_output = gate_msa * attn_output + hidden_states = attn_output + hidden_states + if hidden_states.ndim == 4: + hidden_states = hidden_states.squeeze(1) + if gligen_kwargs is not None: + hidden_states = self.fuser(hidden_states, gligen_kwargs['objs']) + if self.attn2 is not None: + if self.norm_type == 'ada_norm': + norm_hidden_states = self.norm2(hidden_states, timestep) + elif self.norm_type in ['ada_norm_zero', 'layer_norm', 'layer_norm_i2vgen']: + norm_hidden_states = self.norm2(hidden_states) + elif self.norm_type == 'ada_norm_single': + norm_hidden_states = hidden_states + elif self.norm_type == 'ada_norm_continuous': + norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs['pooled_text_emb']) + else: + raise ValueError('Incorrect norm') + if self.pos_embed is not None and self.norm_type != 'ada_norm_single': + norm_hidden_states = self.pos_embed(norm_hidden_states) + attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs) + hidden_states = attn_output + hidden_states + if self.norm_type == 'ada_norm_continuous': + norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs['pooled_text_emb']) + elif not self.norm_type == 'ada_norm_single': + norm_hidden_states = self.norm3(hidden_states) + if self.norm_type == 'ada_norm_zero': + norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] + if self.norm_type == 'ada_norm_single': + norm_hidden_states = self.norm2(hidden_states) + norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp + if self._chunk_size is not None: + ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) + else: + ff_output = self.ff(norm_hidden_states) + if self.norm_type == 'ada_norm_zero': + ff_output = gate_mlp.unsqueeze(1) * ff_output + elif self.norm_type == 'ada_norm_single': + ff_output = gate_mlp * ff_output + hidden_states = ff_output + hidden_states + if hidden_states.ndim == 4: + hidden_states = hidden_states.squeeze(1) + return hidden_states + +class LuminaFeedForward(nn.Module): + + def __init__(self, dim: int, inner_dim: int, multiple_of: Optional[int]=256, ffn_dim_multiplier: Optional[float]=None): + super().__init__() + inner_dim = int(2 * inner_dim / 3) + if ffn_dim_multiplier is not None: + inner_dim = int(ffn_dim_multiplier * inner_dim) + inner_dim = multiple_of * ((inner_dim + multiple_of - 1) // multiple_of) + self.linear_1 = nn.Linear(dim, inner_dim, bias=False) + self.linear_2 = nn.Linear(inner_dim, dim, bias=False) + self.linear_3 = nn.Linear(dim, inner_dim, bias=False) + self.silu = FP32SiLU() + + def forward(self, x): + return self.linear_2(self.silu(self.linear_1(x)) * self.linear_3(x)) + +@maybe_allow_in_graph +class TemporalBasicTransformerBlock(nn.Module): + + def __init__(self, dim: int, time_mix_inner_dim: int, num_attention_heads: int, attention_head_dim: int, cross_attention_dim: Optional[int]=None): + super().__init__() + self.is_res = dim == time_mix_inner_dim + self.norm_in = nn.LayerNorm(dim) + self.ff_in = FeedForward(dim, dim_out=time_mix_inner_dim, activation_fn='geglu') + self.norm1 = nn.LayerNorm(time_mix_inner_dim) + self.attn1 = Attention(query_dim=time_mix_inner_dim, heads=num_attention_heads, dim_head=attention_head_dim, cross_attention_dim=None) + if cross_attention_dim is not None: + self.norm2 = nn.LayerNorm(time_mix_inner_dim) + self.attn2 = Attention(query_dim=time_mix_inner_dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim) + else: + self.norm2 = None + self.attn2 = None + self.norm3 = nn.LayerNorm(time_mix_inner_dim) + self.ff = FeedForward(time_mix_inner_dim, activation_fn='geglu') + self._chunk_size = None + self._chunk_dim = None + + def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs): + self._chunk_size = chunk_size + self._chunk_dim = 1 + + def forward(self, hidden_states: torch.Tensor, num_frames: int, encoder_hidden_states: Optional[torch.Tensor]=None) -> torch.Tensor: + batch_size = hidden_states.shape[0] + (batch_frames, seq_length, channels) = hidden_states.shape + batch_size = batch_frames // num_frames + hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels) + hidden_states = hidden_states.permute(0, 2, 1, 3) + hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels) + residual = hidden_states + hidden_states = self.norm_in(hidden_states) + if self._chunk_size is not None: + hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size) + else: + hidden_states = self.ff_in(hidden_states) + if self.is_res: + hidden_states = hidden_states + residual + norm_hidden_states = self.norm1(hidden_states) + attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None) + hidden_states = attn_output + hidden_states + if self.attn2 is not None: + norm_hidden_states = self.norm2(hidden_states) + attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states) + hidden_states = attn_output + hidden_states + norm_hidden_states = self.norm3(hidden_states) + if self._chunk_size is not None: + ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) + else: + ff_output = self.ff(norm_hidden_states) + if self.is_res: + hidden_states = ff_output + hidden_states + else: + hidden_states = ff_output + hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels) + hidden_states = hidden_states.permute(0, 2, 1, 3) + hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels) + return hidden_states + +class SkipFFTransformerBlock(nn.Module): + + def __init__(self, dim: int, num_attention_heads: int, attention_head_dim: int, kv_input_dim: int, kv_input_dim_proj_use_bias: bool, dropout=0.0, cross_attention_dim: Optional[int]=None, attention_bias: bool=False, attention_out_bias: bool=True): + super().__init__() + if kv_input_dim != dim: + self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias) + else: + self.kv_mapper = None + self.norm1 = RMSNorm(dim, 1e-06) + self.attn1 = Attention(query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=cross_attention_dim, out_bias=attention_out_bias) + self.norm2 = RMSNorm(dim, 1e-06) + self.attn2 = Attention(query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, out_bias=attention_out_bias) + + def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs): + cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} + if self.kv_mapper is not None: + encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states)) + norm_hidden_states = self.norm1(hidden_states) + attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=encoder_hidden_states, **cross_attention_kwargs) + hidden_states = attn_output + hidden_states + norm_hidden_states = self.norm2(hidden_states) + attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states, **cross_attention_kwargs) + hidden_states = attn_output + hidden_states + return hidden_states + +@maybe_allow_in_graph +class FreeNoiseTransformerBlock(nn.Module): + + def __init__(self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout: float=0.0, cross_attention_dim: Optional[int]=None, activation_fn: str='geglu', num_embeds_ada_norm: Optional[int]=None, attention_bias: bool=False, only_cross_attention: bool=False, double_self_attention: bool=False, upcast_attention: bool=False, norm_elementwise_affine: bool=True, norm_type: str='layer_norm', norm_eps: float=1e-05, final_dropout: bool=False, positional_embeddings: Optional[str]=None, num_positional_embeddings: Optional[int]=None, ff_inner_dim: Optional[int]=None, ff_bias: bool=True, attention_out_bias: bool=True, context_length: int=16, context_stride: int=4, weighting_scheme: str='pyramid'): + super().__init__() + self.dim = dim + self.num_attention_heads = num_attention_heads + self.attention_head_dim = attention_head_dim + self.dropout = dropout + self.cross_attention_dim = cross_attention_dim + self.activation_fn = activation_fn + self.attention_bias = attention_bias + self.double_self_attention = double_self_attention + self.norm_elementwise_affine = norm_elementwise_affine + self.positional_embeddings = positional_embeddings + self.num_positional_embeddings = num_positional_embeddings + self.only_cross_attention = only_cross_attention + self.set_free_noise_properties(context_length, context_stride, weighting_scheme) + self.use_ada_layer_norm_zero = num_embeds_ada_norm is not None and norm_type == 'ada_norm_zero' + self.use_ada_layer_norm = num_embeds_ada_norm is not None and norm_type == 'ada_norm' + self.use_ada_layer_norm_single = norm_type == 'ada_norm_single' + self.use_layer_norm = norm_type == 'layer_norm' + self.use_ada_layer_norm_continuous = norm_type == 'ada_norm_continuous' + if norm_type in ('ada_norm', 'ada_norm_zero') and num_embeds_ada_norm is None: + raise ValueError(f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.') + self.norm_type = norm_type + self.num_embeds_ada_norm = num_embeds_ada_norm + if positional_embeddings and num_positional_embeddings is None: + raise ValueError('If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined.') + if positional_embeddings == 'sinusoidal': + self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) + else: + self.pos_embed = None + self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) + self.attn1 = Attention(query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=cross_attention_dim if only_cross_attention else None, upcast_attention=upcast_attention, out_bias=attention_out_bias) + if cross_attention_dim is not None or double_self_attention: + self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) + self.attn2 = Attention(query_dim=dim, cross_attention_dim=cross_attention_dim if not double_self_attention else None, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, out_bias=attention_out_bias) + self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout, inner_dim=ff_inner_dim, bias=ff_bias) + self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) + self._chunk_size = None + self._chunk_dim = 0 + + def _get_frame_indices(self, num_frames: int) -> List[Tuple[int, int]]: + frame_indices = [] + for i in range(0, num_frames - self.context_length + 1, self.context_stride): + window_start = i + window_end = min(num_frames, i + self.context_length) + frame_indices.append((window_start, window_end)) + return frame_indices + + def _get_frame_weights(self, num_frames: int, weighting_scheme: str='pyramid') -> List[float]: + if weighting_scheme == 'flat': + weights = [1.0] * num_frames + elif weighting_scheme == 'pyramid': + if num_frames % 2 == 0: + mid = num_frames // 2 + weights = list(range(1, mid + 1)) + weights = weights + weights[::-1] + else: + mid = (num_frames + 1) // 2 + weights = list(range(1, mid)) + weights = weights + [mid] + weights[::-1] + elif weighting_scheme == 'delayed_reverse_sawtooth': + if num_frames % 2 == 0: + mid = num_frames // 2 + weights = [0.01] * (mid - 1) + [mid] + weights = weights + list(range(mid, 0, -1)) + else: + mid = (num_frames + 1) // 2 + weights = [0.01] * mid + weights = weights + list(range(mid, 0, -1)) + else: + raise ValueError(f'Unsupported value for weighting_scheme={weighting_scheme}') + return weights + + def set_free_noise_properties(self, context_length: int, context_stride: int, weighting_scheme: str='pyramid') -> None: + self.context_length = context_length + self.context_stride = context_stride + self.weighting_scheme = weighting_scheme + + def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int=0) -> None: + self._chunk_size = chunk_size + self._chunk_dim = dim + + def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, encoder_attention_mask: Optional[torch.Tensor]=None, cross_attention_kwargs: Dict[str, Any]=None, *args, **kwargs) -> torch.Tensor: + if cross_attention_kwargs is not None: + if cross_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.') + cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} + device = hidden_states.device + dtype = hidden_states.dtype + num_frames = hidden_states.size(1) + frame_indices = self._get_frame_indices(num_frames) + frame_weights = self._get_frame_weights(self.context_length, self.weighting_scheme) + frame_weights = torch.tensor(frame_weights, device=device, dtype=dtype).unsqueeze(0).unsqueeze(-1) + is_last_frame_batch_complete = frame_indices[-1][1] == num_frames + if not is_last_frame_batch_complete: + if num_frames < self.context_length: + raise ValueError(f'Expected num_frames={num_frames!r} to be greater or equal than self.context_length={self.context_length!r}') + last_frame_batch_length = num_frames - frame_indices[-1][1] + frame_indices.append((num_frames - self.context_length, num_frames)) + num_times_accumulated = torch.zeros((1, num_frames, 1), device=device) + accumulated_values = torch.zeros_like(hidden_states) + for (i, (frame_start, frame_end)) in enumerate(frame_indices): + weights = torch.ones_like(num_times_accumulated[:, frame_start:frame_end]) + weights *= frame_weights + hidden_states_chunk = hidden_states[:, frame_start:frame_end] + norm_hidden_states = self.norm1(hidden_states_chunk) + if self.pos_embed is not None: + norm_hidden_states = self.pos_embed(norm_hidden_states) + attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs) + hidden_states_chunk = attn_output + hidden_states_chunk + if hidden_states_chunk.ndim == 4: + hidden_states_chunk = hidden_states_chunk.squeeze(1) + if self.attn2 is not None: + norm_hidden_states = self.norm2(hidden_states_chunk) + if self.pos_embed is not None and self.norm_type != 'ada_norm_single': + norm_hidden_states = self.pos_embed(norm_hidden_states) + attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs) + hidden_states_chunk = attn_output + hidden_states_chunk + if i == len(frame_indices) - 1 and (not is_last_frame_batch_complete): + accumulated_values[:, -last_frame_batch_length:] += hidden_states_chunk[:, -last_frame_batch_length:] * weights[:, -last_frame_batch_length:] + num_times_accumulated[:, -last_frame_batch_length:] += weights[:, -last_frame_batch_length] + else: + accumulated_values[:, frame_start:frame_end] += hidden_states_chunk * weights + num_times_accumulated[:, frame_start:frame_end] += weights + hidden_states = torch.cat([torch.where(num_times_split > 0, accumulated_split / num_times_split, accumulated_split) for (accumulated_split, num_times_split) in zip(accumulated_values.split(self.context_length, dim=1), num_times_accumulated.split(self.context_length, dim=1))], dim=1).to(dtype) + norm_hidden_states = self.norm3(hidden_states) + if self._chunk_size is not None: + ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) + else: + ff_output = self.ff(norm_hidden_states) + hidden_states = ff_output + hidden_states + if hidden_states.ndim == 4: + hidden_states = hidden_states.squeeze(1) + return hidden_states + +class FeedForward(nn.Module): + + def __init__(self, dim: int, dim_out: Optional[int]=None, mult: int=4, dropout: float=0.0, activation_fn: str='geglu', final_dropout: bool=False, inner_dim=None, bias: bool=True): + super().__init__() + if inner_dim is None: + inner_dim = int(dim * mult) + dim_out = dim_out if dim_out is not None else dim + if activation_fn == 'gelu': + act_fn = GELU(dim, inner_dim, bias=bias) + if activation_fn == 'gelu-approximate': + act_fn = GELU(dim, inner_dim, approximate='tanh', bias=bias) + elif activation_fn == 'geglu': + act_fn = GEGLU(dim, inner_dim, bias=bias) + elif activation_fn == 'geglu-approximate': + act_fn = ApproximateGELU(dim, inner_dim, bias=bias) + elif activation_fn == 'swiglu': + act_fn = SwiGLU(dim, inner_dim, bias=bias) + self.net = nn.ModuleList([]) + self.net.append(act_fn) + self.net.append(nn.Dropout(dropout)) + self.net.append(nn.Linear(inner_dim, dim_out, bias=bias)) + if final_dropout: + self.net.append(nn.Dropout(dropout)) + + def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + for module in self.net: + hidden_states = module(hidden_states) + return hidden_states + +# File: diffusers-main/src/diffusers/models/attention_flax.py +import functools +import math +import flax.linen as nn +import jax +import jax.numpy as jnp + +def _query_chunk_attention(query, key, value, precision, key_chunk_size: int=4096): + (num_kv, num_heads, k_features) = key.shape[-3:] + v_features = value.shape[-1] + key_chunk_size = min(key_chunk_size, num_kv) + query = query / jnp.sqrt(k_features) + + @functools.partial(jax.checkpoint, prevent_cse=False) + def summarize_chunk(query, key, value): + attn_weights = jnp.einsum('...qhd,...khd->...qhk', query, key, precision=precision) + max_score = jnp.max(attn_weights, axis=-1, keepdims=True) + max_score = jax.lax.stop_gradient(max_score) + exp_weights = jnp.exp(attn_weights - max_score) + exp_values = jnp.einsum('...vhf,...qhv->...qhf', value, exp_weights, precision=precision) + max_score = jnp.einsum('...qhk->...qh', max_score) + return (exp_values, exp_weights.sum(axis=-1), max_score) + + def chunk_scanner(chunk_idx): + key_chunk = jax.lax.dynamic_slice(operand=key, start_indices=[0] * (key.ndim - 3) + [chunk_idx, 0, 0], slice_sizes=list(key.shape[:-3]) + [key_chunk_size, num_heads, k_features]) + value_chunk = jax.lax.dynamic_slice(operand=value, start_indices=[0] * (value.ndim - 3) + [chunk_idx, 0, 0], slice_sizes=list(value.shape[:-3]) + [key_chunk_size, num_heads, v_features]) + return summarize_chunk(query, key_chunk, value_chunk) + (chunk_values, chunk_weights, chunk_max) = jax.lax.map(f=chunk_scanner, xs=jnp.arange(0, num_kv, key_chunk_size)) + global_max = jnp.max(chunk_max, axis=0, keepdims=True) + max_diffs = jnp.exp(chunk_max - global_max) + chunk_values *= jnp.expand_dims(max_diffs, axis=-1) + chunk_weights *= max_diffs + all_values = chunk_values.sum(axis=0) + all_weights = jnp.expand_dims(chunk_weights, -1).sum(axis=0) + return all_values / all_weights + +def jax_memory_efficient_attention(query, key, value, precision=jax.lax.Precision.HIGHEST, query_chunk_size: int=1024, key_chunk_size: int=4096): + (num_q, num_heads, q_features) = query.shape[-3:] + + def chunk_scanner(chunk_idx, _): + query_chunk = jax.lax.dynamic_slice(operand=query, start_indices=[0] * (query.ndim - 3) + [chunk_idx, 0, 0], slice_sizes=list(query.shape[:-3]) + [min(query_chunk_size, num_q), num_heads, q_features]) + return (chunk_idx + query_chunk_size, _query_chunk_attention(query=query_chunk, key=key, value=value, precision=precision, key_chunk_size=key_chunk_size)) + (_, res) = jax.lax.scan(f=chunk_scanner, init=0, xs=None, length=math.ceil(num_q / query_chunk_size)) + return jnp.concatenate(res, axis=-3) + +class FlaxAttention(nn.Module): + query_dim: int + heads: int = 8 + dim_head: int = 64 + dropout: float = 0.0 + use_memory_efficient_attention: bool = False + split_head_dim: bool = False + dtype: jnp.dtype = jnp.float32 + + def setup(self): + inner_dim = self.dim_head * self.heads + self.scale = self.dim_head ** (-0.5) + self.query = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name='to_q') + self.key = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name='to_k') + self.value = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name='to_v') + self.proj_attn = nn.Dense(self.query_dim, dtype=self.dtype, name='to_out_0') + self.dropout_layer = nn.Dropout(rate=self.dropout) + + def reshape_heads_to_batch_dim(self, tensor): + (batch_size, seq_len, dim) = tensor.shape + head_size = self.heads + tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) + tensor = jnp.transpose(tensor, (0, 2, 1, 3)) + tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size) + return tensor + + def reshape_batch_dim_to_heads(self, tensor): + (batch_size, seq_len, dim) = tensor.shape + head_size = self.heads + tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) + tensor = jnp.transpose(tensor, (0, 2, 1, 3)) + tensor = tensor.reshape(batch_size // head_size, seq_len, dim * head_size) + return tensor + + def __call__(self, hidden_states, context=None, deterministic=True): + context = hidden_states if context is None else context + query_proj = self.query(hidden_states) + key_proj = self.key(context) + value_proj = self.value(context) + if self.split_head_dim: + b = hidden_states.shape[0] + query_states = jnp.reshape(query_proj, (b, -1, self.heads, self.dim_head)) + key_states = jnp.reshape(key_proj, (b, -1, self.heads, self.dim_head)) + value_states = jnp.reshape(value_proj, (b, -1, self.heads, self.dim_head)) + else: + query_states = self.reshape_heads_to_batch_dim(query_proj) + key_states = self.reshape_heads_to_batch_dim(key_proj) + value_states = self.reshape_heads_to_batch_dim(value_proj) + if self.use_memory_efficient_attention: + query_states = query_states.transpose(1, 0, 2) + key_states = key_states.transpose(1, 0, 2) + value_states = value_states.transpose(1, 0, 2) + flatten_latent_dim = query_states.shape[-3] + if flatten_latent_dim % 64 == 0: + query_chunk_size = int(flatten_latent_dim / 64) + elif flatten_latent_dim % 16 == 0: + query_chunk_size = int(flatten_latent_dim / 16) + elif flatten_latent_dim % 4 == 0: + query_chunk_size = int(flatten_latent_dim / 4) + else: + query_chunk_size = int(flatten_latent_dim) + hidden_states = jax_memory_efficient_attention(query_states, key_states, value_states, query_chunk_size=query_chunk_size, key_chunk_size=4096 * 4) + hidden_states = hidden_states.transpose(1, 0, 2) + else: + if self.split_head_dim: + attention_scores = jnp.einsum('b t n h, b f n h -> b n f t', key_states, query_states) + else: + attention_scores = jnp.einsum('b i d, b j d->b i j', query_states, key_states) + attention_scores = attention_scores * self.scale + attention_probs = nn.softmax(attention_scores, axis=-1 if self.split_head_dim else 2) + if self.split_head_dim: + hidden_states = jnp.einsum('b n f t, b t n h -> b f n h', attention_probs, value_states) + b = hidden_states.shape[0] + hidden_states = jnp.reshape(hidden_states, (b, -1, self.heads * self.dim_head)) + else: + hidden_states = jnp.einsum('b i j, b j d -> b i d', attention_probs, value_states) + hidden_states = self.reshape_batch_dim_to_heads(hidden_states) + hidden_states = self.proj_attn(hidden_states) + return self.dropout_layer(hidden_states, deterministic=deterministic) + +class FlaxBasicTransformerBlock(nn.Module): + dim: int + n_heads: int + d_head: int + dropout: float = 0.0 + only_cross_attention: bool = False + dtype: jnp.dtype = jnp.float32 + use_memory_efficient_attention: bool = False + split_head_dim: bool = False + + def setup(self): + self.attn1 = FlaxAttention(self.dim, self.n_heads, self.d_head, self.dropout, self.use_memory_efficient_attention, self.split_head_dim, dtype=self.dtype) + self.attn2 = FlaxAttention(self.dim, self.n_heads, self.d_head, self.dropout, self.use_memory_efficient_attention, self.split_head_dim, dtype=self.dtype) + self.ff = FlaxFeedForward(dim=self.dim, dropout=self.dropout, dtype=self.dtype) + self.norm1 = nn.LayerNorm(epsilon=1e-05, dtype=self.dtype) + self.norm2 = nn.LayerNorm(epsilon=1e-05, dtype=self.dtype) + self.norm3 = nn.LayerNorm(epsilon=1e-05, dtype=self.dtype) + self.dropout_layer = nn.Dropout(rate=self.dropout) + + def __call__(self, hidden_states, context, deterministic=True): + residual = hidden_states + if self.only_cross_attention: + hidden_states = self.attn1(self.norm1(hidden_states), context, deterministic=deterministic) + else: + hidden_states = self.attn1(self.norm1(hidden_states), deterministic=deterministic) + hidden_states = hidden_states + residual + residual = hidden_states + hidden_states = self.attn2(self.norm2(hidden_states), context, deterministic=deterministic) + hidden_states = hidden_states + residual + residual = hidden_states + hidden_states = self.ff(self.norm3(hidden_states), deterministic=deterministic) + hidden_states = hidden_states + residual + return self.dropout_layer(hidden_states, deterministic=deterministic) + +class FlaxTransformer2DModel(nn.Module): + in_channels: int + n_heads: int + d_head: int + depth: int = 1 + dropout: float = 0.0 + use_linear_projection: bool = False + only_cross_attention: bool = False + dtype: jnp.dtype = jnp.float32 + use_memory_efficient_attention: bool = False + split_head_dim: bool = False + + def setup(self): + self.norm = nn.GroupNorm(num_groups=32, epsilon=1e-05) + inner_dim = self.n_heads * self.d_head + if self.use_linear_projection: + self.proj_in = nn.Dense(inner_dim, dtype=self.dtype) + else: + self.proj_in = nn.Conv(inner_dim, kernel_size=(1, 1), strides=(1, 1), padding='VALID', dtype=self.dtype) + self.transformer_blocks = [FlaxBasicTransformerBlock(inner_dim, self.n_heads, self.d_head, dropout=self.dropout, only_cross_attention=self.only_cross_attention, dtype=self.dtype, use_memory_efficient_attention=self.use_memory_efficient_attention, split_head_dim=self.split_head_dim) for _ in range(self.depth)] + if self.use_linear_projection: + self.proj_out = nn.Dense(inner_dim, dtype=self.dtype) + else: + self.proj_out = nn.Conv(inner_dim, kernel_size=(1, 1), strides=(1, 1), padding='VALID', dtype=self.dtype) + self.dropout_layer = nn.Dropout(rate=self.dropout) + + def __call__(self, hidden_states, context, deterministic=True): + (batch, height, width, channels) = hidden_states.shape + residual = hidden_states + hidden_states = self.norm(hidden_states) + if self.use_linear_projection: + hidden_states = hidden_states.reshape(batch, height * width, channels) + hidden_states = self.proj_in(hidden_states) + else: + hidden_states = self.proj_in(hidden_states) + hidden_states = hidden_states.reshape(batch, height * width, channels) + for transformer_block in self.transformer_blocks: + hidden_states = transformer_block(hidden_states, context, deterministic=deterministic) + if self.use_linear_projection: + hidden_states = self.proj_out(hidden_states) + hidden_states = hidden_states.reshape(batch, height, width, channels) + else: + hidden_states = hidden_states.reshape(batch, height, width, channels) + hidden_states = self.proj_out(hidden_states) + hidden_states = hidden_states + residual + return self.dropout_layer(hidden_states, deterministic=deterministic) + +class FlaxFeedForward(nn.Module): + dim: int + dropout: float = 0.0 + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.net_0 = FlaxGEGLU(self.dim, self.dropout, self.dtype) + self.net_2 = nn.Dense(self.dim, dtype=self.dtype) + + def __call__(self, hidden_states, deterministic=True): + hidden_states = self.net_0(hidden_states, deterministic=deterministic) + hidden_states = self.net_2(hidden_states) + return hidden_states + +class FlaxGEGLU(nn.Module): + dim: int + dropout: float = 0.0 + dtype: jnp.dtype = jnp.float32 + + def setup(self): + inner_dim = self.dim * 4 + self.proj = nn.Dense(inner_dim * 2, dtype=self.dtype) + self.dropout_layer = nn.Dropout(rate=self.dropout) + + def __call__(self, hidden_states, deterministic=True): + hidden_states = self.proj(hidden_states) + (hidden_linear, hidden_gelu) = jnp.split(hidden_states, 2, axis=2) + return self.dropout_layer(hidden_linear * nn.gelu(hidden_gelu), deterministic=deterministic) + +# File: diffusers-main/src/diffusers/models/attention_processor.py +import inspect +import math +from typing import Callable, List, Optional, Tuple, Union +import torch +import torch.nn.functional as F +from torch import nn +from ..image_processor import IPAdapterMaskProcessor +from ..utils import deprecate, logging +from ..utils.import_utils import is_torch_npu_available, is_xformers_available +from ..utils.torch_utils import is_torch_version, maybe_allow_in_graph +logger = logging.get_logger(__name__) +if is_torch_npu_available(): + import torch_npu +if is_xformers_available(): + import xformers + import xformers.ops +else: + xformers = None + +@maybe_allow_in_graph +class Attention(nn.Module): + + def __init__(self, query_dim: int, cross_attention_dim: Optional[int]=None, heads: int=8, kv_heads: Optional[int]=None, dim_head: int=64, dropout: float=0.0, bias: bool=False, upcast_attention: bool=False, upcast_softmax: bool=False, cross_attention_norm: Optional[str]=None, cross_attention_norm_num_groups: int=32, qk_norm: Optional[str]=None, added_kv_proj_dim: Optional[int]=None, added_proj_bias: Optional[bool]=True, norm_num_groups: Optional[int]=None, spatial_norm_dim: Optional[int]=None, out_bias: bool=True, scale_qk: bool=True, only_cross_attention: bool=False, eps: float=1e-05, rescale_output_factor: float=1.0, residual_connection: bool=False, _from_deprecated_attn_block: bool=False, processor: Optional['AttnProcessor']=None, out_dim: int=None, context_pre_only=None, pre_only=False): + super().__init__() + from .normalization import FP32LayerNorm, RMSNorm + self.inner_dim = out_dim if out_dim is not None else dim_head * heads + self.inner_kv_dim = self.inner_dim if kv_heads is None else dim_head * kv_heads + self.query_dim = query_dim + self.use_bias = bias + self.is_cross_attention = cross_attention_dim is not None + self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim + self.upcast_attention = upcast_attention + self.upcast_softmax = upcast_softmax + self.rescale_output_factor = rescale_output_factor + self.residual_connection = residual_connection + self.dropout = dropout + self.fused_projections = False + self.out_dim = out_dim if out_dim is not None else query_dim + self.context_pre_only = context_pre_only + self.pre_only = pre_only + self._from_deprecated_attn_block = _from_deprecated_attn_block + self.scale_qk = scale_qk + self.scale = dim_head ** (-0.5) if self.scale_qk else 1.0 + self.heads = out_dim // dim_head if out_dim is not None else heads + self.sliceable_head_dim = heads + self.added_kv_proj_dim = added_kv_proj_dim + self.only_cross_attention = only_cross_attention + if self.added_kv_proj_dim is None and self.only_cross_attention: + raise ValueError('`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`.') + if norm_num_groups is not None: + self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True) + else: + self.group_norm = None + if spatial_norm_dim is not None: + self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim) + else: + self.spatial_norm = None + if qk_norm is None: + self.norm_q = None + self.norm_k = None + elif qk_norm == 'layer_norm': + self.norm_q = nn.LayerNorm(dim_head, eps=eps) + self.norm_k = nn.LayerNorm(dim_head, eps=eps) + elif qk_norm == 'fp32_layer_norm': + self.norm_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) + self.norm_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) + elif qk_norm == 'layer_norm_across_heads': + self.norm_q = nn.LayerNorm(dim_head * heads, eps=eps) + self.norm_k = nn.LayerNorm(dim_head * kv_heads, eps=eps) + elif qk_norm == 'rms_norm': + self.norm_q = RMSNorm(dim_head, eps=eps) + self.norm_k = RMSNorm(dim_head, eps=eps) + else: + raise ValueError(f"unknown qk_norm: {qk_norm}. Should be None or 'layer_norm'") + if cross_attention_norm is None: + self.norm_cross = None + elif cross_attention_norm == 'layer_norm': + self.norm_cross = nn.LayerNorm(self.cross_attention_dim) + elif cross_attention_norm == 'group_norm': + if self.added_kv_proj_dim is not None: + norm_cross_num_channels = added_kv_proj_dim + else: + norm_cross_num_channels = self.cross_attention_dim + self.norm_cross = nn.GroupNorm(num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-05, affine=True) + else: + raise ValueError(f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'") + self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias) + if not self.only_cross_attention: + self.to_k = nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias) + self.to_v = nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias) + else: + self.to_k = None + self.to_v = None + self.added_proj_bias = added_proj_bias + if self.added_kv_proj_dim is not None: + self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias) + self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias) + if self.context_pre_only is not None: + self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias) + if not self.pre_only: + self.to_out = nn.ModuleList([]) + self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias)) + self.to_out.append(nn.Dropout(dropout)) + if self.context_pre_only is not None and (not self.context_pre_only): + self.to_add_out = nn.Linear(self.inner_dim, self.out_dim, bias=out_bias) + if qk_norm is not None and added_kv_proj_dim is not None: + if qk_norm == 'fp32_layer_norm': + self.norm_added_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) + self.norm_added_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) + elif qk_norm == 'rms_norm': + self.norm_added_q = RMSNorm(dim_head, eps=eps) + self.norm_added_k = RMSNorm(dim_head, eps=eps) + else: + self.norm_added_q = None + self.norm_added_k = None + if processor is None: + processor = AttnProcessor2_0() if hasattr(F, 'scaled_dot_product_attention') and self.scale_qk else AttnProcessor() + self.set_processor(processor) + + def set_use_npu_flash_attention(self, use_npu_flash_attention: bool) -> None: + if use_npu_flash_attention: + processor = AttnProcessorNPU() + else: + processor = AttnProcessor2_0() if hasattr(F, 'scaled_dot_product_attention') and self.scale_qk else AttnProcessor() + self.set_processor(processor) + + def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable]=None) -> None: + is_custom_diffusion = hasattr(self, 'processor') and isinstance(self.processor, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor, CustomDiffusionAttnProcessor2_0)) + is_added_kv_processor = hasattr(self, 'processor') and isinstance(self.processor, (AttnAddedKVProcessor, AttnAddedKVProcessor2_0, SlicedAttnAddedKVProcessor, XFormersAttnAddedKVProcessor)) + if use_memory_efficient_attention_xformers: + if is_added_kv_processor and is_custom_diffusion: + raise NotImplementedError(f'Memory efficient attention is currently not supported for custom diffusion for attention processor type {self.processor}') + if not is_xformers_available(): + raise ModuleNotFoundError('Refer to https://github.com/facebookresearch/xformers for more information on how to install xformers', name='xformers') + elif not torch.cuda.is_available(): + raise ValueError("torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only available for GPU ") + else: + try: + _ = xformers.ops.memory_efficient_attention(torch.randn((1, 2, 40), device='cuda'), torch.randn((1, 2, 40), device='cuda'), torch.randn((1, 2, 40), device='cuda')) + except Exception as e: + raise e + if is_custom_diffusion: + processor = CustomDiffusionXFormersAttnProcessor(train_kv=self.processor.train_kv, train_q_out=self.processor.train_q_out, hidden_size=self.processor.hidden_size, cross_attention_dim=self.processor.cross_attention_dim, attention_op=attention_op) + processor.load_state_dict(self.processor.state_dict()) + if hasattr(self.processor, 'to_k_custom_diffusion'): + processor.to(self.processor.to_k_custom_diffusion.weight.device) + elif is_added_kv_processor: + logger.info('Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation.') + processor = XFormersAttnAddedKVProcessor(attention_op=attention_op) + else: + processor = XFormersAttnProcessor(attention_op=attention_op) + elif is_custom_diffusion: + attn_processor_class = CustomDiffusionAttnProcessor2_0 if hasattr(F, 'scaled_dot_product_attention') else CustomDiffusionAttnProcessor + processor = attn_processor_class(train_kv=self.processor.train_kv, train_q_out=self.processor.train_q_out, hidden_size=self.processor.hidden_size, cross_attention_dim=self.processor.cross_attention_dim) + processor.load_state_dict(self.processor.state_dict()) + if hasattr(self.processor, 'to_k_custom_diffusion'): + processor.to(self.processor.to_k_custom_diffusion.weight.device) + else: + processor = AttnProcessor2_0() if hasattr(F, 'scaled_dot_product_attention') and self.scale_qk else AttnProcessor() + self.set_processor(processor) + + def set_attention_slice(self, slice_size: int) -> None: + if slice_size is not None and slice_size > self.sliceable_head_dim: + raise ValueError(f'slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.') + if slice_size is not None and self.added_kv_proj_dim is not None: + processor = SlicedAttnAddedKVProcessor(slice_size) + elif slice_size is not None: + processor = SlicedAttnProcessor(slice_size) + elif self.added_kv_proj_dim is not None: + processor = AttnAddedKVProcessor() + else: + processor = AttnProcessor2_0() if hasattr(F, 'scaled_dot_product_attention') and self.scale_qk else AttnProcessor() + self.set_processor(processor) + + def set_processor(self, processor: 'AttnProcessor') -> None: + if hasattr(self, 'processor') and isinstance(self.processor, torch.nn.Module) and (not isinstance(processor, torch.nn.Module)): + logger.info(f'You are removing possibly trained weights of {self.processor} with {processor}') + self._modules.pop('processor') + self.processor = processor + + def get_processor(self, return_deprecated_lora: bool=False) -> 'AttentionProcessor': + if not return_deprecated_lora: + return self.processor + + def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, **cross_attention_kwargs) -> torch.Tensor: + attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys()) + quiet_attn_parameters = {'ip_adapter_masks'} + unused_kwargs = [k for (k, _) in cross_attention_kwargs.items() if k not in attn_parameters and k not in quiet_attn_parameters] + if len(unused_kwargs) > 0: + logger.warning(f'cross_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored.') + cross_attention_kwargs = {k: w for (k, w) in cross_attention_kwargs.items() if k in attn_parameters} + return self.processor(self, hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, **cross_attention_kwargs) + + def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor: + head_size = self.heads + (batch_size, seq_len, dim) = tensor.shape + tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) + tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) + return tensor + + def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int=3) -> torch.Tensor: + head_size = self.heads + if tensor.ndim == 3: + (batch_size, seq_len, dim) = tensor.shape + extra_dim = 1 + else: + (batch_size, extra_dim, seq_len, dim) = tensor.shape + tensor = tensor.reshape(batch_size, seq_len * extra_dim, head_size, dim // head_size) + tensor = tensor.permute(0, 2, 1, 3) + if out_dim == 3: + tensor = tensor.reshape(batch_size * head_size, seq_len * extra_dim, dim // head_size) + return tensor + + def get_attention_scores(self, query: torch.Tensor, key: torch.Tensor, attention_mask: Optional[torch.Tensor]=None) -> torch.Tensor: + dtype = query.dtype + if self.upcast_attention: + query = query.float() + key = key.float() + if attention_mask is None: + baddbmm_input = torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device) + beta = 0 + else: + baddbmm_input = attention_mask + beta = 1 + attention_scores = torch.baddbmm(baddbmm_input, query, key.transpose(-1, -2), beta=beta, alpha=self.scale) + del baddbmm_input + if self.upcast_softmax: + attention_scores = attention_scores.float() + attention_probs = attention_scores.softmax(dim=-1) + del attention_scores + attention_probs = attention_probs.to(dtype) + return attention_probs + + def prepare_attention_mask(self, attention_mask: torch.Tensor, target_length: int, batch_size: int, out_dim: int=3) -> torch.Tensor: + head_size = self.heads + if attention_mask is None: + return attention_mask + current_length: int = attention_mask.shape[-1] + if current_length != target_length: + if attention_mask.device.type == 'mps': + padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length) + padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device) + attention_mask = torch.cat([attention_mask, padding], dim=2) + else: + attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) + if out_dim == 3: + if attention_mask.shape[0] < batch_size * head_size: + attention_mask = attention_mask.repeat_interleave(head_size, dim=0) + elif out_dim == 4: + attention_mask = attention_mask.unsqueeze(1) + attention_mask = attention_mask.repeat_interleave(head_size, dim=1) + return attention_mask + + def norm_encoder_hidden_states(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: + assert self.norm_cross is not None, 'self.norm_cross must be defined to call self.norm_encoder_hidden_states' + if isinstance(self.norm_cross, nn.LayerNorm): + encoder_hidden_states = self.norm_cross(encoder_hidden_states) + elif isinstance(self.norm_cross, nn.GroupNorm): + encoder_hidden_states = encoder_hidden_states.transpose(1, 2) + encoder_hidden_states = self.norm_cross(encoder_hidden_states) + encoder_hidden_states = encoder_hidden_states.transpose(1, 2) + else: + assert False + return encoder_hidden_states + + @torch.no_grad() + def fuse_projections(self, fuse=True): + device = self.to_q.weight.data.device + dtype = self.to_q.weight.data.dtype + if not self.is_cross_attention: + concatenated_weights = torch.cat([self.to_q.weight.data, self.to_k.weight.data, self.to_v.weight.data]) + in_features = concatenated_weights.shape[1] + out_features = concatenated_weights.shape[0] + self.to_qkv = nn.Linear(in_features, out_features, bias=self.use_bias, device=device, dtype=dtype) + self.to_qkv.weight.copy_(concatenated_weights) + if self.use_bias: + concatenated_bias = torch.cat([self.to_q.bias.data, self.to_k.bias.data, self.to_v.bias.data]) + self.to_qkv.bias.copy_(concatenated_bias) + else: + concatenated_weights = torch.cat([self.to_k.weight.data, self.to_v.weight.data]) + in_features = concatenated_weights.shape[1] + out_features = concatenated_weights.shape[0] + self.to_kv = nn.Linear(in_features, out_features, bias=self.use_bias, device=device, dtype=dtype) + self.to_kv.weight.copy_(concatenated_weights) + if self.use_bias: + concatenated_bias = torch.cat([self.to_k.bias.data, self.to_v.bias.data]) + self.to_kv.bias.copy_(concatenated_bias) + if hasattr(self, 'add_q_proj') and hasattr(self, 'add_k_proj') and hasattr(self, 'add_v_proj'): + concatenated_weights = torch.cat([self.add_q_proj.weight.data, self.add_k_proj.weight.data, self.add_v_proj.weight.data]) + in_features = concatenated_weights.shape[1] + out_features = concatenated_weights.shape[0] + self.to_added_qkv = nn.Linear(in_features, out_features, bias=self.added_proj_bias, device=device, dtype=dtype) + self.to_added_qkv.weight.copy_(concatenated_weights) + if self.added_proj_bias: + concatenated_bias = torch.cat([self.add_q_proj.bias.data, self.add_k_proj.bias.data, self.add_v_proj.bias.data]) + self.to_added_qkv.bias.copy_(concatenated_bias) + self.fused_projections = fuse + +class AttnProcessor: + + def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, temb: Optional[torch.Tensor]=None, *args, **kwargs) -> torch.Tensor: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + input_ndim = hidden_states.ndim + if input_ndim == 4: + (batch_size, channel, height, width) = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + (batch_size, sequence_length, _) = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + query = attn.to_q(hidden_states) + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + query = attn.head_to_batch_dim(query) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + attention_probs = attn.get_attention_scores(query, key, attention_mask) + hidden_states = torch.bmm(attention_probs, value) + hidden_states = attn.batch_to_head_dim(hidden_states) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + if attn.residual_connection: + hidden_states = hidden_states + residual + hidden_states = hidden_states / attn.rescale_output_factor + return hidden_states + +class CustomDiffusionAttnProcessor(nn.Module): + + def __init__(self, train_kv: bool=True, train_q_out: bool=True, hidden_size: Optional[int]=None, cross_attention_dim: Optional[int]=None, out_bias: bool=True, dropout: float=0.0): + super().__init__() + self.train_kv = train_kv + self.train_q_out = train_q_out + self.hidden_size = hidden_size + self.cross_attention_dim = cross_attention_dim + if self.train_kv: + self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) + self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) + if self.train_q_out: + self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False) + self.to_out_custom_diffusion = nn.ModuleList([]) + self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias)) + self.to_out_custom_diffusion.append(nn.Dropout(dropout)) + + def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None) -> torch.Tensor: + (batch_size, sequence_length, _) = hidden_states.shape + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + if self.train_q_out: + query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype) + else: + query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype)) + if encoder_hidden_states is None: + crossattn = False + encoder_hidden_states = hidden_states + else: + crossattn = True + if attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + if self.train_kv: + key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype)) + value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype)) + key = key.to(attn.to_q.weight.dtype) + value = value.to(attn.to_q.weight.dtype) + else: + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + if crossattn: + detach = torch.ones_like(key) + detach[:, :1, :] = detach[:, :1, :] * 0.0 + key = detach * key + (1 - detach) * key.detach() + value = detach * value + (1 - detach) * value.detach() + query = attn.head_to_batch_dim(query) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + attention_probs = attn.get_attention_scores(query, key, attention_mask) + hidden_states = torch.bmm(attention_probs, value) + hidden_states = attn.batch_to_head_dim(hidden_states) + if self.train_q_out: + hidden_states = self.to_out_custom_diffusion[0](hidden_states) + hidden_states = self.to_out_custom_diffusion[1](hidden_states) + else: + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + return hidden_states + +class AttnAddedKVProcessor: + + def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, *args, **kwargs) -> torch.Tensor: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + residual = hidden_states + hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) + (batch_size, sequence_length, _) = hidden_states.shape + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + query = attn.to_q(hidden_states) + query = attn.head_to_batch_dim(query) + encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) + encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) + encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj) + encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj) + if not attn.only_cross_attention: + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) + value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) + else: + key = encoder_hidden_states_key_proj + value = encoder_hidden_states_value_proj + attention_probs = attn.get_attention_scores(query, key, attention_mask) + hidden_states = torch.bmm(attention_probs, value) + hidden_states = attn.batch_to_head_dim(hidden_states) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) + hidden_states = hidden_states + residual + return hidden_states + +class AttnAddedKVProcessor2_0: + + def __init__(self): + if not hasattr(F, 'scaled_dot_product_attention'): + raise ImportError('AttnAddedKVProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') + + def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, *args, **kwargs) -> torch.Tensor: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + residual = hidden_states + hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) + (batch_size, sequence_length, _) = hidden_states.shape + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size, out_dim=4) + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + query = attn.to_q(hidden_states) + query = attn.head_to_batch_dim(query, out_dim=4) + encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) + encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) + encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj, out_dim=4) + encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj, out_dim=4) + if not attn.only_cross_attention: + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + key = attn.head_to_batch_dim(key, out_dim=4) + value = attn.head_to_batch_dim(value, out_dim=4) + key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) + value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) + else: + key = encoder_hidden_states_key_proj + value = encoder_hidden_states_value_proj + hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, residual.shape[1]) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) + hidden_states = hidden_states + residual + return hidden_states + +class JointAttnProcessor2_0: + + def __init__(self): + if not hasattr(F, 'scaled_dot_product_attention'): + raise ImportError('AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') + + def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor=None, attention_mask: Optional[torch.FloatTensor]=None, *args, **kwargs) -> torch.FloatTensor: + residual = hidden_states + input_ndim = hidden_states.ndim + if input_ndim == 4: + (batch_size, channel, height, width) = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + context_input_ndim = encoder_hidden_states.ndim + if context_input_ndim == 4: + (batch_size, channel, height, width) = encoder_hidden_states.shape + encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + batch_size = encoder_hidden_states.shape[0] + query = attn.to_q(hidden_states) + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) + encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) + encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) + query = torch.cat([query, encoder_hidden_states_query_proj], dim=1) + key = torch.cat([key, encoder_hidden_states_key_proj], dim=1) + value = torch.cat([value, encoder_hidden_states_value_proj], dim=1) + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + (hidden_states, encoder_hidden_states) = (hidden_states[:, :residual.shape[1]], hidden_states[:, residual.shape[1]:]) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + if not attn.context_pre_only: + encoder_hidden_states = attn.to_add_out(encoder_hidden_states) + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + if context_input_ndim == 4: + encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + return (hidden_states, encoder_hidden_states) + +class PAGJointAttnProcessor2_0: + + def __init__(self): + if not hasattr(F, 'scaled_dot_product_attention'): + raise ImportError('PAGJointAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') + + def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor=None) -> torch.FloatTensor: + residual = hidden_states + input_ndim = hidden_states.ndim + if input_ndim == 4: + (batch_size, channel, height, width) = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + context_input_ndim = encoder_hidden_states.ndim + if context_input_ndim == 4: + (batch_size, channel, height, width) = encoder_hidden_states.shape + encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + identity_block_size = hidden_states.shape[1] + (hidden_states_org, hidden_states_ptb) = hidden_states.chunk(2) + (encoder_hidden_states_org, encoder_hidden_states_ptb) = encoder_hidden_states.chunk(2) + batch_size = encoder_hidden_states_org.shape[0] + query_org = attn.to_q(hidden_states_org) + key_org = attn.to_k(hidden_states_org) + value_org = attn.to_v(hidden_states_org) + encoder_hidden_states_org_query_proj = attn.add_q_proj(encoder_hidden_states_org) + encoder_hidden_states_org_key_proj = attn.add_k_proj(encoder_hidden_states_org) + encoder_hidden_states_org_value_proj = attn.add_v_proj(encoder_hidden_states_org) + query_org = torch.cat([query_org, encoder_hidden_states_org_query_proj], dim=1) + key_org = torch.cat([key_org, encoder_hidden_states_org_key_proj], dim=1) + value_org = torch.cat([value_org, encoder_hidden_states_org_value_proj], dim=1) + inner_dim = key_org.shape[-1] + head_dim = inner_dim // attn.heads + query_org = query_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key_org = key_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value_org = value_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + hidden_states_org = F.scaled_dot_product_attention(query_org, key_org, value_org, dropout_p=0.0, is_causal=False) + hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states_org = hidden_states_org.to(query_org.dtype) + (hidden_states_org, encoder_hidden_states_org) = (hidden_states_org[:, :residual.shape[1]], hidden_states_org[:, residual.shape[1]:]) + hidden_states_org = attn.to_out[0](hidden_states_org) + hidden_states_org = attn.to_out[1](hidden_states_org) + if not attn.context_pre_only: + encoder_hidden_states_org = attn.to_add_out(encoder_hidden_states_org) + if input_ndim == 4: + hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) + if context_input_ndim == 4: + encoder_hidden_states_org = encoder_hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) + batch_size = encoder_hidden_states_ptb.shape[0] + query_ptb = attn.to_q(hidden_states_ptb) + key_ptb = attn.to_k(hidden_states_ptb) + value_ptb = attn.to_v(hidden_states_ptb) + encoder_hidden_states_ptb_query_proj = attn.add_q_proj(encoder_hidden_states_ptb) + encoder_hidden_states_ptb_key_proj = attn.add_k_proj(encoder_hidden_states_ptb) + encoder_hidden_states_ptb_value_proj = attn.add_v_proj(encoder_hidden_states_ptb) + query_ptb = torch.cat([query_ptb, encoder_hidden_states_ptb_query_proj], dim=1) + key_ptb = torch.cat([key_ptb, encoder_hidden_states_ptb_key_proj], dim=1) + value_ptb = torch.cat([value_ptb, encoder_hidden_states_ptb_value_proj], dim=1) + inner_dim = key_ptb.shape[-1] + head_dim = inner_dim // attn.heads + query_ptb = query_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key_ptb = key_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value_ptb = value_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + seq_len = query_ptb.size(2) + full_mask = torch.zeros((seq_len, seq_len), device=query_ptb.device, dtype=query_ptb.dtype) + full_mask[:identity_block_size, :identity_block_size] = float('-inf') + full_mask[:identity_block_size, :identity_block_size].fill_diagonal_(0) + full_mask = full_mask.unsqueeze(0).unsqueeze(0) + hidden_states_ptb = F.scaled_dot_product_attention(query_ptb, key_ptb, value_ptb, attn_mask=full_mask, dropout_p=0.0, is_causal=False) + hidden_states_ptb = hidden_states_ptb.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states_ptb = hidden_states_ptb.to(query_ptb.dtype) + (hidden_states_ptb, encoder_hidden_states_ptb) = (hidden_states_ptb[:, :residual.shape[1]], hidden_states_ptb[:, residual.shape[1]:]) + hidden_states_ptb = attn.to_out[0](hidden_states_ptb) + hidden_states_ptb = attn.to_out[1](hidden_states_ptb) + if not attn.context_pre_only: + encoder_hidden_states_ptb = attn.to_add_out(encoder_hidden_states_ptb) + if input_ndim == 4: + hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) + if context_input_ndim == 4: + encoder_hidden_states_ptb = encoder_hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) + hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) + encoder_hidden_states = torch.cat([encoder_hidden_states_org, encoder_hidden_states_ptb]) + return (hidden_states, encoder_hidden_states) + +class PAGCFGJointAttnProcessor2_0: + + def __init__(self): + if not hasattr(F, 'scaled_dot_product_attention'): + raise ImportError('PAGCFGJointAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') + + def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor=None, attention_mask: Optional[torch.FloatTensor]=None, *args, **kwargs) -> torch.FloatTensor: + residual = hidden_states + input_ndim = hidden_states.ndim + if input_ndim == 4: + (batch_size, channel, height, width) = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + context_input_ndim = encoder_hidden_states.ndim + if context_input_ndim == 4: + (batch_size, channel, height, width) = encoder_hidden_states.shape + encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + identity_block_size = hidden_states.shape[1] + (hidden_states_uncond, hidden_states_org, hidden_states_ptb) = hidden_states.chunk(3) + hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org]) + (encoder_hidden_states_uncond, encoder_hidden_states_org, encoder_hidden_states_ptb) = encoder_hidden_states.chunk(3) + encoder_hidden_states_org = torch.cat([encoder_hidden_states_uncond, encoder_hidden_states_org]) + batch_size = encoder_hidden_states_org.shape[0] + query_org = attn.to_q(hidden_states_org) + key_org = attn.to_k(hidden_states_org) + value_org = attn.to_v(hidden_states_org) + encoder_hidden_states_org_query_proj = attn.add_q_proj(encoder_hidden_states_org) + encoder_hidden_states_org_key_proj = attn.add_k_proj(encoder_hidden_states_org) + encoder_hidden_states_org_value_proj = attn.add_v_proj(encoder_hidden_states_org) + query_org = torch.cat([query_org, encoder_hidden_states_org_query_proj], dim=1) + key_org = torch.cat([key_org, encoder_hidden_states_org_key_proj], dim=1) + value_org = torch.cat([value_org, encoder_hidden_states_org_value_proj], dim=1) + inner_dim = key_org.shape[-1] + head_dim = inner_dim // attn.heads + query_org = query_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key_org = key_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value_org = value_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + hidden_states_org = F.scaled_dot_product_attention(query_org, key_org, value_org, dropout_p=0.0, is_causal=False) + hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states_org = hidden_states_org.to(query_org.dtype) + (hidden_states_org, encoder_hidden_states_org) = (hidden_states_org[:, :residual.shape[1]], hidden_states_org[:, residual.shape[1]:]) + hidden_states_org = attn.to_out[0](hidden_states_org) + hidden_states_org = attn.to_out[1](hidden_states_org) + if not attn.context_pre_only: + encoder_hidden_states_org = attn.to_add_out(encoder_hidden_states_org) + if input_ndim == 4: + hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) + if context_input_ndim == 4: + encoder_hidden_states_org = encoder_hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) + batch_size = encoder_hidden_states_ptb.shape[0] + query_ptb = attn.to_q(hidden_states_ptb) + key_ptb = attn.to_k(hidden_states_ptb) + value_ptb = attn.to_v(hidden_states_ptb) + encoder_hidden_states_ptb_query_proj = attn.add_q_proj(encoder_hidden_states_ptb) + encoder_hidden_states_ptb_key_proj = attn.add_k_proj(encoder_hidden_states_ptb) + encoder_hidden_states_ptb_value_proj = attn.add_v_proj(encoder_hidden_states_ptb) + query_ptb = torch.cat([query_ptb, encoder_hidden_states_ptb_query_proj], dim=1) + key_ptb = torch.cat([key_ptb, encoder_hidden_states_ptb_key_proj], dim=1) + value_ptb = torch.cat([value_ptb, encoder_hidden_states_ptb_value_proj], dim=1) + inner_dim = key_ptb.shape[-1] + head_dim = inner_dim // attn.heads + query_ptb = query_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key_ptb = key_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value_ptb = value_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + seq_len = query_ptb.size(2) + full_mask = torch.zeros((seq_len, seq_len), device=query_ptb.device, dtype=query_ptb.dtype) + full_mask[:identity_block_size, :identity_block_size] = float('-inf') + full_mask[:identity_block_size, :identity_block_size].fill_diagonal_(0) + full_mask = full_mask.unsqueeze(0).unsqueeze(0) + hidden_states_ptb = F.scaled_dot_product_attention(query_ptb, key_ptb, value_ptb, attn_mask=full_mask, dropout_p=0.0, is_causal=False) + hidden_states_ptb = hidden_states_ptb.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states_ptb = hidden_states_ptb.to(query_ptb.dtype) + (hidden_states_ptb, encoder_hidden_states_ptb) = (hidden_states_ptb[:, :residual.shape[1]], hidden_states_ptb[:, residual.shape[1]:]) + hidden_states_ptb = attn.to_out[0](hidden_states_ptb) + hidden_states_ptb = attn.to_out[1](hidden_states_ptb) + if not attn.context_pre_only: + encoder_hidden_states_ptb = attn.to_add_out(encoder_hidden_states_ptb) + if input_ndim == 4: + hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) + if context_input_ndim == 4: + encoder_hidden_states_ptb = encoder_hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) + hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) + encoder_hidden_states = torch.cat([encoder_hidden_states_org, encoder_hidden_states_ptb]) + return (hidden_states, encoder_hidden_states) + +class FusedJointAttnProcessor2_0: + + def __init__(self): + if not hasattr(F, 'scaled_dot_product_attention'): + raise ImportError('AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') + + def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor=None, attention_mask: Optional[torch.FloatTensor]=None, *args, **kwargs) -> torch.FloatTensor: + residual = hidden_states + input_ndim = hidden_states.ndim + if input_ndim == 4: + (batch_size, channel, height, width) = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + context_input_ndim = encoder_hidden_states.ndim + if context_input_ndim == 4: + (batch_size, channel, height, width) = encoder_hidden_states.shape + encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + batch_size = encoder_hidden_states.shape[0] + qkv = attn.to_qkv(hidden_states) + split_size = qkv.shape[-1] // 3 + (query, key, value) = torch.split(qkv, split_size, dim=-1) + encoder_qkv = attn.to_added_qkv(encoder_hidden_states) + split_size = encoder_qkv.shape[-1] // 3 + (encoder_hidden_states_query_proj, encoder_hidden_states_key_proj, encoder_hidden_states_value_proj) = torch.split(encoder_qkv, split_size, dim=-1) + query = torch.cat([query, encoder_hidden_states_query_proj], dim=1) + key = torch.cat([key, encoder_hidden_states_key_proj], dim=1) + value = torch.cat([value, encoder_hidden_states_value_proj], dim=1) + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + (hidden_states, encoder_hidden_states) = (hidden_states[:, :residual.shape[1]], hidden_states[:, residual.shape[1]:]) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + if not attn.context_pre_only: + encoder_hidden_states = attn.to_add_out(encoder_hidden_states) + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + if context_input_ndim == 4: + encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + return (hidden_states, encoder_hidden_states) + +class AuraFlowAttnProcessor2_0: + + def __init__(self): + if not hasattr(F, 'scaled_dot_product_attention') and is_torch_version('<', '2.1'): + raise ImportError('AuraFlowAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to at least 2.1 or above as we use `scale` in `F.scaled_dot_product_attention()`. ') + + def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor=None, *args, **kwargs) -> torch.FloatTensor: + batch_size = hidden_states.shape[0] + query = attn.to_q(hidden_states) + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + if encoder_hidden_states is not None: + encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) + encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) + encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim) + key = key.view(batch_size, -1, attn.heads, head_dim) + value = value.view(batch_size, -1, attn.heads, head_dim) + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + if encoder_hidden_states is not None: + encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(batch_size, -1, attn.heads, head_dim) + encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim) + encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(batch_size, -1, attn.heads, head_dim) + if attn.norm_added_q is not None: + encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) + if attn.norm_added_k is not None: + encoder_hidden_states_key_proj = attn.norm_added_q(encoder_hidden_states_key_proj) + query = torch.cat([encoder_hidden_states_query_proj, query], dim=1) + key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) + value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) + query = query.transpose(1, 2) + key = key.transpose(1, 2) + value = value.transpose(1, 2) + hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, scale=attn.scale, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + if encoder_hidden_states is not None: + (hidden_states, encoder_hidden_states) = (hidden_states[:, encoder_hidden_states.shape[1]:], hidden_states[:, :encoder_hidden_states.shape[1]]) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + if encoder_hidden_states is not None: + encoder_hidden_states = attn.to_add_out(encoder_hidden_states) + if encoder_hidden_states is not None: + return (hidden_states, encoder_hidden_states) + else: + return hidden_states + +class FusedAuraFlowAttnProcessor2_0: + + def __init__(self): + if not hasattr(F, 'scaled_dot_product_attention') and is_torch_version('<', '2.1'): + raise ImportError('FusedAuraFlowAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to at least 2.1 or above as we use `scale` in `F.scaled_dot_product_attention()`. ') + + def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor=None, *args, **kwargs) -> torch.FloatTensor: + batch_size = hidden_states.shape[0] + qkv = attn.to_qkv(hidden_states) + split_size = qkv.shape[-1] // 3 + (query, key, value) = torch.split(qkv, split_size, dim=-1) + if encoder_hidden_states is not None: + encoder_qkv = attn.to_added_qkv(encoder_hidden_states) + split_size = encoder_qkv.shape[-1] // 3 + (encoder_hidden_states_query_proj, encoder_hidden_states_key_proj, encoder_hidden_states_value_proj) = torch.split(encoder_qkv, split_size, dim=-1) + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim) + key = key.view(batch_size, -1, attn.heads, head_dim) + value = value.view(batch_size, -1, attn.heads, head_dim) + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + if encoder_hidden_states is not None: + encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(batch_size, -1, attn.heads, head_dim) + encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim) + encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(batch_size, -1, attn.heads, head_dim) + if attn.norm_added_q is not None: + encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) + if attn.norm_added_k is not None: + encoder_hidden_states_key_proj = attn.norm_added_q(encoder_hidden_states_key_proj) + query = torch.cat([encoder_hidden_states_query_proj, query], dim=1) + key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) + value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) + query = query.transpose(1, 2) + key = key.transpose(1, 2) + value = value.transpose(1, 2) + hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, scale=attn.scale, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + if encoder_hidden_states is not None: + (hidden_states, encoder_hidden_states) = (hidden_states[:, encoder_hidden_states.shape[1]:], hidden_states[:, :encoder_hidden_states.shape[1]]) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + if encoder_hidden_states is not None: + encoder_hidden_states = attn.to_add_out(encoder_hidden_states) + if encoder_hidden_states is not None: + return (hidden_states, encoder_hidden_states) + else: + return hidden_states + +class FluxAttnProcessor2_0: + + def __init__(self): + if not hasattr(F, 'scaled_dot_product_attention'): + raise ImportError('FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') + + def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor=None, attention_mask: Optional[torch.FloatTensor]=None, image_rotary_emb: Optional[torch.Tensor]=None) -> torch.FloatTensor: + (batch_size, _, _) = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + query = attn.to_q(hidden_states) + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + if encoder_hidden_states is not None: + encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) + encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) + encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) + encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + if attn.norm_added_q is not None: + encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) + if attn.norm_added_k is not None: + encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) + query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) + key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) + value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) + if image_rotary_emb is not None: + from .embeddings import apply_rotary_emb + query = apply_rotary_emb(query, image_rotary_emb) + key = apply_rotary_emb(key, image_rotary_emb) + hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + if encoder_hidden_states is not None: + (encoder_hidden_states, hidden_states) = (hidden_states[:, :encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1]:]) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + encoder_hidden_states = attn.to_add_out(encoder_hidden_states) + return (hidden_states, encoder_hidden_states) + else: + return hidden_states + +class FusedFluxAttnProcessor2_0: + + def __init__(self): + if not hasattr(F, 'scaled_dot_product_attention'): + raise ImportError('FusedFluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') + + def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor=None, attention_mask: Optional[torch.FloatTensor]=None, image_rotary_emb: Optional[torch.Tensor]=None) -> torch.FloatTensor: + (batch_size, _, _) = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + qkv = attn.to_qkv(hidden_states) + split_size = qkv.shape[-1] // 3 + (query, key, value) = torch.split(qkv, split_size, dim=-1) + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + if encoder_hidden_states is not None: + encoder_qkv = attn.to_added_qkv(encoder_hidden_states) + split_size = encoder_qkv.shape[-1] // 3 + (encoder_hidden_states_query_proj, encoder_hidden_states_key_proj, encoder_hidden_states_value_proj) = torch.split(encoder_qkv, split_size, dim=-1) + encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + if attn.norm_added_q is not None: + encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) + if attn.norm_added_k is not None: + encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) + query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) + key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) + value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) + if image_rotary_emb is not None: + from .embeddings import apply_rotary_emb + query = apply_rotary_emb(query, image_rotary_emb) + key = apply_rotary_emb(key, image_rotary_emb) + hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + if encoder_hidden_states is not None: + (encoder_hidden_states, hidden_states) = (hidden_states[:, :encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1]:]) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + encoder_hidden_states = attn.to_add_out(encoder_hidden_states) + return (hidden_states, encoder_hidden_states) + else: + return hidden_states + +class CogVideoXAttnProcessor2_0: + + def __init__(self): + if not hasattr(F, 'scaled_dot_product_attention'): + raise ImportError('CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') + + def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor]=None, image_rotary_emb: Optional[torch.Tensor]=None) -> torch.Tensor: + text_seq_length = encoder_hidden_states.size(1) + hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) + (batch_size, sequence_length, _) = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + query = attn.to_q(hidden_states) + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + if image_rotary_emb is not None: + from .embeddings import apply_rotary_emb + query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb) + if not attn.is_cross_attention: + key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb) + hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + (encoder_hidden_states, hidden_states) = hidden_states.split([text_seq_length, hidden_states.size(1) - text_seq_length], dim=1) + return (hidden_states, encoder_hidden_states) + +class FusedCogVideoXAttnProcessor2_0: + + def __init__(self): + if not hasattr(F, 'scaled_dot_product_attention'): + raise ImportError('CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') + + def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor]=None, image_rotary_emb: Optional[torch.Tensor]=None) -> torch.Tensor: + text_seq_length = encoder_hidden_states.size(1) + hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) + (batch_size, sequence_length, _) = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + qkv = attn.to_qkv(hidden_states) + split_size = qkv.shape[-1] // 3 + (query, key, value) = torch.split(qkv, split_size, dim=-1) + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + if image_rotary_emb is not None: + from .embeddings import apply_rotary_emb + query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb) + if not attn.is_cross_attention: + key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb) + hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + (encoder_hidden_states, hidden_states) = hidden_states.split([text_seq_length, hidden_states.size(1) - text_seq_length], dim=1) + return (hidden_states, encoder_hidden_states) + +class XFormersAttnAddedKVProcessor: + + def __init__(self, attention_op: Optional[Callable]=None): + self.attention_op = attention_op + + def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None) -> torch.Tensor: + residual = hidden_states + hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) + (batch_size, sequence_length, _) = hidden_states.shape + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + query = attn.to_q(hidden_states) + query = attn.head_to_batch_dim(query) + encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) + encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) + encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj) + encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj) + if not attn.only_cross_attention: + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) + value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) + else: + key = encoder_hidden_states_key_proj + value = encoder_hidden_states_value_proj + hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale) + hidden_states = hidden_states.to(query.dtype) + hidden_states = attn.batch_to_head_dim(hidden_states) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) + hidden_states = hidden_states + residual + return hidden_states + +class XFormersAttnProcessor: + + def __init__(self, attention_op: Optional[Callable]=None): + self.attention_op = attention_op + + def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, temb: Optional[torch.Tensor]=None, *args, **kwargs) -> torch.Tensor: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + input_ndim = hidden_states.ndim + if input_ndim == 4: + (batch_size, channel, height, width) = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + (batch_size, key_tokens, _) = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size) + if attention_mask is not None: + (_, query_tokens, _) = hidden_states.shape + attention_mask = attention_mask.expand(-1, query_tokens, -1) + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + query = attn.to_q(hidden_states) + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + query = attn.head_to_batch_dim(query).contiguous() + key = attn.head_to_batch_dim(key).contiguous() + value = attn.head_to_batch_dim(value).contiguous() + hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale) + hidden_states = hidden_states.to(query.dtype) + hidden_states = attn.batch_to_head_dim(hidden_states) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + if attn.residual_connection: + hidden_states = hidden_states + residual + hidden_states = hidden_states / attn.rescale_output_factor + return hidden_states + +class AttnProcessorNPU: + + def __init__(self): + if not is_torch_npu_available(): + raise ImportError('AttnProcessorNPU requires torch_npu extensions and is supported only on npu devices.') + + def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, temb: Optional[torch.Tensor]=None, *args, **kwargs) -> torch.Tensor: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + input_ndim = hidden_states.ndim + if input_ndim == 4: + (batch_size, channel, height, width) = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + (batch_size, sequence_length, _) = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + query = attn.to_q(hidden_states) + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + if query.dtype in (torch.float16, torch.bfloat16): + hidden_states = torch_npu.npu_fusion_attention(query, key, value, attn.heads, input_layout='BNSD', pse=None, atten_mask=attention_mask, scale=1.0 / math.sqrt(query.shape[-1]), pre_tockens=65536, next_tockens=65536, keep_prob=1.0, sync=False, inner_precise=0)[0] + else: + hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + if attn.residual_connection: + hidden_states = hidden_states + residual + hidden_states = hidden_states / attn.rescale_output_factor + return hidden_states + +class AttnProcessor2_0: + + def __init__(self): + if not hasattr(F, 'scaled_dot_product_attention'): + raise ImportError('AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') + + def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, temb: Optional[torch.Tensor]=None, *args, **kwargs) -> torch.Tensor: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + input_ndim = hidden_states.ndim + if input_ndim == 4: + (batch_size, channel, height, width) = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + (batch_size, sequence_length, _) = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + query = attn.to_q(hidden_states) + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + if attn.residual_connection: + hidden_states = hidden_states + residual + hidden_states = hidden_states / attn.rescale_output_factor + return hidden_states + +class StableAudioAttnProcessor2_0: + + def __init__(self): + if not hasattr(F, 'scaled_dot_product_attention'): + raise ImportError('StableAudioAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') + + def apply_partial_rotary_emb(self, x: torch.Tensor, freqs_cis: Tuple[torch.Tensor]) -> torch.Tensor: + from .embeddings import apply_rotary_emb + rot_dim = freqs_cis[0].shape[-1] + (x_to_rotate, x_unrotated) = (x[..., :rot_dim], x[..., rot_dim:]) + x_rotated = apply_rotary_emb(x_to_rotate, freqs_cis, use_real=True, use_real_unbind_dim=-2) + out = torch.cat((x_rotated, x_unrotated), dim=-1) + return out + + def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, rotary_emb: Optional[torch.Tensor]=None) -> torch.Tensor: + from .embeddings import apply_rotary_emb + residual = hidden_states + input_ndim = hidden_states.ndim + if input_ndim == 4: + (batch_size, channel, height, width) = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + (batch_size, sequence_length, _) = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + query = attn.to_q(hidden_states) + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + head_dim = query.shape[-1] // attn.heads + kv_heads = key.shape[-1] // head_dim + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2) + if kv_heads != attn.heads: + heads_per_kv_head = attn.heads // kv_heads + key = torch.repeat_interleave(key, heads_per_kv_head, dim=1) + value = torch.repeat_interleave(value, heads_per_kv_head, dim=1) + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + if rotary_emb is not None: + query_dtype = query.dtype + key_dtype = key.dtype + query = query.to(torch.float32) + key = key.to(torch.float32) + rot_dim = rotary_emb[0].shape[-1] + (query_to_rotate, query_unrotated) = (query[..., :rot_dim], query[..., rot_dim:]) + query_rotated = apply_rotary_emb(query_to_rotate, rotary_emb, use_real=True, use_real_unbind_dim=-2) + query = torch.cat((query_rotated, query_unrotated), dim=-1) + if not attn.is_cross_attention: + (key_to_rotate, key_unrotated) = (key[..., :rot_dim], key[..., rot_dim:]) + key_rotated = apply_rotary_emb(key_to_rotate, rotary_emb, use_real=True, use_real_unbind_dim=-2) + key = torch.cat((key_rotated, key_unrotated), dim=-1) + query = query.to(query_dtype) + key = key.to(key_dtype) + hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + if attn.residual_connection: + hidden_states = hidden_states + residual + hidden_states = hidden_states / attn.rescale_output_factor + return hidden_states + +class HunyuanAttnProcessor2_0: + + def __init__(self): + if not hasattr(F, 'scaled_dot_product_attention'): + raise ImportError('AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') + + def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, temb: Optional[torch.Tensor]=None, image_rotary_emb: Optional[torch.Tensor]=None) -> torch.Tensor: + from .embeddings import apply_rotary_emb + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + input_ndim = hidden_states.ndim + if input_ndim == 4: + (batch_size, channel, height, width) = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + (batch_size, sequence_length, _) = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + query = attn.to_q(hidden_states) + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + if image_rotary_emb is not None: + query = apply_rotary_emb(query, image_rotary_emb) + if not attn.is_cross_attention: + key = apply_rotary_emb(key, image_rotary_emb) + hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + if attn.residual_connection: + hidden_states = hidden_states + residual + hidden_states = hidden_states / attn.rescale_output_factor + return hidden_states + +class FusedHunyuanAttnProcessor2_0: + + def __init__(self): + if not hasattr(F, 'scaled_dot_product_attention'): + raise ImportError('FusedHunyuanAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') + + def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, temb: Optional[torch.Tensor]=None, image_rotary_emb: Optional[torch.Tensor]=None) -> torch.Tensor: + from .embeddings import apply_rotary_emb + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + input_ndim = hidden_states.ndim + if input_ndim == 4: + (batch_size, channel, height, width) = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + (batch_size, sequence_length, _) = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + if encoder_hidden_states is None: + qkv = attn.to_qkv(hidden_states) + split_size = qkv.shape[-1] // 3 + (query, key, value) = torch.split(qkv, split_size, dim=-1) + else: + if attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + query = attn.to_q(hidden_states) + kv = attn.to_kv(encoder_hidden_states) + split_size = kv.shape[-1] // 2 + (key, value) = torch.split(kv, split_size, dim=-1) + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + if image_rotary_emb is not None: + query = apply_rotary_emb(query, image_rotary_emb) + if not attn.is_cross_attention: + key = apply_rotary_emb(key, image_rotary_emb) + hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + if attn.residual_connection: + hidden_states = hidden_states + residual + hidden_states = hidden_states / attn.rescale_output_factor + return hidden_states + +class PAGHunyuanAttnProcessor2_0: + + def __init__(self): + if not hasattr(F, 'scaled_dot_product_attention'): + raise ImportError('PAGHunyuanAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') + + def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, temb: Optional[torch.Tensor]=None, image_rotary_emb: Optional[torch.Tensor]=None) -> torch.Tensor: + from .embeddings import apply_rotary_emb + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + input_ndim = hidden_states.ndim + if input_ndim == 4: + (batch_size, channel, height, width) = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + (hidden_states_org, hidden_states_ptb) = hidden_states.chunk(2) + (batch_size, sequence_length, _) = hidden_states_org.shape if encoder_hidden_states is None else encoder_hidden_states.shape + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + if attn.group_norm is not None: + hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) + query = attn.to_q(hidden_states_org) + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states_org + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + if image_rotary_emb is not None: + query = apply_rotary_emb(query, image_rotary_emb) + if not attn.is_cross_attention: + key = apply_rotary_emb(key, image_rotary_emb) + hidden_states_org = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) + hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states_org = hidden_states_org.to(query.dtype) + hidden_states_org = attn.to_out[0](hidden_states_org) + hidden_states_org = attn.to_out[1](hidden_states_org) + if input_ndim == 4: + hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) + if attn.group_norm is not None: + hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) + hidden_states_ptb = attn.to_v(hidden_states_ptb) + hidden_states_ptb = hidden_states_ptb.to(query.dtype) + hidden_states_ptb = attn.to_out[0](hidden_states_ptb) + hidden_states_ptb = attn.to_out[1](hidden_states_ptb) + if input_ndim == 4: + hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) + hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) + if attn.residual_connection: + hidden_states = hidden_states + residual + hidden_states = hidden_states / attn.rescale_output_factor + return hidden_states + +class PAGCFGHunyuanAttnProcessor2_0: + + def __init__(self): + if not hasattr(F, 'scaled_dot_product_attention'): + raise ImportError('PAGCFGHunyuanAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') + + def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, temb: Optional[torch.Tensor]=None, image_rotary_emb: Optional[torch.Tensor]=None) -> torch.Tensor: + from .embeddings import apply_rotary_emb + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + input_ndim = hidden_states.ndim + if input_ndim == 4: + (batch_size, channel, height, width) = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + (hidden_states_uncond, hidden_states_org, hidden_states_ptb) = hidden_states.chunk(3) + hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org]) + (batch_size, sequence_length, _) = hidden_states_org.shape if encoder_hidden_states is None else encoder_hidden_states.shape + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + if attn.group_norm is not None: + hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) + query = attn.to_q(hidden_states_org) + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states_org + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + if image_rotary_emb is not None: + query = apply_rotary_emb(query, image_rotary_emb) + if not attn.is_cross_attention: + key = apply_rotary_emb(key, image_rotary_emb) + hidden_states_org = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) + hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states_org = hidden_states_org.to(query.dtype) + hidden_states_org = attn.to_out[0](hidden_states_org) + hidden_states_org = attn.to_out[1](hidden_states_org) + if input_ndim == 4: + hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) + if attn.group_norm is not None: + hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) + hidden_states_ptb = attn.to_v(hidden_states_ptb) + hidden_states_ptb = hidden_states_ptb.to(query.dtype) + hidden_states_ptb = attn.to_out[0](hidden_states_ptb) + hidden_states_ptb = attn.to_out[1](hidden_states_ptb) + if input_ndim == 4: + hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) + hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) + if attn.residual_connection: + hidden_states = hidden_states + residual + hidden_states = hidden_states / attn.rescale_output_factor + return hidden_states + +class LuminaAttnProcessor2_0: + + def __init__(self): + if not hasattr(F, 'scaled_dot_product_attention'): + raise ImportError('AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') + + def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor]=None, query_rotary_emb: Optional[torch.Tensor]=None, key_rotary_emb: Optional[torch.Tensor]=None, base_sequence_length: Optional[int]=None) -> torch.Tensor: + from .embeddings import apply_rotary_emb + input_ndim = hidden_states.ndim + if input_ndim == 4: + (batch_size, channel, height, width) = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + (batch_size, sequence_length, _) = hidden_states.shape + query = attn.to_q(hidden_states) + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + query_dim = query.shape[-1] + inner_dim = key.shape[-1] + head_dim = query_dim // attn.heads + dtype = query.dtype + kv_heads = inner_dim // head_dim + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + query = query.view(batch_size, -1, attn.heads, head_dim) + key = key.view(batch_size, -1, kv_heads, head_dim) + value = value.view(batch_size, -1, kv_heads, head_dim) + if query_rotary_emb is not None: + query = apply_rotary_emb(query, query_rotary_emb, use_real=False) + if key_rotary_emb is not None: + key = apply_rotary_emb(key, key_rotary_emb, use_real=False) + (query, key) = (query.to(dtype), key.to(dtype)) + if key_rotary_emb is None: + softmax_scale = None + elif base_sequence_length is not None: + softmax_scale = math.sqrt(math.log(sequence_length, base_sequence_length)) * attn.scale + else: + softmax_scale = attn.scale + n_rep = attn.heads // kv_heads + if n_rep >= 1: + key = key.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3) + value = value.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3) + attention_mask = attention_mask.bool().view(batch_size, 1, 1, -1) + attention_mask = attention_mask.expand(-1, attn.heads, sequence_length, -1) + query = query.transpose(1, 2) + key = key.transpose(1, 2) + value = value.transpose(1, 2) + hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, scale=softmax_scale) + hidden_states = hidden_states.transpose(1, 2).to(dtype) + return hidden_states + +class FusedAttnProcessor2_0: + + def __init__(self): + if not hasattr(F, 'scaled_dot_product_attention'): + raise ImportError('FusedAttnProcessor2_0 requires at least PyTorch 2.0, to use it. Please upgrade PyTorch to > 2.0.') + + def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, temb: Optional[torch.Tensor]=None, *args, **kwargs) -> torch.Tensor: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + input_ndim = hidden_states.ndim + if input_ndim == 4: + (batch_size, channel, height, width) = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + (batch_size, sequence_length, _) = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + if encoder_hidden_states is None: + qkv = attn.to_qkv(hidden_states) + split_size = qkv.shape[-1] // 3 + (query, key, value) = torch.split(qkv, split_size, dim=-1) + else: + if attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + query = attn.to_q(hidden_states) + kv = attn.to_kv(encoder_hidden_states) + split_size = kv.shape[-1] // 2 + (key, value) = torch.split(kv, split_size, dim=-1) + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + if attn.residual_connection: + hidden_states = hidden_states + residual + hidden_states = hidden_states / attn.rescale_output_factor + return hidden_states + +class CustomDiffusionXFormersAttnProcessor(nn.Module): + + def __init__(self, train_kv: bool=True, train_q_out: bool=False, hidden_size: Optional[int]=None, cross_attention_dim: Optional[int]=None, out_bias: bool=True, dropout: float=0.0, attention_op: Optional[Callable]=None): + super().__init__() + self.train_kv = train_kv + self.train_q_out = train_q_out + self.hidden_size = hidden_size + self.cross_attention_dim = cross_attention_dim + self.attention_op = attention_op + if self.train_kv: + self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) + self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) + if self.train_q_out: + self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False) + self.to_out_custom_diffusion = nn.ModuleList([]) + self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias)) + self.to_out_custom_diffusion.append(nn.Dropout(dropout)) + + def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None) -> torch.Tensor: + (batch_size, sequence_length, _) = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + if self.train_q_out: + query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype) + else: + query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype)) + if encoder_hidden_states is None: + crossattn = False + encoder_hidden_states = hidden_states + else: + crossattn = True + if attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + if self.train_kv: + key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype)) + value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype)) + key = key.to(attn.to_q.weight.dtype) + value = value.to(attn.to_q.weight.dtype) + else: + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + if crossattn: + detach = torch.ones_like(key) + detach[:, :1, :] = detach[:, :1, :] * 0.0 + key = detach * key + (1 - detach) * key.detach() + value = detach * value + (1 - detach) * value.detach() + query = attn.head_to_batch_dim(query).contiguous() + key = attn.head_to_batch_dim(key).contiguous() + value = attn.head_to_batch_dim(value).contiguous() + hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale) + hidden_states = hidden_states.to(query.dtype) + hidden_states = attn.batch_to_head_dim(hidden_states) + if self.train_q_out: + hidden_states = self.to_out_custom_diffusion[0](hidden_states) + hidden_states = self.to_out_custom_diffusion[1](hidden_states) + else: + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + return hidden_states + +class CustomDiffusionAttnProcessor2_0(nn.Module): + + def __init__(self, train_kv: bool=True, train_q_out: bool=True, hidden_size: Optional[int]=None, cross_attention_dim: Optional[int]=None, out_bias: bool=True, dropout: float=0.0): + super().__init__() + self.train_kv = train_kv + self.train_q_out = train_q_out + self.hidden_size = hidden_size + self.cross_attention_dim = cross_attention_dim + if self.train_kv: + self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) + self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) + if self.train_q_out: + self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False) + self.to_out_custom_diffusion = nn.ModuleList([]) + self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias)) + self.to_out_custom_diffusion.append(nn.Dropout(dropout)) + + def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None) -> torch.Tensor: + (batch_size, sequence_length, _) = hidden_states.shape + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + if self.train_q_out: + query = self.to_q_custom_diffusion(hidden_states) + else: + query = attn.to_q(hidden_states) + if encoder_hidden_states is None: + crossattn = False + encoder_hidden_states = hidden_states + else: + crossattn = True + if attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + if self.train_kv: + key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype)) + value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype)) + key = key.to(attn.to_q.weight.dtype) + value = value.to(attn.to_q.weight.dtype) + else: + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + if crossattn: + detach = torch.ones_like(key) + detach[:, :1, :] = detach[:, :1, :] * 0.0 + key = detach * key + (1 - detach) * key.detach() + value = detach * value + (1 - detach) * value.detach() + inner_dim = hidden_states.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + if self.train_q_out: + hidden_states = self.to_out_custom_diffusion[0](hidden_states) + hidden_states = self.to_out_custom_diffusion[1](hidden_states) + else: + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + return hidden_states + +class SlicedAttnProcessor: + + def __init__(self, slice_size: int): + self.slice_size = slice_size + + def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None) -> torch.Tensor: + residual = hidden_states + input_ndim = hidden_states.ndim + if input_ndim == 4: + (batch_size, channel, height, width) = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + (batch_size, sequence_length, _) = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + query = attn.to_q(hidden_states) + dim = query.shape[-1] + query = attn.head_to_batch_dim(query) + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + (batch_size_attention, query_tokens, _) = query.shape + hidden_states = torch.zeros((batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype) + for i in range((batch_size_attention - 1) // self.slice_size + 1): + start_idx = i * self.slice_size + end_idx = (i + 1) * self.slice_size + query_slice = query[start_idx:end_idx] + key_slice = key[start_idx:end_idx] + attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None + attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) + attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) + hidden_states[start_idx:end_idx] = attn_slice + hidden_states = attn.batch_to_head_dim(hidden_states) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + if attn.residual_connection: + hidden_states = hidden_states + residual + hidden_states = hidden_states / attn.rescale_output_factor + return hidden_states + +class SlicedAttnAddedKVProcessor: + + def __init__(self, slice_size): + self.slice_size = slice_size + + def __call__(self, attn: 'Attention', hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, temb: Optional[torch.Tensor]=None) -> torch.Tensor: + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) + (batch_size, sequence_length, _) = hidden_states.shape + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + query = attn.to_q(hidden_states) + dim = query.shape[-1] + query = attn.head_to_batch_dim(query) + encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) + encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) + encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj) + encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj) + if not attn.only_cross_attention: + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) + value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) + else: + key = encoder_hidden_states_key_proj + value = encoder_hidden_states_value_proj + (batch_size_attention, query_tokens, _) = query.shape + hidden_states = torch.zeros((batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype) + for i in range((batch_size_attention - 1) // self.slice_size + 1): + start_idx = i * self.slice_size + end_idx = (i + 1) * self.slice_size + query_slice = query[start_idx:end_idx] + key_slice = key[start_idx:end_idx] + attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None + attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) + attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) + hidden_states[start_idx:end_idx] = attn_slice + hidden_states = attn.batch_to_head_dim(hidden_states) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) + hidden_states = hidden_states + residual + return hidden_states + +class SpatialNorm(nn.Module): + + def __init__(self, f_channels: int, zq_channels: int): + super().__init__() + self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=32, eps=1e-06, affine=True) + self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) + self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) + + def forward(self, f: torch.Tensor, zq: torch.Tensor) -> torch.Tensor: + f_size = f.shape[-2:] + zq = F.interpolate(zq, size=f_size, mode='nearest') + norm_f = self.norm_layer(f) + new_f = norm_f * self.conv_y(zq) + self.conv_b(zq) + return new_f + +class IPAdapterAttnProcessor(nn.Module): + + def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0): + super().__init__() + self.hidden_size = hidden_size + self.cross_attention_dim = cross_attention_dim + if not isinstance(num_tokens, (tuple, list)): + num_tokens = [num_tokens] + self.num_tokens = num_tokens + if not isinstance(scale, list): + scale = [scale] * len(num_tokens) + if len(scale) != len(num_tokens): + raise ValueError('`scale` should be a list of integers with the same length as `num_tokens`.') + self.scale = scale + self.to_k_ip = nn.ModuleList([nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]) + self.to_v_ip = nn.ModuleList([nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]) + + def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, temb: Optional[torch.Tensor]=None, scale: float=1.0, ip_adapter_masks: Optional[torch.Tensor]=None): + residual = hidden_states + if encoder_hidden_states is not None: + if isinstance(encoder_hidden_states, tuple): + (encoder_hidden_states, ip_hidden_states) = encoder_hidden_states + else: + deprecation_message = 'You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release. Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning.' + deprecate('encoder_hidden_states not a tuple', '1.0.0', deprecation_message, standard_warn=False) + end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0] + (encoder_hidden_states, ip_hidden_states) = (encoder_hidden_states[:, :end_pos, :], [encoder_hidden_states[:, end_pos:, :]]) + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + input_ndim = hidden_states.ndim + if input_ndim == 4: + (batch_size, channel, height, width) = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + (batch_size, sequence_length, _) = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + query = attn.to_q(hidden_states) + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + query = attn.head_to_batch_dim(query) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + attention_probs = attn.get_attention_scores(query, key, attention_mask) + hidden_states = torch.bmm(attention_probs, value) + hidden_states = attn.batch_to_head_dim(hidden_states) + if ip_adapter_masks is not None: + if not isinstance(ip_adapter_masks, List): + ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1)) + if not len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states): + raise ValueError(f'Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match length of self.scale array ({len(self.scale)}) and number of ip_hidden_states ({len(ip_hidden_states)})') + else: + for (index, (mask, scale, ip_state)) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)): + if not isinstance(mask, torch.Tensor) or mask.ndim != 4: + raise ValueError('Each element of the ip_adapter_masks array should be a tensor with shape [1, num_images_for_ip_adapter, height, width]. Please use `IPAdapterMaskProcessor` to preprocess your mask') + if mask.shape[1] != ip_state.shape[1]: + raise ValueError(f'Number of masks ({mask.shape[1]}) does not match number of ip images ({ip_state.shape[1]}) at index {index}') + if isinstance(scale, list) and (not len(scale) == mask.shape[1]): + raise ValueError(f'Number of masks ({mask.shape[1]}) does not match number of scales ({len(scale)}) at index {index}') + else: + ip_adapter_masks = [None] * len(self.scale) + for (current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask) in zip(ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks): + skip = False + if isinstance(scale, list): + if all((s == 0 for s in scale)): + skip = True + elif scale == 0: + skip = True + if not skip: + if mask is not None: + if not isinstance(scale, list): + scale = [scale] * mask.shape[1] + current_num_images = mask.shape[1] + for i in range(current_num_images): + ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :]) + ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :]) + ip_key = attn.head_to_batch_dim(ip_key) + ip_value = attn.head_to_batch_dim(ip_value) + ip_attention_probs = attn.get_attention_scores(query, ip_key, None) + _current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) + _current_ip_hidden_states = attn.batch_to_head_dim(_current_ip_hidden_states) + mask_downsample = IPAdapterMaskProcessor.downsample(mask[:, i, :, :], batch_size, _current_ip_hidden_states.shape[1], _current_ip_hidden_states.shape[2]) + mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device) + hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample) + else: + ip_key = to_k_ip(current_ip_hidden_states) + ip_value = to_v_ip(current_ip_hidden_states) + ip_key = attn.head_to_batch_dim(ip_key) + ip_value = attn.head_to_batch_dim(ip_value) + ip_attention_probs = attn.get_attention_scores(query, ip_key, None) + current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) + current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states) + hidden_states = hidden_states + scale * current_ip_hidden_states + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + if attn.residual_connection: + hidden_states = hidden_states + residual + hidden_states = hidden_states / attn.rescale_output_factor + return hidden_states + +class IPAdapterAttnProcessor2_0(torch.nn.Module): + + def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0): + super().__init__() + if not hasattr(F, 'scaled_dot_product_attention'): + raise ImportError(f'{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') + self.hidden_size = hidden_size + self.cross_attention_dim = cross_attention_dim + if not isinstance(num_tokens, (tuple, list)): + num_tokens = [num_tokens] + self.num_tokens = num_tokens + if not isinstance(scale, list): + scale = [scale] * len(num_tokens) + if len(scale) != len(num_tokens): + raise ValueError('`scale` should be a list of integers with the same length as `num_tokens`.') + self.scale = scale + self.to_k_ip = nn.ModuleList([nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]) + self.to_v_ip = nn.ModuleList([nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]) + + def __call__(self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, temb: Optional[torch.Tensor]=None, scale: float=1.0, ip_adapter_masks: Optional[torch.Tensor]=None): + residual = hidden_states + if encoder_hidden_states is not None: + if isinstance(encoder_hidden_states, tuple): + (encoder_hidden_states, ip_hidden_states) = encoder_hidden_states + else: + deprecation_message = 'You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release. Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning.' + deprecate('encoder_hidden_states not a tuple', '1.0.0', deprecation_message, standard_warn=False) + end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0] + (encoder_hidden_states, ip_hidden_states) = (encoder_hidden_states[:, :end_pos, :], [encoder_hidden_states[:, end_pos:, :]]) + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + input_ndim = hidden_states.ndim + if input_ndim == 4: + (batch_size, channel, height, width) = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + (batch_size, sequence_length, _) = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + query = attn.to_q(hidden_states) + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + if ip_adapter_masks is not None: + if not isinstance(ip_adapter_masks, List): + ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1)) + if not len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states): + raise ValueError(f'Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match length of self.scale array ({len(self.scale)}) and number of ip_hidden_states ({len(ip_hidden_states)})') + else: + for (index, (mask, scale, ip_state)) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)): + if not isinstance(mask, torch.Tensor) or mask.ndim != 4: + raise ValueError('Each element of the ip_adapter_masks array should be a tensor with shape [1, num_images_for_ip_adapter, height, width]. Please use `IPAdapterMaskProcessor` to preprocess your mask') + if mask.shape[1] != ip_state.shape[1]: + raise ValueError(f'Number of masks ({mask.shape[1]}) does not match number of ip images ({ip_state.shape[1]}) at index {index}') + if isinstance(scale, list) and (not len(scale) == mask.shape[1]): + raise ValueError(f'Number of masks ({mask.shape[1]}) does not match number of scales ({len(scale)}) at index {index}') + else: + ip_adapter_masks = [None] * len(self.scale) + for (current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask) in zip(ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks): + skip = False + if isinstance(scale, list): + if all((s == 0 for s in scale)): + skip = True + elif scale == 0: + skip = True + if not skip: + if mask is not None: + if not isinstance(scale, list): + scale = [scale] * mask.shape[1] + current_num_images = mask.shape[1] + for i in range(current_num_images): + ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :]) + ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :]) + ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + _current_ip_hidden_states = F.scaled_dot_product_attention(query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False) + _current_ip_hidden_states = _current_ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + _current_ip_hidden_states = _current_ip_hidden_states.to(query.dtype) + mask_downsample = IPAdapterMaskProcessor.downsample(mask[:, i, :, :], batch_size, _current_ip_hidden_states.shape[1], _current_ip_hidden_states.shape[2]) + mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device) + hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample) + else: + ip_key = to_k_ip(current_ip_hidden_states) + ip_value = to_v_ip(current_ip_hidden_states) + ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + current_ip_hidden_states = F.scaled_dot_product_attention(query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False) + current_ip_hidden_states = current_ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + current_ip_hidden_states = current_ip_hidden_states.to(query.dtype) + hidden_states = hidden_states + scale * current_ip_hidden_states + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + if attn.residual_connection: + hidden_states = hidden_states + residual + hidden_states = hidden_states / attn.rescale_output_factor + return hidden_states + +class PAGIdentitySelfAttnProcessor2_0: + + def __init__(self): + if not hasattr(F, 'scaled_dot_product_attention'): + raise ImportError('PAGIdentitySelfAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') + + def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: Optional[torch.FloatTensor]=None, attention_mask: Optional[torch.FloatTensor]=None, temb: Optional[torch.FloatTensor]=None) -> torch.Tensor: + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + input_ndim = hidden_states.ndim + if input_ndim == 4: + (batch_size, channel, height, width) = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + (hidden_states_org, hidden_states_ptb) = hidden_states.chunk(2) + (batch_size, sequence_length, _) = hidden_states_org.shape + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + if attn.group_norm is not None: + hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) + query = attn.to_q(hidden_states_org) + key = attn.to_k(hidden_states_org) + value = attn.to_v(hidden_states_org) + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + hidden_states_org = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) + hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states_org = hidden_states_org.to(query.dtype) + hidden_states_org = attn.to_out[0](hidden_states_org) + hidden_states_org = attn.to_out[1](hidden_states_org) + if input_ndim == 4: + hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) + (batch_size, sequence_length, _) = hidden_states_ptb.shape + if attn.group_norm is not None: + hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) + hidden_states_ptb = attn.to_v(hidden_states_ptb) + hidden_states_ptb = hidden_states_ptb.to(query.dtype) + hidden_states_ptb = attn.to_out[0](hidden_states_ptb) + hidden_states_ptb = attn.to_out[1](hidden_states_ptb) + if input_ndim == 4: + hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) + hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) + if attn.residual_connection: + hidden_states = hidden_states + residual + hidden_states = hidden_states / attn.rescale_output_factor + return hidden_states + +class PAGCFGIdentitySelfAttnProcessor2_0: + + def __init__(self): + if not hasattr(F, 'scaled_dot_product_attention'): + raise ImportError('PAGCFGIdentitySelfAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') + + def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: Optional[torch.FloatTensor]=None, attention_mask: Optional[torch.FloatTensor]=None, temb: Optional[torch.FloatTensor]=None) -> torch.Tensor: + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + input_ndim = hidden_states.ndim + if input_ndim == 4: + (batch_size, channel, height, width) = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + (hidden_states_uncond, hidden_states_org, hidden_states_ptb) = hidden_states.chunk(3) + hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org]) + (batch_size, sequence_length, _) = hidden_states_org.shape + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + if attn.group_norm is not None: + hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) + query = attn.to_q(hidden_states_org) + key = attn.to_k(hidden_states_org) + value = attn.to_v(hidden_states_org) + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + hidden_states_org = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) + hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states_org = hidden_states_org.to(query.dtype) + hidden_states_org = attn.to_out[0](hidden_states_org) + hidden_states_org = attn.to_out[1](hidden_states_org) + if input_ndim == 4: + hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) + (batch_size, sequence_length, _) = hidden_states_ptb.shape + if attn.group_norm is not None: + hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) + value = attn.to_v(hidden_states_ptb) + hidden_states_ptb = value + hidden_states_ptb = hidden_states_ptb.to(query.dtype) + hidden_states_ptb = attn.to_out[0](hidden_states_ptb) + hidden_states_ptb = attn.to_out[1](hidden_states_ptb) + if input_ndim == 4: + hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) + hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) + if attn.residual_connection: + hidden_states = hidden_states + residual + hidden_states = hidden_states / attn.rescale_output_factor + return hidden_states + +class LoRAAttnProcessor: + + def __init__(self): + pass + +class LoRAAttnProcessor2_0: + + def __init__(self): + pass + +class LoRAXFormersAttnProcessor: + + def __init__(self): + pass + +class LoRAAttnAddedKVProcessor: + + def __init__(self): + pass + +class FluxSingleAttnProcessor2_0(FluxAttnProcessor2_0): + + def __init__(self): + deprecation_message = '`FluxSingleAttnProcessor2_0` is deprecated and will be removed in a future version. Please use `FluxAttnProcessor2_0` instead.' + deprecate('FluxSingleAttnProcessor2_0', '0.32.0', deprecation_message) + super().__init__() +ADDED_KV_ATTENTION_PROCESSORS = (AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0, XFormersAttnAddedKVProcessor) +CROSS_ATTENTION_PROCESSORS = (AttnProcessor, AttnProcessor2_0, XFormersAttnProcessor, SlicedAttnProcessor, IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0) +AttentionProcessor = Union[AttnProcessor, AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor, SlicedAttnProcessor, AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0, XFormersAttnAddedKVProcessor, CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor, CustomDiffusionAttnProcessor2_0, PAGCFGIdentitySelfAttnProcessor2_0, PAGIdentitySelfAttnProcessor2_0, PAGCFGHunyuanAttnProcessor2_0, PAGHunyuanAttnProcessor2_0] + +# File: diffusers-main/src/diffusers/models/autoencoders/autoencoder_asym_kl.py +from typing import Optional, Tuple, Union +import torch +import torch.nn as nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...utils.accelerate_utils import apply_forward_hook +from ..modeling_outputs import AutoencoderKLOutput +from ..modeling_utils import ModelMixin +from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder, MaskConditionDecoder + +class AsymmetricAutoencoderKL(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, in_channels: int=3, out_channels: int=3, down_block_types: Tuple[str, ...]=('DownEncoderBlock2D',), down_block_out_channels: Tuple[int, ...]=(64,), layers_per_down_block: int=1, up_block_types: Tuple[str, ...]=('UpDecoderBlock2D',), up_block_out_channels: Tuple[int, ...]=(64,), layers_per_up_block: int=1, act_fn: str='silu', latent_channels: int=4, norm_num_groups: int=32, sample_size: int=32, scaling_factor: float=0.18215) -> None: + super().__init__() + self.encoder = Encoder(in_channels=in_channels, out_channels=latent_channels, down_block_types=down_block_types, block_out_channels=down_block_out_channels, layers_per_block=layers_per_down_block, act_fn=act_fn, norm_num_groups=norm_num_groups, double_z=True) + self.decoder = MaskConditionDecoder(in_channels=latent_channels, out_channels=out_channels, up_block_types=up_block_types, block_out_channels=up_block_out_channels, layers_per_block=layers_per_up_block, act_fn=act_fn, norm_num_groups=norm_num_groups) + self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) + self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1) + self.use_slicing = False + self.use_tiling = False + self.register_to_config(block_out_channels=up_block_out_channels) + self.register_to_config(force_upcast=False) + + @apply_forward_hook + def encode(self, x: torch.Tensor, return_dict: bool=True) -> Union[AutoencoderKLOutput, Tuple[torch.Tensor]]: + h = self.encoder(x) + moments = self.quant_conv(h) + posterior = DiagonalGaussianDistribution(moments) + if not return_dict: + return (posterior,) + return AutoencoderKLOutput(latent_dist=posterior) + + def _decode(self, z: torch.Tensor, image: Optional[torch.Tensor]=None, mask: Optional[torch.Tensor]=None, return_dict: bool=True) -> Union[DecoderOutput, Tuple[torch.Tensor]]: + z = self.post_quant_conv(z) + dec = self.decoder(z, image, mask) + if not return_dict: + return (dec,) + return DecoderOutput(sample=dec) + + @apply_forward_hook + def decode(self, z: torch.Tensor, generator: Optional[torch.Generator]=None, image: Optional[torch.Tensor]=None, mask: Optional[torch.Tensor]=None, return_dict: bool=True) -> Union[DecoderOutput, Tuple[torch.Tensor]]: + decoded = self._decode(z, image, mask).sample + if not return_dict: + return (decoded,) + return DecoderOutput(sample=decoded) + + def forward(self, sample: torch.Tensor, mask: Optional[torch.Tensor]=None, sample_posterior: bool=False, return_dict: bool=True, generator: Optional[torch.Generator]=None) -> Union[DecoderOutput, Tuple[torch.Tensor]]: + x = sample + posterior = self.encode(x).latent_dist + if sample_posterior: + z = posterior.sample(generator=generator) + else: + z = posterior.mode() + dec = self.decode(z, generator, sample, mask).sample + if not return_dict: + return (dec,) + return DecoderOutput(sample=dec) + +# File: diffusers-main/src/diffusers/models/autoencoders/autoencoder_kl.py +from typing import Dict, Optional, Tuple, Union +import torch +import torch.nn as nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...loaders.single_file_model import FromOriginalModelMixin +from ...utils.accelerate_utils import apply_forward_hook +from ..attention_processor import ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, Attention, AttentionProcessor, AttnAddedKVProcessor, AttnProcessor, FusedAttnProcessor2_0 +from ..modeling_outputs import AutoencoderKLOutput +from ..modeling_utils import ModelMixin +from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder + +class AutoencoderKL(ModelMixin, ConfigMixin, FromOriginalModelMixin): + _supports_gradient_checkpointing = True + _no_split_modules = ['BasicTransformerBlock', 'ResnetBlock2D'] + + @register_to_config + def __init__(self, in_channels: int=3, out_channels: int=3, down_block_types: Tuple[str]=('DownEncoderBlock2D',), up_block_types: Tuple[str]=('UpDecoderBlock2D',), block_out_channels: Tuple[int]=(64,), layers_per_block: int=1, act_fn: str='silu', latent_channels: int=4, norm_num_groups: int=32, sample_size: int=32, scaling_factor: float=0.18215, shift_factor: Optional[float]=None, latents_mean: Optional[Tuple[float]]=None, latents_std: Optional[Tuple[float]]=None, force_upcast: float=True, use_quant_conv: bool=True, use_post_quant_conv: bool=True, mid_block_add_attention: bool=True): + super().__init__() + self.encoder = Encoder(in_channels=in_channels, out_channels=latent_channels, down_block_types=down_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, act_fn=act_fn, norm_num_groups=norm_num_groups, double_z=True, mid_block_add_attention=mid_block_add_attention) + self.decoder = Decoder(in_channels=latent_channels, out_channels=out_channels, up_block_types=up_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, norm_num_groups=norm_num_groups, act_fn=act_fn, mid_block_add_attention=mid_block_add_attention) + self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) if use_quant_conv else None + self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1) if use_post_quant_conv else None + self.use_slicing = False + self.use_tiling = False + self.tile_sample_min_size = self.config.sample_size + sample_size = self.config.sample_size[0] if isinstance(self.config.sample_size, (list, tuple)) else self.config.sample_size + self.tile_latent_min_size = int(sample_size / 2 ** (len(self.config.block_out_channels) - 1)) + self.tile_overlap_factor = 0.25 + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, (Encoder, Decoder)): + module.gradient_checkpointing = value + + def enable_tiling(self, use_tiling: bool=True): + self.use_tiling = use_tiling + + def disable_tiling(self): + self.enable_tiling(False) + + def enable_slicing(self): + self.use_slicing = True + + def disable_slicing(self): + self.use_slicing = False + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def set_default_attn_processor(self): + if all((proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnAddedKVProcessor() + elif all((proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnProcessor() + else: + raise ValueError(f'Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}') + self.set_attn_processor(processor) + + @apply_forward_hook + def encode(self, x: torch.Tensor, return_dict: bool=True) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: + if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): + return self.tiled_encode(x, return_dict=return_dict) + if self.use_slicing and x.shape[0] > 1: + encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)] + h = torch.cat(encoded_slices) + else: + h = self.encoder(x) + if self.quant_conv is not None: + moments = self.quant_conv(h) + else: + moments = h + posterior = DiagonalGaussianDistribution(moments) + if not return_dict: + return (posterior,) + return AutoencoderKLOutput(latent_dist=posterior) + + def _decode(self, z: torch.Tensor, return_dict: bool=True) -> Union[DecoderOutput, torch.Tensor]: + if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): + return self.tiled_decode(z, return_dict=return_dict) + if self.post_quant_conv is not None: + z = self.post_quant_conv(z) + dec = self.decoder(z) + if not return_dict: + return (dec,) + return DecoderOutput(sample=dec) + + @apply_forward_hook + def decode(self, z: torch.FloatTensor, return_dict: bool=True, generator=None) -> Union[DecoderOutput, torch.FloatTensor]: + if self.use_slicing and z.shape[0] > 1: + decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] + decoded = torch.cat(decoded_slices) + else: + decoded = self._decode(z).sample + if not return_dict: + return (decoded,) + return DecoderOutput(sample=decoded) + + def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: + blend_extent = min(a.shape[2], b.shape[2], blend_extent) + for y in range(blend_extent): + b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) + return b + + def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: + blend_extent = min(a.shape[3], b.shape[3], blend_extent) + for x in range(blend_extent): + b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) + return b + + def tiled_encode(self, x: torch.Tensor, return_dict: bool=True) -> AutoencoderKLOutput: + overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) + blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor) + row_limit = self.tile_latent_min_size - blend_extent + rows = [] + for i in range(0, x.shape[2], overlap_size): + row = [] + for j in range(0, x.shape[3], overlap_size): + tile = x[:, :, i:i + self.tile_sample_min_size, j:j + self.tile_sample_min_size] + tile = self.encoder(tile) + if self.config.use_quant_conv: + tile = self.quant_conv(tile) + row.append(tile) + rows.append(row) + result_rows = [] + for (i, row) in enumerate(rows): + result_row = [] + for (j, tile) in enumerate(row): + if i > 0: + tile = self.blend_v(rows[i - 1][j], tile, blend_extent) + if j > 0: + tile = self.blend_h(row[j - 1], tile, blend_extent) + result_row.append(tile[:, :, :row_limit, :row_limit]) + result_rows.append(torch.cat(result_row, dim=3)) + moments = torch.cat(result_rows, dim=2) + posterior = DiagonalGaussianDistribution(moments) + if not return_dict: + return (posterior,) + return AutoencoderKLOutput(latent_dist=posterior) + + def tiled_decode(self, z: torch.Tensor, return_dict: bool=True) -> Union[DecoderOutput, torch.Tensor]: + overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) + blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor) + row_limit = self.tile_sample_min_size - blend_extent + rows = [] + for i in range(0, z.shape[2], overlap_size): + row = [] + for j in range(0, z.shape[3], overlap_size): + tile = z[:, :, i:i + self.tile_latent_min_size, j:j + self.tile_latent_min_size] + if self.config.use_post_quant_conv: + tile = self.post_quant_conv(tile) + decoded = self.decoder(tile) + row.append(decoded) + rows.append(row) + result_rows = [] + for (i, row) in enumerate(rows): + result_row = [] + for (j, tile) in enumerate(row): + if i > 0: + tile = self.blend_v(rows[i - 1][j], tile, blend_extent) + if j > 0: + tile = self.blend_h(row[j - 1], tile, blend_extent) + result_row.append(tile[:, :, :row_limit, :row_limit]) + result_rows.append(torch.cat(result_row, dim=3)) + dec = torch.cat(result_rows, dim=2) + if not return_dict: + return (dec,) + return DecoderOutput(sample=dec) + + def forward(self, sample: torch.Tensor, sample_posterior: bool=False, return_dict: bool=True, generator: Optional[torch.Generator]=None) -> Union[DecoderOutput, torch.Tensor]: + x = sample + posterior = self.encode(x).latent_dist + if sample_posterior: + z = posterior.sample(generator=generator) + else: + z = posterior.mode() + dec = self.decode(z).sample + if not return_dict: + return (dec,) + return DecoderOutput(sample=dec) + + def fuse_qkv_projections(self): + self.original_attn_processors = None + for (_, attn_processor) in self.attn_processors.items(): + if 'Added' in str(attn_processor.__class__.__name__): + raise ValueError('`fuse_qkv_projections()` is not supported for models having added KV projections.') + self.original_attn_processors = self.attn_processors + for module in self.modules(): + if isinstance(module, Attention): + module.fuse_projections(fuse=True) + self.set_attn_processor(FusedAttnProcessor2_0()) + + def unfuse_qkv_projections(self): + if self.original_attn_processors is not None: + self.set_attn_processor(self.original_attn_processors) + +# File: diffusers-main/src/diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +from typing import Optional, Tuple, Union +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from ...configuration_utils import ConfigMixin, register_to_config +from ...loaders.single_file_model import FromOriginalModelMixin +from ...utils import logging +from ...utils.accelerate_utils import apply_forward_hook +from ..activations import get_activation +from ..downsampling import CogVideoXDownsample3D +from ..modeling_outputs import AutoencoderKLOutput +from ..modeling_utils import ModelMixin +from ..upsampling import CogVideoXUpsample3D +from .vae import DecoderOutput, DiagonalGaussianDistribution +logger = logging.get_logger(__name__) + +class CogVideoXSafeConv3d(nn.Conv3d): + + def forward(self, input: torch.Tensor) -> torch.Tensor: + memory_count = torch.prod(torch.tensor(input.shape)).item() * 2 / 1024 ** 3 + if memory_count > 2: + kernel_size = self.kernel_size[0] + part_num = int(memory_count / 2) + 1 + input_chunks = torch.chunk(input, part_num, dim=2) + if kernel_size > 1: + input_chunks = [input_chunks[0]] + [torch.cat((input_chunks[i - 1][:, :, -kernel_size + 1:], input_chunks[i]), dim=2) for i in range(1, len(input_chunks))] + output_chunks = [] + for input_chunk in input_chunks: + output_chunks.append(super().forward(input_chunk)) + output = torch.cat(output_chunks, dim=2) + return output + else: + return super().forward(input) + +class CogVideoXCausalConv3d(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int, int]], stride: int=1, dilation: int=1, pad_mode: str='constant'): + super().__init__() + if isinstance(kernel_size, int): + kernel_size = (kernel_size,) * 3 + (time_kernel_size, height_kernel_size, width_kernel_size) = kernel_size + self.pad_mode = pad_mode + time_pad = dilation * (time_kernel_size - 1) + (1 - stride) + height_pad = height_kernel_size // 2 + width_pad = width_kernel_size // 2 + self.height_pad = height_pad + self.width_pad = width_pad + self.time_pad = time_pad + self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0) + self.temporal_dim = 2 + self.time_kernel_size = time_kernel_size + stride = (stride, 1, 1) + dilation = (dilation, 1, 1) + self.conv = CogVideoXSafeConv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation) + self.conv_cache = None + + def fake_context_parallel_forward(self, inputs: torch.Tensor) -> torch.Tensor: + kernel_size = self.time_kernel_size + if kernel_size > 1: + cached_inputs = [self.conv_cache] if self.conv_cache is not None else [inputs[:, :, :1]] * (kernel_size - 1) + inputs = torch.cat(cached_inputs + [inputs], dim=2) + return inputs + + def _clear_fake_context_parallel_cache(self): + del self.conv_cache + self.conv_cache = None + + def forward(self, inputs: torch.Tensor) -> torch.Tensor: + inputs = self.fake_context_parallel_forward(inputs) + self._clear_fake_context_parallel_cache() + self.conv_cache = inputs[:, :, -self.time_kernel_size + 1:].clone() + padding_2d = (self.width_pad, self.width_pad, self.height_pad, self.height_pad) + inputs = F.pad(inputs, padding_2d, mode='constant', value=0) + output = self.conv(inputs) + return output + +class CogVideoXSpatialNorm3D(nn.Module): + + def __init__(self, f_channels: int, zq_channels: int, groups: int=32): + super().__init__() + self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=groups, eps=1e-06, affine=True) + self.conv_y = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1) + self.conv_b = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1) + + def forward(self, f: torch.Tensor, zq: torch.Tensor) -> torch.Tensor: + if f.shape[2] > 1 and f.shape[2] % 2 == 1: + (f_first, f_rest) = (f[:, :, :1], f[:, :, 1:]) + (f_first_size, f_rest_size) = (f_first.shape[-3:], f_rest.shape[-3:]) + (z_first, z_rest) = (zq[:, :, :1], zq[:, :, 1:]) + z_first = F.interpolate(z_first, size=f_first_size) + z_rest = F.interpolate(z_rest, size=f_rest_size) + zq = torch.cat([z_first, z_rest], dim=2) + else: + zq = F.interpolate(zq, size=f.shape[-3:]) + norm_f = self.norm_layer(f) + new_f = norm_f * self.conv_y(zq) + self.conv_b(zq) + return new_f + +class CogVideoXResnetBlock3D(nn.Module): + + def __init__(self, in_channels: int, out_channels: Optional[int]=None, dropout: float=0.0, temb_channels: int=512, groups: int=32, eps: float=1e-06, non_linearity: str='swish', conv_shortcut: bool=False, spatial_norm_dim: Optional[int]=None, pad_mode: str='first'): + super().__init__() + out_channels = out_channels or in_channels + self.in_channels = in_channels + self.out_channels = out_channels + self.nonlinearity = get_activation(non_linearity) + self.use_conv_shortcut = conv_shortcut + if spatial_norm_dim is None: + self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=groups, eps=eps) + self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=groups, eps=eps) + else: + self.norm1 = CogVideoXSpatialNorm3D(f_channels=in_channels, zq_channels=spatial_norm_dim, groups=groups) + self.norm2 = CogVideoXSpatialNorm3D(f_channels=out_channels, zq_channels=spatial_norm_dim, groups=groups) + self.conv1 = CogVideoXCausalConv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode) + if temb_channels > 0: + self.temb_proj = nn.Linear(in_features=temb_channels, out_features=out_channels) + self.dropout = nn.Dropout(dropout) + self.conv2 = CogVideoXCausalConv3d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode) + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + self.conv_shortcut = CogVideoXCausalConv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode) + else: + self.conv_shortcut = CogVideoXSafeConv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0) + + def forward(self, inputs: torch.Tensor, temb: Optional[torch.Tensor]=None, zq: Optional[torch.Tensor]=None) -> torch.Tensor: + hidden_states = inputs + if zq is not None: + hidden_states = self.norm1(hidden_states, zq) + else: + hidden_states = self.norm1(hidden_states) + hidden_states = self.nonlinearity(hidden_states) + hidden_states = self.conv1(hidden_states) + if temb is not None: + hidden_states = hidden_states + self.temb_proj(self.nonlinearity(temb))[:, :, None, None, None] + if zq is not None: + hidden_states = self.norm2(hidden_states, zq) + else: + hidden_states = self.norm2(hidden_states) + hidden_states = self.nonlinearity(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.conv2(hidden_states) + if self.in_channels != self.out_channels: + inputs = self.conv_shortcut(inputs) + hidden_states = hidden_states + inputs + return hidden_states + +class CogVideoXDownBlock3D(nn.Module): + _supports_gradient_checkpointing = True + + def __init__(self, in_channels: int, out_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_act_fn: str='swish', resnet_groups: int=32, add_downsample: bool=True, downsample_padding: int=0, compress_time: bool=False, pad_mode: str='first'): + super().__init__() + resnets = [] + for i in range(num_layers): + in_channel = in_channels if i == 0 else out_channels + resnets.append(CogVideoXResnetBlock3D(in_channels=in_channel, out_channels=out_channels, dropout=dropout, temb_channels=temb_channels, groups=resnet_groups, eps=resnet_eps, non_linearity=resnet_act_fn, pad_mode=pad_mode)) + self.resnets = nn.ModuleList(resnets) + self.downsamplers = None + if add_downsample: + self.downsamplers = nn.ModuleList([CogVideoXDownsample3D(out_channels, out_channels, padding=downsample_padding, compress_time=compress_time)]) + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, zq: Optional[torch.Tensor]=None) -> torch.Tensor: + for resnet in self.resnets: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def create_forward(*inputs): + return module(*inputs) + return create_forward + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, zq) + else: + hidden_states = resnet(hidden_states, temb, zq) + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + return hidden_states + +class CogVideoXMidBlock3D(nn.Module): + _supports_gradient_checkpointing = True + + def __init__(self, in_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_act_fn: str='swish', resnet_groups: int=32, spatial_norm_dim: Optional[int]=None, pad_mode: str='first'): + super().__init__() + resnets = [] + for _ in range(num_layers): + resnets.append(CogVideoXResnetBlock3D(in_channels=in_channels, out_channels=in_channels, dropout=dropout, temb_channels=temb_channels, groups=resnet_groups, eps=resnet_eps, spatial_norm_dim=spatial_norm_dim, non_linearity=resnet_act_fn, pad_mode=pad_mode)) + self.resnets = nn.ModuleList(resnets) + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, zq: Optional[torch.Tensor]=None) -> torch.Tensor: + for resnet in self.resnets: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def create_forward(*inputs): + return module(*inputs) + return create_forward + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, zq) + else: + hidden_states = resnet(hidden_states, temb, zq) + return hidden_states + +class CogVideoXUpBlock3D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_act_fn: str='swish', resnet_groups: int=32, spatial_norm_dim: int=16, add_upsample: bool=True, upsample_padding: int=1, compress_time: bool=False, pad_mode: str='first'): + super().__init__() + resnets = [] + for i in range(num_layers): + in_channel = in_channels if i == 0 else out_channels + resnets.append(CogVideoXResnetBlock3D(in_channels=in_channel, out_channels=out_channels, dropout=dropout, temb_channels=temb_channels, groups=resnet_groups, eps=resnet_eps, non_linearity=resnet_act_fn, spatial_norm_dim=spatial_norm_dim, pad_mode=pad_mode)) + self.resnets = nn.ModuleList(resnets) + self.upsamplers = None + if add_upsample: + self.upsamplers = nn.ModuleList([CogVideoXUpsample3D(out_channels, out_channels, padding=upsample_padding, compress_time=compress_time)]) + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, zq: Optional[torch.Tensor]=None) -> torch.Tensor: + for resnet in self.resnets: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def create_forward(*inputs): + return module(*inputs) + return create_forward + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, zq) + else: + hidden_states = resnet(hidden_states, temb, zq) + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states) + return hidden_states + +class CogVideoXEncoder3D(nn.Module): + _supports_gradient_checkpointing = True + + def __init__(self, in_channels: int=3, out_channels: int=16, down_block_types: Tuple[str, ...]=('CogVideoXDownBlock3D', 'CogVideoXDownBlock3D', 'CogVideoXDownBlock3D', 'CogVideoXDownBlock3D'), block_out_channels: Tuple[int, ...]=(128, 256, 256, 512), layers_per_block: int=3, act_fn: str='silu', norm_eps: float=1e-06, norm_num_groups: int=32, dropout: float=0.0, pad_mode: str='first', temporal_compression_ratio: float=4): + super().__init__() + temporal_compress_level = int(np.log2(temporal_compression_ratio)) + self.conv_in = CogVideoXCausalConv3d(in_channels, block_out_channels[0], kernel_size=3, pad_mode=pad_mode) + self.down_blocks = nn.ModuleList([]) + output_channel = block_out_channels[0] + for (i, down_block_type) in enumerate(down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + compress_time = i < temporal_compress_level + if down_block_type == 'CogVideoXDownBlock3D': + down_block = CogVideoXDownBlock3D(in_channels=input_channel, out_channels=output_channel, temb_channels=0, dropout=dropout, num_layers=layers_per_block, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, add_downsample=not is_final_block, compress_time=compress_time) + else: + raise ValueError('Invalid `down_block_type` encountered. Must be `CogVideoXDownBlock3D`') + self.down_blocks.append(down_block) + self.mid_block = CogVideoXMidBlock3D(in_channels=block_out_channels[-1], temb_channels=0, dropout=dropout, num_layers=2, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, pad_mode=pad_mode) + self.norm_out = nn.GroupNorm(norm_num_groups, block_out_channels[-1], eps=1e-06) + self.conv_act = nn.SiLU() + self.conv_out = CogVideoXCausalConv3d(block_out_channels[-1], 2 * out_channels, kernel_size=3, pad_mode=pad_mode) + self.gradient_checkpointing = False + + def forward(self, sample: torch.Tensor, temb: Optional[torch.Tensor]=None) -> torch.Tensor: + hidden_states = self.conv_in(sample) + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + for down_block in self.down_blocks: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), hidden_states, temb, None) + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), hidden_states, temb, None) + else: + for down_block in self.down_blocks: + hidden_states = down_block(hidden_states, temb, None) + hidden_states = self.mid_block(hidden_states, temb, None) + hidden_states = self.norm_out(hidden_states) + hidden_states = self.conv_act(hidden_states) + hidden_states = self.conv_out(hidden_states) + return hidden_states + +class CogVideoXDecoder3D(nn.Module): + _supports_gradient_checkpointing = True + + def __init__(self, in_channels: int=16, out_channels: int=3, up_block_types: Tuple[str, ...]=('CogVideoXUpBlock3D', 'CogVideoXUpBlock3D', 'CogVideoXUpBlock3D', 'CogVideoXUpBlock3D'), block_out_channels: Tuple[int, ...]=(128, 256, 256, 512), layers_per_block: int=3, act_fn: str='silu', norm_eps: float=1e-06, norm_num_groups: int=32, dropout: float=0.0, pad_mode: str='first', temporal_compression_ratio: float=4): + super().__init__() + reversed_block_out_channels = list(reversed(block_out_channels)) + self.conv_in = CogVideoXCausalConv3d(in_channels, reversed_block_out_channels[0], kernel_size=3, pad_mode=pad_mode) + self.mid_block = CogVideoXMidBlock3D(in_channels=reversed_block_out_channels[0], temb_channels=0, num_layers=2, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, spatial_norm_dim=in_channels, pad_mode=pad_mode) + self.up_blocks = nn.ModuleList([]) + output_channel = reversed_block_out_channels[0] + temporal_compress_level = int(np.log2(temporal_compression_ratio)) + for (i, up_block_type) in enumerate(up_block_types): + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + compress_time = i < temporal_compress_level + if up_block_type == 'CogVideoXUpBlock3D': + up_block = CogVideoXUpBlock3D(in_channels=prev_output_channel, out_channels=output_channel, temb_channels=0, dropout=dropout, num_layers=layers_per_block + 1, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, spatial_norm_dim=in_channels, add_upsample=not is_final_block, compress_time=compress_time, pad_mode=pad_mode) + prev_output_channel = output_channel + else: + raise ValueError('Invalid `up_block_type` encountered. Must be `CogVideoXUpBlock3D`') + self.up_blocks.append(up_block) + self.norm_out = CogVideoXSpatialNorm3D(reversed_block_out_channels[-1], in_channels, groups=norm_num_groups) + self.conv_act = nn.SiLU() + self.conv_out = CogVideoXCausalConv3d(reversed_block_out_channels[-1], out_channels, kernel_size=3, pad_mode=pad_mode) + self.gradient_checkpointing = False + + def forward(self, sample: torch.Tensor, temb: Optional[torch.Tensor]=None) -> torch.Tensor: + hidden_states = self.conv_in(sample) + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), hidden_states, temb, sample) + for up_block in self.up_blocks: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), hidden_states, temb, sample) + else: + hidden_states = self.mid_block(hidden_states, temb, sample) + for up_block in self.up_blocks: + hidden_states = up_block(hidden_states, temb, sample) + hidden_states = self.norm_out(hidden_states, sample) + hidden_states = self.conv_act(hidden_states) + hidden_states = self.conv_out(hidden_states) + return hidden_states + +class AutoencoderKLCogVideoX(ModelMixin, ConfigMixin, FromOriginalModelMixin): + _supports_gradient_checkpointing = True + _no_split_modules = ['CogVideoXResnetBlock3D'] + + @register_to_config + def __init__(self, in_channels: int=3, out_channels: int=3, down_block_types: Tuple[str]=('CogVideoXDownBlock3D', 'CogVideoXDownBlock3D', 'CogVideoXDownBlock3D', 'CogVideoXDownBlock3D'), up_block_types: Tuple[str]=('CogVideoXUpBlock3D', 'CogVideoXUpBlock3D', 'CogVideoXUpBlock3D', 'CogVideoXUpBlock3D'), block_out_channels: Tuple[int]=(128, 256, 256, 512), latent_channels: int=16, layers_per_block: int=3, act_fn: str='silu', norm_eps: float=1e-06, norm_num_groups: int=32, temporal_compression_ratio: float=4, sample_height: int=480, sample_width: int=720, scaling_factor: float=1.15258426, shift_factor: Optional[float]=None, latents_mean: Optional[Tuple[float]]=None, latents_std: Optional[Tuple[float]]=None, force_upcast: float=True, use_quant_conv: bool=False, use_post_quant_conv: bool=False): + super().__init__() + self.encoder = CogVideoXEncoder3D(in_channels=in_channels, out_channels=latent_channels, down_block_types=down_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, act_fn=act_fn, norm_eps=norm_eps, norm_num_groups=norm_num_groups, temporal_compression_ratio=temporal_compression_ratio) + self.decoder = CogVideoXDecoder3D(in_channels=latent_channels, out_channels=out_channels, up_block_types=up_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, act_fn=act_fn, norm_eps=norm_eps, norm_num_groups=norm_num_groups, temporal_compression_ratio=temporal_compression_ratio) + self.quant_conv = CogVideoXSafeConv3d(2 * out_channels, 2 * out_channels, 1) if use_quant_conv else None + self.post_quant_conv = CogVideoXSafeConv3d(out_channels, out_channels, 1) if use_post_quant_conv else None + self.use_slicing = False + self.use_tiling = False + self.num_latent_frames_batch_size = 2 + self.num_sample_frames_batch_size = 8 + self.tile_sample_min_height = sample_height // 2 + self.tile_sample_min_width = sample_width // 2 + self.tile_latent_min_height = int(self.tile_sample_min_height / 2 ** (len(self.config.block_out_channels) - 1)) + self.tile_latent_min_width = int(self.tile_sample_min_width / 2 ** (len(self.config.block_out_channels) - 1)) + self.tile_overlap_factor_height = 1 / 6 + self.tile_overlap_factor_width = 1 / 5 + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, (CogVideoXEncoder3D, CogVideoXDecoder3D)): + module.gradient_checkpointing = value + + def _clear_fake_context_parallel_cache(self): + for (name, module) in self.named_modules(): + if isinstance(module, CogVideoXCausalConv3d): + logger.debug(f'Clearing fake Context Parallel cache for layer: {name}') + module._clear_fake_context_parallel_cache() + + def enable_tiling(self, tile_sample_min_height: Optional[int]=None, tile_sample_min_width: Optional[int]=None, tile_overlap_factor_height: Optional[float]=None, tile_overlap_factor_width: Optional[float]=None) -> None: + self.use_tiling = True + self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height + self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width + self.tile_latent_min_height = int(self.tile_sample_min_height / 2 ** (len(self.config.block_out_channels) - 1)) + self.tile_latent_min_width = int(self.tile_sample_min_width / 2 ** (len(self.config.block_out_channels) - 1)) + self.tile_overlap_factor_height = tile_overlap_factor_height or self.tile_overlap_factor_height + self.tile_overlap_factor_width = tile_overlap_factor_width or self.tile_overlap_factor_width + + def disable_tiling(self) -> None: + self.use_tiling = False + + def enable_slicing(self) -> None: + self.use_slicing = True + + def disable_slicing(self) -> None: + self.use_slicing = False + + def _encode(self, x: torch.Tensor) -> torch.Tensor: + (batch_size, num_channels, num_frames, height, width) = x.shape + if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height): + return self.tiled_encode(x) + frame_batch_size = self.num_sample_frames_batch_size + enc = [] + for i in range(num_frames // frame_batch_size): + remaining_frames = num_frames % frame_batch_size + start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames) + end_frame = frame_batch_size * (i + 1) + remaining_frames + x_intermediate = x[:, :, start_frame:end_frame] + x_intermediate = self.encoder(x_intermediate) + if self.quant_conv is not None: + x_intermediate = self.quant_conv(x_intermediate) + enc.append(x_intermediate) + self._clear_fake_context_parallel_cache() + enc = torch.cat(enc, dim=2) + return enc + + @apply_forward_hook + def encode(self, x: torch.Tensor, return_dict: bool=True) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: + if self.use_slicing and x.shape[0] > 1: + encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)] + h = torch.cat(encoded_slices) + else: + h = self._encode(x) + posterior = DiagonalGaussianDistribution(h) + if not return_dict: + return (posterior,) + return AutoencoderKLOutput(latent_dist=posterior) + + def _decode(self, z: torch.Tensor, return_dict: bool=True) -> Union[DecoderOutput, torch.Tensor]: + (batch_size, num_channels, num_frames, height, width) = z.shape + if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height): + return self.tiled_decode(z, return_dict=return_dict) + frame_batch_size = self.num_latent_frames_batch_size + dec = [] + for i in range(num_frames // frame_batch_size): + remaining_frames = num_frames % frame_batch_size + start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames) + end_frame = frame_batch_size * (i + 1) + remaining_frames + z_intermediate = z[:, :, start_frame:end_frame] + if self.post_quant_conv is not None: + z_intermediate = self.post_quant_conv(z_intermediate) + z_intermediate = self.decoder(z_intermediate) + dec.append(z_intermediate) + self._clear_fake_context_parallel_cache() + dec = torch.cat(dec, dim=2) + if not return_dict: + return (dec,) + return DecoderOutput(sample=dec) + + @apply_forward_hook + def decode(self, z: torch.Tensor, return_dict: bool=True) -> Union[DecoderOutput, torch.Tensor]: + if self.use_slicing and z.shape[0] > 1: + decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] + decoded = torch.cat(decoded_slices) + else: + decoded = self._decode(z).sample + if not return_dict: + return (decoded,) + return DecoderOutput(sample=decoded) + + def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: + blend_extent = min(a.shape[3], b.shape[3], blend_extent) + for y in range(blend_extent): + b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (y / blend_extent) + return b + + def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: + blend_extent = min(a.shape[4], b.shape[4], blend_extent) + for x in range(blend_extent): + b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (x / blend_extent) + return b + + def tiled_encode(self, x: torch.Tensor) -> torch.Tensor: + (batch_size, num_channels, num_frames, height, width) = x.shape + overlap_height = int(self.tile_sample_min_height * (1 - self.tile_overlap_factor_height)) + overlap_width = int(self.tile_sample_min_width * (1 - self.tile_overlap_factor_width)) + blend_extent_height = int(self.tile_latent_min_height * self.tile_overlap_factor_height) + blend_extent_width = int(self.tile_latent_min_width * self.tile_overlap_factor_width) + row_limit_height = self.tile_latent_min_height - blend_extent_height + row_limit_width = self.tile_latent_min_width - blend_extent_width + frame_batch_size = self.num_sample_frames_batch_size + rows = [] + for i in range(0, height, overlap_height): + row = [] + for j in range(0, width, overlap_width): + time = [] + for k in range(num_frames // frame_batch_size): + remaining_frames = num_frames % frame_batch_size + start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames) + end_frame = frame_batch_size * (k + 1) + remaining_frames + tile = x[:, :, start_frame:end_frame, i:i + self.tile_sample_min_height, j:j + self.tile_sample_min_width] + tile = self.encoder(tile) + if self.quant_conv is not None: + tile = self.quant_conv(tile) + time.append(tile) + self._clear_fake_context_parallel_cache() + row.append(torch.cat(time, dim=2)) + rows.append(row) + result_rows = [] + for (i, row) in enumerate(rows): + result_row = [] + for (j, tile) in enumerate(row): + if i > 0: + tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height) + if j > 0: + tile = self.blend_h(row[j - 1], tile, blend_extent_width) + result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width]) + result_rows.append(torch.cat(result_row, dim=4)) + enc = torch.cat(result_rows, dim=3) + return enc + + def tiled_decode(self, z: torch.Tensor, return_dict: bool=True) -> Union[DecoderOutput, torch.Tensor]: + (batch_size, num_channels, num_frames, height, width) = z.shape + overlap_height = int(self.tile_latent_min_height * (1 - self.tile_overlap_factor_height)) + overlap_width = int(self.tile_latent_min_width * (1 - self.tile_overlap_factor_width)) + blend_extent_height = int(self.tile_sample_min_height * self.tile_overlap_factor_height) + blend_extent_width = int(self.tile_sample_min_width * self.tile_overlap_factor_width) + row_limit_height = self.tile_sample_min_height - blend_extent_height + row_limit_width = self.tile_sample_min_width - blend_extent_width + frame_batch_size = self.num_latent_frames_batch_size + rows = [] + for i in range(0, height, overlap_height): + row = [] + for j in range(0, width, overlap_width): + time = [] + for k in range(num_frames // frame_batch_size): + remaining_frames = num_frames % frame_batch_size + start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames) + end_frame = frame_batch_size * (k + 1) + remaining_frames + tile = z[:, :, start_frame:end_frame, i:i + self.tile_latent_min_height, j:j + self.tile_latent_min_width] + if self.post_quant_conv is not None: + tile = self.post_quant_conv(tile) + tile = self.decoder(tile) + time.append(tile) + self._clear_fake_context_parallel_cache() + row.append(torch.cat(time, dim=2)) + rows.append(row) + result_rows = [] + for (i, row) in enumerate(rows): + result_row = [] + for (j, tile) in enumerate(row): + if i > 0: + tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height) + if j > 0: + tile = self.blend_h(row[j - 1], tile, blend_extent_width) + result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width]) + result_rows.append(torch.cat(result_row, dim=4)) + dec = torch.cat(result_rows, dim=3) + if not return_dict: + return (dec,) + return DecoderOutput(sample=dec) + + def forward(self, sample: torch.Tensor, sample_posterior: bool=False, return_dict: bool=True, generator: Optional[torch.Generator]=None) -> Union[torch.Tensor, torch.Tensor]: + x = sample + posterior = self.encode(x).latent_dist + if sample_posterior: + z = posterior.sample(generator=generator) + else: + z = posterior.mode() + dec = self.decode(z) + if not return_dict: + return (dec,) + return dec + +# File: diffusers-main/src/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +from typing import Dict, Optional, Tuple, Union +import torch +import torch.nn as nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...utils import is_torch_version +from ...utils.accelerate_utils import apply_forward_hook +from ..attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor +from ..modeling_outputs import AutoencoderKLOutput +from ..modeling_utils import ModelMixin +from ..unets.unet_3d_blocks import MidBlockTemporalDecoder, UpBlockTemporalDecoder +from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder + +class TemporalDecoder(nn.Module): + + def __init__(self, in_channels: int=4, out_channels: int=3, block_out_channels: Tuple[int]=(128, 256, 512, 512), layers_per_block: int=2): + super().__init__() + self.layers_per_block = layers_per_block + self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1) + self.mid_block = MidBlockTemporalDecoder(num_layers=self.layers_per_block, in_channels=block_out_channels[-1], out_channels=block_out_channels[-1], attention_head_dim=block_out_channels[-1]) + self.up_blocks = nn.ModuleList([]) + reversed_block_out_channels = list(reversed(block_out_channels)) + output_channel = reversed_block_out_channels[0] + for i in range(len(block_out_channels)): + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + up_block = UpBlockTemporalDecoder(num_layers=self.layers_per_block + 1, in_channels=prev_output_channel, out_channels=output_channel, add_upsample=not is_final_block) + self.up_blocks.append(up_block) + prev_output_channel = output_channel + self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-06) + self.conv_act = nn.SiLU() + self.conv_out = torch.nn.Conv2d(in_channels=block_out_channels[0], out_channels=out_channels, kernel_size=3, padding=1) + conv_out_kernel_size = (3, 1, 1) + padding = [int(k // 2) for k in conv_out_kernel_size] + self.time_conv_out = torch.nn.Conv3d(in_channels=out_channels, out_channels=out_channels, kernel_size=conv_out_kernel_size, padding=padding) + self.gradient_checkpointing = False + + def forward(self, sample: torch.Tensor, image_only_indicator: torch.Tensor, num_frames: int=1) -> torch.Tensor: + sample = self.conv_in(sample) + upscale_dtype = next(iter(self.up_blocks.parameters())).dtype + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + if is_torch_version('>=', '1.11.0'): + sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample, image_only_indicator, use_reentrant=False) + sample = sample.to(upscale_dtype) + for up_block in self.up_blocks: + sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, image_only_indicator, use_reentrant=False) + else: + sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample, image_only_indicator) + sample = sample.to(upscale_dtype) + for up_block in self.up_blocks: + sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, image_only_indicator) + else: + sample = self.mid_block(sample, image_only_indicator=image_only_indicator) + sample = sample.to(upscale_dtype) + for up_block in self.up_blocks: + sample = up_block(sample, image_only_indicator=image_only_indicator) + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + (batch_frames, channels, height, width) = sample.shape + batch_size = batch_frames // num_frames + sample = sample[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4) + sample = self.time_conv_out(sample) + sample = sample.permute(0, 2, 1, 3, 4).reshape(batch_frames, channels, height, width) + return sample + +class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__(self, in_channels: int=3, out_channels: int=3, down_block_types: Tuple[str]=('DownEncoderBlock2D',), block_out_channels: Tuple[int]=(64,), layers_per_block: int=1, latent_channels: int=4, sample_size: int=32, scaling_factor: float=0.18215, force_upcast: float=True): + super().__init__() + self.encoder = Encoder(in_channels=in_channels, out_channels=latent_channels, down_block_types=down_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, double_z=True) + self.decoder = TemporalDecoder(in_channels=latent_channels, out_channels=out_channels, block_out_channels=block_out_channels, layers_per_block=layers_per_block) + self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) + sample_size = self.config.sample_size[0] if isinstance(self.config.sample_size, (list, tuple)) else self.config.sample_size + self.tile_latent_min_size = int(sample_size / 2 ** (len(self.config.block_out_channels) - 1)) + self.tile_overlap_factor = 0.25 + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, (Encoder, TemporalDecoder)): + module.gradient_checkpointing = value + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def set_default_attn_processor(self): + if all((proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnProcessor() + else: + raise ValueError(f'Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}') + self.set_attn_processor(processor) + + @apply_forward_hook + def encode(self, x: torch.Tensor, return_dict: bool=True) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: + h = self.encoder(x) + moments = self.quant_conv(h) + posterior = DiagonalGaussianDistribution(moments) + if not return_dict: + return (posterior,) + return AutoencoderKLOutput(latent_dist=posterior) + + @apply_forward_hook + def decode(self, z: torch.Tensor, num_frames: int, return_dict: bool=True) -> Union[DecoderOutput, torch.Tensor]: + batch_size = z.shape[0] // num_frames + image_only_indicator = torch.zeros(batch_size, num_frames, dtype=z.dtype, device=z.device) + decoded = self.decoder(z, num_frames=num_frames, image_only_indicator=image_only_indicator) + if not return_dict: + return (decoded,) + return DecoderOutput(sample=decoded) + + def forward(self, sample: torch.Tensor, sample_posterior: bool=False, return_dict: bool=True, generator: Optional[torch.Generator]=None, num_frames: int=1) -> Union[DecoderOutput, torch.Tensor]: + x = sample + posterior = self.encode(x).latent_dist + if sample_posterior: + z = posterior.sample(generator=generator) + else: + z = posterior.mode() + dec = self.decode(z, num_frames=num_frames).sample + if not return_dict: + return (dec,) + return DecoderOutput(sample=dec) + +# File: diffusers-main/src/diffusers/models/autoencoders/autoencoder_oobleck.py +import math +from dataclasses import dataclass +from typing import Optional, Tuple, Union +import numpy as np +import torch +import torch.nn as nn +from torch.nn.utils import weight_norm +from ...configuration_utils import ConfigMixin, register_to_config +from ...utils import BaseOutput +from ...utils.accelerate_utils import apply_forward_hook +from ...utils.torch_utils import randn_tensor +from ..modeling_utils import ModelMixin + +class Snake1d(nn.Module): + + def __init__(self, hidden_dim, logscale=True): + super().__init__() + self.alpha = nn.Parameter(torch.zeros(1, hidden_dim, 1)) + self.beta = nn.Parameter(torch.zeros(1, hidden_dim, 1)) + self.alpha.requires_grad = True + self.beta.requires_grad = True + self.logscale = logscale + + def forward(self, hidden_states): + shape = hidden_states.shape + alpha = self.alpha if not self.logscale else torch.exp(self.alpha) + beta = self.beta if not self.logscale else torch.exp(self.beta) + hidden_states = hidden_states.reshape(shape[0], shape[1], -1) + hidden_states = hidden_states + (beta + 1e-09).reciprocal() * torch.sin(alpha * hidden_states).pow(2) + hidden_states = hidden_states.reshape(shape) + return hidden_states + +class OobleckResidualUnit(nn.Module): + + def __init__(self, dimension: int=16, dilation: int=1): + super().__init__() + pad = (7 - 1) * dilation // 2 + self.snake1 = Snake1d(dimension) + self.conv1 = weight_norm(nn.Conv1d(dimension, dimension, kernel_size=7, dilation=dilation, padding=pad)) + self.snake2 = Snake1d(dimension) + self.conv2 = weight_norm(nn.Conv1d(dimension, dimension, kernel_size=1)) + + def forward(self, hidden_state): + output_tensor = hidden_state + output_tensor = self.conv1(self.snake1(output_tensor)) + output_tensor = self.conv2(self.snake2(output_tensor)) + padding = (hidden_state.shape[-1] - output_tensor.shape[-1]) // 2 + if padding > 0: + hidden_state = hidden_state[..., padding:-padding] + output_tensor = hidden_state + output_tensor + return output_tensor + +class OobleckEncoderBlock(nn.Module): + + def __init__(self, input_dim, output_dim, stride: int=1): + super().__init__() + self.res_unit1 = OobleckResidualUnit(input_dim, dilation=1) + self.res_unit2 = OobleckResidualUnit(input_dim, dilation=3) + self.res_unit3 = OobleckResidualUnit(input_dim, dilation=9) + self.snake1 = Snake1d(input_dim) + self.conv1 = weight_norm(nn.Conv1d(input_dim, output_dim, kernel_size=2 * stride, stride=stride, padding=math.ceil(stride / 2))) + + def forward(self, hidden_state): + hidden_state = self.res_unit1(hidden_state) + hidden_state = self.res_unit2(hidden_state) + hidden_state = self.snake1(self.res_unit3(hidden_state)) + hidden_state = self.conv1(hidden_state) + return hidden_state + +class OobleckDecoderBlock(nn.Module): + + def __init__(self, input_dim, output_dim, stride: int=1): + super().__init__() + self.snake1 = Snake1d(input_dim) + self.conv_t1 = weight_norm(nn.ConvTranspose1d(input_dim, output_dim, kernel_size=2 * stride, stride=stride, padding=math.ceil(stride / 2))) + self.res_unit1 = OobleckResidualUnit(output_dim, dilation=1) + self.res_unit2 = OobleckResidualUnit(output_dim, dilation=3) + self.res_unit3 = OobleckResidualUnit(output_dim, dilation=9) + + def forward(self, hidden_state): + hidden_state = self.snake1(hidden_state) + hidden_state = self.conv_t1(hidden_state) + hidden_state = self.res_unit1(hidden_state) + hidden_state = self.res_unit2(hidden_state) + hidden_state = self.res_unit3(hidden_state) + return hidden_state + +class OobleckDiagonalGaussianDistribution(object): + + def __init__(self, parameters: torch.Tensor, deterministic: bool=False): + self.parameters = parameters + (self.mean, self.scale) = parameters.chunk(2, dim=1) + self.std = nn.functional.softplus(self.scale) + 0.0001 + self.var = self.std * self.std + self.logvar = torch.log(self.var) + self.deterministic = deterministic + + def sample(self, generator: Optional[torch.Generator]=None) -> torch.Tensor: + sample = randn_tensor(self.mean.shape, generator=generator, device=self.parameters.device, dtype=self.parameters.dtype) + x = self.mean + self.std * sample + return x + + def kl(self, other: 'OobleckDiagonalGaussianDistribution'=None) -> torch.Tensor: + if self.deterministic: + return torch.Tensor([0.0]) + elif other is None: + return (self.mean * self.mean + self.var - self.logvar - 1.0).sum(1).mean() + else: + normalized_diff = torch.pow(self.mean - other.mean, 2) / other.var + var_ratio = self.var / other.var + logvar_diff = self.logvar - other.logvar + kl = normalized_diff + var_ratio + logvar_diff - 1 + kl = kl.sum(1).mean() + return kl + + def mode(self) -> torch.Tensor: + return self.mean + +@dataclass +class AutoencoderOobleckOutput(BaseOutput): + latent_dist: 'OobleckDiagonalGaussianDistribution' + +@dataclass +class OobleckDecoderOutput(BaseOutput): + sample: torch.Tensor + +class OobleckEncoder(nn.Module): + + def __init__(self, encoder_hidden_size, audio_channels, downsampling_ratios, channel_multiples): + super().__init__() + strides = downsampling_ratios + channel_multiples = [1] + channel_multiples + self.conv1 = weight_norm(nn.Conv1d(audio_channels, encoder_hidden_size, kernel_size=7, padding=3)) + self.block = [] + for (stride_index, stride) in enumerate(strides): + self.block += [OobleckEncoderBlock(input_dim=encoder_hidden_size * channel_multiples[stride_index], output_dim=encoder_hidden_size * channel_multiples[stride_index + 1], stride=stride)] + self.block = nn.ModuleList(self.block) + d_model = encoder_hidden_size * channel_multiples[-1] + self.snake1 = Snake1d(d_model) + self.conv2 = weight_norm(nn.Conv1d(d_model, encoder_hidden_size, kernel_size=3, padding=1)) + + def forward(self, hidden_state): + hidden_state = self.conv1(hidden_state) + for module in self.block: + hidden_state = module(hidden_state) + hidden_state = self.snake1(hidden_state) + hidden_state = self.conv2(hidden_state) + return hidden_state + +class OobleckDecoder(nn.Module): + + def __init__(self, channels, input_channels, audio_channels, upsampling_ratios, channel_multiples): + super().__init__() + strides = upsampling_ratios + channel_multiples = [1] + channel_multiples + self.conv1 = weight_norm(nn.Conv1d(input_channels, channels * channel_multiples[-1], kernel_size=7, padding=3)) + block = [] + for (stride_index, stride) in enumerate(strides): + block += [OobleckDecoderBlock(input_dim=channels * channel_multiples[len(strides) - stride_index], output_dim=channels * channel_multiples[len(strides) - stride_index - 1], stride=stride)] + self.block = nn.ModuleList(block) + output_dim = channels + self.snake1 = Snake1d(output_dim) + self.conv2 = weight_norm(nn.Conv1d(channels, audio_channels, kernel_size=7, padding=3, bias=False)) + + def forward(self, hidden_state): + hidden_state = self.conv1(hidden_state) + for layer in self.block: + hidden_state = layer(hidden_state) + hidden_state = self.snake1(hidden_state) + hidden_state = self.conv2(hidden_state) + return hidden_state + +class AutoencoderOobleck(ModelMixin, ConfigMixin): + _supports_gradient_checkpointing = False + + @register_to_config + def __init__(self, encoder_hidden_size=128, downsampling_ratios=[2, 4, 4, 8, 8], channel_multiples=[1, 2, 4, 8, 16], decoder_channels=128, decoder_input_channels=64, audio_channels=2, sampling_rate=44100): + super().__init__() + self.encoder_hidden_size = encoder_hidden_size + self.downsampling_ratios = downsampling_ratios + self.decoder_channels = decoder_channels + self.upsampling_ratios = downsampling_ratios[::-1] + self.hop_length = int(np.prod(downsampling_ratios)) + self.sampling_rate = sampling_rate + self.encoder = OobleckEncoder(encoder_hidden_size=encoder_hidden_size, audio_channels=audio_channels, downsampling_ratios=downsampling_ratios, channel_multiples=channel_multiples) + self.decoder = OobleckDecoder(channels=decoder_channels, input_channels=decoder_input_channels, audio_channels=audio_channels, upsampling_ratios=self.upsampling_ratios, channel_multiples=channel_multiples) + self.use_slicing = False + + def enable_slicing(self): + self.use_slicing = True + + def disable_slicing(self): + self.use_slicing = False + + @apply_forward_hook + def encode(self, x: torch.Tensor, return_dict: bool=True) -> Union[AutoencoderOobleckOutput, Tuple[OobleckDiagonalGaussianDistribution]]: + if self.use_slicing and x.shape[0] > 1: + encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)] + h = torch.cat(encoded_slices) + else: + h = self.encoder(x) + posterior = OobleckDiagonalGaussianDistribution(h) + if not return_dict: + return (posterior,) + return AutoencoderOobleckOutput(latent_dist=posterior) + + def _decode(self, z: torch.Tensor, return_dict: bool=True) -> Union[OobleckDecoderOutput, torch.Tensor]: + dec = self.decoder(z) + if not return_dict: + return (dec,) + return OobleckDecoderOutput(sample=dec) + + @apply_forward_hook + def decode(self, z: torch.FloatTensor, return_dict: bool=True, generator=None) -> Union[OobleckDecoderOutput, torch.FloatTensor]: + if self.use_slicing and z.shape[0] > 1: + decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] + decoded = torch.cat(decoded_slices) + else: + decoded = self._decode(z).sample + if not return_dict: + return (decoded,) + return OobleckDecoderOutput(sample=decoded) + + def forward(self, sample: torch.Tensor, sample_posterior: bool=False, return_dict: bool=True, generator: Optional[torch.Generator]=None) -> Union[OobleckDecoderOutput, torch.Tensor]: + x = sample + posterior = self.encode(x).latent_dist + if sample_posterior: + z = posterior.sample(generator=generator) + else: + z = posterior.mode() + dec = self.decode(z).sample + if not return_dict: + return (dec,) + return OobleckDecoderOutput(sample=dec) + +# File: diffusers-main/src/diffusers/models/autoencoders/autoencoder_tiny.py +from dataclasses import dataclass +from typing import Optional, Tuple, Union +import torch +from ...configuration_utils import ConfigMixin, register_to_config +from ...utils import BaseOutput +from ...utils.accelerate_utils import apply_forward_hook +from ..modeling_utils import ModelMixin +from .vae import DecoderOutput, DecoderTiny, EncoderTiny + +@dataclass +class AutoencoderTinyOutput(BaseOutput): + latents: torch.Tensor + +class AutoencoderTiny(ModelMixin, ConfigMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__(self, in_channels: int=3, out_channels: int=3, encoder_block_out_channels: Tuple[int, ...]=(64, 64, 64, 64), decoder_block_out_channels: Tuple[int, ...]=(64, 64, 64, 64), act_fn: str='relu', upsample_fn: str='nearest', latent_channels: int=4, upsampling_scaling_factor: int=2, num_encoder_blocks: Tuple[int, ...]=(1, 3, 3, 3), num_decoder_blocks: Tuple[int, ...]=(3, 3, 3, 1), latent_magnitude: int=3, latent_shift: float=0.5, force_upcast: bool=False, scaling_factor: float=1.0, shift_factor: float=0.0): + super().__init__() + if len(encoder_block_out_channels) != len(num_encoder_blocks): + raise ValueError('`encoder_block_out_channels` should have the same length as `num_encoder_blocks`.') + if len(decoder_block_out_channels) != len(num_decoder_blocks): + raise ValueError('`decoder_block_out_channels` should have the same length as `num_decoder_blocks`.') + self.encoder = EncoderTiny(in_channels=in_channels, out_channels=latent_channels, num_blocks=num_encoder_blocks, block_out_channels=encoder_block_out_channels, act_fn=act_fn) + self.decoder = DecoderTiny(in_channels=latent_channels, out_channels=out_channels, num_blocks=num_decoder_blocks, block_out_channels=decoder_block_out_channels, upsampling_scaling_factor=upsampling_scaling_factor, act_fn=act_fn, upsample_fn=upsample_fn) + self.latent_magnitude = latent_magnitude + self.latent_shift = latent_shift + self.scaling_factor = scaling_factor + self.use_slicing = False + self.use_tiling = False + self.spatial_scale_factor = 2 ** out_channels + self.tile_overlap_factor = 0.125 + self.tile_sample_min_size = 512 + self.tile_latent_min_size = self.tile_sample_min_size // self.spatial_scale_factor + self.register_to_config(block_out_channels=decoder_block_out_channels) + self.register_to_config(force_upcast=False) + + def _set_gradient_checkpointing(self, module, value: bool=False) -> None: + if isinstance(module, (EncoderTiny, DecoderTiny)): + module.gradient_checkpointing = value + + def scale_latents(self, x: torch.Tensor) -> torch.Tensor: + return x.div(2 * self.latent_magnitude).add(self.latent_shift).clamp(0, 1) + + def unscale_latents(self, x: torch.Tensor) -> torch.Tensor: + return x.sub(self.latent_shift).mul(2 * self.latent_magnitude) + + def enable_slicing(self) -> None: + self.use_slicing = True + + def disable_slicing(self) -> None: + self.use_slicing = False + + def enable_tiling(self, use_tiling: bool=True) -> None: + self.use_tiling = use_tiling + + def disable_tiling(self) -> None: + self.enable_tiling(False) + + def _tiled_encode(self, x: torch.Tensor) -> torch.Tensor: + sf = self.spatial_scale_factor + tile_size = self.tile_sample_min_size + blend_size = int(tile_size * self.tile_overlap_factor) + traverse_size = tile_size - blend_size + ti = range(0, x.shape[-2], traverse_size) + tj = range(0, x.shape[-1], traverse_size) + blend_masks = torch.stack(torch.meshgrid([torch.arange(tile_size / sf) / (blend_size / sf - 1)] * 2, indexing='ij')) + blend_masks = blend_masks.clamp(0, 1).to(x.device) + out = torch.zeros(x.shape[0], 4, x.shape[-2] // sf, x.shape[-1] // sf, device=x.device) + for i in ti: + for j in tj: + tile_in = x[..., i:i + tile_size, j:j + tile_size] + tile_out = out[..., i // sf:(i + tile_size) // sf, j // sf:(j + tile_size) // sf] + tile = self.encoder(tile_in) + (h, w) = (tile.shape[-2], tile.shape[-1]) + blend_mask_i = torch.ones_like(blend_masks[0]) if i == 0 else blend_masks[0] + blend_mask_j = torch.ones_like(blend_masks[1]) if j == 0 else blend_masks[1] + blend_mask = blend_mask_i * blend_mask_j + (tile, blend_mask) = (tile[..., :h, :w], blend_mask[..., :h, :w]) + tile_out.copy_(blend_mask * tile + (1 - blend_mask) * tile_out) + return out + + def _tiled_decode(self, x: torch.Tensor) -> torch.Tensor: + sf = self.spatial_scale_factor + tile_size = self.tile_latent_min_size + blend_size = int(tile_size * self.tile_overlap_factor) + traverse_size = tile_size - blend_size + ti = range(0, x.shape[-2], traverse_size) + tj = range(0, x.shape[-1], traverse_size) + blend_masks = torch.stack(torch.meshgrid([torch.arange(tile_size * sf) / (blend_size * sf - 1)] * 2, indexing='ij')) + blend_masks = blend_masks.clamp(0, 1).to(x.device) + out = torch.zeros(x.shape[0], 3, x.shape[-2] * sf, x.shape[-1] * sf, device=x.device) + for i in ti: + for j in tj: + tile_in = x[..., i:i + tile_size, j:j + tile_size] + tile_out = out[..., i * sf:(i + tile_size) * sf, j * sf:(j + tile_size) * sf] + tile = self.decoder(tile_in) + (h, w) = (tile.shape[-2], tile.shape[-1]) + blend_mask_i = torch.ones_like(blend_masks[0]) if i == 0 else blend_masks[0] + blend_mask_j = torch.ones_like(blend_masks[1]) if j == 0 else blend_masks[1] + blend_mask = (blend_mask_i * blend_mask_j)[..., :h, :w] + tile_out.copy_(blend_mask * tile + (1 - blend_mask) * tile_out) + return out + + @apply_forward_hook + def encode(self, x: torch.Tensor, return_dict: bool=True) -> Union[AutoencoderTinyOutput, Tuple[torch.Tensor]]: + if self.use_slicing and x.shape[0] > 1: + output = [self._tiled_encode(x_slice) if self.use_tiling else self.encoder(x_slice) for x_slice in x.split(1)] + output = torch.cat(output) + else: + output = self._tiled_encode(x) if self.use_tiling else self.encoder(x) + if not return_dict: + return (output,) + return AutoencoderTinyOutput(latents=output) + + @apply_forward_hook + def decode(self, x: torch.Tensor, generator: Optional[torch.Generator]=None, return_dict: bool=True) -> Union[DecoderOutput, Tuple[torch.Tensor]]: + if self.use_slicing and x.shape[0] > 1: + output = [self._tiled_decode(x_slice) if self.use_tiling else self.decoder(x) for x_slice in x.split(1)] + output = torch.cat(output) + else: + output = self._tiled_decode(x) if self.use_tiling else self.decoder(x) + if not return_dict: + return (output,) + return DecoderOutput(sample=output) + + def forward(self, sample: torch.Tensor, return_dict: bool=True) -> Union[DecoderOutput, Tuple[torch.Tensor]]: + enc = self.encode(sample).latents + scaled_enc = self.scale_latents(enc).mul_(255).round_().byte() + unscaled_enc = self.unscale_latents(scaled_enc / 255.0) + dec = self.decode(unscaled_enc) + if not return_dict: + return (dec,) + return DecoderOutput(sample=dec) + +# File: diffusers-main/src/diffusers/models/autoencoders/consistency_decoder_vae.py +from dataclasses import dataclass +from typing import Dict, Optional, Tuple, Union +import torch +import torch.nn.functional as F +from torch import nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...schedulers import ConsistencyDecoderScheduler +from ...utils import BaseOutput +from ...utils.accelerate_utils import apply_forward_hook +from ...utils.torch_utils import randn_tensor +from ..attention_processor import ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnAddedKVProcessor, AttnProcessor +from ..modeling_utils import ModelMixin +from ..unets.unet_2d import UNet2DModel +from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder + +@dataclass +class ConsistencyDecoderVAEOutput(BaseOutput): + latent_dist: 'DiagonalGaussianDistribution' + +class ConsistencyDecoderVAE(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, scaling_factor: float=0.18215, latent_channels: int=4, sample_size: int=32, encoder_act_fn: str='silu', encoder_block_out_channels: Tuple[int, ...]=(128, 256, 512, 512), encoder_double_z: bool=True, encoder_down_block_types: Tuple[str, ...]=('DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'), encoder_in_channels: int=3, encoder_layers_per_block: int=2, encoder_norm_num_groups: int=32, encoder_out_channels: int=4, decoder_add_attention: bool=False, decoder_block_out_channels: Tuple[int, ...]=(320, 640, 1024, 1024), decoder_down_block_types: Tuple[str, ...]=('ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D'), decoder_downsample_padding: int=1, decoder_in_channels: int=7, decoder_layers_per_block: int=3, decoder_norm_eps: float=1e-05, decoder_norm_num_groups: int=32, decoder_num_train_timesteps: int=1024, decoder_out_channels: int=6, decoder_resnet_time_scale_shift: str='scale_shift', decoder_time_embedding_type: str='learned', decoder_up_block_types: Tuple[str, ...]=('ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D')): + super().__init__() + self.encoder = Encoder(act_fn=encoder_act_fn, block_out_channels=encoder_block_out_channels, double_z=encoder_double_z, down_block_types=encoder_down_block_types, in_channels=encoder_in_channels, layers_per_block=encoder_layers_per_block, norm_num_groups=encoder_norm_num_groups, out_channels=encoder_out_channels) + self.decoder_unet = UNet2DModel(add_attention=decoder_add_attention, block_out_channels=decoder_block_out_channels, down_block_types=decoder_down_block_types, downsample_padding=decoder_downsample_padding, in_channels=decoder_in_channels, layers_per_block=decoder_layers_per_block, norm_eps=decoder_norm_eps, norm_num_groups=decoder_norm_num_groups, num_train_timesteps=decoder_num_train_timesteps, out_channels=decoder_out_channels, resnet_time_scale_shift=decoder_resnet_time_scale_shift, time_embedding_type=decoder_time_embedding_type, up_block_types=decoder_up_block_types) + self.decoder_scheduler = ConsistencyDecoderScheduler() + self.register_to_config(block_out_channels=encoder_block_out_channels) + self.register_to_config(force_upcast=False) + self.register_buffer('means', torch.tensor([0.38862467, 0.02253063, 0.07381133, -0.0171294])[None, :, None, None], persistent=False) + self.register_buffer('stds', torch.tensor([0.9654121, 1.0440036, 0.76147926, 0.77022034])[None, :, None, None], persistent=False) + self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) + self.use_slicing = False + self.use_tiling = False + self.tile_sample_min_size = self.config.sample_size + sample_size = self.config.sample_size[0] if isinstance(self.config.sample_size, (list, tuple)) else self.config.sample_size + self.tile_latent_min_size = int(sample_size / 2 ** (len(self.config.block_out_channels) - 1)) + self.tile_overlap_factor = 0.25 + + def enable_tiling(self, use_tiling: bool=True): + self.use_tiling = use_tiling + + def disable_tiling(self): + self.enable_tiling(False) + + def enable_slicing(self): + self.use_slicing = True + + def disable_slicing(self): + self.use_slicing = False + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def set_default_attn_processor(self): + if all((proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnAddedKVProcessor() + elif all((proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnProcessor() + else: + raise ValueError(f'Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}') + self.set_attn_processor(processor) + + @apply_forward_hook + def encode(self, x: torch.Tensor, return_dict: bool=True) -> Union[ConsistencyDecoderVAEOutput, Tuple[DiagonalGaussianDistribution]]: + if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): + return self.tiled_encode(x, return_dict=return_dict) + if self.use_slicing and x.shape[0] > 1: + encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)] + h = torch.cat(encoded_slices) + else: + h = self.encoder(x) + moments = self.quant_conv(h) + posterior = DiagonalGaussianDistribution(moments) + if not return_dict: + return (posterior,) + return ConsistencyDecoderVAEOutput(latent_dist=posterior) + + @apply_forward_hook + def decode(self, z: torch.Tensor, generator: Optional[torch.Generator]=None, return_dict: bool=True, num_inference_steps: int=2) -> Union[DecoderOutput, Tuple[torch.Tensor]]: + z = (z * self.config.scaling_factor - self.means) / self.stds + scale_factor = 2 ** (len(self.config.block_out_channels) - 1) + z = F.interpolate(z, mode='nearest', scale_factor=scale_factor) + (batch_size, _, height, width) = z.shape + self.decoder_scheduler.set_timesteps(num_inference_steps, device=self.device) + x_t = self.decoder_scheduler.init_noise_sigma * randn_tensor((batch_size, 3, height, width), generator=generator, dtype=z.dtype, device=z.device) + for t in self.decoder_scheduler.timesteps: + model_input = torch.concat([self.decoder_scheduler.scale_model_input(x_t, t), z], dim=1) + model_output = self.decoder_unet(model_input, t).sample[:, :3, :, :] + prev_sample = self.decoder_scheduler.step(model_output, t, x_t, generator).prev_sample + x_t = prev_sample + x_0 = x_t + if not return_dict: + return (x_0,) + return DecoderOutput(sample=x_0) + + def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: + blend_extent = min(a.shape[2], b.shape[2], blend_extent) + for y in range(blend_extent): + b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) + return b + + def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: + blend_extent = min(a.shape[3], b.shape[3], blend_extent) + for x in range(blend_extent): + b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) + return b + + def tiled_encode(self, x: torch.Tensor, return_dict: bool=True) -> Union[ConsistencyDecoderVAEOutput, Tuple]: + overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) + blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor) + row_limit = self.tile_latent_min_size - blend_extent + rows = [] + for i in range(0, x.shape[2], overlap_size): + row = [] + for j in range(0, x.shape[3], overlap_size): + tile = x[:, :, i:i + self.tile_sample_min_size, j:j + self.tile_sample_min_size] + tile = self.encoder(tile) + tile = self.quant_conv(tile) + row.append(tile) + rows.append(row) + result_rows = [] + for (i, row) in enumerate(rows): + result_row = [] + for (j, tile) in enumerate(row): + if i > 0: + tile = self.blend_v(rows[i - 1][j], tile, blend_extent) + if j > 0: + tile = self.blend_h(row[j - 1], tile, blend_extent) + result_row.append(tile[:, :, :row_limit, :row_limit]) + result_rows.append(torch.cat(result_row, dim=3)) + moments = torch.cat(result_rows, dim=2) + posterior = DiagonalGaussianDistribution(moments) + if not return_dict: + return (posterior,) + return ConsistencyDecoderVAEOutput(latent_dist=posterior) + + def forward(self, sample: torch.Tensor, sample_posterior: bool=False, return_dict: bool=True, generator: Optional[torch.Generator]=None) -> Union[DecoderOutput, Tuple[torch.Tensor]]: + x = sample + posterior = self.encode(x).latent_dist + if sample_posterior: + z = posterior.sample(generator=generator) + else: + z = posterior.mode() + dec = self.decode(z, generator=generator).sample + if not return_dict: + return (dec,) + return DecoderOutput(sample=dec) + +# File: diffusers-main/src/diffusers/models/autoencoders/vae.py +from dataclasses import dataclass +from typing import Optional, Tuple +import numpy as np +import torch +import torch.nn as nn +from ...utils import BaseOutput, is_torch_version +from ...utils.torch_utils import randn_tensor +from ..activations import get_activation +from ..attention_processor import SpatialNorm +from ..unets.unet_2d_blocks import AutoencoderTinyBlock, UNetMidBlock2D, get_down_block, get_up_block + +@dataclass +class DecoderOutput(BaseOutput): + sample: torch.Tensor + commit_loss: Optional[torch.FloatTensor] = None + +class Encoder(nn.Module): + + def __init__(self, in_channels: int=3, out_channels: int=3, down_block_types: Tuple[str, ...]=('DownEncoderBlock2D',), block_out_channels: Tuple[int, ...]=(64,), layers_per_block: int=2, norm_num_groups: int=32, act_fn: str='silu', double_z: bool=True, mid_block_add_attention=True): + super().__init__() + self.layers_per_block = layers_per_block + self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1) + self.down_blocks = nn.ModuleList([]) + output_channel = block_out_channels[0] + for (i, down_block_type) in enumerate(down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + down_block = get_down_block(down_block_type, num_layers=self.layers_per_block, in_channels=input_channel, out_channels=output_channel, add_downsample=not is_final_block, resnet_eps=1e-06, downsample_padding=0, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, attention_head_dim=output_channel, temb_channels=None) + self.down_blocks.append(down_block) + self.mid_block = UNetMidBlock2D(in_channels=block_out_channels[-1], resnet_eps=1e-06, resnet_act_fn=act_fn, output_scale_factor=1, resnet_time_scale_shift='default', attention_head_dim=block_out_channels[-1], resnet_groups=norm_num_groups, temb_channels=None, add_attention=mid_block_add_attention) + self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-06) + self.conv_act = nn.SiLU() + conv_out_channels = 2 * out_channels if double_z else out_channels + self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1) + self.gradient_checkpointing = False + + def forward(self, sample: torch.Tensor) -> torch.Tensor: + sample = self.conv_in(sample) + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + if is_torch_version('>=', '1.11.0'): + for down_block in self.down_blocks: + sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample, use_reentrant=False) + sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample, use_reentrant=False) + else: + for down_block in self.down_blocks: + sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample) + sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample) + else: + for down_block in self.down_blocks: + sample = down_block(sample) + sample = self.mid_block(sample) + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + return sample + +class Decoder(nn.Module): + + def __init__(self, in_channels: int=3, out_channels: int=3, up_block_types: Tuple[str, ...]=('UpDecoderBlock2D',), block_out_channels: Tuple[int, ...]=(64,), layers_per_block: int=2, norm_num_groups: int=32, act_fn: str='silu', norm_type: str='group', mid_block_add_attention=True): + super().__init__() + self.layers_per_block = layers_per_block + self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1) + self.up_blocks = nn.ModuleList([]) + temb_channels = in_channels if norm_type == 'spatial' else None + self.mid_block = UNetMidBlock2D(in_channels=block_out_channels[-1], resnet_eps=1e-06, resnet_act_fn=act_fn, output_scale_factor=1, resnet_time_scale_shift='default' if norm_type == 'group' else norm_type, attention_head_dim=block_out_channels[-1], resnet_groups=norm_num_groups, temb_channels=temb_channels, add_attention=mid_block_add_attention) + reversed_block_out_channels = list(reversed(block_out_channels)) + output_channel = reversed_block_out_channels[0] + for (i, up_block_type) in enumerate(up_block_types): + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + up_block = get_up_block(up_block_type, num_layers=self.layers_per_block + 1, in_channels=prev_output_channel, out_channels=output_channel, prev_output_channel=None, add_upsample=not is_final_block, resnet_eps=1e-06, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, attention_head_dim=output_channel, temb_channels=temb_channels, resnet_time_scale_shift=norm_type) + self.up_blocks.append(up_block) + prev_output_channel = output_channel + if norm_type == 'spatial': + self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels) + else: + self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-06) + self.conv_act = nn.SiLU() + self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) + self.gradient_checkpointing = False + + def forward(self, sample: torch.Tensor, latent_embeds: Optional[torch.Tensor]=None) -> torch.Tensor: + sample = self.conv_in(sample) + upscale_dtype = next(iter(self.up_blocks.parameters())).dtype + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + if is_torch_version('>=', '1.11.0'): + sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample, latent_embeds, use_reentrant=False) + sample = sample.to(upscale_dtype) + for up_block in self.up_blocks: + sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds, use_reentrant=False) + else: + sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample, latent_embeds) + sample = sample.to(upscale_dtype) + for up_block in self.up_blocks: + sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds) + else: + sample = self.mid_block(sample, latent_embeds) + sample = sample.to(upscale_dtype) + for up_block in self.up_blocks: + sample = up_block(sample, latent_embeds) + if latent_embeds is None: + sample = self.conv_norm_out(sample) + else: + sample = self.conv_norm_out(sample, latent_embeds) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + return sample + +class UpSample(nn.Module): + + def __init__(self, in_channels: int, out_channels: int) -> None: + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = torch.relu(x) + x = self.deconv(x) + return x + +class MaskConditionEncoder(nn.Module): + + def __init__(self, in_ch: int, out_ch: int=192, res_ch: int=768, stride: int=16) -> None: + super().__init__() + channels = [] + while stride > 1: + stride = stride // 2 + in_ch_ = out_ch * 2 + if out_ch > res_ch: + out_ch = res_ch + if stride == 1: + in_ch_ = res_ch + channels.append((in_ch_, out_ch)) + out_ch *= 2 + out_channels = [] + for (_in_ch, _out_ch) in channels: + out_channels.append(_out_ch) + out_channels.append(channels[-1][0]) + layers = [] + in_ch_ = in_ch + for l in range(len(out_channels)): + out_ch_ = out_channels[l] + if l == 0 or l == 1: + layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=3, stride=1, padding=1)) + else: + layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=4, stride=2, padding=1)) + in_ch_ = out_ch_ + self.layers = nn.Sequential(*layers) + + def forward(self, x: torch.Tensor, mask=None) -> torch.Tensor: + out = {} + for l in range(len(self.layers)): + layer = self.layers[l] + x = layer(x) + out[str(tuple(x.shape))] = x + x = torch.relu(x) + return out + +class MaskConditionDecoder(nn.Module): + + def __init__(self, in_channels: int=3, out_channels: int=3, up_block_types: Tuple[str, ...]=('UpDecoderBlock2D',), block_out_channels: Tuple[int, ...]=(64,), layers_per_block: int=2, norm_num_groups: int=32, act_fn: str='silu', norm_type: str='group'): + super().__init__() + self.layers_per_block = layers_per_block + self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1) + self.up_blocks = nn.ModuleList([]) + temb_channels = in_channels if norm_type == 'spatial' else None + self.mid_block = UNetMidBlock2D(in_channels=block_out_channels[-1], resnet_eps=1e-06, resnet_act_fn=act_fn, output_scale_factor=1, resnet_time_scale_shift='default' if norm_type == 'group' else norm_type, attention_head_dim=block_out_channels[-1], resnet_groups=norm_num_groups, temb_channels=temb_channels) + reversed_block_out_channels = list(reversed(block_out_channels)) + output_channel = reversed_block_out_channels[0] + for (i, up_block_type) in enumerate(up_block_types): + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + up_block = get_up_block(up_block_type, num_layers=self.layers_per_block + 1, in_channels=prev_output_channel, out_channels=output_channel, prev_output_channel=None, add_upsample=not is_final_block, resnet_eps=1e-06, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, attention_head_dim=output_channel, temb_channels=temb_channels, resnet_time_scale_shift=norm_type) + self.up_blocks.append(up_block) + prev_output_channel = output_channel + self.condition_encoder = MaskConditionEncoder(in_ch=out_channels, out_ch=block_out_channels[0], res_ch=block_out_channels[-1]) + if norm_type == 'spatial': + self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels) + else: + self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-06) + self.conv_act = nn.SiLU() + self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) + self.gradient_checkpointing = False + + def forward(self, z: torch.Tensor, image: Optional[torch.Tensor]=None, mask: Optional[torch.Tensor]=None, latent_embeds: Optional[torch.Tensor]=None) -> torch.Tensor: + sample = z + sample = self.conv_in(sample) + upscale_dtype = next(iter(self.up_blocks.parameters())).dtype + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + if is_torch_version('>=', '1.11.0'): + sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample, latent_embeds, use_reentrant=False) + sample = sample.to(upscale_dtype) + if image is not None and mask is not None: + masked_image = (1 - mask) * image + im_x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.condition_encoder), masked_image, mask, use_reentrant=False) + for up_block in self.up_blocks: + if image is not None and mask is not None: + sample_ = im_x[str(tuple(sample.shape))] + mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode='nearest') + sample = sample * mask_ + sample_ * (1 - mask_) + sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds, use_reentrant=False) + if image is not None and mask is not None: + sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask) + else: + sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample, latent_embeds) + sample = sample.to(upscale_dtype) + if image is not None and mask is not None: + masked_image = (1 - mask) * image + im_x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.condition_encoder), masked_image, mask) + for up_block in self.up_blocks: + if image is not None and mask is not None: + sample_ = im_x[str(tuple(sample.shape))] + mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode='nearest') + sample = sample * mask_ + sample_ * (1 - mask_) + sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds) + if image is not None and mask is not None: + sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask) + else: + sample = self.mid_block(sample, latent_embeds) + sample = sample.to(upscale_dtype) + if image is not None and mask is not None: + masked_image = (1 - mask) * image + im_x = self.condition_encoder(masked_image, mask) + for up_block in self.up_blocks: + if image is not None and mask is not None: + sample_ = im_x[str(tuple(sample.shape))] + mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode='nearest') + sample = sample * mask_ + sample_ * (1 - mask_) + sample = up_block(sample, latent_embeds) + if image is not None and mask is not None: + sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask) + if latent_embeds is None: + sample = self.conv_norm_out(sample) + else: + sample = self.conv_norm_out(sample, latent_embeds) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + return sample + +class VectorQuantizer(nn.Module): + + def __init__(self, n_e: int, vq_embed_dim: int, beta: float, remap=None, unknown_index: str='random', sane_index_shape: bool=False, legacy: bool=True): + super().__init__() + self.n_e = n_e + self.vq_embed_dim = vq_embed_dim + self.beta = beta + self.legacy = legacy + self.embedding = nn.Embedding(self.n_e, self.vq_embed_dim) + self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) + self.remap = remap + if self.remap is not None: + self.register_buffer('used', torch.tensor(np.load(self.remap))) + self.used: torch.Tensor + self.re_embed = self.used.shape[0] + self.unknown_index = unknown_index + if self.unknown_index == 'extra': + self.unknown_index = self.re_embed + self.re_embed = self.re_embed + 1 + print(f'Remapping {self.n_e} indices to {self.re_embed} indices. Using {self.unknown_index} for unknown indices.') + else: + self.re_embed = n_e + self.sane_index_shape = sane_index_shape + + def remap_to_used(self, inds: torch.LongTensor) -> torch.LongTensor: + ishape = inds.shape + assert len(ishape) > 1 + inds = inds.reshape(ishape[0], -1) + used = self.used.to(inds) + match = (inds[:, :, None] == used[None, None, ...]).long() + new = match.argmax(-1) + unknown = match.sum(2) < 1 + if self.unknown_index == 'random': + new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device) + else: + new[unknown] = self.unknown_index + return new.reshape(ishape) + + def unmap_to_all(self, inds: torch.LongTensor) -> torch.LongTensor: + ishape = inds.shape + assert len(ishape) > 1 + inds = inds.reshape(ishape[0], -1) + used = self.used.to(inds) + if self.re_embed > self.used.shape[0]: + inds[inds >= self.used.shape[0]] = 0 + back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) + return back.reshape(ishape) + + def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, Tuple]: + z = z.permute(0, 2, 3, 1).contiguous() + z_flattened = z.view(-1, self.vq_embed_dim) + min_encoding_indices = torch.argmin(torch.cdist(z_flattened, self.embedding.weight), dim=1) + z_q = self.embedding(min_encoding_indices).view(z.shape) + perplexity = None + min_encodings = None + if not self.legacy: + loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) + else: + loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) + z_q: torch.Tensor = z + (z_q - z).detach() + z_q = z_q.permute(0, 3, 1, 2).contiguous() + if self.remap is not None: + min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) + min_encoding_indices = self.remap_to_used(min_encoding_indices) + min_encoding_indices = min_encoding_indices.reshape(-1, 1) + if self.sane_index_shape: + min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3]) + return (z_q, loss, (perplexity, min_encodings, min_encoding_indices)) + + def get_codebook_entry(self, indices: torch.LongTensor, shape: Tuple[int, ...]) -> torch.Tensor: + if self.remap is not None: + indices = indices.reshape(shape[0], -1) + indices = self.unmap_to_all(indices) + indices = indices.reshape(-1) + z_q: torch.Tensor = self.embedding(indices) + if shape is not None: + z_q = z_q.view(shape) + z_q = z_q.permute(0, 3, 1, 2).contiguous() + return z_q + +class DiagonalGaussianDistribution(object): + + def __init__(self, parameters: torch.Tensor, deterministic: bool=False): + self.parameters = parameters + (self.mean, self.logvar) = torch.chunk(parameters, 2, dim=1) + self.logvar = torch.clamp(self.logvar, -30.0, 20.0) + self.deterministic = deterministic + self.std = torch.exp(0.5 * self.logvar) + self.var = torch.exp(self.logvar) + if self.deterministic: + self.var = self.std = torch.zeros_like(self.mean, device=self.parameters.device, dtype=self.parameters.dtype) + + def sample(self, generator: Optional[torch.Generator]=None) -> torch.Tensor: + sample = randn_tensor(self.mean.shape, generator=generator, device=self.parameters.device, dtype=self.parameters.dtype) + x = self.mean + self.std * sample + return x + + def kl(self, other: 'DiagonalGaussianDistribution'=None) -> torch.Tensor: + if self.deterministic: + return torch.Tensor([0.0]) + elif other is None: + return 0.5 * torch.sum(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=[1, 2, 3]) + else: + return 0.5 * torch.sum(torch.pow(self.mean - other.mean, 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar, dim=[1, 2, 3]) + + def nll(self, sample: torch.Tensor, dims: Tuple[int, ...]=[1, 2, 3]) -> torch.Tensor: + if self.deterministic: + return torch.Tensor([0.0]) + logtwopi = np.log(2.0 * np.pi) + return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims) + + def mode(self) -> torch.Tensor: + return self.mean + +class EncoderTiny(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, num_blocks: Tuple[int, ...], block_out_channels: Tuple[int, ...], act_fn: str): + super().__init__() + layers = [] + for (i, num_block) in enumerate(num_blocks): + num_channels = block_out_channels[i] + if i == 0: + layers.append(nn.Conv2d(in_channels, num_channels, kernel_size=3, padding=1)) + else: + layers.append(nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1, stride=2, bias=False)) + for _ in range(num_block): + layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn)) + layers.append(nn.Conv2d(block_out_channels[-1], out_channels, kernel_size=3, padding=1)) + self.layers = nn.Sequential(*layers) + self.gradient_checkpointing = False + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + if is_torch_version('>=', '1.11.0'): + x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False) + else: + x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x) + else: + x = self.layers(x.add(1).div(2)) + return x + +class DecoderTiny(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, num_blocks: Tuple[int, ...], block_out_channels: Tuple[int, ...], upsampling_scaling_factor: int, act_fn: str, upsample_fn: str): + super().__init__() + layers = [nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=1), get_activation(act_fn)] + for (i, num_block) in enumerate(num_blocks): + is_final_block = i == len(num_blocks) - 1 + num_channels = block_out_channels[i] + for _ in range(num_block): + layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn)) + if not is_final_block: + layers.append(nn.Upsample(scale_factor=upsampling_scaling_factor, mode=upsample_fn)) + conv_out_channel = num_channels if not is_final_block else out_channels + layers.append(nn.Conv2d(num_channels, conv_out_channel, kernel_size=3, padding=1, bias=is_final_block)) + self.layers = nn.Sequential(*layers) + self.gradient_checkpointing = False + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = torch.tanh(x / 3) * 3 + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + if is_torch_version('>=', '1.11.0'): + x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False) + else: + x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x) + else: + x = self.layers(x) + return x.mul(2).sub(1) + +# File: diffusers-main/src/diffusers/models/autoencoders/vq_model.py +from dataclasses import dataclass +from typing import Optional, Tuple, Union +import torch +import torch.nn as nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...utils import BaseOutput +from ...utils.accelerate_utils import apply_forward_hook +from ..autoencoders.vae import Decoder, DecoderOutput, Encoder, VectorQuantizer +from ..modeling_utils import ModelMixin + +@dataclass +class VQEncoderOutput(BaseOutput): + latents: torch.Tensor + +class VQModel(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, in_channels: int=3, out_channels: int=3, down_block_types: Tuple[str, ...]=('DownEncoderBlock2D',), up_block_types: Tuple[str, ...]=('UpDecoderBlock2D',), block_out_channels: Tuple[int, ...]=(64,), layers_per_block: int=1, act_fn: str='silu', latent_channels: int=3, sample_size: int=32, num_vq_embeddings: int=256, norm_num_groups: int=32, vq_embed_dim: Optional[int]=None, scaling_factor: float=0.18215, norm_type: str='group', mid_block_add_attention=True, lookup_from_codebook=False, force_upcast=False): + super().__init__() + self.encoder = Encoder(in_channels=in_channels, out_channels=latent_channels, down_block_types=down_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, act_fn=act_fn, norm_num_groups=norm_num_groups, double_z=False, mid_block_add_attention=mid_block_add_attention) + vq_embed_dim = vq_embed_dim if vq_embed_dim is not None else latent_channels + self.quant_conv = nn.Conv2d(latent_channels, vq_embed_dim, 1) + self.quantize = VectorQuantizer(num_vq_embeddings, vq_embed_dim, beta=0.25, remap=None, sane_index_shape=False) + self.post_quant_conv = nn.Conv2d(vq_embed_dim, latent_channels, 1) + self.decoder = Decoder(in_channels=latent_channels, out_channels=out_channels, up_block_types=up_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, act_fn=act_fn, norm_num_groups=norm_num_groups, norm_type=norm_type, mid_block_add_attention=mid_block_add_attention) + + @apply_forward_hook + def encode(self, x: torch.Tensor, return_dict: bool=True) -> VQEncoderOutput: + h = self.encoder(x) + h = self.quant_conv(h) + if not return_dict: + return (h,) + return VQEncoderOutput(latents=h) + + @apply_forward_hook + def decode(self, h: torch.Tensor, force_not_quantize: bool=False, return_dict: bool=True, shape=None) -> Union[DecoderOutput, torch.Tensor]: + if not force_not_quantize: + (quant, commit_loss, _) = self.quantize(h) + elif self.config.lookup_from_codebook: + quant = self.quantize.get_codebook_entry(h, shape) + commit_loss = torch.zeros(h.shape[0]).to(h.device, dtype=h.dtype) + else: + quant = h + commit_loss = torch.zeros(h.shape[0]).to(h.device, dtype=h.dtype) + quant2 = self.post_quant_conv(quant) + dec = self.decoder(quant2, quant if self.config.norm_type == 'spatial' else None) + if not return_dict: + return (dec, commit_loss) + return DecoderOutput(sample=dec, commit_loss=commit_loss) + + def forward(self, sample: torch.Tensor, return_dict: bool=True) -> Union[DecoderOutput, Tuple[torch.Tensor, ...]]: + h = self.encode(sample).latents + dec = self.decode(h) + if not return_dict: + return (dec.sample, dec.commit_loss) + return dec + +# File: diffusers-main/src/diffusers/models/controlnet.py +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Tuple, Union +import torch +from torch import nn +from torch.nn import functional as F +from ..configuration_utils import ConfigMixin, register_to_config +from ..loaders.single_file_model import FromOriginalModelMixin +from ..utils import BaseOutput, logging +from .attention_processor import ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnAddedKVProcessor, AttnProcessor +from .embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps +from .modeling_utils import ModelMixin +from .unets.unet_2d_blocks import CrossAttnDownBlock2D, DownBlock2D, UNetMidBlock2D, UNetMidBlock2DCrossAttn, get_down_block +from .unets.unet_2d_condition import UNet2DConditionModel +logger = logging.get_logger(__name__) + +@dataclass +class ControlNetOutput(BaseOutput): + down_block_res_samples: Tuple[torch.Tensor] + mid_block_res_sample: torch.Tensor + +class ControlNetConditioningEmbedding(nn.Module): + + def __init__(self, conditioning_embedding_channels: int, conditioning_channels: int=3, block_out_channels: Tuple[int, ...]=(16, 32, 96, 256)): + super().__init__() + self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1) + self.blocks = nn.ModuleList([]) + for i in range(len(block_out_channels) - 1): + channel_in = block_out_channels[i] + channel_out = block_out_channels[i + 1] + self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)) + self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)) + self.conv_out = zero_module(nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)) + + def forward(self, conditioning): + embedding = self.conv_in(conditioning) + embedding = F.silu(embedding) + for block in self.blocks: + embedding = block(embedding) + embedding = F.silu(embedding) + embedding = self.conv_out(embedding) + return embedding + +class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__(self, in_channels: int=4, conditioning_channels: int=3, flip_sin_to_cos: bool=True, freq_shift: int=0, down_block_types: Tuple[str, ...]=('CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'DownBlock2D'), mid_block_type: Optional[str]='UNetMidBlock2DCrossAttn', only_cross_attention: Union[bool, Tuple[bool]]=False, block_out_channels: Tuple[int, ...]=(320, 640, 1280, 1280), layers_per_block: int=2, downsample_padding: int=1, mid_block_scale_factor: float=1, act_fn: str='silu', norm_num_groups: Optional[int]=32, norm_eps: float=1e-05, cross_attention_dim: int=1280, transformer_layers_per_block: Union[int, Tuple[int, ...]]=1, encoder_hid_dim: Optional[int]=None, encoder_hid_dim_type: Optional[str]=None, attention_head_dim: Union[int, Tuple[int, ...]]=8, num_attention_heads: Optional[Union[int, Tuple[int, ...]]]=None, use_linear_projection: bool=False, class_embed_type: Optional[str]=None, addition_embed_type: Optional[str]=None, addition_time_embed_dim: Optional[int]=None, num_class_embeds: Optional[int]=None, upcast_attention: bool=False, resnet_time_scale_shift: str='default', projection_class_embeddings_input_dim: Optional[int]=None, controlnet_conditioning_channel_order: str='rgb', conditioning_embedding_out_channels: Optional[Tuple[int, ...]]=(16, 32, 96, 256), global_pool_conditions: bool=False, addition_embed_type_num_heads: int=64): + super().__init__() + num_attention_heads = num_attention_heads or attention_head_dim + if len(block_out_channels) != len(down_block_types): + raise ValueError(f'Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}.') + if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): + raise ValueError(f'Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}.') + if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): + raise ValueError(f'Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}.') + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) + conv_in_kernel = 3 + conv_in_padding = (conv_in_kernel - 1) // 2 + self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding) + time_embed_dim = block_out_channels[0] * 4 + self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) + timestep_input_dim = block_out_channels[0] + self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn) + if encoder_hid_dim_type is None and encoder_hid_dim is not None: + encoder_hid_dim_type = 'text_proj' + self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type) + logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.") + if encoder_hid_dim is None and encoder_hid_dim_type is not None: + raise ValueError(f'`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}.') + if encoder_hid_dim_type == 'text_proj': + self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) + elif encoder_hid_dim_type == 'text_image_proj': + self.encoder_hid_proj = TextImageProjection(text_embed_dim=encoder_hid_dim, image_embed_dim=cross_attention_dim, cross_attention_dim=cross_attention_dim) + elif encoder_hid_dim_type is not None: + raise ValueError(f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'.") + else: + self.encoder_hid_proj = None + if class_embed_type is None and num_class_embeds is not None: + self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) + elif class_embed_type == 'timestep': + self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) + elif class_embed_type == 'identity': + self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) + elif class_embed_type == 'projection': + if projection_class_embeddings_input_dim is None: + raise ValueError("`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set") + self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + else: + self.class_embedding = None + if addition_embed_type == 'text': + if encoder_hid_dim is not None: + text_time_embedding_from_dim = encoder_hid_dim + else: + text_time_embedding_from_dim = cross_attention_dim + self.add_embedding = TextTimeEmbedding(text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads) + elif addition_embed_type == 'text_image': + self.add_embedding = TextImageTimeEmbedding(text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim) + elif addition_embed_type == 'text_time': + self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift) + self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + elif addition_embed_type is not None: + raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.") + self.controlnet_cond_embedding = ControlNetConditioningEmbedding(conditioning_embedding_channels=block_out_channels[0], block_out_channels=conditioning_embedding_out_channels, conditioning_channels=conditioning_channels) + self.down_blocks = nn.ModuleList([]) + self.controlnet_down_blocks = nn.ModuleList([]) + if isinstance(only_cross_attention, bool): + only_cross_attention = [only_cross_attention] * len(down_block_types) + if isinstance(attention_head_dim, int): + attention_head_dim = (attention_head_dim,) * len(down_block_types) + if isinstance(num_attention_heads, int): + num_attention_heads = (num_attention_heads,) * len(down_block_types) + output_channel = block_out_channels[0] + controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) + controlnet_block = zero_module(controlnet_block) + self.controlnet_down_blocks.append(controlnet_block) + for (i, down_block_type) in enumerate(down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + down_block = get_down_block(down_block_type, num_layers=layers_per_block, transformer_layers_per_block=transformer_layers_per_block[i], in_channels=input_channel, out_channels=output_channel, temb_channels=time_embed_dim, add_downsample=not is_final_block, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads[i], attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, downsample_padding=downsample_padding, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention[i], upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift) + self.down_blocks.append(down_block) + for _ in range(layers_per_block): + controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) + controlnet_block = zero_module(controlnet_block) + self.controlnet_down_blocks.append(controlnet_block) + if not is_final_block: + controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) + controlnet_block = zero_module(controlnet_block) + self.controlnet_down_blocks.append(controlnet_block) + mid_block_channel = block_out_channels[-1] + controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1) + controlnet_block = zero_module(controlnet_block) + self.controlnet_mid_block = controlnet_block + if mid_block_type == 'UNetMidBlock2DCrossAttn': + self.mid_block = UNetMidBlock2DCrossAttn(transformer_layers_per_block=transformer_layers_per_block[-1], in_channels=mid_block_channel, temb_channels=time_embed_dim, resnet_eps=norm_eps, resnet_act_fn=act_fn, output_scale_factor=mid_block_scale_factor, resnet_time_scale_shift=resnet_time_scale_shift, cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads[-1], resnet_groups=norm_num_groups, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention) + elif mid_block_type == 'UNetMidBlock2D': + self.mid_block = UNetMidBlock2D(in_channels=block_out_channels[-1], temb_channels=time_embed_dim, num_layers=0, resnet_eps=norm_eps, resnet_act_fn=act_fn, output_scale_factor=mid_block_scale_factor, resnet_groups=norm_num_groups, resnet_time_scale_shift=resnet_time_scale_shift, add_attention=False) + else: + raise ValueError(f'unknown mid_block_type : {mid_block_type}') + + @classmethod + def from_unet(cls, unet: UNet2DConditionModel, controlnet_conditioning_channel_order: str='rgb', conditioning_embedding_out_channels: Optional[Tuple[int, ...]]=(16, 32, 96, 256), load_weights_from_unet: bool=True, conditioning_channels: int=3): + transformer_layers_per_block = unet.config.transformer_layers_per_block if 'transformer_layers_per_block' in unet.config else 1 + encoder_hid_dim = unet.config.encoder_hid_dim if 'encoder_hid_dim' in unet.config else None + encoder_hid_dim_type = unet.config.encoder_hid_dim_type if 'encoder_hid_dim_type' in unet.config else None + addition_embed_type = unet.config.addition_embed_type if 'addition_embed_type' in unet.config else None + addition_time_embed_dim = unet.config.addition_time_embed_dim if 'addition_time_embed_dim' in unet.config else None + controlnet = cls(encoder_hid_dim=encoder_hid_dim, encoder_hid_dim_type=encoder_hid_dim_type, addition_embed_type=addition_embed_type, addition_time_embed_dim=addition_time_embed_dim, transformer_layers_per_block=transformer_layers_per_block, in_channels=unet.config.in_channels, flip_sin_to_cos=unet.config.flip_sin_to_cos, freq_shift=unet.config.freq_shift, down_block_types=unet.config.down_block_types, only_cross_attention=unet.config.only_cross_attention, block_out_channels=unet.config.block_out_channels, layers_per_block=unet.config.layers_per_block, downsample_padding=unet.config.downsample_padding, mid_block_scale_factor=unet.config.mid_block_scale_factor, act_fn=unet.config.act_fn, norm_num_groups=unet.config.norm_num_groups, norm_eps=unet.config.norm_eps, cross_attention_dim=unet.config.cross_attention_dim, attention_head_dim=unet.config.attention_head_dim, num_attention_heads=unet.config.num_attention_heads, use_linear_projection=unet.config.use_linear_projection, class_embed_type=unet.config.class_embed_type, num_class_embeds=unet.config.num_class_embeds, upcast_attention=unet.config.upcast_attention, resnet_time_scale_shift=unet.config.resnet_time_scale_shift, projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim, mid_block_type=unet.config.mid_block_type, controlnet_conditioning_channel_order=controlnet_conditioning_channel_order, conditioning_embedding_out_channels=conditioning_embedding_out_channels, conditioning_channels=conditioning_channels) + if load_weights_from_unet: + controlnet.conv_in.load_state_dict(unet.conv_in.state_dict()) + controlnet.time_proj.load_state_dict(unet.time_proj.state_dict()) + controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict()) + if controlnet.class_embedding: + controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict()) + if hasattr(controlnet, 'add_embedding'): + controlnet.add_embedding.load_state_dict(unet.add_embedding.state_dict()) + controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict()) + controlnet.mid_block.load_state_dict(unet.mid_block.state_dict()) + return controlnet + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def set_default_attn_processor(self): + if all((proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnAddedKVProcessor() + elif all((proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnProcessor() + else: + raise ValueError(f'Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}') + self.set_attn_processor(processor) + + def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None: + sliceable_head_dims = [] + + def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): + if hasattr(module, 'set_attention_slice'): + sliceable_head_dims.append(module.sliceable_head_dim) + for child in module.children(): + fn_recursive_retrieve_sliceable_dims(child) + for module in self.children(): + fn_recursive_retrieve_sliceable_dims(module) + num_sliceable_layers = len(sliceable_head_dims) + if slice_size == 'auto': + slice_size = [dim // 2 for dim in sliceable_head_dims] + elif slice_size == 'max': + slice_size = num_sliceable_layers * [1] + slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size + if len(slice_size) != len(sliceable_head_dims): + raise ValueError(f'You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}.') + for i in range(len(slice_size)): + size = slice_size[i] + dim = sliceable_head_dims[i] + if size is not None and size > dim: + raise ValueError(f'size {size} has to be smaller or equal to {dim}.') + + def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): + if hasattr(module, 'set_attention_slice'): + module.set_attention_slice(slice_size.pop()) + for child in module.children(): + fn_recursive_set_attention_slice(child, slice_size) + reversed_slice_size = list(reversed(slice_size)) + for module in self.children(): + fn_recursive_set_attention_slice(module, reversed_slice_size) + + def _set_gradient_checkpointing(self, module, value: bool=False) -> None: + if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)): + module.gradient_checkpointing = value + + def forward(self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, controlnet_cond: torch.Tensor, conditioning_scale: float=1.0, class_labels: Optional[torch.Tensor]=None, timestep_cond: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, added_cond_kwargs: Optional[Dict[str, torch.Tensor]]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, guess_mode: bool=False, return_dict: bool=True) -> Union[ControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]: + channel_order = self.config.controlnet_conditioning_channel_order + if channel_order == 'rgb': + ... + elif channel_order == 'bgr': + controlnet_cond = torch.flip(controlnet_cond, dims=[1]) + else: + raise ValueError(f'unknown `controlnet_conditioning_channel_order`: {channel_order}') + if attention_mask is not None: + attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + timesteps = timestep + if not torch.is_tensor(timesteps): + is_mps = sample.device.type == 'mps' + if isinstance(timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + timesteps = timesteps.expand(sample.shape[0]) + t_emb = self.time_proj(timesteps) + t_emb = t_emb.to(dtype=sample.dtype) + emb = self.time_embedding(t_emb, timestep_cond) + aug_emb = None + if self.class_embedding is not None: + if class_labels is None: + raise ValueError('class_labels should be provided when num_class_embeds > 0') + if self.config.class_embed_type == 'timestep': + class_labels = self.time_proj(class_labels) + class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) + emb = emb + class_emb + if self.config.addition_embed_type is not None: + if self.config.addition_embed_type == 'text': + aug_emb = self.add_embedding(encoder_hidden_states) + elif self.config.addition_embed_type == 'text_time': + if 'text_embeds' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`") + text_embeds = added_cond_kwargs.get('text_embeds') + if 'time_ids' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`") + time_ids = added_cond_kwargs.get('time_ids') + time_embeds = self.add_time_proj(time_ids.flatten()) + time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) + add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) + add_embeds = add_embeds.to(emb.dtype) + aug_emb = self.add_embedding(add_embeds) + emb = emb + aug_emb if aug_emb is not None else emb + sample = self.conv_in(sample) + controlnet_cond = self.controlnet_cond_embedding(controlnet_cond) + sample = sample + controlnet_cond + down_block_res_samples = (sample,) + for downsample_block in self.down_blocks: + if hasattr(downsample_block, 'has_cross_attention') and downsample_block.has_cross_attention: + (sample, res_samples) = downsample_block(hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs) + else: + (sample, res_samples) = downsample_block(hidden_states=sample, temb=emb) + down_block_res_samples += res_samples + if self.mid_block is not None: + if hasattr(self.mid_block, 'has_cross_attention') and self.mid_block.has_cross_attention: + sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs) + else: + sample = self.mid_block(sample, emb) + controlnet_down_block_res_samples = () + for (down_block_res_sample, controlnet_block) in zip(down_block_res_samples, self.controlnet_down_blocks): + down_block_res_sample = controlnet_block(down_block_res_sample) + controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,) + down_block_res_samples = controlnet_down_block_res_samples + mid_block_res_sample = self.controlnet_mid_block(sample) + if guess_mode and (not self.config.global_pool_conditions): + scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) + scales = scales * conditioning_scale + down_block_res_samples = [sample * scale for (sample, scale) in zip(down_block_res_samples, scales)] + mid_block_res_sample = mid_block_res_sample * scales[-1] + else: + down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples] + mid_block_res_sample = mid_block_res_sample * conditioning_scale + if self.config.global_pool_conditions: + down_block_res_samples = [torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples] + mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True) + if not return_dict: + return (down_block_res_samples, mid_block_res_sample) + return ControlNetOutput(down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample) + +def zero_module(module): + for p in module.parameters(): + nn.init.zeros_(p) + return module + +# File: diffusers-main/src/diffusers/models/controlnet_flax.py +from typing import Optional, Tuple, Union +import flax +import flax.linen as nn +import jax +import jax.numpy as jnp +from flax.core.frozen_dict import FrozenDict +from ..configuration_utils import ConfigMixin, flax_register_to_config +from ..utils import BaseOutput +from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps +from .modeling_flax_utils import FlaxModelMixin +from .unets.unet_2d_blocks_flax import FlaxCrossAttnDownBlock2D, FlaxDownBlock2D, FlaxUNetMidBlock2DCrossAttn + +@flax.struct.dataclass +class FlaxControlNetOutput(BaseOutput): + down_block_res_samples: jnp.ndarray + mid_block_res_sample: jnp.ndarray + +class FlaxControlNetConditioningEmbedding(nn.Module): + conditioning_embedding_channels: int + block_out_channels: Tuple[int, ...] = (16, 32, 96, 256) + dtype: jnp.dtype = jnp.float32 + + def setup(self) -> None: + self.conv_in = nn.Conv(self.block_out_channels[0], kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype) + blocks = [] + for i in range(len(self.block_out_channels) - 1): + channel_in = self.block_out_channels[i] + channel_out = self.block_out_channels[i + 1] + conv1 = nn.Conv(channel_in, kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype) + blocks.append(conv1) + conv2 = nn.Conv(channel_out, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), dtype=self.dtype) + blocks.append(conv2) + self.blocks = blocks + self.conv_out = nn.Conv(self.conditioning_embedding_channels, kernel_size=(3, 3), padding=((1, 1), (1, 1)), kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype) + + def __call__(self, conditioning: jnp.ndarray) -> jnp.ndarray: + embedding = self.conv_in(conditioning) + embedding = nn.silu(embedding) + for block in self.blocks: + embedding = block(embedding) + embedding = nn.silu(embedding) + embedding = self.conv_out(embedding) + return embedding + +@flax_register_to_config +class FlaxControlNetModel(nn.Module, FlaxModelMixin, ConfigMixin): + sample_size: int = 32 + in_channels: int = 4 + down_block_types: Tuple[str, ...] = ('CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'DownBlock2D') + only_cross_attention: Union[bool, Tuple[bool, ...]] = False + block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280) + layers_per_block: int = 2 + attention_head_dim: Union[int, Tuple[int, ...]] = 8 + num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None + cross_attention_dim: int = 1280 + dropout: float = 0.0 + use_linear_projection: bool = False + dtype: jnp.dtype = jnp.float32 + flip_sin_to_cos: bool = True + freq_shift: int = 0 + controlnet_conditioning_channel_order: str = 'rgb' + conditioning_embedding_out_channels: Tuple[int, ...] = (16, 32, 96, 256) + + def init_weights(self, rng: jax.Array) -> FrozenDict: + sample_shape = (1, self.in_channels, self.sample_size, self.sample_size) + sample = jnp.zeros(sample_shape, dtype=jnp.float32) + timesteps = jnp.ones((1,), dtype=jnp.int32) + encoder_hidden_states = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.float32) + controlnet_cond_shape = (1, 3, self.sample_size * 8, self.sample_size * 8) + controlnet_cond = jnp.zeros(controlnet_cond_shape, dtype=jnp.float32) + (params_rng, dropout_rng) = jax.random.split(rng) + rngs = {'params': params_rng, 'dropout': dropout_rng} + return self.init(rngs, sample, timesteps, encoder_hidden_states, controlnet_cond)['params'] + + def setup(self) -> None: + block_out_channels = self.block_out_channels + time_embed_dim = block_out_channels[0] * 4 + num_attention_heads = self.num_attention_heads or self.attention_head_dim + self.conv_in = nn.Conv(block_out_channels[0], kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype) + self.time_proj = FlaxTimesteps(block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift) + self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype) + self.controlnet_cond_embedding = FlaxControlNetConditioningEmbedding(conditioning_embedding_channels=block_out_channels[0], block_out_channels=self.conditioning_embedding_out_channels) + only_cross_attention = self.only_cross_attention + if isinstance(only_cross_attention, bool): + only_cross_attention = (only_cross_attention,) * len(self.down_block_types) + if isinstance(num_attention_heads, int): + num_attention_heads = (num_attention_heads,) * len(self.down_block_types) + down_blocks = [] + controlnet_down_blocks = [] + output_channel = block_out_channels[0] + controlnet_block = nn.Conv(output_channel, kernel_size=(1, 1), padding='VALID', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype) + controlnet_down_blocks.append(controlnet_block) + for (i, down_block_type) in enumerate(self.down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + if down_block_type == 'CrossAttnDownBlock2D': + down_block = FlaxCrossAttnDownBlock2D(in_channels=input_channel, out_channels=output_channel, dropout=self.dropout, num_layers=self.layers_per_block, num_attention_heads=num_attention_heads[i], add_downsample=not is_final_block, use_linear_projection=self.use_linear_projection, only_cross_attention=only_cross_attention[i], dtype=self.dtype) + else: + down_block = FlaxDownBlock2D(in_channels=input_channel, out_channels=output_channel, dropout=self.dropout, num_layers=self.layers_per_block, add_downsample=not is_final_block, dtype=self.dtype) + down_blocks.append(down_block) + for _ in range(self.layers_per_block): + controlnet_block = nn.Conv(output_channel, kernel_size=(1, 1), padding='VALID', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype) + controlnet_down_blocks.append(controlnet_block) + if not is_final_block: + controlnet_block = nn.Conv(output_channel, kernel_size=(1, 1), padding='VALID', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype) + controlnet_down_blocks.append(controlnet_block) + self.down_blocks = down_blocks + self.controlnet_down_blocks = controlnet_down_blocks + mid_block_channel = block_out_channels[-1] + self.mid_block = FlaxUNetMidBlock2DCrossAttn(in_channels=mid_block_channel, dropout=self.dropout, num_attention_heads=num_attention_heads[-1], use_linear_projection=self.use_linear_projection, dtype=self.dtype) + self.controlnet_mid_block = nn.Conv(mid_block_channel, kernel_size=(1, 1), padding='VALID', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype) + + def __call__(self, sample: jnp.ndarray, timesteps: Union[jnp.ndarray, float, int], encoder_hidden_states: jnp.ndarray, controlnet_cond: jnp.ndarray, conditioning_scale: float=1.0, return_dict: bool=True, train: bool=False) -> Union[FlaxControlNetOutput, Tuple[Tuple[jnp.ndarray, ...], jnp.ndarray]]: + channel_order = self.controlnet_conditioning_channel_order + if channel_order == 'bgr': + controlnet_cond = jnp.flip(controlnet_cond, axis=1) + if not isinstance(timesteps, jnp.ndarray): + timesteps = jnp.array([timesteps], dtype=jnp.int32) + elif isinstance(timesteps, jnp.ndarray) and len(timesteps.shape) == 0: + timesteps = timesteps.astype(dtype=jnp.float32) + timesteps = jnp.expand_dims(timesteps, 0) + t_emb = self.time_proj(timesteps) + t_emb = self.time_embedding(t_emb) + sample = jnp.transpose(sample, (0, 2, 3, 1)) + sample = self.conv_in(sample) + controlnet_cond = jnp.transpose(controlnet_cond, (0, 2, 3, 1)) + controlnet_cond = self.controlnet_cond_embedding(controlnet_cond) + sample += controlnet_cond + down_block_res_samples = (sample,) + for down_block in self.down_blocks: + if isinstance(down_block, FlaxCrossAttnDownBlock2D): + (sample, res_samples) = down_block(sample, t_emb, encoder_hidden_states, deterministic=not train) + else: + (sample, res_samples) = down_block(sample, t_emb, deterministic=not train) + down_block_res_samples += res_samples + sample = self.mid_block(sample, t_emb, encoder_hidden_states, deterministic=not train) + controlnet_down_block_res_samples = () + for (down_block_res_sample, controlnet_block) in zip(down_block_res_samples, self.controlnet_down_blocks): + down_block_res_sample = controlnet_block(down_block_res_sample) + controlnet_down_block_res_samples += (down_block_res_sample,) + down_block_res_samples = controlnet_down_block_res_samples + mid_block_res_sample = self.controlnet_mid_block(sample) + down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples] + mid_block_res_sample *= conditioning_scale + if not return_dict: + return (down_block_res_samples, mid_block_res_sample) + return FlaxControlNetOutput(down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample) + +# File: diffusers-main/src/diffusers/models/controlnet_flux.py +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Tuple, Union +import torch +import torch.nn as nn +from ..configuration_utils import ConfigMixin, register_to_config +from ..loaders import PeftAdapterMixin +from ..models.attention_processor import AttentionProcessor +from ..models.modeling_utils import ModelMixin +from ..utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers +from .controlnet import BaseOutput, zero_module +from .embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed +from .modeling_outputs import Transformer2DModelOutput +from .transformers.transformer_flux import FluxSingleTransformerBlock, FluxTransformerBlock +logger = logging.get_logger(__name__) + +@dataclass +class FluxControlNetOutput(BaseOutput): + controlnet_block_samples: Tuple[torch.Tensor] + controlnet_single_block_samples: Tuple[torch.Tensor] + +class FluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__(self, patch_size: int=1, in_channels: int=64, num_layers: int=19, num_single_layers: int=38, attention_head_dim: int=128, num_attention_heads: int=24, joint_attention_dim: int=4096, pooled_projection_dim: int=768, guidance_embeds: bool=False, axes_dims_rope: List[int]=[16, 56, 56], num_mode: int=None): + super().__init__() + self.out_channels = in_channels + self.inner_dim = num_attention_heads * attention_head_dim + self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope) + text_time_guidance_cls = CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings + self.time_text_embed = text_time_guidance_cls(embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim) + self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim) + self.x_embedder = torch.nn.Linear(in_channels, self.inner_dim) + self.transformer_blocks = nn.ModuleList([FluxTransformerBlock(dim=self.inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim) for i in range(num_layers)]) + self.single_transformer_blocks = nn.ModuleList([FluxSingleTransformerBlock(dim=self.inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim) for i in range(num_single_layers)]) + self.controlnet_blocks = nn.ModuleList([]) + for _ in range(len(self.transformer_blocks)): + self.controlnet_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim))) + self.controlnet_single_blocks = nn.ModuleList([]) + for _ in range(len(self.single_transformer_blocks)): + self.controlnet_single_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim))) + self.union = num_mode is not None + if self.union: + self.controlnet_mode_embedder = nn.Embedding(num_mode, self.inner_dim) + self.controlnet_x_embedder = zero_module(torch.nn.Linear(in_channels, self.inner_dim)) + self.gradient_checkpointing = False + + @property + def attn_processors(self): + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def _set_gradient_checkpointing(self, module, value=False): + if hasattr(module, 'gradient_checkpointing'): + module.gradient_checkpointing = value + + @classmethod + def from_transformer(cls, transformer, num_layers: int=4, num_single_layers: int=10, attention_head_dim: int=128, num_attention_heads: int=24, load_weights_from_transformer=True): + config = transformer.config + config['num_layers'] = num_layers + config['num_single_layers'] = num_single_layers + config['attention_head_dim'] = attention_head_dim + config['num_attention_heads'] = num_attention_heads + controlnet = cls(**config) + if load_weights_from_transformer: + controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict()) + controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict()) + controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict()) + controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict()) + controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False) + controlnet.single_transformer_blocks.load_state_dict(transformer.single_transformer_blocks.state_dict(), strict=False) + controlnet.controlnet_x_embedder = zero_module(controlnet.controlnet_x_embedder) + return controlnet + + def forward(self, hidden_states: torch.Tensor, controlnet_cond: torch.Tensor, controlnet_mode: torch.Tensor=None, conditioning_scale: float=1.0, encoder_hidden_states: torch.Tensor=None, pooled_projections: torch.Tensor=None, timestep: torch.LongTensor=None, img_ids: torch.Tensor=None, txt_ids: torch.Tensor=None, guidance: torch.Tensor=None, joint_attention_kwargs: Optional[Dict[str, Any]]=None, return_dict: bool=True) -> Union[torch.FloatTensor, Transformer2DModelOutput]: + if joint_attention_kwargs is not None: + joint_attention_kwargs = joint_attention_kwargs.copy() + lora_scale = joint_attention_kwargs.pop('scale', 1.0) + else: + lora_scale = 1.0 + if USE_PEFT_BACKEND: + scale_lora_layers(self, lora_scale) + elif joint_attention_kwargs is not None and joint_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective.') + hidden_states = self.x_embedder(hidden_states) + hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond) + timestep = timestep.to(hidden_states.dtype) * 1000 + if guidance is not None: + guidance = guidance.to(hidden_states.dtype) * 1000 + else: + guidance = None + temb = self.time_text_embed(timestep, pooled_projections) if guidance is None else self.time_text_embed(timestep, guidance, pooled_projections) + encoder_hidden_states = self.context_embedder(encoder_hidden_states) + if self.union: + if controlnet_mode is None: + raise ValueError('`controlnet_mode` cannot be `None` when applying ControlNet-Union') + controlnet_mode_emb = self.controlnet_mode_embedder(controlnet_mode) + encoder_hidden_states = torch.cat([controlnet_mode_emb, encoder_hidden_states], dim=1) + txt_ids = torch.cat([txt_ids[:1], txt_ids], dim=0) + if txt_ids.ndim == 3: + logger.warning('Passing `txt_ids` 3d torch.Tensor is deprecated.Please remove the batch dimension and pass it as a 2d torch Tensor') + txt_ids = txt_ids[0] + if img_ids.ndim == 3: + logger.warning('Passing `img_ids` 3d torch.Tensor is deprecated.Please remove the batch dimension and pass it as a 2d torch Tensor') + img_ids = img_ids[0] + ids = torch.cat((txt_ids, img_ids), dim=0) + image_rotary_emb = self.pos_embed(ids) + block_samples = () + for (index_block, block) in enumerate(self.transformer_blocks): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + (encoder_hidden_states, hidden_states) = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, encoder_hidden_states, temb, image_rotary_emb, **ckpt_kwargs) + else: + (encoder_hidden_states, hidden_states) = block(hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, image_rotary_emb=image_rotary_emb) + block_samples = block_samples + (hidden_states,) + hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) + single_block_samples = () + for (index_block, block) in enumerate(self.single_transformer_blocks): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, temb, image_rotary_emb, **ckpt_kwargs) + else: + hidden_states = block(hidden_states=hidden_states, temb=temb, image_rotary_emb=image_rotary_emb) + single_block_samples = single_block_samples + (hidden_states[:, encoder_hidden_states.shape[1]:],) + controlnet_block_samples = () + for (block_sample, controlnet_block) in zip(block_samples, self.controlnet_blocks): + block_sample = controlnet_block(block_sample) + controlnet_block_samples = controlnet_block_samples + (block_sample,) + controlnet_single_block_samples = () + for (single_block_sample, controlnet_block) in zip(single_block_samples, self.controlnet_single_blocks): + single_block_sample = controlnet_block(single_block_sample) + controlnet_single_block_samples = controlnet_single_block_samples + (single_block_sample,) + controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples] + controlnet_single_block_samples = [sample * conditioning_scale for sample in controlnet_single_block_samples] + controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples + controlnet_single_block_samples = None if len(controlnet_single_block_samples) == 0 else controlnet_single_block_samples + if USE_PEFT_BACKEND: + unscale_lora_layers(self, lora_scale) + if not return_dict: + return (controlnet_block_samples, controlnet_single_block_samples) + return FluxControlNetOutput(controlnet_block_samples=controlnet_block_samples, controlnet_single_block_samples=controlnet_single_block_samples) + +class FluxMultiControlNetModel(ModelMixin): + + def __init__(self, controlnets): + super().__init__() + self.nets = nn.ModuleList(controlnets) + + def forward(self, hidden_states: torch.FloatTensor, controlnet_cond: List[torch.tensor], controlnet_mode: List[torch.tensor], conditioning_scale: List[float], encoder_hidden_states: torch.Tensor=None, pooled_projections: torch.Tensor=None, timestep: torch.LongTensor=None, img_ids: torch.Tensor=None, txt_ids: torch.Tensor=None, guidance: torch.Tensor=None, joint_attention_kwargs: Optional[Dict[str, Any]]=None, return_dict: bool=True) -> Union[FluxControlNetOutput, Tuple]: + if len(self.nets) == 1 and self.nets[0].union: + controlnet = self.nets[0] + for (i, (image, mode, scale)) in enumerate(zip(controlnet_cond, controlnet_mode, conditioning_scale)): + (block_samples, single_block_samples) = controlnet(hidden_states=hidden_states, controlnet_cond=image, controlnet_mode=mode[:, None], conditioning_scale=scale, timestep=timestep, guidance=guidance, pooled_projections=pooled_projections, encoder_hidden_states=encoder_hidden_states, txt_ids=txt_ids, img_ids=img_ids, joint_attention_kwargs=joint_attention_kwargs, return_dict=return_dict) + if i == 0: + control_block_samples = block_samples + control_single_block_samples = single_block_samples + else: + control_block_samples = [control_block_sample + block_sample for (control_block_sample, block_sample) in zip(control_block_samples, block_samples)] + control_single_block_samples = [control_single_block_sample + block_sample for (control_single_block_sample, block_sample) in zip(control_single_block_samples, single_block_samples)] + else: + for (i, (image, mode, scale, controlnet)) in enumerate(zip(controlnet_cond, controlnet_mode, conditioning_scale, self.nets)): + (block_samples, single_block_samples) = controlnet(hidden_states=hidden_states, controlnet_cond=image, controlnet_mode=mode[:, None], conditioning_scale=scale, timestep=timestep, guidance=guidance, pooled_projections=pooled_projections, encoder_hidden_states=encoder_hidden_states, txt_ids=txt_ids, img_ids=img_ids, joint_attention_kwargs=joint_attention_kwargs, return_dict=return_dict) + if i == 0: + control_block_samples = block_samples + control_single_block_samples = single_block_samples + else: + control_block_samples = [control_block_sample + block_sample for (control_block_sample, block_sample) in zip(control_block_samples, block_samples)] + control_single_block_samples = [control_single_block_sample + block_sample for (control_single_block_sample, block_sample) in zip(control_single_block_samples, single_block_samples)] + return (control_block_samples, control_single_block_samples) + +# File: diffusers-main/src/diffusers/models/controlnet_hunyuan.py +from dataclasses import dataclass +from typing import Dict, Optional, Union +import torch +from torch import nn +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import logging +from .attention_processor import AttentionProcessor +from .controlnet import BaseOutput, Tuple, zero_module +from .embeddings import HunyuanCombinedTimestepTextSizeStyleEmbedding, PatchEmbed, PixArtAlphaTextProjection +from .modeling_utils import ModelMixin +from .transformers.hunyuan_transformer_2d import HunyuanDiTBlock +logger = logging.get_logger(__name__) + +@dataclass +class HunyuanControlNetOutput(BaseOutput): + controlnet_block_samples: Tuple[torch.Tensor] + +class HunyuanDiT2DControlNetModel(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, conditioning_channels: int=3, num_attention_heads: int=16, attention_head_dim: int=88, in_channels: Optional[int]=None, patch_size: Optional[int]=None, activation_fn: str='gelu-approximate', sample_size=32, hidden_size=1152, transformer_num_layers: int=40, mlp_ratio: float=4.0, cross_attention_dim: int=1024, cross_attention_dim_t5: int=2048, pooled_projection_dim: int=1024, text_len: int=77, text_len_t5: int=256, use_style_cond_and_image_meta_size: bool=True): + super().__init__() + self.num_heads = num_attention_heads + self.inner_dim = num_attention_heads * attention_head_dim + self.text_embedder = PixArtAlphaTextProjection(in_features=cross_attention_dim_t5, hidden_size=cross_attention_dim_t5 * 4, out_features=cross_attention_dim, act_fn='silu_fp32') + self.text_embedding_padding = nn.Parameter(torch.randn(text_len + text_len_t5, cross_attention_dim, dtype=torch.float32)) + self.pos_embed = PatchEmbed(height=sample_size, width=sample_size, in_channels=in_channels, embed_dim=hidden_size, patch_size=patch_size, pos_embed_type=None) + self.time_extra_emb = HunyuanCombinedTimestepTextSizeStyleEmbedding(hidden_size, pooled_projection_dim=pooled_projection_dim, seq_len=text_len_t5, cross_attention_dim=cross_attention_dim_t5, use_style_cond_and_image_meta_size=use_style_cond_and_image_meta_size) + self.controlnet_blocks = nn.ModuleList([]) + self.blocks = nn.ModuleList([HunyuanDiTBlock(dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, activation_fn=activation_fn, ff_inner_dim=int(self.inner_dim * mlp_ratio), cross_attention_dim=cross_attention_dim, qk_norm=True, skip=False) for layer in range(transformer_num_layers // 2 - 1)]) + self.input_block = zero_module(nn.Linear(hidden_size, hidden_size)) + for _ in range(len(self.blocks)): + controlnet_block = nn.Linear(hidden_size, hidden_size) + controlnet_block = zero_module(controlnet_block) + self.controlnet_blocks.append(controlnet_block) + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor(return_deprecated_lora=True) + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + @classmethod + def from_transformer(cls, transformer, conditioning_channels=3, transformer_num_layers=None, load_weights_from_transformer=True): + config = transformer.config + activation_fn = config.activation_fn + attention_head_dim = config.attention_head_dim + cross_attention_dim = config.cross_attention_dim + cross_attention_dim_t5 = config.cross_attention_dim_t5 + hidden_size = config.hidden_size + in_channels = config.in_channels + mlp_ratio = config.mlp_ratio + num_attention_heads = config.num_attention_heads + patch_size = config.patch_size + sample_size = config.sample_size + text_len = config.text_len + text_len_t5 = config.text_len_t5 + conditioning_channels = conditioning_channels + transformer_num_layers = transformer_num_layers or config.transformer_num_layers + controlnet = cls(conditioning_channels=conditioning_channels, transformer_num_layers=transformer_num_layers, activation_fn=activation_fn, attention_head_dim=attention_head_dim, cross_attention_dim=cross_attention_dim, cross_attention_dim_t5=cross_attention_dim_t5, hidden_size=hidden_size, in_channels=in_channels, mlp_ratio=mlp_ratio, num_attention_heads=num_attention_heads, patch_size=patch_size, sample_size=sample_size, text_len=text_len, text_len_t5=text_len_t5) + if load_weights_from_transformer: + key = controlnet.load_state_dict(transformer.state_dict(), strict=False) + logger.warning(f'controlnet load from Hunyuan-DiT. missing_keys: {key[0]}') + return controlnet + + def forward(self, hidden_states, timestep, controlnet_cond: torch.Tensor, conditioning_scale: float=1.0, encoder_hidden_states=None, text_embedding_mask=None, encoder_hidden_states_t5=None, text_embedding_mask_t5=None, image_meta_size=None, style=None, image_rotary_emb=None, return_dict=True): + (height, width) = hidden_states.shape[-2:] + hidden_states = self.pos_embed(hidden_states) + hidden_states = hidden_states + self.input_block(self.pos_embed(controlnet_cond)) + temb = self.time_extra_emb(timestep, encoder_hidden_states_t5, image_meta_size, style, hidden_dtype=timestep.dtype) + (batch_size, sequence_length, _) = encoder_hidden_states_t5.shape + encoder_hidden_states_t5 = self.text_embedder(encoder_hidden_states_t5.view(-1, encoder_hidden_states_t5.shape[-1])) + encoder_hidden_states_t5 = encoder_hidden_states_t5.view(batch_size, sequence_length, -1) + encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=1) + text_embedding_mask = torch.cat([text_embedding_mask, text_embedding_mask_t5], dim=-1) + text_embedding_mask = text_embedding_mask.unsqueeze(2).bool() + encoder_hidden_states = torch.where(text_embedding_mask, encoder_hidden_states, self.text_embedding_padding) + block_res_samples = () + for (layer, block) in enumerate(self.blocks): + hidden_states = block(hidden_states, temb=temb, encoder_hidden_states=encoder_hidden_states, image_rotary_emb=image_rotary_emb) + block_res_samples = block_res_samples + (hidden_states,) + controlnet_block_res_samples = () + for (block_res_sample, controlnet_block) in zip(block_res_samples, self.controlnet_blocks): + block_res_sample = controlnet_block(block_res_sample) + controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,) + controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples] + if not return_dict: + return (controlnet_block_res_samples,) + return HunyuanControlNetOutput(controlnet_block_samples=controlnet_block_res_samples) + +class HunyuanDiT2DMultiControlNetModel(ModelMixin): + + def __init__(self, controlnets): + super().__init__() + self.nets = nn.ModuleList(controlnets) + + def forward(self, hidden_states, timestep, controlnet_cond: torch.Tensor, conditioning_scale: float=1.0, encoder_hidden_states=None, text_embedding_mask=None, encoder_hidden_states_t5=None, text_embedding_mask_t5=None, image_meta_size=None, style=None, image_rotary_emb=None, return_dict=True): + for (i, (image, scale, controlnet)) in enumerate(zip(controlnet_cond, conditioning_scale, self.nets)): + block_samples = controlnet(hidden_states=hidden_states, timestep=timestep, controlnet_cond=image, conditioning_scale=scale, encoder_hidden_states=encoder_hidden_states, text_embedding_mask=text_embedding_mask, encoder_hidden_states_t5=encoder_hidden_states_t5, text_embedding_mask_t5=text_embedding_mask_t5, image_meta_size=image_meta_size, style=style, image_rotary_emb=image_rotary_emb, return_dict=return_dict) + if i == 0: + control_block_samples = block_samples + else: + control_block_samples = [control_block_sample + block_sample for (control_block_sample, block_sample) in zip(control_block_samples[0], block_samples[0])] + control_block_samples = (control_block_samples,) + return control_block_samples + +# File: diffusers-main/src/diffusers/models/controlnet_sd3.py +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Tuple, Union +import torch +import torch.nn as nn +from ..configuration_utils import ConfigMixin, register_to_config +from ..loaders import FromOriginalModelMixin, PeftAdapterMixin +from ..models.attention import JointTransformerBlock +from ..models.attention_processor import Attention, AttentionProcessor, FusedJointAttnProcessor2_0 +from ..models.modeling_outputs import Transformer2DModelOutput +from ..models.modeling_utils import ModelMixin +from ..utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers +from .controlnet import BaseOutput, zero_module +from .embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed +logger = logging.get_logger(__name__) + +@dataclass +class SD3ControlNetOutput(BaseOutput): + controlnet_block_samples: Tuple[torch.Tensor] + +class SD3ControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__(self, sample_size: int=128, patch_size: int=2, in_channels: int=16, num_layers: int=18, attention_head_dim: int=64, num_attention_heads: int=18, joint_attention_dim: int=4096, caption_projection_dim: int=1152, pooled_projection_dim: int=2048, out_channels: int=16, pos_embed_max_size: int=96, extra_conditioning_channels: int=0): + super().__init__() + default_out_channels = in_channels + self.out_channels = out_channels if out_channels is not None else default_out_channels + self.inner_dim = num_attention_heads * attention_head_dim + self.pos_embed = PatchEmbed(height=sample_size, width=sample_size, patch_size=patch_size, in_channels=in_channels, embed_dim=self.inner_dim, pos_embed_max_size=pos_embed_max_size) + self.time_text_embed = CombinedTimestepTextProjEmbeddings(embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim) + self.context_embedder = nn.Linear(joint_attention_dim, caption_projection_dim) + self.transformer_blocks = nn.ModuleList([JointTransformerBlock(dim=self.inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=self.config.attention_head_dim, context_pre_only=False) for i in range(num_layers)]) + self.controlnet_blocks = nn.ModuleList([]) + for _ in range(len(self.transformer_blocks)): + controlnet_block = nn.Linear(self.inner_dim, self.inner_dim) + controlnet_block = zero_module(controlnet_block) + self.controlnet_blocks.append(controlnet_block) + pos_embed_input = PatchEmbed(height=sample_size, width=sample_size, patch_size=patch_size, in_channels=in_channels + extra_conditioning_channels, embed_dim=self.inner_dim, pos_embed_type=None) + self.pos_embed_input = zero_module(pos_embed_input) + self.gradient_checkpointing = False + + def enable_forward_chunking(self, chunk_size: Optional[int]=None, dim: int=0) -> None: + if dim not in [0, 1]: + raise ValueError(f'Make sure to set `dim` to either 0 or 1, not {dim}') + chunk_size = chunk_size or 1 + + def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): + if hasattr(module, 'set_chunk_feed_forward'): + module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) + for child in module.children(): + fn_recursive_feed_forward(child, chunk_size, dim) + for module in self.children(): + fn_recursive_feed_forward(module, chunk_size, dim) + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def fuse_qkv_projections(self): + self.original_attn_processors = None + for (_, attn_processor) in self.attn_processors.items(): + if 'Added' in str(attn_processor.__class__.__name__): + raise ValueError('`fuse_qkv_projections()` is not supported for models having added KV projections.') + self.original_attn_processors = self.attn_processors + for module in self.modules(): + if isinstance(module, Attention): + module.fuse_projections(fuse=True) + self.set_attn_processor(FusedJointAttnProcessor2_0()) + + def unfuse_qkv_projections(self): + if self.original_attn_processors is not None: + self.set_attn_processor(self.original_attn_processors) + + def _set_gradient_checkpointing(self, module, value=False): + if hasattr(module, 'gradient_checkpointing'): + module.gradient_checkpointing = value + + @classmethod + def from_transformer(cls, transformer, num_layers=12, num_extra_conditioning_channels=1, load_weights_from_transformer=True): + config = transformer.config + config['num_layers'] = num_layers or config.num_layers + config['extra_conditioning_channels'] = num_extra_conditioning_channels + controlnet = cls(**config) + if load_weights_from_transformer: + controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict()) + controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict()) + controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict()) + controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False) + controlnet.pos_embed_input = zero_module(controlnet.pos_embed_input) + return controlnet + + def forward(self, hidden_states: torch.FloatTensor, controlnet_cond: torch.Tensor, conditioning_scale: float=1.0, encoder_hidden_states: torch.FloatTensor=None, pooled_projections: torch.FloatTensor=None, timestep: torch.LongTensor=None, joint_attention_kwargs: Optional[Dict[str, Any]]=None, return_dict: bool=True) -> Union[torch.FloatTensor, Transformer2DModelOutput]: + if joint_attention_kwargs is not None: + joint_attention_kwargs = joint_attention_kwargs.copy() + lora_scale = joint_attention_kwargs.pop('scale', 1.0) + else: + lora_scale = 1.0 + if USE_PEFT_BACKEND: + scale_lora_layers(self, lora_scale) + elif joint_attention_kwargs is not None and joint_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective.') + hidden_states = self.pos_embed(hidden_states) + temb = self.time_text_embed(timestep, pooled_projections) + encoder_hidden_states = self.context_embedder(encoder_hidden_states) + hidden_states = hidden_states + self.pos_embed_input(controlnet_cond) + block_res_samples = () + for block in self.transformer_blocks: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, encoder_hidden_states, temb, **ckpt_kwargs) + else: + (encoder_hidden_states, hidden_states) = block(hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb) + block_res_samples = block_res_samples + (hidden_states,) + controlnet_block_res_samples = () + for (block_res_sample, controlnet_block) in zip(block_res_samples, self.controlnet_blocks): + block_res_sample = controlnet_block(block_res_sample) + controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,) + controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples] + if USE_PEFT_BACKEND: + unscale_lora_layers(self, lora_scale) + if not return_dict: + return (controlnet_block_res_samples,) + return SD3ControlNetOutput(controlnet_block_samples=controlnet_block_res_samples) + +class SD3MultiControlNetModel(ModelMixin): + + def __init__(self, controlnets): + super().__init__() + self.nets = nn.ModuleList(controlnets) + + def forward(self, hidden_states: torch.FloatTensor, controlnet_cond: List[torch.tensor], conditioning_scale: List[float], pooled_projections: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor=None, timestep: torch.LongTensor=None, joint_attention_kwargs: Optional[Dict[str, Any]]=None, return_dict: bool=True) -> Union[SD3ControlNetOutput, Tuple]: + for (i, (image, scale, controlnet)) in enumerate(zip(controlnet_cond, conditioning_scale, self.nets)): + block_samples = controlnet(hidden_states=hidden_states, timestep=timestep, encoder_hidden_states=encoder_hidden_states, pooled_projections=pooled_projections, controlnet_cond=image, conditioning_scale=scale, joint_attention_kwargs=joint_attention_kwargs, return_dict=return_dict) + if i == 0: + control_block_samples = block_samples + else: + control_block_samples = [control_block_sample + block_sample for (control_block_sample, block_sample) in zip(control_block_samples[0], block_samples[0])] + control_block_samples = (tuple(control_block_samples),) + return control_block_samples + +# File: diffusers-main/src/diffusers/models/controlnet_sparsectrl.py +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Tuple, Union +import torch +from torch import nn +from torch.nn import functional as F +from ..configuration_utils import ConfigMixin, register_to_config +from ..loaders import FromOriginalModelMixin +from ..utils import BaseOutput, logging +from .attention_processor import ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnAddedKVProcessor, AttnProcessor +from .embeddings import TimestepEmbedding, Timesteps +from .modeling_utils import ModelMixin +from .unets.unet_2d_blocks import UNetMidBlock2DCrossAttn +from .unets.unet_2d_condition import UNet2DConditionModel +from .unets.unet_motion_model import CrossAttnDownBlockMotion, DownBlockMotion +logger = logging.get_logger(__name__) + +@dataclass +class SparseControlNetOutput(BaseOutput): + down_block_res_samples: Tuple[torch.Tensor] + mid_block_res_sample: torch.Tensor + +class SparseControlNetConditioningEmbedding(nn.Module): + + def __init__(self, conditioning_embedding_channels: int, conditioning_channels: int=3, block_out_channels: Tuple[int, ...]=(16, 32, 96, 256)): + super().__init__() + self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1) + self.blocks = nn.ModuleList([]) + for i in range(len(block_out_channels) - 1): + channel_in = block_out_channels[i] + channel_out = block_out_channels[i + 1] + self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)) + self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)) + self.conv_out = zero_module(nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)) + + def forward(self, conditioning: torch.Tensor) -> torch.Tensor: + embedding = self.conv_in(conditioning) + embedding = F.silu(embedding) + for block in self.blocks: + embedding = block(embedding) + embedding = F.silu(embedding) + embedding = self.conv_out(embedding) + return embedding + +class SparseControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__(self, in_channels: int=4, conditioning_channels: int=4, flip_sin_to_cos: bool=True, freq_shift: int=0, down_block_types: Tuple[str, ...]=('CrossAttnDownBlockMotion', 'CrossAttnDownBlockMotion', 'CrossAttnDownBlockMotion', 'DownBlockMotion'), only_cross_attention: Union[bool, Tuple[bool]]=False, block_out_channels: Tuple[int, ...]=(320, 640, 1280, 1280), layers_per_block: int=2, downsample_padding: int=1, mid_block_scale_factor: float=1, act_fn: str='silu', norm_num_groups: Optional[int]=32, norm_eps: float=1e-05, cross_attention_dim: int=768, transformer_layers_per_block: Union[int, Tuple[int, ...]]=1, transformer_layers_per_mid_block: Optional[Union[int, Tuple[int]]]=None, temporal_transformer_layers_per_block: Union[int, Tuple[int, ...]]=1, attention_head_dim: Union[int, Tuple[int, ...]]=8, num_attention_heads: Optional[Union[int, Tuple[int, ...]]]=None, use_linear_projection: bool=False, upcast_attention: bool=False, resnet_time_scale_shift: str='default', conditioning_embedding_out_channels: Optional[Tuple[int, ...]]=(16, 32, 96, 256), global_pool_conditions: bool=False, controlnet_conditioning_channel_order: str='rgb', motion_max_seq_length: int=32, motion_num_attention_heads: int=8, concat_conditioning_mask: bool=True, use_simplified_condition_embedding: bool=True): + super().__init__() + self.use_simplified_condition_embedding = use_simplified_condition_embedding + num_attention_heads = num_attention_heads or attention_head_dim + if len(block_out_channels) != len(down_block_types): + raise ValueError(f'Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}.') + if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): + raise ValueError(f'Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}.') + if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): + raise ValueError(f'Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}.') + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) + if isinstance(temporal_transformer_layers_per_block, int): + temporal_transformer_layers_per_block = [temporal_transformer_layers_per_block] * len(down_block_types) + conv_in_kernel = 3 + conv_in_padding = (conv_in_kernel - 1) // 2 + self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding) + if concat_conditioning_mask: + conditioning_channels = conditioning_channels + 1 + self.concat_conditioning_mask = concat_conditioning_mask + if use_simplified_condition_embedding: + self.controlnet_cond_embedding = zero_module(nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)) + else: + self.controlnet_cond_embedding = SparseControlNetConditioningEmbedding(conditioning_embedding_channels=block_out_channels[0], block_out_channels=conditioning_embedding_out_channels, conditioning_channels=conditioning_channels) + time_embed_dim = block_out_channels[0] * 4 + self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) + timestep_input_dim = block_out_channels[0] + self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn) + self.down_blocks = nn.ModuleList([]) + self.controlnet_down_blocks = nn.ModuleList([]) + if isinstance(cross_attention_dim, int): + cross_attention_dim = (cross_attention_dim,) * len(down_block_types) + if isinstance(only_cross_attention, bool): + only_cross_attention = [only_cross_attention] * len(down_block_types) + if isinstance(attention_head_dim, int): + attention_head_dim = (attention_head_dim,) * len(down_block_types) + if isinstance(num_attention_heads, int): + num_attention_heads = (num_attention_heads,) * len(down_block_types) + if isinstance(motion_num_attention_heads, int): + motion_num_attention_heads = (motion_num_attention_heads,) * len(down_block_types) + output_channel = block_out_channels[0] + controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) + controlnet_block = zero_module(controlnet_block) + self.controlnet_down_blocks.append(controlnet_block) + for (i, down_block_type) in enumerate(down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + if down_block_type == 'CrossAttnDownBlockMotion': + down_block = CrossAttnDownBlockMotion(in_channels=input_channel, out_channels=output_channel, temb_channels=time_embed_dim, dropout=0, num_layers=layers_per_block, transformer_layers_per_block=transformer_layers_per_block[i], resnet_eps=norm_eps, resnet_time_scale_shift=resnet_time_scale_shift, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, resnet_pre_norm=True, num_attention_heads=num_attention_heads[i], cross_attention_dim=cross_attention_dim[i], add_downsample=not is_final_block, dual_cross_attention=False, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention[i], upcast_attention=upcast_attention, temporal_num_attention_heads=motion_num_attention_heads[i], temporal_max_seq_length=motion_max_seq_length, temporal_transformer_layers_per_block=temporal_transformer_layers_per_block[i], temporal_double_self_attention=False) + elif down_block_type == 'DownBlockMotion': + down_block = DownBlockMotion(in_channels=input_channel, out_channels=output_channel, temb_channels=time_embed_dim, dropout=0, num_layers=layers_per_block, resnet_eps=norm_eps, resnet_time_scale_shift=resnet_time_scale_shift, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, resnet_pre_norm=True, add_downsample=not is_final_block, temporal_num_attention_heads=motion_num_attention_heads[i], temporal_max_seq_length=motion_max_seq_length, temporal_transformer_layers_per_block=temporal_transformer_layers_per_block[i], temporal_double_self_attention=False) + else: + raise ValueError('Invalid `block_type` encountered. Must be one of `CrossAttnDownBlockMotion` or `DownBlockMotion`') + self.down_blocks.append(down_block) + for _ in range(layers_per_block): + controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) + controlnet_block = zero_module(controlnet_block) + self.controlnet_down_blocks.append(controlnet_block) + if not is_final_block: + controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) + controlnet_block = zero_module(controlnet_block) + self.controlnet_down_blocks.append(controlnet_block) + mid_block_channels = block_out_channels[-1] + controlnet_block = nn.Conv2d(mid_block_channels, mid_block_channels, kernel_size=1) + controlnet_block = zero_module(controlnet_block) + self.controlnet_mid_block = controlnet_block + if transformer_layers_per_mid_block is None: + transformer_layers_per_mid_block = transformer_layers_per_block[-1] if isinstance(transformer_layers_per_block[-1], int) else 1 + self.mid_block = UNetMidBlock2DCrossAttn(in_channels=mid_block_channels, temb_channels=time_embed_dim, dropout=0, num_layers=1, transformer_layers_per_block=transformer_layers_per_mid_block, resnet_eps=norm_eps, resnet_time_scale_shift=resnet_time_scale_shift, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, resnet_pre_norm=True, num_attention_heads=num_attention_heads[-1], output_scale_factor=mid_block_scale_factor, cross_attention_dim=cross_attention_dim[-1], dual_cross_attention=False, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, attention_type='default') + + @classmethod + def from_unet(cls, unet: UNet2DConditionModel, controlnet_conditioning_channel_order: str='rgb', conditioning_embedding_out_channels: Optional[Tuple[int, ...]]=(16, 32, 96, 256), load_weights_from_unet: bool=True, conditioning_channels: int=3) -> 'SparseControlNetModel': + transformer_layers_per_block = unet.config.transformer_layers_per_block if 'transformer_layers_per_block' in unet.config else 1 + down_block_types = unet.config.down_block_types + for i in range(len(down_block_types)): + if 'CrossAttn' in down_block_types[i]: + down_block_types[i] = 'CrossAttnDownBlockMotion' + elif 'Down' in down_block_types[i]: + down_block_types[i] = 'DownBlockMotion' + else: + raise ValueError('Invalid `block_type` encountered. Must be a cross-attention or down block') + controlnet = cls(in_channels=unet.config.in_channels, conditioning_channels=conditioning_channels, flip_sin_to_cos=unet.config.flip_sin_to_cos, freq_shift=unet.config.freq_shift, down_block_types=unet.config.down_block_types, only_cross_attention=unet.config.only_cross_attention, block_out_channels=unet.config.block_out_channels, layers_per_block=unet.config.layers_per_block, downsample_padding=unet.config.downsample_padding, mid_block_scale_factor=unet.config.mid_block_scale_factor, act_fn=unet.config.act_fn, norm_num_groups=unet.config.norm_num_groups, norm_eps=unet.config.norm_eps, cross_attention_dim=unet.config.cross_attention_dim, transformer_layers_per_block=transformer_layers_per_block, attention_head_dim=unet.config.attention_head_dim, num_attention_heads=unet.config.num_attention_heads, use_linear_projection=unet.config.use_linear_projection, upcast_attention=unet.config.upcast_attention, resnet_time_scale_shift=unet.config.resnet_time_scale_shift, conditioning_embedding_out_channels=conditioning_embedding_out_channels, controlnet_conditioning_channel_order=controlnet_conditioning_channel_order) + if load_weights_from_unet: + controlnet.conv_in.load_state_dict(unet.conv_in.state_dict(), strict=False) + controlnet.time_proj.load_state_dict(unet.time_proj.state_dict(), strict=False) + controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict(), strict=False) + controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict(), strict=False) + controlnet.mid_block.load_state_dict(unet.mid_block.state_dict(), strict=False) + return controlnet + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def set_default_attn_processor(self): + if all((proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnAddedKVProcessor() + elif all((proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnProcessor() + else: + raise ValueError(f'Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}') + self.set_attn_processor(processor) + + def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None: + sliceable_head_dims = [] + + def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): + if hasattr(module, 'set_attention_slice'): + sliceable_head_dims.append(module.sliceable_head_dim) + for child in module.children(): + fn_recursive_retrieve_sliceable_dims(child) + for module in self.children(): + fn_recursive_retrieve_sliceable_dims(module) + num_sliceable_layers = len(sliceable_head_dims) + if slice_size == 'auto': + slice_size = [dim // 2 for dim in sliceable_head_dims] + elif slice_size == 'max': + slice_size = num_sliceable_layers * [1] + slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size + if len(slice_size) != len(sliceable_head_dims): + raise ValueError(f'You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}.') + for i in range(len(slice_size)): + size = slice_size[i] + dim = sliceable_head_dims[i] + if size is not None and size > dim: + raise ValueError(f'size {size} has to be smaller or equal to {dim}.') + + def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): + if hasattr(module, 'set_attention_slice'): + module.set_attention_slice(slice_size.pop()) + for child in module.children(): + fn_recursive_set_attention_slice(child, slice_size) + reversed_slice_size = list(reversed(slice_size)) + for module in self.children(): + fn_recursive_set_attention_slice(module, reversed_slice_size) + + def _set_gradient_checkpointing(self, module, value: bool=False) -> None: + if isinstance(module, (CrossAttnDownBlockMotion, DownBlockMotion, UNetMidBlock2DCrossAttn)): + module.gradient_checkpointing = value + + def forward(self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, controlnet_cond: torch.Tensor, conditioning_scale: float=1.0, timestep_cond: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, conditioning_mask: Optional[torch.Tensor]=None, guess_mode: bool=False, return_dict: bool=True) -> Union[SparseControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]: + (sample_batch_size, sample_channels, sample_num_frames, sample_height, sample_width) = sample.shape + sample = torch.zeros_like(sample) + channel_order = self.config.controlnet_conditioning_channel_order + if channel_order == 'rgb': + ... + elif channel_order == 'bgr': + controlnet_cond = torch.flip(controlnet_cond, dims=[1]) + else: + raise ValueError(f'unknown `controlnet_conditioning_channel_order`: {channel_order}') + if attention_mask is not None: + attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + timesteps = timestep + if not torch.is_tensor(timesteps): + is_mps = sample.device.type == 'mps' + if isinstance(timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + timesteps = timesteps.expand(sample.shape[0]) + t_emb = self.time_proj(timesteps) + t_emb = t_emb.to(dtype=sample.dtype) + emb = self.time_embedding(t_emb, timestep_cond) + emb = emb.repeat_interleave(sample_num_frames, dim=0) + (batch_size, channels, num_frames, height, width) = sample.shape + sample = sample.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) + sample = self.conv_in(sample) + (batch_frames, channels, height, width) = sample.shape + sample = sample[:, None].reshape(sample_batch_size, sample_num_frames, channels, height, width) + if self.concat_conditioning_mask: + controlnet_cond = torch.cat([controlnet_cond, conditioning_mask], dim=1) + (batch_size, channels, num_frames, height, width) = controlnet_cond.shape + controlnet_cond = controlnet_cond.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) + controlnet_cond = self.controlnet_cond_embedding(controlnet_cond) + (batch_frames, channels, height, width) = controlnet_cond.shape + controlnet_cond = controlnet_cond[:, None].reshape(batch_size, num_frames, channels, height, width) + sample = sample + controlnet_cond + (batch_size, num_frames, channels, height, width) = sample.shape + sample = sample.reshape(sample_batch_size * sample_num_frames, channels, height, width) + down_block_res_samples = (sample,) + for downsample_block in self.down_blocks: + if hasattr(downsample_block, 'has_cross_attention') and downsample_block.has_cross_attention: + (sample, res_samples) = downsample_block(hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs) + else: + (sample, res_samples) = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames) + down_block_res_samples += res_samples + if self.mid_block is not None: + if hasattr(self.mid_block, 'has_cross_attention') and self.mid_block.has_cross_attention: + sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs) + else: + sample = self.mid_block(sample, emb) + controlnet_down_block_res_samples = () + for (down_block_res_sample, controlnet_block) in zip(down_block_res_samples, self.controlnet_down_blocks): + down_block_res_sample = controlnet_block(down_block_res_sample) + controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,) + down_block_res_samples = controlnet_down_block_res_samples + mid_block_res_sample = self.controlnet_mid_block(sample) + if guess_mode and (not self.config.global_pool_conditions): + scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) + scales = scales * conditioning_scale + down_block_res_samples = [sample * scale for (sample, scale) in zip(down_block_res_samples, scales)] + mid_block_res_sample = mid_block_res_sample * scales[-1] + else: + down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples] + mid_block_res_sample = mid_block_res_sample * conditioning_scale + if self.config.global_pool_conditions: + down_block_res_samples = [torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples] + mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True) + if not return_dict: + return (down_block_res_samples, mid_block_res_sample) + return SparseControlNetOutput(down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample) + +def zero_module(module: nn.Module) -> nn.Module: + for p in module.parameters(): + nn.init.zeros_(p) + return module + +# File: diffusers-main/src/diffusers/models/controlnet_xs.py +from dataclasses import dataclass +from math import gcd +from typing import Any, Dict, List, Optional, Tuple, Union +import torch +import torch.utils.checkpoint +from torch import Tensor, nn +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput, is_torch_version, logging +from ..utils.torch_utils import apply_freeu +from .attention_processor import ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, Attention, AttentionProcessor, AttnAddedKVProcessor, AttnProcessor, FusedAttnProcessor2_0 +from .controlnet import ControlNetConditioningEmbedding +from .embeddings import TimestepEmbedding, Timesteps +from .modeling_utils import ModelMixin +from .unets.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, Downsample2D, ResnetBlock2D, Transformer2DModel, UNetMidBlock2DCrossAttn, Upsample2D +from .unets.unet_2d_condition import UNet2DConditionModel +logger = logging.get_logger(__name__) + +@dataclass +class ControlNetXSOutput(BaseOutput): + sample: Tensor = None + +class DownBlockControlNetXSAdapter(nn.Module): + + def __init__(self, resnets: nn.ModuleList, base_to_ctrl: nn.ModuleList, ctrl_to_base: nn.ModuleList, attentions: Optional[nn.ModuleList]=None, downsampler: Optional[nn.Conv2d]=None): + super().__init__() + self.resnets = resnets + self.base_to_ctrl = base_to_ctrl + self.ctrl_to_base = ctrl_to_base + self.attentions = attentions + self.downsamplers = downsampler + +class MidBlockControlNetXSAdapter(nn.Module): + + def __init__(self, midblock: UNetMidBlock2DCrossAttn, base_to_ctrl: nn.ModuleList, ctrl_to_base: nn.ModuleList): + super().__init__() + self.midblock = midblock + self.base_to_ctrl = base_to_ctrl + self.ctrl_to_base = ctrl_to_base + +class UpBlockControlNetXSAdapter(nn.Module): + + def __init__(self, ctrl_to_base: nn.ModuleList): + super().__init__() + self.ctrl_to_base = ctrl_to_base + +def get_down_block_adapter(base_in_channels: int, base_out_channels: int, ctrl_in_channels: int, ctrl_out_channels: int, temb_channels: int, max_norm_num_groups: Optional[int]=32, has_crossattn=True, transformer_layers_per_block: Optional[Union[int, Tuple[int]]]=1, num_attention_heads: Optional[int]=1, cross_attention_dim: Optional[int]=1024, add_downsample: bool=True, upcast_attention: Optional[bool]=False, use_linear_projection: Optional[bool]=True): + num_layers = 2 + resnets = [] + attentions = [] + ctrl_to_base = [] + base_to_ctrl = [] + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * num_layers + for i in range(num_layers): + base_in_channels = base_in_channels if i == 0 else base_out_channels + ctrl_in_channels = ctrl_in_channels if i == 0 else ctrl_out_channels + base_to_ctrl.append(make_zero_conv(base_in_channels, base_in_channels)) + resnets.append(ResnetBlock2D(in_channels=ctrl_in_channels + base_in_channels, out_channels=ctrl_out_channels, temb_channels=temb_channels, groups=find_largest_factor(ctrl_in_channels + base_in_channels, max_factor=max_norm_num_groups), groups_out=find_largest_factor(ctrl_out_channels, max_factor=max_norm_num_groups), eps=1e-05)) + if has_crossattn: + attentions.append(Transformer2DModel(num_attention_heads, ctrl_out_channels // num_attention_heads, in_channels=ctrl_out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, norm_num_groups=find_largest_factor(ctrl_out_channels, max_factor=max_norm_num_groups))) + ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels)) + if add_downsample: + base_to_ctrl.append(make_zero_conv(base_out_channels, base_out_channels)) + downsamplers = Downsample2D(ctrl_out_channels + base_out_channels, use_conv=True, out_channels=ctrl_out_channels, name='op') + ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels)) + else: + downsamplers = None + down_block_components = DownBlockControlNetXSAdapter(resnets=nn.ModuleList(resnets), base_to_ctrl=nn.ModuleList(base_to_ctrl), ctrl_to_base=nn.ModuleList(ctrl_to_base)) + if has_crossattn: + down_block_components.attentions = nn.ModuleList(attentions) + if downsamplers is not None: + down_block_components.downsamplers = downsamplers + return down_block_components + +def get_mid_block_adapter(base_channels: int, ctrl_channels: int, temb_channels: Optional[int]=None, max_norm_num_groups: Optional[int]=32, transformer_layers_per_block: int=1, num_attention_heads: Optional[int]=1, cross_attention_dim: Optional[int]=1024, upcast_attention: bool=False, use_linear_projection: bool=True): + base_to_ctrl = make_zero_conv(base_channels, base_channels) + midblock = UNetMidBlock2DCrossAttn(transformer_layers_per_block=transformer_layers_per_block, in_channels=ctrl_channels + base_channels, out_channels=ctrl_channels, temb_channels=temb_channels, resnet_groups=find_largest_factor(gcd(ctrl_channels, ctrl_channels + base_channels), max_norm_num_groups), cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention) + ctrl_to_base = make_zero_conv(ctrl_channels, base_channels) + return MidBlockControlNetXSAdapter(base_to_ctrl=base_to_ctrl, midblock=midblock, ctrl_to_base=ctrl_to_base) + +def get_up_block_adapter(out_channels: int, prev_output_channel: int, ctrl_skip_channels: List[int]): + ctrl_to_base = [] + num_layers = 3 + for i in range(num_layers): + resnet_in_channels = prev_output_channel if i == 0 else out_channels + ctrl_to_base.append(make_zero_conv(ctrl_skip_channels[i], resnet_in_channels)) + return UpBlockControlNetXSAdapter(ctrl_to_base=nn.ModuleList(ctrl_to_base)) + +class ControlNetXSAdapter(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, conditioning_channels: int=3, conditioning_channel_order: str='rgb', conditioning_embedding_out_channels: Tuple[int]=(16, 32, 96, 256), time_embedding_mix: float=1.0, learn_time_embedding: bool=False, num_attention_heads: Union[int, Tuple[int]]=4, block_out_channels: Tuple[int]=(4, 8, 16, 16), base_block_out_channels: Tuple[int]=(320, 640, 1280, 1280), cross_attention_dim: int=1024, down_block_types: Tuple[str]=('CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'DownBlock2D'), sample_size: Optional[int]=96, transformer_layers_per_block: Union[int, Tuple[int]]=1, upcast_attention: bool=True, max_norm_num_groups: int=32, use_linear_projection: bool=True): + super().__init__() + time_embedding_input_dim = base_block_out_channels[0] + time_embedding_dim = base_block_out_channels[0] * 4 + if conditioning_channel_order not in ['rgb', 'bgr']: + raise ValueError(f'unknown `conditioning_channel_order`: {conditioning_channel_order}') + if len(block_out_channels) != len(down_block_types): + raise ValueError(f'Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}.') + if not isinstance(transformer_layers_per_block, (list, tuple)): + transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) + if not isinstance(cross_attention_dim, (list, tuple)): + cross_attention_dim = [cross_attention_dim] * len(down_block_types) + if not isinstance(num_attention_heads, (list, tuple)): + num_attention_heads = [num_attention_heads] * len(down_block_types) + if len(num_attention_heads) != len(down_block_types): + raise ValueError(f'Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}.') + self.controlnet_cond_embedding = ControlNetConditioningEmbedding(conditioning_embedding_channels=block_out_channels[0], block_out_channels=conditioning_embedding_out_channels, conditioning_channels=conditioning_channels) + if learn_time_embedding: + self.time_embedding = TimestepEmbedding(time_embedding_input_dim, time_embedding_dim) + else: + self.time_embedding = None + self.down_blocks = nn.ModuleList([]) + self.up_connections = nn.ModuleList([]) + self.conv_in = nn.Conv2d(4, block_out_channels[0], kernel_size=3, padding=1) + self.control_to_base_for_conv_in = make_zero_conv(block_out_channels[0], base_block_out_channels[0]) + base_out_channels = base_block_out_channels[0] + ctrl_out_channels = block_out_channels[0] + for (i, down_block_type) in enumerate(down_block_types): + base_in_channels = base_out_channels + base_out_channels = base_block_out_channels[i] + ctrl_in_channels = ctrl_out_channels + ctrl_out_channels = block_out_channels[i] + has_crossattn = 'CrossAttn' in down_block_type + is_final_block = i == len(down_block_types) - 1 + self.down_blocks.append(get_down_block_adapter(base_in_channels=base_in_channels, base_out_channels=base_out_channels, ctrl_in_channels=ctrl_in_channels, ctrl_out_channels=ctrl_out_channels, temb_channels=time_embedding_dim, max_norm_num_groups=max_norm_num_groups, has_crossattn=has_crossattn, transformer_layers_per_block=transformer_layers_per_block[i], num_attention_heads=num_attention_heads[i], cross_attention_dim=cross_attention_dim[i], add_downsample=not is_final_block, upcast_attention=upcast_attention, use_linear_projection=use_linear_projection)) + self.mid_block = get_mid_block_adapter(base_channels=base_block_out_channels[-1], ctrl_channels=block_out_channels[-1], temb_channels=time_embedding_dim, transformer_layers_per_block=transformer_layers_per_block[-1], num_attention_heads=num_attention_heads[-1], cross_attention_dim=cross_attention_dim[-1], upcast_attention=upcast_attention, use_linear_projection=use_linear_projection) + ctrl_skip_channels = [block_out_channels[0]] + for (i, out_channels) in enumerate(block_out_channels): + number_of_subblocks = 3 if i < len(block_out_channels) - 1 else 2 + ctrl_skip_channels.extend([out_channels] * number_of_subblocks) + reversed_base_block_out_channels = list(reversed(base_block_out_channels)) + base_out_channels = reversed_base_block_out_channels[0] + for i in range(len(down_block_types)): + prev_base_output_channel = base_out_channels + base_out_channels = reversed_base_block_out_channels[i] + ctrl_skip_channels_ = [ctrl_skip_channels.pop() for _ in range(3)] + self.up_connections.append(get_up_block_adapter(out_channels=base_out_channels, prev_output_channel=prev_base_output_channel, ctrl_skip_channels=ctrl_skip_channels_)) + + @classmethod + def from_unet(cls, unet: UNet2DConditionModel, size_ratio: Optional[float]=None, block_out_channels: Optional[List[int]]=None, num_attention_heads: Optional[List[int]]=None, learn_time_embedding: bool=False, time_embedding_mix: int=1.0, conditioning_channels: int=3, conditioning_channel_order: str='rgb', conditioning_embedding_out_channels: Tuple[int]=(16, 32, 96, 256)): + fixed_size = block_out_channels is not None + relative_size = size_ratio is not None + if not fixed_size ^ relative_size: + raise ValueError('Pass exactly one of `block_out_channels` (for absolute sizing) or `size_ratio` (for relative sizing).') + block_out_channels = block_out_channels or [int(b * size_ratio) for b in unet.config.block_out_channels] + if num_attention_heads is None: + num_attention_heads = unet.config.attention_head_dim + model = cls(conditioning_channels=conditioning_channels, conditioning_channel_order=conditioning_channel_order, conditioning_embedding_out_channels=conditioning_embedding_out_channels, time_embedding_mix=time_embedding_mix, learn_time_embedding=learn_time_embedding, num_attention_heads=num_attention_heads, block_out_channels=block_out_channels, base_block_out_channels=unet.config.block_out_channels, cross_attention_dim=unet.config.cross_attention_dim, down_block_types=unet.config.down_block_types, sample_size=unet.config.sample_size, transformer_layers_per_block=unet.config.transformer_layers_per_block, upcast_attention=unet.config.upcast_attention, max_norm_num_groups=unet.config.norm_num_groups, use_linear_projection=unet.config.use_linear_projection) + model.to(unet.dtype) + return model + + def forward(self, *args, **kwargs): + raise ValueError('A ControlNetXSAdapter cannot be run by itself. Use it together with a UNet2DConditionModel to instantiate a UNetControlNetXSModel.') + +class UNetControlNetXSModel(ModelMixin, ConfigMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__(self, sample_size: Optional[int]=96, down_block_types: Tuple[str]=('CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'DownBlock2D'), up_block_types: Tuple[str]=('UpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D'), block_out_channels: Tuple[int]=(320, 640, 1280, 1280), norm_num_groups: Optional[int]=32, cross_attention_dim: Union[int, Tuple[int]]=1024, transformer_layers_per_block: Union[int, Tuple[int]]=1, num_attention_heads: Union[int, Tuple[int]]=8, addition_embed_type: Optional[str]=None, addition_time_embed_dim: Optional[int]=None, upcast_attention: bool=True, use_linear_projection: bool=True, time_cond_proj_dim: Optional[int]=None, projection_class_embeddings_input_dim: Optional[int]=None, time_embedding_mix: float=1.0, ctrl_conditioning_channels: int=3, ctrl_conditioning_embedding_out_channels: Tuple[int]=(16, 32, 96, 256), ctrl_conditioning_channel_order: str='rgb', ctrl_learn_time_embedding: bool=False, ctrl_block_out_channels: Tuple[int]=(4, 8, 16, 16), ctrl_num_attention_heads: Union[int, Tuple[int]]=4, ctrl_max_norm_num_groups: int=32): + super().__init__() + if time_embedding_mix < 0 or time_embedding_mix > 1: + raise ValueError('`time_embedding_mix` needs to be between 0 and 1.') + if time_embedding_mix < 1 and (not ctrl_learn_time_embedding): + raise ValueError('To use `time_embedding_mix` < 1, `ctrl_learn_time_embedding` must be `True`') + if addition_embed_type is not None and addition_embed_type != 'text_time': + raise ValueError("As `UNetControlNetXSModel` currently only supports StableDiffusion and StableDiffusion-XL, `addition_embed_type` must be `None` or `'text_time'`.") + if not isinstance(transformer_layers_per_block, (list, tuple)): + transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) + if not isinstance(cross_attention_dim, (list, tuple)): + cross_attention_dim = [cross_attention_dim] * len(down_block_types) + if not isinstance(num_attention_heads, (list, tuple)): + num_attention_heads = [num_attention_heads] * len(down_block_types) + if not isinstance(ctrl_num_attention_heads, (list, tuple)): + ctrl_num_attention_heads = [ctrl_num_attention_heads] * len(down_block_types) + base_num_attention_heads = num_attention_heads + self.in_channels = 4 + self.base_conv_in = nn.Conv2d(4, block_out_channels[0], kernel_size=3, padding=1) + self.controlnet_cond_embedding = ControlNetConditioningEmbedding(conditioning_embedding_channels=ctrl_block_out_channels[0], block_out_channels=ctrl_conditioning_embedding_out_channels, conditioning_channels=ctrl_conditioning_channels) + self.ctrl_conv_in = nn.Conv2d(4, ctrl_block_out_channels[0], kernel_size=3, padding=1) + self.control_to_base_for_conv_in = make_zero_conv(ctrl_block_out_channels[0], block_out_channels[0]) + time_embed_input_dim = block_out_channels[0] + time_embed_dim = block_out_channels[0] * 4 + self.base_time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos=True, downscale_freq_shift=0) + self.base_time_embedding = TimestepEmbedding(time_embed_input_dim, time_embed_dim, cond_proj_dim=time_cond_proj_dim) + if ctrl_learn_time_embedding: + self.ctrl_time_embedding = TimestepEmbedding(in_channels=time_embed_input_dim, time_embed_dim=time_embed_dim) + else: + self.ctrl_time_embedding = None + if addition_embed_type is None: + self.base_add_time_proj = None + self.base_add_embedding = None + else: + self.base_add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos=True, downscale_freq_shift=0) + self.base_add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + down_blocks = [] + base_out_channels = block_out_channels[0] + ctrl_out_channels = ctrl_block_out_channels[0] + for (i, down_block_type) in enumerate(down_block_types): + base_in_channels = base_out_channels + base_out_channels = block_out_channels[i] + ctrl_in_channels = ctrl_out_channels + ctrl_out_channels = ctrl_block_out_channels[i] + has_crossattn = 'CrossAttn' in down_block_type + is_final_block = i == len(down_block_types) - 1 + down_blocks.append(ControlNetXSCrossAttnDownBlock2D(base_in_channels=base_in_channels, base_out_channels=base_out_channels, ctrl_in_channels=ctrl_in_channels, ctrl_out_channels=ctrl_out_channels, temb_channels=time_embed_dim, norm_num_groups=norm_num_groups, ctrl_max_norm_num_groups=ctrl_max_norm_num_groups, has_crossattn=has_crossattn, transformer_layers_per_block=transformer_layers_per_block[i], base_num_attention_heads=base_num_attention_heads[i], ctrl_num_attention_heads=ctrl_num_attention_heads[i], cross_attention_dim=cross_attention_dim[i], add_downsample=not is_final_block, upcast_attention=upcast_attention, use_linear_projection=use_linear_projection)) + self.mid_block = ControlNetXSCrossAttnMidBlock2D(base_channels=block_out_channels[-1], ctrl_channels=ctrl_block_out_channels[-1], temb_channels=time_embed_dim, norm_num_groups=norm_num_groups, ctrl_max_norm_num_groups=ctrl_max_norm_num_groups, transformer_layers_per_block=transformer_layers_per_block[-1], base_num_attention_heads=base_num_attention_heads[-1], ctrl_num_attention_heads=ctrl_num_attention_heads[-1], cross_attention_dim=cross_attention_dim[-1], upcast_attention=upcast_attention, use_linear_projection=use_linear_projection) + up_blocks = [] + rev_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) + rev_num_attention_heads = list(reversed(base_num_attention_heads)) + rev_cross_attention_dim = list(reversed(cross_attention_dim)) + ctrl_skip_channels = [ctrl_block_out_channels[0]] + for (i, out_channels) in enumerate(ctrl_block_out_channels): + number_of_subblocks = 3 if i < len(ctrl_block_out_channels) - 1 else 2 + ctrl_skip_channels.extend([out_channels] * number_of_subblocks) + reversed_block_out_channels = list(reversed(block_out_channels)) + out_channels = reversed_block_out_channels[0] + for (i, up_block_type) in enumerate(up_block_types): + prev_output_channel = out_channels + out_channels = reversed_block_out_channels[i] + in_channels = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] + ctrl_skip_channels_ = [ctrl_skip_channels.pop() for _ in range(3)] + has_crossattn = 'CrossAttn' in up_block_type + is_final_block = i == len(block_out_channels) - 1 + up_blocks.append(ControlNetXSCrossAttnUpBlock2D(in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, ctrl_skip_channels=ctrl_skip_channels_, temb_channels=time_embed_dim, resolution_idx=i, has_crossattn=has_crossattn, transformer_layers_per_block=rev_transformer_layers_per_block[i], num_attention_heads=rev_num_attention_heads[i], cross_attention_dim=rev_cross_attention_dim[i], add_upsample=not is_final_block, upcast_attention=upcast_attention, norm_num_groups=norm_num_groups, use_linear_projection=use_linear_projection)) + self.down_blocks = nn.ModuleList(down_blocks) + self.up_blocks = nn.ModuleList(up_blocks) + self.base_conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups) + self.base_conv_act = nn.SiLU() + self.base_conv_out = nn.Conv2d(block_out_channels[0], 4, kernel_size=3, padding=1) + + @classmethod + def from_unet(cls, unet: UNet2DConditionModel, controlnet: Optional[ControlNetXSAdapter]=None, size_ratio: Optional[float]=None, ctrl_block_out_channels: Optional[List[float]]=None, time_embedding_mix: Optional[float]=None, ctrl_optional_kwargs: Optional[Dict]=None): + if controlnet is None: + controlnet = ControlNetXSAdapter.from_unet(unet, size_ratio, ctrl_block_out_channels, **ctrl_optional_kwargs) + elif any((o is not None for o in (size_ratio, ctrl_block_out_channels, time_embedding_mix, ctrl_optional_kwargs))): + raise ValueError('When a controlnet is passed, none of these parameters should be passed: size_ratio, ctrl_block_out_channels, time_embedding_mix, ctrl_optional_kwargs.') + params_for_unet = ['sample_size', 'down_block_types', 'up_block_types', 'block_out_channels', 'norm_num_groups', 'cross_attention_dim', 'transformer_layers_per_block', 'addition_embed_type', 'addition_time_embed_dim', 'upcast_attention', 'use_linear_projection', 'time_cond_proj_dim', 'projection_class_embeddings_input_dim'] + params_for_unet = {k: v for (k, v) in unet.config.items() if k in params_for_unet} + params_for_unet['num_attention_heads'] = unet.config.attention_head_dim + params_for_controlnet = ['conditioning_channels', 'conditioning_embedding_out_channels', 'conditioning_channel_order', 'learn_time_embedding', 'block_out_channels', 'num_attention_heads', 'max_norm_num_groups'] + params_for_controlnet = {'ctrl_' + k: v for (k, v) in controlnet.config.items() if k in params_for_controlnet} + params_for_controlnet['time_embedding_mix'] = controlnet.config.time_embedding_mix + model = cls.from_config({**params_for_unet, **params_for_controlnet}) + modules_from_unet = ['time_embedding', 'conv_in', 'conv_norm_out', 'conv_out'] + for m in modules_from_unet: + getattr(model, 'base_' + m).load_state_dict(getattr(unet, m).state_dict()) + optional_modules_from_unet = ['add_time_proj', 'add_embedding'] + for m in optional_modules_from_unet: + if hasattr(unet, m) and getattr(unet, m) is not None: + getattr(model, 'base_' + m).load_state_dict(getattr(unet, m).state_dict()) + model.controlnet_cond_embedding.load_state_dict(controlnet.controlnet_cond_embedding.state_dict()) + model.ctrl_conv_in.load_state_dict(controlnet.conv_in.state_dict()) + if controlnet.time_embedding is not None: + model.ctrl_time_embedding.load_state_dict(controlnet.time_embedding.state_dict()) + model.control_to_base_for_conv_in.load_state_dict(controlnet.control_to_base_for_conv_in.state_dict()) + model.down_blocks = nn.ModuleList((ControlNetXSCrossAttnDownBlock2D.from_modules(b, c) for (b, c) in zip(unet.down_blocks, controlnet.down_blocks))) + model.mid_block = ControlNetXSCrossAttnMidBlock2D.from_modules(unet.mid_block, controlnet.mid_block) + model.up_blocks = nn.ModuleList((ControlNetXSCrossAttnUpBlock2D.from_modules(b, c) for (b, c) in zip(unet.up_blocks, controlnet.up_connections))) + model.to(unet.dtype) + return model + + def freeze_unet_params(self) -> None: + for param in self.parameters(): + param.requires_grad = True + base_parts = ['base_time_proj', 'base_time_embedding', 'base_add_time_proj', 'base_add_embedding', 'base_conv_in', 'base_conv_norm_out', 'base_conv_act', 'base_conv_out'] + base_parts = [getattr(self, part) for part in base_parts if getattr(self, part) is not None] + for part in base_parts: + for param in part.parameters(): + param.requires_grad = False + for d in self.down_blocks: + d.freeze_base_params() + self.mid_block.freeze_base_params() + for u in self.up_blocks: + u.freeze_base_params() + + def _set_gradient_checkpointing(self, module, value=False): + if hasattr(module, 'gradient_checkpointing'): + module.gradient_checkpointing = value + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def set_default_attn_processor(self): + if all((proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnAddedKVProcessor() + elif all((proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnProcessor() + else: + raise ValueError(f'Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}') + self.set_attn_processor(processor) + + def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): + for (i, upsample_block) in enumerate(self.up_blocks): + setattr(upsample_block, 's1', s1) + setattr(upsample_block, 's2', s2) + setattr(upsample_block, 'b1', b1) + setattr(upsample_block, 'b2', b2) + + def disable_freeu(self): + freeu_keys = {'s1', 's2', 'b1', 'b2'} + for (i, upsample_block) in enumerate(self.up_blocks): + for k in freeu_keys: + if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None: + setattr(upsample_block, k, None) + + def fuse_qkv_projections(self): + self.original_attn_processors = None + for (_, attn_processor) in self.attn_processors.items(): + if 'Added' in str(attn_processor.__class__.__name__): + raise ValueError('`fuse_qkv_projections()` is not supported for models having added KV projections.') + self.original_attn_processors = self.attn_processors + for module in self.modules(): + if isinstance(module, Attention): + module.fuse_projections(fuse=True) + self.set_attn_processor(FusedAttnProcessor2_0()) + + def unfuse_qkv_projections(self): + if self.original_attn_processors is not None: + self.set_attn_processor(self.original_attn_processors) + + def forward(self, sample: Tensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, controlnet_cond: Optional[torch.Tensor]=None, conditioning_scale: Optional[float]=1.0, class_labels: Optional[torch.Tensor]=None, timestep_cond: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, added_cond_kwargs: Optional[Dict[str, torch.Tensor]]=None, return_dict: bool=True, apply_control: bool=True) -> Union[ControlNetXSOutput, Tuple]: + if self.config.ctrl_conditioning_channel_order == 'bgr': + controlnet_cond = torch.flip(controlnet_cond, dims=[1]) + if attention_mask is not None: + attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + timesteps = timestep + if not torch.is_tensor(timesteps): + is_mps = sample.device.type == 'mps' + if isinstance(timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + timesteps = timesteps.expand(sample.shape[0]) + t_emb = self.base_time_proj(timesteps) + t_emb = t_emb.to(dtype=sample.dtype) + if self.config.ctrl_learn_time_embedding and apply_control: + ctrl_temb = self.ctrl_time_embedding(t_emb, timestep_cond) + base_temb = self.base_time_embedding(t_emb, timestep_cond) + interpolation_param = self.config.time_embedding_mix ** 0.3 + temb = ctrl_temb * interpolation_param + base_temb * (1 - interpolation_param) + else: + temb = self.base_time_embedding(t_emb) + aug_emb = None + if self.config.addition_embed_type is None: + pass + elif self.config.addition_embed_type == 'text_time': + if 'text_embeds' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`") + text_embeds = added_cond_kwargs.get('text_embeds') + if 'time_ids' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`") + time_ids = added_cond_kwargs.get('time_ids') + time_embeds = self.base_add_time_proj(time_ids.flatten()) + time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) + add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) + add_embeds = add_embeds.to(temb.dtype) + aug_emb = self.base_add_embedding(add_embeds) + else: + raise ValueError(f'ControlNet-XS currently only supports StableDiffusion and StableDiffusion-XL, so addition_embed_type = {self.config.addition_embed_type} is currently not supported.') + temb = temb + aug_emb if aug_emb is not None else temb + cemb = encoder_hidden_states + h_ctrl = h_base = sample + (hs_base, hs_ctrl) = ([], []) + guided_hint = self.controlnet_cond_embedding(controlnet_cond) + h_base = self.base_conv_in(h_base) + h_ctrl = self.ctrl_conv_in(h_ctrl) + if guided_hint is not None: + h_ctrl += guided_hint + if apply_control: + h_base = h_base + self.control_to_base_for_conv_in(h_ctrl) * conditioning_scale + hs_base.append(h_base) + hs_ctrl.append(h_ctrl) + for down in self.down_blocks: + (h_base, h_ctrl, residual_hb, residual_hc) = down(hidden_states_base=h_base, hidden_states_ctrl=h_ctrl, temb=temb, encoder_hidden_states=cemb, conditioning_scale=conditioning_scale, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, apply_control=apply_control) + hs_base.extend(residual_hb) + hs_ctrl.extend(residual_hc) + (h_base, h_ctrl) = self.mid_block(hidden_states_base=h_base, hidden_states_ctrl=h_ctrl, temb=temb, encoder_hidden_states=cemb, conditioning_scale=conditioning_scale, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, apply_control=apply_control) + for up in self.up_blocks: + n_resnets = len(up.resnets) + skips_hb = hs_base[-n_resnets:] + skips_hc = hs_ctrl[-n_resnets:] + hs_base = hs_base[:-n_resnets] + hs_ctrl = hs_ctrl[:-n_resnets] + h_base = up(hidden_states=h_base, res_hidden_states_tuple_base=skips_hb, res_hidden_states_tuple_ctrl=skips_hc, temb=temb, encoder_hidden_states=cemb, conditioning_scale=conditioning_scale, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, apply_control=apply_control) + h_base = self.base_conv_norm_out(h_base) + h_base = self.base_conv_act(h_base) + h_base = self.base_conv_out(h_base) + if not return_dict: + return (h_base,) + return ControlNetXSOutput(sample=h_base) + +class ControlNetXSCrossAttnDownBlock2D(nn.Module): + + def __init__(self, base_in_channels: int, base_out_channels: int, ctrl_in_channels: int, ctrl_out_channels: int, temb_channels: int, norm_num_groups: int=32, ctrl_max_norm_num_groups: int=32, has_crossattn=True, transformer_layers_per_block: Optional[Union[int, Tuple[int]]]=1, base_num_attention_heads: Optional[int]=1, ctrl_num_attention_heads: Optional[int]=1, cross_attention_dim: Optional[int]=1024, add_downsample: bool=True, upcast_attention: Optional[bool]=False, use_linear_projection: Optional[bool]=True): + super().__init__() + base_resnets = [] + base_attentions = [] + ctrl_resnets = [] + ctrl_attentions = [] + ctrl_to_base = [] + base_to_ctrl = [] + num_layers = 2 + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * num_layers + for i in range(num_layers): + base_in_channels = base_in_channels if i == 0 else base_out_channels + ctrl_in_channels = ctrl_in_channels if i == 0 else ctrl_out_channels + base_to_ctrl.append(make_zero_conv(base_in_channels, base_in_channels)) + base_resnets.append(ResnetBlock2D(in_channels=base_in_channels, out_channels=base_out_channels, temb_channels=temb_channels, groups=norm_num_groups)) + ctrl_resnets.append(ResnetBlock2D(in_channels=ctrl_in_channels + base_in_channels, out_channels=ctrl_out_channels, temb_channels=temb_channels, groups=find_largest_factor(ctrl_in_channels + base_in_channels, max_factor=ctrl_max_norm_num_groups), groups_out=find_largest_factor(ctrl_out_channels, max_factor=ctrl_max_norm_num_groups), eps=1e-05)) + if has_crossattn: + base_attentions.append(Transformer2DModel(base_num_attention_heads, base_out_channels // base_num_attention_heads, in_channels=base_out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, norm_num_groups=norm_num_groups)) + ctrl_attentions.append(Transformer2DModel(ctrl_num_attention_heads, ctrl_out_channels // ctrl_num_attention_heads, in_channels=ctrl_out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, norm_num_groups=find_largest_factor(ctrl_out_channels, max_factor=ctrl_max_norm_num_groups))) + ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels)) + if add_downsample: + base_to_ctrl.append(make_zero_conv(base_out_channels, base_out_channels)) + self.base_downsamplers = Downsample2D(base_out_channels, use_conv=True, out_channels=base_out_channels, name='op') + self.ctrl_downsamplers = Downsample2D(ctrl_out_channels + base_out_channels, use_conv=True, out_channels=ctrl_out_channels, name='op') + ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels)) + else: + self.base_downsamplers = None + self.ctrl_downsamplers = None + self.base_resnets = nn.ModuleList(base_resnets) + self.ctrl_resnets = nn.ModuleList(ctrl_resnets) + self.base_attentions = nn.ModuleList(base_attentions) if has_crossattn else [None] * num_layers + self.ctrl_attentions = nn.ModuleList(ctrl_attentions) if has_crossattn else [None] * num_layers + self.base_to_ctrl = nn.ModuleList(base_to_ctrl) + self.ctrl_to_base = nn.ModuleList(ctrl_to_base) + self.gradient_checkpointing = False + + @classmethod + def from_modules(cls, base_downblock: CrossAttnDownBlock2D, ctrl_downblock: DownBlockControlNetXSAdapter): + + def get_first_cross_attention(block): + return block.attentions[0].transformer_blocks[0].attn2 + base_in_channels = base_downblock.resnets[0].in_channels + base_out_channels = base_downblock.resnets[0].out_channels + ctrl_in_channels = ctrl_downblock.resnets[0].in_channels - base_in_channels + ctrl_out_channels = ctrl_downblock.resnets[0].out_channels + temb_channels = base_downblock.resnets[0].time_emb_proj.in_features + num_groups = base_downblock.resnets[0].norm1.num_groups + ctrl_num_groups = ctrl_downblock.resnets[0].norm1.num_groups + if hasattr(base_downblock, 'attentions'): + has_crossattn = True + transformer_layers_per_block = len(base_downblock.attentions[0].transformer_blocks) + base_num_attention_heads = get_first_cross_attention(base_downblock).heads + ctrl_num_attention_heads = get_first_cross_attention(ctrl_downblock).heads + cross_attention_dim = get_first_cross_attention(base_downblock).cross_attention_dim + upcast_attention = get_first_cross_attention(base_downblock).upcast_attention + use_linear_projection = base_downblock.attentions[0].use_linear_projection + else: + has_crossattn = False + transformer_layers_per_block = None + base_num_attention_heads = None + ctrl_num_attention_heads = None + cross_attention_dim = None + upcast_attention = None + use_linear_projection = None + add_downsample = base_downblock.downsamplers is not None + model = cls(base_in_channels=base_in_channels, base_out_channels=base_out_channels, ctrl_in_channels=ctrl_in_channels, ctrl_out_channels=ctrl_out_channels, temb_channels=temb_channels, norm_num_groups=num_groups, ctrl_max_norm_num_groups=ctrl_num_groups, has_crossattn=has_crossattn, transformer_layers_per_block=transformer_layers_per_block, base_num_attention_heads=base_num_attention_heads, ctrl_num_attention_heads=ctrl_num_attention_heads, cross_attention_dim=cross_attention_dim, add_downsample=add_downsample, upcast_attention=upcast_attention, use_linear_projection=use_linear_projection) + model.base_resnets.load_state_dict(base_downblock.resnets.state_dict()) + model.ctrl_resnets.load_state_dict(ctrl_downblock.resnets.state_dict()) + if has_crossattn: + model.base_attentions.load_state_dict(base_downblock.attentions.state_dict()) + model.ctrl_attentions.load_state_dict(ctrl_downblock.attentions.state_dict()) + if add_downsample: + model.base_downsamplers.load_state_dict(base_downblock.downsamplers[0].state_dict()) + model.ctrl_downsamplers.load_state_dict(ctrl_downblock.downsamplers.state_dict()) + model.base_to_ctrl.load_state_dict(ctrl_downblock.base_to_ctrl.state_dict()) + model.ctrl_to_base.load_state_dict(ctrl_downblock.ctrl_to_base.state_dict()) + return model + + def freeze_base_params(self) -> None: + for param in self.parameters(): + param.requires_grad = True + base_parts = [self.base_resnets] + if isinstance(self.base_attentions, nn.ModuleList): + base_parts.append(self.base_attentions) + if self.base_downsamplers is not None: + base_parts.append(self.base_downsamplers) + for part in base_parts: + for param in part.parameters(): + param.requires_grad = False + + def forward(self, hidden_states_base: Tensor, temb: Tensor, encoder_hidden_states: Optional[Tensor]=None, hidden_states_ctrl: Optional[Tensor]=None, conditioning_scale: Optional[float]=1.0, attention_mask: Optional[Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, encoder_attention_mask: Optional[Tensor]=None, apply_control: bool=True) -> Tuple[Tensor, Tensor, Tuple[Tensor, ...], Tuple[Tensor, ...]]: + if cross_attention_kwargs is not None: + if cross_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.') + h_base = hidden_states_base + h_ctrl = hidden_states_ctrl + base_output_states = () + ctrl_output_states = () + base_blocks = list(zip(self.base_resnets, self.base_attentions)) + ctrl_blocks = list(zip(self.ctrl_resnets, self.ctrl_attentions)) + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + for ((b_res, b_attn), (c_res, c_attn), b2c, c2b) in zip(base_blocks, ctrl_blocks, self.base_to_ctrl, self.ctrl_to_base): + if apply_control: + h_ctrl = torch.cat([h_ctrl, b2c(h_base)], dim=1) + if self.training and self.gradient_checkpointing: + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + h_base = torch.utils.checkpoint.checkpoint(create_custom_forward(b_res), h_base, temb, **ckpt_kwargs) + else: + h_base = b_res(h_base, temb) + if b_attn is not None: + h_base = b_attn(h_base, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False)[0] + if apply_control: + if self.training and self.gradient_checkpointing: + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + h_ctrl = torch.utils.checkpoint.checkpoint(create_custom_forward(c_res), h_ctrl, temb, **ckpt_kwargs) + else: + h_ctrl = c_res(h_ctrl, temb) + if c_attn is not None: + h_ctrl = c_attn(h_ctrl, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False)[0] + if apply_control: + h_base = h_base + c2b(h_ctrl) * conditioning_scale + base_output_states = base_output_states + (h_base,) + ctrl_output_states = ctrl_output_states + (h_ctrl,) + if self.base_downsamplers is not None: + b2c = self.base_to_ctrl[-1] + c2b = self.ctrl_to_base[-1] + if apply_control: + h_ctrl = torch.cat([h_ctrl, b2c(h_base)], dim=1) + h_base = self.base_downsamplers(h_base) + if apply_control: + h_ctrl = self.ctrl_downsamplers(h_ctrl) + if apply_control: + h_base = h_base + c2b(h_ctrl) * conditioning_scale + base_output_states = base_output_states + (h_base,) + ctrl_output_states = ctrl_output_states + (h_ctrl,) + return (h_base, h_ctrl, base_output_states, ctrl_output_states) + +class ControlNetXSCrossAttnMidBlock2D(nn.Module): + + def __init__(self, base_channels: int, ctrl_channels: int, temb_channels: Optional[int]=None, norm_num_groups: int=32, ctrl_max_norm_num_groups: int=32, transformer_layers_per_block: int=1, base_num_attention_heads: Optional[int]=1, ctrl_num_attention_heads: Optional[int]=1, cross_attention_dim: Optional[int]=1024, upcast_attention: bool=False, use_linear_projection: Optional[bool]=True): + super().__init__() + self.base_to_ctrl = make_zero_conv(base_channels, base_channels) + self.base_midblock = UNetMidBlock2DCrossAttn(transformer_layers_per_block=transformer_layers_per_block, in_channels=base_channels, temb_channels=temb_channels, resnet_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, num_attention_heads=base_num_attention_heads, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention) + self.ctrl_midblock = UNetMidBlock2DCrossAttn(transformer_layers_per_block=transformer_layers_per_block, in_channels=ctrl_channels + base_channels, out_channels=ctrl_channels, temb_channels=temb_channels, resnet_groups=find_largest_factor(gcd(ctrl_channels, ctrl_channels + base_channels), ctrl_max_norm_num_groups), cross_attention_dim=cross_attention_dim, num_attention_heads=ctrl_num_attention_heads, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention) + self.ctrl_to_base = make_zero_conv(ctrl_channels, base_channels) + self.gradient_checkpointing = False + + @classmethod + def from_modules(cls, base_midblock: UNetMidBlock2DCrossAttn, ctrl_midblock: MidBlockControlNetXSAdapter): + base_to_ctrl = ctrl_midblock.base_to_ctrl + ctrl_to_base = ctrl_midblock.ctrl_to_base + ctrl_midblock = ctrl_midblock.midblock + + def get_first_cross_attention(midblock): + return midblock.attentions[0].transformer_blocks[0].attn2 + base_channels = ctrl_to_base.out_channels + ctrl_channels = ctrl_to_base.in_channels + transformer_layers_per_block = len(base_midblock.attentions[0].transformer_blocks) + temb_channels = base_midblock.resnets[0].time_emb_proj.in_features + num_groups = base_midblock.resnets[0].norm1.num_groups + ctrl_num_groups = ctrl_midblock.resnets[0].norm1.num_groups + base_num_attention_heads = get_first_cross_attention(base_midblock).heads + ctrl_num_attention_heads = get_first_cross_attention(ctrl_midblock).heads + cross_attention_dim = get_first_cross_attention(base_midblock).cross_attention_dim + upcast_attention = get_first_cross_attention(base_midblock).upcast_attention + use_linear_projection = base_midblock.attentions[0].use_linear_projection + model = cls(base_channels=base_channels, ctrl_channels=ctrl_channels, temb_channels=temb_channels, norm_num_groups=num_groups, ctrl_max_norm_num_groups=ctrl_num_groups, transformer_layers_per_block=transformer_layers_per_block, base_num_attention_heads=base_num_attention_heads, ctrl_num_attention_heads=ctrl_num_attention_heads, cross_attention_dim=cross_attention_dim, upcast_attention=upcast_attention, use_linear_projection=use_linear_projection) + model.base_to_ctrl.load_state_dict(base_to_ctrl.state_dict()) + model.base_midblock.load_state_dict(base_midblock.state_dict()) + model.ctrl_midblock.load_state_dict(ctrl_midblock.state_dict()) + model.ctrl_to_base.load_state_dict(ctrl_to_base.state_dict()) + return model + + def freeze_base_params(self) -> None: + for param in self.parameters(): + param.requires_grad = True + for param in self.base_midblock.parameters(): + param.requires_grad = False + + def forward(self, hidden_states_base: Tensor, temb: Tensor, encoder_hidden_states: Tensor, hidden_states_ctrl: Optional[Tensor]=None, conditioning_scale: Optional[float]=1.0, cross_attention_kwargs: Optional[Dict[str, Any]]=None, attention_mask: Optional[Tensor]=None, encoder_attention_mask: Optional[Tensor]=None, apply_control: bool=True) -> Tuple[Tensor, Tensor]: + if cross_attention_kwargs is not None: + if cross_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.') + h_base = hidden_states_base + h_ctrl = hidden_states_ctrl + joint_args = {'temb': temb, 'encoder_hidden_states': encoder_hidden_states, 'attention_mask': attention_mask, 'cross_attention_kwargs': cross_attention_kwargs, 'encoder_attention_mask': encoder_attention_mask} + if apply_control: + h_ctrl = torch.cat([h_ctrl, self.base_to_ctrl(h_base)], dim=1) + h_base = self.base_midblock(h_base, **joint_args) + if apply_control: + h_ctrl = self.ctrl_midblock(h_ctrl, **joint_args) + h_base = h_base + self.ctrl_to_base(h_ctrl) * conditioning_scale + return (h_base, h_ctrl) + +class ControlNetXSCrossAttnUpBlock2D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, prev_output_channel: int, ctrl_skip_channels: List[int], temb_channels: int, norm_num_groups: int=32, resolution_idx: Optional[int]=None, has_crossattn=True, transformer_layers_per_block: int=1, num_attention_heads: int=1, cross_attention_dim: int=1024, add_upsample: bool=True, upcast_attention: bool=False, use_linear_projection: Optional[bool]=True): + super().__init__() + resnets = [] + attentions = [] + ctrl_to_base = [] + num_layers = 3 + self.has_cross_attention = has_crossattn + self.num_attention_heads = num_attention_heads + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * num_layers + for i in range(num_layers): + res_skip_channels = in_channels if i == num_layers - 1 else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + ctrl_to_base.append(make_zero_conv(ctrl_skip_channels[i], resnet_in_channels)) + resnets.append(ResnetBlock2D(in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, groups=norm_num_groups)) + if has_crossattn: + attentions.append(Transformer2DModel(num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, norm_num_groups=norm_num_groups)) + self.resnets = nn.ModuleList(resnets) + self.attentions = nn.ModuleList(attentions) if has_crossattn else [None] * num_layers + self.ctrl_to_base = nn.ModuleList(ctrl_to_base) + if add_upsample: + self.upsamplers = Upsample2D(out_channels, use_conv=True, out_channels=out_channels) + else: + self.upsamplers = None + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + @classmethod + def from_modules(cls, base_upblock: CrossAttnUpBlock2D, ctrl_upblock: UpBlockControlNetXSAdapter): + ctrl_to_base_skip_connections = ctrl_upblock.ctrl_to_base + + def get_first_cross_attention(block): + return block.attentions[0].transformer_blocks[0].attn2 + out_channels = base_upblock.resnets[0].out_channels + in_channels = base_upblock.resnets[-1].in_channels - out_channels + prev_output_channels = base_upblock.resnets[0].in_channels - out_channels + ctrl_skip_channelss = [c.in_channels for c in ctrl_to_base_skip_connections] + temb_channels = base_upblock.resnets[0].time_emb_proj.in_features + num_groups = base_upblock.resnets[0].norm1.num_groups + resolution_idx = base_upblock.resolution_idx + if hasattr(base_upblock, 'attentions'): + has_crossattn = True + transformer_layers_per_block = len(base_upblock.attentions[0].transformer_blocks) + num_attention_heads = get_first_cross_attention(base_upblock).heads + cross_attention_dim = get_first_cross_attention(base_upblock).cross_attention_dim + upcast_attention = get_first_cross_attention(base_upblock).upcast_attention + use_linear_projection = base_upblock.attentions[0].use_linear_projection + else: + has_crossattn = False + transformer_layers_per_block = None + num_attention_heads = None + cross_attention_dim = None + upcast_attention = None + use_linear_projection = None + add_upsample = base_upblock.upsamplers is not None + model = cls(in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channels, ctrl_skip_channels=ctrl_skip_channelss, temb_channels=temb_channels, norm_num_groups=num_groups, resolution_idx=resolution_idx, has_crossattn=has_crossattn, transformer_layers_per_block=transformer_layers_per_block, num_attention_heads=num_attention_heads, cross_attention_dim=cross_attention_dim, add_upsample=add_upsample, upcast_attention=upcast_attention, use_linear_projection=use_linear_projection) + model.resnets.load_state_dict(base_upblock.resnets.state_dict()) + if has_crossattn: + model.attentions.load_state_dict(base_upblock.attentions.state_dict()) + if add_upsample: + model.upsamplers.load_state_dict(base_upblock.upsamplers[0].state_dict()) + model.ctrl_to_base.load_state_dict(ctrl_to_base_skip_connections.state_dict()) + return model + + def freeze_base_params(self) -> None: + for param in self.parameters(): + param.requires_grad = True + base_parts = [self.resnets] + if isinstance(self.attentions, nn.ModuleList): + base_parts.append(self.attentions) + if self.upsamplers is not None: + base_parts.append(self.upsamplers) + for part in base_parts: + for param in part.parameters(): + param.requires_grad = False + + def forward(self, hidden_states: Tensor, res_hidden_states_tuple_base: Tuple[Tensor, ...], res_hidden_states_tuple_ctrl: Tuple[Tensor, ...], temb: Tensor, encoder_hidden_states: Optional[Tensor]=None, conditioning_scale: Optional[float]=1.0, cross_attention_kwargs: Optional[Dict[str, Any]]=None, attention_mask: Optional[Tensor]=None, upsample_size: Optional[int]=None, encoder_attention_mask: Optional[Tensor]=None, apply_control: bool=True) -> Tensor: + if cross_attention_kwargs is not None: + if cross_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.') + is_freeu_enabled = getattr(self, 's1', None) and getattr(self, 's2', None) and getattr(self, 'b1', None) and getattr(self, 'b2', None) + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + + def maybe_apply_freeu_to_subblock(hidden_states, res_h_base): + if is_freeu_enabled: + return apply_freeu(self.resolution_idx, hidden_states, res_h_base, s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2) + else: + return (hidden_states, res_h_base) + for (resnet, attn, c2b, res_h_base, res_h_ctrl) in zip(self.resnets, self.attentions, self.ctrl_to_base, reversed(res_hidden_states_tuple_base), reversed(res_hidden_states_tuple_ctrl)): + if apply_control: + hidden_states += c2b(res_h_ctrl) * conditioning_scale + (hidden_states, res_h_base) = maybe_apply_freeu_to_subblock(hidden_states, res_h_base) + hidden_states = torch.cat([hidden_states, res_h_base], dim=1) + if self.training and self.gradient_checkpointing: + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs) + else: + hidden_states = resnet(hidden_states, temb) + if attn is not None: + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False)[0] + if self.upsamplers is not None: + hidden_states = self.upsamplers(hidden_states, upsample_size) + return hidden_states + +def make_zero_conv(in_channels, out_channels=None): + return zero_module(nn.Conv2d(in_channels, out_channels, 1, padding=0)) + +def zero_module(module): + for p in module.parameters(): + nn.init.zeros_(p) + return module + +def find_largest_factor(number, max_factor): + factor = max_factor + if factor >= number: + return number + while factor != 0: + residual = number % factor + if residual == 0: + return factor + factor -= 1 + +# File: diffusers-main/src/diffusers/models/downsampling.py +from typing import Optional, Tuple +import torch +import torch.nn as nn +import torch.nn.functional as F +from ..utils import deprecate +from .normalization import RMSNorm +from .upsampling import upfirdn2d_native + +class Downsample1D(nn.Module): + + def __init__(self, channels: int, use_conv: bool=False, out_channels: Optional[int]=None, padding: int=1, name: str='conv'): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.padding = padding + stride = 2 + self.name = name + if use_conv: + self.conv = nn.Conv1d(self.channels, self.out_channels, 3, stride=stride, padding=padding) + else: + assert self.channels == self.out_channels + self.conv = nn.AvgPool1d(kernel_size=stride, stride=stride) + + def forward(self, inputs: torch.Tensor) -> torch.Tensor: + assert inputs.shape[1] == self.channels + return self.conv(inputs) + +class Downsample2D(nn.Module): + + def __init__(self, channels: int, use_conv: bool=False, out_channels: Optional[int]=None, padding: int=1, name: str='conv', kernel_size=3, norm_type=None, eps=None, elementwise_affine=None, bias=True): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.padding = padding + stride = 2 + self.name = name + if norm_type == 'ln_norm': + self.norm = nn.LayerNorm(channels, eps, elementwise_affine) + elif norm_type == 'rms_norm': + self.norm = RMSNorm(channels, eps, elementwise_affine) + elif norm_type is None: + self.norm = None + else: + raise ValueError(f'unknown norm_type: {norm_type}') + if use_conv: + conv = nn.Conv2d(self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias) + else: + assert self.channels == self.out_channels + conv = nn.AvgPool2d(kernel_size=stride, stride=stride) + if name == 'conv': + self.Conv2d_0 = conv + self.conv = conv + elif name == 'Conv2d_0': + self.conv = conv + else: + self.conv = conv + + def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + assert hidden_states.shape[1] == self.channels + if self.norm is not None: + hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + if self.use_conv and self.padding == 0: + pad = (0, 1, 0, 1) + hidden_states = F.pad(hidden_states, pad, mode='constant', value=0) + assert hidden_states.shape[1] == self.channels + hidden_states = self.conv(hidden_states) + return hidden_states + +class FirDownsample2D(nn.Module): + + def __init__(self, channels: Optional[int]=None, out_channels: Optional[int]=None, use_conv: bool=False, fir_kernel: Tuple[int, int, int, int]=(1, 3, 3, 1)): + super().__init__() + out_channels = out_channels if out_channels else channels + if use_conv: + self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1) + self.fir_kernel = fir_kernel + self.use_conv = use_conv + self.out_channels = out_channels + + def _downsample_2d(self, hidden_states: torch.Tensor, weight: Optional[torch.Tensor]=None, kernel: Optional[torch.Tensor]=None, factor: int=2, gain: float=1) -> torch.Tensor: + assert isinstance(factor, int) and factor >= 1 + if kernel is None: + kernel = [1] * factor + kernel = torch.tensor(kernel, dtype=torch.float32) + if kernel.ndim == 1: + kernel = torch.outer(kernel, kernel) + kernel /= torch.sum(kernel) + kernel = kernel * gain + if self.use_conv: + (_, _, convH, convW) = weight.shape + pad_value = kernel.shape[0] - factor + (convW - 1) + stride_value = [factor, factor] + upfirdn_input = upfirdn2d_native(hidden_states, torch.tensor(kernel, device=hidden_states.device), pad=((pad_value + 1) // 2, pad_value // 2)) + output = F.conv2d(upfirdn_input, weight, stride=stride_value, padding=0) + else: + pad_value = kernel.shape[0] - factor + output = upfirdn2d_native(hidden_states, torch.tensor(kernel, device=hidden_states.device), down=factor, pad=((pad_value + 1) // 2, pad_value // 2)) + return output + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + if self.use_conv: + downsample_input = self._downsample_2d(hidden_states, weight=self.Conv2d_0.weight, kernel=self.fir_kernel) + hidden_states = downsample_input + self.Conv2d_0.bias.reshape(1, -1, 1, 1) + else: + hidden_states = self._downsample_2d(hidden_states, kernel=self.fir_kernel, factor=2) + return hidden_states + +class KDownsample2D(nn.Module): + + def __init__(self, pad_mode: str='reflect'): + super().__init__() + self.pad_mode = pad_mode + kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]]) + self.pad = kernel_1d.shape[1] // 2 - 1 + self.register_buffer('kernel', kernel_1d.T @ kernel_1d, persistent=False) + + def forward(self, inputs: torch.Tensor) -> torch.Tensor: + inputs = F.pad(inputs, (self.pad,) * 4, self.pad_mode) + weight = inputs.new_zeros([inputs.shape[1], inputs.shape[1], self.kernel.shape[0], self.kernel.shape[1]]) + indices = torch.arange(inputs.shape[1], device=inputs.device) + kernel = self.kernel.to(weight)[None, :].expand(inputs.shape[1], -1, -1) + weight[indices, indices] = kernel + return F.conv2d(inputs, weight, stride=2) + +class CogVideoXDownsample3D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, kernel_size: int=3, stride: int=2, padding: int=0, compress_time: bool=False): + super().__init__() + self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) + self.compress_time = compress_time + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self.compress_time: + (batch_size, channels, frames, height, width) = x.shape + x = x.permute(0, 3, 4, 1, 2).reshape(batch_size * height * width, channels, frames) + if x.shape[-1] % 2 == 1: + (x_first, x_rest) = (x[..., 0], x[..., 1:]) + if x_rest.shape[-1] > 0: + x_rest = F.avg_pool1d(x_rest, kernel_size=2, stride=2) + x = torch.cat([x_first[..., None], x_rest], dim=-1) + x = x.reshape(batch_size, height, width, channels, x.shape[-1]).permute(0, 3, 4, 1, 2) + else: + x = F.avg_pool1d(x, kernel_size=2, stride=2) + x = x.reshape(batch_size, height, width, channels, x.shape[-1]).permute(0, 3, 4, 1, 2) + pad = (0, 1, 0, 1) + x = F.pad(x, pad, mode='constant', value=0) + (batch_size, channels, frames, height, width) = x.shape + x = x.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channels, height, width) + x = self.conv(x) + x = x.reshape(batch_size, frames, x.shape[1], x.shape[2], x.shape[3]).permute(0, 2, 1, 3, 4) + return x + +def downsample_2d(hidden_states: torch.Tensor, kernel: Optional[torch.Tensor]=None, factor: int=2, gain: float=1) -> torch.Tensor: + assert isinstance(factor, int) and factor >= 1 + if kernel is None: + kernel = [1] * factor + kernel = torch.tensor(kernel, dtype=torch.float32) + if kernel.ndim == 1: + kernel = torch.outer(kernel, kernel) + kernel /= torch.sum(kernel) + kernel = kernel * gain + pad_value = kernel.shape[0] - factor + output = upfirdn2d_native(hidden_states, kernel.to(device=hidden_states.device), down=factor, pad=((pad_value + 1) // 2, pad_value // 2)) + return output + +# File: diffusers-main/src/diffusers/models/embeddings.py +import math +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +import torch.nn.functional as F +from torch import nn +from ..utils import deprecate +from .activations import FP32SiLU, get_activation +from .attention_processor import Attention + +def get_timestep_embedding(timesteps: torch.Tensor, embedding_dim: int, flip_sin_to_cos: bool=False, downscale_freq_shift: float=1, scale: float=1, max_period: int=10000): + assert len(timesteps.shape) == 1, 'Timesteps should be a 1d-array' + half_dim = embedding_dim // 2 + exponent = -math.log(max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device) + exponent = exponent / (half_dim - downscale_freq_shift) + emb = torch.exp(exponent) + emb = timesteps[:, None].float() * emb[None, :] + emb = scale * emb + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) + if flip_sin_to_cos: + emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) + return emb + +def get_3d_sincos_pos_embed(embed_dim: int, spatial_size: Union[int, Tuple[int, int]], temporal_size: int, spatial_interpolation_scale: float=1.0, temporal_interpolation_scale: float=1.0) -> np.ndarray: + if embed_dim % 4 != 0: + raise ValueError('`embed_dim` must be divisible by 4') + if isinstance(spatial_size, int): + spatial_size = (spatial_size, spatial_size) + embed_dim_spatial = 3 * embed_dim // 4 + embed_dim_temporal = embed_dim // 4 + grid_h = np.arange(spatial_size[1], dtype=np.float32) / spatial_interpolation_scale + grid_w = np.arange(spatial_size[0], dtype=np.float32) / spatial_interpolation_scale + grid = np.meshgrid(grid_w, grid_h) + grid = np.stack(grid, axis=0) + grid = grid.reshape([2, 1, spatial_size[1], spatial_size[0]]) + pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(embed_dim_spatial, grid) + grid_t = np.arange(temporal_size, dtype=np.float32) / temporal_interpolation_scale + pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(embed_dim_temporal, grid_t) + pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :] + pos_embed_spatial = np.repeat(pos_embed_spatial, temporal_size, axis=0) + pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :] + pos_embed_temporal = np.repeat(pos_embed_temporal, spatial_size[0] * spatial_size[1], axis=1) + pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1) + return pos_embed + +def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=16): + if isinstance(grid_size, int): + grid_size = (grid_size, grid_size) + grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / interpolation_scale + grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / interpolation_scale + grid = np.meshgrid(grid_w, grid_h) + grid = np.stack(grid, axis=0) + grid = grid.reshape([2, 1, grid_size[1], grid_size[0]]) + pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) + if cls_token and extra_tokens > 0: + pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) + return pos_embed + +def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): + if embed_dim % 2 != 0: + raise ValueError('embed_dim must be divisible by 2') + emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) + emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) + emb = np.concatenate([emb_h, emb_w], axis=1) + return emb + +def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): + if embed_dim % 2 != 0: + raise ValueError('embed_dim must be divisible by 2') + omega = np.arange(embed_dim // 2, dtype=np.float64) + omega /= embed_dim / 2.0 + omega = 1.0 / 10000 ** omega + pos = pos.reshape(-1) + out = np.einsum('m,d->md', pos, omega) + emb_sin = np.sin(out) + emb_cos = np.cos(out) + emb = np.concatenate([emb_sin, emb_cos], axis=1) + return emb + +class PatchEmbed(nn.Module): + + def __init__(self, height=224, width=224, patch_size=16, in_channels=3, embed_dim=768, layer_norm=False, flatten=True, bias=True, interpolation_scale=1, pos_embed_type='sincos', pos_embed_max_size=None): + super().__init__() + num_patches = height // patch_size * (width // patch_size) + self.flatten = flatten + self.layer_norm = layer_norm + self.pos_embed_max_size = pos_embed_max_size + self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias) + if layer_norm: + self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-06) + else: + self.norm = None + self.patch_size = patch_size + (self.height, self.width) = (height // patch_size, width // patch_size) + self.base_size = height // patch_size + self.interpolation_scale = interpolation_scale + if pos_embed_max_size: + grid_size = pos_embed_max_size + else: + grid_size = int(num_patches ** 0.5) + if pos_embed_type is None: + self.pos_embed = None + elif pos_embed_type == 'sincos': + pos_embed = get_2d_sincos_pos_embed(embed_dim, grid_size, base_size=self.base_size, interpolation_scale=self.interpolation_scale) + persistent = True if pos_embed_max_size else False + self.register_buffer('pos_embed', torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=persistent) + else: + raise ValueError(f'Unsupported pos_embed_type: {pos_embed_type}') + + def cropped_pos_embed(self, height, width): + if self.pos_embed_max_size is None: + raise ValueError('`pos_embed_max_size` must be set for cropping.') + height = height // self.patch_size + width = width // self.patch_size + if height > self.pos_embed_max_size: + raise ValueError(f'Height ({height}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}.') + if width > self.pos_embed_max_size: + raise ValueError(f'Width ({width}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}.') + top = (self.pos_embed_max_size - height) // 2 + left = (self.pos_embed_max_size - width) // 2 + spatial_pos_embed = self.pos_embed.reshape(1, self.pos_embed_max_size, self.pos_embed_max_size, -1) + spatial_pos_embed = spatial_pos_embed[:, top:top + height, left:left + width, :] + spatial_pos_embed = spatial_pos_embed.reshape(1, -1, spatial_pos_embed.shape[-1]) + return spatial_pos_embed + + def forward(self, latent): + if self.pos_embed_max_size is not None: + (height, width) = latent.shape[-2:] + else: + (height, width) = (latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size) + latent = self.proj(latent) + if self.flatten: + latent = latent.flatten(2).transpose(1, 2) + if self.layer_norm: + latent = self.norm(latent) + if self.pos_embed is None: + return latent.to(latent.dtype) + if self.pos_embed_max_size: + pos_embed = self.cropped_pos_embed(height, width) + elif self.height != height or self.width != width: + pos_embed = get_2d_sincos_pos_embed(embed_dim=self.pos_embed.shape[-1], grid_size=(height, width), base_size=self.base_size, interpolation_scale=self.interpolation_scale) + pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).to(latent.device) + else: + pos_embed = self.pos_embed + return (latent + pos_embed).to(latent.dtype) + +class LuminaPatchEmbed(nn.Module): + + def __init__(self, patch_size=2, in_channels=4, embed_dim=768, bias=True): + super().__init__() + self.patch_size = patch_size + self.proj = nn.Linear(in_features=patch_size * patch_size * in_channels, out_features=embed_dim, bias=bias) + + def forward(self, x, freqs_cis): + freqs_cis = freqs_cis.to(x[0].device) + patch_height = patch_width = self.patch_size + (batch_size, channel, height, width) = x.size() + (height_tokens, width_tokens) = (height // patch_height, width // patch_width) + x = x.view(batch_size, channel, height_tokens, patch_height, width_tokens, patch_width).permute(0, 2, 4, 1, 3, 5) + x = x.flatten(3) + x = self.proj(x) + x = x.flatten(1, 2) + mask = torch.ones(x.shape[0], x.shape[1], dtype=torch.int32, device=x.device) + return (x, mask, [(height, width)] * batch_size, freqs_cis[:height_tokens, :width_tokens].flatten(0, 1).unsqueeze(0)) + +class CogVideoXPatchEmbed(nn.Module): + + def __init__(self, patch_size: int=2, in_channels: int=16, embed_dim: int=1920, text_embed_dim: int=4096, bias: bool=True, sample_width: int=90, sample_height: int=60, sample_frames: int=49, temporal_compression_ratio: int=4, max_text_seq_length: int=226, spatial_interpolation_scale: float=1.875, temporal_interpolation_scale: float=1.0, use_positional_embeddings: bool=True) -> None: + super().__init__() + self.patch_size = patch_size + self.embed_dim = embed_dim + self.sample_height = sample_height + self.sample_width = sample_width + self.sample_frames = sample_frames + self.temporal_compression_ratio = temporal_compression_ratio + self.max_text_seq_length = max_text_seq_length + self.spatial_interpolation_scale = spatial_interpolation_scale + self.temporal_interpolation_scale = temporal_interpolation_scale + self.use_positional_embeddings = use_positional_embeddings + self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias) + self.text_proj = nn.Linear(text_embed_dim, embed_dim) + if use_positional_embeddings: + pos_embedding = self._get_positional_embeddings(sample_height, sample_width, sample_frames) + self.register_buffer('pos_embedding', pos_embedding, persistent=False) + + def _get_positional_embeddings(self, sample_height: int, sample_width: int, sample_frames: int) -> torch.Tensor: + post_patch_height = sample_height // self.patch_size + post_patch_width = sample_width // self.patch_size + post_time_compression_frames = (sample_frames - 1) // self.temporal_compression_ratio + 1 + num_patches = post_patch_height * post_patch_width * post_time_compression_frames + pos_embedding = get_3d_sincos_pos_embed(self.embed_dim, (post_patch_width, post_patch_height), post_time_compression_frames, self.spatial_interpolation_scale, self.temporal_interpolation_scale) + pos_embedding = torch.from_numpy(pos_embedding).flatten(0, 1) + joint_pos_embedding = torch.zeros(1, self.max_text_seq_length + num_patches, self.embed_dim, requires_grad=False) + joint_pos_embedding.data[:, self.max_text_seq_length:].copy_(pos_embedding) + return joint_pos_embedding + + def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor): + text_embeds = self.text_proj(text_embeds) + (batch, num_frames, channels, height, width) = image_embeds.shape + image_embeds = image_embeds.reshape(-1, channels, height, width) + image_embeds = self.proj(image_embeds) + image_embeds = image_embeds.view(batch, num_frames, *image_embeds.shape[1:]) + image_embeds = image_embeds.flatten(3).transpose(2, 3) + image_embeds = image_embeds.flatten(1, 2) + embeds = torch.cat([text_embeds, image_embeds], dim=1).contiguous() + if self.use_positional_embeddings: + pre_time_compression_frames = (num_frames - 1) * self.temporal_compression_ratio + 1 + if self.sample_height != height or self.sample_width != width or self.sample_frames != pre_time_compression_frames: + pos_embedding = self._get_positional_embeddings(height, width, pre_time_compression_frames) + pos_embedding = pos_embedding.to(embeds.device, dtype=embeds.dtype) + else: + pos_embedding = self.pos_embedding + embeds = embeds + pos_embedding + return embeds + +def get_3d_rotary_pos_embed(embed_dim, crops_coords, grid_size, temporal_size, theta: int=10000, use_real: bool=True) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: + if use_real is not True: + raise ValueError(' `use_real = False` is not currently supported for get_3d_rotary_pos_embed') + (start, stop) = crops_coords + (grid_size_h, grid_size_w) = grid_size + grid_h = np.linspace(start[0], stop[0], grid_size_h, endpoint=False, dtype=np.float32) + grid_w = np.linspace(start[1], stop[1], grid_size_w, endpoint=False, dtype=np.float32) + grid_t = np.linspace(0, temporal_size, temporal_size, endpoint=False, dtype=np.float32) + dim_t = embed_dim // 4 + dim_h = embed_dim // 8 * 3 + dim_w = embed_dim // 8 * 3 + freqs_t = get_1d_rotary_pos_embed(dim_t, grid_t, use_real=True) + freqs_h = get_1d_rotary_pos_embed(dim_h, grid_h, use_real=True) + freqs_w = get_1d_rotary_pos_embed(dim_w, grid_w, use_real=True) + + def combine_time_height_width(freqs_t, freqs_h, freqs_w): + freqs_t = freqs_t[:, None, None, :].expand(-1, grid_size_h, grid_size_w, -1) + freqs_h = freqs_h[None, :, None, :].expand(temporal_size, -1, grid_size_w, -1) + freqs_w = freqs_w[None, None, :, :].expand(temporal_size, grid_size_h, -1, -1) + freqs = torch.cat([freqs_t, freqs_h, freqs_w], dim=-1) + freqs = freqs.view(temporal_size * grid_size_h * grid_size_w, -1) + return freqs + (t_cos, t_sin) = freqs_t + (h_cos, h_sin) = freqs_h + (w_cos, w_sin) = freqs_w + cos = combine_time_height_width(t_cos, h_cos, w_cos) + sin = combine_time_height_width(t_sin, h_sin, w_sin) + return (cos, sin) + +def get_2d_rotary_pos_embed(embed_dim, crops_coords, grid_size, use_real=True): + (start, stop) = crops_coords + grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32) + grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32) + grid = np.meshgrid(grid_w, grid_h) + grid = np.stack(grid, axis=0) + grid = grid.reshape([2, 1, *grid.shape[1:]]) + pos_embed = get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real) + return pos_embed + +def get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=False): + assert embed_dim % 4 == 0 + emb_h = get_1d_rotary_pos_embed(embed_dim // 2, grid[0].reshape(-1), use_real=use_real) + emb_w = get_1d_rotary_pos_embed(embed_dim // 2, grid[1].reshape(-1), use_real=use_real) + if use_real: + cos = torch.cat([emb_h[0], emb_w[0]], dim=1) + sin = torch.cat([emb_h[1], emb_w[1]], dim=1) + return (cos, sin) + else: + emb = torch.cat([emb_h, emb_w], dim=1) + return emb + +def get_2d_rotary_pos_embed_lumina(embed_dim, len_h, len_w, linear_factor=1.0, ntk_factor=1.0): + assert embed_dim % 4 == 0 + emb_h = get_1d_rotary_pos_embed(embed_dim // 2, len_h, linear_factor=linear_factor, ntk_factor=ntk_factor) + emb_w = get_1d_rotary_pos_embed(embed_dim // 2, len_w, linear_factor=linear_factor, ntk_factor=ntk_factor) + emb_h = emb_h.view(len_h, 1, embed_dim // 4, 1).repeat(1, len_w, 1, 1) + emb_w = emb_w.view(1, len_w, embed_dim // 4, 1).repeat(len_h, 1, 1, 1) + emb = torch.cat([emb_h, emb_w], dim=-1).flatten(2) + return emb + +def get_1d_rotary_pos_embed(dim: int, pos: Union[np.ndarray, int], theta: float=10000.0, use_real=False, linear_factor=1.0, ntk_factor=1.0, repeat_interleave_real=True, freqs_dtype=torch.float32): + assert dim % 2 == 0 + if isinstance(pos, int): + pos = torch.arange(pos) + if isinstance(pos, np.ndarray): + pos = torch.from_numpy(pos) + theta = theta * ntk_factor + freqs = 1.0 / theta ** (torch.arange(0, dim, 2, dtype=freqs_dtype, device=pos.device)[:dim // 2] / dim) / linear_factor + freqs = torch.outer(pos, freqs) + if use_real and repeat_interleave_real: + freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() + freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() + return (freqs_cos, freqs_sin) + elif use_real: + freqs_cos = torch.cat([freqs.cos(), freqs.cos()], dim=-1).float() + freqs_sin = torch.cat([freqs.sin(), freqs.sin()], dim=-1).float() + return (freqs_cos, freqs_sin) + else: + freqs_cis = torch.polar(torch.ones_like(freqs), freqs) + return freqs_cis + +def apply_rotary_emb(x: torch.Tensor, freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], use_real: bool=True, use_real_unbind_dim: int=-1) -> Tuple[torch.Tensor, torch.Tensor]: + if use_real: + (cos, sin) = freqs_cis + cos = cos[None, None] + sin = sin[None, None] + (cos, sin) = (cos.to(x.device), sin.to(x.device)) + if use_real_unbind_dim == -1: + (x_real, x_imag) = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) + x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3) + elif use_real_unbind_dim == -2: + (x_real, x_imag) = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) + x_rotated = torch.cat([-x_imag, x_real], dim=-1) + else: + raise ValueError(f'`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.') + out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype) + return out + else: + x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2)) + freqs_cis = freqs_cis.unsqueeze(2) + x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3) + return x_out.type_as(x) + +class FluxPosEmbed(nn.Module): + + def __init__(self, theta: int, axes_dim: List[int]): + super().__init__() + self.theta = theta + self.axes_dim = axes_dim + + def forward(self, ids: torch.Tensor) -> torch.Tensor: + n_axes = ids.shape[-1] + cos_out = [] + sin_out = [] + pos = ids.float() + is_mps = ids.device.type == 'mps' + freqs_dtype = torch.float32 if is_mps else torch.float64 + for i in range(n_axes): + (cos, sin) = get_1d_rotary_pos_embed(self.axes_dim[i], pos[:, i], repeat_interleave_real=True, use_real=True, freqs_dtype=freqs_dtype) + cos_out.append(cos) + sin_out.append(sin) + freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device) + freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device) + return (freqs_cos, freqs_sin) + +class TimestepEmbedding(nn.Module): + + def __init__(self, in_channels: int, time_embed_dim: int, act_fn: str='silu', out_dim: int=None, post_act_fn: Optional[str]=None, cond_proj_dim=None, sample_proj_bias=True): + super().__init__() + self.linear_1 = nn.Linear(in_channels, time_embed_dim, sample_proj_bias) + if cond_proj_dim is not None: + self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False) + else: + self.cond_proj = None + self.act = get_activation(act_fn) + if out_dim is not None: + time_embed_dim_out = out_dim + else: + time_embed_dim_out = time_embed_dim + self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias) + if post_act_fn is None: + self.post_act = None + else: + self.post_act = get_activation(post_act_fn) + + def forward(self, sample, condition=None): + if condition is not None: + sample = sample + self.cond_proj(condition) + sample = self.linear_1(sample) + if self.act is not None: + sample = self.act(sample) + sample = self.linear_2(sample) + if self.post_act is not None: + sample = self.post_act(sample) + return sample + +class Timesteps(nn.Module): + + def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int=1): + super().__init__() + self.num_channels = num_channels + self.flip_sin_to_cos = flip_sin_to_cos + self.downscale_freq_shift = downscale_freq_shift + self.scale = scale + + def forward(self, timesteps): + t_emb = get_timestep_embedding(timesteps, self.num_channels, flip_sin_to_cos=self.flip_sin_to_cos, downscale_freq_shift=self.downscale_freq_shift, scale=self.scale) + return t_emb + +class GaussianFourierProjection(nn.Module): + + def __init__(self, embedding_size: int=256, scale: float=1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False): + super().__init__() + self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) + self.log = log + self.flip_sin_to_cos = flip_sin_to_cos + if set_W_to_weight: + del self.weight + self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) + self.weight = self.W + del self.W + + def forward(self, x): + if self.log: + x = torch.log(x) + x_proj = x[:, None] * self.weight[None, :] * 2 * np.pi + if self.flip_sin_to_cos: + out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1) + else: + out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1) + return out + +class SinusoidalPositionalEmbedding(nn.Module): + + def __init__(self, embed_dim: int, max_seq_length: int=32): + super().__init__() + position = torch.arange(max_seq_length).unsqueeze(1) + div_term = torch.exp(torch.arange(0, embed_dim, 2) * (-math.log(10000.0) / embed_dim)) + pe = torch.zeros(1, max_seq_length, embed_dim) + pe[0, :, 0::2] = torch.sin(position * div_term) + pe[0, :, 1::2] = torch.cos(position * div_term) + self.register_buffer('pe', pe) + + def forward(self, x): + (_, seq_length, _) = x.shape + x = x + self.pe[:, :seq_length] + return x + +class ImagePositionalEmbeddings(nn.Module): + + def __init__(self, num_embed: int, height: int, width: int, embed_dim: int): + super().__init__() + self.height = height + self.width = width + self.num_embed = num_embed + self.embed_dim = embed_dim + self.emb = nn.Embedding(self.num_embed, embed_dim) + self.height_emb = nn.Embedding(self.height, embed_dim) + self.width_emb = nn.Embedding(self.width, embed_dim) + + def forward(self, index): + emb = self.emb(index) + height_emb = self.height_emb(torch.arange(self.height, device=index.device).view(1, self.height)) + height_emb = height_emb.unsqueeze(2) + width_emb = self.width_emb(torch.arange(self.width, device=index.device).view(1, self.width)) + width_emb = width_emb.unsqueeze(1) + pos_emb = height_emb + width_emb + pos_emb = pos_emb.view(1, self.height * self.width, -1) + emb = emb + pos_emb[:, :emb.shape[1], :] + return emb + +class LabelEmbedding(nn.Module): + + def __init__(self, num_classes, hidden_size, dropout_prob): + super().__init__() + use_cfg_embedding = dropout_prob > 0 + self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) + self.num_classes = num_classes + self.dropout_prob = dropout_prob + + def token_drop(self, labels, force_drop_ids=None): + if force_drop_ids is None: + drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob + else: + drop_ids = torch.tensor(force_drop_ids == 1) + labels = torch.where(drop_ids, self.num_classes, labels) + return labels + + def forward(self, labels: torch.LongTensor, force_drop_ids=None): + use_dropout = self.dropout_prob > 0 + if self.training and use_dropout or force_drop_ids is not None: + labels = self.token_drop(labels, force_drop_ids) + embeddings = self.embedding_table(labels) + return embeddings + +class TextImageProjection(nn.Module): + + def __init__(self, text_embed_dim: int=1024, image_embed_dim: int=768, cross_attention_dim: int=768, num_image_text_embeds: int=10): + super().__init__() + self.num_image_text_embeds = num_image_text_embeds + self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim) + self.text_proj = nn.Linear(text_embed_dim, cross_attention_dim) + + def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor): + batch_size = text_embeds.shape[0] + image_text_embeds = self.image_embeds(image_embeds) + image_text_embeds = image_text_embeds.reshape(batch_size, self.num_image_text_embeds, -1) + text_embeds = self.text_proj(text_embeds) + return torch.cat([image_text_embeds, text_embeds], dim=1) + +class ImageProjection(nn.Module): + + def __init__(self, image_embed_dim: int=768, cross_attention_dim: int=768, num_image_text_embeds: int=32): + super().__init__() + self.num_image_text_embeds = num_image_text_embeds + self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim) + self.norm = nn.LayerNorm(cross_attention_dim) + + def forward(self, image_embeds: torch.Tensor): + batch_size = image_embeds.shape[0] + image_embeds = self.image_embeds(image_embeds) + image_embeds = image_embeds.reshape(batch_size, self.num_image_text_embeds, -1) + image_embeds = self.norm(image_embeds) + return image_embeds + +class IPAdapterFullImageProjection(nn.Module): + + def __init__(self, image_embed_dim=1024, cross_attention_dim=1024): + super().__init__() + from .attention import FeedForward + self.ff = FeedForward(image_embed_dim, cross_attention_dim, mult=1, activation_fn='gelu') + self.norm = nn.LayerNorm(cross_attention_dim) + + def forward(self, image_embeds: torch.Tensor): + return self.norm(self.ff(image_embeds)) + +class IPAdapterFaceIDImageProjection(nn.Module): + + def __init__(self, image_embed_dim=1024, cross_attention_dim=1024, mult=1, num_tokens=1): + super().__init__() + from .attention import FeedForward + self.num_tokens = num_tokens + self.cross_attention_dim = cross_attention_dim + self.ff = FeedForward(image_embed_dim, cross_attention_dim * num_tokens, mult=mult, activation_fn='gelu') + self.norm = nn.LayerNorm(cross_attention_dim) + + def forward(self, image_embeds: torch.Tensor): + x = self.ff(image_embeds) + x = x.reshape(-1, self.num_tokens, self.cross_attention_dim) + return self.norm(x) + +class CombinedTimestepLabelEmbeddings(nn.Module): + + def __init__(self, num_classes, embedding_dim, class_dropout_prob=0.1): + super().__init__() + self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=1) + self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) + self.class_embedder = LabelEmbedding(num_classes, embedding_dim, class_dropout_prob) + + def forward(self, timestep, class_labels, hidden_dtype=None): + timesteps_proj = self.time_proj(timestep) + timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) + class_labels = self.class_embedder(class_labels) + conditioning = timesteps_emb + class_labels + return conditioning + +class CombinedTimestepTextProjEmbeddings(nn.Module): + + def __init__(self, embedding_dim, pooled_projection_dim): + super().__init__() + self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) + self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) + self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn='silu') + + def forward(self, timestep, pooled_projection): + timesteps_proj = self.time_proj(timestep) + timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) + pooled_projections = self.text_embedder(pooled_projection) + conditioning = timesteps_emb + pooled_projections + return conditioning + +class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module): + + def __init__(self, embedding_dim, pooled_projection_dim): + super().__init__() + self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) + self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) + self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) + self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn='silu') + + def forward(self, timestep, guidance, pooled_projection): + timesteps_proj = self.time_proj(timestep) + timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) + guidance_proj = self.time_proj(guidance) + guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype)) + time_guidance_emb = timesteps_emb + guidance_emb + pooled_projections = self.text_embedder(pooled_projection) + conditioning = time_guidance_emb + pooled_projections + return conditioning + +class HunyuanDiTAttentionPool(nn.Module): + + def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int=None): + super().__init__() + self.positional_embedding = nn.Parameter(torch.randn(spacial_dim + 1, embed_dim) / embed_dim ** 0.5) + self.k_proj = nn.Linear(embed_dim, embed_dim) + self.q_proj = nn.Linear(embed_dim, embed_dim) + self.v_proj = nn.Linear(embed_dim, embed_dim) + self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) + self.num_heads = num_heads + + def forward(self, x): + x = x.permute(1, 0, 2) + x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) + x = x + self.positional_embedding[:, None, :].to(x.dtype) + (x, _) = F.multi_head_attention_forward(query=x[:1], key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False) + return x.squeeze(0) + +class HunyuanCombinedTimestepTextSizeStyleEmbedding(nn.Module): + + def __init__(self, embedding_dim, pooled_projection_dim=1024, seq_len=256, cross_attention_dim=2048, use_style_cond_and_image_meta_size=True): + super().__init__() + self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) + self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) + self.size_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) + self.pooler = HunyuanDiTAttentionPool(seq_len, cross_attention_dim, num_heads=8, output_dim=pooled_projection_dim) + self.use_style_cond_and_image_meta_size = use_style_cond_and_image_meta_size + if use_style_cond_and_image_meta_size: + self.style_embedder = nn.Embedding(1, embedding_dim) + extra_in_dim = 256 * 6 + embedding_dim + pooled_projection_dim + else: + extra_in_dim = pooled_projection_dim + self.extra_embedder = PixArtAlphaTextProjection(in_features=extra_in_dim, hidden_size=embedding_dim * 4, out_features=embedding_dim, act_fn='silu_fp32') + + def forward(self, timestep, encoder_hidden_states, image_meta_size, style, hidden_dtype=None): + timesteps_proj = self.time_proj(timestep) + timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) + pooled_projections = self.pooler(encoder_hidden_states) + if self.use_style_cond_and_image_meta_size: + image_meta_size = self.size_proj(image_meta_size.view(-1)) + image_meta_size = image_meta_size.to(dtype=hidden_dtype) + image_meta_size = image_meta_size.view(-1, 6 * 256) + style_embedding = self.style_embedder(style) + extra_cond = torch.cat([pooled_projections, image_meta_size, style_embedding], dim=1) + else: + extra_cond = torch.cat([pooled_projections], dim=1) + conditioning = timesteps_emb + self.extra_embedder(extra_cond) + return conditioning + +class LuminaCombinedTimestepCaptionEmbedding(nn.Module): + + def __init__(self, hidden_size=4096, cross_attention_dim=2048, frequency_embedding_size=256): + super().__init__() + self.time_proj = Timesteps(num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0.0) + self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=hidden_size) + self.caption_embedder = nn.Sequential(nn.LayerNorm(cross_attention_dim), nn.Linear(cross_attention_dim, hidden_size, bias=True)) + + def forward(self, timestep, caption_feat, caption_mask): + time_freq = self.time_proj(timestep) + time_embed = self.timestep_embedder(time_freq.to(dtype=self.timestep_embedder.linear_1.weight.dtype)) + caption_mask_float = caption_mask.float().unsqueeze(-1) + caption_feats_pool = (caption_feat * caption_mask_float).sum(dim=1) / caption_mask_float.sum(dim=1) + caption_feats_pool = caption_feats_pool.to(caption_feat) + caption_embed = self.caption_embedder(caption_feats_pool) + conditioning = time_embed + caption_embed + return conditioning + +class TextTimeEmbedding(nn.Module): + + def __init__(self, encoder_dim: int, time_embed_dim: int, num_heads: int=64): + super().__init__() + self.norm1 = nn.LayerNorm(encoder_dim) + self.pool = AttentionPooling(num_heads, encoder_dim) + self.proj = nn.Linear(encoder_dim, time_embed_dim) + self.norm2 = nn.LayerNorm(time_embed_dim) + + def forward(self, hidden_states): + hidden_states = self.norm1(hidden_states) + hidden_states = self.pool(hidden_states) + hidden_states = self.proj(hidden_states) + hidden_states = self.norm2(hidden_states) + return hidden_states + +class TextImageTimeEmbedding(nn.Module): + + def __init__(self, text_embed_dim: int=768, image_embed_dim: int=768, time_embed_dim: int=1536): + super().__init__() + self.text_proj = nn.Linear(text_embed_dim, time_embed_dim) + self.text_norm = nn.LayerNorm(time_embed_dim) + self.image_proj = nn.Linear(image_embed_dim, time_embed_dim) + + def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor): + time_text_embeds = self.text_proj(text_embeds) + time_text_embeds = self.text_norm(time_text_embeds) + time_image_embeds = self.image_proj(image_embeds) + return time_image_embeds + time_text_embeds + +class ImageTimeEmbedding(nn.Module): + + def __init__(self, image_embed_dim: int=768, time_embed_dim: int=1536): + super().__init__() + self.image_proj = nn.Linear(image_embed_dim, time_embed_dim) + self.image_norm = nn.LayerNorm(time_embed_dim) + + def forward(self, image_embeds: torch.Tensor): + time_image_embeds = self.image_proj(image_embeds) + time_image_embeds = self.image_norm(time_image_embeds) + return time_image_embeds + +class ImageHintTimeEmbedding(nn.Module): + + def __init__(self, image_embed_dim: int=768, time_embed_dim: int=1536): + super().__init__() + self.image_proj = nn.Linear(image_embed_dim, time_embed_dim) + self.image_norm = nn.LayerNorm(time_embed_dim) + self.input_hint_block = nn.Sequential(nn.Conv2d(3, 16, 3, padding=1), nn.SiLU(), nn.Conv2d(16, 16, 3, padding=1), nn.SiLU(), nn.Conv2d(16, 32, 3, padding=1, stride=2), nn.SiLU(), nn.Conv2d(32, 32, 3, padding=1), nn.SiLU(), nn.Conv2d(32, 96, 3, padding=1, stride=2), nn.SiLU(), nn.Conv2d(96, 96, 3, padding=1), nn.SiLU(), nn.Conv2d(96, 256, 3, padding=1, stride=2), nn.SiLU(), nn.Conv2d(256, 4, 3, padding=1)) + + def forward(self, image_embeds: torch.Tensor, hint: torch.Tensor): + time_image_embeds = self.image_proj(image_embeds) + time_image_embeds = self.image_norm(time_image_embeds) + hint = self.input_hint_block(hint) + return (time_image_embeds, hint) + +class AttentionPooling(nn.Module): + + def __init__(self, num_heads, embed_dim, dtype=None): + super().__init__() + self.dtype = dtype + self.positional_embedding = nn.Parameter(torch.randn(1, embed_dim) / embed_dim ** 0.5) + self.k_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype) + self.q_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype) + self.v_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype) + self.num_heads = num_heads + self.dim_per_head = embed_dim // self.num_heads + + def forward(self, x): + (bs, length, width) = x.size() + + def shape(x): + x = x.view(bs, -1, self.num_heads, self.dim_per_head) + x = x.transpose(1, 2) + x = x.reshape(bs * self.num_heads, -1, self.dim_per_head) + x = x.transpose(1, 2) + return x + class_token = x.mean(dim=1, keepdim=True) + self.positional_embedding.to(x.dtype) + x = torch.cat([class_token, x], dim=1) + q = shape(self.q_proj(class_token)) + k = shape(self.k_proj(x)) + v = shape(self.v_proj(x)) + scale = 1 / math.sqrt(math.sqrt(self.dim_per_head)) + weight = torch.einsum('bct,bcs->bts', q * scale, k * scale) + weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) + a = torch.einsum('bts,bcs->bct', weight, v) + a = a.reshape(bs, -1, 1).transpose(1, 2) + return a[:, 0, :] + +def get_fourier_embeds_from_boundingbox(embed_dim, box): + (batch_size, num_boxes) = box.shape[:2] + emb = 100 ** (torch.arange(embed_dim) / embed_dim) + emb = emb[None, None, None].to(device=box.device, dtype=box.dtype) + emb = emb * box.unsqueeze(-1) + emb = torch.stack((emb.sin(), emb.cos()), dim=-1) + emb = emb.permute(0, 1, 3, 4, 2).reshape(batch_size, num_boxes, embed_dim * 2 * 4) + return emb + +class GLIGENTextBoundingboxProjection(nn.Module): + + def __init__(self, positive_len, out_dim, feature_type='text-only', fourier_freqs=8): + super().__init__() + self.positive_len = positive_len + self.out_dim = out_dim + self.fourier_embedder_dim = fourier_freqs + self.position_dim = fourier_freqs * 2 * 4 + if isinstance(out_dim, tuple): + out_dim = out_dim[0] + if feature_type == 'text-only': + self.linears = nn.Sequential(nn.Linear(self.positive_len + self.position_dim, 512), nn.SiLU(), nn.Linear(512, 512), nn.SiLU(), nn.Linear(512, out_dim)) + self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) + elif feature_type == 'text-image': + self.linears_text = nn.Sequential(nn.Linear(self.positive_len + self.position_dim, 512), nn.SiLU(), nn.Linear(512, 512), nn.SiLU(), nn.Linear(512, out_dim)) + self.linears_image = nn.Sequential(nn.Linear(self.positive_len + self.position_dim, 512), nn.SiLU(), nn.Linear(512, 512), nn.SiLU(), nn.Linear(512, out_dim)) + self.null_text_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) + self.null_image_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) + self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim])) + + def forward(self, boxes, masks, positive_embeddings=None, phrases_masks=None, image_masks=None, phrases_embeddings=None, image_embeddings=None): + masks = masks.unsqueeze(-1) + xyxy_embedding = get_fourier_embeds_from_boundingbox(self.fourier_embedder_dim, boxes) + xyxy_null = self.null_position_feature.view(1, 1, -1) + xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null + if positive_embeddings is not None: + positive_null = self.null_positive_feature.view(1, 1, -1) + positive_embeddings = positive_embeddings * masks + (1 - masks) * positive_null + objs = self.linears(torch.cat([positive_embeddings, xyxy_embedding], dim=-1)) + else: + phrases_masks = phrases_masks.unsqueeze(-1) + image_masks = image_masks.unsqueeze(-1) + text_null = self.null_text_feature.view(1, 1, -1) + image_null = self.null_image_feature.view(1, 1, -1) + phrases_embeddings = phrases_embeddings * phrases_masks + (1 - phrases_masks) * text_null + image_embeddings = image_embeddings * image_masks + (1 - image_masks) * image_null + objs_text = self.linears_text(torch.cat([phrases_embeddings, xyxy_embedding], dim=-1)) + objs_image = self.linears_image(torch.cat([image_embeddings, xyxy_embedding], dim=-1)) + objs = torch.cat([objs_text, objs_image], dim=1) + return objs + +class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module): + + def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool=False): + super().__init__() + self.outdim = size_emb_dim + self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) + self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) + self.use_additional_conditions = use_additional_conditions + if use_additional_conditions: + self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) + self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim) + self.aspect_ratio_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim) + + def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype): + timesteps_proj = self.time_proj(timestep) + timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) + if self.use_additional_conditions: + resolution_emb = self.additional_condition_proj(resolution.flatten()).to(hidden_dtype) + resolution_emb = self.resolution_embedder(resolution_emb).reshape(batch_size, -1) + aspect_ratio_emb = self.additional_condition_proj(aspect_ratio.flatten()).to(hidden_dtype) + aspect_ratio_emb = self.aspect_ratio_embedder(aspect_ratio_emb).reshape(batch_size, -1) + conditioning = timesteps_emb + torch.cat([resolution_emb, aspect_ratio_emb], dim=1) + else: + conditioning = timesteps_emb + return conditioning + +class PixArtAlphaTextProjection(nn.Module): + + def __init__(self, in_features, hidden_size, out_features=None, act_fn='gelu_tanh'): + super().__init__() + if out_features is None: + out_features = hidden_size + self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True) + if act_fn == 'gelu_tanh': + self.act_1 = nn.GELU(approximate='tanh') + elif act_fn == 'silu': + self.act_1 = nn.SiLU() + elif act_fn == 'silu_fp32': + self.act_1 = FP32SiLU() + else: + raise ValueError(f'Unknown activation function: {act_fn}') + self.linear_2 = nn.Linear(in_features=hidden_size, out_features=out_features, bias=True) + + def forward(self, caption): + hidden_states = self.linear_1(caption) + hidden_states = self.act_1(hidden_states) + hidden_states = self.linear_2(hidden_states) + return hidden_states + +class IPAdapterPlusImageProjectionBlock(nn.Module): + + def __init__(self, embed_dims: int=768, dim_head: int=64, heads: int=16, ffn_ratio: float=4) -> None: + super().__init__() + from .attention import FeedForward + self.ln0 = nn.LayerNorm(embed_dims) + self.ln1 = nn.LayerNorm(embed_dims) + self.attn = Attention(query_dim=embed_dims, dim_head=dim_head, heads=heads, out_bias=False) + self.ff = nn.Sequential(nn.LayerNorm(embed_dims), FeedForward(embed_dims, embed_dims, activation_fn='gelu', mult=ffn_ratio, bias=False)) + + def forward(self, x, latents, residual): + encoder_hidden_states = self.ln0(x) + latents = self.ln1(latents) + encoder_hidden_states = torch.cat([encoder_hidden_states, latents], dim=-2) + latents = self.attn(latents, encoder_hidden_states) + residual + latents = self.ff(latents) + latents + return latents + +class IPAdapterPlusImageProjection(nn.Module): + + def __init__(self, embed_dims: int=768, output_dims: int=1024, hidden_dims: int=1280, depth: int=4, dim_head: int=64, heads: int=16, num_queries: int=8, ffn_ratio: float=4) -> None: + super().__init__() + self.latents = nn.Parameter(torch.randn(1, num_queries, hidden_dims) / hidden_dims ** 0.5) + self.proj_in = nn.Linear(embed_dims, hidden_dims) + self.proj_out = nn.Linear(hidden_dims, output_dims) + self.norm_out = nn.LayerNorm(output_dims) + self.layers = nn.ModuleList([IPAdapterPlusImageProjectionBlock(hidden_dims, dim_head, heads, ffn_ratio) for _ in range(depth)]) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + latents = self.latents.repeat(x.size(0), 1, 1) + x = self.proj_in(x) + for block in self.layers: + residual = latents + latents = block(x, latents, residual) + latents = self.proj_out(latents) + return self.norm_out(latents) + +class IPAdapterFaceIDPlusImageProjection(nn.Module): + + def __init__(self, embed_dims: int=768, output_dims: int=768, hidden_dims: int=1280, id_embeddings_dim: int=512, depth: int=4, dim_head: int=64, heads: int=16, num_tokens: int=4, num_queries: int=8, ffn_ratio: float=4, ffproj_ratio: int=2) -> None: + super().__init__() + from .attention import FeedForward + self.num_tokens = num_tokens + self.embed_dim = embed_dims + self.clip_embeds = None + self.shortcut = False + self.shortcut_scale = 1.0 + self.proj = FeedForward(id_embeddings_dim, embed_dims * num_tokens, activation_fn='gelu', mult=ffproj_ratio) + self.norm = nn.LayerNorm(embed_dims) + self.proj_in = nn.Linear(hidden_dims, embed_dims) + self.proj_out = nn.Linear(embed_dims, output_dims) + self.norm_out = nn.LayerNorm(output_dims) + self.layers = nn.ModuleList([IPAdapterPlusImageProjectionBlock(embed_dims, dim_head, heads, ffn_ratio) for _ in range(depth)]) + + def forward(self, id_embeds: torch.Tensor) -> torch.Tensor: + id_embeds = id_embeds.to(self.clip_embeds.dtype) + id_embeds = self.proj(id_embeds) + id_embeds = id_embeds.reshape(-1, self.num_tokens, self.embed_dim) + id_embeds = self.norm(id_embeds) + latents = id_embeds + clip_embeds = self.proj_in(self.clip_embeds) + x = clip_embeds.reshape(-1, clip_embeds.shape[2], clip_embeds.shape[3]) + for block in self.layers: + residual = latents + latents = block(x, latents, residual) + latents = self.proj_out(latents) + out = self.norm_out(latents) + if self.shortcut: + out = id_embeds + self.shortcut_scale * out + return out + +class MultiIPAdapterImageProjection(nn.Module): + + def __init__(self, IPAdapterImageProjectionLayers: Union[List[nn.Module], Tuple[nn.Module]]): + super().__init__() + self.image_projection_layers = nn.ModuleList(IPAdapterImageProjectionLayers) + + def forward(self, image_embeds: List[torch.Tensor]): + projected_image_embeds = [] + if not isinstance(image_embeds, list): + deprecation_message = 'You have passed a tensor as `image_embeds`.This is deprecated and will be removed in a future release. Please make sure to update your script to pass `image_embeds` as a list of tensors to suppress this warning.' + deprecate('image_embeds not a list', '1.0.0', deprecation_message, standard_warn=False) + image_embeds = [image_embeds.unsqueeze(1)] + if len(image_embeds) != len(self.image_projection_layers): + raise ValueError(f'image_embeds must have the same length as image_projection_layers, got {len(image_embeds)} and {len(self.image_projection_layers)}') + for (image_embed, image_projection_layer) in zip(image_embeds, self.image_projection_layers): + (batch_size, num_images) = (image_embed.shape[0], image_embed.shape[1]) + image_embed = image_embed.reshape((batch_size * num_images,) + image_embed.shape[2:]) + image_embed = image_projection_layer(image_embed) + image_embed = image_embed.reshape((batch_size, num_images) + image_embed.shape[1:]) + projected_image_embeds.append(image_embed) + return projected_image_embeds + +# File: diffusers-main/src/diffusers/models/embeddings_flax.py +import math +import flax.linen as nn +import jax.numpy as jnp + +def get_sinusoidal_embeddings(timesteps: jnp.ndarray, embedding_dim: int, freq_shift: float=1, min_timescale: float=1, max_timescale: float=10000.0, flip_sin_to_cos: bool=False, scale: float=1.0) -> jnp.ndarray: + assert timesteps.ndim == 1, 'Timesteps should be a 1d-array' + assert embedding_dim % 2 == 0, f'Embedding dimension {embedding_dim} should be even' + num_timescales = float(embedding_dim // 2) + log_timescale_increment = math.log(max_timescale / min_timescale) / (num_timescales - freq_shift) + inv_timescales = min_timescale * jnp.exp(jnp.arange(num_timescales, dtype=jnp.float32) * -log_timescale_increment) + emb = jnp.expand_dims(timesteps, 1) * jnp.expand_dims(inv_timescales, 0) + scaled_time = scale * emb + if flip_sin_to_cos: + signal = jnp.concatenate([jnp.cos(scaled_time), jnp.sin(scaled_time)], axis=1) + else: + signal = jnp.concatenate([jnp.sin(scaled_time), jnp.cos(scaled_time)], axis=1) + signal = jnp.reshape(signal, [jnp.shape(timesteps)[0], embedding_dim]) + return signal + +class FlaxTimestepEmbedding(nn.Module): + time_embed_dim: int = 32 + dtype: jnp.dtype = jnp.float32 + + @nn.compact + def __call__(self, temb): + temb = nn.Dense(self.time_embed_dim, dtype=self.dtype, name='linear_1')(temb) + temb = nn.silu(temb) + temb = nn.Dense(self.time_embed_dim, dtype=self.dtype, name='linear_2')(temb) + return temb + +class FlaxTimesteps(nn.Module): + dim: int = 32 + flip_sin_to_cos: bool = False + freq_shift: float = 1 + + @nn.compact + def __call__(self, timesteps): + return get_sinusoidal_embeddings(timesteps, embedding_dim=self.dim, flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.freq_shift) + +# File: diffusers-main/src/diffusers/models/lora.py +from typing import Optional, Tuple, Union +import torch +import torch.nn.functional as F +from torch import nn +from ..utils import deprecate, logging +from ..utils.import_utils import is_transformers_available +if is_transformers_available(): + from transformers import CLIPTextModel, CLIPTextModelWithProjection +logger = logging.get_logger(__name__) + +def text_encoder_attn_modules(text_encoder): + attn_modules = [] + if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)): + for (i, layer) in enumerate(text_encoder.text_model.encoder.layers): + name = f'text_model.encoder.layers.{i}.self_attn' + mod = layer.self_attn + attn_modules.append((name, mod)) + else: + raise ValueError(f'do not know how to get attention modules for: {text_encoder.__class__.__name__}') + return attn_modules + +def text_encoder_mlp_modules(text_encoder): + mlp_modules = [] + if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)): + for (i, layer) in enumerate(text_encoder.text_model.encoder.layers): + mlp_mod = layer.mlp + name = f'text_model.encoder.layers.{i}.mlp' + mlp_modules.append((name, mlp_mod)) + else: + raise ValueError(f'do not know how to get mlp modules for: {text_encoder.__class__.__name__}') + return mlp_modules + +def adjust_lora_scale_text_encoder(text_encoder, lora_scale: float=1.0): + for (_, attn_module) in text_encoder_attn_modules(text_encoder): + if isinstance(attn_module.q_proj, PatchedLoraProjection): + attn_module.q_proj.lora_scale = lora_scale + attn_module.k_proj.lora_scale = lora_scale + attn_module.v_proj.lora_scale = lora_scale + attn_module.out_proj.lora_scale = lora_scale + for (_, mlp_module) in text_encoder_mlp_modules(text_encoder): + if isinstance(mlp_module.fc1, PatchedLoraProjection): + mlp_module.fc1.lora_scale = lora_scale + mlp_module.fc2.lora_scale = lora_scale + +class PatchedLoraProjection(torch.nn.Module): + + def __init__(self, regular_linear_layer, lora_scale=1, network_alpha=None, rank=4, dtype=None): + deprecation_message = 'Use of `PatchedLoraProjection` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`.' + deprecate('PatchedLoraProjection', '1.0.0', deprecation_message) + super().__init__() + from ..models.lora import LoRALinearLayer + self.regular_linear_layer = regular_linear_layer + device = self.regular_linear_layer.weight.device + if dtype is None: + dtype = self.regular_linear_layer.weight.dtype + self.lora_linear_layer = LoRALinearLayer(self.regular_linear_layer.in_features, self.regular_linear_layer.out_features, network_alpha=network_alpha, device=device, dtype=dtype, rank=rank) + self.lora_scale = lora_scale + + def state_dict(self, *args, destination=None, prefix='', keep_vars=False): + if self.lora_linear_layer is None: + return self.regular_linear_layer.state_dict(*args, destination=destination, prefix=prefix, keep_vars=keep_vars) + return super().state_dict(*args, destination=destination, prefix=prefix, keep_vars=keep_vars) + + def _fuse_lora(self, lora_scale=1.0, safe_fusing=False): + if self.lora_linear_layer is None: + return + (dtype, device) = (self.regular_linear_layer.weight.data.dtype, self.regular_linear_layer.weight.data.device) + w_orig = self.regular_linear_layer.weight.data.float() + w_up = self.lora_linear_layer.up.weight.data.float() + w_down = self.lora_linear_layer.down.weight.data.float() + if self.lora_linear_layer.network_alpha is not None: + w_up = w_up * self.lora_linear_layer.network_alpha / self.lora_linear_layer.rank + fused_weight = w_orig + lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0] + if safe_fusing and torch.isnan(fused_weight).any().item(): + raise ValueError(f'This LoRA weight seems to be broken. Encountered NaN values when trying to fuse LoRA weights for {self}.LoRA weights will not be fused.') + self.regular_linear_layer.weight.data = fused_weight.to(device=device, dtype=dtype) + self.lora_linear_layer = None + self.w_up = w_up.cpu() + self.w_down = w_down.cpu() + self.lora_scale = lora_scale + + def _unfuse_lora(self): + if not (getattr(self, 'w_up', None) is not None and getattr(self, 'w_down', None) is not None): + return + fused_weight = self.regular_linear_layer.weight.data + (dtype, device) = (fused_weight.dtype, fused_weight.device) + w_up = self.w_up.to(device=device).float() + w_down = self.w_down.to(device).float() + unfused_weight = fused_weight.float() - self.lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0] + self.regular_linear_layer.weight.data = unfused_weight.to(device=device, dtype=dtype) + self.w_up = None + self.w_down = None + + def forward(self, input): + if self.lora_scale is None: + self.lora_scale = 1.0 + if self.lora_linear_layer is None: + return self.regular_linear_layer(input) + return self.regular_linear_layer(input) + self.lora_scale * self.lora_linear_layer(input) + +class LoRALinearLayer(nn.Module): + + def __init__(self, in_features: int, out_features: int, rank: int=4, network_alpha: Optional[float]=None, device: Optional[Union[torch.device, str]]=None, dtype: Optional[torch.dtype]=None): + super().__init__() + deprecation_message = 'Use of `LoRALinearLayer` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`.' + deprecate('LoRALinearLayer', '1.0.0', deprecation_message) + self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype) + self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype) + self.network_alpha = network_alpha + self.rank = rank + self.out_features = out_features + self.in_features = in_features + nn.init.normal_(self.down.weight, std=1 / rank) + nn.init.zeros_(self.up.weight) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + orig_dtype = hidden_states.dtype + dtype = self.down.weight.dtype + down_hidden_states = self.down(hidden_states.to(dtype)) + up_hidden_states = self.up(down_hidden_states) + if self.network_alpha is not None: + up_hidden_states *= self.network_alpha / self.rank + return up_hidden_states.to(orig_dtype) + +class LoRAConv2dLayer(nn.Module): + + def __init__(self, in_features: int, out_features: int, rank: int=4, kernel_size: Union[int, Tuple[int, int]]=(1, 1), stride: Union[int, Tuple[int, int]]=(1, 1), padding: Union[int, Tuple[int, int], str]=0, network_alpha: Optional[float]=None): + super().__init__() + deprecation_message = 'Use of `LoRAConv2dLayer` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`.' + deprecate('LoRAConv2dLayer', '1.0.0', deprecation_message) + self.down = nn.Conv2d(in_features, rank, kernel_size=kernel_size, stride=stride, padding=padding, bias=False) + self.up = nn.Conv2d(rank, out_features, kernel_size=(1, 1), stride=(1, 1), bias=False) + self.network_alpha = network_alpha + self.rank = rank + nn.init.normal_(self.down.weight, std=1 / rank) + nn.init.zeros_(self.up.weight) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + orig_dtype = hidden_states.dtype + dtype = self.down.weight.dtype + down_hidden_states = self.down(hidden_states.to(dtype)) + up_hidden_states = self.up(down_hidden_states) + if self.network_alpha is not None: + up_hidden_states *= self.network_alpha / self.rank + return up_hidden_states.to(orig_dtype) + +class LoRACompatibleConv(nn.Conv2d): + + def __init__(self, *args, lora_layer: Optional[LoRAConv2dLayer]=None, **kwargs): + deprecation_message = 'Use of `LoRACompatibleConv` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`.' + deprecate('LoRACompatibleConv', '1.0.0', deprecation_message) + super().__init__(*args, **kwargs) + self.lora_layer = lora_layer + + def set_lora_layer(self, lora_layer: Optional[LoRAConv2dLayer]): + deprecation_message = 'Use of `set_lora_layer()` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`.' + deprecate('set_lora_layer', '1.0.0', deprecation_message) + self.lora_layer = lora_layer + + def _fuse_lora(self, lora_scale: float=1.0, safe_fusing: bool=False): + if self.lora_layer is None: + return + (dtype, device) = (self.weight.data.dtype, self.weight.data.device) + w_orig = self.weight.data.float() + w_up = self.lora_layer.up.weight.data.float() + w_down = self.lora_layer.down.weight.data.float() + if self.lora_layer.network_alpha is not None: + w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank + fusion = torch.mm(w_up.flatten(start_dim=1), w_down.flatten(start_dim=1)) + fusion = fusion.reshape(w_orig.shape) + fused_weight = w_orig + lora_scale * fusion + if safe_fusing and torch.isnan(fused_weight).any().item(): + raise ValueError(f'This LoRA weight seems to be broken. Encountered NaN values when trying to fuse LoRA weights for {self}.LoRA weights will not be fused.') + self.weight.data = fused_weight.to(device=device, dtype=dtype) + self.lora_layer = None + self.w_up = w_up.cpu() + self.w_down = w_down.cpu() + self._lora_scale = lora_scale + + def _unfuse_lora(self): + if not (getattr(self, 'w_up', None) is not None and getattr(self, 'w_down', None) is not None): + return + fused_weight = self.weight.data + (dtype, device) = (fused_weight.data.dtype, fused_weight.data.device) + self.w_up = self.w_up.to(device=device).float() + self.w_down = self.w_down.to(device).float() + fusion = torch.mm(self.w_up.flatten(start_dim=1), self.w_down.flatten(start_dim=1)) + fusion = fusion.reshape(fused_weight.shape) + unfused_weight = fused_weight.float() - self._lora_scale * fusion + self.weight.data = unfused_weight.to(device=device, dtype=dtype) + self.w_up = None + self.w_down = None + + def forward(self, hidden_states: torch.Tensor, scale: float=1.0) -> torch.Tensor: + if self.padding_mode != 'zeros': + hidden_states = F.pad(hidden_states, self._reversed_padding_repeated_twice, mode=self.padding_mode) + padding = (0, 0) + else: + padding = self.padding + original_outputs = F.conv2d(hidden_states, self.weight, self.bias, self.stride, padding, self.dilation, self.groups) + if self.lora_layer is None: + return original_outputs + else: + return original_outputs + scale * self.lora_layer(hidden_states) + +class LoRACompatibleLinear(nn.Linear): + + def __init__(self, *args, lora_layer: Optional[LoRALinearLayer]=None, **kwargs): + deprecation_message = 'Use of `LoRACompatibleLinear` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`.' + deprecate('LoRACompatibleLinear', '1.0.0', deprecation_message) + super().__init__(*args, **kwargs) + self.lora_layer = lora_layer + + def set_lora_layer(self, lora_layer: Optional[LoRALinearLayer]): + deprecation_message = 'Use of `set_lora_layer()` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`.' + deprecate('set_lora_layer', '1.0.0', deprecation_message) + self.lora_layer = lora_layer + + def _fuse_lora(self, lora_scale: float=1.0, safe_fusing: bool=False): + if self.lora_layer is None: + return + (dtype, device) = (self.weight.data.dtype, self.weight.data.device) + w_orig = self.weight.data.float() + w_up = self.lora_layer.up.weight.data.float() + w_down = self.lora_layer.down.weight.data.float() + if self.lora_layer.network_alpha is not None: + w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank + fused_weight = w_orig + lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0] + if safe_fusing and torch.isnan(fused_weight).any().item(): + raise ValueError(f'This LoRA weight seems to be broken. Encountered NaN values when trying to fuse LoRA weights for {self}.LoRA weights will not be fused.') + self.weight.data = fused_weight.to(device=device, dtype=dtype) + self.lora_layer = None + self.w_up = w_up.cpu() + self.w_down = w_down.cpu() + self._lora_scale = lora_scale + + def _unfuse_lora(self): + if not (getattr(self, 'w_up', None) is not None and getattr(self, 'w_down', None) is not None): + return + fused_weight = self.weight.data + (dtype, device) = (fused_weight.dtype, fused_weight.device) + w_up = self.w_up.to(device=device).float() + w_down = self.w_down.to(device).float() + unfused_weight = fused_weight.float() - self._lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0] + self.weight.data = unfused_weight.to(device=device, dtype=dtype) + self.w_up = None + self.w_down = None + + def forward(self, hidden_states: torch.Tensor, scale: float=1.0) -> torch.Tensor: + if self.lora_layer is None: + out = super().forward(hidden_states) + return out + else: + out = super().forward(hidden_states) + scale * self.lora_layer(hidden_states) + return out + +# File: diffusers-main/src/diffusers/models/model_loading_utils.py +import importlib +import inspect +import os +from collections import OrderedDict +from pathlib import Path +from typing import List, Optional, Union +import safetensors +import torch +from huggingface_hub.utils import EntryNotFoundError +from ..utils import SAFE_WEIGHTS_INDEX_NAME, SAFETENSORS_FILE_EXTENSION, WEIGHTS_INDEX_NAME, _add_variant, _get_model_file, is_accelerate_available, is_torch_version, logging +logger = logging.get_logger(__name__) +_CLASS_REMAPPING_DICT = {'Transformer2DModel': {'ada_norm_zero': 'DiTTransformer2DModel', 'ada_norm_single': 'PixArtTransformer2DModel'}} +if is_accelerate_available(): + from accelerate import infer_auto_device_map + from accelerate.utils import get_balanced_memory, get_max_memory, set_module_tensor_to_device + +def _determine_device_map(model: torch.nn.Module, device_map, max_memory, torch_dtype): + if isinstance(device_map, str): + no_split_modules = model._get_no_split_modules(device_map) + device_map_kwargs = {'no_split_module_classes': no_split_modules} + if device_map != 'sequential': + max_memory = get_balanced_memory(model, dtype=torch_dtype, low_zero=device_map == 'balanced_low_0', max_memory=max_memory, **device_map_kwargs) + else: + max_memory = get_max_memory(max_memory) + device_map_kwargs['max_memory'] = max_memory + device_map = infer_auto_device_map(model, dtype=torch_dtype, **device_map_kwargs) + return device_map + +def _fetch_remapped_cls_from_config(config, old_class): + previous_class_name = old_class.__name__ + remapped_class_name = _CLASS_REMAPPING_DICT.get(previous_class_name).get(config['norm_type'], None) + if remapped_class_name: + diffusers_library = importlib.import_module(__name__.split('.')[0]) + remapped_class = getattr(diffusers_library, remapped_class_name) + logger.info(f"Changing class object to be of `{remapped_class_name}` type from `{previous_class_name}` type.This is because `{previous_class_name}` is scheduled to be deprecated in a future version. Note that this DOESN'T affect the final results.") + return remapped_class + else: + return old_class + +def load_state_dict(checkpoint_file: Union[str, os.PathLike], variant: Optional[str]=None): + try: + file_extension = os.path.basename(checkpoint_file).split('.')[-1] + if file_extension == SAFETENSORS_FILE_EXTENSION: + return safetensors.torch.load_file(checkpoint_file, device='cpu') + else: + weights_only_kwarg = {'weights_only': True} if is_torch_version('>=', '1.13') else {} + return torch.load(checkpoint_file, map_location='cpu', **weights_only_kwarg) + except Exception as e: + try: + with open(checkpoint_file) as f: + if f.read().startswith('version'): + raise OSError('You seem to have cloned a repository without having git-lfs installed. Please install git-lfs and run `git lfs install` followed by `git lfs pull` in the folder you cloned.') + else: + raise ValueError(f'Unable to locate the file {checkpoint_file} which is necessary to load this pretrained model. Make sure you have saved the model properly.') from e + except (UnicodeDecodeError, ValueError): + raise OSError(f"Unable to load weights from checkpoint file for '{checkpoint_file}' at '{checkpoint_file}'. ") + +def load_model_dict_into_meta(model, state_dict: OrderedDict, device: Optional[Union[str, torch.device]]=None, dtype: Optional[Union[str, torch.dtype]]=None, model_name_or_path: Optional[str]=None) -> List[str]: + device = device or torch.device('cpu') + dtype = dtype or torch.float32 + accepts_dtype = 'dtype' in set(inspect.signature(set_module_tensor_to_device).parameters.keys()) + unexpected_keys = [] + empty_state_dict = model.state_dict() + for (param_name, param) in state_dict.items(): + if param_name not in empty_state_dict: + unexpected_keys.append(param_name) + continue + if empty_state_dict[param_name].shape != param.shape: + model_name_or_path_str = f'{model_name_or_path} ' if model_name_or_path is not None else '' + raise ValueError(f'Cannot load {model_name_or_path_str}because {param_name} expected shape {empty_state_dict[param_name]}, but got {param.shape}. If you want to instead overwrite randomly initialized weights, please make sure to pass both `low_cpu_mem_usage=False` and `ignore_mismatched_sizes=True`. For more information, see also: https://github.com/huggingface/diffusers/issues/1619#issuecomment-1345604389 as an example.') + if accepts_dtype: + set_module_tensor_to_device(model, param_name, device, value=param, dtype=dtype) + else: + set_module_tensor_to_device(model, param_name, device, value=param) + return unexpected_keys + +def _load_state_dict_into_model(model_to_load, state_dict: OrderedDict) -> List[str]: + state_dict = state_dict.copy() + error_msgs = [] + + def load(module: torch.nn.Module, prefix: str=''): + args = (state_dict, prefix, {}, True, [], [], error_msgs) + module._load_from_state_dict(*args) + for (name, child) in module._modules.items(): + if child is not None: + load(child, prefix + name + '.') + load(model_to_load) + return error_msgs + +def _fetch_index_file(is_local, pretrained_model_name_or_path, subfolder, use_safetensors, cache_dir, variant, force_download, proxies, local_files_only, token, revision, user_agent, commit_hash): + if is_local: + index_file = Path(pretrained_model_name_or_path, subfolder or '', _add_variant(SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME, variant)) + else: + index_file_in_repo = Path(subfolder or '', _add_variant(SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME, variant)).as_posix() + try: + index_file = _get_model_file(pretrained_model_name_or_path, weights_name=index_file_in_repo, cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=None, user_agent=user_agent, commit_hash=commit_hash) + index_file = Path(index_file) + except (EntryNotFoundError, EnvironmentError): + index_file = None + return index_file + +# File: diffusers-main/src/diffusers/models/modeling_flax_pytorch_utils.py +"""""" +import re +import jax.numpy as jnp +from flax.traverse_util import flatten_dict, unflatten_dict +from jax.random import PRNGKey +from ..utils import logging +logger = logging.get_logger(__name__) + +def rename_key(key): + regex = '\\w+[.]\\d+' + pats = re.findall(regex, key) + for pat in pats: + key = key.replace(pat, '_'.join(pat.split('.'))) + return key + +def rename_key_and_reshape_tensor(pt_tuple_key, pt_tensor, random_flax_state_dict): + renamed_pt_tuple_key = pt_tuple_key[:-1] + ('scale',) + if len(pt_tuple_key) > 1: + for (rename_from, rename_to) in (('to_out_0', 'proj_attn'), ('to_k', 'key'), ('to_v', 'value'), ('to_q', 'query')): + if pt_tuple_key[-2] == rename_from: + weight_name = pt_tuple_key[-1] + weight_name = 'kernel' if weight_name == 'weight' else weight_name + renamed_pt_tuple_key = pt_tuple_key[:-2] + (rename_to, weight_name) + if renamed_pt_tuple_key in random_flax_state_dict: + assert random_flax_state_dict[renamed_pt_tuple_key].shape == pt_tensor.T.shape + return (renamed_pt_tuple_key, pt_tensor.T) + if any(('norm' in str_ for str_ in pt_tuple_key)) and pt_tuple_key[-1] == 'bias' and (pt_tuple_key[:-1] + ('bias',) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ('scale',) in random_flax_state_dict): + renamed_pt_tuple_key = pt_tuple_key[:-1] + ('scale',) + return (renamed_pt_tuple_key, pt_tensor) + elif pt_tuple_key[-1] in ['weight', 'gamma'] and pt_tuple_key[:-1] + ('scale',) in random_flax_state_dict: + renamed_pt_tuple_key = pt_tuple_key[:-1] + ('scale',) + return (renamed_pt_tuple_key, pt_tensor) + if pt_tuple_key[-1] == 'weight' and pt_tuple_key[:-1] + ('embedding',) in random_flax_state_dict: + pt_tuple_key = pt_tuple_key[:-1] + ('embedding',) + return (renamed_pt_tuple_key, pt_tensor) + renamed_pt_tuple_key = pt_tuple_key[:-1] + ('kernel',) + if pt_tuple_key[-1] == 'weight' and pt_tensor.ndim == 4: + pt_tensor = pt_tensor.transpose(2, 3, 1, 0) + return (renamed_pt_tuple_key, pt_tensor) + renamed_pt_tuple_key = pt_tuple_key[:-1] + ('kernel',) + if pt_tuple_key[-1] == 'weight': + pt_tensor = pt_tensor.T + return (renamed_pt_tuple_key, pt_tensor) + renamed_pt_tuple_key = pt_tuple_key[:-1] + ('weight',) + if pt_tuple_key[-1] == 'gamma': + return (renamed_pt_tuple_key, pt_tensor) + renamed_pt_tuple_key = pt_tuple_key[:-1] + ('bias',) + if pt_tuple_key[-1] == 'beta': + return (renamed_pt_tuple_key, pt_tensor) + return (pt_tuple_key, pt_tensor) + +def convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model, init_key=42): + pt_state_dict = {k: v.numpy() for (k, v) in pt_state_dict.items()} + random_flax_params = flax_model.init_weights(PRNGKey(init_key)) + random_flax_state_dict = flatten_dict(random_flax_params) + flax_state_dict = {} + for (pt_key, pt_tensor) in pt_state_dict.items(): + renamed_pt_key = rename_key(pt_key) + pt_tuple_key = tuple(renamed_pt_key.split('.')) + (flax_key, flax_tensor) = rename_key_and_reshape_tensor(pt_tuple_key, pt_tensor, random_flax_state_dict) + if flax_key in random_flax_state_dict: + if flax_tensor.shape != random_flax_state_dict[flax_key].shape: + raise ValueError(f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape {random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.') + flax_state_dict[flax_key] = jnp.asarray(flax_tensor) + return unflatten_dict(flax_state_dict) + +# File: diffusers-main/src/diffusers/models/modeling_flax_utils.py +import os +from pickle import UnpicklingError +from typing import Any, Dict, Union +import jax +import jax.numpy as jnp +import msgpack.exceptions +from flax.core.frozen_dict import FrozenDict, unfreeze +from flax.serialization import from_bytes, to_bytes +from flax.traverse_util import flatten_dict, unflatten_dict +from huggingface_hub import create_repo, hf_hub_download +from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, validate_hf_hub_args +from requests import HTTPError +from .. import __version__, is_torch_available +from ..utils import CONFIG_NAME, FLAX_WEIGHTS_NAME, HUGGINGFACE_CO_RESOLVE_ENDPOINT, WEIGHTS_NAME, PushToHubMixin, logging +from .modeling_flax_pytorch_utils import convert_pytorch_state_dict_to_flax +logger = logging.get_logger(__name__) + +class FlaxModelMixin(PushToHubMixin): + config_name = CONFIG_NAME + _automatically_saved_args = ['_diffusers_version', '_class_name', '_name_or_path'] + _flax_internal_args = ['name', 'parent', 'dtype'] + + @classmethod + def _from_config(cls, config, **kwargs): + return cls(config, **kwargs) + + def _cast_floating_to(self, params: Union[Dict, FrozenDict], dtype: jnp.dtype, mask: Any=None) -> Any: + + def conditional_cast(param): + if isinstance(param, jnp.ndarray) and jnp.issubdtype(param.dtype, jnp.floating): + param = param.astype(dtype) + return param + if mask is None: + return jax.tree_map(conditional_cast, params) + flat_params = flatten_dict(params) + (flat_mask, _) = jax.tree_flatten(mask) + for (masked, key) in zip(flat_mask, flat_params.keys()): + if masked: + param = flat_params[key] + flat_params[key] = conditional_cast(param) + return unflatten_dict(flat_params) + + def to_bf16(self, params: Union[Dict, FrozenDict], mask: Any=None): + return self._cast_floating_to(params, jnp.bfloat16, mask) + + def to_fp32(self, params: Union[Dict, FrozenDict], mask: Any=None): + return self._cast_floating_to(params, jnp.float32, mask) + + def to_fp16(self, params: Union[Dict, FrozenDict], mask: Any=None): + return self._cast_floating_to(params, jnp.float16, mask) + + def init_weights(self, rng: jax.Array) -> Dict: + raise NotImplementedError(f'init_weights method has to be implemented for {self}') + + @classmethod + @validate_hf_hub_args + def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], dtype: jnp.dtype=jnp.float32, *model_args, **kwargs): + config = kwargs.pop('config', None) + cache_dir = kwargs.pop('cache_dir', None) + force_download = kwargs.pop('force_download', False) + from_pt = kwargs.pop('from_pt', False) + proxies = kwargs.pop('proxies', None) + local_files_only = kwargs.pop('local_files_only', False) + token = kwargs.pop('token', None) + revision = kwargs.pop('revision', None) + subfolder = kwargs.pop('subfolder', None) + user_agent = {'diffusers': __version__, 'file_type': 'model', 'framework': 'flax'} + if config is None: + (config, unused_kwargs) = cls.load_config(pretrained_model_name_or_path, cache_dir=cache_dir, return_unused_kwargs=True, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, **kwargs) + (model, model_kwargs) = cls.from_config(config, dtype=dtype, return_unused_kwargs=True, **unused_kwargs) + pretrained_path_with_subfolder = pretrained_model_name_or_path if subfolder is None else os.path.join(pretrained_model_name_or_path, subfolder) + if os.path.isdir(pretrained_path_with_subfolder): + if from_pt: + if not os.path.isfile(os.path.join(pretrained_path_with_subfolder, WEIGHTS_NAME)): + raise EnvironmentError(f'Error no file named {WEIGHTS_NAME} found in directory {pretrained_path_with_subfolder} ') + model_file = os.path.join(pretrained_path_with_subfolder, WEIGHTS_NAME) + elif os.path.isfile(os.path.join(pretrained_path_with_subfolder, FLAX_WEIGHTS_NAME)): + model_file = os.path.join(pretrained_path_with_subfolder, FLAX_WEIGHTS_NAME) + elif os.path.isfile(os.path.join(pretrained_path_with_subfolder, WEIGHTS_NAME)): + raise EnvironmentError(f'{WEIGHTS_NAME} file found in directory {pretrained_path_with_subfolder}. Please load the model using `from_pt=True`.') + else: + raise EnvironmentError(f'Error no file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME} found in directory {pretrained_path_with_subfolder}.') + else: + try: + model_file = hf_hub_download(pretrained_model_name_or_path, filename=FLAX_WEIGHTS_NAME if not from_pt else WEIGHTS_NAME, cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, user_agent=user_agent, subfolder=subfolder, revision=revision) + except RepositoryNotFoundError: + raise EnvironmentError(f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a token having permission to this repo with `token` or log in with `huggingface-cli login`.") + except RevisionNotFoundError: + raise EnvironmentError(f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for this model name. Check the model page at 'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.") + except EntryNotFoundError: + raise EnvironmentError(f'{pretrained_model_name_or_path} does not appear to have a file named {FLAX_WEIGHTS_NAME}.') + except HTTPError as err: + raise EnvironmentError(f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}') + except ValueError: + raise EnvironmentError(f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a directory containing a file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME}.\nCheckout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'.") + except EnvironmentError: + raise EnvironmentError(f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from 'https://huggingface.co/models', make sure you don't have a local directory with the same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME}.") + if from_pt: + if is_torch_available(): + from .modeling_utils import load_state_dict + else: + raise EnvironmentError("Can't load the model in PyTorch format because PyTorch is not installed. Please, install PyTorch or use native Flax weights.") + pytorch_model_file = load_state_dict(model_file) + state = convert_pytorch_state_dict_to_flax(pytorch_model_file, model) + else: + try: + with open(model_file, 'rb') as state_f: + state = from_bytes(cls, state_f.read()) + except (UnpicklingError, msgpack.exceptions.ExtraData) as e: + try: + with open(model_file) as f: + if f.read().startswith('version'): + raise OSError('You seem to have cloned a repository without having git-lfs installed. Please install git-lfs and run `git lfs install` followed by `git lfs pull` in the folder you cloned.') + else: + raise ValueError from e + except (UnicodeDecodeError, ValueError): + raise EnvironmentError(f'Unable to convert {model_file} to Flax deserializable object. ') + state = jax.tree_util.tree_map(lambda x: jax.device_put(x, jax.local_devices(backend='cpu')[0]), state) + state = flatten_dict(state) + params_shape_tree = jax.eval_shape(model.init_weights, rng=jax.random.PRNGKey(0)) + required_params = set(flatten_dict(unfreeze(params_shape_tree)).keys()) + shape_state = flatten_dict(unfreeze(params_shape_tree)) + missing_keys = required_params - set(state.keys()) + unexpected_keys = set(state.keys()) - required_params + if missing_keys: + logger.warning(f'The checkpoint {pretrained_model_name_or_path} is missing required keys: {missing_keys}. Make sure to call model.init_weights to initialize the missing weights.') + cls._missing_keys = missing_keys + for key in state.keys(): + if key in shape_state and state[key].shape != shape_state[key].shape: + raise ValueError(f'Trying to load the pretrained weight for {key} failed: checkpoint has shape {state[key].shape} which is incompatible with the model shape {shape_state[key].shape}. ') + for unexpected_key in unexpected_keys: + del state[unexpected_key] + if len(unexpected_keys) > 0: + logger.warning(f'Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or with another architecture.') + else: + logger.info(f'All model checkpoint weights were used when initializing {model.__class__.__name__}.\n') + if len(missing_keys) > 0: + logger.warning(f'Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.') + else: + logger.info(f'All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint was trained on, you can already use {model.__class__.__name__} for predictions without further training.') + return (model, unflatten_dict(state)) + + def save_pretrained(self, save_directory: Union[str, os.PathLike], params: Union[Dict, FrozenDict], is_main_process: bool=True, push_to_hub: bool=False, **kwargs): + if os.path.isfile(save_directory): + logger.error(f'Provided path ({save_directory}) should be a directory, not a file') + return + os.makedirs(save_directory, exist_ok=True) + if push_to_hub: + commit_message = kwargs.pop('commit_message', None) + private = kwargs.pop('private', False) + create_pr = kwargs.pop('create_pr', False) + token = kwargs.pop('token', None) + repo_id = kwargs.pop('repo_id', save_directory.split(os.path.sep)[-1]) + repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id + model_to_save = self + if is_main_process: + model_to_save.save_config(save_directory) + output_model_file = os.path.join(save_directory, FLAX_WEIGHTS_NAME) + with open(output_model_file, 'wb') as f: + model_bytes = to_bytes(params) + f.write(model_bytes) + logger.info(f'Model weights saved in {output_model_file}') + if push_to_hub: + self._upload_folder(save_directory, repo_id, token=token, commit_message=commit_message, create_pr=create_pr) + +# File: diffusers-main/src/diffusers/models/modeling_outputs.py +from dataclasses import dataclass +from ..utils import BaseOutput + +@dataclass +class AutoencoderKLOutput(BaseOutput): + latent_dist: 'DiagonalGaussianDistribution' + +@dataclass +class Transformer2DModelOutput(BaseOutput): + sample: 'torch.Tensor' + +# File: diffusers-main/src/diffusers/models/modeling_pytorch_flax_utils.py +"""""" +from pickle import UnpicklingError +import jax +import jax.numpy as jnp +import numpy as np +from flax.serialization import from_bytes +from flax.traverse_util import flatten_dict +from ..utils import logging +logger = logging.get_logger(__name__) + +def load_flax_checkpoint_in_pytorch_model(pt_model, model_file): + try: + with open(model_file, 'rb') as flax_state_f: + flax_state = from_bytes(None, flax_state_f.read()) + except UnpicklingError as e: + try: + with open(model_file) as f: + if f.read().startswith('version'): + raise OSError('You seem to have cloned a repository without having git-lfs installed. Please install git-lfs and run `git lfs install` followed by `git lfs pull` in the folder you cloned.') + else: + raise ValueError from e + except (UnicodeDecodeError, ValueError): + raise EnvironmentError(f'Unable to convert {model_file} to Flax deserializable object. ') + return load_flax_weights_in_pytorch_model(pt_model, flax_state) + +def load_flax_weights_in_pytorch_model(pt_model, flax_state): + try: + import torch + except ImportError: + logger.error('Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation instructions.') + raise + is_type_bf16 = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype == jnp.bfloat16, flax_state)).values() + if any(is_type_bf16): + logger.warning('Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` before loading those in PyTorch model.') + flax_state = jax.tree_util.tree_map(lambda params: params.astype(np.float32) if params.dtype == jnp.bfloat16 else params, flax_state) + pt_model.base_model_prefix = '' + flax_state_dict = flatten_dict(flax_state, sep='.') + pt_model_dict = pt_model.state_dict() + unexpected_keys = [] + missing_keys = set(pt_model_dict.keys()) + for (flax_key_tuple, flax_tensor) in flax_state_dict.items(): + flax_key_tuple_array = flax_key_tuple.split('.') + if flax_key_tuple_array[-1] == 'kernel' and flax_tensor.ndim == 4: + flax_key_tuple_array = flax_key_tuple_array[:-1] + ['weight'] + flax_tensor = jnp.transpose(flax_tensor, (3, 2, 0, 1)) + elif flax_key_tuple_array[-1] == 'kernel': + flax_key_tuple_array = flax_key_tuple_array[:-1] + ['weight'] + flax_tensor = flax_tensor.T + elif flax_key_tuple_array[-1] == 'scale': + flax_key_tuple_array = flax_key_tuple_array[:-1] + ['weight'] + if 'time_embedding' not in flax_key_tuple_array: + for (i, flax_key_tuple_string) in enumerate(flax_key_tuple_array): + flax_key_tuple_array[i] = flax_key_tuple_string.replace('_0', '.0').replace('_1', '.1').replace('_2', '.2').replace('_3', '.3').replace('_4', '.4').replace('_5', '.5').replace('_6', '.6').replace('_7', '.7').replace('_8', '.8').replace('_9', '.9') + flax_key = '.'.join(flax_key_tuple_array) + if flax_key in pt_model_dict: + if flax_tensor.shape != pt_model_dict[flax_key].shape: + raise ValueError(f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.') + else: + flax_tensor = np.asarray(flax_tensor) if not isinstance(flax_tensor, np.ndarray) else flax_tensor + pt_model_dict[flax_key] = torch.from_numpy(flax_tensor) + missing_keys.remove(flax_key) + else: + unexpected_keys.append(flax_key) + pt_model.load_state_dict(pt_model_dict) + missing_keys = list(missing_keys) + if len(unexpected_keys) > 0: + logger.warning(f'Some weights of the Flax model were not used when initializing the PyTorch model {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect to be exactly identical (e.g. initializing a BertForSequenceClassification model from a FlaxBertForSequenceClassification model).') + if len(missing_keys) > 0: + logger.warning(f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.') + return pt_model + +# File: diffusers-main/src/diffusers/models/modeling_utils.py +import inspect +import itertools +import json +import os +import re +from collections import OrderedDict +from functools import partial +from pathlib import Path +from typing import Any, Callable, List, Optional, Tuple, Union +import safetensors +import torch +from huggingface_hub import create_repo, split_torch_state_dict_into_shards +from huggingface_hub.utils import validate_hf_hub_args +from torch import Tensor, nn +from .. import __version__ +from ..utils import CONFIG_NAME, FLAX_WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, _add_variant, _get_checkpoint_shard_files, _get_model_file, deprecate, is_accelerate_available, is_torch_version, logging +from ..utils.hub_utils import PushToHubMixin, load_or_create_model_card, populate_model_card +from .model_loading_utils import _determine_device_map, _fetch_index_file, _load_state_dict_into_model, load_model_dict_into_meta, load_state_dict +logger = logging.get_logger(__name__) +_REGEX_SHARD = re.compile('(.*?)-\\d{5}-of-\\d{5}') +if is_torch_version('>=', '1.9.0'): + _LOW_CPU_MEM_USAGE_DEFAULT = True +else: + _LOW_CPU_MEM_USAGE_DEFAULT = False +if is_accelerate_available(): + import accelerate + +def get_parameter_device(parameter: torch.nn.Module) -> torch.device: + try: + parameters_and_buffers = itertools.chain(parameter.parameters(), parameter.buffers()) + return next(parameters_and_buffers).device + except StopIteration: + + def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]: + tuples = [(k, v) for (k, v) in module.__dict__.items() if torch.is_tensor(v)] + return tuples + gen = parameter._named_members(get_members_fn=find_tensor_attributes) + first_tuple = next(gen) + return first_tuple[1].device + +def get_parameter_dtype(parameter: torch.nn.Module) -> torch.dtype: + try: + params = tuple(parameter.parameters()) + if len(params) > 0: + return params[0].dtype + buffers = tuple(parameter.buffers()) + if len(buffers) > 0: + return buffers[0].dtype + except StopIteration: + + def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]: + tuples = [(k, v) for (k, v) in module.__dict__.items() if torch.is_tensor(v)] + return tuples + gen = parameter._named_members(get_members_fn=find_tensor_attributes) + first_tuple = next(gen) + return first_tuple[1].dtype + +class ModelMixin(torch.nn.Module, PushToHubMixin): + config_name = CONFIG_NAME + _automatically_saved_args = ['_diffusers_version', '_class_name', '_name_or_path'] + _supports_gradient_checkpointing = False + _keys_to_ignore_on_load_unexpected = None + _no_split_modules = None + + def __init__(self): + super().__init__() + + def __getattr__(self, name: str) -> Any: + is_in_config = '_internal_dict' in self.__dict__ and hasattr(self.__dict__['_internal_dict'], name) + is_attribute = name in self.__dict__ + if is_in_config and (not is_attribute): + deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'unet.config.{name}'." + deprecate('direct config name access', '1.0.0', deprecation_message, standard_warn=False, stacklevel=3) + return self._internal_dict[name] + return super().__getattr__(name) + + @property + def is_gradient_checkpointing(self) -> bool: + return any((hasattr(m, 'gradient_checkpointing') and m.gradient_checkpointing for m in self.modules())) + + def enable_gradient_checkpointing(self) -> None: + if not self._supports_gradient_checkpointing: + raise ValueError(f'{self.__class__.__name__} does not support gradient checkpointing.') + self.apply(partial(self._set_gradient_checkpointing, value=True)) + + def disable_gradient_checkpointing(self) -> None: + if self._supports_gradient_checkpointing: + self.apply(partial(self._set_gradient_checkpointing, value=False)) + + def set_use_npu_flash_attention(self, valid: bool) -> None: + + def fn_recursive_set_npu_flash_attention(module: torch.nn.Module): + if hasattr(module, 'set_use_npu_flash_attention'): + module.set_use_npu_flash_attention(valid) + for child in module.children(): + fn_recursive_set_npu_flash_attention(child) + for module in self.children(): + if isinstance(module, torch.nn.Module): + fn_recursive_set_npu_flash_attention(module) + + def enable_npu_flash_attention(self) -> None: + self.set_use_npu_flash_attention(True) + + def disable_npu_flash_attention(self) -> None: + self.set_use_npu_flash_attention(False) + + def set_use_memory_efficient_attention_xformers(self, valid: bool, attention_op: Optional[Callable]=None) -> None: + + def fn_recursive_set_mem_eff(module: torch.nn.Module): + if hasattr(module, 'set_use_memory_efficient_attention_xformers'): + module.set_use_memory_efficient_attention_xformers(valid, attention_op) + for child in module.children(): + fn_recursive_set_mem_eff(child) + for module in self.children(): + if isinstance(module, torch.nn.Module): + fn_recursive_set_mem_eff(module) + + def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable]=None) -> None: + self.set_use_memory_efficient_attention_xformers(True, attention_op) + + def disable_xformers_memory_efficient_attention(self) -> None: + self.set_use_memory_efficient_attention_xformers(False) + + def save_pretrained(self, save_directory: Union[str, os.PathLike], is_main_process: bool=True, save_function: Optional[Callable]=None, safe_serialization: bool=True, variant: Optional[str]=None, max_shard_size: Union[int, str]='10GB', push_to_hub: bool=False, **kwargs): + if os.path.isfile(save_directory): + logger.error(f'Provided path ({save_directory}) should be a directory, not a file') + return + weights_name = SAFETENSORS_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME + weights_name = _add_variant(weights_name, variant) + weight_name_split = weights_name.split('.') + if len(weight_name_split) in [2, 3]: + weights_name_pattern = weight_name_split[0] + '{suffix}.' + '.'.join(weight_name_split[1:]) + else: + raise ValueError(f'Invalid {weights_name} provided.') + os.makedirs(save_directory, exist_ok=True) + if push_to_hub: + commit_message = kwargs.pop('commit_message', None) + private = kwargs.pop('private', False) + create_pr = kwargs.pop('create_pr', False) + token = kwargs.pop('token', None) + repo_id = kwargs.pop('repo_id', save_directory.split(os.path.sep)[-1]) + repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id + model_to_save = self + if is_main_process: + model_to_save.save_config(save_directory) + state_dict = model_to_save.state_dict() + state_dict_split = split_torch_state_dict_into_shards(state_dict, max_shard_size=max_shard_size, filename_pattern=weights_name_pattern) + if is_main_process: + for filename in os.listdir(save_directory): + if filename in state_dict_split.filename_to_tensors.keys(): + continue + full_filename = os.path.join(save_directory, filename) + if not os.path.isfile(full_filename): + continue + weights_without_ext = weights_name_pattern.replace('.bin', '').replace('.safetensors', '') + weights_without_ext = weights_without_ext.replace('{suffix}', '') + filename_without_ext = filename.replace('.bin', '').replace('.safetensors', '') + if filename.startswith(weights_without_ext) and _REGEX_SHARD.fullmatch(filename_without_ext) is not None: + os.remove(full_filename) + for (filename, tensors) in state_dict_split.filename_to_tensors.items(): + shard = {tensor: state_dict[tensor] for tensor in tensors} + filepath = os.path.join(save_directory, filename) + if safe_serialization: + safetensors.torch.save_file(shard, filepath, metadata={'format': 'pt'}) + else: + torch.save(shard, filepath) + if state_dict_split.is_sharded: + index = {'metadata': state_dict_split.metadata, 'weight_map': state_dict_split.tensor_to_filename} + save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME + save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant)) + with open(save_index_file, 'w', encoding='utf-8') as f: + content = json.dumps(index, indent=2, sort_keys=True) + '\n' + f.write(content) + logger.info(f'The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be split in {len(state_dict_split.filename_to_tensors)} checkpoint shards. You can find where each parameters has been saved in the index located at {save_index_file}.') + else: + path_to_weights = os.path.join(save_directory, weights_name) + logger.info(f'Model weights saved in {path_to_weights}') + if push_to_hub: + model_card = load_or_create_model_card(repo_id, token=token) + model_card = populate_model_card(model_card) + model_card.save(Path(save_directory, 'README.md').as_posix()) + self._upload_folder(save_directory, repo_id, token=token, commit_message=commit_message, create_pr=create_pr) + + @classmethod + @validate_hf_hub_args + def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): + cache_dir = kwargs.pop('cache_dir', None) + ignore_mismatched_sizes = kwargs.pop('ignore_mismatched_sizes', False) + force_download = kwargs.pop('force_download', False) + from_flax = kwargs.pop('from_flax', False) + proxies = kwargs.pop('proxies', None) + output_loading_info = kwargs.pop('output_loading_info', False) + local_files_only = kwargs.pop('local_files_only', None) + token = kwargs.pop('token', None) + revision = kwargs.pop('revision', None) + torch_dtype = kwargs.pop('torch_dtype', None) + subfolder = kwargs.pop('subfolder', None) + device_map = kwargs.pop('device_map', None) + max_memory = kwargs.pop('max_memory', None) + offload_folder = kwargs.pop('offload_folder', None) + offload_state_dict = kwargs.pop('offload_state_dict', False) + low_cpu_mem_usage = kwargs.pop('low_cpu_mem_usage', _LOW_CPU_MEM_USAGE_DEFAULT) + variant = kwargs.pop('variant', None) + use_safetensors = kwargs.pop('use_safetensors', None) + allow_pickle = False + if use_safetensors is None: + use_safetensors = True + allow_pickle = True + if low_cpu_mem_usage and (not is_accelerate_available()): + low_cpu_mem_usage = False + logger.warning('Cannot initialize model with low cpu memory usage because `accelerate` was not found in the environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip install accelerate\n```\n.') + if device_map is not None and (not is_accelerate_available()): + raise NotImplementedError('Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set `device_map=None`. You can install accelerate with `pip install accelerate`.') + if device_map is not None and (not is_torch_version('>=', '1.9.0')): + raise NotImplementedError('Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set `device_map=None`.') + if low_cpu_mem_usage is True and (not is_torch_version('>=', '1.9.0')): + raise NotImplementedError('Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set `low_cpu_mem_usage=False`.') + if low_cpu_mem_usage is False and device_map is not None: + raise ValueError(f'You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and dispatching. Please make sure to set `low_cpu_mem_usage=True`.') + if isinstance(device_map, torch.device): + device_map = {'': device_map} + elif isinstance(device_map, str) and device_map not in ['auto', 'balanced', 'balanced_low_0', 'sequential']: + try: + device_map = {'': torch.device(device_map)} + except RuntimeError: + raise ValueError(f"When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or 'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}.") + elif isinstance(device_map, int): + if device_map < 0: + raise ValueError("You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' ") + else: + device_map = {'': device_map} + if device_map is not None: + if low_cpu_mem_usage is None: + low_cpu_mem_usage = True + elif not low_cpu_mem_usage: + raise ValueError('Passing along a `device_map` requires `low_cpu_mem_usage=True`') + if low_cpu_mem_usage: + if device_map is not None and (not is_torch_version('>=', '1.10')): + raise ValueError('`low_cpu_mem_usage` and `device_map` require PyTorch >= 1.10.') + config_path = pretrained_model_name_or_path + user_agent = {'diffusers': __version__, 'file_type': 'model', 'framework': 'pytorch'} + (config, unused_kwargs, commit_hash) = cls.load_config(config_path, cache_dir=cache_dir, return_unused_kwargs=True, return_commit_hash=True, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, **kwargs) + is_sharded = False + index_file = None + is_local = os.path.isdir(pretrained_model_name_or_path) + index_file = _fetch_index_file(is_local=is_local, pretrained_model_name_or_path=pretrained_model_name_or_path, subfolder=subfolder or '', use_safetensors=use_safetensors, cache_dir=cache_dir, variant=variant, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, user_agent=user_agent, commit_hash=commit_hash) + if index_file is not None and index_file.is_file(): + is_sharded = True + if is_sharded and from_flax: + raise ValueError('Loading of sharded checkpoints is not supported when `from_flax=True`.') + model_file = None + if from_flax: + model_file = _get_model_file(pretrained_model_name_or_path, weights_name=FLAX_WEIGHTS_NAME, cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, commit_hash=commit_hash) + model = cls.from_config(config, **unused_kwargs) + from .modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model + model = load_flax_checkpoint_in_pytorch_model(model, model_file) + else: + if is_sharded: + (sharded_ckpt_cached_folder, sharded_metadata) = _get_checkpoint_shard_files(pretrained_model_name_or_path, index_file, cache_dir=cache_dir, proxies=proxies, local_files_only=local_files_only, token=token, user_agent=user_agent, revision=revision, subfolder=subfolder or '') + elif use_safetensors and (not is_sharded): + try: + model_file = _get_model_file(pretrained_model_name_or_path, weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant), cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, commit_hash=commit_hash) + except IOError as e: + logger.error(f'An error occurred while trying to fetch {pretrained_model_name_or_path}: {e}') + if not allow_pickle: + raise + logger.warning('Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead.') + if model_file is None and (not is_sharded): + model_file = _get_model_file(pretrained_model_name_or_path, weights_name=_add_variant(WEIGHTS_NAME, variant), cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, commit_hash=commit_hash) + if low_cpu_mem_usage: + with accelerate.init_empty_weights(): + model = cls.from_config(config, **unused_kwargs) + if device_map is None and (not is_sharded): + param_device = 'cpu' + state_dict = load_state_dict(model_file, variant=variant) + model._convert_deprecated_attention_blocks(state_dict) + missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) + if len(missing_keys) > 0: + raise ValueError(f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are missing: \n {', '.join(missing_keys)}. \n Please make sure to pass `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize those weights or else make sure your checkpoint file is correct.") + unexpected_keys = load_model_dict_into_meta(model, state_dict, device=param_device, dtype=torch_dtype, model_name_or_path=pretrained_model_name_or_path) + if cls._keys_to_ignore_on_load_unexpected is not None: + for pat in cls._keys_to_ignore_on_load_unexpected: + unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] + if len(unexpected_keys) > 0: + logger.warning(f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}") + else: + force_hook = True + device_map = _determine_device_map(model, device_map, max_memory, torch_dtype) + if device_map is None and is_sharded: + device_map = {'': 'cpu'} + force_hook = False + try: + accelerate.load_checkpoint_and_dispatch(model, model_file if not is_sharded else index_file, device_map, max_memory=max_memory, offload_folder=offload_folder, offload_state_dict=offload_state_dict, dtype=torch_dtype, force_hooks=force_hook, strict=True) + except AttributeError as e: + if "'Attention' object has no attribute" in str(e): + logger.warning(f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path} was saved with deprecated attention block weight names. We will load it with the deprecated attention block names and convert them on the fly to the new attention block format. Please re-save the model after this conversion, so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint, please also re-upload it or open a PR on the original repository.") + model._temp_convert_self_to_deprecated_attention_blocks() + accelerate.load_checkpoint_and_dispatch(model, model_file if not is_sharded else index_file, device_map, max_memory=max_memory, offload_folder=offload_folder, offload_state_dict=offload_state_dict, dtype=torch_dtype, force_hooks=force_hook, strict=True) + model._undo_temp_convert_self_to_deprecated_attention_blocks() + else: + raise e + loading_info = {'missing_keys': [], 'unexpected_keys': [], 'mismatched_keys': [], 'error_msgs': []} + else: + model = cls.from_config(config, **unused_kwargs) + state_dict = load_state_dict(model_file, variant=variant) + model._convert_deprecated_attention_blocks(state_dict) + (model, missing_keys, unexpected_keys, mismatched_keys, error_msgs) = cls._load_pretrained_model(model, state_dict, model_file, pretrained_model_name_or_path, ignore_mismatched_sizes=ignore_mismatched_sizes) + loading_info = {'missing_keys': missing_keys, 'unexpected_keys': unexpected_keys, 'mismatched_keys': mismatched_keys, 'error_msgs': error_msgs} + if torch_dtype is not None and (not isinstance(torch_dtype, torch.dtype)): + raise ValueError(f'{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}.') + elif torch_dtype is not None: + model = model.to(torch_dtype) + model.register_to_config(_name_or_path=pretrained_model_name_or_path) + model.eval() + if output_loading_info: + return (model, loading_info) + return model + + @classmethod + def _load_pretrained_model(cls, model, state_dict: OrderedDict, resolved_archive_file, pretrained_model_name_or_path: Union[str, os.PathLike], ignore_mismatched_sizes: bool=False): + model_state_dict = model.state_dict() + loaded_keys = list(state_dict.keys()) + expected_keys = list(model_state_dict.keys()) + original_loaded_keys = loaded_keys + missing_keys = list(set(expected_keys) - set(loaded_keys)) + unexpected_keys = list(set(loaded_keys) - set(expected_keys)) + model_to_load = model + + def _find_mismatched_keys(state_dict, model_state_dict, loaded_keys, ignore_mismatched_sizes): + mismatched_keys = [] + if ignore_mismatched_sizes: + for checkpoint_key in loaded_keys: + model_key = checkpoint_key + if model_key in model_state_dict and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape: + mismatched_keys.append((checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)) + del state_dict[checkpoint_key] + return mismatched_keys + if state_dict is not None: + mismatched_keys = _find_mismatched_keys(state_dict, model_state_dict, original_loaded_keys, ignore_mismatched_sizes) + error_msgs = _load_state_dict_into_model(model_to_load, state_dict) + if len(error_msgs) > 0: + error_msg = '\n\t'.join(error_msgs) + if 'size mismatch' in error_msg: + error_msg += '\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method.' + raise RuntimeError(f'Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}') + if len(unexpected_keys) > 0: + logger.warning(f'Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).') + else: + logger.info(f'All model checkpoint weights were used when initializing {model.__class__.__name__}.\n') + if len(missing_keys) > 0: + logger.warning(f'Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.') + elif len(mismatched_keys) == 0: + logger.info(f'All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint was trained on, you can already use {model.__class__.__name__} for predictions without further training.') + if len(mismatched_keys) > 0: + mismatched_warning = '\n'.join([f'- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated' for (key, shape1, shape2) in mismatched_keys]) + logger.warning(f'Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} and are newly initialized because the shapes did not match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.') + return (model, missing_keys, unexpected_keys, mismatched_keys, error_msgs) + + @classmethod + def _get_signature_keys(cls, obj): + parameters = inspect.signature(obj.__init__).parameters + required_parameters = {k: v for (k, v) in parameters.items() if v.default == inspect._empty} + optional_parameters = set({k for (k, v) in parameters.items() if v.default != inspect._empty}) + expected_modules = set(required_parameters.keys()) - {'self'} + return (expected_modules, optional_parameters) + + def _get_no_split_modules(self, device_map: str): + _no_split_modules = set() + modules_to_check = [self] + while len(modules_to_check) > 0: + module = modules_to_check.pop(-1) + if module.__class__.__name__ not in _no_split_modules: + if isinstance(module, ModelMixin): + if module._no_split_modules is None: + raise ValueError(f"{module.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model class needs to implement the `_no_split_modules` attribute.") + else: + _no_split_modules = _no_split_modules | set(module._no_split_modules) + modules_to_check += list(module.children()) + return list(_no_split_modules) + + @property + def device(self) -> torch.device: + return get_parameter_device(self) + + @property + def dtype(self) -> torch.dtype: + return get_parameter_dtype(self) + + def num_parameters(self, only_trainable: bool=False, exclude_embeddings: bool=False) -> int: + if exclude_embeddings: + embedding_param_names = [f'{name}.weight' for (name, module_type) in self.named_modules() if isinstance(module_type, torch.nn.Embedding)] + non_embedding_parameters = [parameter for (name, parameter) in self.named_parameters() if name not in embedding_param_names] + return sum((p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable)) + else: + return sum((p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)) + + def _convert_deprecated_attention_blocks(self, state_dict: OrderedDict) -> None: + deprecated_attention_block_paths = [] + + def recursive_find_attn_block(name, module): + if hasattr(module, '_from_deprecated_attn_block') and module._from_deprecated_attn_block: + deprecated_attention_block_paths.append(name) + for (sub_name, sub_module) in module.named_children(): + sub_name = sub_name if name == '' else f'{name}.{sub_name}' + recursive_find_attn_block(sub_name, sub_module) + recursive_find_attn_block('', self) + for path in deprecated_attention_block_paths: + if f'{path}.query.weight' in state_dict: + state_dict[f'{path}.to_q.weight'] = state_dict.pop(f'{path}.query.weight') + if f'{path}.query.bias' in state_dict: + state_dict[f'{path}.to_q.bias'] = state_dict.pop(f'{path}.query.bias') + if f'{path}.key.weight' in state_dict: + state_dict[f'{path}.to_k.weight'] = state_dict.pop(f'{path}.key.weight') + if f'{path}.key.bias' in state_dict: + state_dict[f'{path}.to_k.bias'] = state_dict.pop(f'{path}.key.bias') + if f'{path}.value.weight' in state_dict: + state_dict[f'{path}.to_v.weight'] = state_dict.pop(f'{path}.value.weight') + if f'{path}.value.bias' in state_dict: + state_dict[f'{path}.to_v.bias'] = state_dict.pop(f'{path}.value.bias') + if f'{path}.proj_attn.weight' in state_dict: + state_dict[f'{path}.to_out.0.weight'] = state_dict.pop(f'{path}.proj_attn.weight') + if f'{path}.proj_attn.bias' in state_dict: + state_dict[f'{path}.to_out.0.bias'] = state_dict.pop(f'{path}.proj_attn.bias') + + def _temp_convert_self_to_deprecated_attention_blocks(self) -> None: + deprecated_attention_block_modules = [] + + def recursive_find_attn_block(module): + if hasattr(module, '_from_deprecated_attn_block') and module._from_deprecated_attn_block: + deprecated_attention_block_modules.append(module) + for sub_module in module.children(): + recursive_find_attn_block(sub_module) + recursive_find_attn_block(self) + for module in deprecated_attention_block_modules: + module.query = module.to_q + module.key = module.to_k + module.value = module.to_v + module.proj_attn = module.to_out[0] + del module.to_q + del module.to_k + del module.to_v + del module.to_out + + def _undo_temp_convert_self_to_deprecated_attention_blocks(self) -> None: + deprecated_attention_block_modules = [] + + def recursive_find_attn_block(module) -> None: + if hasattr(module, '_from_deprecated_attn_block') and module._from_deprecated_attn_block: + deprecated_attention_block_modules.append(module) + for sub_module in module.children(): + recursive_find_attn_block(sub_module) + recursive_find_attn_block(self) + for module in deprecated_attention_block_modules: + module.to_q = module.query + module.to_k = module.key + module.to_v = module.value + module.to_out = nn.ModuleList([module.proj_attn, nn.Dropout(module.dropout)]) + del module.query + del module.key + del module.value + del module.proj_attn + +class LegacyModelMixin(ModelMixin): + + @classmethod + @validate_hf_hub_args + def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): + from .model_loading_utils import _fetch_remapped_cls_from_config + kwargs_copy = kwargs.copy() + cache_dir = kwargs.pop('cache_dir', None) + force_download = kwargs.pop('force_download', False) + proxies = kwargs.pop('proxies', None) + local_files_only = kwargs.pop('local_files_only', None) + token = kwargs.pop('token', None) + revision = kwargs.pop('revision', None) + subfolder = kwargs.pop('subfolder', None) + config_path = pretrained_model_name_or_path + user_agent = {'diffusers': __version__, 'file_type': 'model', 'framework': 'pytorch'} + (config, _, _) = cls.load_config(config_path, cache_dir=cache_dir, return_unused_kwargs=True, return_commit_hash=True, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, **kwargs) + remapped_class = _fetch_remapped_cls_from_config(config, cls) + return remapped_class.from_pretrained(pretrained_model_name_or_path, **kwargs_copy) + +# File: diffusers-main/src/diffusers/models/normalization.py +import numbers +from typing import Dict, Optional, Tuple +import torch +import torch.nn as nn +import torch.nn.functional as F +from ..utils import is_torch_version +from .activations import get_activation +from .embeddings import CombinedTimestepLabelEmbeddings, PixArtAlphaCombinedTimestepSizeEmbeddings + +class AdaLayerNorm(nn.Module): + + def __init__(self, embedding_dim: int, num_embeddings: Optional[int]=None, output_dim: Optional[int]=None, norm_elementwise_affine: bool=False, norm_eps: float=1e-05, chunk_dim: int=0): + super().__init__() + self.chunk_dim = chunk_dim + output_dim = output_dim or embedding_dim * 2 + if num_embeddings is not None: + self.emb = nn.Embedding(num_embeddings, embedding_dim) + else: + self.emb = None + self.silu = nn.SiLU() + self.linear = nn.Linear(embedding_dim, output_dim) + self.norm = nn.LayerNorm(output_dim // 2, norm_eps, norm_elementwise_affine) + + def forward(self, x: torch.Tensor, timestep: Optional[torch.Tensor]=None, temb: Optional[torch.Tensor]=None) -> torch.Tensor: + if self.emb is not None: + temb = self.emb(timestep) + temb = self.linear(self.silu(temb)) + if self.chunk_dim == 1: + (shift, scale) = temb.chunk(2, dim=1) + shift = shift[:, None, :] + scale = scale[:, None, :] + else: + (scale, shift) = temb.chunk(2, dim=0) + x = self.norm(x) * (1 + scale) + shift + return x + +class FP32LayerNorm(nn.LayerNorm): + + def forward(self, inputs: torch.Tensor) -> torch.Tensor: + origin_dtype = inputs.dtype + return F.layer_norm(inputs.float(), self.normalized_shape, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps).to(origin_dtype) + +class AdaLayerNormZero(nn.Module): + + def __init__(self, embedding_dim: int, num_embeddings: Optional[int]=None, norm_type='layer_norm', bias=True): + super().__init__() + if num_embeddings is not None: + self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim) + else: + self.emb = None + self.silu = nn.SiLU() + self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias) + if norm_type == 'layer_norm': + self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-06) + elif norm_type == 'fp32_layer_norm': + self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=False, bias=False) + else: + raise ValueError(f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'.") + + def forward(self, x: torch.Tensor, timestep: Optional[torch.Tensor]=None, class_labels: Optional[torch.LongTensor]=None, hidden_dtype: Optional[torch.dtype]=None, emb: Optional[torch.Tensor]=None) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: + if self.emb is not None: + emb = self.emb(timestep, class_labels, hidden_dtype=hidden_dtype) + emb = self.linear(self.silu(emb)) + (shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp) = emb.chunk(6, dim=1) + x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] + return (x, gate_msa, shift_mlp, scale_mlp, gate_mlp) + +class AdaLayerNormZeroSingle(nn.Module): + + def __init__(self, embedding_dim: int, norm_type='layer_norm', bias=True): + super().__init__() + self.silu = nn.SiLU() + self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias) + if norm_type == 'layer_norm': + self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-06) + else: + raise ValueError(f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'.") + + def forward(self, x: torch.Tensor, emb: Optional[torch.Tensor]=None) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: + emb = self.linear(self.silu(emb)) + (shift_msa, scale_msa, gate_msa) = emb.chunk(3, dim=1) + x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] + return (x, gate_msa) + +class LuminaRMSNormZero(nn.Module): + + def __init__(self, embedding_dim: int, norm_eps: float, norm_elementwise_affine: bool): + super().__init__() + self.silu = nn.SiLU() + self.linear = nn.Linear(min(embedding_dim, 1024), 4 * embedding_dim, bias=True) + self.norm = RMSNorm(embedding_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) + + def forward(self, x: torch.Tensor, emb: Optional[torch.Tensor]=None) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: + emb = self.linear(self.silu(emb)) + (scale_msa, gate_msa, scale_mlp, gate_mlp) = emb.chunk(4, dim=1) + x = self.norm(x) * (1 + scale_msa[:, None]) + return (x, gate_msa, scale_mlp, gate_mlp) + +class AdaLayerNormSingle(nn.Module): + + def __init__(self, embedding_dim: int, use_additional_conditions: bool=False): + super().__init__() + self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings(embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions) + self.silu = nn.SiLU() + self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True) + + def forward(self, timestep: torch.Tensor, added_cond_kwargs: Optional[Dict[str, torch.Tensor]]=None, batch_size: Optional[int]=None, hidden_dtype: Optional[torch.dtype]=None) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: + embedded_timestep = self.emb(timestep, **added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_dtype) + return (self.linear(self.silu(embedded_timestep)), embedded_timestep) + +class AdaGroupNorm(nn.Module): + + def __init__(self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str]=None, eps: float=1e-05): + super().__init__() + self.num_groups = num_groups + self.eps = eps + if act_fn is None: + self.act = None + else: + self.act = get_activation(act_fn) + self.linear = nn.Linear(embedding_dim, out_dim * 2) + + def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor: + if self.act: + emb = self.act(emb) + emb = self.linear(emb) + emb = emb[:, :, None, None] + (scale, shift) = emb.chunk(2, dim=1) + x = F.group_norm(x, self.num_groups, eps=self.eps) + x = x * (1 + scale) + shift + return x + +class AdaLayerNormContinuous(nn.Module): + + def __init__(self, embedding_dim: int, conditioning_embedding_dim: int, elementwise_affine=True, eps=1e-05, bias=True, norm_type='layer_norm'): + super().__init__() + self.silu = nn.SiLU() + self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias) + if norm_type == 'layer_norm': + self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias) + elif norm_type == 'rms_norm': + self.norm = RMSNorm(embedding_dim, eps, elementwise_affine) + else: + raise ValueError(f'unknown norm_type {norm_type}') + + def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor: + emb = self.linear(self.silu(conditioning_embedding).to(x.dtype)) + (scale, shift) = torch.chunk(emb, 2, dim=1) + x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :] + return x + +class LuminaLayerNormContinuous(nn.Module): + + def __init__(self, embedding_dim: int, conditioning_embedding_dim: int, elementwise_affine=True, eps=1e-05, bias=True, norm_type='layer_norm', out_dim: Optional[int]=None): + super().__init__() + self.silu = nn.SiLU() + self.linear_1 = nn.Linear(conditioning_embedding_dim, embedding_dim, bias=bias) + if norm_type == 'layer_norm': + self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias) + else: + raise ValueError(f'unknown norm_type {norm_type}') + if out_dim is not None: + self.linear_2 = nn.Linear(embedding_dim, out_dim, bias=bias) + + def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor: + emb = self.linear_1(self.silu(conditioning_embedding).to(x.dtype)) + scale = emb + x = self.norm(x) * (1 + scale)[:, None, :] + if self.linear_2 is not None: + x = self.linear_2(x) + return x + +class CogVideoXLayerNormZero(nn.Module): + + def __init__(self, conditioning_dim: int, embedding_dim: int, elementwise_affine: bool=True, eps: float=1e-05, bias: bool=True) -> None: + super().__init__() + self.silu = nn.SiLU() + self.linear = nn.Linear(conditioning_dim, 6 * embedding_dim, bias=bias) + self.norm = nn.LayerNorm(embedding_dim, eps=eps, elementwise_affine=elementwise_affine) + + def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: + (shift, scale, gate, enc_shift, enc_scale, enc_gate) = self.linear(self.silu(temb)).chunk(6, dim=1) + hidden_states = self.norm(hidden_states) * (1 + scale)[:, None, :] + shift[:, None, :] + encoder_hidden_states = self.norm(encoder_hidden_states) * (1 + enc_scale)[:, None, :] + enc_shift[:, None, :] + return (hidden_states, encoder_hidden_states, gate[:, None, :], enc_gate[:, None, :]) +if is_torch_version('>=', '2.1.0'): + LayerNorm = nn.LayerNorm +else: + + class LayerNorm(nn.Module): + + def __init__(self, dim, eps: float=1e-05, elementwise_affine: bool=True, bias: bool=True): + super().__init__() + self.eps = eps + if isinstance(dim, numbers.Integral): + dim = (dim,) + self.dim = torch.Size(dim) + if elementwise_affine: + self.weight = nn.Parameter(torch.ones(dim)) + self.bias = nn.Parameter(torch.zeros(dim)) if bias else None + else: + self.weight = None + self.bias = None + + def forward(self, input): + return F.layer_norm(input, self.dim, self.weight, self.bias, self.eps) + +class RMSNorm(nn.Module): + + def __init__(self, dim, eps: float, elementwise_affine: bool=True): + super().__init__() + self.eps = eps + if isinstance(dim, numbers.Integral): + dim = (dim,) + self.dim = torch.Size(dim) + if elementwise_affine: + self.weight = nn.Parameter(torch.ones(dim)) + else: + self.weight = None + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.eps) + if self.weight is not None: + if self.weight.dtype in [torch.float16, torch.bfloat16]: + hidden_states = hidden_states.to(self.weight.dtype) + hidden_states = hidden_states * self.weight + else: + hidden_states = hidden_states.to(input_dtype) + return hidden_states + +class GlobalResponseNorm(nn.Module): + + def __init__(self, dim): + super().__init__() + self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) + self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) + + def forward(self, x): + gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True) + nx = gx / (gx.mean(dim=-1, keepdim=True) + 1e-06) + return self.gamma * (x * nx) + self.beta + x + +# File: diffusers-main/src/diffusers/models/resnet.py +from functools import partial +from typing import Optional, Tuple, Union +import torch +import torch.nn as nn +import torch.nn.functional as F +from ..utils import deprecate +from .activations import get_activation +from .attention_processor import SpatialNorm +from .downsampling import Downsample1D, Downsample2D, FirDownsample2D, KDownsample2D, downsample_2d +from .normalization import AdaGroupNorm +from .upsampling import FirUpsample2D, KUpsample2D, Upsample1D, Upsample2D, upfirdn2d_native, upsample_2d + +class ResnetBlockCondNorm2D(nn.Module): + + def __init__(self, *, in_channels: int, out_channels: Optional[int]=None, conv_shortcut: bool=False, dropout: float=0.0, temb_channels: int=512, groups: int=32, groups_out: Optional[int]=None, eps: float=1e-06, non_linearity: str='swish', time_embedding_norm: str='ada_group', output_scale_factor: float=1.0, use_in_shortcut: Optional[bool]=None, up: bool=False, down: bool=False, conv_shortcut_bias: bool=True, conv_2d_out_channels: Optional[int]=None): + super().__init__() + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + self.up = up + self.down = down + self.output_scale_factor = output_scale_factor + self.time_embedding_norm = time_embedding_norm + if groups_out is None: + groups_out = groups + if self.time_embedding_norm == 'ada_group': + self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps) + elif self.time_embedding_norm == 'spatial': + self.norm1 = SpatialNorm(in_channels, temb_channels) + else: + raise ValueError(f' unsupported time_embedding_norm: {self.time_embedding_norm}') + self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) + if self.time_embedding_norm == 'ada_group': + self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps) + elif self.time_embedding_norm == 'spatial': + self.norm2 = SpatialNorm(out_channels, temb_channels) + else: + raise ValueError(f' unsupported time_embedding_norm: {self.time_embedding_norm}') + self.dropout = torch.nn.Dropout(dropout) + conv_2d_out_channels = conv_2d_out_channels or out_channels + self.conv2 = nn.Conv2d(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1) + self.nonlinearity = get_activation(non_linearity) + self.upsample = self.downsample = None + if self.up: + self.upsample = Upsample2D(in_channels, use_conv=False) + elif self.down: + self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name='op') + self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut + self.conv_shortcut = None + if self.use_in_shortcut: + self.conv_shortcut = nn.Conv2d(in_channels, conv_2d_out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias) + + def forward(self, input_tensor: torch.Tensor, temb: torch.Tensor, *args, **kwargs) -> torch.Tensor: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + hidden_states = input_tensor + hidden_states = self.norm1(hidden_states, temb) + hidden_states = self.nonlinearity(hidden_states) + if self.upsample is not None: + if hidden_states.shape[0] >= 64: + input_tensor = input_tensor.contiguous() + hidden_states = hidden_states.contiguous() + input_tensor = self.upsample(input_tensor) + hidden_states = self.upsample(hidden_states) + elif self.downsample is not None: + input_tensor = self.downsample(input_tensor) + hidden_states = self.downsample(hidden_states) + hidden_states = self.conv1(hidden_states) + hidden_states = self.norm2(hidden_states, temb) + hidden_states = self.nonlinearity(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.conv2(hidden_states) + if self.conv_shortcut is not None: + input_tensor = self.conv_shortcut(input_tensor) + output_tensor = (input_tensor + hidden_states) / self.output_scale_factor + return output_tensor + +class ResnetBlock2D(nn.Module): + + def __init__(self, *, in_channels: int, out_channels: Optional[int]=None, conv_shortcut: bool=False, dropout: float=0.0, temb_channels: int=512, groups: int=32, groups_out: Optional[int]=None, pre_norm: bool=True, eps: float=1e-06, non_linearity: str='swish', skip_time_act: bool=False, time_embedding_norm: str='default', kernel: Optional[torch.Tensor]=None, output_scale_factor: float=1.0, use_in_shortcut: Optional[bool]=None, up: bool=False, down: bool=False, conv_shortcut_bias: bool=True, conv_2d_out_channels: Optional[int]=None): + super().__init__() + if time_embedding_norm == 'ada_group': + raise ValueError('This class cannot be used with `time_embedding_norm==ada_group`, please use `ResnetBlockCondNorm2D` instead') + if time_embedding_norm == 'spatial': + raise ValueError('This class cannot be used with `time_embedding_norm==spatial`, please use `ResnetBlockCondNorm2D` instead') + self.pre_norm = True + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + self.up = up + self.down = down + self.output_scale_factor = output_scale_factor + self.time_embedding_norm = time_embedding_norm + self.skip_time_act = skip_time_act + if groups_out is None: + groups_out = groups + self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) + self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) + if temb_channels is not None: + if self.time_embedding_norm == 'default': + self.time_emb_proj = nn.Linear(temb_channels, out_channels) + elif self.time_embedding_norm == 'scale_shift': + self.time_emb_proj = nn.Linear(temb_channels, 2 * out_channels) + else: + raise ValueError(f'unknown time_embedding_norm : {self.time_embedding_norm} ') + else: + self.time_emb_proj = None + self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) + self.dropout = torch.nn.Dropout(dropout) + conv_2d_out_channels = conv_2d_out_channels or out_channels + self.conv2 = nn.Conv2d(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1) + self.nonlinearity = get_activation(non_linearity) + self.upsample = self.downsample = None + if self.up: + if kernel == 'fir': + fir_kernel = (1, 3, 3, 1) + self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel) + elif kernel == 'sde_vp': + self.upsample = partial(F.interpolate, scale_factor=2.0, mode='nearest') + else: + self.upsample = Upsample2D(in_channels, use_conv=False) + elif self.down: + if kernel == 'fir': + fir_kernel = (1, 3, 3, 1) + self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel) + elif kernel == 'sde_vp': + self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2) + else: + self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name='op') + self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut + self.conv_shortcut = None + if self.use_in_shortcut: + self.conv_shortcut = nn.Conv2d(in_channels, conv_2d_out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias) + + def forward(self, input_tensor: torch.Tensor, temb: torch.Tensor, *args, **kwargs) -> torch.Tensor: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + hidden_states = input_tensor + hidden_states = self.norm1(hidden_states) + hidden_states = self.nonlinearity(hidden_states) + if self.upsample is not None: + if hidden_states.shape[0] >= 64: + input_tensor = input_tensor.contiguous() + hidden_states = hidden_states.contiguous() + input_tensor = self.upsample(input_tensor) + hidden_states = self.upsample(hidden_states) + elif self.downsample is not None: + input_tensor = self.downsample(input_tensor) + hidden_states = self.downsample(hidden_states) + hidden_states = self.conv1(hidden_states) + if self.time_emb_proj is not None: + if not self.skip_time_act: + temb = self.nonlinearity(temb) + temb = self.time_emb_proj(temb)[:, :, None, None] + if self.time_embedding_norm == 'default': + if temb is not None: + hidden_states = hidden_states + temb + hidden_states = self.norm2(hidden_states) + elif self.time_embedding_norm == 'scale_shift': + if temb is None: + raise ValueError(f' `temb` should not be None when `time_embedding_norm` is {self.time_embedding_norm}') + (time_scale, time_shift) = torch.chunk(temb, 2, dim=1) + hidden_states = self.norm2(hidden_states) + hidden_states = hidden_states * (1 + time_scale) + time_shift + else: + hidden_states = self.norm2(hidden_states) + hidden_states = self.nonlinearity(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.conv2(hidden_states) + if self.conv_shortcut is not None: + input_tensor = self.conv_shortcut(input_tensor) + output_tensor = (input_tensor + hidden_states) / self.output_scale_factor + return output_tensor + +def rearrange_dims(tensor: torch.Tensor) -> torch.Tensor: + if len(tensor.shape) == 2: + return tensor[:, :, None] + if len(tensor.shape) == 3: + return tensor[:, :, None, :] + elif len(tensor.shape) == 4: + return tensor[:, :, 0, :] + else: + raise ValueError(f'`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.') + +class Conv1dBlock(nn.Module): + + def __init__(self, inp_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int]], n_groups: int=8, activation: str='mish'): + super().__init__() + self.conv1d = nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2) + self.group_norm = nn.GroupNorm(n_groups, out_channels) + self.mish = get_activation(activation) + + def forward(self, inputs: torch.Tensor) -> torch.Tensor: + intermediate_repr = self.conv1d(inputs) + intermediate_repr = rearrange_dims(intermediate_repr) + intermediate_repr = self.group_norm(intermediate_repr) + intermediate_repr = rearrange_dims(intermediate_repr) + output = self.mish(intermediate_repr) + return output + +class ResidualTemporalBlock1D(nn.Module): + + def __init__(self, inp_channels: int, out_channels: int, embed_dim: int, kernel_size: Union[int, Tuple[int, int]]=5, activation: str='mish'): + super().__init__() + self.conv_in = Conv1dBlock(inp_channels, out_channels, kernel_size) + self.conv_out = Conv1dBlock(out_channels, out_channels, kernel_size) + self.time_emb_act = get_activation(activation) + self.time_emb = nn.Linear(embed_dim, out_channels) + self.residual_conv = nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity() + + def forward(self, inputs: torch.Tensor, t: torch.Tensor) -> torch.Tensor: + t = self.time_emb_act(t) + t = self.time_emb(t) + out = self.conv_in(inputs) + rearrange_dims(t) + out = self.conv_out(out) + return out + self.residual_conv(inputs) + +class TemporalConvLayer(nn.Module): + + def __init__(self, in_dim: int, out_dim: Optional[int]=None, dropout: float=0.0, norm_num_groups: int=32): + super().__init__() + out_dim = out_dim or in_dim + self.in_dim = in_dim + self.out_dim = out_dim + self.conv1 = nn.Sequential(nn.GroupNorm(norm_num_groups, in_dim), nn.SiLU(), nn.Conv3d(in_dim, out_dim, (3, 1, 1), padding=(1, 0, 0))) + self.conv2 = nn.Sequential(nn.GroupNorm(norm_num_groups, out_dim), nn.SiLU(), nn.Dropout(dropout), nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0))) + self.conv3 = nn.Sequential(nn.GroupNorm(norm_num_groups, out_dim), nn.SiLU(), nn.Dropout(dropout), nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0))) + self.conv4 = nn.Sequential(nn.GroupNorm(norm_num_groups, out_dim), nn.SiLU(), nn.Dropout(dropout), nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0))) + nn.init.zeros_(self.conv4[-1].weight) + nn.init.zeros_(self.conv4[-1].bias) + + def forward(self, hidden_states: torch.Tensor, num_frames: int=1) -> torch.Tensor: + hidden_states = hidden_states[None, :].reshape((-1, num_frames) + hidden_states.shape[1:]).permute(0, 2, 1, 3, 4) + identity = hidden_states + hidden_states = self.conv1(hidden_states) + hidden_states = self.conv2(hidden_states) + hidden_states = self.conv3(hidden_states) + hidden_states = self.conv4(hidden_states) + hidden_states = identity + hidden_states + hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape((hidden_states.shape[0] * hidden_states.shape[2], -1) + hidden_states.shape[3:]) + return hidden_states + +class TemporalResnetBlock(nn.Module): + + def __init__(self, in_channels: int, out_channels: Optional[int]=None, temb_channels: int=512, eps: float=1e-06): + super().__init__() + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + kernel_size = (3, 1, 1) + padding = [k // 2 for k in kernel_size] + self.norm1 = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=eps, affine=True) + self.conv1 = nn.Conv3d(in_channels, out_channels, kernel_size=kernel_size, stride=1, padding=padding) + if temb_channels is not None: + self.time_emb_proj = nn.Linear(temb_channels, out_channels) + else: + self.time_emb_proj = None + self.norm2 = torch.nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=eps, affine=True) + self.dropout = torch.nn.Dropout(0.0) + self.conv2 = nn.Conv3d(out_channels, out_channels, kernel_size=kernel_size, stride=1, padding=padding) + self.nonlinearity = get_activation('silu') + self.use_in_shortcut = self.in_channels != out_channels + self.conv_shortcut = None + if self.use_in_shortcut: + self.conv_shortcut = nn.Conv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) + + def forward(self, input_tensor: torch.Tensor, temb: torch.Tensor) -> torch.Tensor: + hidden_states = input_tensor + hidden_states = self.norm1(hidden_states) + hidden_states = self.nonlinearity(hidden_states) + hidden_states = self.conv1(hidden_states) + if self.time_emb_proj is not None: + temb = self.nonlinearity(temb) + temb = self.time_emb_proj(temb)[:, :, :, None, None] + temb = temb.permute(0, 2, 1, 3, 4) + hidden_states = hidden_states + temb + hidden_states = self.norm2(hidden_states) + hidden_states = self.nonlinearity(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.conv2(hidden_states) + if self.conv_shortcut is not None: + input_tensor = self.conv_shortcut(input_tensor) + output_tensor = input_tensor + hidden_states + return output_tensor + +class SpatioTemporalResBlock(nn.Module): + + def __init__(self, in_channels: int, out_channels: Optional[int]=None, temb_channels: int=512, eps: float=1e-06, temporal_eps: Optional[float]=None, merge_factor: float=0.5, merge_strategy='learned_with_images', switch_spatial_to_temporal_mix: bool=False): + super().__init__() + self.spatial_res_block = ResnetBlock2D(in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=eps) + self.temporal_res_block = TemporalResnetBlock(in_channels=out_channels if out_channels is not None else in_channels, out_channels=out_channels if out_channels is not None else in_channels, temb_channels=temb_channels, eps=temporal_eps if temporal_eps is not None else eps) + self.time_mixer = AlphaBlender(alpha=merge_factor, merge_strategy=merge_strategy, switch_spatial_to_temporal_mix=switch_spatial_to_temporal_mix) + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, image_only_indicator: Optional[torch.Tensor]=None): + num_frames = image_only_indicator.shape[-1] + hidden_states = self.spatial_res_block(hidden_states, temb) + (batch_frames, channels, height, width) = hidden_states.shape + batch_size = batch_frames // num_frames + hidden_states_mix = hidden_states[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4) + hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4) + if temb is not None: + temb = temb.reshape(batch_size, num_frames, -1) + hidden_states = self.temporal_res_block(hidden_states, temb) + hidden_states = self.time_mixer(x_spatial=hidden_states_mix, x_temporal=hidden_states, image_only_indicator=image_only_indicator) + hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(batch_frames, channels, height, width) + return hidden_states + +class AlphaBlender(nn.Module): + strategies = ['learned', 'fixed', 'learned_with_images'] + + def __init__(self, alpha: float, merge_strategy: str='learned_with_images', switch_spatial_to_temporal_mix: bool=False): + super().__init__() + self.merge_strategy = merge_strategy + self.switch_spatial_to_temporal_mix = switch_spatial_to_temporal_mix + if merge_strategy not in self.strategies: + raise ValueError(f'merge_strategy needs to be in {self.strategies}') + if self.merge_strategy == 'fixed': + self.register_buffer('mix_factor', torch.Tensor([alpha])) + elif self.merge_strategy == 'learned' or self.merge_strategy == 'learned_with_images': + self.register_parameter('mix_factor', torch.nn.Parameter(torch.Tensor([alpha]))) + else: + raise ValueError(f'Unknown merge strategy {self.merge_strategy}') + + def get_alpha(self, image_only_indicator: torch.Tensor, ndims: int) -> torch.Tensor: + if self.merge_strategy == 'fixed': + alpha = self.mix_factor + elif self.merge_strategy == 'learned': + alpha = torch.sigmoid(self.mix_factor) + elif self.merge_strategy == 'learned_with_images': + if image_only_indicator is None: + raise ValueError('Please provide image_only_indicator to use learned_with_images merge strategy') + alpha = torch.where(image_only_indicator.bool(), torch.ones(1, 1, device=image_only_indicator.device), torch.sigmoid(self.mix_factor)[..., None]) + if ndims == 5: + alpha = alpha[:, None, :, None, None] + elif ndims == 3: + alpha = alpha.reshape(-1)[:, None, None] + else: + raise ValueError(f'Unexpected ndims {ndims}. Dimensions should be 3 or 5') + else: + raise NotImplementedError + return alpha + + def forward(self, x_spatial: torch.Tensor, x_temporal: torch.Tensor, image_only_indicator: Optional[torch.Tensor]=None) -> torch.Tensor: + alpha = self.get_alpha(image_only_indicator, x_spatial.ndim) + alpha = alpha.to(x_spatial.dtype) + if self.switch_spatial_to_temporal_mix: + alpha = 1.0 - alpha + x = alpha * x_spatial + (1.0 - alpha) * x_temporal + return x + +# File: diffusers-main/src/diffusers/models/resnet_flax.py +import flax.linen as nn +import jax +import jax.numpy as jnp + +class FlaxUpsample2D(nn.Module): + out_channels: int + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.conv = nn.Conv(self.out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype) + + def __call__(self, hidden_states): + (batch, height, width, channels) = hidden_states.shape + hidden_states = jax.image.resize(hidden_states, shape=(batch, height * 2, width * 2, channels), method='nearest') + hidden_states = self.conv(hidden_states) + return hidden_states + +class FlaxDownsample2D(nn.Module): + out_channels: int + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.conv = nn.Conv(self.out_channels, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), dtype=self.dtype) + + def __call__(self, hidden_states): + hidden_states = self.conv(hidden_states) + return hidden_states + +class FlaxResnetBlock2D(nn.Module): + in_channels: int + out_channels: int = None + dropout_prob: float = 0.0 + use_nin_shortcut: bool = None + dtype: jnp.dtype = jnp.float32 + + def setup(self): + out_channels = self.in_channels if self.out_channels is None else self.out_channels + self.norm1 = nn.GroupNorm(num_groups=32, epsilon=1e-05) + self.conv1 = nn.Conv(out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype) + self.time_emb_proj = nn.Dense(out_channels, dtype=self.dtype) + self.norm2 = nn.GroupNorm(num_groups=32, epsilon=1e-05) + self.dropout = nn.Dropout(self.dropout_prob) + self.conv2 = nn.Conv(out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype) + use_nin_shortcut = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut + self.conv_shortcut = None + if use_nin_shortcut: + self.conv_shortcut = nn.Conv(out_channels, kernel_size=(1, 1), strides=(1, 1), padding='VALID', dtype=self.dtype) + + def __call__(self, hidden_states, temb, deterministic=True): + residual = hidden_states + hidden_states = self.norm1(hidden_states) + hidden_states = nn.swish(hidden_states) + hidden_states = self.conv1(hidden_states) + temb = self.time_emb_proj(nn.swish(temb)) + temb = jnp.expand_dims(jnp.expand_dims(temb, 1), 1) + hidden_states = hidden_states + temb + hidden_states = self.norm2(hidden_states) + hidden_states = nn.swish(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic) + hidden_states = self.conv2(hidden_states) + if self.conv_shortcut is not None: + residual = self.conv_shortcut(residual) + return hidden_states + residual + +# File: diffusers-main/src/diffusers/models/transformers/__init__.py +from ...utils import is_torch_available +if is_torch_available(): + from .auraflow_transformer_2d import AuraFlowTransformer2DModel + from .cogvideox_transformer_3d import CogVideoXTransformer3DModel + from .dit_transformer_2d import DiTTransformer2DModel + from .dual_transformer_2d import DualTransformer2DModel + from .hunyuan_transformer_2d import HunyuanDiT2DModel + from .latte_transformer_3d import LatteTransformer3DModel + from .lumina_nextdit2d import LuminaNextDiT2DModel + from .pixart_transformer_2d import PixArtTransformer2DModel + from .prior_transformer import PriorTransformer + from .stable_audio_transformer import StableAudioDiTModel + from .t5_film_transformer import T5FilmDecoder + from .transformer_2d import Transformer2DModel + from .transformer_flux import FluxTransformer2DModel + from .transformer_sd3 import SD3Transformer2DModel + from .transformer_temporal import TransformerTemporalModel + +# File: diffusers-main/src/diffusers/models/transformers/auraflow_transformer_2d.py +from typing import Any, Dict, Union +import torch +import torch.nn as nn +import torch.nn.functional as F +from ...configuration_utils import ConfigMixin, register_to_config +from ...utils import is_torch_version, logging +from ...utils.torch_utils import maybe_allow_in_graph +from ..attention_processor import Attention, AttentionProcessor, AuraFlowAttnProcessor2_0, FusedAuraFlowAttnProcessor2_0 +from ..embeddings import TimestepEmbedding, Timesteps +from ..modeling_outputs import Transformer2DModelOutput +from ..modeling_utils import ModelMixin +from ..normalization import AdaLayerNormZero, FP32LayerNorm +logger = logging.get_logger(__name__) + +def find_multiple(n: int, k: int) -> int: + if n % k == 0: + return n + return n + k - n % k + +class AuraFlowPatchEmbed(nn.Module): + + def __init__(self, height=224, width=224, patch_size=16, in_channels=3, embed_dim=768, pos_embed_max_size=None): + super().__init__() + self.num_patches = height // patch_size * (width // patch_size) + self.pos_embed_max_size = pos_embed_max_size + self.proj = nn.Linear(patch_size * patch_size * in_channels, embed_dim) + self.pos_embed = nn.Parameter(torch.randn(1, pos_embed_max_size, embed_dim) * 0.1) + self.patch_size = patch_size + (self.height, self.width) = (height // patch_size, width // patch_size) + self.base_size = height // patch_size + + def pe_selection_index_based_on_dim(self, h, w): + (h_p, w_p) = (h // self.patch_size, w // self.patch_size) + original_pe_indexes = torch.arange(self.pos_embed.shape[1]) + (h_max, w_max) = (int(self.pos_embed_max_size ** 0.5), int(self.pos_embed_max_size ** 0.5)) + original_pe_indexes = original_pe_indexes.view(h_max, w_max) + starth = h_max // 2 - h_p // 2 + endh = starth + h_p + startw = w_max // 2 - w_p // 2 + endw = startw + w_p + original_pe_indexes = original_pe_indexes[starth:endh, startw:endw] + return original_pe_indexes.flatten() + + def forward(self, latent): + (batch_size, num_channels, height, width) = latent.size() + latent = latent.view(batch_size, num_channels, height // self.patch_size, self.patch_size, width // self.patch_size, self.patch_size) + latent = latent.permute(0, 2, 4, 1, 3, 5).flatten(-3).flatten(1, 2) + latent = self.proj(latent) + pe_index = self.pe_selection_index_based_on_dim(height, width) + return latent + self.pos_embed[:, pe_index] + +class AuraFlowFeedForward(nn.Module): + + def __init__(self, dim, hidden_dim=None) -> None: + super().__init__() + if hidden_dim is None: + hidden_dim = 4 * dim + final_hidden_dim = int(2 * hidden_dim / 3) + final_hidden_dim = find_multiple(final_hidden_dim, 256) + self.linear_1 = nn.Linear(dim, final_hidden_dim, bias=False) + self.linear_2 = nn.Linear(dim, final_hidden_dim, bias=False) + self.out_projection = nn.Linear(final_hidden_dim, dim, bias=False) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = F.silu(self.linear_1(x)) * self.linear_2(x) + x = self.out_projection(x) + return x + +class AuraFlowPreFinalBlock(nn.Module): + + def __init__(self, embedding_dim: int, conditioning_embedding_dim: int): + super().__init__() + self.silu = nn.SiLU() + self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=False) + + def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor: + emb = self.linear(self.silu(conditioning_embedding).to(x.dtype)) + (scale, shift) = torch.chunk(emb, 2, dim=1) + x = x * (1 + scale)[:, None, :] + shift[:, None, :] + return x + +@maybe_allow_in_graph +class AuraFlowSingleTransformerBlock(nn.Module): + + def __init__(self, dim, num_attention_heads, attention_head_dim): + super().__init__() + self.norm1 = AdaLayerNormZero(dim, bias=False, norm_type='fp32_layer_norm') + processor = AuraFlowAttnProcessor2_0() + self.attn = Attention(query_dim=dim, cross_attention_dim=None, dim_head=attention_head_dim, heads=num_attention_heads, qk_norm='fp32_layer_norm', out_dim=dim, bias=False, out_bias=False, processor=processor) + self.norm2 = FP32LayerNorm(dim, elementwise_affine=False, bias=False) + self.ff = AuraFlowFeedForward(dim, dim * 4) + + def forward(self, hidden_states: torch.FloatTensor, temb: torch.FloatTensor): + residual = hidden_states + (norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp) = self.norm1(hidden_states, emb=temb) + attn_output = self.attn(hidden_states=norm_hidden_states) + hidden_states = self.norm2(residual + gate_msa.unsqueeze(1) * attn_output) + hidden_states = hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] + ff_output = self.ff(hidden_states) + hidden_states = gate_mlp.unsqueeze(1) * ff_output + hidden_states = residual + hidden_states + return hidden_states + +@maybe_allow_in_graph +class AuraFlowJointTransformerBlock(nn.Module): + + def __init__(self, dim, num_attention_heads, attention_head_dim): + super().__init__() + self.norm1 = AdaLayerNormZero(dim, bias=False, norm_type='fp32_layer_norm') + self.norm1_context = AdaLayerNormZero(dim, bias=False, norm_type='fp32_layer_norm') + processor = AuraFlowAttnProcessor2_0() + self.attn = Attention(query_dim=dim, cross_attention_dim=None, added_kv_proj_dim=dim, added_proj_bias=False, dim_head=attention_head_dim, heads=num_attention_heads, qk_norm='fp32_layer_norm', out_dim=dim, bias=False, out_bias=False, processor=processor, context_pre_only=False) + self.norm2 = FP32LayerNorm(dim, elementwise_affine=False, bias=False) + self.ff = AuraFlowFeedForward(dim, dim * 4) + self.norm2_context = FP32LayerNorm(dim, elementwise_affine=False, bias=False) + self.ff_context = AuraFlowFeedForward(dim, dim * 4) + + def forward(self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor): + residual = hidden_states + residual_context = encoder_hidden_states + (norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp) = self.norm1(hidden_states, emb=temb) + (norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp) = self.norm1_context(encoder_hidden_states, emb=temb) + (attn_output, context_attn_output) = self.attn(hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states) + hidden_states = self.norm2(residual + gate_msa.unsqueeze(1) * attn_output) + hidden_states = hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] + hidden_states = gate_mlp.unsqueeze(1) * self.ff(hidden_states) + hidden_states = residual + hidden_states + encoder_hidden_states = self.norm2_context(residual_context + c_gate_msa.unsqueeze(1) * context_attn_output) + encoder_hidden_states = encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] + encoder_hidden_states = c_gate_mlp.unsqueeze(1) * self.ff_context(encoder_hidden_states) + encoder_hidden_states = residual_context + encoder_hidden_states + return (encoder_hidden_states, hidden_states) + +class AuraFlowTransformer2DModel(ModelMixin, ConfigMixin): + _no_split_modules = ['AuraFlowJointTransformerBlock', 'AuraFlowSingleTransformerBlock', 'AuraFlowPatchEmbed'] + _supports_gradient_checkpointing = True + + @register_to_config + def __init__(self, sample_size: int=64, patch_size: int=2, in_channels: int=4, num_mmdit_layers: int=4, num_single_dit_layers: int=32, attention_head_dim: int=256, num_attention_heads: int=12, joint_attention_dim: int=2048, caption_projection_dim: int=3072, out_channels: int=4, pos_embed_max_size: int=1024): + super().__init__() + default_out_channels = in_channels + self.out_channels = out_channels if out_channels is not None else default_out_channels + self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim + self.pos_embed = AuraFlowPatchEmbed(height=self.config.sample_size, width=self.config.sample_size, patch_size=self.config.patch_size, in_channels=self.config.in_channels, embed_dim=self.inner_dim, pos_embed_max_size=pos_embed_max_size) + self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.config.caption_projection_dim, bias=False) + self.time_step_embed = Timesteps(num_channels=256, downscale_freq_shift=0, scale=1000, flip_sin_to_cos=True) + self.time_step_proj = TimestepEmbedding(in_channels=256, time_embed_dim=self.inner_dim) + self.joint_transformer_blocks = nn.ModuleList([AuraFlowJointTransformerBlock(dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.config.attention_head_dim) for i in range(self.config.num_mmdit_layers)]) + self.single_transformer_blocks = nn.ModuleList([AuraFlowSingleTransformerBlock(dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.config.attention_head_dim) for _ in range(self.config.num_single_dit_layers)]) + self.norm_out = AuraFlowPreFinalBlock(self.inner_dim, self.inner_dim) + self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=False) + self.register_tokens = nn.Parameter(torch.randn(1, 8, self.inner_dim) * 0.02) + self.gradient_checkpointing = False + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def fuse_qkv_projections(self): + self.original_attn_processors = None + for (_, attn_processor) in self.attn_processors.items(): + if 'Added' in str(attn_processor.__class__.__name__): + raise ValueError('`fuse_qkv_projections()` is not supported for models having added KV projections.') + self.original_attn_processors = self.attn_processors + for module in self.modules(): + if isinstance(module, Attention): + module.fuse_projections(fuse=True) + self.set_attn_processor(FusedAuraFlowAttnProcessor2_0()) + + def unfuse_qkv_projections(self): + if self.original_attn_processors is not None: + self.set_attn_processor(self.original_attn_processors) + + def _set_gradient_checkpointing(self, module, value=False): + if hasattr(module, 'gradient_checkpointing'): + module.gradient_checkpointing = value + + def forward(self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor=None, timestep: torch.LongTensor=None, return_dict: bool=True) -> Union[torch.FloatTensor, Transformer2DModelOutput]: + (height, width) = hidden_states.shape[-2:] + hidden_states = self.pos_embed(hidden_states) + temb = self.time_step_embed(timestep).to(dtype=next(self.parameters()).dtype) + temb = self.time_step_proj(temb) + encoder_hidden_states = self.context_embedder(encoder_hidden_states) + encoder_hidden_states = torch.cat([self.register_tokens.repeat(encoder_hidden_states.size(0), 1, 1), encoder_hidden_states], dim=1) + for (index_block, block) in enumerate(self.joint_transformer_blocks): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + (encoder_hidden_states, hidden_states) = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, encoder_hidden_states, temb, **ckpt_kwargs) + else: + (encoder_hidden_states, hidden_states) = block(hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb) + if len(self.single_transformer_blocks) > 0: + encoder_seq_len = encoder_hidden_states.size(1) + combined_hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) + for (index_block, block) in enumerate(self.single_transformer_blocks): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + combined_hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(block), combined_hidden_states, temb, **ckpt_kwargs) + else: + combined_hidden_states = block(hidden_states=combined_hidden_states, temb=temb) + hidden_states = combined_hidden_states[:, encoder_seq_len:] + hidden_states = self.norm_out(hidden_states, temb) + hidden_states = self.proj_out(hidden_states) + patch_size = self.config.patch_size + out_channels = self.config.out_channels + height = height // patch_size + width = width // patch_size + hidden_states = hidden_states.reshape(shape=(hidden_states.shape[0], height, width, patch_size, patch_size, out_channels)) + hidden_states = torch.einsum('nhwpqc->nchpwq', hidden_states) + output = hidden_states.reshape(shape=(hidden_states.shape[0], out_channels, height * patch_size, width * patch_size)) + if not return_dict: + return (output,) + return Transformer2DModelOutput(sample=output) + +# File: diffusers-main/src/diffusers/models/transformers/cogvideox_transformer_3d.py +from typing import Any, Dict, Optional, Tuple, Union +import torch +from torch import nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...utils import is_torch_version, logging +from ...utils.torch_utils import maybe_allow_in_graph +from ..attention import Attention, FeedForward +from ..attention_processor import AttentionProcessor, CogVideoXAttnProcessor2_0, FusedCogVideoXAttnProcessor2_0 +from ..embeddings import CogVideoXPatchEmbed, TimestepEmbedding, Timesteps +from ..modeling_outputs import Transformer2DModelOutput +from ..modeling_utils import ModelMixin +from ..normalization import AdaLayerNorm, CogVideoXLayerNormZero +logger = logging.get_logger(__name__) + +@maybe_allow_in_graph +class CogVideoXBlock(nn.Module): + + def __init__(self, dim: int, num_attention_heads: int, attention_head_dim: int, time_embed_dim: int, dropout: float=0.0, activation_fn: str='gelu-approximate', attention_bias: bool=False, qk_norm: bool=True, norm_elementwise_affine: bool=True, norm_eps: float=1e-05, final_dropout: bool=True, ff_inner_dim: Optional[int]=None, ff_bias: bool=True, attention_out_bias: bool=True): + super().__init__() + self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) + self.attn1 = Attention(query_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, qk_norm='layer_norm' if qk_norm else None, eps=1e-06, bias=attention_bias, out_bias=attention_out_bias, processor=CogVideoXAttnProcessor2_0()) + self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) + self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout, inner_dim=ff_inner_dim, bias=ff_bias) + + def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]]=None) -> torch.Tensor: + text_seq_length = encoder_hidden_states.size(1) + (norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa) = self.norm1(hidden_states, encoder_hidden_states, temb) + (attn_hidden_states, attn_encoder_hidden_states) = self.attn1(hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, image_rotary_emb=image_rotary_emb) + hidden_states = hidden_states + gate_msa * attn_hidden_states + encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states + (norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff) = self.norm2(hidden_states, encoder_hidden_states, temb) + norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1) + ff_output = self.ff(norm_hidden_states) + hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:] + encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length] + return (hidden_states, encoder_hidden_states) + +class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__(self, num_attention_heads: int=30, attention_head_dim: int=64, in_channels: int=16, out_channels: Optional[int]=16, flip_sin_to_cos: bool=True, freq_shift: int=0, time_embed_dim: int=512, text_embed_dim: int=4096, num_layers: int=30, dropout: float=0.0, attention_bias: bool=True, sample_width: int=90, sample_height: int=60, sample_frames: int=49, patch_size: int=2, temporal_compression_ratio: int=4, max_text_seq_length: int=226, activation_fn: str='gelu-approximate', timestep_activation_fn: str='silu', norm_elementwise_affine: bool=True, norm_eps: float=1e-05, spatial_interpolation_scale: float=1.875, temporal_interpolation_scale: float=1.0, use_rotary_positional_embeddings: bool=False): + super().__init__() + inner_dim = num_attention_heads * attention_head_dim + self.patch_embed = CogVideoXPatchEmbed(patch_size=patch_size, in_channels=in_channels, embed_dim=inner_dim, text_embed_dim=text_embed_dim, bias=True, sample_width=sample_width, sample_height=sample_height, sample_frames=sample_frames, temporal_compression_ratio=temporal_compression_ratio, max_text_seq_length=max_text_seq_length, spatial_interpolation_scale=spatial_interpolation_scale, temporal_interpolation_scale=temporal_interpolation_scale, use_positional_embeddings=not use_rotary_positional_embeddings) + self.embedding_dropout = nn.Dropout(dropout) + self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift) + self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn) + self.transformer_blocks = nn.ModuleList([CogVideoXBlock(dim=inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, time_embed_dim=time_embed_dim, dropout=dropout, activation_fn=activation_fn, attention_bias=attention_bias, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps) for _ in range(num_layers)]) + self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine) + self.norm_out = AdaLayerNorm(embedding_dim=time_embed_dim, output_dim=2 * inner_dim, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, chunk_dim=1) + self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels) + self.gradient_checkpointing = False + + def _set_gradient_checkpointing(self, module, value=False): + self.gradient_checkpointing = value + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def fuse_qkv_projections(self): + self.original_attn_processors = None + for (_, attn_processor) in self.attn_processors.items(): + if 'Added' in str(attn_processor.__class__.__name__): + raise ValueError('`fuse_qkv_projections()` is not supported for models having added KV projections.') + self.original_attn_processors = self.attn_processors + for module in self.modules(): + if isinstance(module, Attention): + module.fuse_projections(fuse=True) + self.set_attn_processor(FusedCogVideoXAttnProcessor2_0()) + + def unfuse_qkv_projections(self): + if self.original_attn_processors is not None: + self.set_attn_processor(self.original_attn_processors) + + def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, timestep: Union[int, float, torch.LongTensor], timestep_cond: Optional[torch.Tensor]=None, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, return_dict: bool=True): + (batch_size, num_frames, channels, height, width) = hidden_states.shape + timesteps = timestep + t_emb = self.time_proj(timesteps) + t_emb = t_emb.to(dtype=hidden_states.dtype) + emb = self.time_embedding(t_emb, timestep_cond) + hidden_states = self.patch_embed(encoder_hidden_states, hidden_states) + hidden_states = self.embedding_dropout(hidden_states) + text_seq_length = encoder_hidden_states.shape[1] + encoder_hidden_states = hidden_states[:, :text_seq_length] + hidden_states = hidden_states[:, text_seq_length:] + for (i, block) in enumerate(self.transformer_blocks): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + (hidden_states, encoder_hidden_states) = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, encoder_hidden_states, emb, image_rotary_emb, **ckpt_kwargs) + else: + (hidden_states, encoder_hidden_states) = block(hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=emb, image_rotary_emb=image_rotary_emb) + if not self.config.use_rotary_positional_embeddings: + hidden_states = self.norm_final(hidden_states) + else: + hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) + hidden_states = self.norm_final(hidden_states) + hidden_states = hidden_states[:, text_seq_length:] + hidden_states = self.norm_out(hidden_states, temb=emb) + hidden_states = self.proj_out(hidden_states) + p = self.config.patch_size + output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, channels, p, p) + output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4) + if not return_dict: + return (output,) + return Transformer2DModelOutput(sample=output) + +# File: diffusers-main/src/diffusers/models/transformers/dit_transformer_2d.py +from typing import Any, Dict, Optional +import torch +import torch.nn.functional as F +from torch import nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...utils import is_torch_version, logging +from ..attention import BasicTransformerBlock +from ..embeddings import PatchEmbed +from ..modeling_outputs import Transformer2DModelOutput +from ..modeling_utils import ModelMixin +logger = logging.get_logger(__name__) + +class DiTTransformer2DModel(ModelMixin, ConfigMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__(self, num_attention_heads: int=16, attention_head_dim: int=72, in_channels: int=4, out_channels: Optional[int]=None, num_layers: int=28, dropout: float=0.0, norm_num_groups: int=32, attention_bias: bool=True, sample_size: int=32, patch_size: int=2, activation_fn: str='gelu-approximate', num_embeds_ada_norm: Optional[int]=1000, upcast_attention: bool=False, norm_type: str='ada_norm_zero', norm_elementwise_affine: bool=False, norm_eps: float=1e-05): + super().__init__() + if norm_type != 'ada_norm_zero': + raise NotImplementedError(f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'.") + elif norm_type == 'ada_norm_zero' and num_embeds_ada_norm is None: + raise ValueError(f'When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None.') + self.attention_head_dim = attention_head_dim + self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim + self.out_channels = in_channels if out_channels is None else out_channels + self.gradient_checkpointing = False + self.height = self.config.sample_size + self.width = self.config.sample_size + self.patch_size = self.config.patch_size + self.pos_embed = PatchEmbed(height=self.config.sample_size, width=self.config.sample_size, patch_size=self.config.patch_size, in_channels=self.config.in_channels, embed_dim=self.inner_dim) + self.transformer_blocks = nn.ModuleList([BasicTransformerBlock(self.inner_dim, self.config.num_attention_heads, self.config.attention_head_dim, dropout=self.config.dropout, activation_fn=self.config.activation_fn, num_embeds_ada_norm=self.config.num_embeds_ada_norm, attention_bias=self.config.attention_bias, upcast_attention=self.config.upcast_attention, norm_type=norm_type, norm_elementwise_affine=self.config.norm_elementwise_affine, norm_eps=self.config.norm_eps) for _ in range(self.config.num_layers)]) + self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-06) + self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim) + self.proj_out_2 = nn.Linear(self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels) + + def _set_gradient_checkpointing(self, module, value=False): + if hasattr(module, 'gradient_checkpointing'): + module.gradient_checkpointing = value + + def forward(self, hidden_states: torch.Tensor, timestep: Optional[torch.LongTensor]=None, class_labels: Optional[torch.LongTensor]=None, cross_attention_kwargs: Dict[str, Any]=None, return_dict: bool=True): + (height, width) = (hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size) + hidden_states = self.pos_embed(hidden_states) + for block in self.transformer_blocks: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, None, None, None, timestep, cross_attention_kwargs, class_labels, **ckpt_kwargs) + else: + hidden_states = block(hidden_states, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels) + conditioning = self.transformer_blocks[0].norm1.emb(timestep, class_labels, hidden_dtype=hidden_states.dtype) + (shift, scale) = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) + hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] + hidden_states = self.proj_out_2(hidden_states) + height = width = int(hidden_states.shape[1] ** 0.5) + hidden_states = hidden_states.reshape(shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)) + hidden_states = torch.einsum('nhwpqc->nchpwq', hidden_states) + output = hidden_states.reshape(shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)) + if not return_dict: + return (output,) + return Transformer2DModelOutput(sample=output) + +# File: diffusers-main/src/diffusers/models/transformers/dual_transformer_2d.py +from typing import Optional +from torch import nn +from ..modeling_outputs import Transformer2DModelOutput +from .transformer_2d import Transformer2DModel + +class DualTransformer2DModel(nn.Module): + + def __init__(self, num_attention_heads: int=16, attention_head_dim: int=88, in_channels: Optional[int]=None, num_layers: int=1, dropout: float=0.0, norm_num_groups: int=32, cross_attention_dim: Optional[int]=None, attention_bias: bool=False, sample_size: Optional[int]=None, num_vector_embeds: Optional[int]=None, activation_fn: str='geglu', num_embeds_ada_norm: Optional[int]=None): + super().__init__() + self.transformers = nn.ModuleList([Transformer2DModel(num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, in_channels=in_channels, num_layers=num_layers, dropout=dropout, norm_num_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, attention_bias=attention_bias, sample_size=sample_size, num_vector_embeds=num_vector_embeds, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm) for _ in range(2)]) + self.mix_ratio = 0.5 + self.condition_lengths = [77, 257] + self.transformer_index_for_condition = [1, 0] + + def forward(self, hidden_states, encoder_hidden_states, timestep=None, attention_mask=None, cross_attention_kwargs=None, return_dict: bool=True): + input_states = hidden_states + encoded_states = [] + tokens_start = 0 + for i in range(2): + condition_state = encoder_hidden_states[:, tokens_start:tokens_start + self.condition_lengths[i]] + transformer_index = self.transformer_index_for_condition[i] + encoded_state = self.transformers[transformer_index](input_states, encoder_hidden_states=condition_state, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + encoded_states.append(encoded_state - input_states) + tokens_start += self.condition_lengths[i] + output_states = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) + output_states = output_states + input_states + if not return_dict: + return (output_states,) + return Transformer2DModelOutput(sample=output_states) + +# File: diffusers-main/src/diffusers/models/transformers/hunyuan_transformer_2d.py +from typing import Dict, Optional, Union +import torch +from torch import nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...utils import logging +from ...utils.torch_utils import maybe_allow_in_graph +from ..attention import FeedForward +from ..attention_processor import Attention, AttentionProcessor, FusedHunyuanAttnProcessor2_0, HunyuanAttnProcessor2_0 +from ..embeddings import HunyuanCombinedTimestepTextSizeStyleEmbedding, PatchEmbed, PixArtAlphaTextProjection +from ..modeling_outputs import Transformer2DModelOutput +from ..modeling_utils import ModelMixin +from ..normalization import AdaLayerNormContinuous, FP32LayerNorm +logger = logging.get_logger(__name__) + +class AdaLayerNormShift(nn.Module): + + def __init__(self, embedding_dim: int, elementwise_affine=True, eps=1e-06): + super().__init__() + self.silu = nn.SiLU() + self.linear = nn.Linear(embedding_dim, embedding_dim) + self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=elementwise_affine, eps=eps) + + def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor: + shift = self.linear(self.silu(emb.to(torch.float32)).to(emb.dtype)) + x = self.norm(x) + shift.unsqueeze(dim=1) + return x + +@maybe_allow_in_graph +class HunyuanDiTBlock(nn.Module): + + def __init__(self, dim: int, num_attention_heads: int, cross_attention_dim: int=1024, dropout=0.0, activation_fn: str='geglu', norm_elementwise_affine: bool=True, norm_eps: float=1e-06, final_dropout: bool=False, ff_inner_dim: Optional[int]=None, ff_bias: bool=True, skip: bool=False, qk_norm: bool=True): + super().__init__() + self.norm1 = AdaLayerNormShift(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) + self.attn1 = Attention(query_dim=dim, cross_attention_dim=None, dim_head=dim // num_attention_heads, heads=num_attention_heads, qk_norm='layer_norm' if qk_norm else None, eps=1e-06, bias=True, processor=HunyuanAttnProcessor2_0()) + self.norm2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) + self.attn2 = Attention(query_dim=dim, cross_attention_dim=cross_attention_dim, dim_head=dim // num_attention_heads, heads=num_attention_heads, qk_norm='layer_norm' if qk_norm else None, eps=1e-06, bias=True, processor=HunyuanAttnProcessor2_0()) + self.norm3 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) + self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout, inner_dim=ff_inner_dim, bias=ff_bias) + if skip: + self.skip_norm = FP32LayerNorm(2 * dim, norm_eps, elementwise_affine=True) + self.skip_linear = nn.Linear(2 * dim, dim) + else: + self.skip_linear = None + self._chunk_size = None + self._chunk_dim = 0 + + def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int=0): + self._chunk_size = chunk_size + self._chunk_dim = dim + + def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, temb: Optional[torch.Tensor]=None, image_rotary_emb=None, skip=None) -> torch.Tensor: + if self.skip_linear is not None: + cat = torch.cat([hidden_states, skip], dim=-1) + cat = self.skip_norm(cat) + hidden_states = self.skip_linear(cat) + norm_hidden_states = self.norm1(hidden_states, temb) + attn_output = self.attn1(norm_hidden_states, image_rotary_emb=image_rotary_emb) + hidden_states = hidden_states + attn_output + hidden_states = hidden_states + self.attn2(self.norm2(hidden_states), encoder_hidden_states=encoder_hidden_states, image_rotary_emb=image_rotary_emb) + mlp_inputs = self.norm3(hidden_states) + hidden_states = hidden_states + self.ff(mlp_inputs) + return hidden_states + +class HunyuanDiT2DModel(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, num_attention_heads: int=16, attention_head_dim: int=88, in_channels: Optional[int]=None, patch_size: Optional[int]=None, activation_fn: str='gelu-approximate', sample_size=32, hidden_size=1152, num_layers: int=28, mlp_ratio: float=4.0, learn_sigma: bool=True, cross_attention_dim: int=1024, norm_type: str='layer_norm', cross_attention_dim_t5: int=2048, pooled_projection_dim: int=1024, text_len: int=77, text_len_t5: int=256, use_style_cond_and_image_meta_size: bool=True): + super().__init__() + self.out_channels = in_channels * 2 if learn_sigma else in_channels + self.num_heads = num_attention_heads + self.inner_dim = num_attention_heads * attention_head_dim + self.text_embedder = PixArtAlphaTextProjection(in_features=cross_attention_dim_t5, hidden_size=cross_attention_dim_t5 * 4, out_features=cross_attention_dim, act_fn='silu_fp32') + self.text_embedding_padding = nn.Parameter(torch.randn(text_len + text_len_t5, cross_attention_dim, dtype=torch.float32)) + self.pos_embed = PatchEmbed(height=sample_size, width=sample_size, in_channels=in_channels, embed_dim=hidden_size, patch_size=patch_size, pos_embed_type=None) + self.time_extra_emb = HunyuanCombinedTimestepTextSizeStyleEmbedding(hidden_size, pooled_projection_dim=pooled_projection_dim, seq_len=text_len_t5, cross_attention_dim=cross_attention_dim_t5, use_style_cond_and_image_meta_size=use_style_cond_and_image_meta_size) + self.blocks = nn.ModuleList([HunyuanDiTBlock(dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, activation_fn=activation_fn, ff_inner_dim=int(self.inner_dim * mlp_ratio), cross_attention_dim=cross_attention_dim, qk_norm=True, skip=layer > num_layers // 2) for layer in range(num_layers)]) + self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-06) + self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) + + def fuse_qkv_projections(self): + self.original_attn_processors = None + for (_, attn_processor) in self.attn_processors.items(): + if 'Added' in str(attn_processor.__class__.__name__): + raise ValueError('`fuse_qkv_projections()` is not supported for models having added KV projections.') + self.original_attn_processors = self.attn_processors + for module in self.modules(): + if isinstance(module, Attention): + module.fuse_projections(fuse=True) + self.set_attn_processor(FusedHunyuanAttnProcessor2_0()) + + def unfuse_qkv_projections(self): + if self.original_attn_processors is not None: + self.set_attn_processor(self.original_attn_processors) + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def set_default_attn_processor(self): + self.set_attn_processor(HunyuanAttnProcessor2_0()) + + def forward(self, hidden_states, timestep, encoder_hidden_states=None, text_embedding_mask=None, encoder_hidden_states_t5=None, text_embedding_mask_t5=None, image_meta_size=None, style=None, image_rotary_emb=None, controlnet_block_samples=None, return_dict=True): + (height, width) = hidden_states.shape[-2:] + hidden_states = self.pos_embed(hidden_states) + temb = self.time_extra_emb(timestep, encoder_hidden_states_t5, image_meta_size, style, hidden_dtype=timestep.dtype) + (batch_size, sequence_length, _) = encoder_hidden_states_t5.shape + encoder_hidden_states_t5 = self.text_embedder(encoder_hidden_states_t5.view(-1, encoder_hidden_states_t5.shape[-1])) + encoder_hidden_states_t5 = encoder_hidden_states_t5.view(batch_size, sequence_length, -1) + encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=1) + text_embedding_mask = torch.cat([text_embedding_mask, text_embedding_mask_t5], dim=-1) + text_embedding_mask = text_embedding_mask.unsqueeze(2).bool() + encoder_hidden_states = torch.where(text_embedding_mask, encoder_hidden_states, self.text_embedding_padding) + skips = [] + for (layer, block) in enumerate(self.blocks): + if layer > self.config.num_layers // 2: + if controlnet_block_samples is not None: + skip = skips.pop() + controlnet_block_samples.pop() + else: + skip = skips.pop() + hidden_states = block(hidden_states, temb=temb, encoder_hidden_states=encoder_hidden_states, image_rotary_emb=image_rotary_emb, skip=skip) + else: + hidden_states = block(hidden_states, temb=temb, encoder_hidden_states=encoder_hidden_states, image_rotary_emb=image_rotary_emb) + if layer < self.config.num_layers // 2 - 1: + skips.append(hidden_states) + if controlnet_block_samples is not None and len(controlnet_block_samples) != 0: + raise ValueError('The number of controls is not equal to the number of skip connections.') + hidden_states = self.norm_out(hidden_states, temb.to(torch.float32)) + hidden_states = self.proj_out(hidden_states) + patch_size = self.pos_embed.patch_size + height = height // patch_size + width = width // patch_size + hidden_states = hidden_states.reshape(shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)) + hidden_states = torch.einsum('nhwpqc->nchpwq', hidden_states) + output = hidden_states.reshape(shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)) + if not return_dict: + return (output,) + return Transformer2DModelOutput(sample=output) + + def enable_forward_chunking(self, chunk_size: Optional[int]=None, dim: int=0) -> None: + if dim not in [0, 1]: + raise ValueError(f'Make sure to set `dim` to either 0 or 1, not {dim}') + chunk_size = chunk_size or 1 + + def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): + if hasattr(module, 'set_chunk_feed_forward'): + module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) + for child in module.children(): + fn_recursive_feed_forward(child, chunk_size, dim) + for module in self.children(): + fn_recursive_feed_forward(module, chunk_size, dim) + + def disable_forward_chunking(self): + + def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): + if hasattr(module, 'set_chunk_feed_forward'): + module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) + for child in module.children(): + fn_recursive_feed_forward(child, chunk_size, dim) + for module in self.children(): + fn_recursive_feed_forward(module, None, 0) + +# File: diffusers-main/src/diffusers/models/transformers/latte_transformer_3d.py +from typing import Optional +import torch +from torch import nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...models.embeddings import PixArtAlphaTextProjection, get_1d_sincos_pos_embed_from_grid +from ..attention import BasicTransformerBlock +from ..embeddings import PatchEmbed +from ..modeling_outputs import Transformer2DModelOutput +from ..modeling_utils import ModelMixin +from ..normalization import AdaLayerNormSingle + +class LatteTransformer3DModel(ModelMixin, ConfigMixin): + _supports_gradient_checkpointing = True + '' + + @register_to_config + def __init__(self, num_attention_heads: int=16, attention_head_dim: int=88, in_channels: Optional[int]=None, out_channels: Optional[int]=None, num_layers: int=1, dropout: float=0.0, cross_attention_dim: Optional[int]=None, attention_bias: bool=False, sample_size: int=64, patch_size: Optional[int]=None, activation_fn: str='geglu', num_embeds_ada_norm: Optional[int]=None, norm_type: str='layer_norm', norm_elementwise_affine: bool=True, norm_eps: float=1e-05, caption_channels: int=None, video_length: int=16): + super().__init__() + inner_dim = num_attention_heads * attention_head_dim + self.height = sample_size + self.width = sample_size + interpolation_scale = self.config.sample_size // 64 + interpolation_scale = max(interpolation_scale, 1) + self.pos_embed = PatchEmbed(height=sample_size, width=sample_size, patch_size=patch_size, in_channels=in_channels, embed_dim=inner_dim, interpolation_scale=interpolation_scale) + self.transformer_blocks = nn.ModuleList([BasicTransformerBlock(inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, norm_type=norm_type, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps) for d in range(num_layers)]) + self.temporal_transformer_blocks = nn.ModuleList([BasicTransformerBlock(inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=None, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, norm_type=norm_type, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps) for d in range(num_layers)]) + self.out_channels = in_channels if out_channels is None else out_channels + self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-06) + self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim ** 0.5) + self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) + self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=False) + self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim) + temp_pos_embed = get_1d_sincos_pos_embed_from_grid(inner_dim, torch.arange(0, video_length).unsqueeze(1)) + self.register_buffer('temp_pos_embed', torch.from_numpy(temp_pos_embed).float().unsqueeze(0), persistent=False) + self.gradient_checkpointing = False + + def _set_gradient_checkpointing(self, module, value=False): + self.gradient_checkpointing = value + + def forward(self, hidden_states: torch.Tensor, timestep: Optional[torch.LongTensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, encoder_attention_mask: Optional[torch.Tensor]=None, enable_temporal_attentions: bool=True, return_dict: bool=True): + (batch_size, channels, num_frame, height, width) = hidden_states.shape + hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(-1, channels, height, width) + (height, width) = (hidden_states.shape[-2] // self.config.patch_size, hidden_states.shape[-1] // self.config.patch_size) + num_patches = height * width + hidden_states = self.pos_embed(hidden_states) + added_cond_kwargs = {'resolution': None, 'aspect_ratio': None} + (timestep, embedded_timestep) = self.adaln_single(timestep, added_cond_kwargs=added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype) + encoder_hidden_states = self.caption_projection(encoder_hidden_states) + encoder_hidden_states_spatial = encoder_hidden_states.repeat_interleave(num_frame, dim=0).view(-1, encoder_hidden_states.shape[-2], encoder_hidden_states.shape[-1]) + timestep_spatial = timestep.repeat_interleave(num_frame, dim=0).view(-1, timestep.shape[-1]) + timestep_temp = timestep.repeat_interleave(num_patches, dim=0).view(-1, timestep.shape[-1]) + for (i, (spatial_block, temp_block)) in enumerate(zip(self.transformer_blocks, self.temporal_transformer_blocks)): + if self.training and self.gradient_checkpointing: + hidden_states = torch.utils.checkpoint.checkpoint(spatial_block, hidden_states, None, encoder_hidden_states_spatial, encoder_attention_mask, timestep_spatial, None, None, use_reentrant=False) + else: + hidden_states = spatial_block(hidden_states, None, encoder_hidden_states_spatial, encoder_attention_mask, timestep_spatial, None, None) + if enable_temporal_attentions: + hidden_states = hidden_states.reshape(batch_size, -1, hidden_states.shape[-2], hidden_states.shape[-1]).permute(0, 2, 1, 3) + hidden_states = hidden_states.reshape(-1, hidden_states.shape[-2], hidden_states.shape[-1]) + if i == 0 and num_frame > 1: + hidden_states = hidden_states + self.temp_pos_embed + if self.training and self.gradient_checkpointing: + hidden_states = torch.utils.checkpoint.checkpoint(temp_block, hidden_states, None, None, None, timestep_temp, None, None, use_reentrant=False) + else: + hidden_states = temp_block(hidden_states, None, None, None, timestep_temp, None, None) + hidden_states = hidden_states.reshape(batch_size, -1, hidden_states.shape[-2], hidden_states.shape[-1]).permute(0, 2, 1, 3) + hidden_states = hidden_states.reshape(-1, hidden_states.shape[-2], hidden_states.shape[-1]) + embedded_timestep = embedded_timestep.repeat_interleave(num_frame, dim=0).view(-1, embedded_timestep.shape[-1]) + (shift, scale) = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) + hidden_states = self.norm_out(hidden_states) + hidden_states = hidden_states * (1 + scale) + shift + hidden_states = self.proj_out(hidden_states) + if self.adaln_single is None: + height = width = int(hidden_states.shape[1] ** 0.5) + hidden_states = hidden_states.reshape(shape=(-1, height, width, self.config.patch_size, self.config.patch_size, self.out_channels)) + hidden_states = torch.einsum('nhwpqc->nchpwq', hidden_states) + output = hidden_states.reshape(shape=(-1, self.out_channels, height * self.config.patch_size, width * self.config.patch_size)) + output = output.reshape(batch_size, -1, output.shape[-3], output.shape[-2], output.shape[-1]).permute(0, 2, 1, 3, 4) + if not return_dict: + return (output,) + return Transformer2DModelOutput(sample=output) + +# File: diffusers-main/src/diffusers/models/transformers/lumina_nextdit2d.py +from typing import Any, Dict, Optional +import torch +import torch.nn as nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...utils import logging +from ..attention import LuminaFeedForward +from ..attention_processor import Attention, LuminaAttnProcessor2_0 +from ..embeddings import LuminaCombinedTimestepCaptionEmbedding, LuminaPatchEmbed +from ..modeling_outputs import Transformer2DModelOutput +from ..modeling_utils import ModelMixin +from ..normalization import LuminaLayerNormContinuous, LuminaRMSNormZero, RMSNorm +logger = logging.get_logger(__name__) + +class LuminaNextDiTBlock(nn.Module): + + def __init__(self, dim: int, num_attention_heads: int, num_kv_heads: int, multiple_of: int, ffn_dim_multiplier: float, norm_eps: float, qk_norm: bool, cross_attention_dim: int, norm_elementwise_affine: bool=True) -> None: + super().__init__() + self.head_dim = dim // num_attention_heads + self.gate = nn.Parameter(torch.zeros([num_attention_heads])) + self.attn1 = Attention(query_dim=dim, cross_attention_dim=None, dim_head=dim // num_attention_heads, qk_norm='layer_norm_across_heads' if qk_norm else None, heads=num_attention_heads, kv_heads=num_kv_heads, eps=1e-05, bias=False, out_bias=False, processor=LuminaAttnProcessor2_0()) + self.attn1.to_out = nn.Identity() + self.attn2 = Attention(query_dim=dim, cross_attention_dim=cross_attention_dim, dim_head=dim // num_attention_heads, qk_norm='layer_norm_across_heads' if qk_norm else None, heads=num_attention_heads, kv_heads=num_kv_heads, eps=1e-05, bias=False, out_bias=False, processor=LuminaAttnProcessor2_0()) + self.feed_forward = LuminaFeedForward(dim=dim, inner_dim=4 * dim, multiple_of=multiple_of, ffn_dim_multiplier=ffn_dim_multiplier) + self.norm1 = LuminaRMSNormZero(embedding_dim=dim, norm_eps=norm_eps, norm_elementwise_affine=norm_elementwise_affine) + self.ffn_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) + self.norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) + self.ffn_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) + self.norm1_context = RMSNorm(cross_attention_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) + + def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, image_rotary_emb: torch.Tensor, encoder_hidden_states: torch.Tensor, encoder_mask: torch.Tensor, temb: torch.Tensor, cross_attention_kwargs: Optional[Dict[str, Any]]=None): + residual = hidden_states + (norm_hidden_states, gate_msa, scale_mlp, gate_mlp) = self.norm1(hidden_states, temb) + self_attn_output = self.attn1(hidden_states=norm_hidden_states, encoder_hidden_states=norm_hidden_states, attention_mask=attention_mask, query_rotary_emb=image_rotary_emb, key_rotary_emb=image_rotary_emb, **cross_attention_kwargs) + norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states) + cross_attn_output = self.attn2(hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, attention_mask=encoder_mask, query_rotary_emb=image_rotary_emb, key_rotary_emb=None, **cross_attention_kwargs) + cross_attn_output = cross_attn_output * self.gate.tanh().view(1, 1, -1, 1) + mixed_attn_output = self_attn_output + cross_attn_output + mixed_attn_output = mixed_attn_output.flatten(-2) + hidden_states = self.attn2.to_out[0](mixed_attn_output) + hidden_states = residual + gate_msa.unsqueeze(1).tanh() * self.norm2(hidden_states) + mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1))) + hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output) + return hidden_states + +class LuminaNextDiT2DModel(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, sample_size: int=128, patch_size: Optional[int]=2, in_channels: Optional[int]=4, hidden_size: Optional[int]=2304, num_layers: Optional[int]=32, num_attention_heads: Optional[int]=32, num_kv_heads: Optional[int]=None, multiple_of: Optional[int]=256, ffn_dim_multiplier: Optional[float]=None, norm_eps: Optional[float]=1e-05, learn_sigma: Optional[bool]=True, qk_norm: Optional[bool]=True, cross_attention_dim: Optional[int]=2048, scaling_factor: Optional[float]=1.0) -> None: + super().__init__() + self.sample_size = sample_size + self.patch_size = patch_size + self.in_channels = in_channels + self.out_channels = in_channels * 2 if learn_sigma else in_channels + self.hidden_size = hidden_size + self.num_attention_heads = num_attention_heads + self.head_dim = hidden_size // num_attention_heads + self.scaling_factor = scaling_factor + self.patch_embedder = LuminaPatchEmbed(patch_size=patch_size, in_channels=in_channels, embed_dim=hidden_size, bias=True) + self.pad_token = nn.Parameter(torch.empty(hidden_size)) + self.time_caption_embed = LuminaCombinedTimestepCaptionEmbedding(hidden_size=min(hidden_size, 1024), cross_attention_dim=cross_attention_dim) + self.layers = nn.ModuleList([LuminaNextDiTBlock(hidden_size, num_attention_heads, num_kv_heads, multiple_of, ffn_dim_multiplier, norm_eps, qk_norm, cross_attention_dim) for _ in range(num_layers)]) + self.norm_out = LuminaLayerNormContinuous(embedding_dim=hidden_size, conditioning_embedding_dim=min(hidden_size, 1024), elementwise_affine=False, eps=1e-06, bias=True, out_dim=patch_size * patch_size * self.out_channels) + assert hidden_size // num_attention_heads % 4 == 0, '2d rope needs head dim to be divisible by 4' + + def forward(self, hidden_states: torch.Tensor, timestep: torch.Tensor, encoder_hidden_states: torch.Tensor, encoder_mask: torch.Tensor, image_rotary_emb: torch.Tensor, cross_attention_kwargs: Dict[str, Any]=None, return_dict=True) -> torch.Tensor: + (hidden_states, mask, img_size, image_rotary_emb) = self.patch_embedder(hidden_states, image_rotary_emb) + image_rotary_emb = image_rotary_emb.to(hidden_states.device) + temb = self.time_caption_embed(timestep, encoder_hidden_states, encoder_mask) + encoder_mask = encoder_mask.bool() + for layer in self.layers: + hidden_states = layer(hidden_states, mask, image_rotary_emb, encoder_hidden_states, encoder_mask, temb=temb, cross_attention_kwargs=cross_attention_kwargs) + hidden_states = self.norm_out(hidden_states, temb) + height_tokens = width_tokens = self.patch_size + (height, width) = img_size[0] + batch_size = hidden_states.size(0) + sequence_length = height // height_tokens * (width // width_tokens) + hidden_states = hidden_states[:, :sequence_length].view(batch_size, height // height_tokens, width // width_tokens, height_tokens, width_tokens, self.out_channels) + output = hidden_states.permute(0, 5, 1, 3, 2, 4).flatten(4, 5).flatten(2, 3) + if not return_dict: + return (output,) + return Transformer2DModelOutput(sample=output) + +# File: diffusers-main/src/diffusers/models/transformers/pixart_transformer_2d.py +from typing import Any, Dict, Optional, Union +import torch +from torch import nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...utils import is_torch_version, logging +from ..attention import BasicTransformerBlock +from ..attention_processor import Attention, AttentionProcessor, AttnProcessor, FusedAttnProcessor2_0 +from ..embeddings import PatchEmbed, PixArtAlphaTextProjection +from ..modeling_outputs import Transformer2DModelOutput +from ..modeling_utils import ModelMixin +from ..normalization import AdaLayerNormSingle +logger = logging.get_logger(__name__) + +class PixArtTransformer2DModel(ModelMixin, ConfigMixin): + _supports_gradient_checkpointing = True + _no_split_modules = ['BasicTransformerBlock', 'PatchEmbed'] + + @register_to_config + def __init__(self, num_attention_heads: int=16, attention_head_dim: int=72, in_channels: int=4, out_channels: Optional[int]=8, num_layers: int=28, dropout: float=0.0, norm_num_groups: int=32, cross_attention_dim: Optional[int]=1152, attention_bias: bool=True, sample_size: int=128, patch_size: int=2, activation_fn: str='gelu-approximate', num_embeds_ada_norm: Optional[int]=1000, upcast_attention: bool=False, norm_type: str='ada_norm_single', norm_elementwise_affine: bool=False, norm_eps: float=1e-06, interpolation_scale: Optional[int]=None, use_additional_conditions: Optional[bool]=None, caption_channels: Optional[int]=None, attention_type: Optional[str]='default'): + super().__init__() + if norm_type != 'ada_norm_single': + raise NotImplementedError(f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'.") + elif norm_type == 'ada_norm_single' and num_embeds_ada_norm is None: + raise ValueError(f'When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None.') + self.attention_head_dim = attention_head_dim + self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim + self.out_channels = in_channels if out_channels is None else out_channels + if use_additional_conditions is None: + if sample_size == 128: + use_additional_conditions = True + else: + use_additional_conditions = False + self.use_additional_conditions = use_additional_conditions + self.gradient_checkpointing = False + self.height = self.config.sample_size + self.width = self.config.sample_size + interpolation_scale = self.config.interpolation_scale if self.config.interpolation_scale is not None else max(self.config.sample_size // 64, 1) + self.pos_embed = PatchEmbed(height=self.config.sample_size, width=self.config.sample_size, patch_size=self.config.patch_size, in_channels=self.config.in_channels, embed_dim=self.inner_dim, interpolation_scale=interpolation_scale) + self.transformer_blocks = nn.ModuleList([BasicTransformerBlock(self.inner_dim, self.config.num_attention_heads, self.config.attention_head_dim, dropout=self.config.dropout, cross_attention_dim=self.config.cross_attention_dim, activation_fn=self.config.activation_fn, num_embeds_ada_norm=self.config.num_embeds_ada_norm, attention_bias=self.config.attention_bias, upcast_attention=self.config.upcast_attention, norm_type=norm_type, norm_elementwise_affine=self.config.norm_elementwise_affine, norm_eps=self.config.norm_eps, attention_type=self.config.attention_type) for _ in range(self.config.num_layers)]) + self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-06) + self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim ** 0.5) + self.proj_out = nn.Linear(self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels) + self.adaln_single = AdaLayerNormSingle(self.inner_dim, use_additional_conditions=self.use_additional_conditions) + self.caption_projection = None + if self.config.caption_channels is not None: + self.caption_projection = PixArtAlphaTextProjection(in_features=self.config.caption_channels, hidden_size=self.inner_dim) + + def _set_gradient_checkpointing(self, module, value=False): + if hasattr(module, 'gradient_checkpointing'): + module.gradient_checkpointing = value + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def set_default_attn_processor(self): + self.set_attn_processor(AttnProcessor()) + + def fuse_qkv_projections(self): + self.original_attn_processors = None + for (_, attn_processor) in self.attn_processors.items(): + if 'Added' in str(attn_processor.__class__.__name__): + raise ValueError('`fuse_qkv_projections()` is not supported for models having added KV projections.') + self.original_attn_processors = self.attn_processors + for module in self.modules(): + if isinstance(module, Attention): + module.fuse_projections(fuse=True) + self.set_attn_processor(FusedAttnProcessor2_0()) + + def unfuse_qkv_projections(self): + if self.original_attn_processors is not None: + self.set_attn_processor(self.original_attn_processors) + + def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, timestep: Optional[torch.LongTensor]=None, added_cond_kwargs: Dict[str, torch.Tensor]=None, cross_attention_kwargs: Dict[str, Any]=None, attention_mask: Optional[torch.Tensor]=None, encoder_attention_mask: Optional[torch.Tensor]=None, return_dict: bool=True): + if self.use_additional_conditions and added_cond_kwargs is None: + raise ValueError('`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.') + if attention_mask is not None and attention_mask.ndim == 2: + attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: + encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 + encoder_attention_mask = encoder_attention_mask.unsqueeze(1) + batch_size = hidden_states.shape[0] + (height, width) = (hidden_states.shape[-2] // self.config.patch_size, hidden_states.shape[-1] // self.config.patch_size) + hidden_states = self.pos_embed(hidden_states) + (timestep, embedded_timestep) = self.adaln_single(timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype) + if self.caption_projection is not None: + encoder_hidden_states = self.caption_projection(encoder_hidden_states) + encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) + for block in self.transformer_blocks: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, timestep, cross_attention_kwargs, None, **ckpt_kwargs) + else: + hidden_states = block(hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=None) + (shift, scale) = (self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device)).chunk(2, dim=1) + hidden_states = self.norm_out(hidden_states) + hidden_states = hidden_states * (1 + scale.to(hidden_states.device)) + shift.to(hidden_states.device) + hidden_states = self.proj_out(hidden_states) + hidden_states = hidden_states.squeeze(1) + hidden_states = hidden_states.reshape(shape=(-1, height, width, self.config.patch_size, self.config.patch_size, self.out_channels)) + hidden_states = torch.einsum('nhwpqc->nchpwq', hidden_states) + output = hidden_states.reshape(shape=(-1, self.out_channels, height * self.config.patch_size, width * self.config.patch_size)) + if not return_dict: + return (output,) + return Transformer2DModelOutput(sample=output) + +# File: diffusers-main/src/diffusers/models/transformers/prior_transformer.py +from dataclasses import dataclass +from typing import Dict, Optional, Union +import torch +import torch.nn.functional as F +from torch import nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin +from ...utils import BaseOutput +from ..attention import BasicTransformerBlock +from ..attention_processor import ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnAddedKVProcessor, AttnProcessor +from ..embeddings import TimestepEmbedding, Timesteps +from ..modeling_utils import ModelMixin + +@dataclass +class PriorTransformerOutput(BaseOutput): + predicted_image_embedding: torch.Tensor + +class PriorTransformer(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin): + + @register_to_config + def __init__(self, num_attention_heads: int=32, attention_head_dim: int=64, num_layers: int=20, embedding_dim: int=768, num_embeddings=77, additional_embeddings=4, dropout: float=0.0, time_embed_act_fn: str='silu', norm_in_type: Optional[str]=None, embedding_proj_norm_type: Optional[str]=None, encoder_hid_proj_type: Optional[str]='linear', added_emb_type: Optional[str]='prd', time_embed_dim: Optional[int]=None, embedding_proj_dim: Optional[int]=None, clip_embed_dim: Optional[int]=None): + super().__init__() + self.num_attention_heads = num_attention_heads + self.attention_head_dim = attention_head_dim + inner_dim = num_attention_heads * attention_head_dim + self.additional_embeddings = additional_embeddings + time_embed_dim = time_embed_dim or inner_dim + embedding_proj_dim = embedding_proj_dim or embedding_dim + clip_embed_dim = clip_embed_dim or embedding_dim + self.time_proj = Timesteps(inner_dim, True, 0) + self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, out_dim=inner_dim, act_fn=time_embed_act_fn) + self.proj_in = nn.Linear(embedding_dim, inner_dim) + if embedding_proj_norm_type is None: + self.embedding_proj_norm = None + elif embedding_proj_norm_type == 'layer': + self.embedding_proj_norm = nn.LayerNorm(embedding_proj_dim) + else: + raise ValueError(f'unsupported embedding_proj_norm_type: {embedding_proj_norm_type}') + self.embedding_proj = nn.Linear(embedding_proj_dim, inner_dim) + if encoder_hid_proj_type is None: + self.encoder_hidden_states_proj = None + elif encoder_hid_proj_type == 'linear': + self.encoder_hidden_states_proj = nn.Linear(embedding_dim, inner_dim) + else: + raise ValueError(f'unsupported encoder_hid_proj_type: {encoder_hid_proj_type}') + self.positional_embedding = nn.Parameter(torch.zeros(1, num_embeddings + additional_embeddings, inner_dim)) + if added_emb_type == 'prd': + self.prd_embedding = nn.Parameter(torch.zeros(1, 1, inner_dim)) + elif added_emb_type is None: + self.prd_embedding = None + else: + raise ValueError(f"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.") + self.transformer_blocks = nn.ModuleList([BasicTransformerBlock(inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, activation_fn='gelu', attention_bias=True) for d in range(num_layers)]) + if norm_in_type == 'layer': + self.norm_in = nn.LayerNorm(inner_dim) + elif norm_in_type is None: + self.norm_in = None + else: + raise ValueError(f'Unsupported norm_in_type: {norm_in_type}.') + self.norm_out = nn.LayerNorm(inner_dim) + self.proj_to_clip_embeddings = nn.Linear(inner_dim, clip_embed_dim) + causal_attention_mask = torch.full([num_embeddings + additional_embeddings, num_embeddings + additional_embeddings], -10000.0) + causal_attention_mask.triu_(1) + causal_attention_mask = causal_attention_mask[None, ...] + self.register_buffer('causal_attention_mask', causal_attention_mask, persistent=False) + self.clip_mean = nn.Parameter(torch.zeros(1, clip_embed_dim)) + self.clip_std = nn.Parameter(torch.zeros(1, clip_embed_dim)) + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def set_default_attn_processor(self): + if all((proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnAddedKVProcessor() + elif all((proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnProcessor() + else: + raise ValueError(f'Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}') + self.set_attn_processor(processor) + + def forward(self, hidden_states, timestep: Union[torch.Tensor, float, int], proj_embedding: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.BoolTensor]=None, return_dict: bool=True): + batch_size = hidden_states.shape[0] + timesteps = timestep + if not torch.is_tensor(timesteps): + timesteps = torch.tensor([timesteps], dtype=torch.long, device=hidden_states.device) + elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: + timesteps = timesteps[None].to(hidden_states.device) + timesteps = timesteps * torch.ones(batch_size, dtype=timesteps.dtype, device=timesteps.device) + timesteps_projected = self.time_proj(timesteps) + timesteps_projected = timesteps_projected.to(dtype=self.dtype) + time_embeddings = self.time_embedding(timesteps_projected) + if self.embedding_proj_norm is not None: + proj_embedding = self.embedding_proj_norm(proj_embedding) + proj_embeddings = self.embedding_proj(proj_embedding) + if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: + encoder_hidden_states = self.encoder_hidden_states_proj(encoder_hidden_states) + elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: + raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set') + hidden_states = self.proj_in(hidden_states) + positional_embeddings = self.positional_embedding.to(hidden_states.dtype) + additional_embeds = [] + additional_embeddings_len = 0 + if encoder_hidden_states is not None: + additional_embeds.append(encoder_hidden_states) + additional_embeddings_len += encoder_hidden_states.shape[1] + if len(proj_embeddings.shape) == 2: + proj_embeddings = proj_embeddings[:, None, :] + if len(hidden_states.shape) == 2: + hidden_states = hidden_states[:, None, :] + additional_embeds = additional_embeds + [proj_embeddings, time_embeddings[:, None, :], hidden_states] + if self.prd_embedding is not None: + prd_embedding = self.prd_embedding.to(hidden_states.dtype).expand(batch_size, -1, -1) + additional_embeds.append(prd_embedding) + hidden_states = torch.cat(additional_embeds, dim=1) + additional_embeddings_len = additional_embeddings_len + proj_embeddings.shape[1] + 1 + if positional_embeddings.shape[1] < hidden_states.shape[1]: + positional_embeddings = F.pad(positional_embeddings, (0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0), value=0.0) + hidden_states = hidden_states + positional_embeddings + if attention_mask is not None: + attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 + attention_mask = F.pad(attention_mask, (0, self.additional_embeddings), value=0.0) + attention_mask = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype) + attention_mask = attention_mask.repeat_interleave(self.config.num_attention_heads, dim=0) + if self.norm_in is not None: + hidden_states = self.norm_in(hidden_states) + for block in self.transformer_blocks: + hidden_states = block(hidden_states, attention_mask=attention_mask) + hidden_states = self.norm_out(hidden_states) + if self.prd_embedding is not None: + hidden_states = hidden_states[:, -1] + else: + hidden_states = hidden_states[:, additional_embeddings_len:] + predicted_image_embedding = self.proj_to_clip_embeddings(hidden_states) + if not return_dict: + return (predicted_image_embedding,) + return PriorTransformerOutput(predicted_image_embedding=predicted_image_embedding) + + def post_process_latents(self, prior_latents): + prior_latents = prior_latents * self.clip_std + self.clip_mean + return prior_latents + +# File: diffusers-main/src/diffusers/models/transformers/stable_audio_transformer.py +from typing import Any, Dict, Optional, Union +import numpy as np +import torch +import torch.nn as nn +import torch.utils.checkpoint +from ...configuration_utils import ConfigMixin, register_to_config +from ...models.attention import FeedForward +from ...models.attention_processor import Attention, AttentionProcessor, StableAudioAttnProcessor2_0 +from ...models.modeling_utils import ModelMixin +from ...models.transformers.transformer_2d import Transformer2DModelOutput +from ...utils import is_torch_version, logging +from ...utils.torch_utils import maybe_allow_in_graph +logger = logging.get_logger(__name__) + +class StableAudioGaussianFourierProjection(nn.Module): + + def __init__(self, embedding_size: int=256, scale: float=1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False): + super().__init__() + self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) + self.log = log + self.flip_sin_to_cos = flip_sin_to_cos + if set_W_to_weight: + del self.weight + self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) + self.weight = self.W + del self.W + + def forward(self, x): + if self.log: + x = torch.log(x) + x_proj = 2 * np.pi * x[:, None] @ self.weight[None, :] + if self.flip_sin_to_cos: + out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1) + else: + out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1) + return out + +@maybe_allow_in_graph +class StableAudioDiTBlock(nn.Module): + + def __init__(self, dim: int, num_attention_heads: int, num_key_value_attention_heads: int, attention_head_dim: int, dropout=0.0, cross_attention_dim: Optional[int]=None, upcast_attention: bool=False, norm_eps: float=1e-05, ff_inner_dim: Optional[int]=None): + super().__init__() + self.norm1 = nn.LayerNorm(dim, elementwise_affine=True, eps=norm_eps) + self.attn1 = Attention(query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=False, upcast_attention=upcast_attention, out_bias=False, processor=StableAudioAttnProcessor2_0()) + self.norm2 = nn.LayerNorm(dim, norm_eps, True) + self.attn2 = Attention(query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim, kv_heads=num_key_value_attention_heads, dropout=dropout, bias=False, upcast_attention=upcast_attention, out_bias=False, processor=StableAudioAttnProcessor2_0()) + self.norm3 = nn.LayerNorm(dim, norm_eps, True) + self.ff = FeedForward(dim, dropout=dropout, activation_fn='swiglu', final_dropout=False, inner_dim=ff_inner_dim, bias=True) + self._chunk_size = None + self._chunk_dim = 0 + + def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int=0): + self._chunk_size = chunk_size + self._chunk_dim = dim + + def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, encoder_attention_mask: Optional[torch.Tensor]=None, rotary_embedding: Optional[torch.FloatTensor]=None) -> torch.Tensor: + norm_hidden_states = self.norm1(hidden_states) + attn_output = self.attn1(norm_hidden_states, attention_mask=attention_mask, rotary_emb=rotary_embedding) + hidden_states = attn_output + hidden_states + norm_hidden_states = self.norm2(hidden_states) + attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask) + hidden_states = attn_output + hidden_states + norm_hidden_states = self.norm3(hidden_states) + ff_output = self.ff(norm_hidden_states) + hidden_states = ff_output + hidden_states + return hidden_states + +class StableAudioDiTModel(ModelMixin, ConfigMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__(self, sample_size: int=1024, in_channels: int=64, num_layers: int=24, attention_head_dim: int=64, num_attention_heads: int=24, num_key_value_attention_heads: int=12, out_channels: int=64, cross_attention_dim: int=768, time_proj_dim: int=256, global_states_input_dim: int=1536, cross_attention_input_dim: int=768): + super().__init__() + self.sample_size = sample_size + self.out_channels = out_channels + self.inner_dim = num_attention_heads * attention_head_dim + self.time_proj = StableAudioGaussianFourierProjection(embedding_size=time_proj_dim // 2, flip_sin_to_cos=True, log=False, set_W_to_weight=False) + self.timestep_proj = nn.Sequential(nn.Linear(time_proj_dim, self.inner_dim, bias=True), nn.SiLU(), nn.Linear(self.inner_dim, self.inner_dim, bias=True)) + self.global_proj = nn.Sequential(nn.Linear(global_states_input_dim, self.inner_dim, bias=False), nn.SiLU(), nn.Linear(self.inner_dim, self.inner_dim, bias=False)) + self.cross_attention_proj = nn.Sequential(nn.Linear(cross_attention_input_dim, cross_attention_dim, bias=False), nn.SiLU(), nn.Linear(cross_attention_dim, cross_attention_dim, bias=False)) + self.preprocess_conv = nn.Conv1d(in_channels, in_channels, 1, bias=False) + self.proj_in = nn.Linear(in_channels, self.inner_dim, bias=False) + self.transformer_blocks = nn.ModuleList([StableAudioDiTBlock(dim=self.inner_dim, num_attention_heads=num_attention_heads, num_key_value_attention_heads=num_key_value_attention_heads, attention_head_dim=attention_head_dim, cross_attention_dim=cross_attention_dim) for i in range(num_layers)]) + self.proj_out = nn.Linear(self.inner_dim, self.out_channels, bias=False) + self.postprocess_conv = nn.Conv1d(self.out_channels, self.out_channels, 1, bias=False) + self.gradient_checkpointing = False + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def set_default_attn_processor(self): + self.set_attn_processor(StableAudioAttnProcessor2_0()) + + def _set_gradient_checkpointing(self, module, value=False): + if hasattr(module, 'gradient_checkpointing'): + module.gradient_checkpointing = value + + def forward(self, hidden_states: torch.FloatTensor, timestep: torch.LongTensor=None, encoder_hidden_states: torch.FloatTensor=None, global_hidden_states: torch.FloatTensor=None, rotary_embedding: torch.FloatTensor=None, return_dict: bool=True, attention_mask: Optional[torch.LongTensor]=None, encoder_attention_mask: Optional[torch.LongTensor]=None) -> Union[torch.FloatTensor, Transformer2DModelOutput]: + cross_attention_hidden_states = self.cross_attention_proj(encoder_hidden_states) + global_hidden_states = self.global_proj(global_hidden_states) + time_hidden_states = self.timestep_proj(self.time_proj(timestep.to(self.dtype))) + global_hidden_states = global_hidden_states + time_hidden_states.unsqueeze(1) + hidden_states = self.preprocess_conv(hidden_states) + hidden_states + hidden_states = hidden_states.transpose(1, 2) + hidden_states = self.proj_in(hidden_states) + hidden_states = torch.cat([global_hidden_states, hidden_states], dim=-2) + if attention_mask is not None: + prepend_mask = torch.ones((hidden_states.shape[0], 1), device=hidden_states.device, dtype=torch.bool) + attention_mask = torch.cat([prepend_mask, attention_mask], dim=-1) + for block in self.transformer_blocks: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, attention_mask, cross_attention_hidden_states, encoder_attention_mask, rotary_embedding, **ckpt_kwargs) + else: + hidden_states = block(hidden_states=hidden_states, attention_mask=attention_mask, encoder_hidden_states=cross_attention_hidden_states, encoder_attention_mask=encoder_attention_mask, rotary_embedding=rotary_embedding) + hidden_states = self.proj_out(hidden_states) + hidden_states = hidden_states.transpose(1, 2)[:, :, 1:] + hidden_states = self.postprocess_conv(hidden_states) + hidden_states + if not return_dict: + return (hidden_states,) + return Transformer2DModelOutput(sample=hidden_states) + +# File: diffusers-main/src/diffusers/models/transformers/t5_film_transformer.py +import math +from typing import Optional, Tuple +import torch +from torch import nn +from ...configuration_utils import ConfigMixin, register_to_config +from ..attention_processor import Attention +from ..embeddings import get_timestep_embedding +from ..modeling_utils import ModelMixin + +class T5FilmDecoder(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, input_dims: int=128, targets_length: int=256, max_decoder_noise_time: float=2000.0, d_model: int=768, num_layers: int=12, num_heads: int=12, d_kv: int=64, d_ff: int=2048, dropout_rate: float=0.1): + super().__init__() + self.conditioning_emb = nn.Sequential(nn.Linear(d_model, d_model * 4, bias=False), nn.SiLU(), nn.Linear(d_model * 4, d_model * 4, bias=False), nn.SiLU()) + self.position_encoding = nn.Embedding(targets_length, d_model) + self.position_encoding.weight.requires_grad = False + self.continuous_inputs_projection = nn.Linear(input_dims, d_model, bias=False) + self.dropout = nn.Dropout(p=dropout_rate) + self.decoders = nn.ModuleList() + for lyr_num in range(num_layers): + lyr = DecoderLayer(d_model=d_model, d_kv=d_kv, num_heads=num_heads, d_ff=d_ff, dropout_rate=dropout_rate) + self.decoders.append(lyr) + self.decoder_norm = T5LayerNorm(d_model) + self.post_dropout = nn.Dropout(p=dropout_rate) + self.spec_out = nn.Linear(d_model, input_dims, bias=False) + + def encoder_decoder_mask(self, query_input: torch.Tensor, key_input: torch.Tensor) -> torch.Tensor: + mask = torch.mul(query_input.unsqueeze(-1), key_input.unsqueeze(-2)) + return mask.unsqueeze(-3) + + def forward(self, encodings_and_masks, decoder_input_tokens, decoder_noise_time): + (batch, _, _) = decoder_input_tokens.shape + assert decoder_noise_time.shape == (batch,) + time_steps = get_timestep_embedding(decoder_noise_time * self.config.max_decoder_noise_time, embedding_dim=self.config.d_model, max_period=self.config.max_decoder_noise_time).to(dtype=self.dtype) + conditioning_emb = self.conditioning_emb(time_steps).unsqueeze(1) + assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) + seq_length = decoder_input_tokens.shape[1] + decoder_positions = torch.broadcast_to(torch.arange(seq_length, device=decoder_input_tokens.device), (batch, seq_length)) + position_encodings = self.position_encoding(decoder_positions) + inputs = self.continuous_inputs_projection(decoder_input_tokens) + inputs += position_encodings + y = self.dropout(inputs) + decoder_mask = torch.ones(decoder_input_tokens.shape[:2], device=decoder_input_tokens.device, dtype=inputs.dtype) + encodings_and_encdec_masks = [(x, self.encoder_decoder_mask(decoder_mask, y)) for (x, y) in encodings_and_masks] + encoded = torch.cat([x[0] for x in encodings_and_encdec_masks], dim=1) + encoder_decoder_mask = torch.cat([x[1] for x in encodings_and_encdec_masks], dim=-1) + for lyr in self.decoders: + y = lyr(y, conditioning_emb=conditioning_emb, encoder_hidden_states=encoded, encoder_attention_mask=encoder_decoder_mask)[0] + y = self.decoder_norm(y) + y = self.post_dropout(y) + spec_out = self.spec_out(y) + return spec_out + +class DecoderLayer(nn.Module): + + def __init__(self, d_model: int, d_kv: int, num_heads: int, d_ff: int, dropout_rate: float, layer_norm_epsilon: float=1e-06): + super().__init__() + self.layer = nn.ModuleList() + self.layer.append(T5LayerSelfAttentionCond(d_model=d_model, d_kv=d_kv, num_heads=num_heads, dropout_rate=dropout_rate)) + self.layer.append(T5LayerCrossAttention(d_model=d_model, d_kv=d_kv, num_heads=num_heads, dropout_rate=dropout_rate, layer_norm_epsilon=layer_norm_epsilon)) + self.layer.append(T5LayerFFCond(d_model=d_model, d_ff=d_ff, dropout_rate=dropout_rate, layer_norm_epsilon=layer_norm_epsilon)) + + def forward(self, hidden_states: torch.Tensor, conditioning_emb: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, encoder_attention_mask: Optional[torch.Tensor]=None, encoder_decoder_position_bias=None) -> Tuple[torch.Tensor]: + hidden_states = self.layer[0](hidden_states, conditioning_emb=conditioning_emb, attention_mask=attention_mask) + if encoder_hidden_states is not None: + encoder_extended_attention_mask = torch.where(encoder_attention_mask > 0, 0, -10000000000.0).to(encoder_hidden_states.dtype) + hidden_states = self.layer[1](hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_extended_attention_mask) + hidden_states = self.layer[-1](hidden_states, conditioning_emb) + return (hidden_states,) + +class T5LayerSelfAttentionCond(nn.Module): + + def __init__(self, d_model: int, d_kv: int, num_heads: int, dropout_rate: float): + super().__init__() + self.layer_norm = T5LayerNorm(d_model) + self.FiLMLayer = T5FiLMLayer(in_features=d_model * 4, out_features=d_model) + self.attention = Attention(query_dim=d_model, heads=num_heads, dim_head=d_kv, out_bias=False, scale_qk=False) + self.dropout = nn.Dropout(dropout_rate) + + def forward(self, hidden_states: torch.Tensor, conditioning_emb: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None) -> torch.Tensor: + normed_hidden_states = self.layer_norm(hidden_states) + if conditioning_emb is not None: + normed_hidden_states = self.FiLMLayer(normed_hidden_states, conditioning_emb) + attention_output = self.attention(normed_hidden_states) + hidden_states = hidden_states + self.dropout(attention_output) + return hidden_states + +class T5LayerCrossAttention(nn.Module): + + def __init__(self, d_model: int, d_kv: int, num_heads: int, dropout_rate: float, layer_norm_epsilon: float): + super().__init__() + self.attention = Attention(query_dim=d_model, heads=num_heads, dim_head=d_kv, out_bias=False, scale_qk=False) + self.layer_norm = T5LayerNorm(d_model, eps=layer_norm_epsilon) + self.dropout = nn.Dropout(dropout_rate) + + def forward(self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None) -> torch.Tensor: + normed_hidden_states = self.layer_norm(hidden_states) + attention_output = self.attention(normed_hidden_states, encoder_hidden_states=key_value_states, attention_mask=attention_mask.squeeze(1)) + layer_output = hidden_states + self.dropout(attention_output) + return layer_output + +class T5LayerFFCond(nn.Module): + + def __init__(self, d_model: int, d_ff: int, dropout_rate: float, layer_norm_epsilon: float): + super().__init__() + self.DenseReluDense = T5DenseGatedActDense(d_model=d_model, d_ff=d_ff, dropout_rate=dropout_rate) + self.film = T5FiLMLayer(in_features=d_model * 4, out_features=d_model) + self.layer_norm = T5LayerNorm(d_model, eps=layer_norm_epsilon) + self.dropout = nn.Dropout(dropout_rate) + + def forward(self, hidden_states: torch.Tensor, conditioning_emb: Optional[torch.Tensor]=None) -> torch.Tensor: + forwarded_states = self.layer_norm(hidden_states) + if conditioning_emb is not None: + forwarded_states = self.film(forwarded_states, conditioning_emb) + forwarded_states = self.DenseReluDense(forwarded_states) + hidden_states = hidden_states + self.dropout(forwarded_states) + return hidden_states + +class T5DenseGatedActDense(nn.Module): + + def __init__(self, d_model: int, d_ff: int, dropout_rate: float): + super().__init__() + self.wi_0 = nn.Linear(d_model, d_ff, bias=False) + self.wi_1 = nn.Linear(d_model, d_ff, bias=False) + self.wo = nn.Linear(d_ff, d_model, bias=False) + self.dropout = nn.Dropout(dropout_rate) + self.act = NewGELUActivation() + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_gelu = self.act(self.wi_0(hidden_states)) + hidden_linear = self.wi_1(hidden_states) + hidden_states = hidden_gelu * hidden_linear + hidden_states = self.dropout(hidden_states) + hidden_states = self.wo(hidden_states) + return hidden_states + +class T5LayerNorm(nn.Module): + + def __init__(self, hidden_size: int, eps: float=1e-06): + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + if self.weight.dtype in [torch.float16, torch.bfloat16]: + hidden_states = hidden_states.to(self.weight.dtype) + return self.weight * hidden_states + +class NewGELUActivation(nn.Module): + + def forward(self, input: torch.Tensor) -> torch.Tensor: + return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(input, 3.0)))) + +class T5FiLMLayer(nn.Module): + + def __init__(self, in_features: int, out_features: int): + super().__init__() + self.scale_bias = nn.Linear(in_features, out_features * 2, bias=False) + + def forward(self, x: torch.Tensor, conditioning_emb: torch.Tensor) -> torch.Tensor: + emb = self.scale_bias(conditioning_emb) + (scale, shift) = torch.chunk(emb, 2, -1) + x = x * (1 + scale) + shift + return x + +# File: diffusers-main/src/diffusers/models/transformers/transformer_2d.py +from typing import Any, Dict, Optional +import torch +import torch.nn.functional as F +from torch import nn +from ...configuration_utils import LegacyConfigMixin, register_to_config +from ...utils import deprecate, is_torch_version, logging +from ..attention import BasicTransformerBlock +from ..embeddings import ImagePositionalEmbeddings, PatchEmbed, PixArtAlphaTextProjection +from ..modeling_outputs import Transformer2DModelOutput +from ..modeling_utils import LegacyModelMixin +from ..normalization import AdaLayerNormSingle +logger = logging.get_logger(__name__) + +class Transformer2DModelOutput(Transformer2DModelOutput): + + def __init__(self, *args, **kwargs): + deprecation_message = 'Importing `Transformer2DModelOutput` from `diffusers.models.transformer_2d` is deprecated and this will be removed in a future version. Please use `from diffusers.models.modeling_outputs import Transformer2DModelOutput`, instead.' + deprecate('Transformer2DModelOutput', '1.0.0', deprecation_message) + super().__init__(*args, **kwargs) + +class Transformer2DModel(LegacyModelMixin, LegacyConfigMixin): + _supports_gradient_checkpointing = True + _no_split_modules = ['BasicTransformerBlock'] + + @register_to_config + def __init__(self, num_attention_heads: int=16, attention_head_dim: int=88, in_channels: Optional[int]=None, out_channels: Optional[int]=None, num_layers: int=1, dropout: float=0.0, norm_num_groups: int=32, cross_attention_dim: Optional[int]=None, attention_bias: bool=False, sample_size: Optional[int]=None, num_vector_embeds: Optional[int]=None, patch_size: Optional[int]=None, activation_fn: str='geglu', num_embeds_ada_norm: Optional[int]=None, use_linear_projection: bool=False, only_cross_attention: bool=False, double_self_attention: bool=False, upcast_attention: bool=False, norm_type: str='layer_norm', norm_elementwise_affine: bool=True, norm_eps: float=1e-05, attention_type: str='default', caption_channels: int=None, interpolation_scale: float=None, use_additional_conditions: Optional[bool]=None): + super().__init__() + if patch_size is not None: + if norm_type not in ['ada_norm', 'ada_norm_zero', 'ada_norm_single']: + raise NotImplementedError(f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'.") + elif norm_type in ['ada_norm', 'ada_norm_zero'] and num_embeds_ada_norm is None: + raise ValueError(f'When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None.') + self.is_input_continuous = in_channels is not None and patch_size is None + self.is_input_vectorized = num_vector_embeds is not None + self.is_input_patches = in_channels is not None and patch_size is not None + if self.is_input_continuous and self.is_input_vectorized: + raise ValueError(f'Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make sure that either `in_channels` or `num_vector_embeds` is None.') + elif self.is_input_vectorized and self.is_input_patches: + raise ValueError(f'Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make sure that either `num_vector_embeds` or `num_patches` is None.') + elif not self.is_input_continuous and (not self.is_input_vectorized) and (not self.is_input_patches): + raise ValueError(f'Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size: {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None.') + if norm_type == 'layer_norm' and num_embeds_ada_norm is not None: + deprecation_message = f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or incorrectly set to `'layer_norm'`. Make sure to set `norm_type` to `'ada_norm'` in the config. Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `transformer/config.json` file" + deprecate('norm_type!=num_embeds_ada_norm', '1.0.0', deprecation_message, standard_warn=False) + norm_type = 'ada_norm' + self.use_linear_projection = use_linear_projection + self.interpolation_scale = interpolation_scale + self.caption_channels = caption_channels + self.num_attention_heads = num_attention_heads + self.attention_head_dim = attention_head_dim + self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim + self.in_channels = in_channels + self.out_channels = in_channels if out_channels is None else out_channels + self.gradient_checkpointing = False + if use_additional_conditions is None: + if norm_type == 'ada_norm_single' and sample_size == 128: + use_additional_conditions = True + else: + use_additional_conditions = False + self.use_additional_conditions = use_additional_conditions + if self.is_input_continuous: + self._init_continuous_input(norm_type=norm_type) + elif self.is_input_vectorized: + self._init_vectorized_inputs(norm_type=norm_type) + elif self.is_input_patches: + self._init_patched_inputs(norm_type=norm_type) + + def _init_continuous_input(self, norm_type): + self.norm = torch.nn.GroupNorm(num_groups=self.config.norm_num_groups, num_channels=self.in_channels, eps=1e-06, affine=True) + if self.use_linear_projection: + self.proj_in = torch.nn.Linear(self.in_channels, self.inner_dim) + else: + self.proj_in = torch.nn.Conv2d(self.in_channels, self.inner_dim, kernel_size=1, stride=1, padding=0) + self.transformer_blocks = nn.ModuleList([BasicTransformerBlock(self.inner_dim, self.config.num_attention_heads, self.config.attention_head_dim, dropout=self.config.dropout, cross_attention_dim=self.config.cross_attention_dim, activation_fn=self.config.activation_fn, num_embeds_ada_norm=self.config.num_embeds_ada_norm, attention_bias=self.config.attention_bias, only_cross_attention=self.config.only_cross_attention, double_self_attention=self.config.double_self_attention, upcast_attention=self.config.upcast_attention, norm_type=norm_type, norm_elementwise_affine=self.config.norm_elementwise_affine, norm_eps=self.config.norm_eps, attention_type=self.config.attention_type) for _ in range(self.config.num_layers)]) + if self.use_linear_projection: + self.proj_out = torch.nn.Linear(self.inner_dim, self.out_channels) + else: + self.proj_out = torch.nn.Conv2d(self.inner_dim, self.out_channels, kernel_size=1, stride=1, padding=0) + + def _init_vectorized_inputs(self, norm_type): + assert self.config.sample_size is not None, 'Transformer2DModel over discrete input must provide sample_size' + assert self.config.num_vector_embeds is not None, 'Transformer2DModel over discrete input must provide num_embed' + self.height = self.config.sample_size + self.width = self.config.sample_size + self.num_latent_pixels = self.height * self.width + self.latent_image_embedding = ImagePositionalEmbeddings(num_embed=self.config.num_vector_embeds, embed_dim=self.inner_dim, height=self.height, width=self.width) + self.transformer_blocks = nn.ModuleList([BasicTransformerBlock(self.inner_dim, self.config.num_attention_heads, self.config.attention_head_dim, dropout=self.config.dropout, cross_attention_dim=self.config.cross_attention_dim, activation_fn=self.config.activation_fn, num_embeds_ada_norm=self.config.num_embeds_ada_norm, attention_bias=self.config.attention_bias, only_cross_attention=self.config.only_cross_attention, double_self_attention=self.config.double_self_attention, upcast_attention=self.config.upcast_attention, norm_type=norm_type, norm_elementwise_affine=self.config.norm_elementwise_affine, norm_eps=self.config.norm_eps, attention_type=self.config.attention_type) for _ in range(self.config.num_layers)]) + self.norm_out = nn.LayerNorm(self.inner_dim) + self.out = nn.Linear(self.inner_dim, self.config.num_vector_embeds - 1) + + def _init_patched_inputs(self, norm_type): + assert self.config.sample_size is not None, 'Transformer2DModel over patched input must provide sample_size' + self.height = self.config.sample_size + self.width = self.config.sample_size + self.patch_size = self.config.patch_size + interpolation_scale = self.config.interpolation_scale if self.config.interpolation_scale is not None else max(self.config.sample_size // 64, 1) + self.pos_embed = PatchEmbed(height=self.config.sample_size, width=self.config.sample_size, patch_size=self.config.patch_size, in_channels=self.in_channels, embed_dim=self.inner_dim, interpolation_scale=interpolation_scale) + self.transformer_blocks = nn.ModuleList([BasicTransformerBlock(self.inner_dim, self.config.num_attention_heads, self.config.attention_head_dim, dropout=self.config.dropout, cross_attention_dim=self.config.cross_attention_dim, activation_fn=self.config.activation_fn, num_embeds_ada_norm=self.config.num_embeds_ada_norm, attention_bias=self.config.attention_bias, only_cross_attention=self.config.only_cross_attention, double_self_attention=self.config.double_self_attention, upcast_attention=self.config.upcast_attention, norm_type=norm_type, norm_elementwise_affine=self.config.norm_elementwise_affine, norm_eps=self.config.norm_eps, attention_type=self.config.attention_type) for _ in range(self.config.num_layers)]) + if self.config.norm_type != 'ada_norm_single': + self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-06) + self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim) + self.proj_out_2 = nn.Linear(self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels) + elif self.config.norm_type == 'ada_norm_single': + self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-06) + self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim ** 0.5) + self.proj_out = nn.Linear(self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels) + self.adaln_single = None + if self.config.norm_type == 'ada_norm_single': + self.adaln_single = AdaLayerNormSingle(self.inner_dim, use_additional_conditions=self.use_additional_conditions) + self.caption_projection = None + if self.caption_channels is not None: + self.caption_projection = PixArtAlphaTextProjection(in_features=self.caption_channels, hidden_size=self.inner_dim) + + def _set_gradient_checkpointing(self, module, value=False): + if hasattr(module, 'gradient_checkpointing'): + module.gradient_checkpointing = value + + def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, timestep: Optional[torch.LongTensor]=None, added_cond_kwargs: Dict[str, torch.Tensor]=None, class_labels: Optional[torch.LongTensor]=None, cross_attention_kwargs: Dict[str, Any]=None, attention_mask: Optional[torch.Tensor]=None, encoder_attention_mask: Optional[torch.Tensor]=None, return_dict: bool=True): + if cross_attention_kwargs is not None: + if cross_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.') + if attention_mask is not None and attention_mask.ndim == 2: + attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: + encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 + encoder_attention_mask = encoder_attention_mask.unsqueeze(1) + if self.is_input_continuous: + (batch_size, _, height, width) = hidden_states.shape + residual = hidden_states + (hidden_states, inner_dim) = self._operate_on_continuous_inputs(hidden_states) + elif self.is_input_vectorized: + hidden_states = self.latent_image_embedding(hidden_states) + elif self.is_input_patches: + (height, width) = (hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size) + (hidden_states, encoder_hidden_states, timestep, embedded_timestep) = self._operate_on_patched_inputs(hidden_states, encoder_hidden_states, timestep, added_cond_kwargs) + for block in self.transformer_blocks: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, timestep, cross_attention_kwargs, class_labels, **ckpt_kwargs) + else: + hidden_states = block(hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels) + if self.is_input_continuous: + output = self._get_output_for_continuous_inputs(hidden_states=hidden_states, residual=residual, batch_size=batch_size, height=height, width=width, inner_dim=inner_dim) + elif self.is_input_vectorized: + output = self._get_output_for_vectorized_inputs(hidden_states) + elif self.is_input_patches: + output = self._get_output_for_patched_inputs(hidden_states=hidden_states, timestep=timestep, class_labels=class_labels, embedded_timestep=embedded_timestep, height=height, width=width) + if not return_dict: + return (output,) + return Transformer2DModelOutput(sample=output) + + def _operate_on_continuous_inputs(self, hidden_states): + (batch, _, height, width) = hidden_states.shape + hidden_states = self.norm(hidden_states) + if not self.use_linear_projection: + hidden_states = self.proj_in(hidden_states) + inner_dim = hidden_states.shape[1] + hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) + else: + inner_dim = hidden_states.shape[1] + hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) + hidden_states = self.proj_in(hidden_states) + return (hidden_states, inner_dim) + + def _operate_on_patched_inputs(self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs): + batch_size = hidden_states.shape[0] + hidden_states = self.pos_embed(hidden_states) + embedded_timestep = None + if self.adaln_single is not None: + if self.use_additional_conditions and added_cond_kwargs is None: + raise ValueError('`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.') + (timestep, embedded_timestep) = self.adaln_single(timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype) + if self.caption_projection is not None: + encoder_hidden_states = self.caption_projection(encoder_hidden_states) + encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) + return (hidden_states, encoder_hidden_states, timestep, embedded_timestep) + + def _get_output_for_continuous_inputs(self, hidden_states, residual, batch_size, height, width, inner_dim): + if not self.use_linear_projection: + hidden_states = hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() + hidden_states = self.proj_out(hidden_states) + else: + hidden_states = self.proj_out(hidden_states) + hidden_states = hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() + output = hidden_states + residual + return output + + def _get_output_for_vectorized_inputs(self, hidden_states): + hidden_states = self.norm_out(hidden_states) + logits = self.out(hidden_states) + logits = logits.permute(0, 2, 1) + output = F.log_softmax(logits.double(), dim=1).float() + return output + + def _get_output_for_patched_inputs(self, hidden_states, timestep, class_labels, embedded_timestep, height=None, width=None): + if self.config.norm_type != 'ada_norm_single': + conditioning = self.transformer_blocks[0].norm1.emb(timestep, class_labels, hidden_dtype=hidden_states.dtype) + (shift, scale) = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) + hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] + hidden_states = self.proj_out_2(hidden_states) + elif self.config.norm_type == 'ada_norm_single': + (shift, scale) = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) + hidden_states = self.norm_out(hidden_states) + hidden_states = hidden_states * (1 + scale) + shift + hidden_states = self.proj_out(hidden_states) + hidden_states = hidden_states.squeeze(1) + if self.adaln_single is None: + height = width = int(hidden_states.shape[1] ** 0.5) + hidden_states = hidden_states.reshape(shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)) + hidden_states = torch.einsum('nhwpqc->nchpwq', hidden_states) + output = hidden_states.reshape(shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)) + return output + +# File: diffusers-main/src/diffusers/models/transformers/transformer_flux.py +from typing import Any, Dict, Optional, Tuple, Union +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from ...configuration_utils import ConfigMixin, register_to_config +from ...loaders import FromOriginalModelMixin, PeftAdapterMixin +from ...models.attention import FeedForward +from ...models.attention_processor import Attention, AttentionProcessor, FluxAttnProcessor2_0, FusedFluxAttnProcessor2_0 +from ...models.modeling_utils import ModelMixin +from ...models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle +from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import maybe_allow_in_graph +from ..embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed +from ..modeling_outputs import Transformer2DModelOutput +logger = logging.get_logger(__name__) + +@maybe_allow_in_graph +class FluxSingleTransformerBlock(nn.Module): + + def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0): + super().__init__() + self.mlp_hidden_dim = int(dim * mlp_ratio) + self.norm = AdaLayerNormZeroSingle(dim) + self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim) + self.act_mlp = nn.GELU(approximate='tanh') + self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim) + processor = FluxAttnProcessor2_0() + self.attn = Attention(query_dim=dim, cross_attention_dim=None, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, bias=True, processor=processor, qk_norm='rms_norm', eps=1e-06, pre_only=True) + + def forward(self, hidden_states: torch.FloatTensor, temb: torch.FloatTensor, image_rotary_emb=None): + residual = hidden_states + (norm_hidden_states, gate) = self.norm(hidden_states, emb=temb) + mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) + attn_output = self.attn(hidden_states=norm_hidden_states, image_rotary_emb=image_rotary_emb) + hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) + gate = gate.unsqueeze(1) + hidden_states = gate * self.proj_out(hidden_states) + hidden_states = residual + hidden_states + if hidden_states.dtype == torch.float16: + hidden_states = hidden_states.clip(-65504, 65504) + return hidden_states + +@maybe_allow_in_graph +class FluxTransformerBlock(nn.Module): + + def __init__(self, dim, num_attention_heads, attention_head_dim, qk_norm='rms_norm', eps=1e-06): + super().__init__() + self.norm1 = AdaLayerNormZero(dim) + self.norm1_context = AdaLayerNormZero(dim) + if hasattr(F, 'scaled_dot_product_attention'): + processor = FluxAttnProcessor2_0() + else: + raise ValueError('The current PyTorch version does not support the `scaled_dot_product_attention` function.') + self.attn = Attention(query_dim=dim, cross_attention_dim=None, added_kv_proj_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, context_pre_only=False, bias=True, processor=processor, qk_norm=qk_norm, eps=eps) + self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-06) + self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn='gelu-approximate') + self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-06) + self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn='gelu-approximate') + self._chunk_size = None + self._chunk_dim = 0 + + def forward(self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor, image_rotary_emb=None): + (norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp) = self.norm1(hidden_states, emb=temb) + (norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp) = self.norm1_context(encoder_hidden_states, emb=temb) + (attn_output, context_attn_output) = self.attn(hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, image_rotary_emb=image_rotary_emb) + attn_output = gate_msa.unsqueeze(1) * attn_output + hidden_states = hidden_states + attn_output + norm_hidden_states = self.norm2(hidden_states) + norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] + ff_output = self.ff(norm_hidden_states) + ff_output = gate_mlp.unsqueeze(1) * ff_output + hidden_states = hidden_states + ff_output + context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output + encoder_hidden_states = encoder_hidden_states + context_attn_output + norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) + norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] + context_ff_output = self.ff_context(norm_encoder_hidden_states) + encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output + if encoder_hidden_states.dtype == torch.float16: + encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) + return (encoder_hidden_states, hidden_states) + +class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): + _supports_gradient_checkpointing = True + _no_split_modules = ['FluxTransformerBlock', 'FluxSingleTransformerBlock'] + + @register_to_config + def __init__(self, patch_size: int=1, in_channels: int=64, num_layers: int=19, num_single_layers: int=38, attention_head_dim: int=128, num_attention_heads: int=24, joint_attention_dim: int=4096, pooled_projection_dim: int=768, guidance_embeds: bool=False, axes_dims_rope: Tuple[int]=(16, 56, 56)): + super().__init__() + self.out_channels = in_channels + self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim + self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope) + text_time_guidance_cls = CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings + self.time_text_embed = text_time_guidance_cls(embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim) + self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim) + self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim) + self.transformer_blocks = nn.ModuleList([FluxTransformerBlock(dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.config.attention_head_dim) for i in range(self.config.num_layers)]) + self.single_transformer_blocks = nn.ModuleList([FluxSingleTransformerBlock(dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.config.attention_head_dim) for i in range(self.config.num_single_layers)]) + self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-06) + self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) + self.gradient_checkpointing = False + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def fuse_qkv_projections(self): + self.original_attn_processors = None + for (_, attn_processor) in self.attn_processors.items(): + if 'Added' in str(attn_processor.__class__.__name__): + raise ValueError('`fuse_qkv_projections()` is not supported for models having added KV projections.') + self.original_attn_processors = self.attn_processors + for module in self.modules(): + if isinstance(module, Attention): + module.fuse_projections(fuse=True) + self.set_attn_processor(FusedFluxAttnProcessor2_0()) + + def unfuse_qkv_projections(self): + if self.original_attn_processors is not None: + self.set_attn_processor(self.original_attn_processors) + + def _set_gradient_checkpointing(self, module, value=False): + if hasattr(module, 'gradient_checkpointing'): + module.gradient_checkpointing = value + + def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor=None, pooled_projections: torch.Tensor=None, timestep: torch.LongTensor=None, img_ids: torch.Tensor=None, txt_ids: torch.Tensor=None, guidance: torch.Tensor=None, joint_attention_kwargs: Optional[Dict[str, Any]]=None, controlnet_block_samples=None, controlnet_single_block_samples=None, return_dict: bool=True) -> Union[torch.FloatTensor, Transformer2DModelOutput]: + if joint_attention_kwargs is not None: + joint_attention_kwargs = joint_attention_kwargs.copy() + lora_scale = joint_attention_kwargs.pop('scale', 1.0) + else: + lora_scale = 1.0 + if USE_PEFT_BACKEND: + scale_lora_layers(self, lora_scale) + elif joint_attention_kwargs is not None and joint_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective.') + hidden_states = self.x_embedder(hidden_states) + timestep = timestep.to(hidden_states.dtype) * 1000 + if guidance is not None: + guidance = guidance.to(hidden_states.dtype) * 1000 + else: + guidance = None + temb = self.time_text_embed(timestep, pooled_projections) if guidance is None else self.time_text_embed(timestep, guidance, pooled_projections) + encoder_hidden_states = self.context_embedder(encoder_hidden_states) + if txt_ids.ndim == 3: + logger.warning('Passing `txt_ids` 3d torch.Tensor is deprecated.Please remove the batch dimension and pass it as a 2d torch Tensor') + txt_ids = txt_ids[0] + if img_ids.ndim == 3: + logger.warning('Passing `img_ids` 3d torch.Tensor is deprecated.Please remove the batch dimension and pass it as a 2d torch Tensor') + img_ids = img_ids[0] + ids = torch.cat((txt_ids, img_ids), dim=0) + image_rotary_emb = self.pos_embed(ids) + for (index_block, block) in enumerate(self.transformer_blocks): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + (encoder_hidden_states, hidden_states) = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, encoder_hidden_states, temb, image_rotary_emb, **ckpt_kwargs) + else: + (encoder_hidden_states, hidden_states) = block(hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, image_rotary_emb=image_rotary_emb) + if controlnet_block_samples is not None: + interval_control = len(self.transformer_blocks) / len(controlnet_block_samples) + interval_control = int(np.ceil(interval_control)) + hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control] + hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) + for (index_block, block) in enumerate(self.single_transformer_blocks): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, temb, image_rotary_emb, **ckpt_kwargs) + else: + hidden_states = block(hidden_states=hidden_states, temb=temb, image_rotary_emb=image_rotary_emb) + if controlnet_single_block_samples is not None: + interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples) + interval_control = int(np.ceil(interval_control)) + hidden_states[:, encoder_hidden_states.shape[1]:, ...] = hidden_states[:, encoder_hidden_states.shape[1]:, ...] + controlnet_single_block_samples[index_block // interval_control] + hidden_states = hidden_states[:, encoder_hidden_states.shape[1]:, ...] + hidden_states = self.norm_out(hidden_states, temb) + output = self.proj_out(hidden_states) + if USE_PEFT_BACKEND: + unscale_lora_layers(self, lora_scale) + if not return_dict: + return (output,) + return Transformer2DModelOutput(sample=output) + +# File: diffusers-main/src/diffusers/models/transformers/transformer_sd3.py +from typing import Any, Dict, List, Optional, Union +import torch +import torch.nn as nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...loaders import FromOriginalModelMixin, PeftAdapterMixin +from ...models.attention import JointTransformerBlock +from ...models.attention_processor import Attention, AttentionProcessor, FusedJointAttnProcessor2_0 +from ...models.modeling_utils import ModelMixin +from ...models.normalization import AdaLayerNormContinuous +from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers +from ..embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed +from ..modeling_outputs import Transformer2DModelOutput +logger = logging.get_logger(__name__) + +class SD3Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__(self, sample_size: int=128, patch_size: int=2, in_channels: int=16, num_layers: int=18, attention_head_dim: int=64, num_attention_heads: int=18, joint_attention_dim: int=4096, caption_projection_dim: int=1152, pooled_projection_dim: int=2048, out_channels: int=16, pos_embed_max_size: int=96): + super().__init__() + default_out_channels = in_channels + self.out_channels = out_channels if out_channels is not None else default_out_channels + self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim + self.pos_embed = PatchEmbed(height=self.config.sample_size, width=self.config.sample_size, patch_size=self.config.patch_size, in_channels=self.config.in_channels, embed_dim=self.inner_dim, pos_embed_max_size=pos_embed_max_size) + self.time_text_embed = CombinedTimestepTextProjEmbeddings(embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim) + self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.config.caption_projection_dim) + self.transformer_blocks = nn.ModuleList([JointTransformerBlock(dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.config.attention_head_dim, context_pre_only=i == num_layers - 1) for i in range(self.config.num_layers)]) + self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-06) + self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) + self.gradient_checkpointing = False + + def enable_forward_chunking(self, chunk_size: Optional[int]=None, dim: int=0) -> None: + if dim not in [0, 1]: + raise ValueError(f'Make sure to set `dim` to either 0 or 1, not {dim}') + chunk_size = chunk_size or 1 + + def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): + if hasattr(module, 'set_chunk_feed_forward'): + module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) + for child in module.children(): + fn_recursive_feed_forward(child, chunk_size, dim) + for module in self.children(): + fn_recursive_feed_forward(module, chunk_size, dim) + + def disable_forward_chunking(self): + + def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): + if hasattr(module, 'set_chunk_feed_forward'): + module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) + for child in module.children(): + fn_recursive_feed_forward(child, chunk_size, dim) + for module in self.children(): + fn_recursive_feed_forward(module, None, 0) + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def fuse_qkv_projections(self): + self.original_attn_processors = None + for (_, attn_processor) in self.attn_processors.items(): + if 'Added' in str(attn_processor.__class__.__name__): + raise ValueError('`fuse_qkv_projections()` is not supported for models having added KV projections.') + self.original_attn_processors = self.attn_processors + for module in self.modules(): + if isinstance(module, Attention): + module.fuse_projections(fuse=True) + self.set_attn_processor(FusedJointAttnProcessor2_0()) + + def unfuse_qkv_projections(self): + if self.original_attn_processors is not None: + self.set_attn_processor(self.original_attn_processors) + + def _set_gradient_checkpointing(self, module, value=False): + if hasattr(module, 'gradient_checkpointing'): + module.gradient_checkpointing = value + + def forward(self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor=None, pooled_projections: torch.FloatTensor=None, timestep: torch.LongTensor=None, block_controlnet_hidden_states: List=None, joint_attention_kwargs: Optional[Dict[str, Any]]=None, return_dict: bool=True) -> Union[torch.FloatTensor, Transformer2DModelOutput]: + if joint_attention_kwargs is not None: + joint_attention_kwargs = joint_attention_kwargs.copy() + lora_scale = joint_attention_kwargs.pop('scale', 1.0) + else: + lora_scale = 1.0 + if USE_PEFT_BACKEND: + scale_lora_layers(self, lora_scale) + elif joint_attention_kwargs is not None and joint_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective.') + (height, width) = hidden_states.shape[-2:] + hidden_states = self.pos_embed(hidden_states) + temb = self.time_text_embed(timestep, pooled_projections) + encoder_hidden_states = self.context_embedder(encoder_hidden_states) + for (index_block, block) in enumerate(self.transformer_blocks): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + (encoder_hidden_states, hidden_states) = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, encoder_hidden_states, temb, **ckpt_kwargs) + else: + (encoder_hidden_states, hidden_states) = block(hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb) + if block_controlnet_hidden_states is not None and block.context_pre_only is False: + interval_control = len(self.transformer_blocks) // len(block_controlnet_hidden_states) + hidden_states = hidden_states + block_controlnet_hidden_states[index_block // interval_control] + hidden_states = self.norm_out(hidden_states, temb) + hidden_states = self.proj_out(hidden_states) + patch_size = self.config.patch_size + height = height // patch_size + width = width // patch_size + hidden_states = hidden_states.reshape(shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)) + hidden_states = torch.einsum('nhwpqc->nchpwq', hidden_states) + output = hidden_states.reshape(shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)) + if USE_PEFT_BACKEND: + unscale_lora_layers(self, lora_scale) + if not return_dict: + return (output,) + return Transformer2DModelOutput(sample=output) + +# File: diffusers-main/src/diffusers/models/transformers/transformer_temporal.py +from dataclasses import dataclass +from typing import Any, Dict, Optional +import torch +from torch import nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...utils import BaseOutput +from ..attention import BasicTransformerBlock, TemporalBasicTransformerBlock +from ..embeddings import TimestepEmbedding, Timesteps +from ..modeling_utils import ModelMixin +from ..resnet import AlphaBlender + +@dataclass +class TransformerTemporalModelOutput(BaseOutput): + sample: torch.Tensor + +class TransformerTemporalModel(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, num_attention_heads: int=16, attention_head_dim: int=88, in_channels: Optional[int]=None, out_channels: Optional[int]=None, num_layers: int=1, dropout: float=0.0, norm_num_groups: int=32, cross_attention_dim: Optional[int]=None, attention_bias: bool=False, sample_size: Optional[int]=None, activation_fn: str='geglu', norm_elementwise_affine: bool=True, double_self_attention: bool=True, positional_embeddings: Optional[str]=None, num_positional_embeddings: Optional[int]=None): + super().__init__() + self.num_attention_heads = num_attention_heads + self.attention_head_dim = attention_head_dim + inner_dim = num_attention_heads * attention_head_dim + self.in_channels = in_channels + self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-06, affine=True) + self.proj_in = nn.Linear(in_channels, inner_dim) + self.transformer_blocks = nn.ModuleList([BasicTransformerBlock(inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, attention_bias=attention_bias, double_self_attention=double_self_attention, norm_elementwise_affine=norm_elementwise_affine, positional_embeddings=positional_embeddings, num_positional_embeddings=num_positional_embeddings) for d in range(num_layers)]) + self.proj_out = nn.Linear(inner_dim, in_channels) + + def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.LongTensor]=None, timestep: Optional[torch.LongTensor]=None, class_labels: torch.LongTensor=None, num_frames: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, return_dict: bool=True) -> TransformerTemporalModelOutput: + (batch_frames, channel, height, width) = hidden_states.shape + batch_size = batch_frames // num_frames + residual = hidden_states + hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, channel, height, width) + hidden_states = hidden_states.permute(0, 2, 1, 3, 4) + hidden_states = self.norm(hidden_states) + hidden_states = hidden_states.permute(0, 3, 4, 2, 1).reshape(batch_size * height * width, num_frames, channel) + hidden_states = self.proj_in(hidden_states) + for block in self.transformer_blocks: + hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels) + hidden_states = self.proj_out(hidden_states) + hidden_states = hidden_states[None, None, :].reshape(batch_size, height, width, num_frames, channel).permute(0, 3, 4, 1, 2).contiguous() + hidden_states = hidden_states.reshape(batch_frames, channel, height, width) + output = hidden_states + residual + if not return_dict: + return (output,) + return TransformerTemporalModelOutput(sample=output) + +class TransformerSpatioTemporalModel(nn.Module): + + def __init__(self, num_attention_heads: int=16, attention_head_dim: int=88, in_channels: int=320, out_channels: Optional[int]=None, num_layers: int=1, cross_attention_dim: Optional[int]=None): + super().__init__() + self.num_attention_heads = num_attention_heads + self.attention_head_dim = attention_head_dim + inner_dim = num_attention_heads * attention_head_dim + self.inner_dim = inner_dim + self.in_channels = in_channels + self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-06) + self.proj_in = nn.Linear(in_channels, inner_dim) + self.transformer_blocks = nn.ModuleList([BasicTransformerBlock(inner_dim, num_attention_heads, attention_head_dim, cross_attention_dim=cross_attention_dim) for d in range(num_layers)]) + time_mix_inner_dim = inner_dim + self.temporal_transformer_blocks = nn.ModuleList([TemporalBasicTransformerBlock(inner_dim, time_mix_inner_dim, num_attention_heads, attention_head_dim, cross_attention_dim=cross_attention_dim) for _ in range(num_layers)]) + time_embed_dim = in_channels * 4 + self.time_pos_embed = TimestepEmbedding(in_channels, time_embed_dim, out_dim=in_channels) + self.time_proj = Timesteps(in_channels, True, 0) + self.time_mixer = AlphaBlender(alpha=0.5, merge_strategy='learned_with_images') + self.out_channels = in_channels if out_channels is None else out_channels + self.proj_out = nn.Linear(inner_dim, in_channels) + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, image_only_indicator: Optional[torch.Tensor]=None, return_dict: bool=True): + (batch_frames, _, height, width) = hidden_states.shape + num_frames = image_only_indicator.shape[-1] + batch_size = batch_frames // num_frames + time_context = encoder_hidden_states + time_context_first_timestep = time_context[None, :].reshape(batch_size, num_frames, -1, time_context.shape[-1])[:, 0] + time_context = time_context_first_timestep[:, None].broadcast_to(batch_size, height * width, time_context.shape[-2], time_context.shape[-1]) + time_context = time_context.reshape(batch_size * height * width, -1, time_context.shape[-1]) + residual = hidden_states + hidden_states = self.norm(hidden_states) + inner_dim = hidden_states.shape[1] + hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_frames, height * width, inner_dim) + hidden_states = self.proj_in(hidden_states) + num_frames_emb = torch.arange(num_frames, device=hidden_states.device) + num_frames_emb = num_frames_emb.repeat(batch_size, 1) + num_frames_emb = num_frames_emb.reshape(-1) + t_emb = self.time_proj(num_frames_emb) + t_emb = t_emb.to(dtype=hidden_states.dtype) + emb = self.time_pos_embed(t_emb) + emb = emb[:, None, :] + for (block, temporal_block) in zip(self.transformer_blocks, self.temporal_transformer_blocks): + if self.training and self.gradient_checkpointing: + hidden_states = torch.utils.checkpoint.checkpoint(block, hidden_states, None, encoder_hidden_states, None, use_reentrant=False) + else: + hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states) + hidden_states_mix = hidden_states + hidden_states_mix = hidden_states_mix + emb + hidden_states_mix = temporal_block(hidden_states_mix, num_frames=num_frames, encoder_hidden_states=time_context) + hidden_states = self.time_mixer(x_spatial=hidden_states, x_temporal=hidden_states_mix, image_only_indicator=image_only_indicator) + hidden_states = self.proj_out(hidden_states) + hidden_states = hidden_states.reshape(batch_frames, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() + output = hidden_states + residual + if not return_dict: + return (output,) + return TransformerTemporalModelOutput(sample=output) + +# File: diffusers-main/src/diffusers/models/unets/__init__.py +from ...utils import is_flax_available, is_torch_available +if is_torch_available(): + from .unet_1d import UNet1DModel + from .unet_2d import UNet2DModel + from .unet_2d_condition import UNet2DConditionModel + from .unet_3d_condition import UNet3DConditionModel + from .unet_i2vgen_xl import I2VGenXLUNet + from .unet_kandinsky3 import Kandinsky3UNet + from .unet_motion_model import MotionAdapter, UNetMotionModel + from .unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel + from .unet_stable_cascade import StableCascadeUNet + from .uvit_2d import UVit2DModel +if is_flax_available(): + from .unet_2d_condition_flax import FlaxUNet2DConditionModel + +# File: diffusers-main/src/diffusers/models/unets/unet_1d.py +from dataclasses import dataclass +from typing import Optional, Tuple, Union +import torch +import torch.nn as nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...utils import BaseOutput +from ..embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps +from ..modeling_utils import ModelMixin +from .unet_1d_blocks import get_down_block, get_mid_block, get_out_block, get_up_block + +@dataclass +class UNet1DOutput(BaseOutput): + sample: torch.Tensor + +class UNet1DModel(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, sample_size: int=65536, sample_rate: Optional[int]=None, in_channels: int=2, out_channels: int=2, extra_in_channels: int=0, time_embedding_type: str='fourier', flip_sin_to_cos: bool=True, use_timestep_embedding: bool=False, freq_shift: float=0.0, down_block_types: Tuple[str]=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D'), up_block_types: Tuple[str]=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip'), mid_block_type: Tuple[str]='UNetMidBlock1D', out_block_type: str=None, block_out_channels: Tuple[int]=(32, 32, 64), act_fn: str=None, norm_num_groups: int=8, layers_per_block: int=1, downsample_each_block: bool=False): + super().__init__() + self.sample_size = sample_size + if time_embedding_type == 'fourier': + self.time_proj = GaussianFourierProjection(embedding_size=8, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos) + timestep_input_dim = 2 * block_out_channels[0] + elif time_embedding_type == 'positional': + self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos=flip_sin_to_cos, downscale_freq_shift=freq_shift) + timestep_input_dim = block_out_channels[0] + if use_timestep_embedding: + time_embed_dim = block_out_channels[0] * 4 + self.time_mlp = TimestepEmbedding(in_channels=timestep_input_dim, time_embed_dim=time_embed_dim, act_fn=act_fn, out_dim=block_out_channels[0]) + self.down_blocks = nn.ModuleList([]) + self.mid_block = None + self.up_blocks = nn.ModuleList([]) + self.out_block = None + output_channel = in_channels + for (i, down_block_type) in enumerate(down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + if i == 0: + input_channel += extra_in_channels + is_final_block = i == len(block_out_channels) - 1 + down_block = get_down_block(down_block_type, num_layers=layers_per_block, in_channels=input_channel, out_channels=output_channel, temb_channels=block_out_channels[0], add_downsample=not is_final_block or downsample_each_block) + self.down_blocks.append(down_block) + self.mid_block = get_mid_block(mid_block_type, in_channels=block_out_channels[-1], mid_channels=block_out_channels[-1], out_channels=block_out_channels[-1], embed_dim=block_out_channels[0], num_layers=layers_per_block, add_downsample=downsample_each_block) + reversed_block_out_channels = list(reversed(block_out_channels)) + output_channel = reversed_block_out_channels[0] + if out_block_type is None: + final_upsample_channels = out_channels + else: + final_upsample_channels = block_out_channels[0] + for (i, up_block_type) in enumerate(up_block_types): + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i + 1] if i < len(up_block_types) - 1 else final_upsample_channels + is_final_block = i == len(block_out_channels) - 1 + up_block = get_up_block(up_block_type, num_layers=layers_per_block, in_channels=prev_output_channel, out_channels=output_channel, temb_channels=block_out_channels[0], add_upsample=not is_final_block) + self.up_blocks.append(up_block) + prev_output_channel = output_channel + num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32) + self.out_block = get_out_block(out_block_type=out_block_type, num_groups_out=num_groups_out, embed_dim=block_out_channels[0], out_channels=out_channels, act_fn=act_fn, fc_dim=block_out_channels[-1] // 4) + + def forward(self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int], return_dict: bool=True) -> Union[UNet1DOutput, Tuple]: + timesteps = timestep + if not torch.is_tensor(timesteps): + timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device) + elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + timestep_embed = self.time_proj(timesteps) + if self.config.use_timestep_embedding: + timestep_embed = self.time_mlp(timestep_embed) + else: + timestep_embed = timestep_embed[..., None] + timestep_embed = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) + timestep_embed = timestep_embed.broadcast_to(sample.shape[:1] + timestep_embed.shape[1:]) + down_block_res_samples = () + for downsample_block in self.down_blocks: + (sample, res_samples) = downsample_block(hidden_states=sample, temb=timestep_embed) + down_block_res_samples += res_samples + if self.mid_block: + sample = self.mid_block(sample, timestep_embed) + for (i, upsample_block) in enumerate(self.up_blocks): + res_samples = down_block_res_samples[-1:] + down_block_res_samples = down_block_res_samples[:-1] + sample = upsample_block(sample, res_hidden_states_tuple=res_samples, temb=timestep_embed) + if self.out_block: + sample = self.out_block(sample, timestep_embed) + if not return_dict: + return (sample,) + return UNet1DOutput(sample=sample) + +# File: diffusers-main/src/diffusers/models/unets/unet_1d_blocks.py +import math +from typing import Optional, Tuple, Union +import torch +import torch.nn.functional as F +from torch import nn +from ..activations import get_activation +from ..resnet import Downsample1D, ResidualTemporalBlock1D, Upsample1D, rearrange_dims + +class DownResnetBlock1D(nn.Module): + + def __init__(self, in_channels: int, out_channels: Optional[int]=None, num_layers: int=1, conv_shortcut: bool=False, temb_channels: int=32, groups: int=32, groups_out: Optional[int]=None, non_linearity: Optional[str]=None, time_embedding_norm: str='default', output_scale_factor: float=1.0, add_downsample: bool=True): + super().__init__() + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + self.time_embedding_norm = time_embedding_norm + self.add_downsample = add_downsample + self.output_scale_factor = output_scale_factor + if groups_out is None: + groups_out = groups + resnets = [ResidualTemporalBlock1D(in_channels, out_channels, embed_dim=temb_channels)] + for _ in range(num_layers): + resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=temb_channels)) + self.resnets = nn.ModuleList(resnets) + if non_linearity is None: + self.nonlinearity = None + else: + self.nonlinearity = get_activation(non_linearity) + self.downsample = None + if add_downsample: + self.downsample = Downsample1D(out_channels, use_conv=True, padding=1) + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None) -> torch.Tensor: + output_states = () + hidden_states = self.resnets[0](hidden_states, temb) + for resnet in self.resnets[1:]: + hidden_states = resnet(hidden_states, temb) + output_states += (hidden_states,) + if self.nonlinearity is not None: + hidden_states = self.nonlinearity(hidden_states) + if self.downsample is not None: + hidden_states = self.downsample(hidden_states) + return (hidden_states, output_states) + +class UpResnetBlock1D(nn.Module): + + def __init__(self, in_channels: int, out_channels: Optional[int]=None, num_layers: int=1, temb_channels: int=32, groups: int=32, groups_out: Optional[int]=None, non_linearity: Optional[str]=None, time_embedding_norm: str='default', output_scale_factor: float=1.0, add_upsample: bool=True): + super().__init__() + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.time_embedding_norm = time_embedding_norm + self.add_upsample = add_upsample + self.output_scale_factor = output_scale_factor + if groups_out is None: + groups_out = groups + resnets = [ResidualTemporalBlock1D(2 * in_channels, out_channels, embed_dim=temb_channels)] + for _ in range(num_layers): + resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=temb_channels)) + self.resnets = nn.ModuleList(resnets) + if non_linearity is None: + self.nonlinearity = None + else: + self.nonlinearity = get_activation(non_linearity) + self.upsample = None + if add_upsample: + self.upsample = Upsample1D(out_channels, use_conv_transpose=True) + + def forward(self, hidden_states: torch.Tensor, res_hidden_states_tuple: Optional[Tuple[torch.Tensor, ...]]=None, temb: Optional[torch.Tensor]=None) -> torch.Tensor: + if res_hidden_states_tuple is not None: + res_hidden_states = res_hidden_states_tuple[-1] + hidden_states = torch.cat((hidden_states, res_hidden_states), dim=1) + hidden_states = self.resnets[0](hidden_states, temb) + for resnet in self.resnets[1:]: + hidden_states = resnet(hidden_states, temb) + if self.nonlinearity is not None: + hidden_states = self.nonlinearity(hidden_states) + if self.upsample is not None: + hidden_states = self.upsample(hidden_states) + return hidden_states + +class ValueFunctionMidBlock1D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, embed_dim: int): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.embed_dim = embed_dim + self.res1 = ResidualTemporalBlock1D(in_channels, in_channels // 2, embed_dim=embed_dim) + self.down1 = Downsample1D(out_channels // 2, use_conv=True) + self.res2 = ResidualTemporalBlock1D(in_channels // 2, in_channels // 4, embed_dim=embed_dim) + self.down2 = Downsample1D(out_channels // 4, use_conv=True) + + def forward(self, x: torch.Tensor, temb: Optional[torch.Tensor]=None) -> torch.Tensor: + x = self.res1(x, temb) + x = self.down1(x) + x = self.res2(x, temb) + x = self.down2(x) + return x + +class MidResTemporalBlock1D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, embed_dim: int, num_layers: int=1, add_downsample: bool=False, add_upsample: bool=False, non_linearity: Optional[str]=None): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.add_downsample = add_downsample + resnets = [ResidualTemporalBlock1D(in_channels, out_channels, embed_dim=embed_dim)] + for _ in range(num_layers): + resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=embed_dim)) + self.resnets = nn.ModuleList(resnets) + if non_linearity is None: + self.nonlinearity = None + else: + self.nonlinearity = get_activation(non_linearity) + self.upsample = None + if add_upsample: + self.upsample = Upsample1D(out_channels, use_conv=True) + self.downsample = None + if add_downsample: + self.downsample = Downsample1D(out_channels, use_conv=True) + if self.upsample and self.downsample: + raise ValueError('Block cannot downsample and upsample') + + def forward(self, hidden_states: torch.Tensor, temb: torch.Tensor) -> torch.Tensor: + hidden_states = self.resnets[0](hidden_states, temb) + for resnet in self.resnets[1:]: + hidden_states = resnet(hidden_states, temb) + if self.upsample: + hidden_states = self.upsample(hidden_states) + if self.downsample: + self.downsample = self.downsample(hidden_states) + return hidden_states + +class OutConv1DBlock(nn.Module): + + def __init__(self, num_groups_out: int, out_channels: int, embed_dim: int, act_fn: str): + super().__init__() + self.final_conv1d_1 = nn.Conv1d(embed_dim, embed_dim, 5, padding=2) + self.final_conv1d_gn = nn.GroupNorm(num_groups_out, embed_dim) + self.final_conv1d_act = get_activation(act_fn) + self.final_conv1d_2 = nn.Conv1d(embed_dim, out_channels, 1) + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None) -> torch.Tensor: + hidden_states = self.final_conv1d_1(hidden_states) + hidden_states = rearrange_dims(hidden_states) + hidden_states = self.final_conv1d_gn(hidden_states) + hidden_states = rearrange_dims(hidden_states) + hidden_states = self.final_conv1d_act(hidden_states) + hidden_states = self.final_conv1d_2(hidden_states) + return hidden_states + +class OutValueFunctionBlock(nn.Module): + + def __init__(self, fc_dim: int, embed_dim: int, act_fn: str='mish'): + super().__init__() + self.final_block = nn.ModuleList([nn.Linear(fc_dim + embed_dim, fc_dim // 2), get_activation(act_fn), nn.Linear(fc_dim // 2, 1)]) + + def forward(self, hidden_states: torch.Tensor, temb: torch.Tensor) -> torch.Tensor: + hidden_states = hidden_states.view(hidden_states.shape[0], -1) + hidden_states = torch.cat((hidden_states, temb), dim=-1) + for layer in self.final_block: + hidden_states = layer(hidden_states) + return hidden_states +_kernels = {'linear': [1 / 8, 3 / 8, 3 / 8, 1 / 8], 'cubic': [-0.01171875, -0.03515625, 0.11328125, 0.43359375, 0.43359375, 0.11328125, -0.03515625, -0.01171875], 'lanczos3': [0.003689131001010537, 0.015056144446134567, -0.03399861603975296, -0.066637322306633, 0.13550527393817902, 0.44638532400131226, 0.44638532400131226, 0.13550527393817902, -0.066637322306633, -0.03399861603975296, 0.015056144446134567, 0.003689131001010537]} + +class Downsample1d(nn.Module): + + def __init__(self, kernel: str='linear', pad_mode: str='reflect'): + super().__init__() + self.pad_mode = pad_mode + kernel_1d = torch.tensor(_kernels[kernel]) + self.pad = kernel_1d.shape[0] // 2 - 1 + self.register_buffer('kernel', kernel_1d) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = F.pad(hidden_states, (self.pad,) * 2, self.pad_mode) + weight = hidden_states.new_zeros([hidden_states.shape[1], hidden_states.shape[1], self.kernel.shape[0]]) + indices = torch.arange(hidden_states.shape[1], device=hidden_states.device) + kernel = self.kernel.to(weight)[None, :].expand(hidden_states.shape[1], -1) + weight[indices, indices] = kernel + return F.conv1d(hidden_states, weight, stride=2) + +class Upsample1d(nn.Module): + + def __init__(self, kernel: str='linear', pad_mode: str='reflect'): + super().__init__() + self.pad_mode = pad_mode + kernel_1d = torch.tensor(_kernels[kernel]) * 2 + self.pad = kernel_1d.shape[0] // 2 - 1 + self.register_buffer('kernel', kernel_1d) + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None) -> torch.Tensor: + hidden_states = F.pad(hidden_states, ((self.pad + 1) // 2,) * 2, self.pad_mode) + weight = hidden_states.new_zeros([hidden_states.shape[1], hidden_states.shape[1], self.kernel.shape[0]]) + indices = torch.arange(hidden_states.shape[1], device=hidden_states.device) + kernel = self.kernel.to(weight)[None, :].expand(hidden_states.shape[1], -1) + weight[indices, indices] = kernel + return F.conv_transpose1d(hidden_states, weight, stride=2, padding=self.pad * 2 + 1) + +class SelfAttention1d(nn.Module): + + def __init__(self, in_channels: int, n_head: int=1, dropout_rate: float=0.0): + super().__init__() + self.channels = in_channels + self.group_norm = nn.GroupNorm(1, num_channels=in_channels) + self.num_heads = n_head + self.query = nn.Linear(self.channels, self.channels) + self.key = nn.Linear(self.channels, self.channels) + self.value = nn.Linear(self.channels, self.channels) + self.proj_attn = nn.Linear(self.channels, self.channels, bias=True) + self.dropout = nn.Dropout(dropout_rate, inplace=True) + + def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor: + new_projection_shape = projection.size()[:-1] + (self.num_heads, -1) + new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3) + return new_projection + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + residual = hidden_states + (batch, channel_dim, seq) = hidden_states.shape + hidden_states = self.group_norm(hidden_states) + hidden_states = hidden_states.transpose(1, 2) + query_proj = self.query(hidden_states) + key_proj = self.key(hidden_states) + value_proj = self.value(hidden_states) + query_states = self.transpose_for_scores(query_proj) + key_states = self.transpose_for_scores(key_proj) + value_states = self.transpose_for_scores(value_proj) + scale = 1 / math.sqrt(math.sqrt(key_states.shape[-1])) + attention_scores = torch.matmul(query_states * scale, key_states.transpose(-1, -2) * scale) + attention_probs = torch.softmax(attention_scores, dim=-1) + hidden_states = torch.matmul(attention_probs, value_states) + hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous() + new_hidden_states_shape = hidden_states.size()[:-2] + (self.channels,) + hidden_states = hidden_states.view(new_hidden_states_shape) + hidden_states = self.proj_attn(hidden_states) + hidden_states = hidden_states.transpose(1, 2) + hidden_states = self.dropout(hidden_states) + output = hidden_states + residual + return output + +class ResConvBlock(nn.Module): + + def __init__(self, in_channels: int, mid_channels: int, out_channels: int, is_last: bool=False): + super().__init__() + self.is_last = is_last + self.has_conv_skip = in_channels != out_channels + if self.has_conv_skip: + self.conv_skip = nn.Conv1d(in_channels, out_channels, 1, bias=False) + self.conv_1 = nn.Conv1d(in_channels, mid_channels, 5, padding=2) + self.group_norm_1 = nn.GroupNorm(1, mid_channels) + self.gelu_1 = nn.GELU() + self.conv_2 = nn.Conv1d(mid_channels, out_channels, 5, padding=2) + if not self.is_last: + self.group_norm_2 = nn.GroupNorm(1, out_channels) + self.gelu_2 = nn.GELU() + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + residual = self.conv_skip(hidden_states) if self.has_conv_skip else hidden_states + hidden_states = self.conv_1(hidden_states) + hidden_states = self.group_norm_1(hidden_states) + hidden_states = self.gelu_1(hidden_states) + hidden_states = self.conv_2(hidden_states) + if not self.is_last: + hidden_states = self.group_norm_2(hidden_states) + hidden_states = self.gelu_2(hidden_states) + output = hidden_states + residual + return output + +class UNetMidBlock1D(nn.Module): + + def __init__(self, mid_channels: int, in_channels: int, out_channels: Optional[int]=None): + super().__init__() + out_channels = in_channels if out_channels is None else out_channels + self.down = Downsample1d('cubic') + resnets = [ResConvBlock(in_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, out_channels)] + attentions = [SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(out_channels, out_channels // 32)] + self.up = Upsample1d(kernel='cubic') + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None) -> torch.Tensor: + hidden_states = self.down(hidden_states) + for (attn, resnet) in zip(self.attentions, self.resnets): + hidden_states = resnet(hidden_states) + hidden_states = attn(hidden_states) + hidden_states = self.up(hidden_states) + return hidden_states + +class AttnDownBlock1D(nn.Module): + + def __init__(self, out_channels: int, in_channels: int, mid_channels: Optional[int]=None): + super().__init__() + mid_channels = out_channels if mid_channels is None else mid_channels + self.down = Downsample1d('cubic') + resnets = [ResConvBlock(in_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, out_channels)] + attentions = [SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(out_channels, out_channels // 32)] + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None) -> torch.Tensor: + hidden_states = self.down(hidden_states) + for (resnet, attn) in zip(self.resnets, self.attentions): + hidden_states = resnet(hidden_states) + hidden_states = attn(hidden_states) + return (hidden_states, (hidden_states,)) + +class DownBlock1D(nn.Module): + + def __init__(self, out_channels: int, in_channels: int, mid_channels: Optional[int]=None): + super().__init__() + mid_channels = out_channels if mid_channels is None else mid_channels + self.down = Downsample1d('cubic') + resnets = [ResConvBlock(in_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, out_channels)] + self.resnets = nn.ModuleList(resnets) + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None) -> torch.Tensor: + hidden_states = self.down(hidden_states) + for resnet in self.resnets: + hidden_states = resnet(hidden_states) + return (hidden_states, (hidden_states,)) + +class DownBlock1DNoSkip(nn.Module): + + def __init__(self, out_channels: int, in_channels: int, mid_channels: Optional[int]=None): + super().__init__() + mid_channels = out_channels if mid_channels is None else mid_channels + resnets = [ResConvBlock(in_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, out_channels)] + self.resnets = nn.ModuleList(resnets) + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None) -> torch.Tensor: + hidden_states = torch.cat([hidden_states, temb], dim=1) + for resnet in self.resnets: + hidden_states = resnet(hidden_states) + return (hidden_states, (hidden_states,)) + +class AttnUpBlock1D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, mid_channels: Optional[int]=None): + super().__init__() + mid_channels = out_channels if mid_channels is None else mid_channels + resnets = [ResConvBlock(2 * in_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, out_channels)] + attentions = [SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(out_channels, out_channels // 32)] + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + self.up = Upsample1d(kernel='cubic') + + def forward(self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor]=None) -> torch.Tensor: + res_hidden_states = res_hidden_states_tuple[-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + for (resnet, attn) in zip(self.resnets, self.attentions): + hidden_states = resnet(hidden_states) + hidden_states = attn(hidden_states) + hidden_states = self.up(hidden_states) + return hidden_states + +class UpBlock1D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, mid_channels: Optional[int]=None): + super().__init__() + mid_channels = in_channels if mid_channels is None else mid_channels + resnets = [ResConvBlock(2 * in_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, out_channels)] + self.resnets = nn.ModuleList(resnets) + self.up = Upsample1d(kernel='cubic') + + def forward(self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor]=None) -> torch.Tensor: + res_hidden_states = res_hidden_states_tuple[-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + for resnet in self.resnets: + hidden_states = resnet(hidden_states) + hidden_states = self.up(hidden_states) + return hidden_states + +class UpBlock1DNoSkip(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, mid_channels: Optional[int]=None): + super().__init__() + mid_channels = in_channels if mid_channels is None else mid_channels + resnets = [ResConvBlock(2 * in_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, out_channels, is_last=True)] + self.resnets = nn.ModuleList(resnets) + + def forward(self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor]=None) -> torch.Tensor: + res_hidden_states = res_hidden_states_tuple[-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + for resnet in self.resnets: + hidden_states = resnet(hidden_states) + return hidden_states +DownBlockType = Union[DownResnetBlock1D, DownBlock1D, AttnDownBlock1D, DownBlock1DNoSkip] +MidBlockType = Union[MidResTemporalBlock1D, ValueFunctionMidBlock1D, UNetMidBlock1D] +OutBlockType = Union[OutConv1DBlock, OutValueFunctionBlock] +UpBlockType = Union[UpResnetBlock1D, UpBlock1D, AttnUpBlock1D, UpBlock1DNoSkip] + +def get_down_block(down_block_type: str, num_layers: int, in_channels: int, out_channels: int, temb_channels: int, add_downsample: bool) -> DownBlockType: + if down_block_type == 'DownResnetBlock1D': + return DownResnetBlock1D(in_channels=in_channels, num_layers=num_layers, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample) + elif down_block_type == 'DownBlock1D': + return DownBlock1D(out_channels=out_channels, in_channels=in_channels) + elif down_block_type == 'AttnDownBlock1D': + return AttnDownBlock1D(out_channels=out_channels, in_channels=in_channels) + elif down_block_type == 'DownBlock1DNoSkip': + return DownBlock1DNoSkip(out_channels=out_channels, in_channels=in_channels) + raise ValueError(f'{down_block_type} does not exist.') + +def get_up_block(up_block_type: str, num_layers: int, in_channels: int, out_channels: int, temb_channels: int, add_upsample: bool) -> UpBlockType: + if up_block_type == 'UpResnetBlock1D': + return UpResnetBlock1D(in_channels=in_channels, num_layers=num_layers, out_channels=out_channels, temb_channels=temb_channels, add_upsample=add_upsample) + elif up_block_type == 'UpBlock1D': + return UpBlock1D(in_channels=in_channels, out_channels=out_channels) + elif up_block_type == 'AttnUpBlock1D': + return AttnUpBlock1D(in_channels=in_channels, out_channels=out_channels) + elif up_block_type == 'UpBlock1DNoSkip': + return UpBlock1DNoSkip(in_channels=in_channels, out_channels=out_channels) + raise ValueError(f'{up_block_type} does not exist.') + +def get_mid_block(mid_block_type: str, num_layers: int, in_channels: int, mid_channels: int, out_channels: int, embed_dim: int, add_downsample: bool) -> MidBlockType: + if mid_block_type == 'MidResTemporalBlock1D': + return MidResTemporalBlock1D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, embed_dim=embed_dim, add_downsample=add_downsample) + elif mid_block_type == 'ValueFunctionMidBlock1D': + return ValueFunctionMidBlock1D(in_channels=in_channels, out_channels=out_channels, embed_dim=embed_dim) + elif mid_block_type == 'UNetMidBlock1D': + return UNetMidBlock1D(in_channels=in_channels, mid_channels=mid_channels, out_channels=out_channels) + raise ValueError(f'{mid_block_type} does not exist.') + +def get_out_block(*, out_block_type: str, num_groups_out: int, embed_dim: int, out_channels: int, act_fn: str, fc_dim: int) -> Optional[OutBlockType]: + if out_block_type == 'OutConv1DBlock': + return OutConv1DBlock(num_groups_out, out_channels, embed_dim, act_fn) + elif out_block_type == 'ValueFunction': + return OutValueFunctionBlock(fc_dim, embed_dim, act_fn) + return None + +# File: diffusers-main/src/diffusers/models/unets/unet_2d.py +from dataclasses import dataclass +from typing import Optional, Tuple, Union +import torch +import torch.nn as nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...utils import BaseOutput +from ..embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps +from ..modeling_utils import ModelMixin +from .unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block + +@dataclass +class UNet2DOutput(BaseOutput): + sample: torch.Tensor + +class UNet2DModel(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, sample_size: Optional[Union[int, Tuple[int, int]]]=None, in_channels: int=3, out_channels: int=3, center_input_sample: bool=False, time_embedding_type: str='positional', freq_shift: int=0, flip_sin_to_cos: bool=True, down_block_types: Tuple[str, ...]=('DownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D'), up_block_types: Tuple[str, ...]=('AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'UpBlock2D'), block_out_channels: Tuple[int, ...]=(224, 448, 672, 896), layers_per_block: int=2, mid_block_scale_factor: float=1, downsample_padding: int=1, downsample_type: str='conv', upsample_type: str='conv', dropout: float=0.0, act_fn: str='silu', attention_head_dim: Optional[int]=8, norm_num_groups: int=32, attn_norm_num_groups: Optional[int]=None, norm_eps: float=1e-05, resnet_time_scale_shift: str='default', add_attention: bool=True, class_embed_type: Optional[str]=None, num_class_embeds: Optional[int]=None, num_train_timesteps: Optional[int]=None): + super().__init__() + self.sample_size = sample_size + time_embed_dim = block_out_channels[0] * 4 + if len(down_block_types) != len(up_block_types): + raise ValueError(f'Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}.') + if len(block_out_channels) != len(down_block_types): + raise ValueError(f'Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}.') + self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)) + if time_embedding_type == 'fourier': + self.time_proj = GaussianFourierProjection(embedding_size=block_out_channels[0], scale=16) + timestep_input_dim = 2 * block_out_channels[0] + elif time_embedding_type == 'positional': + self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) + timestep_input_dim = block_out_channels[0] + elif time_embedding_type == 'learned': + self.time_proj = nn.Embedding(num_train_timesteps, block_out_channels[0]) + timestep_input_dim = block_out_channels[0] + self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) + if class_embed_type is None and num_class_embeds is not None: + self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) + elif class_embed_type == 'timestep': + self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) + elif class_embed_type == 'identity': + self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) + else: + self.class_embedding = None + self.down_blocks = nn.ModuleList([]) + self.mid_block = None + self.up_blocks = nn.ModuleList([]) + output_channel = block_out_channels[0] + for (i, down_block_type) in enumerate(down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + down_block = get_down_block(down_block_type, num_layers=layers_per_block, in_channels=input_channel, out_channels=output_channel, temb_channels=time_embed_dim, add_downsample=not is_final_block, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel, downsample_padding=downsample_padding, resnet_time_scale_shift=resnet_time_scale_shift, downsample_type=downsample_type, dropout=dropout) + self.down_blocks.append(down_block) + self.mid_block = UNetMidBlock2D(in_channels=block_out_channels[-1], temb_channels=time_embed_dim, dropout=dropout, resnet_eps=norm_eps, resnet_act_fn=act_fn, output_scale_factor=mid_block_scale_factor, resnet_time_scale_shift=resnet_time_scale_shift, attention_head_dim=attention_head_dim if attention_head_dim is not None else block_out_channels[-1], resnet_groups=norm_num_groups, attn_groups=attn_norm_num_groups, add_attention=add_attention) + reversed_block_out_channels = list(reversed(block_out_channels)) + output_channel = reversed_block_out_channels[0] + for (i, up_block_type) in enumerate(up_block_types): + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] + is_final_block = i == len(block_out_channels) - 1 + up_block = get_up_block(up_block_type, num_layers=layers_per_block + 1, in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, temb_channels=time_embed_dim, add_upsample=not is_final_block, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel, resnet_time_scale_shift=resnet_time_scale_shift, upsample_type=upsample_type, dropout=dropout) + self.up_blocks.append(up_block) + prev_output_channel = output_channel + num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32) + self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups_out, eps=norm_eps) + self.conv_act = nn.SiLU() + self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1) + + def forward(self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int], class_labels: Optional[torch.Tensor]=None, return_dict: bool=True) -> Union[UNet2DOutput, Tuple]: + if self.config.center_input_sample: + sample = 2 * sample - 1.0 + timesteps = timestep + if not torch.is_tensor(timesteps): + timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device) + elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + timesteps = timesteps * torch.ones(sample.shape[0], dtype=timesteps.dtype, device=timesteps.device) + t_emb = self.time_proj(timesteps) + t_emb = t_emb.to(dtype=self.dtype) + emb = self.time_embedding(t_emb) + if self.class_embedding is not None: + if class_labels is None: + raise ValueError('class_labels should be provided when doing class conditioning') + if self.config.class_embed_type == 'timestep': + class_labels = self.time_proj(class_labels) + class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) + emb = emb + class_emb + elif self.class_embedding is None and class_labels is not None: + raise ValueError('class_embedding needs to be initialized in order to use class conditioning') + skip_sample = sample + sample = self.conv_in(sample) + down_block_res_samples = (sample,) + for downsample_block in self.down_blocks: + if hasattr(downsample_block, 'skip_conv'): + (sample, res_samples, skip_sample) = downsample_block(hidden_states=sample, temb=emb, skip_sample=skip_sample) + else: + (sample, res_samples) = downsample_block(hidden_states=sample, temb=emb) + down_block_res_samples += res_samples + sample = self.mid_block(sample, emb) + skip_sample = None + for upsample_block in self.up_blocks: + res_samples = down_block_res_samples[-len(upsample_block.resnets):] + down_block_res_samples = down_block_res_samples[:-len(upsample_block.resnets)] + if hasattr(upsample_block, 'skip_conv'): + (sample, skip_sample) = upsample_block(sample, res_samples, emb, skip_sample) + else: + sample = upsample_block(sample, res_samples, emb) + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + if skip_sample is not None: + sample += skip_sample + if self.config.time_embedding_type == 'fourier': + timesteps = timesteps.reshape((sample.shape[0], *[1] * len(sample.shape[1:]))) + sample = sample / timesteps + if not return_dict: + return (sample,) + return UNet2DOutput(sample=sample) + +# File: diffusers-main/src/diffusers/models/unets/unet_2d_blocks.py +from typing import Any, Dict, Optional, Tuple, Union +import numpy as np +import torch +import torch.nn.functional as F +from torch import nn +from ...utils import deprecate, is_torch_version, logging +from ...utils.torch_utils import apply_freeu +from ..activations import get_activation +from ..attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0 +from ..normalization import AdaGroupNorm +from ..resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, ResnetBlockCondNorm2D, Upsample2D +from ..transformers.dual_transformer_2d import DualTransformer2DModel +from ..transformers.transformer_2d import Transformer2DModel +logger = logging.get_logger(__name__) + +def get_down_block(down_block_type: str, num_layers: int, in_channels: int, out_channels: int, temb_channels: int, add_downsample: bool, resnet_eps: float, resnet_act_fn: str, transformer_layers_per_block: int=1, num_attention_heads: Optional[int]=None, resnet_groups: Optional[int]=None, cross_attention_dim: Optional[int]=None, downsample_padding: Optional[int]=None, dual_cross_attention: bool=False, use_linear_projection: bool=False, only_cross_attention: bool=False, upcast_attention: bool=False, resnet_time_scale_shift: str='default', attention_type: str='default', resnet_skip_time_act: bool=False, resnet_out_scale_factor: float=1.0, cross_attention_norm: Optional[str]=None, attention_head_dim: Optional[int]=None, downsample_type: Optional[str]=None, dropout: float=0.0): + if attention_head_dim is None: + logger.warning(f'It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}.') + attention_head_dim = num_attention_heads + down_block_type = down_block_type[7:] if down_block_type.startswith('UNetRes') else down_block_type + if down_block_type == 'DownBlock2D': + return DownBlock2D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, dropout=dropout, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, resnet_time_scale_shift=resnet_time_scale_shift) + elif down_block_type == 'ResnetDownsampleBlock2D': + return ResnetDownsampleBlock2D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, dropout=dropout, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, resnet_time_scale_shift=resnet_time_scale_shift, skip_time_act=resnet_skip_time_act, output_scale_factor=resnet_out_scale_factor) + elif down_block_type == 'AttnDownBlock2D': + if add_downsample is False: + downsample_type = None + else: + downsample_type = downsample_type or 'conv' + return AttnDownBlock2D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, dropout=dropout, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, attention_head_dim=attention_head_dim, resnet_time_scale_shift=resnet_time_scale_shift, downsample_type=downsample_type) + elif down_block_type == 'CrossAttnDownBlock2D': + if cross_attention_dim is None: + raise ValueError('cross_attention_dim must be specified for CrossAttnDownBlock2D') + return CrossAttnDownBlock2D(num_layers=num_layers, transformer_layers_per_block=transformer_layers_per_block, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, dropout=dropout, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, attention_type=attention_type) + elif down_block_type == 'SimpleCrossAttnDownBlock2D': + if cross_attention_dim is None: + raise ValueError('cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D') + return SimpleCrossAttnDownBlock2D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, dropout=dropout, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, cross_attention_dim=cross_attention_dim, attention_head_dim=attention_head_dim, resnet_time_scale_shift=resnet_time_scale_shift, skip_time_act=resnet_skip_time_act, output_scale_factor=resnet_out_scale_factor, only_cross_attention=only_cross_attention, cross_attention_norm=cross_attention_norm) + elif down_block_type == 'SkipDownBlock2D': + return SkipDownBlock2D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, dropout=dropout, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, downsample_padding=downsample_padding, resnet_time_scale_shift=resnet_time_scale_shift) + elif down_block_type == 'AttnSkipDownBlock2D': + return AttnSkipDownBlock2D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, dropout=dropout, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, attention_head_dim=attention_head_dim, resnet_time_scale_shift=resnet_time_scale_shift) + elif down_block_type == 'DownEncoderBlock2D': + return DownEncoderBlock2D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, dropout=dropout, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, resnet_time_scale_shift=resnet_time_scale_shift) + elif down_block_type == 'AttnDownEncoderBlock2D': + return AttnDownEncoderBlock2D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, dropout=dropout, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, attention_head_dim=attention_head_dim, resnet_time_scale_shift=resnet_time_scale_shift) + elif down_block_type == 'KDownBlock2D': + return KDownBlock2D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, dropout=dropout, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn) + elif down_block_type == 'KCrossAttnDownBlock2D': + return KCrossAttnDownBlock2D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, dropout=dropout, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, cross_attention_dim=cross_attention_dim, attention_head_dim=attention_head_dim, add_self_attention=True if not add_downsample else False) + raise ValueError(f'{down_block_type} does not exist.') + +def get_mid_block(mid_block_type: str, temb_channels: int, in_channels: int, resnet_eps: float, resnet_act_fn: str, resnet_groups: int, output_scale_factor: float=1.0, transformer_layers_per_block: int=1, num_attention_heads: Optional[int]=None, cross_attention_dim: Optional[int]=None, dual_cross_attention: bool=False, use_linear_projection: bool=False, mid_block_only_cross_attention: bool=False, upcast_attention: bool=False, resnet_time_scale_shift: str='default', attention_type: str='default', resnet_skip_time_act: bool=False, cross_attention_norm: Optional[str]=None, attention_head_dim: Optional[int]=1, dropout: float=0.0): + if mid_block_type == 'UNetMidBlock2DCrossAttn': + return UNetMidBlock2DCrossAttn(transformer_layers_per_block=transformer_layers_per_block, in_channels=in_channels, temb_channels=temb_channels, dropout=dropout, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, output_scale_factor=output_scale_factor, resnet_time_scale_shift=resnet_time_scale_shift, cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads, resnet_groups=resnet_groups, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, attention_type=attention_type) + elif mid_block_type == 'UNetMidBlock2DSimpleCrossAttn': + return UNetMidBlock2DSimpleCrossAttn(in_channels=in_channels, temb_channels=temb_channels, dropout=dropout, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, output_scale_factor=output_scale_factor, cross_attention_dim=cross_attention_dim, attention_head_dim=attention_head_dim, resnet_groups=resnet_groups, resnet_time_scale_shift=resnet_time_scale_shift, skip_time_act=resnet_skip_time_act, only_cross_attention=mid_block_only_cross_attention, cross_attention_norm=cross_attention_norm) + elif mid_block_type == 'UNetMidBlock2D': + return UNetMidBlock2D(in_channels=in_channels, temb_channels=temb_channels, dropout=dropout, num_layers=0, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, output_scale_factor=output_scale_factor, resnet_groups=resnet_groups, resnet_time_scale_shift=resnet_time_scale_shift, add_attention=False) + elif mid_block_type is None: + return None + else: + raise ValueError(f'unknown mid_block_type : {mid_block_type}') + +def get_up_block(up_block_type: str, num_layers: int, in_channels: int, out_channels: int, prev_output_channel: int, temb_channels: int, add_upsample: bool, resnet_eps: float, resnet_act_fn: str, resolution_idx: Optional[int]=None, transformer_layers_per_block: int=1, num_attention_heads: Optional[int]=None, resnet_groups: Optional[int]=None, cross_attention_dim: Optional[int]=None, dual_cross_attention: bool=False, use_linear_projection: bool=False, only_cross_attention: bool=False, upcast_attention: bool=False, resnet_time_scale_shift: str='default', attention_type: str='default', resnet_skip_time_act: bool=False, resnet_out_scale_factor: float=1.0, cross_attention_norm: Optional[str]=None, attention_head_dim: Optional[int]=None, upsample_type: Optional[str]=None, dropout: float=0.0) -> nn.Module: + if attention_head_dim is None: + logger.warning(f'It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}.') + attention_head_dim = num_attention_heads + up_block_type = up_block_type[7:] if up_block_type.startswith('UNetRes') else up_block_type + if up_block_type == 'UpBlock2D': + return UpBlock2D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, resolution_idx=resolution_idx, dropout=dropout, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, resnet_time_scale_shift=resnet_time_scale_shift) + elif up_block_type == 'ResnetUpsampleBlock2D': + return ResnetUpsampleBlock2D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, resolution_idx=resolution_idx, dropout=dropout, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, resnet_time_scale_shift=resnet_time_scale_shift, skip_time_act=resnet_skip_time_act, output_scale_factor=resnet_out_scale_factor) + elif up_block_type == 'CrossAttnUpBlock2D': + if cross_attention_dim is None: + raise ValueError('cross_attention_dim must be specified for CrossAttnUpBlock2D') + return CrossAttnUpBlock2D(num_layers=num_layers, transformer_layers_per_block=transformer_layers_per_block, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, resolution_idx=resolution_idx, dropout=dropout, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, attention_type=attention_type) + elif up_block_type == 'SimpleCrossAttnUpBlock2D': + if cross_attention_dim is None: + raise ValueError('cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D') + return SimpleCrossAttnUpBlock2D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, resolution_idx=resolution_idx, dropout=dropout, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, cross_attention_dim=cross_attention_dim, attention_head_dim=attention_head_dim, resnet_time_scale_shift=resnet_time_scale_shift, skip_time_act=resnet_skip_time_act, output_scale_factor=resnet_out_scale_factor, only_cross_attention=only_cross_attention, cross_attention_norm=cross_attention_norm) + elif up_block_type == 'AttnUpBlock2D': + if add_upsample is False: + upsample_type = None + else: + upsample_type = upsample_type or 'conv' + return AttnUpBlock2D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, resolution_idx=resolution_idx, dropout=dropout, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, attention_head_dim=attention_head_dim, resnet_time_scale_shift=resnet_time_scale_shift, upsample_type=upsample_type) + elif up_block_type == 'SkipUpBlock2D': + return SkipUpBlock2D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, resolution_idx=resolution_idx, dropout=dropout, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_time_scale_shift=resnet_time_scale_shift) + elif up_block_type == 'AttnSkipUpBlock2D': + return AttnSkipUpBlock2D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, resolution_idx=resolution_idx, dropout=dropout, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, attention_head_dim=attention_head_dim, resnet_time_scale_shift=resnet_time_scale_shift) + elif up_block_type == 'UpDecoderBlock2D': + return UpDecoderBlock2D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, resolution_idx=resolution_idx, dropout=dropout, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, resnet_time_scale_shift=resnet_time_scale_shift, temb_channels=temb_channels) + elif up_block_type == 'AttnUpDecoderBlock2D': + return AttnUpDecoderBlock2D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, resolution_idx=resolution_idx, dropout=dropout, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, attention_head_dim=attention_head_dim, resnet_time_scale_shift=resnet_time_scale_shift, temb_channels=temb_channels) + elif up_block_type == 'KUpBlock2D': + return KUpBlock2D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, resolution_idx=resolution_idx, dropout=dropout, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn) + elif up_block_type == 'KCrossAttnUpBlock2D': + return KCrossAttnUpBlock2D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, resolution_idx=resolution_idx, dropout=dropout, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, cross_attention_dim=cross_attention_dim, attention_head_dim=attention_head_dim) + raise ValueError(f'{up_block_type} does not exist.') + +class AutoencoderTinyBlock(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, act_fn: str): + super().__init__() + act_fn = get_activation(act_fn) + self.conv = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), act_fn, nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), act_fn, nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)) + self.skip = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False) if in_channels != out_channels else nn.Identity() + self.fuse = nn.ReLU() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return self.fuse(self.conv(x) + self.skip(x)) + +class UNetMidBlock2D(nn.Module): + + def __init__(self, in_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, attn_groups: Optional[int]=None, resnet_pre_norm: bool=True, add_attention: bool=True, attention_head_dim: int=1, output_scale_factor: float=1.0): + super().__init__() + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + self.add_attention = add_attention + if attn_groups is None: + attn_groups = resnet_groups if resnet_time_scale_shift == 'default' else None + if resnet_time_scale_shift == 'spatial': + resnets = [ResnetBlockCondNorm2D(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm='spatial', non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor)] + else: + resnets = [ResnetBlock2D(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)] + attentions = [] + if attention_head_dim is None: + logger.warning(f'It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}.') + attention_head_dim = in_channels + for _ in range(num_layers): + if self.add_attention: + attentions.append(Attention(in_channels, heads=in_channels // attention_head_dim, dim_head=attention_head_dim, rescale_output_factor=output_scale_factor, eps=resnet_eps, norm_num_groups=attn_groups, spatial_norm_dim=temb_channels if resnet_time_scale_shift == 'spatial' else None, residual_connection=True, bias=True, upcast_softmax=True, _from_deprecated_attn_block=True)) + else: + attentions.append(None) + if resnet_time_scale_shift == 'spatial': + resnets.append(ResnetBlockCondNorm2D(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm='spatial', non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor)) + else: + resnets.append(ResnetBlock2D(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None) -> torch.Tensor: + hidden_states = self.resnets[0](hidden_states, temb) + for (attn, resnet) in zip(self.attentions, self.resnets[1:]): + if attn is not None: + hidden_states = attn(hidden_states, temb=temb) + hidden_states = resnet(hidden_states, temb) + return hidden_states + +class UNetMidBlock2DCrossAttn(nn.Module): + + def __init__(self, in_channels: int, temb_channels: int, out_channels: Optional[int]=None, dropout: float=0.0, num_layers: int=1, transformer_layers_per_block: Union[int, Tuple[int]]=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_groups_out: Optional[int]=None, resnet_pre_norm: bool=True, num_attention_heads: int=1, output_scale_factor: float=1.0, cross_attention_dim: int=1280, dual_cross_attention: bool=False, use_linear_projection: bool=False, upcast_attention: bool=False, attention_type: str='default'): + super().__init__() + out_channels = out_channels or in_channels + self.in_channels = in_channels + self.out_channels = out_channels + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * num_layers + resnet_groups_out = resnet_groups_out or resnet_groups + resnets = [ResnetBlock2D(in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, groups_out=resnet_groups_out, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)] + attentions = [] + for i in range(num_layers): + if not dual_cross_attention: + attentions.append(Transformer2DModel(num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups_out, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, attention_type=attention_type)) + else: + attentions.append(DualTransformer2DModel(num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups)) + resnets.append(ResnetBlock2D(in_channels=out_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups_out, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, encoder_attention_mask: Optional[torch.Tensor]=None) -> torch.Tensor: + if cross_attention_kwargs is not None: + if cross_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.') + hidden_states = self.resnets[0](hidden_states, temb) + for (attn, resnet) in zip(self.attentions, self.resnets[1:]): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False)[0] + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs) + else: + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False)[0] + hidden_states = resnet(hidden_states, temb) + return hidden_states + +class UNetMidBlock2DSimpleCrossAttn(nn.Module): + + def __init__(self, in_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, attention_head_dim: int=1, output_scale_factor: float=1.0, cross_attention_dim: int=1280, skip_time_act: bool=False, only_cross_attention: bool=False, cross_attention_norm: Optional[str]=None): + super().__init__() + self.has_cross_attention = True + self.attention_head_dim = attention_head_dim + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + self.num_heads = in_channels // self.attention_head_dim + resnets = [ResnetBlock2D(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, skip_time_act=skip_time_act)] + attentions = [] + for _ in range(num_layers): + processor = AttnAddedKVProcessor2_0() if hasattr(F, 'scaled_dot_product_attention') else AttnAddedKVProcessor() + attentions.append(Attention(query_dim=in_channels, cross_attention_dim=in_channels, heads=self.num_heads, dim_head=self.attention_head_dim, added_kv_proj_dim=cross_attention_dim, norm_num_groups=resnet_groups, bias=True, upcast_softmax=True, only_cross_attention=only_cross_attention, cross_attention_norm=cross_attention_norm, processor=processor)) + resnets.append(ResnetBlock2D(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, skip_time_act=skip_time_act)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, encoder_attention_mask: Optional[torch.Tensor]=None) -> torch.Tensor: + cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} + if cross_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.') + if attention_mask is None: + mask = None if encoder_hidden_states is None else encoder_attention_mask + else: + mask = attention_mask + hidden_states = self.resnets[0](hidden_states, temb) + for (attn, resnet) in zip(self.attentions, self.resnets[1:]): + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=mask, **cross_attention_kwargs) + hidden_states = resnet(hidden_states, temb) + return hidden_states + +class AttnDownBlock2D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, attention_head_dim: int=1, output_scale_factor: float=1.0, downsample_padding: int=1, downsample_type: str='conv'): + super().__init__() + resnets = [] + attentions = [] + self.downsample_type = downsample_type + if attention_head_dim is None: + logger.warning(f'It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}.') + attention_head_dim = out_channels + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append(ResnetBlock2D(in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + attentions.append(Attention(out_channels, heads=out_channels // attention_head_dim, dim_head=attention_head_dim, rescale_output_factor=output_scale_factor, eps=resnet_eps, norm_num_groups=resnet_groups, residual_connection=True, bias=True, upcast_softmax=True, _from_deprecated_attn_block=True)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + if downsample_type == 'conv': + self.downsamplers = nn.ModuleList([Downsample2D(out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name='op')]) + elif downsample_type == 'resnet': + self.downsamplers = nn.ModuleList([ResnetBlock2D(in_channels=out_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, down=True)]) + else: + self.downsamplers = None + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, upsample_size: Optional[int]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]: + cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} + if cross_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.') + output_states = () + for (resnet, attn) in zip(self.resnets, self.attentions): + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states, **cross_attention_kwargs) + output_states = output_states + (hidden_states,) + if self.downsamplers is not None: + for downsampler in self.downsamplers: + if self.downsample_type == 'resnet': + hidden_states = downsampler(hidden_states, temb=temb) + else: + hidden_states = downsampler(hidden_states) + output_states += (hidden_states,) + return (hidden_states, output_states) + +class CrossAttnDownBlock2D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, transformer_layers_per_block: Union[int, Tuple[int]]=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, num_attention_heads: int=1, cross_attention_dim: int=1280, output_scale_factor: float=1.0, downsample_padding: int=1, add_downsample: bool=True, dual_cross_attention: bool=False, use_linear_projection: bool=False, only_cross_attention: bool=False, upcast_attention: bool=False, attention_type: str='default'): + super().__init__() + resnets = [] + attentions = [] + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * num_layers + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append(ResnetBlock2D(in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + if not dual_cross_attention: + attentions.append(Transformer2DModel(num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, attention_type=attention_type)) + else: + attentions.append(DualTransformer2DModel(num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + if add_downsample: + self.downsamplers = nn.ModuleList([Downsample2D(out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name='op')]) + else: + self.downsamplers = None + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, encoder_attention_mask: Optional[torch.Tensor]=None, additional_residuals: Optional[torch.Tensor]=None) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]: + if cross_attention_kwargs is not None: + if cross_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.') + output_states = () + blocks = list(zip(self.resnets, self.attentions)) + for (i, (resnet, attn)) in enumerate(blocks): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False)[0] + else: + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False)[0] + if i == len(blocks) - 1 and additional_residuals is not None: + hidden_states = hidden_states + additional_residuals + output_states = output_states + (hidden_states,) + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + output_states = output_states + (hidden_states,) + return (hidden_states, output_states) + +class DownBlock2D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, output_scale_factor: float=1.0, add_downsample: bool=True, downsample_padding: int=1): + super().__init__() + resnets = [] + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append(ResnetBlock2D(in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + self.resnets = nn.ModuleList(resnets) + if add_downsample: + self.downsamplers = nn.ModuleList([Downsample2D(out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name='op')]) + else: + self.downsamplers = None + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, *args, **kwargs) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + output_states = () + for resnet in self.resnets: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + if is_torch_version('>=', '1.11.0'): + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, use_reentrant=False) + else: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + else: + hidden_states = resnet(hidden_states, temb) + output_states = output_states + (hidden_states,) + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + output_states = output_states + (hidden_states,) + return (hidden_states, output_states) + +class DownEncoderBlock2D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, output_scale_factor: float=1.0, add_downsample: bool=True, downsample_padding: int=1): + super().__init__() + resnets = [] + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + if resnet_time_scale_shift == 'spatial': + resnets.append(ResnetBlockCondNorm2D(in_channels=in_channels, out_channels=out_channels, temb_channels=None, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm='spatial', non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor)) + else: + resnets.append(ResnetBlock2D(in_channels=in_channels, out_channels=out_channels, temb_channels=None, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + self.resnets = nn.ModuleList(resnets) + if add_downsample: + self.downsamplers = nn.ModuleList([Downsample2D(out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name='op')]) + else: + self.downsamplers = None + + def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + for resnet in self.resnets: + hidden_states = resnet(hidden_states, temb=None) + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + return hidden_states + +class AttnDownEncoderBlock2D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, attention_head_dim: int=1, output_scale_factor: float=1.0, add_downsample: bool=True, downsample_padding: int=1): + super().__init__() + resnets = [] + attentions = [] + if attention_head_dim is None: + logger.warning(f'It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}.') + attention_head_dim = out_channels + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + if resnet_time_scale_shift == 'spatial': + resnets.append(ResnetBlockCondNorm2D(in_channels=in_channels, out_channels=out_channels, temb_channels=None, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm='spatial', non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor)) + else: + resnets.append(ResnetBlock2D(in_channels=in_channels, out_channels=out_channels, temb_channels=None, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + attentions.append(Attention(out_channels, heads=out_channels // attention_head_dim, dim_head=attention_head_dim, rescale_output_factor=output_scale_factor, eps=resnet_eps, norm_num_groups=resnet_groups, residual_connection=True, bias=True, upcast_softmax=True, _from_deprecated_attn_block=True)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + if add_downsample: + self.downsamplers = nn.ModuleList([Downsample2D(out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name='op')]) + else: + self.downsamplers = None + + def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + for (resnet, attn) in zip(self.resnets, self.attentions): + hidden_states = resnet(hidden_states, temb=None) + hidden_states = attn(hidden_states) + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + return hidden_states + +class AttnSkipDownBlock2D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_pre_norm: bool=True, attention_head_dim: int=1, output_scale_factor: float=np.sqrt(2.0), add_downsample: bool=True): + super().__init__() + self.attentions = nn.ModuleList([]) + self.resnets = nn.ModuleList([]) + if attention_head_dim is None: + logger.warning(f'It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}.') + attention_head_dim = out_channels + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + self.resnets.append(ResnetBlock2D(in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=min(in_channels // 4, 32), groups_out=min(out_channels // 4, 32), dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + self.attentions.append(Attention(out_channels, heads=out_channels // attention_head_dim, dim_head=attention_head_dim, rescale_output_factor=output_scale_factor, eps=resnet_eps, norm_num_groups=32, residual_connection=True, bias=True, upcast_softmax=True, _from_deprecated_attn_block=True)) + if add_downsample: + self.resnet_down = ResnetBlock2D(in_channels=out_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=min(out_channels // 4, 32), dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, use_in_shortcut=True, down=True, kernel='fir') + self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)]) + self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1)) + else: + self.resnet_down = None + self.downsamplers = None + self.skip_conv = None + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, skip_sample: Optional[torch.Tensor]=None, *args, **kwargs) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...], torch.Tensor]: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + output_states = () + for (resnet, attn) in zip(self.resnets, self.attentions): + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states) + output_states += (hidden_states,) + if self.downsamplers is not None: + hidden_states = self.resnet_down(hidden_states, temb) + for downsampler in self.downsamplers: + skip_sample = downsampler(skip_sample) + hidden_states = self.skip_conv(skip_sample) + hidden_states + output_states += (hidden_states,) + return (hidden_states, output_states, skip_sample) + +class SkipDownBlock2D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_pre_norm: bool=True, output_scale_factor: float=np.sqrt(2.0), add_downsample: bool=True, downsample_padding: int=1): + super().__init__() + self.resnets = nn.ModuleList([]) + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + self.resnets.append(ResnetBlock2D(in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=min(in_channels // 4, 32), groups_out=min(out_channels // 4, 32), dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + if add_downsample: + self.resnet_down = ResnetBlock2D(in_channels=out_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=min(out_channels // 4, 32), dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, use_in_shortcut=True, down=True, kernel='fir') + self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)]) + self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1)) + else: + self.resnet_down = None + self.downsamplers = None + self.skip_conv = None + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, skip_sample: Optional[torch.Tensor]=None, *args, **kwargs) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...], torch.Tensor]: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + output_states = () + for resnet in self.resnets: + hidden_states = resnet(hidden_states, temb) + output_states += (hidden_states,) + if self.downsamplers is not None: + hidden_states = self.resnet_down(hidden_states, temb) + for downsampler in self.downsamplers: + skip_sample = downsampler(skip_sample) + hidden_states = self.skip_conv(skip_sample) + hidden_states + output_states += (hidden_states,) + return (hidden_states, output_states, skip_sample) + +class ResnetDownsampleBlock2D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, output_scale_factor: float=1.0, add_downsample: bool=True, skip_time_act: bool=False): + super().__init__() + resnets = [] + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append(ResnetBlock2D(in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, skip_time_act=skip_time_act)) + self.resnets = nn.ModuleList(resnets) + if add_downsample: + self.downsamplers = nn.ModuleList([ResnetBlock2D(in_channels=out_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, skip_time_act=skip_time_act, down=True)]) + else: + self.downsamplers = None + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, *args, **kwargs) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + output_states = () + for resnet in self.resnets: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + if is_torch_version('>=', '1.11.0'): + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, use_reentrant=False) + else: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + else: + hidden_states = resnet(hidden_states, temb) + output_states = output_states + (hidden_states,) + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states, temb) + output_states = output_states + (hidden_states,) + return (hidden_states, output_states) + +class SimpleCrossAttnDownBlock2D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, attention_head_dim: int=1, cross_attention_dim: int=1280, output_scale_factor: float=1.0, add_downsample: bool=True, skip_time_act: bool=False, only_cross_attention: bool=False, cross_attention_norm: Optional[str]=None): + super().__init__() + self.has_cross_attention = True + resnets = [] + attentions = [] + self.attention_head_dim = attention_head_dim + self.num_heads = out_channels // self.attention_head_dim + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append(ResnetBlock2D(in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, skip_time_act=skip_time_act)) + processor = AttnAddedKVProcessor2_0() if hasattr(F, 'scaled_dot_product_attention') else AttnAddedKVProcessor() + attentions.append(Attention(query_dim=out_channels, cross_attention_dim=out_channels, heads=self.num_heads, dim_head=attention_head_dim, added_kv_proj_dim=cross_attention_dim, norm_num_groups=resnet_groups, bias=True, upcast_softmax=True, only_cross_attention=only_cross_attention, cross_attention_norm=cross_attention_norm, processor=processor)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + if add_downsample: + self.downsamplers = nn.ModuleList([ResnetBlock2D(in_channels=out_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, skip_time_act=skip_time_act, down=True)]) + else: + self.downsamplers = None + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, encoder_attention_mask: Optional[torch.Tensor]=None) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]: + cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} + if cross_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.') + output_states = () + if attention_mask is None: + mask = None if encoder_hidden_states is None else encoder_attention_mask + else: + mask = attention_mask + for (resnet, attn) in zip(self.resnets, self.attentions): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=mask, **cross_attention_kwargs) + else: + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=mask, **cross_attention_kwargs) + output_states = output_states + (hidden_states,) + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states, temb) + output_states = output_states + (hidden_states,) + return (hidden_states, output_states) + +class KDownBlock2D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=4, resnet_eps: float=1e-05, resnet_act_fn: str='gelu', resnet_group_size: int=32, add_downsample: bool=False): + super().__init__() + resnets = [] + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + groups = in_channels // resnet_group_size + groups_out = out_channels // resnet_group_size + resnets.append(ResnetBlockCondNorm2D(in_channels=in_channels, out_channels=out_channels, dropout=dropout, temb_channels=temb_channels, groups=groups, groups_out=groups_out, eps=resnet_eps, non_linearity=resnet_act_fn, time_embedding_norm='ada_group', conv_shortcut_bias=False)) + self.resnets = nn.ModuleList(resnets) + if add_downsample: + self.downsamplers = nn.ModuleList([KDownsample2D()]) + else: + self.downsamplers = None + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, *args, **kwargs) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + output_states = () + for resnet in self.resnets: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + if is_torch_version('>=', '1.11.0'): + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, use_reentrant=False) + else: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + else: + hidden_states = resnet(hidden_states, temb) + output_states += (hidden_states,) + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + return (hidden_states, output_states) + +class KCrossAttnDownBlock2D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, temb_channels: int, cross_attention_dim: int, dropout: float=0.0, num_layers: int=4, resnet_group_size: int=32, add_downsample: bool=True, attention_head_dim: int=64, add_self_attention: bool=False, resnet_eps: float=1e-05, resnet_act_fn: str='gelu'): + super().__init__() + resnets = [] + attentions = [] + self.has_cross_attention = True + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + groups = in_channels // resnet_group_size + groups_out = out_channels // resnet_group_size + resnets.append(ResnetBlockCondNorm2D(in_channels=in_channels, out_channels=out_channels, dropout=dropout, temb_channels=temb_channels, groups=groups, groups_out=groups_out, eps=resnet_eps, non_linearity=resnet_act_fn, time_embedding_norm='ada_group', conv_shortcut_bias=False)) + attentions.append(KAttentionBlock(out_channels, out_channels // attention_head_dim, attention_head_dim, cross_attention_dim=cross_attention_dim, temb_channels=temb_channels, attention_bias=True, add_self_attention=add_self_attention, cross_attention_norm='layer_norm', group_size=resnet_group_size)) + self.resnets = nn.ModuleList(resnets) + self.attentions = nn.ModuleList(attentions) + if add_downsample: + self.downsamplers = nn.ModuleList([KDownsample2D()]) + else: + self.downsamplers = None + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, encoder_attention_mask: Optional[torch.Tensor]=None) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]: + cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} + if cross_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.') + output_states = () + for (resnet, attn) in zip(self.resnets, self.attentions): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, emb=temb, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs, encoder_attention_mask=encoder_attention_mask) + else: + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, emb=temb, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs, encoder_attention_mask=encoder_attention_mask) + if self.downsamplers is None: + output_states += (None,) + else: + output_states += (hidden_states,) + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + return (hidden_states, output_states) + +class AttnUpBlock2D(nn.Module): + + def __init__(self, in_channels: int, prev_output_channel: int, out_channels: int, temb_channels: int, resolution_idx: int=None, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, attention_head_dim: int=1, output_scale_factor: float=1.0, upsample_type: str='conv'): + super().__init__() + resnets = [] + attentions = [] + self.upsample_type = upsample_type + if attention_head_dim is None: + logger.warning(f'It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}.') + attention_head_dim = out_channels + for i in range(num_layers): + res_skip_channels = in_channels if i == num_layers - 1 else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + resnets.append(ResnetBlock2D(in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + attentions.append(Attention(out_channels, heads=out_channels // attention_head_dim, dim_head=attention_head_dim, rescale_output_factor=output_scale_factor, eps=resnet_eps, norm_num_groups=resnet_groups, residual_connection=True, bias=True, upcast_softmax=True, _from_deprecated_attn_block=True)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + if upsample_type == 'conv': + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + elif upsample_type == 'resnet': + self.upsamplers = nn.ModuleList([ResnetBlock2D(in_channels=out_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, up=True)]) + else: + self.upsamplers = None + self.resolution_idx = resolution_idx + + def forward(self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor]=None, upsample_size: Optional[int]=None, *args, **kwargs) -> torch.Tensor: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + for (resnet, attn) in zip(self.resnets, self.attentions): + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states) + if self.upsamplers is not None: + for upsampler in self.upsamplers: + if self.upsample_type == 'resnet': + hidden_states = upsampler(hidden_states, temb=temb) + else: + hidden_states = upsampler(hidden_states) + return hidden_states + +class CrossAttnUpBlock2D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, prev_output_channel: int, temb_channels: int, resolution_idx: Optional[int]=None, dropout: float=0.0, num_layers: int=1, transformer_layers_per_block: Union[int, Tuple[int]]=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, num_attention_heads: int=1, cross_attention_dim: int=1280, output_scale_factor: float=1.0, add_upsample: bool=True, dual_cross_attention: bool=False, use_linear_projection: bool=False, only_cross_attention: bool=False, upcast_attention: bool=False, attention_type: str='default'): + super().__init__() + resnets = [] + attentions = [] + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * num_layers + for i in range(num_layers): + res_skip_channels = in_channels if i == num_layers - 1 else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + resnets.append(ResnetBlock2D(in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + if not dual_cross_attention: + attentions.append(Transformer2DModel(num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, attention_type=attention_type)) + else: + attentions.append(DualTransformer2DModel(num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward(self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, upsample_size: Optional[int]=None, attention_mask: Optional[torch.Tensor]=None, encoder_attention_mask: Optional[torch.Tensor]=None) -> torch.Tensor: + if cross_attention_kwargs is not None: + if cross_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.') + is_freeu_enabled = getattr(self, 's1', None) and getattr(self, 's2', None) and getattr(self, 'b1', None) and getattr(self, 'b2', None) + for (resnet, attn) in zip(self.resnets, self.attentions): + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + if is_freeu_enabled: + (hidden_states, res_hidden_states) = apply_freeu(self.resolution_idx, hidden_states, res_hidden_states, s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2) + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False)[0] + else: + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False)[0] + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, upsample_size) + return hidden_states + +class UpBlock2D(nn.Module): + + def __init__(self, in_channels: int, prev_output_channel: int, out_channels: int, temb_channels: int, resolution_idx: Optional[int]=None, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, output_scale_factor: float=1.0, add_upsample: bool=True): + super().__init__() + resnets = [] + for i in range(num_layers): + res_skip_channels = in_channels if i == num_layers - 1 else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + resnets.append(ResnetBlock2D(in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + self.resnets = nn.ModuleList(resnets) + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward(self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor]=None, upsample_size: Optional[int]=None, *args, **kwargs) -> torch.Tensor: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + is_freeu_enabled = getattr(self, 's1', None) and getattr(self, 's2', None) and getattr(self, 'b1', None) and getattr(self, 'b2', None) + for resnet in self.resnets: + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + if is_freeu_enabled: + (hidden_states, res_hidden_states) = apply_freeu(self.resolution_idx, hidden_states, res_hidden_states, s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2) + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + if is_torch_version('>=', '1.11.0'): + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, use_reentrant=False) + else: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + else: + hidden_states = resnet(hidden_states, temb) + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, upsample_size) + return hidden_states + +class UpDecoderBlock2D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, resolution_idx: Optional[int]=None, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, output_scale_factor: float=1.0, add_upsample: bool=True, temb_channels: Optional[int]=None): + super().__init__() + resnets = [] + for i in range(num_layers): + input_channels = in_channels if i == 0 else out_channels + if resnet_time_scale_shift == 'spatial': + resnets.append(ResnetBlockCondNorm2D(in_channels=input_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm='spatial', non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor)) + else: + resnets.append(ResnetBlock2D(in_channels=input_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + self.resnets = nn.ModuleList(resnets) + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + self.resolution_idx = resolution_idx + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None) -> torch.Tensor: + for resnet in self.resnets: + hidden_states = resnet(hidden_states, temb=temb) + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states) + return hidden_states + +class AttnUpDecoderBlock2D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, resolution_idx: Optional[int]=None, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, attention_head_dim: int=1, output_scale_factor: float=1.0, add_upsample: bool=True, temb_channels: Optional[int]=None): + super().__init__() + resnets = [] + attentions = [] + if attention_head_dim is None: + logger.warning(f'It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}.') + attention_head_dim = out_channels + for i in range(num_layers): + input_channels = in_channels if i == 0 else out_channels + if resnet_time_scale_shift == 'spatial': + resnets.append(ResnetBlockCondNorm2D(in_channels=input_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm='spatial', non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor)) + else: + resnets.append(ResnetBlock2D(in_channels=input_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + attentions.append(Attention(out_channels, heads=out_channels // attention_head_dim, dim_head=attention_head_dim, rescale_output_factor=output_scale_factor, eps=resnet_eps, norm_num_groups=resnet_groups if resnet_time_scale_shift != 'spatial' else None, spatial_norm_dim=temb_channels if resnet_time_scale_shift == 'spatial' else None, residual_connection=True, bias=True, upcast_softmax=True, _from_deprecated_attn_block=True)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + self.resolution_idx = resolution_idx + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None) -> torch.Tensor: + for (resnet, attn) in zip(self.resnets, self.attentions): + hidden_states = resnet(hidden_states, temb=temb) + hidden_states = attn(hidden_states, temb=temb) + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states) + return hidden_states + +class AttnSkipUpBlock2D(nn.Module): + + def __init__(self, in_channels: int, prev_output_channel: int, out_channels: int, temb_channels: int, resolution_idx: Optional[int]=None, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_pre_norm: bool=True, attention_head_dim: int=1, output_scale_factor: float=np.sqrt(2.0), add_upsample: bool=True): + super().__init__() + self.attentions = nn.ModuleList([]) + self.resnets = nn.ModuleList([]) + for i in range(num_layers): + res_skip_channels = in_channels if i == num_layers - 1 else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + self.resnets.append(ResnetBlock2D(in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=min(resnet_in_channels + res_skip_channels // 4, 32), groups_out=min(out_channels // 4, 32), dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + if attention_head_dim is None: + logger.warning(f'It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}.') + attention_head_dim = out_channels + self.attentions.append(Attention(out_channels, heads=out_channels // attention_head_dim, dim_head=attention_head_dim, rescale_output_factor=output_scale_factor, eps=resnet_eps, norm_num_groups=32, residual_connection=True, bias=True, upcast_softmax=True, _from_deprecated_attn_block=True)) + self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels) + if add_upsample: + self.resnet_up = ResnetBlock2D(in_channels=out_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=min(out_channels // 4, 32), groups_out=min(out_channels // 4, 32), dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, use_in_shortcut=True, up=True, kernel='fir') + self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) + self.skip_norm = torch.nn.GroupNorm(num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True) + self.act = nn.SiLU() + else: + self.resnet_up = None + self.skip_conv = None + self.skip_norm = None + self.act = None + self.resolution_idx = resolution_idx + + def forward(self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor]=None, skip_sample=None, *args, **kwargs) -> Tuple[torch.Tensor, torch.Tensor]: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + for resnet in self.resnets: + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + hidden_states = resnet(hidden_states, temb) + hidden_states = self.attentions[0](hidden_states) + if skip_sample is not None: + skip_sample = self.upsampler(skip_sample) + else: + skip_sample = 0 + if self.resnet_up is not None: + skip_sample_states = self.skip_norm(hidden_states) + skip_sample_states = self.act(skip_sample_states) + skip_sample_states = self.skip_conv(skip_sample_states) + skip_sample = skip_sample + skip_sample_states + hidden_states = self.resnet_up(hidden_states, temb) + return (hidden_states, skip_sample) + +class SkipUpBlock2D(nn.Module): + + def __init__(self, in_channels: int, prev_output_channel: int, out_channels: int, temb_channels: int, resolution_idx: Optional[int]=None, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_pre_norm: bool=True, output_scale_factor: float=np.sqrt(2.0), add_upsample: bool=True, upsample_padding: int=1): + super().__init__() + self.resnets = nn.ModuleList([]) + for i in range(num_layers): + res_skip_channels = in_channels if i == num_layers - 1 else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + self.resnets.append(ResnetBlock2D(in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=min((resnet_in_channels + res_skip_channels) // 4, 32), groups_out=min(out_channels // 4, 32), dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels) + if add_upsample: + self.resnet_up = ResnetBlock2D(in_channels=out_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=min(out_channels // 4, 32), groups_out=min(out_channels // 4, 32), dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, use_in_shortcut=True, up=True, kernel='fir') + self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) + self.skip_norm = torch.nn.GroupNorm(num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True) + self.act = nn.SiLU() + else: + self.resnet_up = None + self.skip_conv = None + self.skip_norm = None + self.act = None + self.resolution_idx = resolution_idx + + def forward(self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor]=None, skip_sample=None, *args, **kwargs) -> Tuple[torch.Tensor, torch.Tensor]: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + for resnet in self.resnets: + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + hidden_states = resnet(hidden_states, temb) + if skip_sample is not None: + skip_sample = self.upsampler(skip_sample) + else: + skip_sample = 0 + if self.resnet_up is not None: + skip_sample_states = self.skip_norm(hidden_states) + skip_sample_states = self.act(skip_sample_states) + skip_sample_states = self.skip_conv(skip_sample_states) + skip_sample = skip_sample + skip_sample_states + hidden_states = self.resnet_up(hidden_states, temb) + return (hidden_states, skip_sample) + +class ResnetUpsampleBlock2D(nn.Module): + + def __init__(self, in_channels: int, prev_output_channel: int, out_channels: int, temb_channels: int, resolution_idx: Optional[int]=None, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, output_scale_factor: float=1.0, add_upsample: bool=True, skip_time_act: bool=False): + super().__init__() + resnets = [] + for i in range(num_layers): + res_skip_channels = in_channels if i == num_layers - 1 else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + resnets.append(ResnetBlock2D(in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, skip_time_act=skip_time_act)) + self.resnets = nn.ModuleList(resnets) + if add_upsample: + self.upsamplers = nn.ModuleList([ResnetBlock2D(in_channels=out_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, skip_time_act=skip_time_act, up=True)]) + else: + self.upsamplers = None + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward(self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor]=None, upsample_size: Optional[int]=None, *args, **kwargs) -> torch.Tensor: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + for resnet in self.resnets: + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + if is_torch_version('>=', '1.11.0'): + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, use_reentrant=False) + else: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + else: + hidden_states = resnet(hidden_states, temb) + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, temb) + return hidden_states + +class SimpleCrossAttnUpBlock2D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, prev_output_channel: int, temb_channels: int, resolution_idx: Optional[int]=None, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, attention_head_dim: int=1, cross_attention_dim: int=1280, output_scale_factor: float=1.0, add_upsample: bool=True, skip_time_act: bool=False, only_cross_attention: bool=False, cross_attention_norm: Optional[str]=None): + super().__init__() + resnets = [] + attentions = [] + self.has_cross_attention = True + self.attention_head_dim = attention_head_dim + self.num_heads = out_channels // self.attention_head_dim + for i in range(num_layers): + res_skip_channels = in_channels if i == num_layers - 1 else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + resnets.append(ResnetBlock2D(in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, skip_time_act=skip_time_act)) + processor = AttnAddedKVProcessor2_0() if hasattr(F, 'scaled_dot_product_attention') else AttnAddedKVProcessor() + attentions.append(Attention(query_dim=out_channels, cross_attention_dim=out_channels, heads=self.num_heads, dim_head=self.attention_head_dim, added_kv_proj_dim=cross_attention_dim, norm_num_groups=resnet_groups, bias=True, upcast_softmax=True, only_cross_attention=only_cross_attention, cross_attention_norm=cross_attention_norm, processor=processor)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + if add_upsample: + self.upsamplers = nn.ModuleList([ResnetBlock2D(in_channels=out_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, skip_time_act=skip_time_act, up=True)]) + else: + self.upsamplers = None + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward(self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, upsample_size: Optional[int]=None, attention_mask: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, encoder_attention_mask: Optional[torch.Tensor]=None) -> torch.Tensor: + cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} + if cross_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.') + if attention_mask is None: + mask = None if encoder_hidden_states is None else encoder_attention_mask + else: + mask = attention_mask + for (resnet, attn) in zip(self.resnets, self.attentions): + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=mask, **cross_attention_kwargs) + else: + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=mask, **cross_attention_kwargs) + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, temb) + return hidden_states + +class KUpBlock2D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, temb_channels: int, resolution_idx: int, dropout: float=0.0, num_layers: int=5, resnet_eps: float=1e-05, resnet_act_fn: str='gelu', resnet_group_size: Optional[int]=32, add_upsample: bool=True): + super().__init__() + resnets = [] + k_in_channels = 2 * out_channels + k_out_channels = in_channels + num_layers = num_layers - 1 + for i in range(num_layers): + in_channels = k_in_channels if i == 0 else out_channels + groups = in_channels // resnet_group_size + groups_out = out_channels // resnet_group_size + resnets.append(ResnetBlockCondNorm2D(in_channels=in_channels, out_channels=k_out_channels if i == num_layers - 1 else out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=groups, groups_out=groups_out, dropout=dropout, non_linearity=resnet_act_fn, time_embedding_norm='ada_group', conv_shortcut_bias=False)) + self.resnets = nn.ModuleList(resnets) + if add_upsample: + self.upsamplers = nn.ModuleList([KUpsample2D()]) + else: + self.upsamplers = None + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward(self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor]=None, upsample_size: Optional[int]=None, *args, **kwargs) -> torch.Tensor: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + res_hidden_states_tuple = res_hidden_states_tuple[-1] + if res_hidden_states_tuple is not None: + hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1) + for resnet in self.resnets: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + if is_torch_version('>=', '1.11.0'): + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, use_reentrant=False) + else: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + else: + hidden_states = resnet(hidden_states, temb) + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states) + return hidden_states + +class KCrossAttnUpBlock2D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, temb_channels: int, resolution_idx: int, dropout: float=0.0, num_layers: int=4, resnet_eps: float=1e-05, resnet_act_fn: str='gelu', resnet_group_size: int=32, attention_head_dim: int=1, cross_attention_dim: int=768, add_upsample: bool=True, upcast_attention: bool=False): + super().__init__() + resnets = [] + attentions = [] + is_first_block = in_channels == out_channels == temb_channels + is_middle_block = in_channels != out_channels + add_self_attention = True if is_first_block else False + self.has_cross_attention = True + self.attention_head_dim = attention_head_dim + k_in_channels = out_channels if is_first_block else 2 * out_channels + k_out_channels = in_channels + num_layers = num_layers - 1 + for i in range(num_layers): + in_channels = k_in_channels if i == 0 else out_channels + groups = in_channels // resnet_group_size + groups_out = out_channels // resnet_group_size + if is_middle_block and i == num_layers - 1: + conv_2d_out_channels = k_out_channels + else: + conv_2d_out_channels = None + resnets.append(ResnetBlockCondNorm2D(in_channels=in_channels, out_channels=out_channels, conv_2d_out_channels=conv_2d_out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=groups, groups_out=groups_out, dropout=dropout, non_linearity=resnet_act_fn, time_embedding_norm='ada_group', conv_shortcut_bias=False)) + attentions.append(KAttentionBlock(k_out_channels if i == num_layers - 1 else out_channels, k_out_channels // attention_head_dim if i == num_layers - 1 else out_channels // attention_head_dim, attention_head_dim, cross_attention_dim=cross_attention_dim, temb_channels=temb_channels, attention_bias=True, add_self_attention=add_self_attention, cross_attention_norm='layer_norm', upcast_attention=upcast_attention)) + self.resnets = nn.ModuleList(resnets) + self.attentions = nn.ModuleList(attentions) + if add_upsample: + self.upsamplers = nn.ModuleList([KUpsample2D()]) + else: + self.upsamplers = None + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward(self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, upsample_size: Optional[int]=None, attention_mask: Optional[torch.Tensor]=None, encoder_attention_mask: Optional[torch.Tensor]=None) -> torch.Tensor: + res_hidden_states_tuple = res_hidden_states_tuple[-1] + if res_hidden_states_tuple is not None: + hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1) + for (resnet, attn) in zip(self.resnets, self.attentions): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, emb=temb, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs, encoder_attention_mask=encoder_attention_mask) + else: + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, emb=temb, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs, encoder_attention_mask=encoder_attention_mask) + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states) + return hidden_states + +class KAttentionBlock(nn.Module): + + def __init__(self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout: float=0.0, cross_attention_dim: Optional[int]=None, attention_bias: bool=False, upcast_attention: bool=False, temb_channels: int=768, add_self_attention: bool=False, cross_attention_norm: Optional[str]=None, group_size: int=32): + super().__init__() + self.add_self_attention = add_self_attention + if add_self_attention: + self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size)) + self.attn1 = Attention(query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=None, cross_attention_norm=None) + self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size)) + self.attn2 = Attention(query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, cross_attention_norm=cross_attention_norm) + + def _to_3d(self, hidden_states: torch.Tensor, height: int, weight: int) -> torch.Tensor: + return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1) + + def _to_4d(self, hidden_states: torch.Tensor, height: int, weight: int) -> torch.Tensor: + return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight) + + def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor]=None, emb: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, encoder_attention_mask: Optional[torch.Tensor]=None) -> torch.Tensor: + cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} + if cross_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.') + if self.add_self_attention: + norm_hidden_states = self.norm1(hidden_states, emb) + (height, weight) = norm_hidden_states.shape[2:] + norm_hidden_states = self._to_3d(norm_hidden_states, height, weight) + attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None, attention_mask=attention_mask, **cross_attention_kwargs) + attn_output = self._to_4d(attn_output, height, weight) + hidden_states = attn_output + hidden_states + norm_hidden_states = self.norm2(hidden_states, emb) + (height, weight) = norm_hidden_states.shape[2:] + norm_hidden_states = self._to_3d(norm_hidden_states, height, weight) + attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask if encoder_hidden_states is None else encoder_attention_mask, **cross_attention_kwargs) + attn_output = self._to_4d(attn_output, height, weight) + hidden_states = attn_output + hidden_states + return hidden_states + +# File: diffusers-main/src/diffusers/models/unets/unet_2d_blocks_flax.py +import flax.linen as nn +import jax.numpy as jnp +from ..attention_flax import FlaxTransformer2DModel +from ..resnet_flax import FlaxDownsample2D, FlaxResnetBlock2D, FlaxUpsample2D + +class FlaxCrossAttnDownBlock2D(nn.Module): + in_channels: int + out_channels: int + dropout: float = 0.0 + num_layers: int = 1 + num_attention_heads: int = 1 + add_downsample: bool = True + use_linear_projection: bool = False + only_cross_attention: bool = False + use_memory_efficient_attention: bool = False + split_head_dim: bool = False + dtype: jnp.dtype = jnp.float32 + transformer_layers_per_block: int = 1 + + def setup(self): + resnets = [] + attentions = [] + for i in range(self.num_layers): + in_channels = self.in_channels if i == 0 else self.out_channels + res_block = FlaxResnetBlock2D(in_channels=in_channels, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype) + resnets.append(res_block) + attn_block = FlaxTransformer2DModel(in_channels=self.out_channels, n_heads=self.num_attention_heads, d_head=self.out_channels // self.num_attention_heads, depth=self.transformer_layers_per_block, use_linear_projection=self.use_linear_projection, only_cross_attention=self.only_cross_attention, use_memory_efficient_attention=self.use_memory_efficient_attention, split_head_dim=self.split_head_dim, dtype=self.dtype) + attentions.append(attn_block) + self.resnets = resnets + self.attentions = attentions + if self.add_downsample: + self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype) + + def __call__(self, hidden_states, temb, encoder_hidden_states, deterministic=True): + output_states = () + for (resnet, attn) in zip(self.resnets, self.attentions): + hidden_states = resnet(hidden_states, temb, deterministic=deterministic) + hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic) + output_states += (hidden_states,) + if self.add_downsample: + hidden_states = self.downsamplers_0(hidden_states) + output_states += (hidden_states,) + return (hidden_states, output_states) + +class FlaxDownBlock2D(nn.Module): + in_channels: int + out_channels: int + dropout: float = 0.0 + num_layers: int = 1 + add_downsample: bool = True + dtype: jnp.dtype = jnp.float32 + + def setup(self): + resnets = [] + for i in range(self.num_layers): + in_channels = self.in_channels if i == 0 else self.out_channels + res_block = FlaxResnetBlock2D(in_channels=in_channels, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype) + resnets.append(res_block) + self.resnets = resnets + if self.add_downsample: + self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype) + + def __call__(self, hidden_states, temb, deterministic=True): + output_states = () + for resnet in self.resnets: + hidden_states = resnet(hidden_states, temb, deterministic=deterministic) + output_states += (hidden_states,) + if self.add_downsample: + hidden_states = self.downsamplers_0(hidden_states) + output_states += (hidden_states,) + return (hidden_states, output_states) + +class FlaxCrossAttnUpBlock2D(nn.Module): + in_channels: int + out_channels: int + prev_output_channel: int + dropout: float = 0.0 + num_layers: int = 1 + num_attention_heads: int = 1 + add_upsample: bool = True + use_linear_projection: bool = False + only_cross_attention: bool = False + use_memory_efficient_attention: bool = False + split_head_dim: bool = False + dtype: jnp.dtype = jnp.float32 + transformer_layers_per_block: int = 1 + + def setup(self): + resnets = [] + attentions = [] + for i in range(self.num_layers): + res_skip_channels = self.in_channels if i == self.num_layers - 1 else self.out_channels + resnet_in_channels = self.prev_output_channel if i == 0 else self.out_channels + res_block = FlaxResnetBlock2D(in_channels=resnet_in_channels + res_skip_channels, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype) + resnets.append(res_block) + attn_block = FlaxTransformer2DModel(in_channels=self.out_channels, n_heads=self.num_attention_heads, d_head=self.out_channels // self.num_attention_heads, depth=self.transformer_layers_per_block, use_linear_projection=self.use_linear_projection, only_cross_attention=self.only_cross_attention, use_memory_efficient_attention=self.use_memory_efficient_attention, split_head_dim=self.split_head_dim, dtype=self.dtype) + attentions.append(attn_block) + self.resnets = resnets + self.attentions = attentions + if self.add_upsample: + self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype) + + def __call__(self, hidden_states, res_hidden_states_tuple, temb, encoder_hidden_states, deterministic=True): + for (resnet, attn) in zip(self.resnets, self.attentions): + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = jnp.concatenate((hidden_states, res_hidden_states), axis=-1) + hidden_states = resnet(hidden_states, temb, deterministic=deterministic) + hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic) + if self.add_upsample: + hidden_states = self.upsamplers_0(hidden_states) + return hidden_states + +class FlaxUpBlock2D(nn.Module): + in_channels: int + out_channels: int + prev_output_channel: int + dropout: float = 0.0 + num_layers: int = 1 + add_upsample: bool = True + dtype: jnp.dtype = jnp.float32 + + def setup(self): + resnets = [] + for i in range(self.num_layers): + res_skip_channels = self.in_channels if i == self.num_layers - 1 else self.out_channels + resnet_in_channels = self.prev_output_channel if i == 0 else self.out_channels + res_block = FlaxResnetBlock2D(in_channels=resnet_in_channels + res_skip_channels, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype) + resnets.append(res_block) + self.resnets = resnets + if self.add_upsample: + self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype) + + def __call__(self, hidden_states, res_hidden_states_tuple, temb, deterministic=True): + for resnet in self.resnets: + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = jnp.concatenate((hidden_states, res_hidden_states), axis=-1) + hidden_states = resnet(hidden_states, temb, deterministic=deterministic) + if self.add_upsample: + hidden_states = self.upsamplers_0(hidden_states) + return hidden_states + +class FlaxUNetMidBlock2DCrossAttn(nn.Module): + in_channels: int + dropout: float = 0.0 + num_layers: int = 1 + num_attention_heads: int = 1 + use_linear_projection: bool = False + use_memory_efficient_attention: bool = False + split_head_dim: bool = False + dtype: jnp.dtype = jnp.float32 + transformer_layers_per_block: int = 1 + + def setup(self): + resnets = [FlaxResnetBlock2D(in_channels=self.in_channels, out_channels=self.in_channels, dropout_prob=self.dropout, dtype=self.dtype)] + attentions = [] + for _ in range(self.num_layers): + attn_block = FlaxTransformer2DModel(in_channels=self.in_channels, n_heads=self.num_attention_heads, d_head=self.in_channels // self.num_attention_heads, depth=self.transformer_layers_per_block, use_linear_projection=self.use_linear_projection, use_memory_efficient_attention=self.use_memory_efficient_attention, split_head_dim=self.split_head_dim, dtype=self.dtype) + attentions.append(attn_block) + res_block = FlaxResnetBlock2D(in_channels=self.in_channels, out_channels=self.in_channels, dropout_prob=self.dropout, dtype=self.dtype) + resnets.append(res_block) + self.resnets = resnets + self.attentions = attentions + + def __call__(self, hidden_states, temb, encoder_hidden_states, deterministic=True): + hidden_states = self.resnets[0](hidden_states, temb) + for (attn, resnet) in zip(self.attentions, self.resnets[1:]): + hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic) + hidden_states = resnet(hidden_states, temb, deterministic=deterministic) + return hidden_states + +# File: diffusers-main/src/diffusers/models/unets/unet_2d_condition.py +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Tuple, Union +import torch +import torch.nn as nn +import torch.utils.checkpoint +from ...configuration_utils import ConfigMixin, register_to_config +from ...loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin +from ...loaders.single_file_model import FromOriginalModelMixin +from ...utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers +from ..activations import get_activation +from ..attention_processor import ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, Attention, AttentionProcessor, AttnAddedKVProcessor, AttnProcessor, FusedAttnProcessor2_0 +from ..embeddings import GaussianFourierProjection, GLIGENTextBoundingboxProjection, ImageHintTimeEmbedding, ImageProjection, ImageTimeEmbedding, TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps +from ..modeling_utils import ModelMixin +from .unet_2d_blocks import get_down_block, get_mid_block, get_up_block +logger = logging.get_logger(__name__) + +@dataclass +class UNet2DConditionOutput(BaseOutput): + sample: torch.Tensor = None + +class UNet2DConditionModel(ModelMixin, ConfigMixin, FromOriginalModelMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin): + _supports_gradient_checkpointing = True + _no_split_modules = ['BasicTransformerBlock', 'ResnetBlock2D', 'CrossAttnUpBlock2D'] + + @register_to_config + def __init__(self, sample_size: Optional[int]=None, in_channels: int=4, out_channels: int=4, center_input_sample: bool=False, flip_sin_to_cos: bool=True, freq_shift: int=0, down_block_types: Tuple[str]=('CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'DownBlock2D'), mid_block_type: Optional[str]='UNetMidBlock2DCrossAttn', up_block_types: Tuple[str]=('UpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D'), only_cross_attention: Union[bool, Tuple[bool]]=False, block_out_channels: Tuple[int]=(320, 640, 1280, 1280), layers_per_block: Union[int, Tuple[int]]=2, downsample_padding: int=1, mid_block_scale_factor: float=1, dropout: float=0.0, act_fn: str='silu', norm_num_groups: Optional[int]=32, norm_eps: float=1e-05, cross_attention_dim: Union[int, Tuple[int]]=1280, transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]]=1, reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]]=None, encoder_hid_dim: Optional[int]=None, encoder_hid_dim_type: Optional[str]=None, attention_head_dim: Union[int, Tuple[int]]=8, num_attention_heads: Optional[Union[int, Tuple[int]]]=None, dual_cross_attention: bool=False, use_linear_projection: bool=False, class_embed_type: Optional[str]=None, addition_embed_type: Optional[str]=None, addition_time_embed_dim: Optional[int]=None, num_class_embeds: Optional[int]=None, upcast_attention: bool=False, resnet_time_scale_shift: str='default', resnet_skip_time_act: bool=False, resnet_out_scale_factor: float=1.0, time_embedding_type: str='positional', time_embedding_dim: Optional[int]=None, time_embedding_act_fn: Optional[str]=None, timestep_post_act: Optional[str]=None, time_cond_proj_dim: Optional[int]=None, conv_in_kernel: int=3, conv_out_kernel: int=3, projection_class_embeddings_input_dim: Optional[int]=None, attention_type: str='default', class_embeddings_concat: bool=False, mid_block_only_cross_attention: Optional[bool]=None, cross_attention_norm: Optional[str]=None, addition_embed_type_num_heads: int=64): + super().__init__() + self.sample_size = sample_size + if num_attention_heads is not None: + raise ValueError('At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.') + num_attention_heads = num_attention_heads or attention_head_dim + self._check_config(down_block_types=down_block_types, up_block_types=up_block_types, only_cross_attention=only_cross_attention, block_out_channels=block_out_channels, layers_per_block=layers_per_block, cross_attention_dim=cross_attention_dim, transformer_layers_per_block=transformer_layers_per_block, reverse_transformer_layers_per_block=reverse_transformer_layers_per_block, attention_head_dim=attention_head_dim, num_attention_heads=num_attention_heads) + conv_in_padding = (conv_in_kernel - 1) // 2 + self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding) + (time_embed_dim, timestep_input_dim) = self._set_time_proj(time_embedding_type, block_out_channels=block_out_channels, flip_sin_to_cos=flip_sin_to_cos, freq_shift=freq_shift, time_embedding_dim=time_embedding_dim) + self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn, post_act_fn=timestep_post_act, cond_proj_dim=time_cond_proj_dim) + self._set_encoder_hid_proj(encoder_hid_dim_type, cross_attention_dim=cross_attention_dim, encoder_hid_dim=encoder_hid_dim) + self._set_class_embedding(class_embed_type, act_fn=act_fn, num_class_embeds=num_class_embeds, projection_class_embeddings_input_dim=projection_class_embeddings_input_dim, time_embed_dim=time_embed_dim, timestep_input_dim=timestep_input_dim) + self._set_add_embedding(addition_embed_type, addition_embed_type_num_heads=addition_embed_type_num_heads, addition_time_embed_dim=addition_time_embed_dim, cross_attention_dim=cross_attention_dim, encoder_hid_dim=encoder_hid_dim, flip_sin_to_cos=flip_sin_to_cos, freq_shift=freq_shift, projection_class_embeddings_input_dim=projection_class_embeddings_input_dim, time_embed_dim=time_embed_dim) + if time_embedding_act_fn is None: + self.time_embed_act = None + else: + self.time_embed_act = get_activation(time_embedding_act_fn) + self.down_blocks = nn.ModuleList([]) + self.up_blocks = nn.ModuleList([]) + if isinstance(only_cross_attention, bool): + if mid_block_only_cross_attention is None: + mid_block_only_cross_attention = only_cross_attention + only_cross_attention = [only_cross_attention] * len(down_block_types) + if mid_block_only_cross_attention is None: + mid_block_only_cross_attention = False + if isinstance(num_attention_heads, int): + num_attention_heads = (num_attention_heads,) * len(down_block_types) + if isinstance(attention_head_dim, int): + attention_head_dim = (attention_head_dim,) * len(down_block_types) + if isinstance(cross_attention_dim, int): + cross_attention_dim = (cross_attention_dim,) * len(down_block_types) + if isinstance(layers_per_block, int): + layers_per_block = [layers_per_block] * len(down_block_types) + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) + if class_embeddings_concat: + blocks_time_embed_dim = time_embed_dim * 2 + else: + blocks_time_embed_dim = time_embed_dim + output_channel = block_out_channels[0] + for (i, down_block_type) in enumerate(down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + down_block = get_down_block(down_block_type, num_layers=layers_per_block[i], transformer_layers_per_block=transformer_layers_per_block[i], in_channels=input_channel, out_channels=output_channel, temb_channels=blocks_time_embed_dim, add_downsample=not is_final_block, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, cross_attention_dim=cross_attention_dim[i], num_attention_heads=num_attention_heads[i], downsample_padding=downsample_padding, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention[i], upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, attention_type=attention_type, resnet_skip_time_act=resnet_skip_time_act, resnet_out_scale_factor=resnet_out_scale_factor, cross_attention_norm=cross_attention_norm, attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, dropout=dropout) + self.down_blocks.append(down_block) + self.mid_block = get_mid_block(mid_block_type, temb_channels=blocks_time_embed_dim, in_channels=block_out_channels[-1], resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, output_scale_factor=mid_block_scale_factor, transformer_layers_per_block=transformer_layers_per_block[-1], num_attention_heads=num_attention_heads[-1], cross_attention_dim=cross_attention_dim[-1], dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, mid_block_only_cross_attention=mid_block_only_cross_attention, upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, attention_type=attention_type, resnet_skip_time_act=resnet_skip_time_act, cross_attention_norm=cross_attention_norm, attention_head_dim=attention_head_dim[-1], dropout=dropout) + self.num_upsamplers = 0 + reversed_block_out_channels = list(reversed(block_out_channels)) + reversed_num_attention_heads = list(reversed(num_attention_heads)) + reversed_layers_per_block = list(reversed(layers_per_block)) + reversed_cross_attention_dim = list(reversed(cross_attention_dim)) + reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) if reverse_transformer_layers_per_block is None else reverse_transformer_layers_per_block + only_cross_attention = list(reversed(only_cross_attention)) + output_channel = reversed_block_out_channels[0] + for (i, up_block_type) in enumerate(up_block_types): + is_final_block = i == len(block_out_channels) - 1 + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] + if not is_final_block: + add_upsample = True + self.num_upsamplers += 1 + else: + add_upsample = False + up_block = get_up_block(up_block_type, num_layers=reversed_layers_per_block[i] + 1, transformer_layers_per_block=reversed_transformer_layers_per_block[i], in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, temb_channels=blocks_time_embed_dim, add_upsample=add_upsample, resnet_eps=norm_eps, resnet_act_fn=act_fn, resolution_idx=i, resnet_groups=norm_num_groups, cross_attention_dim=reversed_cross_attention_dim[i], num_attention_heads=reversed_num_attention_heads[i], dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention[i], upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, attention_type=attention_type, resnet_skip_time_act=resnet_skip_time_act, resnet_out_scale_factor=resnet_out_scale_factor, cross_attention_norm=cross_attention_norm, attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, dropout=dropout) + self.up_blocks.append(up_block) + if norm_num_groups is not None: + self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps) + self.conv_act = get_activation(act_fn) + else: + self.conv_norm_out = None + self.conv_act = None + conv_out_padding = (conv_out_kernel - 1) // 2 + self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding) + self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim) + + def _check_config(self, down_block_types: Tuple[str], up_block_types: Tuple[str], only_cross_attention: Union[bool, Tuple[bool]], block_out_channels: Tuple[int], layers_per_block: Union[int, Tuple[int]], cross_attention_dim: Union[int, Tuple[int]], transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]], reverse_transformer_layers_per_block: bool, attention_head_dim: int, num_attention_heads: Optional[Union[int, Tuple[int]]]): + if len(down_block_types) != len(up_block_types): + raise ValueError(f'Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}.') + if len(block_out_channels) != len(down_block_types): + raise ValueError(f'Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}.') + if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): + raise ValueError(f'Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}.') + if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): + raise ValueError(f'Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}.') + if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types): + raise ValueError(f'Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}.') + if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): + raise ValueError(f'Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}.') + if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): + raise ValueError(f'Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}.') + if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None: + for layer_number_per_block in transformer_layers_per_block: + if isinstance(layer_number_per_block, list): + raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.") + + def _set_time_proj(self, time_embedding_type: str, block_out_channels: int, flip_sin_to_cos: bool, freq_shift: float, time_embedding_dim: int) -> Tuple[int, int]: + if time_embedding_type == 'fourier': + time_embed_dim = time_embedding_dim or block_out_channels[0] * 2 + if time_embed_dim % 2 != 0: + raise ValueError(f'`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.') + self.time_proj = GaussianFourierProjection(time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos) + timestep_input_dim = time_embed_dim + elif time_embedding_type == 'positional': + time_embed_dim = time_embedding_dim or block_out_channels[0] * 4 + self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) + timestep_input_dim = block_out_channels[0] + else: + raise ValueError(f'{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`.') + return (time_embed_dim, timestep_input_dim) + + def _set_encoder_hid_proj(self, encoder_hid_dim_type: Optional[str], cross_attention_dim: Union[int, Tuple[int]], encoder_hid_dim: Optional[int]): + if encoder_hid_dim_type is None and encoder_hid_dim is not None: + encoder_hid_dim_type = 'text_proj' + self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type) + logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.") + if encoder_hid_dim is None and encoder_hid_dim_type is not None: + raise ValueError(f'`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}.') + if encoder_hid_dim_type == 'text_proj': + self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) + elif encoder_hid_dim_type == 'text_image_proj': + self.encoder_hid_proj = TextImageProjection(text_embed_dim=encoder_hid_dim, image_embed_dim=cross_attention_dim, cross_attention_dim=cross_attention_dim) + elif encoder_hid_dim_type == 'image_proj': + self.encoder_hid_proj = ImageProjection(image_embed_dim=encoder_hid_dim, cross_attention_dim=cross_attention_dim) + elif encoder_hid_dim_type is not None: + raise ValueError(f"`encoder_hid_dim_type`: {encoder_hid_dim_type} must be None, 'text_proj', 'text_image_proj', or 'image_proj'.") + else: + self.encoder_hid_proj = None + + def _set_class_embedding(self, class_embed_type: Optional[str], act_fn: str, num_class_embeds: Optional[int], projection_class_embeddings_input_dim: Optional[int], time_embed_dim: int, timestep_input_dim: int): + if class_embed_type is None and num_class_embeds is not None: + self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) + elif class_embed_type == 'timestep': + self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn) + elif class_embed_type == 'identity': + self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) + elif class_embed_type == 'projection': + if projection_class_embeddings_input_dim is None: + raise ValueError("`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set") + self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + elif class_embed_type == 'simple_projection': + if projection_class_embeddings_input_dim is None: + raise ValueError("`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set") + self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim) + else: + self.class_embedding = None + + def _set_add_embedding(self, addition_embed_type: str, addition_embed_type_num_heads: int, addition_time_embed_dim: Optional[int], flip_sin_to_cos: bool, freq_shift: float, cross_attention_dim: Optional[int], encoder_hid_dim: Optional[int], projection_class_embeddings_input_dim: Optional[int], time_embed_dim: int): + if addition_embed_type == 'text': + if encoder_hid_dim is not None: + text_time_embedding_from_dim = encoder_hid_dim + else: + text_time_embedding_from_dim = cross_attention_dim + self.add_embedding = TextTimeEmbedding(text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads) + elif addition_embed_type == 'text_image': + self.add_embedding = TextImageTimeEmbedding(text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim) + elif addition_embed_type == 'text_time': + self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift) + self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + elif addition_embed_type == 'image': + self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) + elif addition_embed_type == 'image_hint': + self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) + elif addition_embed_type is not None: + raise ValueError(f"`addition_embed_type`: {addition_embed_type} must be None, 'text', 'text_image', 'text_time', 'image', or 'image_hint'.") + + def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int): + if attention_type in ['gated', 'gated-text-image']: + positive_len = 768 + if isinstance(cross_attention_dim, int): + positive_len = cross_attention_dim + elif isinstance(cross_attention_dim, (list, tuple)): + positive_len = cross_attention_dim[0] + feature_type = 'text-only' if attention_type == 'gated' else 'text-image' + self.position_net = GLIGENTextBoundingboxProjection(positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type) + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def set_default_attn_processor(self): + if all((proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnAddedKVProcessor() + elif all((proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnProcessor() + else: + raise ValueError(f'Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}') + self.set_attn_processor(processor) + + def set_attention_slice(self, slice_size: Union[str, int, List[int]]='auto'): + sliceable_head_dims = [] + + def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): + if hasattr(module, 'set_attention_slice'): + sliceable_head_dims.append(module.sliceable_head_dim) + for child in module.children(): + fn_recursive_retrieve_sliceable_dims(child) + for module in self.children(): + fn_recursive_retrieve_sliceable_dims(module) + num_sliceable_layers = len(sliceable_head_dims) + if slice_size == 'auto': + slice_size = [dim // 2 for dim in sliceable_head_dims] + elif slice_size == 'max': + slice_size = num_sliceable_layers * [1] + slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size + if len(slice_size) != len(sliceable_head_dims): + raise ValueError(f'You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}.') + for i in range(len(slice_size)): + size = slice_size[i] + dim = sliceable_head_dims[i] + if size is not None and size > dim: + raise ValueError(f'size {size} has to be smaller or equal to {dim}.') + + def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): + if hasattr(module, 'set_attention_slice'): + module.set_attention_slice(slice_size.pop()) + for child in module.children(): + fn_recursive_set_attention_slice(child, slice_size) + reversed_slice_size = list(reversed(slice_size)) + for module in self.children(): + fn_recursive_set_attention_slice(module, reversed_slice_size) + + def _set_gradient_checkpointing(self, module, value=False): + if hasattr(module, 'gradient_checkpointing'): + module.gradient_checkpointing = value + + def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): + for (i, upsample_block) in enumerate(self.up_blocks): + setattr(upsample_block, 's1', s1) + setattr(upsample_block, 's2', s2) + setattr(upsample_block, 'b1', b1) + setattr(upsample_block, 'b2', b2) + + def disable_freeu(self): + freeu_keys = {'s1', 's2', 'b1', 'b2'} + for (i, upsample_block) in enumerate(self.up_blocks): + for k in freeu_keys: + if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None: + setattr(upsample_block, k, None) + + def fuse_qkv_projections(self): + self.original_attn_processors = None + for (_, attn_processor) in self.attn_processors.items(): + if 'Added' in str(attn_processor.__class__.__name__): + raise ValueError('`fuse_qkv_projections()` is not supported for models having added KV projections.') + self.original_attn_processors = self.attn_processors + for module in self.modules(): + if isinstance(module, Attention): + module.fuse_projections(fuse=True) + self.set_attn_processor(FusedAttnProcessor2_0()) + + def unfuse_qkv_projections(self): + if self.original_attn_processors is not None: + self.set_attn_processor(self.original_attn_processors) + + def get_time_embed(self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]) -> Optional[torch.Tensor]: + timesteps = timestep + if not torch.is_tensor(timesteps): + is_mps = sample.device.type == 'mps' + if isinstance(timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + timesteps = timesteps.expand(sample.shape[0]) + t_emb = self.time_proj(timesteps) + t_emb = t_emb.to(dtype=sample.dtype) + return t_emb + + def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]: + class_emb = None + if self.class_embedding is not None: + if class_labels is None: + raise ValueError('class_labels should be provided when num_class_embeds > 0') + if self.config.class_embed_type == 'timestep': + class_labels = self.time_proj(class_labels) + class_labels = class_labels.to(dtype=sample.dtype) + class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) + return class_emb + + def get_aug_embed(self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]) -> Optional[torch.Tensor]: + aug_emb = None + if self.config.addition_embed_type == 'text': + aug_emb = self.add_embedding(encoder_hidden_states) + elif self.config.addition_embed_type == 'text_image': + if 'image_embeds' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`") + image_embs = added_cond_kwargs.get('image_embeds') + text_embs = added_cond_kwargs.get('text_embeds', encoder_hidden_states) + aug_emb = self.add_embedding(text_embs, image_embs) + elif self.config.addition_embed_type == 'text_time': + if 'text_embeds' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`") + text_embeds = added_cond_kwargs.get('text_embeds') + if 'time_ids' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`") + time_ids = added_cond_kwargs.get('time_ids') + time_embeds = self.add_time_proj(time_ids.flatten()) + time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) + add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) + add_embeds = add_embeds.to(emb.dtype) + aug_emb = self.add_embedding(add_embeds) + elif self.config.addition_embed_type == 'image': + if 'image_embeds' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`") + image_embs = added_cond_kwargs.get('image_embeds') + aug_emb = self.add_embedding(image_embs) + elif self.config.addition_embed_type == 'image_hint': + if 'image_embeds' not in added_cond_kwargs or 'hint' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`") + image_embs = added_cond_kwargs.get('image_embeds') + hint = added_cond_kwargs.get('hint') + aug_emb = self.add_embedding(image_embs, hint) + return aug_emb + + def process_encoder_hidden_states(self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]) -> torch.Tensor: + if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == 'text_proj': + encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) + elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == 'text_image_proj': + if 'image_embeds' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`") + image_embeds = added_cond_kwargs.get('image_embeds') + encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) + elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == 'image_proj': + if 'image_embeds' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`") + image_embeds = added_cond_kwargs.get('image_embeds') + encoder_hidden_states = self.encoder_hid_proj(image_embeds) + elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == 'ip_image_proj': + if 'image_embeds' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`") + if hasattr(self, 'text_encoder_hid_proj') and self.text_encoder_hid_proj is not None: + encoder_hidden_states = self.text_encoder_hid_proj(encoder_hidden_states) + image_embeds = added_cond_kwargs.get('image_embeds') + image_embeds = self.encoder_hid_proj(image_embeds) + encoder_hidden_states = (encoder_hidden_states, image_embeds) + return encoder_hidden_states + + def forward(self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, class_labels: Optional[torch.Tensor]=None, timestep_cond: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, added_cond_kwargs: Optional[Dict[str, torch.Tensor]]=None, down_block_additional_residuals: Optional[Tuple[torch.Tensor]]=None, mid_block_additional_residual: Optional[torch.Tensor]=None, down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]]=None, encoder_attention_mask: Optional[torch.Tensor]=None, return_dict: bool=True) -> Union[UNet2DConditionOutput, Tuple]: + default_overall_up_factor = 2 ** self.num_upsamplers + forward_upsample_size = False + upsample_size = None + for dim in sample.shape[-2:]: + if dim % default_overall_up_factor != 0: + forward_upsample_size = True + break + if attention_mask is not None: + attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + if encoder_attention_mask is not None: + encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 + encoder_attention_mask = encoder_attention_mask.unsqueeze(1) + if self.config.center_input_sample: + sample = 2 * sample - 1.0 + t_emb = self.get_time_embed(sample=sample, timestep=timestep) + emb = self.time_embedding(t_emb, timestep_cond) + class_emb = self.get_class_embed(sample=sample, class_labels=class_labels) + if class_emb is not None: + if self.config.class_embeddings_concat: + emb = torch.cat([emb, class_emb], dim=-1) + else: + emb = emb + class_emb + aug_emb = self.get_aug_embed(emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs) + if self.config.addition_embed_type == 'image_hint': + (aug_emb, hint) = aug_emb + sample = torch.cat([sample, hint], dim=1) + emb = emb + aug_emb if aug_emb is not None else emb + if self.time_embed_act is not None: + emb = self.time_embed_act(emb) + encoder_hidden_states = self.process_encoder_hidden_states(encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs) + sample = self.conv_in(sample) + if cross_attention_kwargs is not None and cross_attention_kwargs.get('gligen', None) is not None: + cross_attention_kwargs = cross_attention_kwargs.copy() + gligen_args = cross_attention_kwargs.pop('gligen') + cross_attention_kwargs['gligen'] = {'objs': self.position_net(**gligen_args)} + if cross_attention_kwargs is not None: + cross_attention_kwargs = cross_attention_kwargs.copy() + lora_scale = cross_attention_kwargs.pop('scale', 1.0) + else: + lora_scale = 1.0 + if USE_PEFT_BACKEND: + scale_lora_layers(self, lora_scale) + is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None + is_adapter = down_intrablock_additional_residuals is not None + if not is_adapter and mid_block_additional_residual is None and (down_block_additional_residuals is not None): + deprecate('T2I should not use down_block_additional_residuals', '1.3.0', 'Passing intrablock residual connections with `down_block_additional_residuals` is deprecated and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ', standard_warn=False) + down_intrablock_additional_residuals = down_block_additional_residuals + is_adapter = True + down_block_res_samples = (sample,) + for downsample_block in self.down_blocks: + if hasattr(downsample_block, 'has_cross_attention') and downsample_block.has_cross_attention: + additional_residuals = {} + if is_adapter and len(down_intrablock_additional_residuals) > 0: + additional_residuals['additional_residuals'] = down_intrablock_additional_residuals.pop(0) + (sample, res_samples) = downsample_block(hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs, encoder_attention_mask=encoder_attention_mask, **additional_residuals) + else: + (sample, res_samples) = downsample_block(hidden_states=sample, temb=emb) + if is_adapter and len(down_intrablock_additional_residuals) > 0: + sample += down_intrablock_additional_residuals.pop(0) + down_block_res_samples += res_samples + if is_controlnet: + new_down_block_res_samples = () + for (down_block_res_sample, down_block_additional_residual) in zip(down_block_res_samples, down_block_additional_residuals): + down_block_res_sample = down_block_res_sample + down_block_additional_residual + new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) + down_block_res_samples = new_down_block_res_samples + if self.mid_block is not None: + if hasattr(self.mid_block, 'has_cross_attention') and self.mid_block.has_cross_attention: + sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs, encoder_attention_mask=encoder_attention_mask) + else: + sample = self.mid_block(sample, emb) + if is_adapter and len(down_intrablock_additional_residuals) > 0 and (sample.shape == down_intrablock_additional_residuals[0].shape): + sample += down_intrablock_additional_residuals.pop(0) + if is_controlnet: + sample = sample + mid_block_additional_residual + for (i, upsample_block) in enumerate(self.up_blocks): + is_final_block = i == len(self.up_blocks) - 1 + res_samples = down_block_res_samples[-len(upsample_block.resnets):] + down_block_res_samples = down_block_res_samples[:-len(upsample_block.resnets)] + if not is_final_block and forward_upsample_size: + upsample_size = down_block_res_samples[-1].shape[2:] + if hasattr(upsample_block, 'has_cross_attention') and upsample_block.has_cross_attention: + sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, upsample_size=upsample_size, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask) + else: + sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size) + if self.conv_norm_out: + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + if USE_PEFT_BACKEND: + unscale_lora_layers(self, lora_scale) + if not return_dict: + return (sample,) + return UNet2DConditionOutput(sample=sample) + +# File: diffusers-main/src/diffusers/models/unets/unet_2d_condition_flax.py +from typing import Dict, Optional, Tuple, Union +import flax +import flax.linen as nn +import jax +import jax.numpy as jnp +from flax.core.frozen_dict import FrozenDict +from ...configuration_utils import ConfigMixin, flax_register_to_config +from ...utils import BaseOutput +from ..embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps +from ..modeling_flax_utils import FlaxModelMixin +from .unet_2d_blocks_flax import FlaxCrossAttnDownBlock2D, FlaxCrossAttnUpBlock2D, FlaxDownBlock2D, FlaxUNetMidBlock2DCrossAttn, FlaxUpBlock2D + +@flax.struct.dataclass +class FlaxUNet2DConditionOutput(BaseOutput): + sample: jnp.ndarray + +@flax_register_to_config +class FlaxUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin): + sample_size: int = 32 + in_channels: int = 4 + out_channels: int = 4 + down_block_types: Tuple[str, ...] = ('CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'DownBlock2D') + up_block_types: Tuple[str, ...] = ('UpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D') + mid_block_type: Optional[str] = 'UNetMidBlock2DCrossAttn' + only_cross_attention: Union[bool, Tuple[bool]] = False + block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280) + layers_per_block: int = 2 + attention_head_dim: Union[int, Tuple[int, ...]] = 8 + num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None + cross_attention_dim: int = 1280 + dropout: float = 0.0 + use_linear_projection: bool = False + dtype: jnp.dtype = jnp.float32 + flip_sin_to_cos: bool = True + freq_shift: int = 0 + use_memory_efficient_attention: bool = False + split_head_dim: bool = False + transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1 + addition_embed_type: Optional[str] = None + addition_time_embed_dim: Optional[int] = None + addition_embed_type_num_heads: int = 64 + projection_class_embeddings_input_dim: Optional[int] = None + + def init_weights(self, rng: jax.Array) -> FrozenDict: + sample_shape = (1, self.in_channels, self.sample_size, self.sample_size) + sample = jnp.zeros(sample_shape, dtype=jnp.float32) + timesteps = jnp.ones((1,), dtype=jnp.int32) + encoder_hidden_states = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.float32) + (params_rng, dropout_rng) = jax.random.split(rng) + rngs = {'params': params_rng, 'dropout': dropout_rng} + added_cond_kwargs = None + if self.addition_embed_type == 'text_time': + is_refiner = 5 * self.config.addition_time_embed_dim + self.config.cross_attention_dim == self.config.projection_class_embeddings_input_dim + num_micro_conditions = 5 if is_refiner else 6 + text_embeds_dim = self.config.projection_class_embeddings_input_dim - num_micro_conditions * self.config.addition_time_embed_dim + time_ids_channels = self.projection_class_embeddings_input_dim - text_embeds_dim + time_ids_dims = time_ids_channels // self.addition_time_embed_dim + added_cond_kwargs = {'text_embeds': jnp.zeros((1, text_embeds_dim), dtype=jnp.float32), 'time_ids': jnp.zeros((1, time_ids_dims), dtype=jnp.float32)} + return self.init(rngs, sample, timesteps, encoder_hidden_states, added_cond_kwargs)['params'] + + def setup(self) -> None: + block_out_channels = self.block_out_channels + time_embed_dim = block_out_channels[0] * 4 + if self.num_attention_heads is not None: + raise ValueError('At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.') + num_attention_heads = self.num_attention_heads or self.attention_head_dim + self.conv_in = nn.Conv(block_out_channels[0], kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype) + self.time_proj = FlaxTimesteps(block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift) + self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype) + only_cross_attention = self.only_cross_attention + if isinstance(only_cross_attention, bool): + only_cross_attention = (only_cross_attention,) * len(self.down_block_types) + if isinstance(num_attention_heads, int): + num_attention_heads = (num_attention_heads,) * len(self.down_block_types) + transformer_layers_per_block = self.transformer_layers_per_block + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * len(self.down_block_types) + if self.addition_embed_type is None: + self.add_embedding = None + elif self.addition_embed_type == 'text_time': + if self.addition_time_embed_dim is None: + raise ValueError(f'addition_embed_type {self.addition_embed_type} requires `addition_time_embed_dim` to not be None') + self.add_time_proj = FlaxTimesteps(self.addition_time_embed_dim, self.flip_sin_to_cos, self.freq_shift) + self.add_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype) + else: + raise ValueError(f'addition_embed_type: {self.addition_embed_type} must be None or `text_time`.') + down_blocks = [] + output_channel = block_out_channels[0] + for (i, down_block_type) in enumerate(self.down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + if down_block_type == 'CrossAttnDownBlock2D': + down_block = FlaxCrossAttnDownBlock2D(in_channels=input_channel, out_channels=output_channel, dropout=self.dropout, num_layers=self.layers_per_block, transformer_layers_per_block=transformer_layers_per_block[i], num_attention_heads=num_attention_heads[i], add_downsample=not is_final_block, use_linear_projection=self.use_linear_projection, only_cross_attention=only_cross_attention[i], use_memory_efficient_attention=self.use_memory_efficient_attention, split_head_dim=self.split_head_dim, dtype=self.dtype) + else: + down_block = FlaxDownBlock2D(in_channels=input_channel, out_channels=output_channel, dropout=self.dropout, num_layers=self.layers_per_block, add_downsample=not is_final_block, dtype=self.dtype) + down_blocks.append(down_block) + self.down_blocks = down_blocks + if self.config.mid_block_type == 'UNetMidBlock2DCrossAttn': + self.mid_block = FlaxUNetMidBlock2DCrossAttn(in_channels=block_out_channels[-1], dropout=self.dropout, num_attention_heads=num_attention_heads[-1], transformer_layers_per_block=transformer_layers_per_block[-1], use_linear_projection=self.use_linear_projection, use_memory_efficient_attention=self.use_memory_efficient_attention, split_head_dim=self.split_head_dim, dtype=self.dtype) + elif self.config.mid_block_type is None: + self.mid_block = None + else: + raise ValueError(f'Unexpected mid_block_type {self.config.mid_block_type}') + up_blocks = [] + reversed_block_out_channels = list(reversed(block_out_channels)) + reversed_num_attention_heads = list(reversed(num_attention_heads)) + only_cross_attention = list(reversed(only_cross_attention)) + output_channel = reversed_block_out_channels[0] + reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) + for (i, up_block_type) in enumerate(self.up_block_types): + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] + is_final_block = i == len(block_out_channels) - 1 + if up_block_type == 'CrossAttnUpBlock2D': + up_block = FlaxCrossAttnUpBlock2D(in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, num_layers=self.layers_per_block + 1, transformer_layers_per_block=reversed_transformer_layers_per_block[i], num_attention_heads=reversed_num_attention_heads[i], add_upsample=not is_final_block, dropout=self.dropout, use_linear_projection=self.use_linear_projection, only_cross_attention=only_cross_attention[i], use_memory_efficient_attention=self.use_memory_efficient_attention, split_head_dim=self.split_head_dim, dtype=self.dtype) + else: + up_block = FlaxUpBlock2D(in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, num_layers=self.layers_per_block + 1, add_upsample=not is_final_block, dropout=self.dropout, dtype=self.dtype) + up_blocks.append(up_block) + prev_output_channel = output_channel + self.up_blocks = up_blocks + self.conv_norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-05) + self.conv_out = nn.Conv(self.out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype) + + def __call__(self, sample: jnp.ndarray, timesteps: Union[jnp.ndarray, float, int], encoder_hidden_states: jnp.ndarray, added_cond_kwargs: Optional[Union[Dict, FrozenDict]]=None, down_block_additional_residuals: Optional[Tuple[jnp.ndarray, ...]]=None, mid_block_additional_residual: Optional[jnp.ndarray]=None, return_dict: bool=True, train: bool=False) -> Union[FlaxUNet2DConditionOutput, Tuple[jnp.ndarray]]: + if not isinstance(timesteps, jnp.ndarray): + timesteps = jnp.array([timesteps], dtype=jnp.int32) + elif isinstance(timesteps, jnp.ndarray) and len(timesteps.shape) == 0: + timesteps = timesteps.astype(dtype=jnp.float32) + timesteps = jnp.expand_dims(timesteps, 0) + t_emb = self.time_proj(timesteps) + t_emb = self.time_embedding(t_emb) + aug_emb = None + if self.addition_embed_type == 'text_time': + if added_cond_kwargs is None: + raise ValueError(f'Need to provide argument `added_cond_kwargs` for {self.__class__} when using `addition_embed_type={self.addition_embed_type}`') + text_embeds = added_cond_kwargs.get('text_embeds') + if text_embeds is None: + raise ValueError(f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`") + time_ids = added_cond_kwargs.get('time_ids') + if time_ids is None: + raise ValueError(f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`") + time_embeds = self.add_time_proj(jnp.ravel(time_ids)) + time_embeds = jnp.reshape(time_embeds, (text_embeds.shape[0], -1)) + add_embeds = jnp.concatenate([text_embeds, time_embeds], axis=-1) + aug_emb = self.add_embedding(add_embeds) + t_emb = t_emb + aug_emb if aug_emb is not None else t_emb + sample = jnp.transpose(sample, (0, 2, 3, 1)) + sample = self.conv_in(sample) + down_block_res_samples = (sample,) + for down_block in self.down_blocks: + if isinstance(down_block, FlaxCrossAttnDownBlock2D): + (sample, res_samples) = down_block(sample, t_emb, encoder_hidden_states, deterministic=not train) + else: + (sample, res_samples) = down_block(sample, t_emb, deterministic=not train) + down_block_res_samples += res_samples + if down_block_additional_residuals is not None: + new_down_block_res_samples = () + for (down_block_res_sample, down_block_additional_residual) in zip(down_block_res_samples, down_block_additional_residuals): + down_block_res_sample += down_block_additional_residual + new_down_block_res_samples += (down_block_res_sample,) + down_block_res_samples = new_down_block_res_samples + if self.mid_block is not None: + sample = self.mid_block(sample, t_emb, encoder_hidden_states, deterministic=not train) + if mid_block_additional_residual is not None: + sample += mid_block_additional_residual + for up_block in self.up_blocks: + res_samples = down_block_res_samples[-(self.layers_per_block + 1):] + down_block_res_samples = down_block_res_samples[:-(self.layers_per_block + 1)] + if isinstance(up_block, FlaxCrossAttnUpBlock2D): + sample = up_block(sample, temb=t_emb, encoder_hidden_states=encoder_hidden_states, res_hidden_states_tuple=res_samples, deterministic=not train) + else: + sample = up_block(sample, temb=t_emb, res_hidden_states_tuple=res_samples, deterministic=not train) + sample = self.conv_norm_out(sample) + sample = nn.silu(sample) + sample = self.conv_out(sample) + sample = jnp.transpose(sample, (0, 3, 1, 2)) + if not return_dict: + return (sample,) + return FlaxUNet2DConditionOutput(sample=sample) + +# File: diffusers-main/src/diffusers/models/unets/unet_3d_blocks.py +from typing import Any, Dict, Optional, Tuple, Union +import torch +from torch import nn +from ...utils import deprecate, is_torch_version, logging +from ...utils.torch_utils import apply_freeu +from ..attention import Attention +from ..resnet import Downsample2D, ResnetBlock2D, SpatioTemporalResBlock, TemporalConvLayer, Upsample2D +from ..transformers.transformer_2d import Transformer2DModel +from ..transformers.transformer_temporal import TransformerSpatioTemporalModel, TransformerTemporalModel +from .unet_motion_model import CrossAttnDownBlockMotion, CrossAttnUpBlockMotion, DownBlockMotion, UNetMidBlockCrossAttnMotion, UpBlockMotion +logger = logging.get_logger(__name__) + +class DownBlockMotion(DownBlockMotion): + + def __init__(self, *args, **kwargs): + deprecation_message = 'Importing `DownBlockMotion` from `diffusers.models.unets.unet_3d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_motion_model import DownBlockMotion` instead.' + deprecate('DownBlockMotion', '1.0.0', deprecation_message) + super().__init__(*args, **kwargs) + +class CrossAttnDownBlockMotion(CrossAttnDownBlockMotion): + + def __init__(self, *args, **kwargs): + deprecation_message = 'Importing `CrossAttnDownBlockMotion` from `diffusers.models.unets.unet_3d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_motion_model import CrossAttnDownBlockMotion` instead.' + deprecate('CrossAttnDownBlockMotion', '1.0.0', deprecation_message) + super().__init__(*args, **kwargs) + +class UpBlockMotion(UpBlockMotion): + + def __init__(self, *args, **kwargs): + deprecation_message = 'Importing `UpBlockMotion` from `diffusers.models.unets.unet_3d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_motion_model import UpBlockMotion` instead.' + deprecate('UpBlockMotion', '1.0.0', deprecation_message) + super().__init__(*args, **kwargs) + +class CrossAttnUpBlockMotion(CrossAttnUpBlockMotion): + + def __init__(self, *args, **kwargs): + deprecation_message = 'Importing `CrossAttnUpBlockMotion` from `diffusers.models.unets.unet_3d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_motion_model import CrossAttnUpBlockMotion` instead.' + deprecate('CrossAttnUpBlockMotion', '1.0.0', deprecation_message) + super().__init__(*args, **kwargs) + +class UNetMidBlockCrossAttnMotion(UNetMidBlockCrossAttnMotion): + + def __init__(self, *args, **kwargs): + deprecation_message = 'Importing `UNetMidBlockCrossAttnMotion` from `diffusers.models.unets.unet_3d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_motion_model import UNetMidBlockCrossAttnMotion` instead.' + deprecate('UNetMidBlockCrossAttnMotion', '1.0.0', deprecation_message) + super().__init__(*args, **kwargs) + +def get_down_block(down_block_type: str, num_layers: int, in_channels: int, out_channels: int, temb_channels: int, add_downsample: bool, resnet_eps: float, resnet_act_fn: str, num_attention_heads: int, resnet_groups: Optional[int]=None, cross_attention_dim: Optional[int]=None, downsample_padding: Optional[int]=None, dual_cross_attention: bool=False, use_linear_projection: bool=True, only_cross_attention: bool=False, upcast_attention: bool=False, resnet_time_scale_shift: str='default', temporal_num_attention_heads: int=8, temporal_max_seq_length: int=32, transformer_layers_per_block: Union[int, Tuple[int]]=1, temporal_transformer_layers_per_block: Union[int, Tuple[int]]=1, dropout: float=0.0) -> Union['DownBlock3D', 'CrossAttnDownBlock3D', 'DownBlockSpatioTemporal', 'CrossAttnDownBlockSpatioTemporal']: + if down_block_type == 'DownBlock3D': + return DownBlock3D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, resnet_time_scale_shift=resnet_time_scale_shift, dropout=dropout) + elif down_block_type == 'CrossAttnDownBlock3D': + if cross_attention_dim is None: + raise ValueError('cross_attention_dim must be specified for CrossAttnDownBlock3D') + return CrossAttnDownBlock3D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, dropout=dropout) + elif down_block_type == 'DownBlockSpatioTemporal': + return DownBlockSpatioTemporal(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample) + elif down_block_type == 'CrossAttnDownBlockSpatioTemporal': + if cross_attention_dim is None: + raise ValueError('cross_attention_dim must be specified for CrossAttnDownBlockSpatioTemporal') + return CrossAttnDownBlockSpatioTemporal(in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, num_layers=num_layers, transformer_layers_per_block=transformer_layers_per_block, add_downsample=add_downsample, cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads) + raise ValueError(f'{down_block_type} does not exist.') + +def get_up_block(up_block_type: str, num_layers: int, in_channels: int, out_channels: int, prev_output_channel: int, temb_channels: int, add_upsample: bool, resnet_eps: float, resnet_act_fn: str, num_attention_heads: int, resolution_idx: Optional[int]=None, resnet_groups: Optional[int]=None, cross_attention_dim: Optional[int]=None, dual_cross_attention: bool=False, use_linear_projection: bool=True, only_cross_attention: bool=False, upcast_attention: bool=False, resnet_time_scale_shift: str='default', temporal_num_attention_heads: int=8, temporal_cross_attention_dim: Optional[int]=None, temporal_max_seq_length: int=32, transformer_layers_per_block: Union[int, Tuple[int]]=1, temporal_transformer_layers_per_block: Union[int, Tuple[int]]=1, dropout: float=0.0) -> Union['UpBlock3D', 'CrossAttnUpBlock3D', 'UpBlockSpatioTemporal', 'CrossAttnUpBlockSpatioTemporal']: + if up_block_type == 'UpBlock3D': + return UpBlock3D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, resnet_time_scale_shift=resnet_time_scale_shift, resolution_idx=resolution_idx, dropout=dropout) + elif up_block_type == 'CrossAttnUpBlock3D': + if cross_attention_dim is None: + raise ValueError('cross_attention_dim must be specified for CrossAttnUpBlock3D') + return CrossAttnUpBlock3D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, resolution_idx=resolution_idx, dropout=dropout) + elif up_block_type == 'UpBlockSpatioTemporal': + return UpBlockSpatioTemporal(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, resolution_idx=resolution_idx, add_upsample=add_upsample) + elif up_block_type == 'CrossAttnUpBlockSpatioTemporal': + if cross_attention_dim is None: + raise ValueError('cross_attention_dim must be specified for CrossAttnUpBlockSpatioTemporal') + return CrossAttnUpBlockSpatioTemporal(in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, num_layers=num_layers, transformer_layers_per_block=transformer_layers_per_block, add_upsample=add_upsample, cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads, resolution_idx=resolution_idx) + raise ValueError(f'{up_block_type} does not exist.') + +class UNetMidBlock3DCrossAttn(nn.Module): + + def __init__(self, in_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, num_attention_heads: int=1, output_scale_factor: float=1.0, cross_attention_dim: int=1280, dual_cross_attention: bool=False, use_linear_projection: bool=True, upcast_attention: bool=False): + super().__init__() + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + resnets = [ResnetBlock2D(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)] + temp_convs = [TemporalConvLayer(in_channels, in_channels, dropout=0.1, norm_num_groups=resnet_groups)] + attentions = [] + temp_attentions = [] + for _ in range(num_layers): + attentions.append(Transformer2DModel(in_channels // num_attention_heads, num_attention_heads, in_channels=in_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention)) + temp_attentions.append(TransformerTemporalModel(in_channels // num_attention_heads, num_attention_heads, in_channels=in_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups)) + resnets.append(ResnetBlock2D(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + temp_convs.append(TemporalConvLayer(in_channels, in_channels, dropout=0.1, norm_num_groups=resnet_groups)) + self.resnets = nn.ModuleList(resnets) + self.temp_convs = nn.ModuleList(temp_convs) + self.attentions = nn.ModuleList(attentions) + self.temp_attentions = nn.ModuleList(temp_attentions) + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, num_frames: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None) -> torch.Tensor: + hidden_states = self.resnets[0](hidden_states, temb) + hidden_states = self.temp_convs[0](hidden_states, num_frames=num_frames) + for (attn, temp_attn, resnet, temp_conv) in zip(self.attentions, self.temp_attentions, self.resnets[1:], self.temp_convs[1:]): + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + hidden_states = temp_attn(hidden_states, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + hidden_states = resnet(hidden_states, temb) + hidden_states = temp_conv(hidden_states, num_frames=num_frames) + return hidden_states + +class CrossAttnDownBlock3D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, num_attention_heads: int=1, cross_attention_dim: int=1280, output_scale_factor: float=1.0, downsample_padding: int=1, add_downsample: bool=True, dual_cross_attention: bool=False, use_linear_projection: bool=False, only_cross_attention: bool=False, upcast_attention: bool=False): + super().__init__() + resnets = [] + attentions = [] + temp_attentions = [] + temp_convs = [] + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append(ResnetBlock2D(in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + temp_convs.append(TemporalConvLayer(out_channels, out_channels, dropout=0.1, norm_num_groups=resnet_groups)) + attentions.append(Transformer2DModel(out_channels // num_attention_heads, num_attention_heads, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention)) + temp_attentions.append(TransformerTemporalModel(out_channels // num_attention_heads, num_attention_heads, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups)) + self.resnets = nn.ModuleList(resnets) + self.temp_convs = nn.ModuleList(temp_convs) + self.attentions = nn.ModuleList(attentions) + self.temp_attentions = nn.ModuleList(temp_attentions) + if add_downsample: + self.downsamplers = nn.ModuleList([Downsample2D(out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name='op')]) + else: + self.downsamplers = None + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, num_frames: int=1, cross_attention_kwargs: Dict[str, Any]=None) -> Union[torch.Tensor, Tuple[torch.Tensor, ...]]: + output_states = () + for (resnet, temp_conv, attn, temp_attn) in zip(self.resnets, self.temp_convs, self.attentions, self.temp_attentions): + hidden_states = resnet(hidden_states, temb) + hidden_states = temp_conv(hidden_states, num_frames=num_frames) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + hidden_states = temp_attn(hidden_states, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + output_states += (hidden_states,) + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + output_states += (hidden_states,) + return (hidden_states, output_states) + +class DownBlock3D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, output_scale_factor: float=1.0, add_downsample: bool=True, downsample_padding: int=1): + super().__init__() + resnets = [] + temp_convs = [] + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append(ResnetBlock2D(in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + temp_convs.append(TemporalConvLayer(out_channels, out_channels, dropout=0.1, norm_num_groups=resnet_groups)) + self.resnets = nn.ModuleList(resnets) + self.temp_convs = nn.ModuleList(temp_convs) + if add_downsample: + self.downsamplers = nn.ModuleList([Downsample2D(out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name='op')]) + else: + self.downsamplers = None + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, num_frames: int=1) -> Union[torch.Tensor, Tuple[torch.Tensor, ...]]: + output_states = () + for (resnet, temp_conv) in zip(self.resnets, self.temp_convs): + hidden_states = resnet(hidden_states, temb) + hidden_states = temp_conv(hidden_states, num_frames=num_frames) + output_states += (hidden_states,) + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + output_states += (hidden_states,) + return (hidden_states, output_states) + +class CrossAttnUpBlock3D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, prev_output_channel: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, num_attention_heads: int=1, cross_attention_dim: int=1280, output_scale_factor: float=1.0, add_upsample: bool=True, dual_cross_attention: bool=False, use_linear_projection: bool=False, only_cross_attention: bool=False, upcast_attention: bool=False, resolution_idx: Optional[int]=None): + super().__init__() + resnets = [] + temp_convs = [] + attentions = [] + temp_attentions = [] + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + for i in range(num_layers): + res_skip_channels = in_channels if i == num_layers - 1 else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + resnets.append(ResnetBlock2D(in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + temp_convs.append(TemporalConvLayer(out_channels, out_channels, dropout=0.1, norm_num_groups=resnet_groups)) + attentions.append(Transformer2DModel(out_channels // num_attention_heads, num_attention_heads, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention)) + temp_attentions.append(TransformerTemporalModel(out_channels // num_attention_heads, num_attention_heads, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups)) + self.resnets = nn.ModuleList(resnets) + self.temp_convs = nn.ModuleList(temp_convs) + self.attentions = nn.ModuleList(attentions) + self.temp_attentions = nn.ModuleList(temp_attentions) + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward(self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, upsample_size: Optional[int]=None, attention_mask: Optional[torch.Tensor]=None, num_frames: int=1, cross_attention_kwargs: Dict[str, Any]=None) -> torch.Tensor: + is_freeu_enabled = getattr(self, 's1', None) and getattr(self, 's2', None) and getattr(self, 'b1', None) and getattr(self, 'b2', None) + for (resnet, temp_conv, attn, temp_attn) in zip(self.resnets, self.temp_convs, self.attentions, self.temp_attentions): + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + if is_freeu_enabled: + (hidden_states, res_hidden_states) = apply_freeu(self.resolution_idx, hidden_states, res_hidden_states, s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2) + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + hidden_states = resnet(hidden_states, temb) + hidden_states = temp_conv(hidden_states, num_frames=num_frames) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + hidden_states = temp_attn(hidden_states, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, upsample_size) + return hidden_states + +class UpBlock3D(nn.Module): + + def __init__(self, in_channels: int, prev_output_channel: int, out_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, output_scale_factor: float=1.0, add_upsample: bool=True, resolution_idx: Optional[int]=None): + super().__init__() + resnets = [] + temp_convs = [] + for i in range(num_layers): + res_skip_channels = in_channels if i == num_layers - 1 else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + resnets.append(ResnetBlock2D(in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + temp_convs.append(TemporalConvLayer(out_channels, out_channels, dropout=0.1, norm_num_groups=resnet_groups)) + self.resnets = nn.ModuleList(resnets) + self.temp_convs = nn.ModuleList(temp_convs) + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward(self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor]=None, upsample_size: Optional[int]=None, num_frames: int=1) -> torch.Tensor: + is_freeu_enabled = getattr(self, 's1', None) and getattr(self, 's2', None) and getattr(self, 'b1', None) and getattr(self, 'b2', None) + for (resnet, temp_conv) in zip(self.resnets, self.temp_convs): + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + if is_freeu_enabled: + (hidden_states, res_hidden_states) = apply_freeu(self.resolution_idx, hidden_states, res_hidden_states, s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2) + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + hidden_states = resnet(hidden_states, temb) + hidden_states = temp_conv(hidden_states, num_frames=num_frames) + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, upsample_size) + return hidden_states + +class MidBlockTemporalDecoder(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, attention_head_dim: int=512, num_layers: int=1, upcast_attention: bool=False): + super().__init__() + resnets = [] + attentions = [] + for i in range(num_layers): + input_channels = in_channels if i == 0 else out_channels + resnets.append(SpatioTemporalResBlock(in_channels=input_channels, out_channels=out_channels, temb_channels=None, eps=1e-06, temporal_eps=1e-05, merge_factor=0.0, merge_strategy='learned', switch_spatial_to_temporal_mix=True)) + attentions.append(Attention(query_dim=in_channels, heads=in_channels // attention_head_dim, dim_head=attention_head_dim, eps=1e-06, upcast_attention=upcast_attention, norm_num_groups=32, bias=True, residual_connection=True)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + def forward(self, hidden_states: torch.Tensor, image_only_indicator: torch.Tensor): + hidden_states = self.resnets[0](hidden_states, image_only_indicator=image_only_indicator) + for (resnet, attn) in zip(self.resnets[1:], self.attentions): + hidden_states = attn(hidden_states) + hidden_states = resnet(hidden_states, image_only_indicator=image_only_indicator) + return hidden_states + +class UpBlockTemporalDecoder(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, num_layers: int=1, add_upsample: bool=True): + super().__init__() + resnets = [] + for i in range(num_layers): + input_channels = in_channels if i == 0 else out_channels + resnets.append(SpatioTemporalResBlock(in_channels=input_channels, out_channels=out_channels, temb_channels=None, eps=1e-06, temporal_eps=1e-05, merge_factor=0.0, merge_strategy='learned', switch_spatial_to_temporal_mix=True)) + self.resnets = nn.ModuleList(resnets) + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + + def forward(self, hidden_states: torch.Tensor, image_only_indicator: torch.Tensor) -> torch.Tensor: + for resnet in self.resnets: + hidden_states = resnet(hidden_states, image_only_indicator=image_only_indicator) + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states) + return hidden_states + +class UNetMidBlockSpatioTemporal(nn.Module): + + def __init__(self, in_channels: int, temb_channels: int, num_layers: int=1, transformer_layers_per_block: Union[int, Tuple[int]]=1, num_attention_heads: int=1, cross_attention_dim: int=1280): + super().__init__() + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * num_layers + resnets = [SpatioTemporalResBlock(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=1e-05)] + attentions = [] + for i in range(num_layers): + attentions.append(TransformerSpatioTemporalModel(num_attention_heads, in_channels // num_attention_heads, in_channels=in_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim)) + resnets.append(SpatioTemporalResBlock(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=1e-05)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, image_only_indicator: Optional[torch.Tensor]=None) -> torch.Tensor: + hidden_states = self.resnets[0](hidden_states, temb, image_only_indicator=image_only_indicator) + for (attn, resnet) in zip(self.attentions, self.resnets[1:]): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, image_only_indicator=image_only_indicator, return_dict=False)[0] + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, image_only_indicator, **ckpt_kwargs) + else: + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, image_only_indicator=image_only_indicator, return_dict=False)[0] + hidden_states = resnet(hidden_states, temb, image_only_indicator=image_only_indicator) + return hidden_states + +class DownBlockSpatioTemporal(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, temb_channels: int, num_layers: int=1, add_downsample: bool=True): + super().__init__() + resnets = [] + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append(SpatioTemporalResBlock(in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=1e-05)) + self.resnets = nn.ModuleList(resnets) + if add_downsample: + self.downsamplers = nn.ModuleList([Downsample2D(out_channels, use_conv=True, out_channels=out_channels, name='op')]) + else: + self.downsamplers = None + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, image_only_indicator: Optional[torch.Tensor]=None) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]: + output_states = () + for resnet in self.resnets: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + if is_torch_version('>=', '1.11.0'): + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, image_only_indicator, use_reentrant=False) + else: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, image_only_indicator) + else: + hidden_states = resnet(hidden_states, temb, image_only_indicator=image_only_indicator) + output_states = output_states + (hidden_states,) + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + output_states = output_states + (hidden_states,) + return (hidden_states, output_states) + +class CrossAttnDownBlockSpatioTemporal(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, temb_channels: int, num_layers: int=1, transformer_layers_per_block: Union[int, Tuple[int]]=1, num_attention_heads: int=1, cross_attention_dim: int=1280, add_downsample: bool=True): + super().__init__() + resnets = [] + attentions = [] + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * num_layers + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append(SpatioTemporalResBlock(in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=1e-06)) + attentions.append(TransformerSpatioTemporalModel(num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + if add_downsample: + self.downsamplers = nn.ModuleList([Downsample2D(out_channels, use_conv=True, out_channels=out_channels, padding=1, name='op')]) + else: + self.downsamplers = None + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, image_only_indicator: Optional[torch.Tensor]=None) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]: + output_states = () + blocks = list(zip(self.resnets, self.attentions)) + for (resnet, attn) in blocks: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, image_only_indicator, **ckpt_kwargs) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, image_only_indicator=image_only_indicator, return_dict=False)[0] + else: + hidden_states = resnet(hidden_states, temb, image_only_indicator=image_only_indicator) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, image_only_indicator=image_only_indicator, return_dict=False)[0] + output_states = output_states + (hidden_states,) + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + output_states = output_states + (hidden_states,) + return (hidden_states, output_states) + +class UpBlockSpatioTemporal(nn.Module): + + def __init__(self, in_channels: int, prev_output_channel: int, out_channels: int, temb_channels: int, resolution_idx: Optional[int]=None, num_layers: int=1, resnet_eps: float=1e-06, add_upsample: bool=True): + super().__init__() + resnets = [] + for i in range(num_layers): + res_skip_channels = in_channels if i == num_layers - 1 else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + resnets.append(SpatioTemporalResBlock(in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps)) + self.resnets = nn.ModuleList(resnets) + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward(self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor]=None, image_only_indicator: Optional[torch.Tensor]=None) -> torch.Tensor: + for resnet in self.resnets: + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + if is_torch_version('>=', '1.11.0'): + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, image_only_indicator, use_reentrant=False) + else: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, image_only_indicator) + else: + hidden_states = resnet(hidden_states, temb, image_only_indicator=image_only_indicator) + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states) + return hidden_states + +class CrossAttnUpBlockSpatioTemporal(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, prev_output_channel: int, temb_channels: int, resolution_idx: Optional[int]=None, num_layers: int=1, transformer_layers_per_block: Union[int, Tuple[int]]=1, resnet_eps: float=1e-06, num_attention_heads: int=1, cross_attention_dim: int=1280, add_upsample: bool=True): + super().__init__() + resnets = [] + attentions = [] + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * num_layers + for i in range(num_layers): + res_skip_channels = in_channels if i == num_layers - 1 else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + resnets.append(SpatioTemporalResBlock(in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps)) + attentions.append(TransformerSpatioTemporalModel(num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward(self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, image_only_indicator: Optional[torch.Tensor]=None) -> torch.Tensor: + for (resnet, attn) in zip(self.resnets, self.attentions): + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, image_only_indicator, **ckpt_kwargs) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, image_only_indicator=image_only_indicator, return_dict=False)[0] + else: + hidden_states = resnet(hidden_states, temb, image_only_indicator=image_only_indicator) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, image_only_indicator=image_only_indicator, return_dict=False)[0] + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states) + return hidden_states + +# File: diffusers-main/src/diffusers/models/unets/unet_3d_condition.py +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Tuple, Union +import torch +import torch.nn as nn +import torch.utils.checkpoint +from ...configuration_utils import ConfigMixin, register_to_config +from ...loaders import UNet2DConditionLoadersMixin +from ...utils import BaseOutput, logging +from ..activations import get_activation +from ..attention_processor import ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, Attention, AttentionProcessor, AttnAddedKVProcessor, AttnProcessor, FusedAttnProcessor2_0 +from ..embeddings import TimestepEmbedding, Timesteps +from ..modeling_utils import ModelMixin +from ..transformers.transformer_temporal import TransformerTemporalModel +from .unet_3d_blocks import CrossAttnDownBlock3D, CrossAttnUpBlock3D, DownBlock3D, UNetMidBlock3DCrossAttn, UpBlock3D, get_down_block, get_up_block +logger = logging.get_logger(__name__) + +@dataclass +class UNet3DConditionOutput(BaseOutput): + sample: torch.Tensor + +class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): + _supports_gradient_checkpointing = False + + @register_to_config + def __init__(self, sample_size: Optional[int]=None, in_channels: int=4, out_channels: int=4, down_block_types: Tuple[str, ...]=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D'), up_block_types: Tuple[str, ...]=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D'), block_out_channels: Tuple[int, ...]=(320, 640, 1280, 1280), layers_per_block: int=2, downsample_padding: int=1, mid_block_scale_factor: float=1, act_fn: str='silu', norm_num_groups: Optional[int]=32, norm_eps: float=1e-05, cross_attention_dim: int=1024, attention_head_dim: Union[int, Tuple[int]]=64, num_attention_heads: Optional[Union[int, Tuple[int]]]=None, time_cond_proj_dim: Optional[int]=None): + super().__init__() + self.sample_size = sample_size + if num_attention_heads is not None: + raise NotImplementedError('At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.') + num_attention_heads = num_attention_heads or attention_head_dim + if len(down_block_types) != len(up_block_types): + raise ValueError(f'Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}.') + if len(block_out_channels) != len(down_block_types): + raise ValueError(f'Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}.') + if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): + raise ValueError(f'Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}.') + conv_in_kernel = 3 + conv_out_kernel = 3 + conv_in_padding = (conv_in_kernel - 1) // 2 + self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding) + time_embed_dim = block_out_channels[0] * 4 + self.time_proj = Timesteps(block_out_channels[0], True, 0) + timestep_input_dim = block_out_channels[0] + self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn, cond_proj_dim=time_cond_proj_dim) + self.transformer_in = TransformerTemporalModel(num_attention_heads=8, attention_head_dim=attention_head_dim, in_channels=block_out_channels[0], num_layers=1, norm_num_groups=norm_num_groups) + self.down_blocks = nn.ModuleList([]) + self.up_blocks = nn.ModuleList([]) + if isinstance(num_attention_heads, int): + num_attention_heads = (num_attention_heads,) * len(down_block_types) + output_channel = block_out_channels[0] + for (i, down_block_type) in enumerate(down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + down_block = get_down_block(down_block_type, num_layers=layers_per_block, in_channels=input_channel, out_channels=output_channel, temb_channels=time_embed_dim, add_downsample=not is_final_block, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads[i], downsample_padding=downsample_padding, dual_cross_attention=False) + self.down_blocks.append(down_block) + self.mid_block = UNetMidBlock3DCrossAttn(in_channels=block_out_channels[-1], temb_channels=time_embed_dim, resnet_eps=norm_eps, resnet_act_fn=act_fn, output_scale_factor=mid_block_scale_factor, cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads[-1], resnet_groups=norm_num_groups, dual_cross_attention=False) + self.num_upsamplers = 0 + reversed_block_out_channels = list(reversed(block_out_channels)) + reversed_num_attention_heads = list(reversed(num_attention_heads)) + output_channel = reversed_block_out_channels[0] + for (i, up_block_type) in enumerate(up_block_types): + is_final_block = i == len(block_out_channels) - 1 + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] + if not is_final_block: + add_upsample = True + self.num_upsamplers += 1 + else: + add_upsample = False + up_block = get_up_block(up_block_type, num_layers=layers_per_block + 1, in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, temb_channels=time_embed_dim, add_upsample=add_upsample, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, num_attention_heads=reversed_num_attention_heads[i], dual_cross_attention=False, resolution_idx=i) + self.up_blocks.append(up_block) + prev_output_channel = output_channel + if norm_num_groups is not None: + self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps) + self.conv_act = get_activation('silu') + else: + self.conv_norm_out = None + self.conv_act = None + conv_out_padding = (conv_out_kernel - 1) // 2 + self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding) + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None: + sliceable_head_dims = [] + + def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): + if hasattr(module, 'set_attention_slice'): + sliceable_head_dims.append(module.sliceable_head_dim) + for child in module.children(): + fn_recursive_retrieve_sliceable_dims(child) + for module in self.children(): + fn_recursive_retrieve_sliceable_dims(module) + num_sliceable_layers = len(sliceable_head_dims) + if slice_size == 'auto': + slice_size = [dim // 2 for dim in sliceable_head_dims] + elif slice_size == 'max': + slice_size = num_sliceable_layers * [1] + slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size + if len(slice_size) != len(sliceable_head_dims): + raise ValueError(f'You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}.') + for i in range(len(slice_size)): + size = slice_size[i] + dim = sliceable_head_dims[i] + if size is not None and size > dim: + raise ValueError(f'size {size} has to be smaller or equal to {dim}.') + + def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): + if hasattr(module, 'set_attention_slice'): + module.set_attention_slice(slice_size.pop()) + for child in module.children(): + fn_recursive_set_attention_slice(child, slice_size) + reversed_slice_size = list(reversed(slice_size)) + for module in self.children(): + fn_recursive_set_attention_slice(module, reversed_slice_size) + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def enable_forward_chunking(self, chunk_size: Optional[int]=None, dim: int=0) -> None: + if dim not in [0, 1]: + raise ValueError(f'Make sure to set `dim` to either 0 or 1, not {dim}') + chunk_size = chunk_size or 1 + + def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): + if hasattr(module, 'set_chunk_feed_forward'): + module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) + for child in module.children(): + fn_recursive_feed_forward(child, chunk_size, dim) + for module in self.children(): + fn_recursive_feed_forward(module, chunk_size, dim) + + def disable_forward_chunking(self): + + def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): + if hasattr(module, 'set_chunk_feed_forward'): + module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) + for child in module.children(): + fn_recursive_feed_forward(child, chunk_size, dim) + for module in self.children(): + fn_recursive_feed_forward(module, None, 0) + + def set_default_attn_processor(self): + if all((proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnAddedKVProcessor() + elif all((proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnProcessor() + else: + raise ValueError(f'Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}') + self.set_attn_processor(processor) + + def _set_gradient_checkpointing(self, module, value: bool=False) -> None: + if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)): + module.gradient_checkpointing = value + + def enable_freeu(self, s1, s2, b1, b2): + for (i, upsample_block) in enumerate(self.up_blocks): + setattr(upsample_block, 's1', s1) + setattr(upsample_block, 's2', s2) + setattr(upsample_block, 'b1', b1) + setattr(upsample_block, 'b2', b2) + + def disable_freeu(self): + freeu_keys = {'s1', 's2', 'b1', 'b2'} + for (i, upsample_block) in enumerate(self.up_blocks): + for k in freeu_keys: + if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None: + setattr(upsample_block, k, None) + + def fuse_qkv_projections(self): + self.original_attn_processors = None + for (_, attn_processor) in self.attn_processors.items(): + if 'Added' in str(attn_processor.__class__.__name__): + raise ValueError('`fuse_qkv_projections()` is not supported for models having added KV projections.') + self.original_attn_processors = self.attn_processors + for module in self.modules(): + if isinstance(module, Attention): + module.fuse_projections(fuse=True) + self.set_attn_processor(FusedAttnProcessor2_0()) + + def unfuse_qkv_projections(self): + if self.original_attn_processors is not None: + self.set_attn_processor(self.original_attn_processors) + + def forward(self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, class_labels: Optional[torch.Tensor]=None, timestep_cond: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, down_block_additional_residuals: Optional[Tuple[torch.Tensor]]=None, mid_block_additional_residual: Optional[torch.Tensor]=None, return_dict: bool=True) -> Union[UNet3DConditionOutput, Tuple[torch.Tensor]]: + default_overall_up_factor = 2 ** self.num_upsamplers + forward_upsample_size = False + upsample_size = None + if any((s % default_overall_up_factor != 0 for s in sample.shape[-2:])): + logger.info('Forward upsample size to force interpolation output size.') + forward_upsample_size = True + if attention_mask is not None: + attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + timesteps = timestep + if not torch.is_tensor(timesteps): + is_mps = sample.device.type == 'mps' + if isinstance(timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + num_frames = sample.shape[2] + timesteps = timesteps.expand(sample.shape[0]) + t_emb = self.time_proj(timesteps) + t_emb = t_emb.to(dtype=self.dtype) + emb = self.time_embedding(t_emb, timestep_cond) + emb = emb.repeat_interleave(repeats=num_frames, dim=0) + encoder_hidden_states = encoder_hidden_states.repeat_interleave(repeats=num_frames, dim=0) + sample = sample.permute(0, 2, 1, 3, 4).reshape((sample.shape[0] * num_frames, -1) + sample.shape[3:]) + sample = self.conv_in(sample) + sample = self.transformer_in(sample, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + down_block_res_samples = (sample,) + for downsample_block in self.down_blocks: + if hasattr(downsample_block, 'has_cross_attention') and downsample_block.has_cross_attention: + (sample, res_samples) = downsample_block(hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs) + else: + (sample, res_samples) = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames) + down_block_res_samples += res_samples + if down_block_additional_residuals is not None: + new_down_block_res_samples = () + for (down_block_res_sample, down_block_additional_residual) in zip(down_block_res_samples, down_block_additional_residuals): + down_block_res_sample = down_block_res_sample + down_block_additional_residual + new_down_block_res_samples += (down_block_res_sample,) + down_block_res_samples = new_down_block_res_samples + if self.mid_block is not None: + sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs) + if mid_block_additional_residual is not None: + sample = sample + mid_block_additional_residual + for (i, upsample_block) in enumerate(self.up_blocks): + is_final_block = i == len(self.up_blocks) - 1 + res_samples = down_block_res_samples[-len(upsample_block.resnets):] + down_block_res_samples = down_block_res_samples[:-len(upsample_block.resnets)] + if not is_final_block and forward_upsample_size: + upsample_size = down_block_res_samples[-1].shape[2:] + if hasattr(upsample_block, 'has_cross_attention') and upsample_block.has_cross_attention: + sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, encoder_hidden_states=encoder_hidden_states, upsample_size=upsample_size, attention_mask=attention_mask, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs) + else: + sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size, num_frames=num_frames) + if self.conv_norm_out: + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + sample = sample[None, :].reshape((-1, num_frames) + sample.shape[1:]).permute(0, 2, 1, 3, 4) + if not return_dict: + return (sample,) + return UNet3DConditionOutput(sample=sample) + +# File: diffusers-main/src/diffusers/models/unets/unet_i2vgen_xl.py +from typing import Any, Dict, Optional, Tuple, Union +import torch +import torch.nn as nn +import torch.utils.checkpoint +from ...configuration_utils import ConfigMixin, register_to_config +from ...loaders import UNet2DConditionLoadersMixin +from ...utils import logging +from ..activations import get_activation +from ..attention import Attention, FeedForward +from ..attention_processor import ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnAddedKVProcessor, AttnProcessor, FusedAttnProcessor2_0 +from ..embeddings import TimestepEmbedding, Timesteps +from ..modeling_utils import ModelMixin +from ..transformers.transformer_temporal import TransformerTemporalModel +from .unet_3d_blocks import CrossAttnDownBlock3D, CrossAttnUpBlock3D, DownBlock3D, UNetMidBlock3DCrossAttn, UpBlock3D, get_down_block, get_up_block +from .unet_3d_condition import UNet3DConditionOutput +logger = logging.get_logger(__name__) + +class I2VGenXLTransformerTemporalEncoder(nn.Module): + + def __init__(self, dim: int, num_attention_heads: int, attention_head_dim: int, activation_fn: str='geglu', upcast_attention: bool=False, ff_inner_dim: Optional[int]=None, dropout: int=0.0): + super().__init__() + self.norm1 = nn.LayerNorm(dim, elementwise_affine=True, eps=1e-05) + self.attn1 = Attention(query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=False, upcast_attention=upcast_attention, out_bias=True) + self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=False, inner_dim=ff_inner_dim, bias=True) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + norm_hidden_states = self.norm1(hidden_states) + attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None) + hidden_states = attn_output + hidden_states + if hidden_states.ndim == 4: + hidden_states = hidden_states.squeeze(1) + ff_output = self.ff(hidden_states) + hidden_states = ff_output + hidden_states + if hidden_states.ndim == 4: + hidden_states = hidden_states.squeeze(1) + return hidden_states + +class I2VGenXLUNet(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): + _supports_gradient_checkpointing = False + + @register_to_config + def __init__(self, sample_size: Optional[int]=None, in_channels: int=4, out_channels: int=4, down_block_types: Tuple[str, ...]=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D'), up_block_types: Tuple[str, ...]=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D'), block_out_channels: Tuple[int, ...]=(320, 640, 1280, 1280), layers_per_block: int=2, norm_num_groups: Optional[int]=32, cross_attention_dim: int=1024, attention_head_dim: Union[int, Tuple[int]]=64, num_attention_heads: Optional[Union[int, Tuple[int]]]=None): + super().__init__() + num_attention_heads = attention_head_dim + if len(down_block_types) != len(up_block_types): + raise ValueError(f'Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}.') + if len(block_out_channels) != len(down_block_types): + raise ValueError(f'Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}.') + if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): + raise ValueError(f'Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}.') + self.conv_in = nn.Conv2d(in_channels + in_channels, block_out_channels[0], kernel_size=3, padding=1) + self.transformer_in = TransformerTemporalModel(num_attention_heads=8, attention_head_dim=num_attention_heads, in_channels=block_out_channels[0], num_layers=1, norm_num_groups=norm_num_groups) + self.image_latents_proj_in = nn.Sequential(nn.Conv2d(4, in_channels * 4, 3, padding=1), nn.SiLU(), nn.Conv2d(in_channels * 4, in_channels * 4, 3, stride=1, padding=1), nn.SiLU(), nn.Conv2d(in_channels * 4, in_channels, 3, stride=1, padding=1)) + self.image_latents_temporal_encoder = I2VGenXLTransformerTemporalEncoder(dim=in_channels, num_attention_heads=2, ff_inner_dim=in_channels * 4, attention_head_dim=in_channels, activation_fn='gelu') + self.image_latents_context_embedding = nn.Sequential(nn.Conv2d(4, in_channels * 8, 3, padding=1), nn.SiLU(), nn.AdaptiveAvgPool2d((32, 32)), nn.Conv2d(in_channels * 8, in_channels * 16, 3, stride=2, padding=1), nn.SiLU(), nn.Conv2d(in_channels * 16, cross_attention_dim, 3, stride=2, padding=1)) + time_embed_dim = block_out_channels[0] * 4 + self.time_proj = Timesteps(block_out_channels[0], True, 0) + timestep_input_dim = block_out_channels[0] + self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn='silu') + self.context_embedding = nn.Sequential(nn.Linear(cross_attention_dim, time_embed_dim), nn.SiLU(), nn.Linear(time_embed_dim, cross_attention_dim * in_channels)) + self.fps_embedding = nn.Sequential(nn.Linear(timestep_input_dim, time_embed_dim), nn.SiLU(), nn.Linear(time_embed_dim, time_embed_dim)) + self.down_blocks = nn.ModuleList([]) + self.up_blocks = nn.ModuleList([]) + if isinstance(num_attention_heads, int): + num_attention_heads = (num_attention_heads,) * len(down_block_types) + output_channel = block_out_channels[0] + for (i, down_block_type) in enumerate(down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + down_block = get_down_block(down_block_type, num_layers=layers_per_block, in_channels=input_channel, out_channels=output_channel, temb_channels=time_embed_dim, add_downsample=not is_final_block, resnet_eps=1e-05, resnet_act_fn='silu', resnet_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads[i], downsample_padding=1, dual_cross_attention=False) + self.down_blocks.append(down_block) + self.mid_block = UNetMidBlock3DCrossAttn(in_channels=block_out_channels[-1], temb_channels=time_embed_dim, resnet_eps=1e-05, resnet_act_fn='silu', output_scale_factor=1, cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads[-1], resnet_groups=norm_num_groups, dual_cross_attention=False) + self.num_upsamplers = 0 + reversed_block_out_channels = list(reversed(block_out_channels)) + reversed_num_attention_heads = list(reversed(num_attention_heads)) + output_channel = reversed_block_out_channels[0] + for (i, up_block_type) in enumerate(up_block_types): + is_final_block = i == len(block_out_channels) - 1 + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] + if not is_final_block: + add_upsample = True + self.num_upsamplers += 1 + else: + add_upsample = False + up_block = get_up_block(up_block_type, num_layers=layers_per_block + 1, in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, temb_channels=time_embed_dim, add_upsample=add_upsample, resnet_eps=1e-05, resnet_act_fn='silu', resnet_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, num_attention_heads=reversed_num_attention_heads[i], dual_cross_attention=False, resolution_idx=i) + self.up_blocks.append(up_block) + prev_output_channel = output_channel + self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-05) + self.conv_act = get_activation('silu') + self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1) + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def enable_forward_chunking(self, chunk_size: Optional[int]=None, dim: int=0) -> None: + if dim not in [0, 1]: + raise ValueError(f'Make sure to set `dim` to either 0 or 1, not {dim}') + chunk_size = chunk_size or 1 + + def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): + if hasattr(module, 'set_chunk_feed_forward'): + module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) + for child in module.children(): + fn_recursive_feed_forward(child, chunk_size, dim) + for module in self.children(): + fn_recursive_feed_forward(module, chunk_size, dim) + + def disable_forward_chunking(self): + + def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): + if hasattr(module, 'set_chunk_feed_forward'): + module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) + for child in module.children(): + fn_recursive_feed_forward(child, chunk_size, dim) + for module in self.children(): + fn_recursive_feed_forward(module, None, 0) + + def set_default_attn_processor(self): + if all((proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnAddedKVProcessor() + elif all((proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnProcessor() + else: + raise ValueError(f'Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}') + self.set_attn_processor(processor) + + def _set_gradient_checkpointing(self, module, value: bool=False) -> None: + if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)): + module.gradient_checkpointing = value + + def enable_freeu(self, s1, s2, b1, b2): + for (i, upsample_block) in enumerate(self.up_blocks): + setattr(upsample_block, 's1', s1) + setattr(upsample_block, 's2', s2) + setattr(upsample_block, 'b1', b1) + setattr(upsample_block, 'b2', b2) + + def disable_freeu(self): + freeu_keys = {'s1', 's2', 'b1', 'b2'} + for (i, upsample_block) in enumerate(self.up_blocks): + for k in freeu_keys: + if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None: + setattr(upsample_block, k, None) + + def fuse_qkv_projections(self): + self.original_attn_processors = None + for (_, attn_processor) in self.attn_processors.items(): + if 'Added' in str(attn_processor.__class__.__name__): + raise ValueError('`fuse_qkv_projections()` is not supported for models having added KV projections.') + self.original_attn_processors = self.attn_processors + for module in self.modules(): + if isinstance(module, Attention): + module.fuse_projections(fuse=True) + self.set_attn_processor(FusedAttnProcessor2_0()) + + def unfuse_qkv_projections(self): + if self.original_attn_processors is not None: + self.set_attn_processor(self.original_attn_processors) + + def forward(self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int], fps: torch.Tensor, image_latents: torch.Tensor, image_embeddings: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, timestep_cond: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, return_dict: bool=True) -> Union[UNet3DConditionOutput, Tuple[torch.Tensor]]: + (batch_size, channels, num_frames, height, width) = sample.shape + default_overall_up_factor = 2 ** self.num_upsamplers + forward_upsample_size = False + upsample_size = None + if any((s % default_overall_up_factor != 0 for s in sample.shape[-2:])): + logger.info('Forward upsample size to force interpolation output size.') + forward_upsample_size = True + timesteps = timestep + if not torch.is_tensor(timesteps): + is_mps = sample.device.type == 'mps' + if isinstance(timesteps, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + timesteps = timesteps.expand(sample.shape[0]) + t_emb = self.time_proj(timesteps) + t_emb = t_emb.to(dtype=self.dtype) + t_emb = self.time_embedding(t_emb, timestep_cond) + fps = fps.expand(fps.shape[0]) + fps_emb = self.fps_embedding(self.time_proj(fps).to(dtype=self.dtype)) + emb = t_emb + fps_emb + emb = emb.repeat_interleave(repeats=num_frames, dim=0) + context_emb = sample.new_zeros(batch_size, 0, self.config.cross_attention_dim) + context_emb = torch.cat([context_emb, encoder_hidden_states], dim=1) + image_latents_for_context_embds = image_latents[:, :, :1, :] + image_latents_context_embs = image_latents_for_context_embds.permute(0, 2, 1, 3, 4).reshape(image_latents_for_context_embds.shape[0] * image_latents_for_context_embds.shape[2], image_latents_for_context_embds.shape[1], image_latents_for_context_embds.shape[3], image_latents_for_context_embds.shape[4]) + image_latents_context_embs = self.image_latents_context_embedding(image_latents_context_embs) + (_batch_size, _channels, _height, _width) = image_latents_context_embs.shape + image_latents_context_embs = image_latents_context_embs.permute(0, 2, 3, 1).reshape(_batch_size, _height * _width, _channels) + context_emb = torch.cat([context_emb, image_latents_context_embs], dim=1) + image_emb = self.context_embedding(image_embeddings) + image_emb = image_emb.view(-1, self.config.in_channels, self.config.cross_attention_dim) + context_emb = torch.cat([context_emb, image_emb], dim=1) + context_emb = context_emb.repeat_interleave(repeats=num_frames, dim=0) + image_latents = image_latents.permute(0, 2, 1, 3, 4).reshape(image_latents.shape[0] * image_latents.shape[2], image_latents.shape[1], image_latents.shape[3], image_latents.shape[4]) + image_latents = self.image_latents_proj_in(image_latents) + image_latents = image_latents[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 3, 4, 1, 2).reshape(batch_size * height * width, num_frames, channels) + image_latents = self.image_latents_temporal_encoder(image_latents) + image_latents = image_latents.reshape(batch_size, height, width, num_frames, channels).permute(0, 4, 3, 1, 2) + sample = torch.cat([sample, image_latents], dim=1) + sample = sample.permute(0, 2, 1, 3, 4).reshape((sample.shape[0] * num_frames, -1) + sample.shape[3:]) + sample = self.conv_in(sample) + sample = self.transformer_in(sample, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + down_block_res_samples = (sample,) + for downsample_block in self.down_blocks: + if hasattr(downsample_block, 'has_cross_attention') and downsample_block.has_cross_attention: + (sample, res_samples) = downsample_block(hidden_states=sample, temb=emb, encoder_hidden_states=context_emb, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs) + else: + (sample, res_samples) = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames) + down_block_res_samples += res_samples + if self.mid_block is not None: + sample = self.mid_block(sample, emb, encoder_hidden_states=context_emb, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs) + for (i, upsample_block) in enumerate(self.up_blocks): + is_final_block = i == len(self.up_blocks) - 1 + res_samples = down_block_res_samples[-len(upsample_block.resnets):] + down_block_res_samples = down_block_res_samples[:-len(upsample_block.resnets)] + if not is_final_block and forward_upsample_size: + upsample_size = down_block_res_samples[-1].shape[2:] + if hasattr(upsample_block, 'has_cross_attention') and upsample_block.has_cross_attention: + sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, encoder_hidden_states=context_emb, upsample_size=upsample_size, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs) + else: + sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size, num_frames=num_frames) + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + sample = sample[None, :].reshape((-1, num_frames) + sample.shape[1:]).permute(0, 2, 1, 3, 4) + if not return_dict: + return (sample,) + return UNet3DConditionOutput(sample=sample) + +# File: diffusers-main/src/diffusers/models/unets/unet_kandinsky3.py +from dataclasses import dataclass +from typing import Dict, Tuple, Union +import torch +import torch.utils.checkpoint +from torch import nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...utils import BaseOutput, logging +from ..attention_processor import Attention, AttentionProcessor, AttnProcessor +from ..embeddings import TimestepEmbedding, Timesteps +from ..modeling_utils import ModelMixin +logger = logging.get_logger(__name__) + +@dataclass +class Kandinsky3UNetOutput(BaseOutput): + sample: torch.Tensor = None + +class Kandinsky3EncoderProj(nn.Module): + + def __init__(self, encoder_hid_dim, cross_attention_dim): + super().__init__() + self.projection_linear = nn.Linear(encoder_hid_dim, cross_attention_dim, bias=False) + self.projection_norm = nn.LayerNorm(cross_attention_dim) + + def forward(self, x): + x = self.projection_linear(x) + x = self.projection_norm(x) + return x + +class Kandinsky3UNet(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, in_channels: int=4, time_embedding_dim: int=1536, groups: int=32, attention_head_dim: int=64, layers_per_block: Union[int, Tuple[int]]=3, block_out_channels: Tuple[int]=(384, 768, 1536, 3072), cross_attention_dim: Union[int, Tuple[int]]=4096, encoder_hid_dim: int=4096): + super().__init__() + expansion_ratio = 4 + compression_ratio = 2 + add_cross_attention = (False, True, True, True) + add_self_attention = (False, True, True, True) + out_channels = in_channels + init_channels = block_out_channels[0] // 2 + self.time_proj = Timesteps(init_channels, flip_sin_to_cos=False, downscale_freq_shift=1) + self.time_embedding = TimestepEmbedding(init_channels, time_embedding_dim) + self.add_time_condition = Kandinsky3AttentionPooling(time_embedding_dim, cross_attention_dim, attention_head_dim) + self.conv_in = nn.Conv2d(in_channels, init_channels, kernel_size=3, padding=1) + self.encoder_hid_proj = Kandinsky3EncoderProj(encoder_hid_dim, cross_attention_dim) + hidden_dims = [init_channels] + list(block_out_channels) + in_out_dims = list(zip(hidden_dims[:-1], hidden_dims[1:])) + text_dims = [cross_attention_dim if is_exist else None for is_exist in add_cross_attention] + num_blocks = len(block_out_channels) * [layers_per_block] + layer_params = [num_blocks, text_dims, add_self_attention] + rev_layer_params = map(reversed, layer_params) + cat_dims = [] + self.num_levels = len(in_out_dims) + self.down_blocks = nn.ModuleList([]) + for (level, ((in_dim, out_dim), res_block_num, text_dim, self_attention)) in enumerate(zip(in_out_dims, *layer_params)): + down_sample = level != self.num_levels - 1 + cat_dims.append(out_dim if level != self.num_levels - 1 else 0) + self.down_blocks.append(Kandinsky3DownSampleBlock(in_dim, out_dim, time_embedding_dim, text_dim, res_block_num, groups, attention_head_dim, expansion_ratio, compression_ratio, down_sample, self_attention)) + self.up_blocks = nn.ModuleList([]) + for (level, ((out_dim, in_dim), res_block_num, text_dim, self_attention)) in enumerate(zip(reversed(in_out_dims), *rev_layer_params)): + up_sample = level != 0 + self.up_blocks.append(Kandinsky3UpSampleBlock(in_dim, cat_dims.pop(), out_dim, time_embedding_dim, text_dim, res_block_num, groups, attention_head_dim, expansion_ratio, compression_ratio, up_sample, self_attention)) + self.conv_norm_out = nn.GroupNorm(groups, init_channels) + self.conv_act_out = nn.SiLU() + self.conv_out = nn.Conv2d(init_channels, out_channels, kernel_size=3, padding=1) + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'set_processor'): + processors[f'{name}.processor'] = module.processor + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def set_default_attn_processor(self): + self.set_attn_processor(AttnProcessor()) + + def _set_gradient_checkpointing(self, module, value=False): + if hasattr(module, 'gradient_checkpointing'): + module.gradient_checkpointing = value + + def forward(self, sample, timestep, encoder_hidden_states=None, encoder_attention_mask=None, return_dict=True): + if encoder_attention_mask is not None: + encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 + encoder_attention_mask = encoder_attention_mask.unsqueeze(1) + if not torch.is_tensor(timestep): + dtype = torch.float32 if isinstance(timestep, float) else torch.int32 + timestep = torch.tensor([timestep], dtype=dtype, device=sample.device) + elif len(timestep.shape) == 0: + timestep = timestep[None].to(sample.device) + timestep = timestep.expand(sample.shape[0]) + time_embed_input = self.time_proj(timestep).to(sample.dtype) + time_embed = self.time_embedding(time_embed_input) + encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) + if encoder_hidden_states is not None: + time_embed = self.add_time_condition(time_embed, encoder_hidden_states, encoder_attention_mask) + hidden_states = [] + sample = self.conv_in(sample) + for (level, down_sample) in enumerate(self.down_blocks): + sample = down_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask) + if level != self.num_levels - 1: + hidden_states.append(sample) + for (level, up_sample) in enumerate(self.up_blocks): + if level != 0: + sample = torch.cat([sample, hidden_states.pop()], dim=1) + sample = up_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask) + sample = self.conv_norm_out(sample) + sample = self.conv_act_out(sample) + sample = self.conv_out(sample) + if not return_dict: + return (sample,) + return Kandinsky3UNetOutput(sample=sample) + +class Kandinsky3UpSampleBlock(nn.Module): + + def __init__(self, in_channels, cat_dim, out_channels, time_embed_dim, context_dim=None, num_blocks=3, groups=32, head_dim=64, expansion_ratio=4, compression_ratio=2, up_sample=True, self_attention=True): + super().__init__() + up_resolutions = [[None, True if up_sample else None, None, None]] + [[None] * 4] * (num_blocks - 1) + hidden_channels = [(in_channels + cat_dim, in_channels)] + [(in_channels, in_channels)] * (num_blocks - 2) + [(in_channels, out_channels)] + attentions = [] + resnets_in = [] + resnets_out = [] + self.self_attention = self_attention + self.context_dim = context_dim + if self_attention: + attentions.append(Kandinsky3AttentionBlock(out_channels, time_embed_dim, None, groups, head_dim, expansion_ratio)) + else: + attentions.append(nn.Identity()) + for ((in_channel, out_channel), up_resolution) in zip(hidden_channels, up_resolutions): + resnets_in.append(Kandinsky3ResNetBlock(in_channel, in_channel, time_embed_dim, groups, compression_ratio, up_resolution)) + if context_dim is not None: + attentions.append(Kandinsky3AttentionBlock(in_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio)) + else: + attentions.append(nn.Identity()) + resnets_out.append(Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio)) + self.attentions = nn.ModuleList(attentions) + self.resnets_in = nn.ModuleList(resnets_in) + self.resnets_out = nn.ModuleList(resnets_out) + + def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None): + for (attention, resnet_in, resnet_out) in zip(self.attentions[1:], self.resnets_in, self.resnets_out): + x = resnet_in(x, time_embed) + if self.context_dim is not None: + x = attention(x, time_embed, context, context_mask, image_mask) + x = resnet_out(x, time_embed) + if self.self_attention: + x = self.attentions[0](x, time_embed, image_mask=image_mask) + return x + +class Kandinsky3DownSampleBlock(nn.Module): + + def __init__(self, in_channels, out_channels, time_embed_dim, context_dim=None, num_blocks=3, groups=32, head_dim=64, expansion_ratio=4, compression_ratio=2, down_sample=True, self_attention=True): + super().__init__() + attentions = [] + resnets_in = [] + resnets_out = [] + self.self_attention = self_attention + self.context_dim = context_dim + if self_attention: + attentions.append(Kandinsky3AttentionBlock(in_channels, time_embed_dim, None, groups, head_dim, expansion_ratio)) + else: + attentions.append(nn.Identity()) + up_resolutions = [[None] * 4] * (num_blocks - 1) + [[None, None, False if down_sample else None, None]] + hidden_channels = [(in_channels, out_channels)] + [(out_channels, out_channels)] * (num_blocks - 1) + for ((in_channel, out_channel), up_resolution) in zip(hidden_channels, up_resolutions): + resnets_in.append(Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio)) + if context_dim is not None: + attentions.append(Kandinsky3AttentionBlock(out_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio)) + else: + attentions.append(nn.Identity()) + resnets_out.append(Kandinsky3ResNetBlock(out_channel, out_channel, time_embed_dim, groups, compression_ratio, up_resolution)) + self.attentions = nn.ModuleList(attentions) + self.resnets_in = nn.ModuleList(resnets_in) + self.resnets_out = nn.ModuleList(resnets_out) + + def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None): + if self.self_attention: + x = self.attentions[0](x, time_embed, image_mask=image_mask) + for (attention, resnet_in, resnet_out) in zip(self.attentions[1:], self.resnets_in, self.resnets_out): + x = resnet_in(x, time_embed) + if self.context_dim is not None: + x = attention(x, time_embed, context, context_mask, image_mask) + x = resnet_out(x, time_embed) + return x + +class Kandinsky3ConditionalGroupNorm(nn.Module): + + def __init__(self, groups, normalized_shape, context_dim): + super().__init__() + self.norm = nn.GroupNorm(groups, normalized_shape, affine=False) + self.context_mlp = nn.Sequential(nn.SiLU(), nn.Linear(context_dim, 2 * normalized_shape)) + self.context_mlp[1].weight.data.zero_() + self.context_mlp[1].bias.data.zero_() + + def forward(self, x, context): + context = self.context_mlp(context) + for _ in range(len(x.shape[2:])): + context = context.unsqueeze(-1) + (scale, shift) = context.chunk(2, dim=1) + x = self.norm(x) * (scale + 1.0) + shift + return x + +class Kandinsky3Block(nn.Module): + + def __init__(self, in_channels, out_channels, time_embed_dim, kernel_size=3, norm_groups=32, up_resolution=None): + super().__init__() + self.group_norm = Kandinsky3ConditionalGroupNorm(norm_groups, in_channels, time_embed_dim) + self.activation = nn.SiLU() + if up_resolution is not None and up_resolution: + self.up_sample = nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2) + else: + self.up_sample = nn.Identity() + padding = int(kernel_size > 1) + self.projection = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=padding) + if up_resolution is not None and (not up_resolution): + self.down_sample = nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2) + else: + self.down_sample = nn.Identity() + + def forward(self, x, time_embed): + x = self.group_norm(x, time_embed) + x = self.activation(x) + x = self.up_sample(x) + x = self.projection(x) + x = self.down_sample(x) + return x + +class Kandinsky3ResNetBlock(nn.Module): + + def __init__(self, in_channels, out_channels, time_embed_dim, norm_groups=32, compression_ratio=2, up_resolutions=4 * [None]): + super().__init__() + kernel_sizes = [1, 3, 3, 1] + hidden_channel = max(in_channels, out_channels) // compression_ratio + hidden_channels = [(in_channels, hidden_channel)] + [(hidden_channel, hidden_channel)] * 2 + [(hidden_channel, out_channels)] + self.resnet_blocks = nn.ModuleList([Kandinsky3Block(in_channel, out_channel, time_embed_dim, kernel_size, norm_groups, up_resolution) for ((in_channel, out_channel), kernel_size, up_resolution) in zip(hidden_channels, kernel_sizes, up_resolutions)]) + self.shortcut_up_sample = nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2) if True in up_resolutions else nn.Identity() + self.shortcut_projection = nn.Conv2d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else nn.Identity() + self.shortcut_down_sample = nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2) if False in up_resolutions else nn.Identity() + + def forward(self, x, time_embed): + out = x + for resnet_block in self.resnet_blocks: + out = resnet_block(out, time_embed) + x = self.shortcut_up_sample(x) + x = self.shortcut_projection(x) + x = self.shortcut_down_sample(x) + x = x + out + return x + +class Kandinsky3AttentionPooling(nn.Module): + + def __init__(self, num_channels, context_dim, head_dim=64): + super().__init__() + self.attention = Attention(context_dim, context_dim, dim_head=head_dim, out_dim=num_channels, out_bias=False) + + def forward(self, x, context, context_mask=None): + context_mask = context_mask.to(dtype=context.dtype) + context = self.attention(context.mean(dim=1, keepdim=True), context, context_mask) + return x + context.squeeze(1) + +class Kandinsky3AttentionBlock(nn.Module): + + def __init__(self, num_channels, time_embed_dim, context_dim=None, norm_groups=32, head_dim=64, expansion_ratio=4): + super().__init__() + self.in_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim) + self.attention = Attention(num_channels, context_dim or num_channels, dim_head=head_dim, out_dim=num_channels, out_bias=False) + hidden_channels = expansion_ratio * num_channels + self.out_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim) + self.feed_forward = nn.Sequential(nn.Conv2d(num_channels, hidden_channels, kernel_size=1, bias=False), nn.SiLU(), nn.Conv2d(hidden_channels, num_channels, kernel_size=1, bias=False)) + + def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None): + (height, width) = x.shape[-2:] + out = self.in_norm(x, time_embed) + out = out.reshape(x.shape[0], -1, height * width).permute(0, 2, 1) + context = context if context is not None else out + if context_mask is not None: + context_mask = context_mask.to(dtype=context.dtype) + out = self.attention(out, context, context_mask) + out = out.permute(0, 2, 1).unsqueeze(-1).reshape(out.shape[0], -1, height, width) + x = x + out + out = self.out_norm(x, time_embed) + out = self.feed_forward(out) + x = x + out + return x + +# File: diffusers-main/src/diffusers/models/unets/unet_motion_model.py +from dataclasses import dataclass +from typing import Any, Dict, Optional, Tuple, Union +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint +from ...configuration_utils import ConfigMixin, FrozenDict, register_to_config +from ...loaders import FromOriginalModelMixin, PeftAdapterMixin, UNet2DConditionLoadersMixin +from ...utils import BaseOutput, deprecate, is_torch_version, logging +from ...utils.torch_utils import apply_freeu +from ..attention import BasicTransformerBlock +from ..attention_processor import ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, Attention, AttentionProcessor, AttnAddedKVProcessor, AttnProcessor, AttnProcessor2_0, FusedAttnProcessor2_0, IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0 +from ..embeddings import TimestepEmbedding, Timesteps +from ..modeling_utils import ModelMixin +from ..resnet import Downsample2D, ResnetBlock2D, Upsample2D +from ..transformers.dual_transformer_2d import DualTransformer2DModel +from ..transformers.transformer_2d import Transformer2DModel +from .unet_2d_blocks import UNetMidBlock2DCrossAttn +from .unet_2d_condition import UNet2DConditionModel +logger = logging.get_logger(__name__) + +@dataclass +class UNetMotionOutput(BaseOutput): + sample: torch.Tensor + +class AnimateDiffTransformer3D(nn.Module): + + def __init__(self, num_attention_heads: int=16, attention_head_dim: int=88, in_channels: Optional[int]=None, out_channels: Optional[int]=None, num_layers: int=1, dropout: float=0.0, norm_num_groups: int=32, cross_attention_dim: Optional[int]=None, attention_bias: bool=False, sample_size: Optional[int]=None, activation_fn: str='geglu', norm_elementwise_affine: bool=True, double_self_attention: bool=True, positional_embeddings: Optional[str]=None, num_positional_embeddings: Optional[int]=None): + super().__init__() + self.num_attention_heads = num_attention_heads + self.attention_head_dim = attention_head_dim + inner_dim = num_attention_heads * attention_head_dim + self.in_channels = in_channels + self.norm = nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-06, affine=True) + self.proj_in = nn.Linear(in_channels, inner_dim) + self.transformer_blocks = nn.ModuleList([BasicTransformerBlock(inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, attention_bias=attention_bias, double_self_attention=double_self_attention, norm_elementwise_affine=norm_elementwise_affine, positional_embeddings=positional_embeddings, num_positional_embeddings=num_positional_embeddings) for _ in range(num_layers)]) + self.proj_out = nn.Linear(inner_dim, in_channels) + + def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.LongTensor]=None, timestep: Optional[torch.LongTensor]=None, class_labels: Optional[torch.LongTensor]=None, num_frames: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None) -> torch.Tensor: + (batch_frames, channel, height, width) = hidden_states.shape + batch_size = batch_frames // num_frames + residual = hidden_states + hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, channel, height, width) + hidden_states = hidden_states.permute(0, 2, 1, 3, 4) + hidden_states = self.norm(hidden_states) + hidden_states = hidden_states.permute(0, 3, 4, 2, 1).reshape(batch_size * height * width, num_frames, channel) + hidden_states = self.proj_in(input=hidden_states) + for block in self.transformer_blocks: + hidden_states = block(hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels) + hidden_states = self.proj_out(input=hidden_states) + hidden_states = hidden_states[None, None, :].reshape(batch_size, height, width, num_frames, channel).permute(0, 3, 4, 1, 2).contiguous() + hidden_states = hidden_states.reshape(batch_frames, channel, height, width) + output = hidden_states + residual + return output + +class DownBlockMotion(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, output_scale_factor: float=1.0, add_downsample: bool=True, downsample_padding: int=1, temporal_num_attention_heads: Union[int, Tuple[int]]=1, temporal_cross_attention_dim: Optional[int]=None, temporal_max_seq_length: int=32, temporal_transformer_layers_per_block: Union[int, Tuple[int]]=1, temporal_double_self_attention: bool=True): + super().__init__() + resnets = [] + motion_modules = [] + if isinstance(temporal_transformer_layers_per_block, int): + temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers + elif len(temporal_transformer_layers_per_block) != num_layers: + raise ValueError(f'`temporal_transformer_layers_per_block` must be an integer or a tuple of integers of length {num_layers}') + if isinstance(temporal_num_attention_heads, int): + temporal_num_attention_heads = (temporal_num_attention_heads,) * num_layers + elif len(temporal_num_attention_heads) != num_layers: + raise ValueError(f'`temporal_num_attention_heads` must be an integer or a tuple of integers of length {num_layers}') + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append(ResnetBlock2D(in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + motion_modules.append(AnimateDiffTransformer3D(num_attention_heads=temporal_num_attention_heads[i], in_channels=out_channels, num_layers=temporal_transformer_layers_per_block[i], norm_num_groups=resnet_groups, cross_attention_dim=temporal_cross_attention_dim, attention_bias=False, activation_fn='geglu', positional_embeddings='sinusoidal', num_positional_embeddings=temporal_max_seq_length, attention_head_dim=out_channels // temporal_num_attention_heads[i], double_self_attention=temporal_double_self_attention)) + self.resnets = nn.ModuleList(resnets) + self.motion_modules = nn.ModuleList(motion_modules) + if add_downsample: + self.downsamplers = nn.ModuleList([Downsample2D(out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name='op')]) + else: + self.downsamplers = None + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, num_frames: int=1, *args, **kwargs) -> Union[torch.Tensor, Tuple[torch.Tensor, ...]]: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + output_states = () + blocks = zip(self.resnets, self.motion_modules) + for (resnet, motion_module) in blocks: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + if is_torch_version('>=', '1.11.0'): + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, use_reentrant=False) + else: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + else: + hidden_states = resnet(input_tensor=hidden_states, temb=temb) + hidden_states = motion_module(hidden_states, num_frames=num_frames) + output_states = output_states + (hidden_states,) + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states=hidden_states) + output_states = output_states + (hidden_states,) + return (hidden_states, output_states) + +class CrossAttnDownBlockMotion(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, transformer_layers_per_block: Union[int, Tuple[int]]=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, num_attention_heads: int=1, cross_attention_dim: int=1280, output_scale_factor: float=1.0, downsample_padding: int=1, add_downsample: bool=True, dual_cross_attention: bool=False, use_linear_projection: bool=False, only_cross_attention: bool=False, upcast_attention: bool=False, attention_type: str='default', temporal_cross_attention_dim: Optional[int]=None, temporal_num_attention_heads: int=8, temporal_max_seq_length: int=32, temporal_transformer_layers_per_block: Union[int, Tuple[int]]=1, temporal_double_self_attention: bool=True): + super().__init__() + resnets = [] + attentions = [] + motion_modules = [] + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = (transformer_layers_per_block,) * num_layers + elif len(transformer_layers_per_block) != num_layers: + raise ValueError(f'transformer_layers_per_block must be an integer or a list of integers of length {num_layers}') + if isinstance(temporal_transformer_layers_per_block, int): + temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers + elif len(temporal_transformer_layers_per_block) != num_layers: + raise ValueError(f'temporal_transformer_layers_per_block must be an integer or a list of integers of length {num_layers}') + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append(ResnetBlock2D(in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + if not dual_cross_attention: + attentions.append(Transformer2DModel(num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, attention_type=attention_type)) + else: + attentions.append(DualTransformer2DModel(num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups)) + motion_modules.append(AnimateDiffTransformer3D(num_attention_heads=temporal_num_attention_heads, in_channels=out_channels, num_layers=temporal_transformer_layers_per_block[i], norm_num_groups=resnet_groups, cross_attention_dim=temporal_cross_attention_dim, attention_bias=False, activation_fn='geglu', positional_embeddings='sinusoidal', num_positional_embeddings=temporal_max_seq_length, attention_head_dim=out_channels // temporal_num_attention_heads, double_self_attention=temporal_double_self_attention)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + self.motion_modules = nn.ModuleList(motion_modules) + if add_downsample: + self.downsamplers = nn.ModuleList([Downsample2D(out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name='op')]) + else: + self.downsamplers = None + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, num_frames: int=1, encoder_attention_mask: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, additional_residuals: Optional[torch.Tensor]=None): + if cross_attention_kwargs is not None: + if cross_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.') + output_states = () + blocks = list(zip(self.resnets, self.attentions, self.motion_modules)) + for (i, (resnet, attn, motion_module)) in enumerate(blocks): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs) + else: + hidden_states = resnet(input_tensor=hidden_states, temb=temb) + hidden_states = attn(hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False)[0] + hidden_states = motion_module(hidden_states, num_frames=num_frames) + if i == len(blocks) - 1 and additional_residuals is not None: + hidden_states = hidden_states + additional_residuals + output_states = output_states + (hidden_states,) + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states=hidden_states) + output_states = output_states + (hidden_states,) + return (hidden_states, output_states) + +class CrossAttnUpBlockMotion(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, prev_output_channel: int, temb_channels: int, resolution_idx: Optional[int]=None, dropout: float=0.0, num_layers: int=1, transformer_layers_per_block: Union[int, Tuple[int]]=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, num_attention_heads: int=1, cross_attention_dim: int=1280, output_scale_factor: float=1.0, add_upsample: bool=True, dual_cross_attention: bool=False, use_linear_projection: bool=False, only_cross_attention: bool=False, upcast_attention: bool=False, attention_type: str='default', temporal_cross_attention_dim: Optional[int]=None, temporal_num_attention_heads: int=8, temporal_max_seq_length: int=32, temporal_transformer_layers_per_block: Union[int, Tuple[int]]=1): + super().__init__() + resnets = [] + attentions = [] + motion_modules = [] + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = (transformer_layers_per_block,) * num_layers + elif len(transformer_layers_per_block) != num_layers: + raise ValueError(f'transformer_layers_per_block must be an integer or a list of integers of length {num_layers}, got {len(transformer_layers_per_block)}') + if isinstance(temporal_transformer_layers_per_block, int): + temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers + elif len(temporal_transformer_layers_per_block) != num_layers: + raise ValueError(f'temporal_transformer_layers_per_block must be an integer or a list of integers of length {num_layers}, got {len(temporal_transformer_layers_per_block)}') + for i in range(num_layers): + res_skip_channels = in_channels if i == num_layers - 1 else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + resnets.append(ResnetBlock2D(in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + if not dual_cross_attention: + attentions.append(Transformer2DModel(num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, attention_type=attention_type)) + else: + attentions.append(DualTransformer2DModel(num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups)) + motion_modules.append(AnimateDiffTransformer3D(num_attention_heads=temporal_num_attention_heads, in_channels=out_channels, num_layers=temporal_transformer_layers_per_block[i], norm_num_groups=resnet_groups, cross_attention_dim=temporal_cross_attention_dim, attention_bias=False, activation_fn='geglu', positional_embeddings='sinusoidal', num_positional_embeddings=temporal_max_seq_length, attention_head_dim=out_channels // temporal_num_attention_heads)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + self.motion_modules = nn.ModuleList(motion_modules) + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward(self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, upsample_size: Optional[int]=None, attention_mask: Optional[torch.Tensor]=None, encoder_attention_mask: Optional[torch.Tensor]=None, num_frames: int=1) -> torch.Tensor: + if cross_attention_kwargs is not None: + if cross_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.') + is_freeu_enabled = getattr(self, 's1', None) and getattr(self, 's2', None) and getattr(self, 'b1', None) and getattr(self, 'b2', None) + blocks = zip(self.resnets, self.attentions, self.motion_modules) + for (resnet, attn, motion_module) in blocks: + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + if is_freeu_enabled: + (hidden_states, res_hidden_states) = apply_freeu(self.resolution_idx, hidden_states, res_hidden_states, s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2) + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs) + else: + hidden_states = resnet(input_tensor=hidden_states, temb=temb) + hidden_states = attn(hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False)[0] + hidden_states = motion_module(hidden_states, num_frames=num_frames) + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states=hidden_states, output_size=upsample_size) + return hidden_states + +class UpBlockMotion(nn.Module): + + def __init__(self, in_channels: int, prev_output_channel: int, out_channels: int, temb_channels: int, resolution_idx: Optional[int]=None, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, output_scale_factor: float=1.0, add_upsample: bool=True, temporal_cross_attention_dim: Optional[int]=None, temporal_num_attention_heads: int=8, temporal_max_seq_length: int=32, temporal_transformer_layers_per_block: Union[int, Tuple[int]]=1): + super().__init__() + resnets = [] + motion_modules = [] + if isinstance(temporal_transformer_layers_per_block, int): + temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers + elif len(temporal_transformer_layers_per_block) != num_layers: + raise ValueError(f'temporal_transformer_layers_per_block must be an integer or a list of integers of length {num_layers}') + for i in range(num_layers): + res_skip_channels = in_channels if i == num_layers - 1 else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + resnets.append(ResnetBlock2D(in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + motion_modules.append(AnimateDiffTransformer3D(num_attention_heads=temporal_num_attention_heads, in_channels=out_channels, num_layers=temporal_transformer_layers_per_block[i], norm_num_groups=resnet_groups, cross_attention_dim=temporal_cross_attention_dim, attention_bias=False, activation_fn='geglu', positional_embeddings='sinusoidal', num_positional_embeddings=temporal_max_seq_length, attention_head_dim=out_channels // temporal_num_attention_heads)) + self.resnets = nn.ModuleList(resnets) + self.motion_modules = nn.ModuleList(motion_modules) + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward(self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor]=None, upsample_size=None, num_frames: int=1, *args, **kwargs) -> torch.Tensor: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + is_freeu_enabled = getattr(self, 's1', None) and getattr(self, 's2', None) and getattr(self, 'b1', None) and getattr(self, 'b2', None) + blocks = zip(self.resnets, self.motion_modules) + for (resnet, motion_module) in blocks: + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + if is_freeu_enabled: + (hidden_states, res_hidden_states) = apply_freeu(self.resolution_idx, hidden_states, res_hidden_states, s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2) + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + if is_torch_version('>=', '1.11.0'): + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, use_reentrant=False) + else: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + else: + hidden_states = resnet(input_tensor=hidden_states, temb=temb) + hidden_states = motion_module(hidden_states, num_frames=num_frames) + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states=hidden_states, output_size=upsample_size) + return hidden_states + +class UNetMidBlockCrossAttnMotion(nn.Module): + + def __init__(self, in_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, transformer_layers_per_block: Union[int, Tuple[int]]=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, num_attention_heads: int=1, output_scale_factor: float=1.0, cross_attention_dim: int=1280, dual_cross_attention: bool=False, use_linear_projection: bool=False, upcast_attention: bool=False, attention_type: str='default', temporal_num_attention_heads: int=1, temporal_cross_attention_dim: Optional[int]=None, temporal_max_seq_length: int=32, temporal_transformer_layers_per_block: Union[int, Tuple[int]]=1): + super().__init__() + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = (transformer_layers_per_block,) * num_layers + elif len(transformer_layers_per_block) != num_layers: + raise ValueError(f'`transformer_layers_per_block` should be an integer or a list of integers of length {num_layers}.') + if isinstance(temporal_transformer_layers_per_block, int): + temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers + elif len(temporal_transformer_layers_per_block) != num_layers: + raise ValueError(f'`temporal_transformer_layers_per_block` should be an integer or a list of integers of length {num_layers}.') + resnets = [ResnetBlock2D(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)] + attentions = [] + motion_modules = [] + for i in range(num_layers): + if not dual_cross_attention: + attentions.append(Transformer2DModel(num_attention_heads, in_channels // num_attention_heads, in_channels=in_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, attention_type=attention_type)) + else: + attentions.append(DualTransformer2DModel(num_attention_heads, in_channels // num_attention_heads, in_channels=in_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups)) + resnets.append(ResnetBlock2D(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + motion_modules.append(AnimateDiffTransformer3D(num_attention_heads=temporal_num_attention_heads, attention_head_dim=in_channels // temporal_num_attention_heads, in_channels=in_channels, num_layers=temporal_transformer_layers_per_block[i], norm_num_groups=resnet_groups, cross_attention_dim=temporal_cross_attention_dim, attention_bias=False, positional_embeddings='sinusoidal', num_positional_embeddings=temporal_max_seq_length, activation_fn='geglu')) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + self.motion_modules = nn.ModuleList(motion_modules) + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, encoder_attention_mask: Optional[torch.Tensor]=None, num_frames: int=1) -> torch.Tensor: + if cross_attention_kwargs is not None: + if cross_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.') + hidden_states = self.resnets[0](input_tensor=hidden_states, temb=temb) + blocks = zip(self.attentions, self.resnets[1:], self.motion_modules) + for (attn, resnet, motion_module) in blocks: + hidden_states = attn(hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False)[0] + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states, temb, **ckpt_kwargs) + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs) + else: + hidden_states = motion_module(hidden_states, num_frames=num_frames) + hidden_states = resnet(input_tensor=hidden_states, temb=temb) + return hidden_states + +class MotionModules(nn.Module): + + def __init__(self, in_channels: int, layers_per_block: int=2, transformer_layers_per_block: Union[int, Tuple[int]]=8, num_attention_heads: Union[int, Tuple[int]]=8, attention_bias: bool=False, cross_attention_dim: Optional[int]=None, activation_fn: str='geglu', norm_num_groups: int=32, max_seq_length: int=32): + super().__init__() + self.motion_modules = nn.ModuleList([]) + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = (transformer_layers_per_block,) * layers_per_block + elif len(transformer_layers_per_block) != layers_per_block: + raise ValueError(f'The number of transformer layers per block must match the number of layers per block, got {layers_per_block} and {len(transformer_layers_per_block)}') + for i in range(layers_per_block): + self.motion_modules.append(AnimateDiffTransformer3D(in_channels=in_channels, num_layers=transformer_layers_per_block[i], norm_num_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, attention_bias=attention_bias, num_attention_heads=num_attention_heads, attention_head_dim=in_channels // num_attention_heads, positional_embeddings='sinusoidal', num_positional_embeddings=max_seq_length)) + +class MotionAdapter(ModelMixin, ConfigMixin, FromOriginalModelMixin): + + @register_to_config + def __init__(self, block_out_channels: Tuple[int, ...]=(320, 640, 1280, 1280), motion_layers_per_block: Union[int, Tuple[int]]=2, motion_transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]]=1, motion_mid_block_layers_per_block: int=1, motion_transformer_layers_per_mid_block: Union[int, Tuple[int]]=1, motion_num_attention_heads: Union[int, Tuple[int]]=8, motion_norm_num_groups: int=32, motion_max_seq_length: int=32, use_motion_mid_block: bool=True, conv_in_channels: Optional[int]=None): + super().__init__() + down_blocks = [] + up_blocks = [] + if isinstance(motion_layers_per_block, int): + motion_layers_per_block = (motion_layers_per_block,) * len(block_out_channels) + elif len(motion_layers_per_block) != len(block_out_channels): + raise ValueError(f'The number of motion layers per block must match the number of blocks, got {len(block_out_channels)} and {len(motion_layers_per_block)}') + if isinstance(motion_transformer_layers_per_block, int): + motion_transformer_layers_per_block = (motion_transformer_layers_per_block,) * len(block_out_channels) + if isinstance(motion_transformer_layers_per_mid_block, int): + motion_transformer_layers_per_mid_block = (motion_transformer_layers_per_mid_block,) * motion_mid_block_layers_per_block + elif len(motion_transformer_layers_per_mid_block) != motion_mid_block_layers_per_block: + raise ValueError(f'The number of layers per mid block ({motion_mid_block_layers_per_block}) must match the length of motion_transformer_layers_per_mid_block ({len(motion_transformer_layers_per_mid_block)})') + if isinstance(motion_num_attention_heads, int): + motion_num_attention_heads = (motion_num_attention_heads,) * len(block_out_channels) + elif len(motion_num_attention_heads) != len(block_out_channels): + raise ValueError(f'The length of the attention head number tuple in the motion module must match the number of block, got {len(motion_num_attention_heads)} and {len(block_out_channels)}') + if conv_in_channels: + self.conv_in = nn.Conv2d(conv_in_channels, block_out_channels[0], kernel_size=3, padding=1) + else: + self.conv_in = None + for (i, channel) in enumerate(block_out_channels): + output_channel = block_out_channels[i] + down_blocks.append(MotionModules(in_channels=output_channel, norm_num_groups=motion_norm_num_groups, cross_attention_dim=None, activation_fn='geglu', attention_bias=False, num_attention_heads=motion_num_attention_heads[i], max_seq_length=motion_max_seq_length, layers_per_block=motion_layers_per_block[i], transformer_layers_per_block=motion_transformer_layers_per_block[i])) + if use_motion_mid_block: + self.mid_block = MotionModules(in_channels=block_out_channels[-1], norm_num_groups=motion_norm_num_groups, cross_attention_dim=None, activation_fn='geglu', attention_bias=False, num_attention_heads=motion_num_attention_heads[-1], max_seq_length=motion_max_seq_length, layers_per_block=motion_mid_block_layers_per_block, transformer_layers_per_block=motion_transformer_layers_per_mid_block) + else: + self.mid_block = None + reversed_block_out_channels = list(reversed(block_out_channels)) + output_channel = reversed_block_out_channels[0] + reversed_motion_layers_per_block = list(reversed(motion_layers_per_block)) + reversed_motion_transformer_layers_per_block = list(reversed(motion_transformer_layers_per_block)) + reversed_motion_num_attention_heads = list(reversed(motion_num_attention_heads)) + for (i, channel) in enumerate(reversed_block_out_channels): + output_channel = reversed_block_out_channels[i] + up_blocks.append(MotionModules(in_channels=output_channel, norm_num_groups=motion_norm_num_groups, cross_attention_dim=None, activation_fn='geglu', attention_bias=False, num_attention_heads=reversed_motion_num_attention_heads[i], max_seq_length=motion_max_seq_length, layers_per_block=reversed_motion_layers_per_block[i] + 1, transformer_layers_per_block=reversed_motion_transformer_layers_per_block[i])) + self.down_blocks = nn.ModuleList(down_blocks) + self.up_blocks = nn.ModuleList(up_blocks) + + def forward(self, sample): + pass + +class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__(self, sample_size: Optional[int]=None, in_channels: int=4, out_channels: int=4, down_block_types: Tuple[str, ...]=('CrossAttnDownBlockMotion', 'CrossAttnDownBlockMotion', 'CrossAttnDownBlockMotion', 'DownBlockMotion'), up_block_types: Tuple[str, ...]=('UpBlockMotion', 'CrossAttnUpBlockMotion', 'CrossAttnUpBlockMotion', 'CrossAttnUpBlockMotion'), block_out_channels: Tuple[int, ...]=(320, 640, 1280, 1280), layers_per_block: Union[int, Tuple[int]]=2, downsample_padding: int=1, mid_block_scale_factor: float=1, act_fn: str='silu', norm_num_groups: int=32, norm_eps: float=1e-05, cross_attention_dim: int=1280, transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]]=1, reverse_transformer_layers_per_block: Optional[Union[int, Tuple[int], Tuple[Tuple]]]=None, temporal_transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]]=1, reverse_temporal_transformer_layers_per_block: Optional[Union[int, Tuple[int], Tuple[Tuple]]]=None, transformer_layers_per_mid_block: Optional[Union[int, Tuple[int]]]=None, temporal_transformer_layers_per_mid_block: Optional[Union[int, Tuple[int]]]=1, use_linear_projection: bool=False, num_attention_heads: Union[int, Tuple[int, ...]]=8, motion_max_seq_length: int=32, motion_num_attention_heads: Union[int, Tuple[int, ...]]=8, reverse_motion_num_attention_heads: Optional[Union[int, Tuple[int, ...], Tuple[Tuple[int, ...], ...]]]=None, use_motion_mid_block: bool=True, mid_block_layers: int=1, encoder_hid_dim: Optional[int]=None, encoder_hid_dim_type: Optional[str]=None, addition_embed_type: Optional[str]=None, addition_time_embed_dim: Optional[int]=None, projection_class_embeddings_input_dim: Optional[int]=None, time_cond_proj_dim: Optional[int]=None): + super().__init__() + self.sample_size = sample_size + if len(down_block_types) != len(up_block_types): + raise ValueError(f'Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}.') + if len(block_out_channels) != len(down_block_types): + raise ValueError(f'Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}.') + if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): + raise ValueError(f'Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}.') + if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): + raise ValueError(f'Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}.') + if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): + raise ValueError(f'Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}.') + if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None: + for layer_number_per_block in transformer_layers_per_block: + if isinstance(layer_number_per_block, list): + raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.") + if isinstance(temporal_transformer_layers_per_block, list) and reverse_temporal_transformer_layers_per_block is None: + for layer_number_per_block in temporal_transformer_layers_per_block: + if isinstance(layer_number_per_block, list): + raise ValueError("Must provide 'reverse_temporal_transformer_layers_per_block` if using asymmetrical motion module in UNet.") + conv_in_kernel = 3 + conv_out_kernel = 3 + conv_in_padding = (conv_in_kernel - 1) // 2 + self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding) + time_embed_dim = block_out_channels[0] * 4 + self.time_proj = Timesteps(block_out_channels[0], True, 0) + timestep_input_dim = block_out_channels[0] + self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn, cond_proj_dim=time_cond_proj_dim) + if encoder_hid_dim_type is None: + self.encoder_hid_proj = None + if addition_embed_type == 'text_time': + self.add_time_proj = Timesteps(addition_time_embed_dim, True, 0) + self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + self.down_blocks = nn.ModuleList([]) + self.up_blocks = nn.ModuleList([]) + if isinstance(num_attention_heads, int): + num_attention_heads = (num_attention_heads,) * len(down_block_types) + if isinstance(cross_attention_dim, int): + cross_attention_dim = (cross_attention_dim,) * len(down_block_types) + if isinstance(layers_per_block, int): + layers_per_block = [layers_per_block] * len(down_block_types) + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) + if isinstance(reverse_transformer_layers_per_block, int): + reverse_transformer_layers_per_block = [reverse_transformer_layers_per_block] * len(down_block_types) + if isinstance(temporal_transformer_layers_per_block, int): + temporal_transformer_layers_per_block = [temporal_transformer_layers_per_block] * len(down_block_types) + if isinstance(reverse_temporal_transformer_layers_per_block, int): + reverse_temporal_transformer_layers_per_block = [reverse_temporal_transformer_layers_per_block] * len(down_block_types) + if isinstance(motion_num_attention_heads, int): + motion_num_attention_heads = (motion_num_attention_heads,) * len(down_block_types) + output_channel = block_out_channels[0] + for (i, down_block_type) in enumerate(down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + if down_block_type == 'CrossAttnDownBlockMotion': + down_block = CrossAttnDownBlockMotion(in_channels=input_channel, out_channels=output_channel, temb_channels=time_embed_dim, num_layers=layers_per_block[i], transformer_layers_per_block=transformer_layers_per_block[i], resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, num_attention_heads=num_attention_heads[i], cross_attention_dim=cross_attention_dim[i], downsample_padding=downsample_padding, add_downsample=not is_final_block, use_linear_projection=use_linear_projection, temporal_num_attention_heads=motion_num_attention_heads[i], temporal_max_seq_length=motion_max_seq_length, temporal_transformer_layers_per_block=temporal_transformer_layers_per_block[i]) + elif down_block_type == 'DownBlockMotion': + down_block = DownBlockMotion(in_channels=input_channel, out_channels=output_channel, temb_channels=time_embed_dim, num_layers=layers_per_block[i], resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, add_downsample=not is_final_block, downsample_padding=downsample_padding, temporal_num_attention_heads=motion_num_attention_heads[i], temporal_max_seq_length=motion_max_seq_length, temporal_transformer_layers_per_block=temporal_transformer_layers_per_block[i]) + else: + raise ValueError('Invalid `down_block_type` encountered. Must be one of `CrossAttnDownBlockMotion` or `DownBlockMotion`') + self.down_blocks.append(down_block) + if transformer_layers_per_mid_block is None: + transformer_layers_per_mid_block = transformer_layers_per_block[-1] if isinstance(transformer_layers_per_block[-1], int) else 1 + if use_motion_mid_block: + self.mid_block = UNetMidBlockCrossAttnMotion(in_channels=block_out_channels[-1], temb_channels=time_embed_dim, resnet_eps=norm_eps, resnet_act_fn=act_fn, output_scale_factor=mid_block_scale_factor, cross_attention_dim=cross_attention_dim[-1], num_attention_heads=num_attention_heads[-1], resnet_groups=norm_num_groups, dual_cross_attention=False, use_linear_projection=use_linear_projection, num_layers=mid_block_layers, temporal_num_attention_heads=motion_num_attention_heads[-1], temporal_max_seq_length=motion_max_seq_length, transformer_layers_per_block=transformer_layers_per_mid_block, temporal_transformer_layers_per_block=temporal_transformer_layers_per_mid_block) + else: + self.mid_block = UNetMidBlock2DCrossAttn(in_channels=block_out_channels[-1], temb_channels=time_embed_dim, resnet_eps=norm_eps, resnet_act_fn=act_fn, output_scale_factor=mid_block_scale_factor, cross_attention_dim=cross_attention_dim[-1], num_attention_heads=num_attention_heads[-1], resnet_groups=norm_num_groups, dual_cross_attention=False, use_linear_projection=use_linear_projection, num_layers=mid_block_layers, transformer_layers_per_block=transformer_layers_per_mid_block) + self.num_upsamplers = 0 + reversed_block_out_channels = list(reversed(block_out_channels)) + reversed_num_attention_heads = list(reversed(num_attention_heads)) + reversed_layers_per_block = list(reversed(layers_per_block)) + reversed_cross_attention_dim = list(reversed(cross_attention_dim)) + reversed_motion_num_attention_heads = list(reversed(motion_num_attention_heads)) + if reverse_transformer_layers_per_block is None: + reverse_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) + if reverse_temporal_transformer_layers_per_block is None: + reverse_temporal_transformer_layers_per_block = list(reversed(temporal_transformer_layers_per_block)) + output_channel = reversed_block_out_channels[0] + for (i, up_block_type) in enumerate(up_block_types): + is_final_block = i == len(block_out_channels) - 1 + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] + if not is_final_block: + add_upsample = True + self.num_upsamplers += 1 + else: + add_upsample = False + if up_block_type == 'CrossAttnUpBlockMotion': + up_block = CrossAttnUpBlockMotion(in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, temb_channels=time_embed_dim, resolution_idx=i, num_layers=reversed_layers_per_block[i] + 1, transformer_layers_per_block=reverse_transformer_layers_per_block[i], resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, num_attention_heads=reversed_num_attention_heads[i], cross_attention_dim=reversed_cross_attention_dim[i], add_upsample=add_upsample, use_linear_projection=use_linear_projection, temporal_num_attention_heads=reversed_motion_num_attention_heads[i], temporal_max_seq_length=motion_max_seq_length, temporal_transformer_layers_per_block=reverse_temporal_transformer_layers_per_block[i]) + elif up_block_type == 'UpBlockMotion': + up_block = UpBlockMotion(in_channels=input_channel, prev_output_channel=prev_output_channel, out_channels=output_channel, temb_channels=time_embed_dim, resolution_idx=i, num_layers=reversed_layers_per_block[i] + 1, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, add_upsample=add_upsample, temporal_num_attention_heads=reversed_motion_num_attention_heads[i], temporal_max_seq_length=motion_max_seq_length, temporal_transformer_layers_per_block=reverse_temporal_transformer_layers_per_block[i]) + else: + raise ValueError('Invalid `up_block_type` encountered. Must be one of `CrossAttnUpBlockMotion` or `UpBlockMotion`') + self.up_blocks.append(up_block) + prev_output_channel = output_channel + if norm_num_groups is not None: + self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps) + self.conv_act = nn.SiLU() + else: + self.conv_norm_out = None + self.conv_act = None + conv_out_padding = (conv_out_kernel - 1) // 2 + self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding) + + @classmethod + def from_unet2d(cls, unet: UNet2DConditionModel, motion_adapter: Optional[MotionAdapter]=None, load_weights: bool=True): + has_motion_adapter = motion_adapter is not None + if has_motion_adapter: + motion_adapter.to(device=unet.device) + if len(unet.config['down_block_types']) != len(motion_adapter.config['block_out_channels']): + raise ValueError('Incompatible Motion Adapter, got different number of blocks') + if isinstance(unet.config['layers_per_block'], int): + expanded_layers_per_block = [unet.config['layers_per_block']] * len(unet.config['down_block_types']) + else: + expanded_layers_per_block = list(unet.config['layers_per_block']) + if isinstance(motion_adapter.config['motion_layers_per_block'], int): + expanded_adapter_layers_per_block = [motion_adapter.config['motion_layers_per_block']] * len(motion_adapter.config['block_out_channels']) + else: + expanded_adapter_layers_per_block = list(motion_adapter.config['motion_layers_per_block']) + if expanded_layers_per_block != expanded_adapter_layers_per_block: + raise ValueError('Incompatible Motion Adapter, got different number of layers per block') + config = dict(unet.config) + config['_class_name'] = cls.__name__ + down_blocks = [] + for down_blocks_type in config['down_block_types']: + if 'CrossAttn' in down_blocks_type: + down_blocks.append('CrossAttnDownBlockMotion') + else: + down_blocks.append('DownBlockMotion') + config['down_block_types'] = down_blocks + up_blocks = [] + for down_blocks_type in config['up_block_types']: + if 'CrossAttn' in down_blocks_type: + up_blocks.append('CrossAttnUpBlockMotion') + else: + up_blocks.append('UpBlockMotion') + config['up_block_types'] = up_blocks + if has_motion_adapter: + config['motion_num_attention_heads'] = motion_adapter.config['motion_num_attention_heads'] + config['motion_max_seq_length'] = motion_adapter.config['motion_max_seq_length'] + config['use_motion_mid_block'] = motion_adapter.config['use_motion_mid_block'] + config['layers_per_block'] = motion_adapter.config['motion_layers_per_block'] + config['temporal_transformer_layers_per_mid_block'] = motion_adapter.config['motion_transformer_layers_per_mid_block'] + config['temporal_transformer_layers_per_block'] = motion_adapter.config['motion_transformer_layers_per_block'] + config['motion_num_attention_heads'] = motion_adapter.config['motion_num_attention_heads'] + if motion_adapter.config['conv_in_channels']: + config['in_channels'] = motion_adapter.config['conv_in_channels'] + if not config.get('num_attention_heads'): + config['num_attention_heads'] = config['attention_head_dim'] + (expected_kwargs, optional_kwargs) = cls._get_signature_keys(cls) + config = FrozenDict({k: config.get(k) for k in config if k in expected_kwargs or k in optional_kwargs}) + config['_class_name'] = cls.__name__ + model = cls.from_config(config) + if not load_weights: + return model + if has_motion_adapter and motion_adapter.config['conv_in_channels']: + model.conv_in = motion_adapter.conv_in + updated_conv_in_weight = torch.cat([unet.conv_in.weight, motion_adapter.conv_in.weight[:, 4:, :, :]], dim=1) + model.conv_in.load_state_dict({'weight': updated_conv_in_weight, 'bias': unet.conv_in.bias}) + else: + model.conv_in.load_state_dict(unet.conv_in.state_dict()) + model.time_proj.load_state_dict(unet.time_proj.state_dict()) + model.time_embedding.load_state_dict(unet.time_embedding.state_dict()) + if any((isinstance(proc, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)) for proc in unet.attn_processors.values())): + attn_procs = {} + for (name, processor) in unet.attn_processors.items(): + if name.endswith('attn1.processor'): + attn_processor_class = AttnProcessor2_0 if hasattr(F, 'scaled_dot_product_attention') else AttnProcessor + attn_procs[name] = attn_processor_class() + else: + attn_processor_class = IPAdapterAttnProcessor2_0 if hasattr(F, 'scaled_dot_product_attention') else IPAdapterAttnProcessor + attn_procs[name] = attn_processor_class(hidden_size=processor.hidden_size, cross_attention_dim=processor.cross_attention_dim, scale=processor.scale, num_tokens=processor.num_tokens) + for (name, processor) in model.attn_processors.items(): + if name not in attn_procs: + attn_procs[name] = processor.__class__() + model.set_attn_processor(attn_procs) + model.config.encoder_hid_dim_type = 'ip_image_proj' + model.encoder_hid_proj = unet.encoder_hid_proj + for (i, down_block) in enumerate(unet.down_blocks): + model.down_blocks[i].resnets.load_state_dict(down_block.resnets.state_dict()) + if hasattr(model.down_blocks[i], 'attentions'): + model.down_blocks[i].attentions.load_state_dict(down_block.attentions.state_dict()) + if model.down_blocks[i].downsamplers: + model.down_blocks[i].downsamplers.load_state_dict(down_block.downsamplers.state_dict()) + for (i, up_block) in enumerate(unet.up_blocks): + model.up_blocks[i].resnets.load_state_dict(up_block.resnets.state_dict()) + if hasattr(model.up_blocks[i], 'attentions'): + model.up_blocks[i].attentions.load_state_dict(up_block.attentions.state_dict()) + if model.up_blocks[i].upsamplers: + model.up_blocks[i].upsamplers.load_state_dict(up_block.upsamplers.state_dict()) + model.mid_block.resnets.load_state_dict(unet.mid_block.resnets.state_dict()) + model.mid_block.attentions.load_state_dict(unet.mid_block.attentions.state_dict()) + if unet.conv_norm_out is not None: + model.conv_norm_out.load_state_dict(unet.conv_norm_out.state_dict()) + if unet.conv_act is not None: + model.conv_act.load_state_dict(unet.conv_act.state_dict()) + model.conv_out.load_state_dict(unet.conv_out.state_dict()) + if has_motion_adapter: + model.load_motion_modules(motion_adapter) + model.to(unet.dtype) + return model + + def freeze_unet2d_params(self) -> None: + for param in self.parameters(): + param.requires_grad = False + for down_block in self.down_blocks: + motion_modules = down_block.motion_modules + for param in motion_modules.parameters(): + param.requires_grad = True + for up_block in self.up_blocks: + motion_modules = up_block.motion_modules + for param in motion_modules.parameters(): + param.requires_grad = True + if hasattr(self.mid_block, 'motion_modules'): + motion_modules = self.mid_block.motion_modules + for param in motion_modules.parameters(): + param.requires_grad = True + + def load_motion_modules(self, motion_adapter: Optional[MotionAdapter]) -> None: + for (i, down_block) in enumerate(motion_adapter.down_blocks): + self.down_blocks[i].motion_modules.load_state_dict(down_block.motion_modules.state_dict()) + for (i, up_block) in enumerate(motion_adapter.up_blocks): + self.up_blocks[i].motion_modules.load_state_dict(up_block.motion_modules.state_dict()) + if hasattr(self.mid_block, 'motion_modules'): + self.mid_block.motion_modules.load_state_dict(motion_adapter.mid_block.motion_modules.state_dict()) + + def save_motion_modules(self, save_directory: str, is_main_process: bool=True, safe_serialization: bool=True, variant: Optional[str]=None, push_to_hub: bool=False, **kwargs) -> None: + state_dict = self.state_dict() + motion_state_dict = {} + for (k, v) in state_dict.items(): + if 'motion_modules' in k: + motion_state_dict[k] = v + adapter = MotionAdapter(block_out_channels=self.config['block_out_channels'], motion_layers_per_block=self.config['layers_per_block'], motion_norm_num_groups=self.config['norm_num_groups'], motion_num_attention_heads=self.config['motion_num_attention_heads'], motion_max_seq_length=self.config['motion_max_seq_length'], use_motion_mid_block=self.config['use_motion_mid_block']) + adapter.load_state_dict(motion_state_dict) + adapter.save_pretrained(save_directory=save_directory, is_main_process=is_main_process, safe_serialization=safe_serialization, variant=variant, push_to_hub=push_to_hub, **kwargs) + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def enable_forward_chunking(self, chunk_size: Optional[int]=None, dim: int=0) -> None: + if dim not in [0, 1]: + raise ValueError(f'Make sure to set `dim` to either 0 or 1, not {dim}') + chunk_size = chunk_size or 1 + + def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): + if hasattr(module, 'set_chunk_feed_forward'): + module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) + for child in module.children(): + fn_recursive_feed_forward(child, chunk_size, dim) + for module in self.children(): + fn_recursive_feed_forward(module, chunk_size, dim) + + def disable_forward_chunking(self) -> None: + + def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): + if hasattr(module, 'set_chunk_feed_forward'): + module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) + for child in module.children(): + fn_recursive_feed_forward(child, chunk_size, dim) + for module in self.children(): + fn_recursive_feed_forward(module, None, 0) + + def set_default_attn_processor(self) -> None: + if all((proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnAddedKVProcessor() + elif all((proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnProcessor() + else: + raise ValueError(f'Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}') + self.set_attn_processor(processor) + + def _set_gradient_checkpointing(self, module, value: bool=False) -> None: + if isinstance(module, (CrossAttnDownBlockMotion, DownBlockMotion, CrossAttnUpBlockMotion, UpBlockMotion)): + module.gradient_checkpointing = value + + def enable_freeu(self, s1: float, s2: float, b1: float, b2: float) -> None: + for (i, upsample_block) in enumerate(self.up_blocks): + setattr(upsample_block, 's1', s1) + setattr(upsample_block, 's2', s2) + setattr(upsample_block, 'b1', b1) + setattr(upsample_block, 'b2', b2) + + def disable_freeu(self) -> None: + freeu_keys = {'s1', 's2', 'b1', 'b2'} + for (i, upsample_block) in enumerate(self.up_blocks): + for k in freeu_keys: + if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None: + setattr(upsample_block, k, None) + + def fuse_qkv_projections(self): + self.original_attn_processors = None + for (_, attn_processor) in self.attn_processors.items(): + if 'Added' in str(attn_processor.__class__.__name__): + raise ValueError('`fuse_qkv_projections()` is not supported for models having added KV projections.') + self.original_attn_processors = self.attn_processors + for module in self.modules(): + if isinstance(module, Attention): + module.fuse_projections(fuse=True) + self.set_attn_processor(FusedAttnProcessor2_0()) + + def unfuse_qkv_projections(self): + if self.original_attn_processors is not None: + self.set_attn_processor(self.original_attn_processors) + + def forward(self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, timestep_cond: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, added_cond_kwargs: Optional[Dict[str, torch.Tensor]]=None, down_block_additional_residuals: Optional[Tuple[torch.Tensor]]=None, mid_block_additional_residual: Optional[torch.Tensor]=None, return_dict: bool=True) -> Union[UNetMotionOutput, Tuple[torch.Tensor]]: + default_overall_up_factor = 2 ** self.num_upsamplers + forward_upsample_size = False + upsample_size = None + if any((s % default_overall_up_factor != 0 for s in sample.shape[-2:])): + logger.info('Forward upsample size to force interpolation output size.') + forward_upsample_size = True + if attention_mask is not None: + attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + timesteps = timestep + if not torch.is_tensor(timesteps): + is_mps = sample.device.type == 'mps' + if isinstance(timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + num_frames = sample.shape[2] + timesteps = timesteps.expand(sample.shape[0]) + t_emb = self.time_proj(timesteps) + t_emb = t_emb.to(dtype=self.dtype) + emb = self.time_embedding(t_emb, timestep_cond) + aug_emb = None + if self.config.addition_embed_type == 'text_time': + if 'text_embeds' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`") + text_embeds = added_cond_kwargs.get('text_embeds') + if 'time_ids' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`") + time_ids = added_cond_kwargs.get('time_ids') + time_embeds = self.add_time_proj(time_ids.flatten()) + time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) + add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) + add_embeds = add_embeds.to(emb.dtype) + aug_emb = self.add_embedding(add_embeds) + emb = emb if aug_emb is None else emb + aug_emb + emb = emb.repeat_interleave(repeats=num_frames, dim=0) + if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == 'ip_image_proj': + if 'image_embeds' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`") + image_embeds = added_cond_kwargs.get('image_embeds') + image_embeds = self.encoder_hid_proj(image_embeds) + image_embeds = [image_embed.repeat_interleave(repeats=num_frames, dim=0) for image_embed in image_embeds] + encoder_hidden_states = (encoder_hidden_states, image_embeds) + sample = sample.permute(0, 2, 1, 3, 4).reshape((sample.shape[0] * num_frames, -1) + sample.shape[3:]) + sample = self.conv_in(sample) + down_block_res_samples = (sample,) + for downsample_block in self.down_blocks: + if hasattr(downsample_block, 'has_cross_attention') and downsample_block.has_cross_attention: + (sample, res_samples) = downsample_block(hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs) + else: + (sample, res_samples) = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames) + down_block_res_samples += res_samples + if down_block_additional_residuals is not None: + new_down_block_res_samples = () + for (down_block_res_sample, down_block_additional_residual) in zip(down_block_res_samples, down_block_additional_residuals): + down_block_res_sample = down_block_res_sample + down_block_additional_residual + new_down_block_res_samples += (down_block_res_sample,) + down_block_res_samples = new_down_block_res_samples + if self.mid_block is not None: + if hasattr(self.mid_block, 'motion_modules'): + sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs) + else: + sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs) + if mid_block_additional_residual is not None: + sample = sample + mid_block_additional_residual + for (i, upsample_block) in enumerate(self.up_blocks): + is_final_block = i == len(self.up_blocks) - 1 + res_samples = down_block_res_samples[-len(upsample_block.resnets):] + down_block_res_samples = down_block_res_samples[:-len(upsample_block.resnets)] + if not is_final_block and forward_upsample_size: + upsample_size = down_block_res_samples[-1].shape[2:] + if hasattr(upsample_block, 'has_cross_attention') and upsample_block.has_cross_attention: + sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, encoder_hidden_states=encoder_hidden_states, upsample_size=upsample_size, attention_mask=attention_mask, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs) + else: + sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size, num_frames=num_frames) + if self.conv_norm_out: + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + sample = sample[None, :].reshape((-1, num_frames) + sample.shape[1:]).permute(0, 2, 1, 3, 4) + if not return_dict: + return (sample,) + return UNetMotionOutput(sample=sample) + +# File: diffusers-main/src/diffusers/models/unets/unet_spatio_temporal_condition.py +from dataclasses import dataclass +from typing import Dict, Optional, Tuple, Union +import torch +import torch.nn as nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...loaders import UNet2DConditionLoadersMixin +from ...utils import BaseOutput, logging +from ..attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor +from ..embeddings import TimestepEmbedding, Timesteps +from ..modeling_utils import ModelMixin +from .unet_3d_blocks import UNetMidBlockSpatioTemporal, get_down_block, get_up_block +logger = logging.get_logger(__name__) + +@dataclass +class UNetSpatioTemporalConditionOutput(BaseOutput): + sample: torch.Tensor = None + +class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__(self, sample_size: Optional[int]=None, in_channels: int=8, out_channels: int=4, down_block_types: Tuple[str]=('CrossAttnDownBlockSpatioTemporal', 'CrossAttnDownBlockSpatioTemporal', 'CrossAttnDownBlockSpatioTemporal', 'DownBlockSpatioTemporal'), up_block_types: Tuple[str]=('UpBlockSpatioTemporal', 'CrossAttnUpBlockSpatioTemporal', 'CrossAttnUpBlockSpatioTemporal', 'CrossAttnUpBlockSpatioTemporal'), block_out_channels: Tuple[int]=(320, 640, 1280, 1280), addition_time_embed_dim: int=256, projection_class_embeddings_input_dim: int=768, layers_per_block: Union[int, Tuple[int]]=2, cross_attention_dim: Union[int, Tuple[int]]=1024, transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]]=1, num_attention_heads: Union[int, Tuple[int]]=(5, 10, 20, 20), num_frames: int=25): + super().__init__() + self.sample_size = sample_size + if len(down_block_types) != len(up_block_types): + raise ValueError(f'Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}.') + if len(block_out_channels) != len(down_block_types): + raise ValueError(f'Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}.') + if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): + raise ValueError(f'Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}.') + if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): + raise ValueError(f'Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}.') + if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): + raise ValueError(f'Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}.') + self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=1) + time_embed_dim = block_out_channels[0] * 4 + self.time_proj = Timesteps(block_out_channels[0], True, downscale_freq_shift=0) + timestep_input_dim = block_out_channels[0] + self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) + self.add_time_proj = Timesteps(addition_time_embed_dim, True, downscale_freq_shift=0) + self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + self.down_blocks = nn.ModuleList([]) + self.up_blocks = nn.ModuleList([]) + if isinstance(num_attention_heads, int): + num_attention_heads = (num_attention_heads,) * len(down_block_types) + if isinstance(cross_attention_dim, int): + cross_attention_dim = (cross_attention_dim,) * len(down_block_types) + if isinstance(layers_per_block, int): + layers_per_block = [layers_per_block] * len(down_block_types) + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) + blocks_time_embed_dim = time_embed_dim + output_channel = block_out_channels[0] + for (i, down_block_type) in enumerate(down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + down_block = get_down_block(down_block_type, num_layers=layers_per_block[i], transformer_layers_per_block=transformer_layers_per_block[i], in_channels=input_channel, out_channels=output_channel, temb_channels=blocks_time_embed_dim, add_downsample=not is_final_block, resnet_eps=1e-05, cross_attention_dim=cross_attention_dim[i], num_attention_heads=num_attention_heads[i], resnet_act_fn='silu') + self.down_blocks.append(down_block) + self.mid_block = UNetMidBlockSpatioTemporal(block_out_channels[-1], temb_channels=blocks_time_embed_dim, transformer_layers_per_block=transformer_layers_per_block[-1], cross_attention_dim=cross_attention_dim[-1], num_attention_heads=num_attention_heads[-1]) + self.num_upsamplers = 0 + reversed_block_out_channels = list(reversed(block_out_channels)) + reversed_num_attention_heads = list(reversed(num_attention_heads)) + reversed_layers_per_block = list(reversed(layers_per_block)) + reversed_cross_attention_dim = list(reversed(cross_attention_dim)) + reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) + output_channel = reversed_block_out_channels[0] + for (i, up_block_type) in enumerate(up_block_types): + is_final_block = i == len(block_out_channels) - 1 + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] + if not is_final_block: + add_upsample = True + self.num_upsamplers += 1 + else: + add_upsample = False + up_block = get_up_block(up_block_type, num_layers=reversed_layers_per_block[i] + 1, transformer_layers_per_block=reversed_transformer_layers_per_block[i], in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, temb_channels=blocks_time_embed_dim, add_upsample=add_upsample, resnet_eps=1e-05, resolution_idx=i, cross_attention_dim=reversed_cross_attention_dim[i], num_attention_heads=reversed_num_attention_heads[i], resnet_act_fn='silu') + self.up_blocks.append(up_block) + prev_output_channel = output_channel + self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-05) + self.conv_act = nn.SiLU() + self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1) + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def set_default_attn_processor(self): + if all((proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnProcessor() + else: + raise ValueError(f'Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}') + self.set_attn_processor(processor) + + def _set_gradient_checkpointing(self, module, value=False): + if hasattr(module, 'gradient_checkpointing'): + module.gradient_checkpointing = value + + def enable_forward_chunking(self, chunk_size: Optional[int]=None, dim: int=0) -> None: + if dim not in [0, 1]: + raise ValueError(f'Make sure to set `dim` to either 0 or 1, not {dim}') + chunk_size = chunk_size or 1 + + def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): + if hasattr(module, 'set_chunk_feed_forward'): + module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) + for child in module.children(): + fn_recursive_feed_forward(child, chunk_size, dim) + for module in self.children(): + fn_recursive_feed_forward(module, chunk_size, dim) + + def forward(self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, added_time_ids: torch.Tensor, return_dict: bool=True) -> Union[UNetSpatioTemporalConditionOutput, Tuple]: + timesteps = timestep + if not torch.is_tensor(timesteps): + is_mps = sample.device.type == 'mps' + if isinstance(timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + (batch_size, num_frames) = sample.shape[:2] + timesteps = timesteps.expand(batch_size) + t_emb = self.time_proj(timesteps) + t_emb = t_emb.to(dtype=sample.dtype) + emb = self.time_embedding(t_emb) + time_embeds = self.add_time_proj(added_time_ids.flatten()) + time_embeds = time_embeds.reshape((batch_size, -1)) + time_embeds = time_embeds.to(emb.dtype) + aug_emb = self.add_embedding(time_embeds) + emb = emb + aug_emb + sample = sample.flatten(0, 1) + emb = emb.repeat_interleave(num_frames, dim=0) + encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0) + sample = self.conv_in(sample) + image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device) + down_block_res_samples = (sample,) + for downsample_block in self.down_blocks: + if hasattr(downsample_block, 'has_cross_attention') and downsample_block.has_cross_attention: + (sample, res_samples) = downsample_block(hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, image_only_indicator=image_only_indicator) + else: + (sample, res_samples) = downsample_block(hidden_states=sample, temb=emb, image_only_indicator=image_only_indicator) + down_block_res_samples += res_samples + sample = self.mid_block(hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, image_only_indicator=image_only_indicator) + for (i, upsample_block) in enumerate(self.up_blocks): + res_samples = down_block_res_samples[-len(upsample_block.resnets):] + down_block_res_samples = down_block_res_samples[:-len(upsample_block.resnets)] + if hasattr(upsample_block, 'has_cross_attention') and upsample_block.has_cross_attention: + sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, encoder_hidden_states=encoder_hidden_states, image_only_indicator=image_only_indicator) + else: + sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, image_only_indicator=image_only_indicator) + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + sample = sample.reshape(batch_size, num_frames, *sample.shape[1:]) + if not return_dict: + return (sample,) + return UNetSpatioTemporalConditionOutput(sample=sample) + +# File: diffusers-main/src/diffusers/models/unets/unet_stable_cascade.py +import math +from dataclasses import dataclass +from typing import Optional, Tuple, Union +import numpy as np +import torch +import torch.nn as nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...loaders import FromOriginalModelMixin +from ...utils import BaseOutput +from ..attention_processor import Attention +from ..modeling_utils import ModelMixin + +class SDCascadeLayerNorm(nn.LayerNorm): + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + def forward(self, x): + x = x.permute(0, 2, 3, 1) + x = super().forward(x) + return x.permute(0, 3, 1, 2) + +class SDCascadeTimestepBlock(nn.Module): + + def __init__(self, c, c_timestep, conds=[]): + super().__init__() + self.mapper = nn.Linear(c_timestep, c * 2) + self.conds = conds + for cname in conds: + setattr(self, f'mapper_{cname}', nn.Linear(c_timestep, c * 2)) + + def forward(self, x, t): + t = t.chunk(len(self.conds) + 1, dim=1) + (a, b) = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1) + for (i, c) in enumerate(self.conds): + (ac, bc) = getattr(self, f'mapper_{c}')(t[i + 1])[:, :, None, None].chunk(2, dim=1) + (a, b) = (a + ac, b + bc) + return x * (1 + a) + b + +class SDCascadeResBlock(nn.Module): + + def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0): + super().__init__() + self.depthwise = nn.Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c) + self.norm = SDCascadeLayerNorm(c, elementwise_affine=False, eps=1e-06) + self.channelwise = nn.Sequential(nn.Linear(c + c_skip, c * 4), nn.GELU(), GlobalResponseNorm(c * 4), nn.Dropout(dropout), nn.Linear(c * 4, c)) + + def forward(self, x, x_skip=None): + x_res = x + x = self.norm(self.depthwise(x)) + if x_skip is not None: + x = torch.cat([x, x_skip], dim=1) + x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + return x + x_res + +class GlobalResponseNorm(nn.Module): + + def __init__(self, dim): + super().__init__() + self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) + self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) + + def forward(self, x): + agg_norm = torch.norm(x, p=2, dim=(1, 2), keepdim=True) + stand_div_norm = agg_norm / (agg_norm.mean(dim=-1, keepdim=True) + 1e-06) + return self.gamma * (x * stand_div_norm) + self.beta + x + +class SDCascadeAttnBlock(nn.Module): + + def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0): + super().__init__() + self.self_attn = self_attn + self.norm = SDCascadeLayerNorm(c, elementwise_affine=False, eps=1e-06) + self.attention = Attention(query_dim=c, heads=nhead, dim_head=c // nhead, dropout=dropout, bias=True) + self.kv_mapper = nn.Sequential(nn.SiLU(), nn.Linear(c_cond, c)) + + def forward(self, x, kv): + kv = self.kv_mapper(kv) + norm_x = self.norm(x) + if self.self_attn: + (batch_size, channel, _, _) = x.shape + kv = torch.cat([norm_x.view(batch_size, channel, -1).transpose(1, 2), kv], dim=1) + x = x + self.attention(norm_x, encoder_hidden_states=kv) + return x + +class UpDownBlock2d(nn.Module): + + def __init__(self, in_channels, out_channels, mode, enabled=True): + super().__init__() + if mode not in ['up', 'down']: + raise ValueError(f'{mode} not supported') + interpolation = nn.Upsample(scale_factor=2 if mode == 'up' else 0.5, mode='bilinear', align_corners=True) if enabled else nn.Identity() + mapping = nn.Conv2d(in_channels, out_channels, kernel_size=1) + self.blocks = nn.ModuleList([interpolation, mapping] if mode == 'up' else [mapping, interpolation]) + + def forward(self, x): + for block in self.blocks: + x = block(x) + return x + +@dataclass +class StableCascadeUNetOutput(BaseOutput): + sample: torch.Tensor = None + +class StableCascadeUNet(ModelMixin, ConfigMixin, FromOriginalModelMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__(self, in_channels: int=16, out_channels: int=16, timestep_ratio_embedding_dim: int=64, patch_size: int=1, conditioning_dim: int=2048, block_out_channels: Tuple[int]=(2048, 2048), num_attention_heads: Tuple[int]=(32, 32), down_num_layers_per_block: Tuple[int]=(8, 24), up_num_layers_per_block: Tuple[int]=(24, 8), down_blocks_repeat_mappers: Optional[Tuple[int]]=(1, 1), up_blocks_repeat_mappers: Optional[Tuple[int]]=(1, 1), block_types_per_layer: Tuple[Tuple[str]]=(('SDCascadeResBlock', 'SDCascadeTimestepBlock', 'SDCascadeAttnBlock'), ('SDCascadeResBlock', 'SDCascadeTimestepBlock', 'SDCascadeAttnBlock')), clip_text_in_channels: Optional[int]=None, clip_text_pooled_in_channels=1280, clip_image_in_channels: Optional[int]=None, clip_seq=4, effnet_in_channels: Optional[int]=None, pixel_mapper_in_channels: Optional[int]=None, kernel_size=3, dropout: Union[float, Tuple[float]]=(0.1, 0.1), self_attn: Union[bool, Tuple[bool]]=True, timestep_conditioning_type: Tuple[str]=('sca', 'crp'), switch_level: Optional[Tuple[bool]]=None): + super().__init__() + if len(block_out_channels) != len(down_num_layers_per_block): + raise ValueError(f'Number of elements in `down_num_layers_per_block` must match the length of `block_out_channels`: {len(block_out_channels)}') + elif len(block_out_channels) != len(up_num_layers_per_block): + raise ValueError(f'Number of elements in `up_num_layers_per_block` must match the length of `block_out_channels`: {len(block_out_channels)}') + elif len(block_out_channels) != len(down_blocks_repeat_mappers): + raise ValueError(f'Number of elements in `down_blocks_repeat_mappers` must match the length of `block_out_channels`: {len(block_out_channels)}') + elif len(block_out_channels) != len(up_blocks_repeat_mappers): + raise ValueError(f'Number of elements in `up_blocks_repeat_mappers` must match the length of `block_out_channels`: {len(block_out_channels)}') + elif len(block_out_channels) != len(block_types_per_layer): + raise ValueError(f'Number of elements in `block_types_per_layer` must match the length of `block_out_channels`: {len(block_out_channels)}') + if isinstance(dropout, float): + dropout = (dropout,) * len(block_out_channels) + if isinstance(self_attn, bool): + self_attn = (self_attn,) * len(block_out_channels) + if effnet_in_channels is not None: + self.effnet_mapper = nn.Sequential(nn.Conv2d(effnet_in_channels, block_out_channels[0] * 4, kernel_size=1), nn.GELU(), nn.Conv2d(block_out_channels[0] * 4, block_out_channels[0], kernel_size=1), SDCascadeLayerNorm(block_out_channels[0], elementwise_affine=False, eps=1e-06)) + if pixel_mapper_in_channels is not None: + self.pixels_mapper = nn.Sequential(nn.Conv2d(pixel_mapper_in_channels, block_out_channels[0] * 4, kernel_size=1), nn.GELU(), nn.Conv2d(block_out_channels[0] * 4, block_out_channels[0], kernel_size=1), SDCascadeLayerNorm(block_out_channels[0], elementwise_affine=False, eps=1e-06)) + self.clip_txt_pooled_mapper = nn.Linear(clip_text_pooled_in_channels, conditioning_dim * clip_seq) + if clip_text_in_channels is not None: + self.clip_txt_mapper = nn.Linear(clip_text_in_channels, conditioning_dim) + if clip_image_in_channels is not None: + self.clip_img_mapper = nn.Linear(clip_image_in_channels, conditioning_dim * clip_seq) + self.clip_norm = nn.LayerNorm(conditioning_dim, elementwise_affine=False, eps=1e-06) + self.embedding = nn.Sequential(nn.PixelUnshuffle(patch_size), nn.Conv2d(in_channels * patch_size ** 2, block_out_channels[0], kernel_size=1), SDCascadeLayerNorm(block_out_channels[0], elementwise_affine=False, eps=1e-06)) + + def get_block(block_type, in_channels, nhead, c_skip=0, dropout=0, self_attn=True): + if block_type == 'SDCascadeResBlock': + return SDCascadeResBlock(in_channels, c_skip, kernel_size=kernel_size, dropout=dropout) + elif block_type == 'SDCascadeAttnBlock': + return SDCascadeAttnBlock(in_channels, conditioning_dim, nhead, self_attn=self_attn, dropout=dropout) + elif block_type == 'SDCascadeTimestepBlock': + return SDCascadeTimestepBlock(in_channels, timestep_ratio_embedding_dim, conds=timestep_conditioning_type) + else: + raise ValueError(f'Block type {block_type} not supported') + self.down_blocks = nn.ModuleList() + self.down_downscalers = nn.ModuleList() + self.down_repeat_mappers = nn.ModuleList() + for i in range(len(block_out_channels)): + if i > 0: + self.down_downscalers.append(nn.Sequential(SDCascadeLayerNorm(block_out_channels[i - 1], elementwise_affine=False, eps=1e-06), UpDownBlock2d(block_out_channels[i - 1], block_out_channels[i], mode='down', enabled=switch_level[i - 1]) if switch_level is not None else nn.Conv2d(block_out_channels[i - 1], block_out_channels[i], kernel_size=2, stride=2))) + else: + self.down_downscalers.append(nn.Identity()) + down_block = nn.ModuleList() + for _ in range(down_num_layers_per_block[i]): + for block_type in block_types_per_layer[i]: + block = get_block(block_type, block_out_channels[i], num_attention_heads[i], dropout=dropout[i], self_attn=self_attn[i]) + down_block.append(block) + self.down_blocks.append(down_block) + if down_blocks_repeat_mappers is not None: + block_repeat_mappers = nn.ModuleList() + for _ in range(down_blocks_repeat_mappers[i] - 1): + block_repeat_mappers.append(nn.Conv2d(block_out_channels[i], block_out_channels[i], kernel_size=1)) + self.down_repeat_mappers.append(block_repeat_mappers) + self.up_blocks = nn.ModuleList() + self.up_upscalers = nn.ModuleList() + self.up_repeat_mappers = nn.ModuleList() + for i in reversed(range(len(block_out_channels))): + if i > 0: + self.up_upscalers.append(nn.Sequential(SDCascadeLayerNorm(block_out_channels[i], elementwise_affine=False, eps=1e-06), UpDownBlock2d(block_out_channels[i], block_out_channels[i - 1], mode='up', enabled=switch_level[i - 1]) if switch_level is not None else nn.ConvTranspose2d(block_out_channels[i], block_out_channels[i - 1], kernel_size=2, stride=2))) + else: + self.up_upscalers.append(nn.Identity()) + up_block = nn.ModuleList() + for j in range(up_num_layers_per_block[::-1][i]): + for (k, block_type) in enumerate(block_types_per_layer[i]): + c_skip = block_out_channels[i] if i < len(block_out_channels) - 1 and j == k == 0 else 0 + block = get_block(block_type, block_out_channels[i], num_attention_heads[i], c_skip=c_skip, dropout=dropout[i], self_attn=self_attn[i]) + up_block.append(block) + self.up_blocks.append(up_block) + if up_blocks_repeat_mappers is not None: + block_repeat_mappers = nn.ModuleList() + for _ in range(up_blocks_repeat_mappers[::-1][i] - 1): + block_repeat_mappers.append(nn.Conv2d(block_out_channels[i], block_out_channels[i], kernel_size=1)) + self.up_repeat_mappers.append(block_repeat_mappers) + self.clf = nn.Sequential(SDCascadeLayerNorm(block_out_channels[0], elementwise_affine=False, eps=1e-06), nn.Conv2d(block_out_channels[0], out_channels * patch_size ** 2, kernel_size=1), nn.PixelShuffle(patch_size)) + self.gradient_checkpointing = False + + def _set_gradient_checkpointing(self, value=False): + self.gradient_checkpointing = value + + def _init_weights(self, m): + if isinstance(m, (nn.Conv2d, nn.Linear)): + torch.nn.init.xavier_uniform_(m.weight) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + nn.init.normal_(self.clip_txt_pooled_mapper.weight, std=0.02) + nn.init.normal_(self.clip_txt_mapper.weight, std=0.02) if hasattr(self, 'clip_txt_mapper') else None + nn.init.normal_(self.clip_img_mapper.weight, std=0.02) if hasattr(self, 'clip_img_mapper') else None + if hasattr(self, 'effnet_mapper'): + nn.init.normal_(self.effnet_mapper[0].weight, std=0.02) + nn.init.normal_(self.effnet_mapper[2].weight, std=0.02) + if hasattr(self, 'pixels_mapper'): + nn.init.normal_(self.pixels_mapper[0].weight, std=0.02) + nn.init.normal_(self.pixels_mapper[2].weight, std=0.02) + torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) + nn.init.constant_(self.clf[1].weight, 0) + for level_block in self.down_blocks + self.up_blocks: + for block in level_block: + if isinstance(block, SDCascadeResBlock): + block.channelwise[-1].weight.data *= np.sqrt(1 / sum(self.config.blocks[0])) + elif isinstance(block, SDCascadeTimestepBlock): + nn.init.constant_(block.mapper.weight, 0) + + def get_timestep_ratio_embedding(self, timestep_ratio, max_positions=10000): + r = timestep_ratio * max_positions + half_dim = self.config.timestep_ratio_embedding_dim // 2 + emb = math.log(max_positions) / (half_dim - 1) + emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp() + emb = r[:, None] * emb[None, :] + emb = torch.cat([emb.sin(), emb.cos()], dim=1) + if self.config.timestep_ratio_embedding_dim % 2 == 1: + emb = nn.functional.pad(emb, (0, 1), mode='constant') + return emb.to(dtype=r.dtype) + + def get_clip_embeddings(self, clip_txt_pooled, clip_txt=None, clip_img=None): + if len(clip_txt_pooled.shape) == 2: + clip_txt_pool = clip_txt_pooled.unsqueeze(1) + clip_txt_pool = self.clip_txt_pooled_mapper(clip_txt_pooled).view(clip_txt_pooled.size(0), clip_txt_pooled.size(1) * self.config.clip_seq, -1) + if clip_txt is not None and clip_img is not None: + clip_txt = self.clip_txt_mapper(clip_txt) + if len(clip_img.shape) == 2: + clip_img = clip_img.unsqueeze(1) + clip_img = self.clip_img_mapper(clip_img).view(clip_img.size(0), clip_img.size(1) * self.config.clip_seq, -1) + clip = torch.cat([clip_txt, clip_txt_pool, clip_img], dim=1) + else: + clip = clip_txt_pool + return self.clip_norm(clip) + + def _down_encode(self, x, r_embed, clip): + level_outputs = [] + block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers) + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + for (down_block, downscaler, repmap) in block_group: + x = downscaler(x) + for i in range(len(repmap) + 1): + for block in down_block: + if isinstance(block, SDCascadeResBlock): + x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, use_reentrant=False) + elif isinstance(block, SDCascadeAttnBlock): + x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, clip, use_reentrant=False) + elif isinstance(block, SDCascadeTimestepBlock): + x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, r_embed, use_reentrant=False) + else: + x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), use_reentrant=False) + if i < len(repmap): + x = repmap[i](x) + level_outputs.insert(0, x) + else: + for (down_block, downscaler, repmap) in block_group: + x = downscaler(x) + for i in range(len(repmap) + 1): + for block in down_block: + if isinstance(block, SDCascadeResBlock): + x = block(x) + elif isinstance(block, SDCascadeAttnBlock): + x = block(x, clip) + elif isinstance(block, SDCascadeTimestepBlock): + x = block(x, r_embed) + else: + x = block(x) + if i < len(repmap): + x = repmap[i](x) + level_outputs.insert(0, x) + return level_outputs + + def _up_decode(self, level_outputs, r_embed, clip): + x = level_outputs[0] + block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers) + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + for (i, (up_block, upscaler, repmap)) in enumerate(block_group): + for j in range(len(repmap) + 1): + for (k, block) in enumerate(up_block): + if isinstance(block, SDCascadeResBlock): + skip = level_outputs[i] if k == 0 and i > 0 else None + if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)): + orig_type = x.dtype + x = torch.nn.functional.interpolate(x.float(), skip.shape[-2:], mode='bilinear', align_corners=True) + x = x.to(orig_type) + x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, skip, use_reentrant=False) + elif isinstance(block, SDCascadeAttnBlock): + x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, clip, use_reentrant=False) + elif isinstance(block, SDCascadeTimestepBlock): + x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, r_embed, use_reentrant=False) + else: + x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, use_reentrant=False) + if j < len(repmap): + x = repmap[j](x) + x = upscaler(x) + else: + for (i, (up_block, upscaler, repmap)) in enumerate(block_group): + for j in range(len(repmap) + 1): + for (k, block) in enumerate(up_block): + if isinstance(block, SDCascadeResBlock): + skip = level_outputs[i] if k == 0 and i > 0 else None + if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)): + orig_type = x.dtype + x = torch.nn.functional.interpolate(x.float(), skip.shape[-2:], mode='bilinear', align_corners=True) + x = x.to(orig_type) + x = block(x, skip) + elif isinstance(block, SDCascadeAttnBlock): + x = block(x, clip) + elif isinstance(block, SDCascadeTimestepBlock): + x = block(x, r_embed) + else: + x = block(x) + if j < len(repmap): + x = repmap[j](x) + x = upscaler(x) + return x + + def forward(self, sample, timestep_ratio, clip_text_pooled, clip_text=None, clip_img=None, effnet=None, pixels=None, sca=None, crp=None, return_dict=True): + if pixels is None: + pixels = sample.new_zeros(sample.size(0), 3, 8, 8) + timestep_ratio_embed = self.get_timestep_ratio_embedding(timestep_ratio) + for c in self.config.timestep_conditioning_type: + if c == 'sca': + cond = sca + elif c == 'crp': + cond = crp + else: + cond = None + t_cond = cond or torch.zeros_like(timestep_ratio) + timestep_ratio_embed = torch.cat([timestep_ratio_embed, self.get_timestep_ratio_embedding(t_cond)], dim=1) + clip = self.get_clip_embeddings(clip_txt_pooled=clip_text_pooled, clip_txt=clip_text, clip_img=clip_img) + x = self.embedding(sample) + if hasattr(self, 'effnet_mapper') and effnet is not None: + x = x + self.effnet_mapper(nn.functional.interpolate(effnet, size=x.shape[-2:], mode='bilinear', align_corners=True)) + if hasattr(self, 'pixels_mapper'): + x = x + nn.functional.interpolate(self.pixels_mapper(pixels), size=x.shape[-2:], mode='bilinear', align_corners=True) + level_outputs = self._down_encode(x, timestep_ratio_embed, clip) + x = self._up_decode(level_outputs, timestep_ratio_embed, clip) + sample = self.clf(x) + if not return_dict: + return (sample,) + return StableCascadeUNetOutput(sample=sample) + +# File: diffusers-main/src/diffusers/models/unets/uvit_2d.py +from typing import Dict, Union +import torch +import torch.nn.functional as F +from torch import nn +from torch.utils.checkpoint import checkpoint +from ...configuration_utils import ConfigMixin, register_to_config +from ...loaders import PeftAdapterMixin +from ..attention import BasicTransformerBlock, SkipFFTransformerBlock +from ..attention_processor import ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnAddedKVProcessor, AttnProcessor +from ..embeddings import TimestepEmbedding, get_timestep_embedding +from ..modeling_utils import ModelMixin +from ..normalization import GlobalResponseNorm, RMSNorm +from ..resnet import Downsample2D, Upsample2D + +class UVit2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__(self, hidden_size: int=1024, use_bias: bool=False, hidden_dropout: float=0.0, cond_embed_dim: int=768, micro_cond_encode_dim: int=256, micro_cond_embed_dim: int=1280, encoder_hidden_size: int=768, vocab_size: int=8256, codebook_size: int=8192, in_channels: int=768, block_out_channels: int=768, num_res_blocks: int=3, downsample: bool=False, upsample: bool=False, block_num_heads: int=12, num_hidden_layers: int=22, num_attention_heads: int=16, attention_dropout: float=0.0, intermediate_size: int=2816, layer_norm_eps: float=1e-06, ln_elementwise_affine: bool=True, sample_size: int=64): + super().__init__() + self.encoder_proj = nn.Linear(encoder_hidden_size, hidden_size, bias=use_bias) + self.encoder_proj_layer_norm = RMSNorm(hidden_size, layer_norm_eps, ln_elementwise_affine) + self.embed = UVit2DConvEmbed(in_channels, block_out_channels, vocab_size, ln_elementwise_affine, layer_norm_eps, use_bias) + self.cond_embed = TimestepEmbedding(micro_cond_embed_dim + cond_embed_dim, hidden_size, sample_proj_bias=use_bias) + self.down_block = UVitBlock(block_out_channels, num_res_blocks, hidden_size, hidden_dropout, ln_elementwise_affine, layer_norm_eps, use_bias, block_num_heads, attention_dropout, downsample, False) + self.project_to_hidden_norm = RMSNorm(block_out_channels, layer_norm_eps, ln_elementwise_affine) + self.project_to_hidden = nn.Linear(block_out_channels, hidden_size, bias=use_bias) + self.transformer_layers = nn.ModuleList([BasicTransformerBlock(dim=hidden_size, num_attention_heads=num_attention_heads, attention_head_dim=hidden_size // num_attention_heads, dropout=hidden_dropout, cross_attention_dim=hidden_size, attention_bias=use_bias, norm_type='ada_norm_continuous', ada_norm_continous_conditioning_embedding_dim=hidden_size, norm_elementwise_affine=ln_elementwise_affine, norm_eps=layer_norm_eps, ada_norm_bias=use_bias, ff_inner_dim=intermediate_size, ff_bias=use_bias, attention_out_bias=use_bias) for _ in range(num_hidden_layers)]) + self.project_from_hidden_norm = RMSNorm(hidden_size, layer_norm_eps, ln_elementwise_affine) + self.project_from_hidden = nn.Linear(hidden_size, block_out_channels, bias=use_bias) + self.up_block = UVitBlock(block_out_channels, num_res_blocks, hidden_size, hidden_dropout, ln_elementwise_affine, layer_norm_eps, use_bias, block_num_heads, attention_dropout, downsample=False, upsample=upsample) + self.mlm_layer = ConvMlmLayer(block_out_channels, in_channels, use_bias, ln_elementwise_affine, layer_norm_eps, codebook_size) + self.gradient_checkpointing = False + + def _set_gradient_checkpointing(self, module, value: bool=False) -> None: + pass + + def forward(self, input_ids, encoder_hidden_states, pooled_text_emb, micro_conds, cross_attention_kwargs=None): + encoder_hidden_states = self.encoder_proj(encoder_hidden_states) + encoder_hidden_states = self.encoder_proj_layer_norm(encoder_hidden_states) + micro_cond_embeds = get_timestep_embedding(micro_conds.flatten(), self.config.micro_cond_encode_dim, flip_sin_to_cos=True, downscale_freq_shift=0) + micro_cond_embeds = micro_cond_embeds.reshape((input_ids.shape[0], -1)) + pooled_text_emb = torch.cat([pooled_text_emb, micro_cond_embeds], dim=1) + pooled_text_emb = pooled_text_emb.to(dtype=self.dtype) + pooled_text_emb = self.cond_embed(pooled_text_emb).to(encoder_hidden_states.dtype) + hidden_states = self.embed(input_ids) + hidden_states = self.down_block(hidden_states, pooled_text_emb=pooled_text_emb, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs) + (batch_size, channels, height, width) = hidden_states.shape + hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_size, height * width, channels) + hidden_states = self.project_to_hidden_norm(hidden_states) + hidden_states = self.project_to_hidden(hidden_states) + for layer in self.transformer_layers: + if self.training and self.gradient_checkpointing: + + def layer_(*args): + return checkpoint(layer, *args) + else: + layer_ = layer + hidden_states = layer_(hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs={'pooled_text_emb': pooled_text_emb}) + hidden_states = self.project_from_hidden_norm(hidden_states) + hidden_states = self.project_from_hidden(hidden_states) + hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2) + hidden_states = self.up_block(hidden_states, pooled_text_emb=pooled_text_emb, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs) + logits = self.mlm_layer(hidden_states) + return logits + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def set_default_attn_processor(self): + if all((proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnAddedKVProcessor() + elif all((proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnProcessor() + else: + raise ValueError(f'Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}') + self.set_attn_processor(processor) + +class UVit2DConvEmbed(nn.Module): + + def __init__(self, in_channels, block_out_channels, vocab_size, elementwise_affine, eps, bias): + super().__init__() + self.embeddings = nn.Embedding(vocab_size, in_channels) + self.layer_norm = RMSNorm(in_channels, eps, elementwise_affine) + self.conv = nn.Conv2d(in_channels, block_out_channels, kernel_size=1, bias=bias) + + def forward(self, input_ids): + embeddings = self.embeddings(input_ids) + embeddings = self.layer_norm(embeddings) + embeddings = embeddings.permute(0, 3, 1, 2) + embeddings = self.conv(embeddings) + return embeddings + +class UVitBlock(nn.Module): + + def __init__(self, channels, num_res_blocks: int, hidden_size, hidden_dropout, ln_elementwise_affine, layer_norm_eps, use_bias, block_num_heads, attention_dropout, downsample: bool, upsample: bool): + super().__init__() + if downsample: + self.downsample = Downsample2D(channels, use_conv=True, padding=0, name='Conv2d_0', kernel_size=2, norm_type='rms_norm', eps=layer_norm_eps, elementwise_affine=ln_elementwise_affine, bias=use_bias) + else: + self.downsample = None + self.res_blocks = nn.ModuleList([ConvNextBlock(channels, layer_norm_eps, ln_elementwise_affine, use_bias, hidden_dropout, hidden_size) for i in range(num_res_blocks)]) + self.attention_blocks = nn.ModuleList([SkipFFTransformerBlock(channels, block_num_heads, channels // block_num_heads, hidden_size, use_bias, attention_dropout, channels, attention_bias=use_bias, attention_out_bias=use_bias) for _ in range(num_res_blocks)]) + if upsample: + self.upsample = Upsample2D(channels, use_conv_transpose=True, kernel_size=2, padding=0, name='conv', norm_type='rms_norm', eps=layer_norm_eps, elementwise_affine=ln_elementwise_affine, bias=use_bias, interpolate=False) + else: + self.upsample = None + + def forward(self, x, pooled_text_emb, encoder_hidden_states, cross_attention_kwargs): + if self.downsample is not None: + x = self.downsample(x) + for (res_block, attention_block) in zip(self.res_blocks, self.attention_blocks): + x = res_block(x, pooled_text_emb) + (batch_size, channels, height, width) = x.shape + x = x.view(batch_size, channels, height * width).permute(0, 2, 1) + x = attention_block(x, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs) + x = x.permute(0, 2, 1).view(batch_size, channels, height, width) + if self.upsample is not None: + x = self.upsample(x) + return x + +class ConvNextBlock(nn.Module): + + def __init__(self, channels, layer_norm_eps, ln_elementwise_affine, use_bias, hidden_dropout, hidden_size, res_ffn_factor=4): + super().__init__() + self.depthwise = nn.Conv2d(channels, channels, kernel_size=3, padding=1, groups=channels, bias=use_bias) + self.norm = RMSNorm(channels, layer_norm_eps, ln_elementwise_affine) + self.channelwise_linear_1 = nn.Linear(channels, int(channels * res_ffn_factor), bias=use_bias) + self.channelwise_act = nn.GELU() + self.channelwise_norm = GlobalResponseNorm(int(channels * res_ffn_factor)) + self.channelwise_linear_2 = nn.Linear(int(channels * res_ffn_factor), channels, bias=use_bias) + self.channelwise_dropout = nn.Dropout(hidden_dropout) + self.cond_embeds_mapper = nn.Linear(hidden_size, channels * 2, use_bias) + + def forward(self, x, cond_embeds): + x_res = x + x = self.depthwise(x) + x = x.permute(0, 2, 3, 1) + x = self.norm(x) + x = self.channelwise_linear_1(x) + x = self.channelwise_act(x) + x = self.channelwise_norm(x) + x = self.channelwise_linear_2(x) + x = self.channelwise_dropout(x) + x = x.permute(0, 3, 1, 2) + x = x + x_res + (scale, shift) = self.cond_embeds_mapper(F.silu(cond_embeds)).chunk(2, dim=1) + x = x * (1 + scale[:, :, None, None]) + shift[:, :, None, None] + return x + +class ConvMlmLayer(nn.Module): + + def __init__(self, block_out_channels: int, in_channels: int, use_bias: bool, ln_elementwise_affine: bool, layer_norm_eps: float, codebook_size: int): + super().__init__() + self.conv1 = nn.Conv2d(block_out_channels, in_channels, kernel_size=1, bias=use_bias) + self.layer_norm = RMSNorm(in_channels, layer_norm_eps, ln_elementwise_affine) + self.conv2 = nn.Conv2d(in_channels, codebook_size, kernel_size=1, bias=use_bias) + + def forward(self, hidden_states): + hidden_states = self.conv1(hidden_states) + hidden_states = self.layer_norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + logits = self.conv2(hidden_states) + return logits + +# File: diffusers-main/src/diffusers/models/upsampling.py +from typing import Optional, Tuple +import torch +import torch.nn as nn +import torch.nn.functional as F +from ..utils import deprecate +from .normalization import RMSNorm + +class Upsample1D(nn.Module): + + def __init__(self, channels: int, use_conv: bool=False, use_conv_transpose: bool=False, out_channels: Optional[int]=None, name: str='conv'): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.use_conv_transpose = use_conv_transpose + self.name = name + self.conv = None + if use_conv_transpose: + self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1) + elif use_conv: + self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1) + + def forward(self, inputs: torch.Tensor) -> torch.Tensor: + assert inputs.shape[1] == self.channels + if self.use_conv_transpose: + return self.conv(inputs) + outputs = F.interpolate(inputs, scale_factor=2.0, mode='nearest') + if self.use_conv: + outputs = self.conv(outputs) + return outputs + +class Upsample2D(nn.Module): + + def __init__(self, channels: int, use_conv: bool=False, use_conv_transpose: bool=False, out_channels: Optional[int]=None, name: str='conv', kernel_size: Optional[int]=None, padding=1, norm_type=None, eps=None, elementwise_affine=None, bias=True, interpolate=True): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.use_conv_transpose = use_conv_transpose + self.name = name + self.interpolate = interpolate + if norm_type == 'ln_norm': + self.norm = nn.LayerNorm(channels, eps, elementwise_affine) + elif norm_type == 'rms_norm': + self.norm = RMSNorm(channels, eps, elementwise_affine) + elif norm_type is None: + self.norm = None + else: + raise ValueError(f'unknown norm_type: {norm_type}') + conv = None + if use_conv_transpose: + if kernel_size is None: + kernel_size = 4 + conv = nn.ConvTranspose2d(channels, self.out_channels, kernel_size=kernel_size, stride=2, padding=padding, bias=bias) + elif use_conv: + if kernel_size is None: + kernel_size = 3 + conv = nn.Conv2d(self.channels, self.out_channels, kernel_size=kernel_size, padding=padding, bias=bias) + if name == 'conv': + self.conv = conv + else: + self.Conv2d_0 = conv + + def forward(self, hidden_states: torch.Tensor, output_size: Optional[int]=None, *args, **kwargs) -> torch.Tensor: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + assert hidden_states.shape[1] == self.channels + if self.norm is not None: + hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + if self.use_conv_transpose: + return self.conv(hidden_states) + dtype = hidden_states.dtype + if dtype == torch.bfloat16: + hidden_states = hidden_states.to(torch.float32) + if hidden_states.shape[0] >= 64: + hidden_states = hidden_states.contiguous() + if self.interpolate: + if output_size is None: + hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode='nearest') + else: + hidden_states = F.interpolate(hidden_states, size=output_size, mode='nearest') + if dtype == torch.bfloat16: + hidden_states = hidden_states.to(dtype) + if self.use_conv: + if self.name == 'conv': + hidden_states = self.conv(hidden_states) + else: + hidden_states = self.Conv2d_0(hidden_states) + return hidden_states + +class FirUpsample2D(nn.Module): + + def __init__(self, channels: Optional[int]=None, out_channels: Optional[int]=None, use_conv: bool=False, fir_kernel: Tuple[int, int, int, int]=(1, 3, 3, 1)): + super().__init__() + out_channels = out_channels if out_channels else channels + if use_conv: + self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1) + self.use_conv = use_conv + self.fir_kernel = fir_kernel + self.out_channels = out_channels + + def _upsample_2d(self, hidden_states: torch.Tensor, weight: Optional[torch.Tensor]=None, kernel: Optional[torch.Tensor]=None, factor: int=2, gain: float=1) -> torch.Tensor: + assert isinstance(factor, int) and factor >= 1 + if kernel is None: + kernel = [1] * factor + kernel = torch.tensor(kernel, dtype=torch.float32) + if kernel.ndim == 1: + kernel = torch.outer(kernel, kernel) + kernel /= torch.sum(kernel) + kernel = kernel * (gain * factor ** 2) + if self.use_conv: + convH = weight.shape[2] + convW = weight.shape[3] + inC = weight.shape[1] + pad_value = kernel.shape[0] - factor - (convW - 1) + stride = (factor, factor) + output_shape = ((hidden_states.shape[2] - 1) * factor + convH, (hidden_states.shape[3] - 1) * factor + convW) + output_padding = (output_shape[0] - (hidden_states.shape[2] - 1) * stride[0] - convH, output_shape[1] - (hidden_states.shape[3] - 1) * stride[1] - convW) + assert output_padding[0] >= 0 and output_padding[1] >= 0 + num_groups = hidden_states.shape[1] // inC + weight = torch.reshape(weight, (num_groups, -1, inC, convH, convW)) + weight = torch.flip(weight, dims=[3, 4]).permute(0, 2, 1, 3, 4) + weight = torch.reshape(weight, (num_groups * inC, -1, convH, convW)) + inverse_conv = F.conv_transpose2d(hidden_states, weight, stride=stride, output_padding=output_padding, padding=0) + output = upfirdn2d_native(inverse_conv, torch.tensor(kernel, device=inverse_conv.device), pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2 + 1)) + else: + pad_value = kernel.shape[0] - factor + output = upfirdn2d_native(hidden_states, torch.tensor(kernel, device=hidden_states.device), up=factor, pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2)) + return output + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + if self.use_conv: + height = self._upsample_2d(hidden_states, self.Conv2d_0.weight, kernel=self.fir_kernel) + height = height + self.Conv2d_0.bias.reshape(1, -1, 1, 1) + else: + height = self._upsample_2d(hidden_states, kernel=self.fir_kernel, factor=2) + return height + +class KUpsample2D(nn.Module): + + def __init__(self, pad_mode: str='reflect'): + super().__init__() + self.pad_mode = pad_mode + kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]]) * 2 + self.pad = kernel_1d.shape[1] // 2 - 1 + self.register_buffer('kernel', kernel_1d.T @ kernel_1d, persistent=False) + + def forward(self, inputs: torch.Tensor) -> torch.Tensor: + inputs = F.pad(inputs, ((self.pad + 1) // 2,) * 4, self.pad_mode) + weight = inputs.new_zeros([inputs.shape[1], inputs.shape[1], self.kernel.shape[0], self.kernel.shape[1]]) + indices = torch.arange(inputs.shape[1], device=inputs.device) + kernel = self.kernel.to(weight)[None, :].expand(inputs.shape[1], -1, -1) + weight[indices, indices] = kernel + return F.conv_transpose2d(inputs, weight, stride=2, padding=self.pad * 2 + 1) + +class CogVideoXUpsample3D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, kernel_size: int=3, stride: int=1, padding: int=1, compress_time: bool=False) -> None: + super().__init__() + self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) + self.compress_time = compress_time + + def forward(self, inputs: torch.Tensor) -> torch.Tensor: + if self.compress_time: + if inputs.shape[2] > 1 and inputs.shape[2] % 2 == 1: + (x_first, x_rest) = (inputs[:, :, 0], inputs[:, :, 1:]) + x_first = F.interpolate(x_first, scale_factor=2.0) + x_rest = F.interpolate(x_rest, scale_factor=2.0) + x_first = x_first[:, :, None, :, :] + inputs = torch.cat([x_first, x_rest], dim=2) + elif inputs.shape[2] > 1: + inputs = F.interpolate(inputs, scale_factor=2.0) + else: + inputs = inputs.squeeze(2) + inputs = F.interpolate(inputs, scale_factor=2.0) + inputs = inputs[:, :, None, :, :] + else: + (b, c, t, h, w) = inputs.shape + inputs = inputs.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w) + inputs = F.interpolate(inputs, scale_factor=2.0) + inputs = inputs.reshape(b, t, c, *inputs.shape[2:]).permute(0, 2, 1, 3, 4) + (b, c, t, h, w) = inputs.shape + inputs = inputs.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w) + inputs = self.conv(inputs) + inputs = inputs.reshape(b, t, *inputs.shape[1:]).permute(0, 2, 1, 3, 4) + return inputs + +def upfirdn2d_native(tensor: torch.Tensor, kernel: torch.Tensor, up: int=1, down: int=1, pad: Tuple[int, int]=(0, 0)) -> torch.Tensor: + up_x = up_y = up + down_x = down_y = down + pad_x0 = pad_y0 = pad[0] + pad_x1 = pad_y1 = pad[1] + (_, channel, in_h, in_w) = tensor.shape + tensor = tensor.reshape(-1, in_h, in_w, 1) + (_, in_h, in_w, minor) = tensor.shape + (kernel_h, kernel_w) = kernel.shape + out = tensor.view(-1, in_h, 1, in_w, 1, minor) + out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) + out = out.view(-1, in_h * up_y, in_w * up_x, minor) + out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) + out = out.to(tensor.device) + out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :] + out = out.permute(0, 3, 1, 2) + out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) + w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) + out = F.conv2d(out, w) + out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1) + out = out.permute(0, 2, 3, 1) + out = out[:, ::down_y, ::down_x, :] + out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 + out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 + return out.view(-1, channel, out_h, out_w) + +def upsample_2d(hidden_states: torch.Tensor, kernel: Optional[torch.Tensor]=None, factor: int=2, gain: float=1) -> torch.Tensor: + assert isinstance(factor, int) and factor >= 1 + if kernel is None: + kernel = [1] * factor + kernel = torch.tensor(kernel, dtype=torch.float32) + if kernel.ndim == 1: + kernel = torch.outer(kernel, kernel) + kernel /= torch.sum(kernel) + kernel = kernel * (gain * factor ** 2) + pad_value = kernel.shape[0] - factor + output = upfirdn2d_native(hidden_states, kernel.to(device=hidden_states.device), up=factor, pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2)) + return output + +# File: diffusers-main/src/diffusers/models/vae_flax.py +import math +from functools import partial +from typing import Tuple +import flax +import flax.linen as nn +import jax +import jax.numpy as jnp +from flax.core.frozen_dict import FrozenDict +from ..configuration_utils import ConfigMixin, flax_register_to_config +from ..utils import BaseOutput +from .modeling_flax_utils import FlaxModelMixin + +@flax.struct.dataclass +class FlaxDecoderOutput(BaseOutput): + sample: jnp.ndarray + +@flax.struct.dataclass +class FlaxAutoencoderKLOutput(BaseOutput): + latent_dist: 'FlaxDiagonalGaussianDistribution' + +class FlaxUpsample2D(nn.Module): + in_channels: int + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.conv = nn.Conv(self.in_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype) + + def __call__(self, hidden_states): + (batch, height, width, channels) = hidden_states.shape + hidden_states = jax.image.resize(hidden_states, shape=(batch, height * 2, width * 2, channels), method='nearest') + hidden_states = self.conv(hidden_states) + return hidden_states + +class FlaxDownsample2D(nn.Module): + in_channels: int + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.conv = nn.Conv(self.in_channels, kernel_size=(3, 3), strides=(2, 2), padding='VALID', dtype=self.dtype) + + def __call__(self, hidden_states): + pad = ((0, 0), (0, 1), (0, 1), (0, 0)) + hidden_states = jnp.pad(hidden_states, pad_width=pad) + hidden_states = self.conv(hidden_states) + return hidden_states + +class FlaxResnetBlock2D(nn.Module): + in_channels: int + out_channels: int = None + dropout: float = 0.0 + groups: int = 32 + use_nin_shortcut: bool = None + dtype: jnp.dtype = jnp.float32 + + def setup(self): + out_channels = self.in_channels if self.out_channels is None else self.out_channels + self.norm1 = nn.GroupNorm(num_groups=self.groups, epsilon=1e-06) + self.conv1 = nn.Conv(out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype) + self.norm2 = nn.GroupNorm(num_groups=self.groups, epsilon=1e-06) + self.dropout_layer = nn.Dropout(self.dropout) + self.conv2 = nn.Conv(out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype) + use_nin_shortcut = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut + self.conv_shortcut = None + if use_nin_shortcut: + self.conv_shortcut = nn.Conv(out_channels, kernel_size=(1, 1), strides=(1, 1), padding='VALID', dtype=self.dtype) + + def __call__(self, hidden_states, deterministic=True): + residual = hidden_states + hidden_states = self.norm1(hidden_states) + hidden_states = nn.swish(hidden_states) + hidden_states = self.conv1(hidden_states) + hidden_states = self.norm2(hidden_states) + hidden_states = nn.swish(hidden_states) + hidden_states = self.dropout_layer(hidden_states, deterministic) + hidden_states = self.conv2(hidden_states) + if self.conv_shortcut is not None: + residual = self.conv_shortcut(residual) + return hidden_states + residual + +class FlaxAttentionBlock(nn.Module): + channels: int + num_head_channels: int = None + num_groups: int = 32 + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.num_heads = self.channels // self.num_head_channels if self.num_head_channels is not None else 1 + dense = partial(nn.Dense, self.channels, dtype=self.dtype) + self.group_norm = nn.GroupNorm(num_groups=self.num_groups, epsilon=1e-06) + (self.query, self.key, self.value) = (dense(), dense(), dense()) + self.proj_attn = dense() + + def transpose_for_scores(self, projection): + new_projection_shape = projection.shape[:-1] + (self.num_heads, -1) + new_projection = projection.reshape(new_projection_shape) + new_projection = jnp.transpose(new_projection, (0, 2, 1, 3)) + return new_projection + + def __call__(self, hidden_states): + residual = hidden_states + (batch, height, width, channels) = hidden_states.shape + hidden_states = self.group_norm(hidden_states) + hidden_states = hidden_states.reshape((batch, height * width, channels)) + query = self.query(hidden_states) + key = self.key(hidden_states) + value = self.value(hidden_states) + query = self.transpose_for_scores(query) + key = self.transpose_for_scores(key) + value = self.transpose_for_scores(value) + scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads)) + attn_weights = jnp.einsum('...qc,...kc->...qk', query * scale, key * scale) + attn_weights = nn.softmax(attn_weights, axis=-1) + hidden_states = jnp.einsum('...kc,...qk->...qc', value, attn_weights) + hidden_states = jnp.transpose(hidden_states, (0, 2, 1, 3)) + new_hidden_states_shape = hidden_states.shape[:-2] + (self.channels,) + hidden_states = hidden_states.reshape(new_hidden_states_shape) + hidden_states = self.proj_attn(hidden_states) + hidden_states = hidden_states.reshape((batch, height, width, channels)) + hidden_states = hidden_states + residual + return hidden_states + +class FlaxDownEncoderBlock2D(nn.Module): + in_channels: int + out_channels: int + dropout: float = 0.0 + num_layers: int = 1 + resnet_groups: int = 32 + add_downsample: bool = True + dtype: jnp.dtype = jnp.float32 + + def setup(self): + resnets = [] + for i in range(self.num_layers): + in_channels = self.in_channels if i == 0 else self.out_channels + res_block = FlaxResnetBlock2D(in_channels=in_channels, out_channels=self.out_channels, dropout=self.dropout, groups=self.resnet_groups, dtype=self.dtype) + resnets.append(res_block) + self.resnets = resnets + if self.add_downsample: + self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype) + + def __call__(self, hidden_states, deterministic=True): + for resnet in self.resnets: + hidden_states = resnet(hidden_states, deterministic=deterministic) + if self.add_downsample: + hidden_states = self.downsamplers_0(hidden_states) + return hidden_states + +class FlaxUpDecoderBlock2D(nn.Module): + in_channels: int + out_channels: int + dropout: float = 0.0 + num_layers: int = 1 + resnet_groups: int = 32 + add_upsample: bool = True + dtype: jnp.dtype = jnp.float32 + + def setup(self): + resnets = [] + for i in range(self.num_layers): + in_channels = self.in_channels if i == 0 else self.out_channels + res_block = FlaxResnetBlock2D(in_channels=in_channels, out_channels=self.out_channels, dropout=self.dropout, groups=self.resnet_groups, dtype=self.dtype) + resnets.append(res_block) + self.resnets = resnets + if self.add_upsample: + self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype) + + def __call__(self, hidden_states, deterministic=True): + for resnet in self.resnets: + hidden_states = resnet(hidden_states, deterministic=deterministic) + if self.add_upsample: + hidden_states = self.upsamplers_0(hidden_states) + return hidden_states + +class FlaxUNetMidBlock2D(nn.Module): + in_channels: int + dropout: float = 0.0 + num_layers: int = 1 + resnet_groups: int = 32 + num_attention_heads: int = 1 + dtype: jnp.dtype = jnp.float32 + + def setup(self): + resnet_groups = self.resnet_groups if self.resnet_groups is not None else min(self.in_channels // 4, 32) + resnets = [FlaxResnetBlock2D(in_channels=self.in_channels, out_channels=self.in_channels, dropout=self.dropout, groups=resnet_groups, dtype=self.dtype)] + attentions = [] + for _ in range(self.num_layers): + attn_block = FlaxAttentionBlock(channels=self.in_channels, num_head_channels=self.num_attention_heads, num_groups=resnet_groups, dtype=self.dtype) + attentions.append(attn_block) + res_block = FlaxResnetBlock2D(in_channels=self.in_channels, out_channels=self.in_channels, dropout=self.dropout, groups=resnet_groups, dtype=self.dtype) + resnets.append(res_block) + self.resnets = resnets + self.attentions = attentions + + def __call__(self, hidden_states, deterministic=True): + hidden_states = self.resnets[0](hidden_states, deterministic=deterministic) + for (attn, resnet) in zip(self.attentions, self.resnets[1:]): + hidden_states = attn(hidden_states) + hidden_states = resnet(hidden_states, deterministic=deterministic) + return hidden_states + +class FlaxEncoder(nn.Module): + in_channels: int = 3 + out_channels: int = 3 + down_block_types: Tuple[str] = ('DownEncoderBlock2D',) + block_out_channels: Tuple[int] = (64,) + layers_per_block: int = 2 + norm_num_groups: int = 32 + act_fn: str = 'silu' + double_z: bool = False + dtype: jnp.dtype = jnp.float32 + + def setup(self): + block_out_channels = self.block_out_channels + self.conv_in = nn.Conv(block_out_channels[0], kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype) + down_blocks = [] + output_channel = block_out_channels[0] + for (i, _) in enumerate(self.down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + down_block = FlaxDownEncoderBlock2D(in_channels=input_channel, out_channels=output_channel, num_layers=self.layers_per_block, resnet_groups=self.norm_num_groups, add_downsample=not is_final_block, dtype=self.dtype) + down_blocks.append(down_block) + self.down_blocks = down_blocks + self.mid_block = FlaxUNetMidBlock2D(in_channels=block_out_channels[-1], resnet_groups=self.norm_num_groups, num_attention_heads=None, dtype=self.dtype) + conv_out_channels = 2 * self.out_channels if self.double_z else self.out_channels + self.conv_norm_out = nn.GroupNorm(num_groups=self.norm_num_groups, epsilon=1e-06) + self.conv_out = nn.Conv(conv_out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype) + + def __call__(self, sample, deterministic: bool=True): + sample = self.conv_in(sample) + for block in self.down_blocks: + sample = block(sample, deterministic=deterministic) + sample = self.mid_block(sample, deterministic=deterministic) + sample = self.conv_norm_out(sample) + sample = nn.swish(sample) + sample = self.conv_out(sample) + return sample + +class FlaxDecoder(nn.Module): + in_channels: int = 3 + out_channels: int = 3 + up_block_types: Tuple[str] = ('UpDecoderBlock2D',) + block_out_channels: int = (64,) + layers_per_block: int = 2 + norm_num_groups: int = 32 + act_fn: str = 'silu' + dtype: jnp.dtype = jnp.float32 + + def setup(self): + block_out_channels = self.block_out_channels + self.conv_in = nn.Conv(block_out_channels[-1], kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype) + self.mid_block = FlaxUNetMidBlock2D(in_channels=block_out_channels[-1], resnet_groups=self.norm_num_groups, num_attention_heads=None, dtype=self.dtype) + reversed_block_out_channels = list(reversed(block_out_channels)) + output_channel = reversed_block_out_channels[0] + up_blocks = [] + for (i, _) in enumerate(self.up_block_types): + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + up_block = FlaxUpDecoderBlock2D(in_channels=prev_output_channel, out_channels=output_channel, num_layers=self.layers_per_block + 1, resnet_groups=self.norm_num_groups, add_upsample=not is_final_block, dtype=self.dtype) + up_blocks.append(up_block) + prev_output_channel = output_channel + self.up_blocks = up_blocks + self.conv_norm_out = nn.GroupNorm(num_groups=self.norm_num_groups, epsilon=1e-06) + self.conv_out = nn.Conv(self.out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype) + + def __call__(self, sample, deterministic: bool=True): + sample = self.conv_in(sample) + sample = self.mid_block(sample, deterministic=deterministic) + for block in self.up_blocks: + sample = block(sample, deterministic=deterministic) + sample = self.conv_norm_out(sample) + sample = nn.swish(sample) + sample = self.conv_out(sample) + return sample + +class FlaxDiagonalGaussianDistribution(object): + + def __init__(self, parameters, deterministic=False): + (self.mean, self.logvar) = jnp.split(parameters, 2, axis=-1) + self.logvar = jnp.clip(self.logvar, -30.0, 20.0) + self.deterministic = deterministic + self.std = jnp.exp(0.5 * self.logvar) + self.var = jnp.exp(self.logvar) + if self.deterministic: + self.var = self.std = jnp.zeros_like(self.mean) + + def sample(self, key): + return self.mean + self.std * jax.random.normal(key, self.mean.shape) + + def kl(self, other=None): + if self.deterministic: + return jnp.array([0.0]) + if other is None: + return 0.5 * jnp.sum(self.mean ** 2 + self.var - 1.0 - self.logvar, axis=[1, 2, 3]) + return 0.5 * jnp.sum(jnp.square(self.mean - other.mean) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar, axis=[1, 2, 3]) + + def nll(self, sample, axis=[1, 2, 3]): + if self.deterministic: + return jnp.array([0.0]) + logtwopi = jnp.log(2.0 * jnp.pi) + return 0.5 * jnp.sum(logtwopi + self.logvar + jnp.square(sample - self.mean) / self.var, axis=axis) + + def mode(self): + return self.mean + +@flax_register_to_config +class FlaxAutoencoderKL(nn.Module, FlaxModelMixin, ConfigMixin): + in_channels: int = 3 + out_channels: int = 3 + down_block_types: Tuple[str] = ('DownEncoderBlock2D',) + up_block_types: Tuple[str] = ('UpDecoderBlock2D',) + block_out_channels: Tuple[int] = (64,) + layers_per_block: int = 1 + act_fn: str = 'silu' + latent_channels: int = 4 + norm_num_groups: int = 32 + sample_size: int = 32 + scaling_factor: float = 0.18215 + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.encoder = FlaxEncoder(in_channels=self.config.in_channels, out_channels=self.config.latent_channels, down_block_types=self.config.down_block_types, block_out_channels=self.config.block_out_channels, layers_per_block=self.config.layers_per_block, act_fn=self.config.act_fn, norm_num_groups=self.config.norm_num_groups, double_z=True, dtype=self.dtype) + self.decoder = FlaxDecoder(in_channels=self.config.latent_channels, out_channels=self.config.out_channels, up_block_types=self.config.up_block_types, block_out_channels=self.config.block_out_channels, layers_per_block=self.config.layers_per_block, norm_num_groups=self.config.norm_num_groups, act_fn=self.config.act_fn, dtype=self.dtype) + self.quant_conv = nn.Conv(2 * self.config.latent_channels, kernel_size=(1, 1), strides=(1, 1), padding='VALID', dtype=self.dtype) + self.post_quant_conv = nn.Conv(self.config.latent_channels, kernel_size=(1, 1), strides=(1, 1), padding='VALID', dtype=self.dtype) + + def init_weights(self, rng: jax.Array) -> FrozenDict: + sample_shape = (1, self.in_channels, self.sample_size, self.sample_size) + sample = jnp.zeros(sample_shape, dtype=jnp.float32) + (params_rng, dropout_rng, gaussian_rng) = jax.random.split(rng, 3) + rngs = {'params': params_rng, 'dropout': dropout_rng, 'gaussian': gaussian_rng} + return self.init(rngs, sample)['params'] + + def encode(self, sample, deterministic: bool=True, return_dict: bool=True): + sample = jnp.transpose(sample, (0, 2, 3, 1)) + hidden_states = self.encoder(sample, deterministic=deterministic) + moments = self.quant_conv(hidden_states) + posterior = FlaxDiagonalGaussianDistribution(moments) + if not return_dict: + return (posterior,) + return FlaxAutoencoderKLOutput(latent_dist=posterior) + + def decode(self, latents, deterministic: bool=True, return_dict: bool=True): + if latents.shape[-1] != self.config.latent_channels: + latents = jnp.transpose(latents, (0, 2, 3, 1)) + hidden_states = self.post_quant_conv(latents) + hidden_states = self.decoder(hidden_states, deterministic=deterministic) + hidden_states = jnp.transpose(hidden_states, (0, 3, 1, 2)) + if not return_dict: + return (hidden_states,) + return FlaxDecoderOutput(sample=hidden_states) + + def __call__(self, sample, sample_posterior=False, deterministic: bool=True, return_dict: bool=True): + posterior = self.encode(sample, deterministic=deterministic, return_dict=return_dict) + if sample_posterior: + rng = self.make_rng('gaussian') + hidden_states = posterior.latent_dist.sample(rng) + else: + hidden_states = posterior.latent_dist.mode() + sample = self.decode(hidden_states, return_dict=return_dict).sample + if not return_dict: + return (sample,) + return FlaxDecoderOutput(sample=sample) + +# File: diffusers-main/src/diffusers/models/vq_model.py +from ..utils import deprecate +from .autoencoders.vq_model import VQEncoderOutput, VQModel + +class VQEncoderOutput(VQEncoderOutput): + + def __init__(self, *args, **kwargs): + deprecation_message = 'Importing `VQEncoderOutput` from `diffusers.models.vq_model` is deprecated and this will be removed in a future version. Please use `from diffusers.models.autoencoders.vq_model import VQEncoderOutput`, instead.' + deprecate('VQEncoderOutput', '0.31', deprecation_message) + super().__init__(*args, **kwargs) + +class VQModel(VQModel): + + def __init__(self, *args, **kwargs): + deprecation_message = 'Importing `VQModel` from `diffusers.models.vq_model` is deprecated and this will be removed in a future version. Please use `from diffusers.models.autoencoders.vq_model import VQModel`, instead.' + deprecate('VQModel', '0.31', deprecation_message) + super().__init__(*args, **kwargs) + +# File: diffusers-main/src/diffusers/optimization.py +"""""" +import math +from enum import Enum +from typing import Optional, Union +from torch.optim import Optimizer +from torch.optim.lr_scheduler import LambdaLR +from .utils import logging +logger = logging.get_logger(__name__) + +class SchedulerType(Enum): + LINEAR = 'linear' + COSINE = 'cosine' + COSINE_WITH_RESTARTS = 'cosine_with_restarts' + POLYNOMIAL = 'polynomial' + CONSTANT = 'constant' + CONSTANT_WITH_WARMUP = 'constant_with_warmup' + PIECEWISE_CONSTANT = 'piecewise_constant' + +def get_constant_schedule(optimizer: Optimizer, last_epoch: int=-1) -> LambdaLR: + return LambdaLR(optimizer, lambda _: 1, last_epoch=last_epoch) + +def get_constant_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: int, last_epoch: int=-1) -> LambdaLR: + + def lr_lambda(current_step: int): + if current_step < num_warmup_steps: + return float(current_step) / float(max(1.0, num_warmup_steps)) + return 1.0 + return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch) + +def get_piecewise_constant_schedule(optimizer: Optimizer, step_rules: str, last_epoch: int=-1) -> LambdaLR: + rules_dict = {} + rule_list = step_rules.split(',') + for rule_str in rule_list[:-1]: + (value_str, steps_str) = rule_str.split(':') + steps = int(steps_str) + value = float(value_str) + rules_dict[steps] = value + last_lr_multiple = float(rule_list[-1]) + + def create_rules_function(rules_dict, last_lr_multiple): + + def rule_func(steps: int) -> float: + sorted_steps = sorted(rules_dict.keys()) + for (i, sorted_step) in enumerate(sorted_steps): + if steps < sorted_step: + return rules_dict[sorted_steps[i]] + return last_lr_multiple + return rule_func + rules_func = create_rules_function(rules_dict, last_lr_multiple) + return LambdaLR(optimizer, rules_func, last_epoch=last_epoch) + +def get_linear_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, last_epoch: int=-1) -> LambdaLR: + + def lr_lambda(current_step: int): + if current_step < num_warmup_steps: + return float(current_step) / float(max(1, num_warmup_steps)) + return max(0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps))) + return LambdaLR(optimizer, lr_lambda, last_epoch) + +def get_cosine_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: float=0.5, last_epoch: int=-1) -> LambdaLR: + + def lr_lambda(current_step): + if current_step < num_warmup_steps: + return float(current_step) / float(max(1, num_warmup_steps)) + progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps)) + return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) + return LambdaLR(optimizer, lr_lambda, last_epoch) + +def get_cosine_with_hard_restarts_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: int=1, last_epoch: int=-1) -> LambdaLR: + + def lr_lambda(current_step): + if current_step < num_warmup_steps: + return float(current_step) / float(max(1, num_warmup_steps)) + progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps)) + if progress >= 1.0: + return 0.0 + return max(0.0, 0.5 * (1.0 + math.cos(math.pi * (float(num_cycles) * progress % 1.0)))) + return LambdaLR(optimizer, lr_lambda, last_epoch) + +def get_polynomial_decay_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, lr_end: float=1e-07, power: float=1.0, last_epoch: int=-1) -> LambdaLR: + lr_init = optimizer.defaults['lr'] + if not lr_init > lr_end: + raise ValueError(f'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})') + + def lr_lambda(current_step: int): + if current_step < num_warmup_steps: + return float(current_step) / float(max(1, num_warmup_steps)) + elif current_step > num_training_steps: + return lr_end / lr_init + else: + lr_range = lr_init - lr_end + decay_steps = num_training_steps - num_warmup_steps + pct_remaining = 1 - (current_step - num_warmup_steps) / decay_steps + decay = lr_range * pct_remaining ** power + lr_end + return decay / lr_init + return LambdaLR(optimizer, lr_lambda, last_epoch) +TYPE_TO_SCHEDULER_FUNCTION = {SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule} + +def get_scheduler(name: Union[str, SchedulerType], optimizer: Optimizer, step_rules: Optional[str]=None, num_warmup_steps: Optional[int]=None, num_training_steps: Optional[int]=None, num_cycles: int=1, power: float=1.0, last_epoch: int=-1) -> LambdaLR: + name = SchedulerType(name) + schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name] + if name == SchedulerType.CONSTANT: + return schedule_func(optimizer, last_epoch=last_epoch) + if name == SchedulerType.PIECEWISE_CONSTANT: + return schedule_func(optimizer, step_rules=step_rules, last_epoch=last_epoch) + if num_warmup_steps is None: + raise ValueError(f'{name} requires `num_warmup_steps`, please provide that argument.') + if name == SchedulerType.CONSTANT_WITH_WARMUP: + return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, last_epoch=last_epoch) + if num_training_steps is None: + raise ValueError(f'{name} requires `num_training_steps`, please provide that argument.') + if name == SchedulerType.COSINE_WITH_RESTARTS: + return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, num_cycles=num_cycles, last_epoch=last_epoch) + if name == SchedulerType.POLYNOMIAL: + return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, power=power, last_epoch=last_epoch) + return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, last_epoch=last_epoch) + +# File: diffusers-main/src/diffusers/pipelines/__init__.py +from typing import TYPE_CHECKING +from ..utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_flax_available, is_k_diffusion_available, is_librosa_available, is_note_seq_available, is_onnx_available, is_sentencepiece_available, is_torch_available, is_torch_npu_available, is_transformers_available +_dummy_objects = {} +_import_structure = {'controlnet': [], 'controlnet_hunyuandit': [], 'controlnet_sd3': [], 'controlnet_xs': [], 'deprecated': [], 'latent_diffusion': [], 'ledits_pp': [], 'marigold': [], 'pag': [], 'stable_diffusion': [], 'stable_diffusion_xl': []} +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ..utils import dummy_pt_objects + _dummy_objects.update(get_objects_from_module(dummy_pt_objects)) +else: + _import_structure['auto_pipeline'] = ['AutoPipelineForImage2Image', 'AutoPipelineForInpainting', 'AutoPipelineForText2Image'] + _import_structure['consistency_models'] = ['ConsistencyModelPipeline'] + _import_structure['dance_diffusion'] = ['DanceDiffusionPipeline'] + _import_structure['ddim'] = ['DDIMPipeline'] + _import_structure['ddpm'] = ['DDPMPipeline'] + _import_structure['dit'] = ['DiTPipeline'] + _import_structure['latent_diffusion'].extend(['LDMSuperResolutionPipeline']) + _import_structure['pipeline_utils'] = ['AudioPipelineOutput', 'DiffusionPipeline', 'StableDiffusionMixin', 'ImagePipelineOutput'] + _import_structure['deprecated'].extend(['PNDMPipeline', 'LDMPipeline', 'RePaintPipeline', 'ScoreSdeVePipeline', 'KarrasVePipeline']) +try: + if not (is_torch_available() and is_librosa_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ..utils import dummy_torch_and_librosa_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_librosa_objects)) +else: + _import_structure['deprecated'].extend(['AudioDiffusionPipeline', 'Mel']) +try: + if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ..utils import dummy_transformers_and_torch_and_note_seq_objects + _dummy_objects.update(get_objects_from_module(dummy_transformers_and_torch_and_note_seq_objects)) +else: + _import_structure['deprecated'].extend(['MidiProcessor', 'SpectrogramDiffusionPipeline']) +try: + if not (is_torch_available() and is_transformers_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ..utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['deprecated'].extend(['VQDiffusionPipeline', 'AltDiffusionPipeline', 'AltDiffusionImg2ImgPipeline', 'CycleDiffusionPipeline', 'StableDiffusionInpaintPipelineLegacy', 'StableDiffusionPix2PixZeroPipeline', 'StableDiffusionParadigmsPipeline', 'StableDiffusionModelEditingPipeline', 'VersatileDiffusionDualGuidedPipeline', 'VersatileDiffusionImageVariationPipeline', 'VersatileDiffusionPipeline', 'VersatileDiffusionTextToImagePipeline']) + _import_structure['amused'] = ['AmusedImg2ImgPipeline', 'AmusedInpaintPipeline', 'AmusedPipeline'] + _import_structure['animatediff'] = ['AnimateDiffPipeline', 'AnimateDiffControlNetPipeline', 'AnimateDiffSDXLPipeline', 'AnimateDiffSparseControlNetPipeline', 'AnimateDiffVideoToVideoPipeline', 'AnimateDiffVideoToVideoControlNetPipeline'] + _import_structure['flux'] = ['FluxControlNetPipeline', 'FluxImg2ImgPipeline', 'FluxInpaintPipeline', 'FluxPipeline'] + _import_structure['audioldm'] = ['AudioLDMPipeline'] + _import_structure['audioldm2'] = ['AudioLDM2Pipeline', 'AudioLDM2ProjectionModel', 'AudioLDM2UNet2DConditionModel'] + _import_structure['blip_diffusion'] = ['BlipDiffusionPipeline'] + _import_structure['cogvideo'] = ['CogVideoXPipeline', 'CogVideoXVideoToVideoPipeline'] + _import_structure['controlnet'].extend(['BlipDiffusionControlNetPipeline', 'StableDiffusionControlNetImg2ImgPipeline', 'StableDiffusionControlNetInpaintPipeline', 'StableDiffusionControlNetPipeline', 'StableDiffusionXLControlNetImg2ImgPipeline', 'StableDiffusionXLControlNetInpaintPipeline', 'StableDiffusionXLControlNetPipeline']) + _import_structure['pag'].extend(['AnimateDiffPAGPipeline', 'KolorsPAGPipeline', 'HunyuanDiTPAGPipeline', 'StableDiffusion3PAGPipeline', 'StableDiffusionPAGPipeline', 'StableDiffusionControlNetPAGPipeline', 'StableDiffusionXLPAGPipeline', 'StableDiffusionXLPAGInpaintPipeline', 'StableDiffusionXLControlNetPAGImg2ImgPipeline', 'StableDiffusionXLControlNetPAGPipeline', 'StableDiffusionXLPAGImg2ImgPipeline', 'PixArtSigmaPAGPipeline']) + _import_structure['controlnet_xs'].extend(['StableDiffusionControlNetXSPipeline', 'StableDiffusionXLControlNetXSPipeline']) + _import_structure['controlnet_hunyuandit'].extend(['HunyuanDiTControlNetPipeline']) + _import_structure['controlnet_sd3'].extend(['StableDiffusion3ControlNetPipeline', 'StableDiffusion3ControlNetInpaintingPipeline']) + _import_structure['deepfloyd_if'] = ['IFImg2ImgPipeline', 'IFImg2ImgSuperResolutionPipeline', 'IFInpaintingPipeline', 'IFInpaintingSuperResolutionPipeline', 'IFPipeline', 'IFSuperResolutionPipeline'] + _import_structure['hunyuandit'] = ['HunyuanDiTPipeline'] + _import_structure['kandinsky'] = ['KandinskyCombinedPipeline', 'KandinskyImg2ImgCombinedPipeline', 'KandinskyImg2ImgPipeline', 'KandinskyInpaintCombinedPipeline', 'KandinskyInpaintPipeline', 'KandinskyPipeline', 'KandinskyPriorPipeline'] + _import_structure['kandinsky2_2'] = ['KandinskyV22CombinedPipeline', 'KandinskyV22ControlnetImg2ImgPipeline', 'KandinskyV22ControlnetPipeline', 'KandinskyV22Img2ImgCombinedPipeline', 'KandinskyV22Img2ImgPipeline', 'KandinskyV22InpaintCombinedPipeline', 'KandinskyV22InpaintPipeline', 'KandinskyV22Pipeline', 'KandinskyV22PriorEmb2EmbPipeline', 'KandinskyV22PriorPipeline'] + _import_structure['kandinsky3'] = ['Kandinsky3Img2ImgPipeline', 'Kandinsky3Pipeline'] + _import_structure['latent_consistency_models'] = ['LatentConsistencyModelImg2ImgPipeline', 'LatentConsistencyModelPipeline'] + _import_structure['latent_diffusion'].extend(['LDMTextToImagePipeline']) + _import_structure['ledits_pp'].extend(['LEditsPPPipelineStableDiffusion', 'LEditsPPPipelineStableDiffusionXL']) + _import_structure['latte'] = ['LattePipeline'] + _import_structure['lumina'] = ['LuminaText2ImgPipeline'] + _import_structure['marigold'].extend(['MarigoldDepthPipeline', 'MarigoldNormalsPipeline']) + _import_structure['musicldm'] = ['MusicLDMPipeline'] + _import_structure['paint_by_example'] = ['PaintByExamplePipeline'] + _import_structure['pia'] = ['PIAPipeline'] + _import_structure['pixart_alpha'] = ['PixArtAlphaPipeline', 'PixArtSigmaPipeline'] + _import_structure['semantic_stable_diffusion'] = ['SemanticStableDiffusionPipeline'] + _import_structure['shap_e'] = ['ShapEImg2ImgPipeline', 'ShapEPipeline'] + _import_structure['stable_audio'] = ['StableAudioProjectionModel', 'StableAudioPipeline'] + _import_structure['stable_cascade'] = ['StableCascadeCombinedPipeline', 'StableCascadeDecoderPipeline', 'StableCascadePriorPipeline'] + _import_structure['stable_diffusion'].extend(['CLIPImageProjection', 'StableDiffusionDepth2ImgPipeline', 'StableDiffusionImageVariationPipeline', 'StableDiffusionImg2ImgPipeline', 'StableDiffusionInpaintPipeline', 'StableDiffusionInstructPix2PixPipeline', 'StableDiffusionLatentUpscalePipeline', 'StableDiffusionPipeline', 'StableDiffusionUpscalePipeline', 'StableUnCLIPImg2ImgPipeline', 'StableUnCLIPPipeline', 'StableDiffusionLDM3DPipeline']) + _import_structure['aura_flow'] = ['AuraFlowPipeline'] + _import_structure['stable_diffusion_3'] = ['StableDiffusion3Pipeline', 'StableDiffusion3Img2ImgPipeline', 'StableDiffusion3InpaintPipeline'] + _import_structure['stable_diffusion_attend_and_excite'] = ['StableDiffusionAttendAndExcitePipeline'] + _import_structure['stable_diffusion_safe'] = ['StableDiffusionPipelineSafe'] + _import_structure['stable_diffusion_sag'] = ['StableDiffusionSAGPipeline'] + _import_structure['stable_diffusion_gligen'] = ['StableDiffusionGLIGENPipeline', 'StableDiffusionGLIGENTextImagePipeline'] + _import_structure['stable_video_diffusion'] = ['StableVideoDiffusionPipeline'] + _import_structure['stable_diffusion_xl'].extend(['StableDiffusionXLImg2ImgPipeline', 'StableDiffusionXLInpaintPipeline', 'StableDiffusionXLInstructPix2PixPipeline', 'StableDiffusionXLPipeline']) + _import_structure['stable_diffusion_diffedit'] = ['StableDiffusionDiffEditPipeline'] + _import_structure['stable_diffusion_ldm3d'] = ['StableDiffusionLDM3DPipeline'] + _import_structure['stable_diffusion_panorama'] = ['StableDiffusionPanoramaPipeline'] + _import_structure['t2i_adapter'] = ['StableDiffusionAdapterPipeline', 'StableDiffusionXLAdapterPipeline'] + _import_structure['text_to_video_synthesis'] = ['TextToVideoSDPipeline', 'TextToVideoZeroPipeline', 'TextToVideoZeroSDXLPipeline', 'VideoToVideoSDPipeline'] + _import_structure['i2vgen_xl'] = ['I2VGenXLPipeline'] + _import_structure['unclip'] = ['UnCLIPImageVariationPipeline', 'UnCLIPPipeline'] + _import_structure['unidiffuser'] = ['ImageTextPipelineOutput', 'UniDiffuserModel', 'UniDiffuserPipeline', 'UniDiffuserTextDecoder'] + _import_structure['wuerstchen'] = ['WuerstchenCombinedPipeline', 'WuerstchenDecoderPipeline', 'WuerstchenPriorPipeline'] +try: + if not is_onnx_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ..utils import dummy_onnx_objects + _dummy_objects.update(get_objects_from_module(dummy_onnx_objects)) +else: + _import_structure['onnx_utils'] = ['OnnxRuntimeModel'] +try: + if not (is_torch_available() and is_transformers_available() and is_onnx_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ..utils import dummy_torch_and_transformers_and_onnx_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_and_onnx_objects)) +else: + _import_structure['stable_diffusion'].extend(['OnnxStableDiffusionImg2ImgPipeline', 'OnnxStableDiffusionInpaintPipeline', 'OnnxStableDiffusionPipeline', 'OnnxStableDiffusionUpscalePipeline', 'StableDiffusionOnnxPipeline']) +try: + if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ..utils import dummy_torch_and_transformers_and_k_diffusion_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_and_k_diffusion_objects)) +else: + _import_structure['stable_diffusion_k_diffusion'] = ['StableDiffusionKDiffusionPipeline', 'StableDiffusionXLKDiffusionPipeline'] +try: + if not (is_torch_available() and is_transformers_available() and is_sentencepiece_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ..utils import dummy_torch_and_transformers_and_sentencepiece_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_and_sentencepiece_objects)) +else: + _import_structure['kolors'] = ['KolorsPipeline', 'KolorsImg2ImgPipeline'] +try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ..utils import dummy_flax_objects + _dummy_objects.update(get_objects_from_module(dummy_flax_objects)) +else: + _import_structure['pipeline_flax_utils'] = ['FlaxDiffusionPipeline'] +try: + if not (is_flax_available() and is_transformers_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ..utils import dummy_flax_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_flax_and_transformers_objects)) +else: + _import_structure['controlnet'].extend(['FlaxStableDiffusionControlNetPipeline']) + _import_structure['stable_diffusion'].extend(['FlaxStableDiffusionImg2ImgPipeline', 'FlaxStableDiffusionInpaintPipeline', 'FlaxStableDiffusionPipeline']) + _import_structure['stable_diffusion_xl'].extend(['FlaxStableDiffusionXLPipeline']) +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ..utils.dummy_pt_objects import * + else: + from .auto_pipeline import AutoPipelineForImage2Image, AutoPipelineForInpainting, AutoPipelineForText2Image + from .consistency_models import ConsistencyModelPipeline + from .dance_diffusion import DanceDiffusionPipeline + from .ddim import DDIMPipeline + from .ddpm import DDPMPipeline + from .deprecated import KarrasVePipeline, LDMPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline + from .dit import DiTPipeline + from .latent_diffusion import LDMSuperResolutionPipeline + from .pipeline_utils import AudioPipelineOutput, DiffusionPipeline, ImagePipelineOutput, StableDiffusionMixin + try: + if not (is_torch_available() and is_librosa_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ..utils.dummy_torch_and_librosa_objects import * + else: + from .deprecated import AudioDiffusionPipeline, Mel + try: + if not (is_torch_available() and is_transformers_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ..utils.dummy_torch_and_transformers_objects import * + else: + from .amused import AmusedImg2ImgPipeline, AmusedInpaintPipeline, AmusedPipeline + from .animatediff import AnimateDiffControlNetPipeline, AnimateDiffPipeline, AnimateDiffSDXLPipeline, AnimateDiffSparseControlNetPipeline, AnimateDiffVideoToVideoControlNetPipeline, AnimateDiffVideoToVideoPipeline + from .audioldm import AudioLDMPipeline + from .audioldm2 import AudioLDM2Pipeline, AudioLDM2ProjectionModel, AudioLDM2UNet2DConditionModel + from .aura_flow import AuraFlowPipeline + from .blip_diffusion import BlipDiffusionPipeline + from .cogvideo import CogVideoXPipeline, CogVideoXVideoToVideoPipeline + from .controlnet import BlipDiffusionControlNetPipeline, StableDiffusionControlNetImg2ImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionXLControlNetImg2ImgPipeline, StableDiffusionXLControlNetInpaintPipeline, StableDiffusionXLControlNetPipeline + from .controlnet_hunyuandit import HunyuanDiTControlNetPipeline + from .controlnet_sd3 import StableDiffusion3ControlNetInpaintingPipeline, StableDiffusion3ControlNetPipeline + from .controlnet_xs import StableDiffusionControlNetXSPipeline, StableDiffusionXLControlNetXSPipeline + from .deepfloyd_if import IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline + from .deprecated import AltDiffusionImg2ImgPipeline, AltDiffusionPipeline, CycleDiffusionPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionModelEditingPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPix2PixZeroPipeline, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VQDiffusionPipeline + from .flux import FluxControlNetPipeline, FluxImg2ImgPipeline, FluxInpaintPipeline, FluxPipeline + from .hunyuandit import HunyuanDiTPipeline + from .i2vgen_xl import I2VGenXLPipeline + from .kandinsky import KandinskyCombinedPipeline, KandinskyImg2ImgCombinedPipeline, KandinskyImg2ImgPipeline, KandinskyInpaintCombinedPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline + from .kandinsky2_2 import KandinskyV22CombinedPipeline, KandinskyV22ControlnetImg2ImgPipeline, KandinskyV22ControlnetPipeline, KandinskyV22Img2ImgCombinedPipeline, KandinskyV22Img2ImgPipeline, KandinskyV22InpaintCombinedPipeline, KandinskyV22InpaintPipeline, KandinskyV22Pipeline, KandinskyV22PriorEmb2EmbPipeline, KandinskyV22PriorPipeline + from .kandinsky3 import Kandinsky3Img2ImgPipeline, Kandinsky3Pipeline + from .latent_consistency_models import LatentConsistencyModelImg2ImgPipeline, LatentConsistencyModelPipeline + from .latent_diffusion import LDMTextToImagePipeline + from .latte import LattePipeline + from .ledits_pp import LEditsPPDiffusionPipelineOutput, LEditsPPInversionPipelineOutput, LEditsPPPipelineStableDiffusion, LEditsPPPipelineStableDiffusionXL + from .lumina import LuminaText2ImgPipeline + from .marigold import MarigoldDepthPipeline, MarigoldNormalsPipeline + from .musicldm import MusicLDMPipeline + from .pag import AnimateDiffPAGPipeline, HunyuanDiTPAGPipeline, KolorsPAGPipeline, PixArtSigmaPAGPipeline, StableDiffusion3PAGPipeline, StableDiffusionControlNetPAGPipeline, StableDiffusionPAGPipeline, StableDiffusionXLControlNetPAGImg2ImgPipeline, StableDiffusionXLControlNetPAGPipeline, StableDiffusionXLPAGImg2ImgPipeline, StableDiffusionXLPAGInpaintPipeline, StableDiffusionXLPAGPipeline + from .paint_by_example import PaintByExamplePipeline + from .pia import PIAPipeline + from .pixart_alpha import PixArtAlphaPipeline, PixArtSigmaPipeline + from .semantic_stable_diffusion import SemanticStableDiffusionPipeline + from .shap_e import ShapEImg2ImgPipeline, ShapEPipeline + from .stable_audio import StableAudioPipeline, StableAudioProjectionModel + from .stable_cascade import StableCascadeCombinedPipeline, StableCascadeDecoderPipeline, StableCascadePriorPipeline + from .stable_diffusion import CLIPImageProjection, StableDiffusionDepth2ImgPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInstructPix2PixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImg2ImgPipeline, StableUnCLIPPipeline + from .stable_diffusion_3 import StableDiffusion3Img2ImgPipeline, StableDiffusion3InpaintPipeline, StableDiffusion3Pipeline + from .stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline + from .stable_diffusion_diffedit import StableDiffusionDiffEditPipeline + from .stable_diffusion_gligen import StableDiffusionGLIGENPipeline, StableDiffusionGLIGENTextImagePipeline + from .stable_diffusion_ldm3d import StableDiffusionLDM3DPipeline + from .stable_diffusion_panorama import StableDiffusionPanoramaPipeline + from .stable_diffusion_safe import StableDiffusionPipelineSafe + from .stable_diffusion_sag import StableDiffusionSAGPipeline + from .stable_diffusion_xl import StableDiffusionXLImg2ImgPipeline, StableDiffusionXLInpaintPipeline, StableDiffusionXLInstructPix2PixPipeline, StableDiffusionXLPipeline + from .stable_video_diffusion import StableVideoDiffusionPipeline + from .t2i_adapter import StableDiffusionAdapterPipeline, StableDiffusionXLAdapterPipeline + from .text_to_video_synthesis import TextToVideoSDPipeline, TextToVideoZeroPipeline, TextToVideoZeroSDXLPipeline, VideoToVideoSDPipeline + from .unclip import UnCLIPImageVariationPipeline, UnCLIPPipeline + from .unidiffuser import ImageTextPipelineOutput, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder + from .wuerstchen import WuerstchenCombinedPipeline, WuerstchenDecoderPipeline, WuerstchenPriorPipeline + try: + if not is_onnx_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ..utils.dummy_onnx_objects import * + else: + from .onnx_utils import OnnxRuntimeModel + try: + if not (is_torch_available() and is_transformers_available() and is_onnx_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ..utils.dummy_torch_and_transformers_and_onnx_objects import * + else: + from .stable_diffusion import OnnxStableDiffusionImg2ImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline + try: + if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ..utils.dummy_torch_and_transformers_and_k_diffusion_objects import * + else: + from .stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline, StableDiffusionXLKDiffusionPipeline + try: + if not (is_torch_available() and is_transformers_available() and is_sentencepiece_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ..utils.dummy_torch_and_transformers_and_sentencepiece_objects import * + else: + from .kolors import KolorsImg2ImgPipeline, KolorsPipeline + try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ..utils.dummy_flax_objects import * + else: + from .pipeline_flax_utils import FlaxDiffusionPipeline + try: + if not (is_flax_available() and is_transformers_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ..utils.dummy_flax_and_transformers_objects import * + else: + from .controlnet import FlaxStableDiffusionControlNetPipeline + from .stable_diffusion import FlaxStableDiffusionImg2ImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline + from .stable_diffusion_xl import FlaxStableDiffusionXLPipeline + try: + if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ..utils.dummy_transformers_and_torch_and_note_seq_objects import * + else: + from .deprecated import MidiProcessor, SpectrogramDiffusionPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/amused/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import AmusedImg2ImgPipeline, AmusedInpaintPipeline, AmusedPipeline + _dummy_objects.update({'AmusedPipeline': AmusedPipeline, 'AmusedImg2ImgPipeline': AmusedImg2ImgPipeline, 'AmusedInpaintPipeline': AmusedInpaintPipeline}) +else: + _import_structure['pipeline_amused'] = ['AmusedPipeline'] + _import_structure['pipeline_amused_img2img'] = ['AmusedImg2ImgPipeline'] + _import_structure['pipeline_amused_inpaint'] = ['AmusedInpaintPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import AmusedPipeline + else: + from .pipeline_amused import AmusedPipeline + from .pipeline_amused_img2img import AmusedImg2ImgPipeline + from .pipeline_amused_inpaint import AmusedInpaintPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/amused/pipeline_amused.py +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import torch +from transformers import CLIPTextModelWithProjection, CLIPTokenizer +from ...image_processor import VaeImageProcessor +from ...models import UVit2DModel, VQModel +from ...schedulers import AmusedScheduler +from ...utils import replace_example_docstring +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import AmusedPipeline\n\n >>> pipe = AmusedPipeline.from_pretrained("amused/amused-512", variant="fp16", torch_dtype=torch.float16)\n >>> pipe = pipe.to("cuda")\n\n >>> prompt = "a photo of an astronaut riding a horse on mars"\n >>> image = pipe(prompt).images[0]\n ```\n' + +class AmusedPipeline(DiffusionPipeline): + image_processor: VaeImageProcessor + vqvae: VQModel + tokenizer: CLIPTokenizer + text_encoder: CLIPTextModelWithProjection + transformer: UVit2DModel + scheduler: AmusedScheduler + model_cpu_offload_seq = 'text_encoder->transformer->vqvae' + + def __init__(self, vqvae: VQModel, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModelWithProjection, transformer: UVit2DModel, scheduler: AmusedScheduler): + super().__init__() + self.register_modules(vqvae=vqvae, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False) + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Optional[Union[List[str], str]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=12, guidance_scale: float=10.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, generator: Optional[torch.Generator]=None, latents: Optional[torch.IntTensor]=None, prompt_embeds: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, negative_encoder_hidden_states: Optional[torch.Tensor]=None, output_type='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, micro_conditioning_aesthetic_score: int=6, micro_conditioning_crop_coord: Tuple[int, int]=(0, 0), temperature: Union[int, Tuple[int, int], List[int]]=(2, 0)): + if prompt_embeds is not None and encoder_hidden_states is None or (prompt_embeds is None and encoder_hidden_states is not None): + raise ValueError('pass either both `prompt_embeds` and `encoder_hidden_states` or neither') + if negative_prompt_embeds is not None and negative_encoder_hidden_states is None or (negative_prompt_embeds is None and negative_encoder_hidden_states is not None): + raise ValueError('pass either both `negatve_prompt_embeds` and `negative_encoder_hidden_states` or neither') + if prompt is None and prompt_embeds is None or (prompt is not None and prompt_embeds is not None): + raise ValueError('pass only one of `prompt` or `prompt_embeds`') + if isinstance(prompt, str): + prompt = [prompt] + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + batch_size = batch_size * num_images_per_prompt + if height is None: + height = self.transformer.config.sample_size * self.vae_scale_factor + if width is None: + width = self.transformer.config.sample_size * self.vae_scale_factor + if prompt_embeds is None: + input_ids = self.tokenizer(prompt, return_tensors='pt', padding='max_length', truncation=True, max_length=self.tokenizer.model_max_length).input_ids.to(self._execution_device) + outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True) + prompt_embeds = outputs.text_embeds + encoder_hidden_states = outputs.hidden_states[-2] + prompt_embeds = prompt_embeds.repeat(num_images_per_prompt, 1) + encoder_hidden_states = encoder_hidden_states.repeat(num_images_per_prompt, 1, 1) + if guidance_scale > 1.0: + if negative_prompt_embeds is None: + if negative_prompt is None: + negative_prompt = [''] * len(prompt) + if isinstance(negative_prompt, str): + negative_prompt = [negative_prompt] + input_ids = self.tokenizer(negative_prompt, return_tensors='pt', padding='max_length', truncation=True, max_length=self.tokenizer.model_max_length).input_ids.to(self._execution_device) + outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True) + negative_prompt_embeds = outputs.text_embeds + negative_encoder_hidden_states = outputs.hidden_states[-2] + negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1) + negative_encoder_hidden_states = negative_encoder_hidden_states.repeat(num_images_per_prompt, 1, 1) + prompt_embeds = torch.concat([negative_prompt_embeds, prompt_embeds]) + encoder_hidden_states = torch.concat([negative_encoder_hidden_states, encoder_hidden_states]) + micro_conds = torch.tensor([width, height, micro_conditioning_crop_coord[0], micro_conditioning_crop_coord[1], micro_conditioning_aesthetic_score], device=self._execution_device, dtype=encoder_hidden_states.dtype) + micro_conds = micro_conds.unsqueeze(0) + micro_conds = micro_conds.expand(2 * batch_size if guidance_scale > 1.0 else batch_size, -1) + shape = (batch_size, height // self.vae_scale_factor, width // self.vae_scale_factor) + if latents is None: + latents = torch.full(shape, self.scheduler.config.mask_token_id, dtype=torch.long, device=self._execution_device) + self.scheduler.set_timesteps(num_inference_steps, temperature, self._execution_device) + num_warmup_steps = len(self.scheduler.timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, timestep) in enumerate(self.scheduler.timesteps): + if guidance_scale > 1.0: + model_input = torch.cat([latents] * 2) + else: + model_input = latents + model_output = self.transformer(model_input, micro_conds=micro_conds, pooled_text_emb=prompt_embeds, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs) + if guidance_scale > 1.0: + (uncond_logits, cond_logits) = model_output.chunk(2) + model_output = uncond_logits + guidance_scale * (cond_logits - uncond_logits) + latents = self.scheduler.step(model_output=model_output, timestep=timestep, sample=latents, generator=generator).prev_sample + if i == len(self.scheduler.timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, timestep, latents) + if output_type == 'latent': + output = latents + else: + needs_upcasting = self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast + if needs_upcasting: + self.vqvae.float() + output = self.vqvae.decode(latents, force_not_quantize=True, shape=(batch_size, height // self.vae_scale_factor, width // self.vae_scale_factor, self.vqvae.config.latent_channels)).sample.clip(0, 1) + output = self.image_processor.postprocess(output, output_type) + if needs_upcasting: + self.vqvae.half() + self.maybe_free_model_hooks() + if not return_dict: + return (output,) + return ImagePipelineOutput(output) + +# File: diffusers-main/src/diffusers/pipelines/amused/pipeline_amused_img2img.py +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import torch +from transformers import CLIPTextModelWithProjection, CLIPTokenizer +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...models import UVit2DModel, VQModel +from ...schedulers import AmusedScheduler +from ...utils import replace_example_docstring +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import AmusedImg2ImgPipeline\n >>> from diffusers.utils import load_image\n\n >>> pipe = AmusedImg2ImgPipeline.from_pretrained(\n ... "amused/amused-512", variant="fp16", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n >>> prompt = "winter mountains"\n >>> input_image = (\n ... load_image(\n ... "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains.jpg"\n ... )\n ... .resize((512, 512))\n ... .convert("RGB")\n ... )\n >>> image = pipe(prompt, input_image).images[0]\n ```\n' + +class AmusedImg2ImgPipeline(DiffusionPipeline): + image_processor: VaeImageProcessor + vqvae: VQModel + tokenizer: CLIPTokenizer + text_encoder: CLIPTextModelWithProjection + transformer: UVit2DModel + scheduler: AmusedScheduler + model_cpu_offload_seq = 'text_encoder->transformer->vqvae' + _exclude_from_cpu_offload = ['vqvae'] + + def __init__(self, vqvae: VQModel, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModelWithProjection, transformer: UVit2DModel, scheduler: AmusedScheduler): + super().__init__() + self.register_modules(vqvae=vqvae, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False) + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Optional[Union[List[str], str]]=None, image: PipelineImageInput=None, strength: float=0.5, num_inference_steps: int=12, guidance_scale: float=10.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, generator: Optional[torch.Generator]=None, prompt_embeds: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, negative_encoder_hidden_states: Optional[torch.Tensor]=None, output_type='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, micro_conditioning_aesthetic_score: int=6, micro_conditioning_crop_coord: Tuple[int, int]=(0, 0), temperature: Union[int, Tuple[int, int], List[int]]=(2, 0)): + if prompt_embeds is not None and encoder_hidden_states is None or (prompt_embeds is None and encoder_hidden_states is not None): + raise ValueError('pass either both `prompt_embeds` and `encoder_hidden_states` or neither') + if negative_prompt_embeds is not None and negative_encoder_hidden_states is None or (negative_prompt_embeds is None and negative_encoder_hidden_states is not None): + raise ValueError('pass either both `negative_prompt_embeds` and `negative_encoder_hidden_states` or neither') + if prompt is None and prompt_embeds is None or (prompt is not None and prompt_embeds is not None): + raise ValueError('pass only one of `prompt` or `prompt_embeds`') + if isinstance(prompt, str): + prompt = [prompt] + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + batch_size = batch_size * num_images_per_prompt + if prompt_embeds is None: + input_ids = self.tokenizer(prompt, return_tensors='pt', padding='max_length', truncation=True, max_length=self.tokenizer.model_max_length).input_ids.to(self._execution_device) + outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True) + prompt_embeds = outputs.text_embeds + encoder_hidden_states = outputs.hidden_states[-2] + prompt_embeds = prompt_embeds.repeat(num_images_per_prompt, 1) + encoder_hidden_states = encoder_hidden_states.repeat(num_images_per_prompt, 1, 1) + if guidance_scale > 1.0: + if negative_prompt_embeds is None: + if negative_prompt is None: + negative_prompt = [''] * len(prompt) + if isinstance(negative_prompt, str): + negative_prompt = [negative_prompt] + input_ids = self.tokenizer(negative_prompt, return_tensors='pt', padding='max_length', truncation=True, max_length=self.tokenizer.model_max_length).input_ids.to(self._execution_device) + outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True) + negative_prompt_embeds = outputs.text_embeds + negative_encoder_hidden_states = outputs.hidden_states[-2] + negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1) + negative_encoder_hidden_states = negative_encoder_hidden_states.repeat(num_images_per_prompt, 1, 1) + prompt_embeds = torch.concat([negative_prompt_embeds, prompt_embeds]) + encoder_hidden_states = torch.concat([negative_encoder_hidden_states, encoder_hidden_states]) + image = self.image_processor.preprocess(image) + (height, width) = image.shape[-2:] + micro_conds = torch.tensor([width, height, micro_conditioning_crop_coord[0], micro_conditioning_crop_coord[1], micro_conditioning_aesthetic_score], device=self._execution_device, dtype=encoder_hidden_states.dtype) + micro_conds = micro_conds.unsqueeze(0) + micro_conds = micro_conds.expand(2 * batch_size if guidance_scale > 1.0 else batch_size, -1) + self.scheduler.set_timesteps(num_inference_steps, temperature, self._execution_device) + num_inference_steps = int(len(self.scheduler.timesteps) * strength) + start_timestep_idx = len(self.scheduler.timesteps) - num_inference_steps + needs_upcasting = self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast + if needs_upcasting: + self.vqvae.float() + latents = self.vqvae.encode(image.to(dtype=self.vqvae.dtype, device=self._execution_device)).latents + (latents_bsz, channels, latents_height, latents_width) = latents.shape + latents = self.vqvae.quantize(latents)[2][2].reshape(latents_bsz, latents_height, latents_width) + latents = self.scheduler.add_noise(latents, self.scheduler.timesteps[start_timestep_idx - 1], generator=generator) + latents = latents.repeat(num_images_per_prompt, 1, 1) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i in range(start_timestep_idx, len(self.scheduler.timesteps)): + timestep = self.scheduler.timesteps[i] + if guidance_scale > 1.0: + model_input = torch.cat([latents] * 2) + else: + model_input = latents + model_output = self.transformer(model_input, micro_conds=micro_conds, pooled_text_emb=prompt_embeds, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs) + if guidance_scale > 1.0: + (uncond_logits, cond_logits) = model_output.chunk(2) + model_output = uncond_logits + guidance_scale * (cond_logits - uncond_logits) + latents = self.scheduler.step(model_output=model_output, timestep=timestep, sample=latents, generator=generator).prev_sample + if i == len(self.scheduler.timesteps) - 1 or (i + 1) % self.scheduler.order == 0: + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, timestep, latents) + if output_type == 'latent': + output = latents + else: + output = self.vqvae.decode(latents, force_not_quantize=True, shape=(batch_size, height // self.vae_scale_factor, width // self.vae_scale_factor, self.vqvae.config.latent_channels)).sample.clip(0, 1) + output = self.image_processor.postprocess(output, output_type) + if needs_upcasting: + self.vqvae.half() + self.maybe_free_model_hooks() + if not return_dict: + return (output,) + return ImagePipelineOutput(output) + +# File: diffusers-main/src/diffusers/pipelines/amused/pipeline_amused_inpaint.py +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import torch +from transformers import CLIPTextModelWithProjection, CLIPTokenizer +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...models import UVit2DModel, VQModel +from ...schedulers import AmusedScheduler +from ...utils import replace_example_docstring +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import AmusedInpaintPipeline\n >>> from diffusers.utils import load_image\n\n >>> pipe = AmusedInpaintPipeline.from_pretrained(\n ... "amused/amused-512", variant="fp16", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n >>> prompt = "fall mountains"\n >>> input_image = (\n ... load_image(\n ... "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg"\n ... )\n ... .resize((512, 512))\n ... .convert("RGB")\n ... )\n >>> mask = (\n ... load_image(\n ... "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png"\n ... )\n ... .resize((512, 512))\n ... .convert("L")\n ... )\n >>> pipe(prompt, input_image, mask).images[0].save("out.png")\n ```\n' + +class AmusedInpaintPipeline(DiffusionPipeline): + image_processor: VaeImageProcessor + vqvae: VQModel + tokenizer: CLIPTokenizer + text_encoder: CLIPTextModelWithProjection + transformer: UVit2DModel + scheduler: AmusedScheduler + model_cpu_offload_seq = 'text_encoder->transformer->vqvae' + _exclude_from_cpu_offload = ['vqvae'] + + def __init__(self, vqvae: VQModel, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModelWithProjection, transformer: UVit2DModel, scheduler: AmusedScheduler): + super().__init__() + self.register_modules(vqvae=vqvae, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False) + self.mask_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True, do_resize=True) + self.scheduler.register_to_config(masking_schedule='linear') + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Optional[Union[List[str], str]]=None, image: PipelineImageInput=None, mask_image: PipelineImageInput=None, strength: float=1.0, num_inference_steps: int=12, guidance_scale: float=10.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, generator: Optional[torch.Generator]=None, prompt_embeds: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, negative_encoder_hidden_states: Optional[torch.Tensor]=None, output_type='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, micro_conditioning_aesthetic_score: int=6, micro_conditioning_crop_coord: Tuple[int, int]=(0, 0), temperature: Union[int, Tuple[int, int], List[int]]=(2, 0)): + if prompt_embeds is not None and encoder_hidden_states is None or (prompt_embeds is None and encoder_hidden_states is not None): + raise ValueError('pass either both `prompt_embeds` and `encoder_hidden_states` or neither') + if negative_prompt_embeds is not None and negative_encoder_hidden_states is None or (negative_prompt_embeds is None and negative_encoder_hidden_states is not None): + raise ValueError('pass either both `negatve_prompt_embeds` and `negative_encoder_hidden_states` or neither') + if prompt is None and prompt_embeds is None or (prompt is not None and prompt_embeds is not None): + raise ValueError('pass only one of `prompt` or `prompt_embeds`') + if isinstance(prompt, str): + prompt = [prompt] + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + batch_size = batch_size * num_images_per_prompt + if prompt_embeds is None: + input_ids = self.tokenizer(prompt, return_tensors='pt', padding='max_length', truncation=True, max_length=self.tokenizer.model_max_length).input_ids.to(self._execution_device) + outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True) + prompt_embeds = outputs.text_embeds + encoder_hidden_states = outputs.hidden_states[-2] + prompt_embeds = prompt_embeds.repeat(num_images_per_prompt, 1) + encoder_hidden_states = encoder_hidden_states.repeat(num_images_per_prompt, 1, 1) + if guidance_scale > 1.0: + if negative_prompt_embeds is None: + if negative_prompt is None: + negative_prompt = [''] * len(prompt) + if isinstance(negative_prompt, str): + negative_prompt = [negative_prompt] + input_ids = self.tokenizer(negative_prompt, return_tensors='pt', padding='max_length', truncation=True, max_length=self.tokenizer.model_max_length).input_ids.to(self._execution_device) + outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True) + negative_prompt_embeds = outputs.text_embeds + negative_encoder_hidden_states = outputs.hidden_states[-2] + negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1) + negative_encoder_hidden_states = negative_encoder_hidden_states.repeat(num_images_per_prompt, 1, 1) + prompt_embeds = torch.concat([negative_prompt_embeds, prompt_embeds]) + encoder_hidden_states = torch.concat([negative_encoder_hidden_states, encoder_hidden_states]) + image = self.image_processor.preprocess(image) + (height, width) = image.shape[-2:] + micro_conds = torch.tensor([width, height, micro_conditioning_crop_coord[0], micro_conditioning_crop_coord[1], micro_conditioning_aesthetic_score], device=self._execution_device, dtype=encoder_hidden_states.dtype) + micro_conds = micro_conds.unsqueeze(0) + micro_conds = micro_conds.expand(2 * batch_size if guidance_scale > 1.0 else batch_size, -1) + self.scheduler.set_timesteps(num_inference_steps, temperature, self._execution_device) + num_inference_steps = int(len(self.scheduler.timesteps) * strength) + start_timestep_idx = len(self.scheduler.timesteps) - num_inference_steps + needs_upcasting = self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast + if needs_upcasting: + self.vqvae.float() + latents = self.vqvae.encode(image.to(dtype=self.vqvae.dtype, device=self._execution_device)).latents + (latents_bsz, channels, latents_height, latents_width) = latents.shape + latents = self.vqvae.quantize(latents)[2][2].reshape(latents_bsz, latents_height, latents_width) + mask = self.mask_processor.preprocess(mask_image, height // self.vae_scale_factor, width // self.vae_scale_factor) + mask = mask.reshape(mask.shape[0], latents_height, latents_width).bool().to(latents.device) + latents[mask] = self.scheduler.config.mask_token_id + starting_mask_ratio = mask.sum() / latents.numel() + latents = latents.repeat(num_images_per_prompt, 1, 1) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i in range(start_timestep_idx, len(self.scheduler.timesteps)): + timestep = self.scheduler.timesteps[i] + if guidance_scale > 1.0: + model_input = torch.cat([latents] * 2) + else: + model_input = latents + model_output = self.transformer(model_input, micro_conds=micro_conds, pooled_text_emb=prompt_embeds, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs) + if guidance_scale > 1.0: + (uncond_logits, cond_logits) = model_output.chunk(2) + model_output = uncond_logits + guidance_scale * (cond_logits - uncond_logits) + latents = self.scheduler.step(model_output=model_output, timestep=timestep, sample=latents, generator=generator, starting_mask_ratio=starting_mask_ratio).prev_sample + if i == len(self.scheduler.timesteps) - 1 or (i + 1) % self.scheduler.order == 0: + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, timestep, latents) + if output_type == 'latent': + output = latents + else: + output = self.vqvae.decode(latents, force_not_quantize=True, shape=(batch_size, height // self.vae_scale_factor, width // self.vae_scale_factor, self.vqvae.config.latent_channels)).sample.clip(0, 1) + output = self.image_processor.postprocess(output, output_type) + if needs_upcasting: + self.vqvae.half() + self.maybe_free_model_hooks() + if not return_dict: + return (output,) + return ImagePipelineOutput(output) + +# File: diffusers-main/src/diffusers/pipelines/animatediff/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {'pipeline_output': ['AnimateDiffPipelineOutput']} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_animatediff'] = ['AnimateDiffPipeline'] + _import_structure['pipeline_animatediff_controlnet'] = ['AnimateDiffControlNetPipeline'] + _import_structure['pipeline_animatediff_sdxl'] = ['AnimateDiffSDXLPipeline'] + _import_structure['pipeline_animatediff_sparsectrl'] = ['AnimateDiffSparseControlNetPipeline'] + _import_structure['pipeline_animatediff_video2video'] = ['AnimateDiffVideoToVideoPipeline'] + _import_structure['pipeline_animatediff_video2video_controlnet'] = ['AnimateDiffVideoToVideoControlNetPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_animatediff import AnimateDiffPipeline + from .pipeline_animatediff_controlnet import AnimateDiffControlNetPipeline + from .pipeline_animatediff_sdxl import AnimateDiffSDXLPipeline + from .pipeline_animatediff_sparsectrl import AnimateDiffSparseControlNetPipeline + from .pipeline_animatediff_video2video import AnimateDiffVideoToVideoPipeline + from .pipeline_animatediff_video2video_controlnet import AnimateDiffVideoToVideoControlNetPipeline + from .pipeline_output import AnimateDiffPipelineOutput +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/animatediff/pipeline_animatediff.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...image_processor import PipelineImageInput +from ...loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...models.unets.unet_motion_model import MotionAdapter +from ...schedulers import DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler +from ...utils import USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ...video_processor import VideoProcessor +from ..free_init_utils import FreeInitMixin +from ..free_noise_utils import AnimateDiffFreeNoiseMixin +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from .pipeline_output import AnimateDiffPipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler\n >>> from diffusers.utils import export_to_gif\n\n >>> adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")\n >>> pipe = AnimateDiffPipeline.from_pretrained("frankjoshua/toonyou_beta6", motion_adapter=adapter)\n >>> pipe.scheduler = DDIMScheduler(beta_schedule="linear", steps_offset=1, clip_sample=False)\n >>> output = pipe(prompt="A corgi walking in the park")\n >>> frames = output.frames[0]\n >>> export_to_gif(frames, "animation.gif")\n ```\n' + +class AnimateDiffPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, FreeInitMixin, AnimateDiffFreeNoiseMixin): + model_cpu_offload_seq = 'text_encoder->image_encoder->unet->vae' + _optional_components = ['feature_extractor', 'image_encoder', 'motion_adapter'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: Union[UNet2DConditionModel, UNetMotionModel], motion_adapter: MotionAdapter, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler], feature_extractor: CLIPImageProcessor=None, image_encoder: CLIPVisionModelWithProjection=None): + super().__init__() + if isinstance(unet, UNet2DConditionModel): + unet = UNetMotionModel.from_unet2d(unet, motion_adapter) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, motion_adapter=motion_adapter, scheduler=scheduler, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.video_processor = VideoProcessor(do_resize=False, vae_scale_factor=self.vae_scale_factor) + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def decode_latents(self, latents, decode_chunk_size: int=16): + latents = 1 / self.vae.config.scaling_factor * latents + (batch_size, channels, num_frames, height, width) = latents.shape + latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) + video = [] + for i in range(0, latents.shape[0], decode_chunk_size): + batch_latents = latents[i:i + decode_chunk_size] + batch_latents = self.vae.decode(batch_latents).sample + video.append(batch_latents) + video = torch.cat(video) + video = video[None, :].reshape((batch_size, num_frames, -1) + video.shape[2:]).permute(0, 2, 1, 3, 4) + video = video.float() + return video + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, (str, list, dict))): + raise ValueError(f'`prompt` has to be of type `str`, `list` or `dict` but is type(prompt)={type(prompt)!r}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def prepare_latents(self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None): + if self.free_noise_enabled: + latents = self._prepare_latents_free_noise(batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + shape = (batch_size, num_channels_latents, num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor) + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Optional[Union[str, List[str]]]=None, num_frames: Optional[int]=16, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_videos_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], decode_chunk_size: int=16, **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`') + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + num_videos_per_prompt = 1 + self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._interrupt = False + if prompt is not None and isinstance(prompt, (str, dict)): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + text_encoder_lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + if self.free_noise_enabled: + (prompt_embeds, negative_prompt_embeds) = self._encode_prompt_free_noise(prompt=prompt, num_frames=num_frames, device=device, num_videos_per_prompt=num_videos_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + else: + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_videos_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_videos_per_prompt, self.do_classifier_free_guidance) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_videos_per_prompt, num_channels_latents, num_frames, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'image_embeds': image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None + num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1 + for free_init_iter in range(num_free_init_iters): + if self.free_init_enabled: + (latents, timesteps) = self._apply_free_init(latents, free_init_iter, num_inference_steps, device, latents.dtype, generator) + self._num_timesteps = len(timesteps) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=self._num_timesteps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs).sample + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + callback(i, t, latents) + if output_type == 'latent': + video = latents + else: + video_tensor = self.decode_latents(latents, decode_chunk_size) + video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (video,) + return AnimateDiffPipelineOutput(frames=video) + +# File: diffusers-main/src/diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...image_processor import PipelineImageInput +from ...loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel, UNetMotionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...models.unets.unet_motion_model import MotionAdapter +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import is_compiled_module, randn_tensor +from ...video_processor import VideoProcessor +from ..controlnet.multicontrolnet import MultiControlNetModel +from ..free_init_utils import FreeInitMixin +from ..free_noise_utils import AnimateDiffFreeNoiseMixin +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from .pipeline_output import AnimateDiffPipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import (\n ... AnimateDiffControlNetPipeline,\n ... AutoencoderKL,\n ... ControlNetModel,\n ... MotionAdapter,\n ... LCMScheduler,\n ... )\n >>> from diffusers.utils import export_to_gif, load_video\n\n >>> # Additionally, you will need a preprocess videos before they can be used with the ControlNet\n >>> # HF maintains just the right package for it: `pip install controlnet_aux`\n >>> from controlnet_aux.processor import ZoeDetector\n\n >>> # Download controlnets from https://huggingface.co/lllyasviel/ControlNet-v1-1 to use .from_single_file\n >>> # Download Diffusers-format controlnets, such as https://huggingface.co/lllyasviel/sd-controlnet-depth, to use .from_pretrained()\n >>> controlnet = ControlNetModel.from_single_file("control_v11f1p_sd15_depth.pth", torch_dtype=torch.float16)\n\n >>> # We use AnimateLCM for this example but one can use the original motion adapters as well (for example, https://huggingface.co/guoyww/animatediff-motion-adapter-v1-5-3)\n >>> motion_adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")\n\n >>> vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)\n >>> pipe: AnimateDiffControlNetPipeline = AnimateDiffControlNetPipeline.from_pretrained(\n ... "SG161222/Realistic_Vision_V5.1_noVAE",\n ... motion_adapter=motion_adapter,\n ... controlnet=controlnet,\n ... vae=vae,\n ... ).to(device="cuda", dtype=torch.float16)\n >>> pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")\n >>> pipe.load_lora_weights(\n ... "wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora"\n ... )\n >>> pipe.set_adapters(["lcm-lora"], [0.8])\n\n >>> depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to("cuda")\n >>> video = load_video(\n ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-1.gif"\n ... )\n >>> conditioning_frames = []\n\n >>> with pipe.progress_bar(total=len(video)) as progress_bar:\n ... for frame in video:\n ... conditioning_frames.append(depth_detector(frame))\n ... progress_bar.update()\n\n >>> prompt = "a panda, playing a guitar, sitting in a pink boat, in the ocean, mountains in background, realistic, high quality"\n >>> negative_prompt = "bad quality, worst quality"\n\n >>> video = pipe(\n ... prompt=prompt,\n ... negative_prompt=negative_prompt,\n ... num_frames=len(video),\n ... num_inference_steps=10,\n ... guidance_scale=2.0,\n ... conditioning_frames=conditioning_frames,\n ... generator=torch.Generator().manual_seed(42),\n ... ).frames[0]\n\n >>> export_to_gif(video, "animatediff_controlnet.gif", fps=8)\n ```\n' + +class AnimateDiffControlNetPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, FreeInitMixin, AnimateDiffFreeNoiseMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _optional_components = ['feature_extractor', 'image_encoder'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: Union[UNet2DConditionModel, UNetMotionModel], motion_adapter: MotionAdapter, controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], scheduler: KarrasDiffusionSchedulers, feature_extractor: Optional[CLIPImageProcessor]=None, image_encoder: Optional[CLIPVisionModelWithProjection]=None): + super().__init__() + if isinstance(unet, UNet2DConditionModel): + unet = UNetMotionModel.from_unet2d(unet, motion_adapter) + if isinstance(controlnet, (list, tuple)): + controlnet = MultiControlNetModel(controlnet) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, motion_adapter=motion_adapter, controlnet=controlnet, scheduler=scheduler, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor) + self.control_video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False) + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def decode_latents(self, latents, decode_chunk_size: int=16): + latents = 1 / self.vae.config.scaling_factor * latents + (batch_size, channels, num_frames, height, width) = latents.shape + latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) + video = [] + for i in range(0, latents.shape[0], decode_chunk_size): + batch_latents = latents[i:i + decode_chunk_size] + batch_latents = self.vae.decode(batch_latents).sample + video.append(batch_latents) + video = torch.cat(video) + video = video[None, :].reshape((batch_size, num_frames, -1) + video.shape[2:]).permute(0, 2, 1, 3, 4) + video = video.float() + return video + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, num_frames, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, video=None, controlnet_conditioning_scale=1.0, control_guidance_start=0.0, control_guidance_end=1.0): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, (str, list, dict))): + raise ValueError(f'`prompt` has to be of type `str`, `list` or `dict` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if isinstance(self.controlnet, MultiControlNetModel): + if isinstance(prompt, list): + logger.warning(f'You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)} prompts. The conditionings will be fixed across the prompts.') + is_compiled = hasattr(F, 'scaled_dot_product_attention') and isinstance(self.controlnet, torch._dynamo.eval_frame.OptimizedModule) + if isinstance(self.controlnet, ControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel)): + if not isinstance(video, list): + raise TypeError(f'For single controlnet, `image` must be of type `list` but got {type(video)}') + if len(video) != num_frames: + raise ValueError(f'Excepted image to have length {num_frames} but got len(video)={len(video)!r}') + elif isinstance(self.controlnet, MultiControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel)): + if not isinstance(video, list) or not isinstance(video[0], list): + raise TypeError(f'For multiple controlnets: `image` must be type list of lists but got type(video)={type(video)!r}') + if len(video[0]) != num_frames: + raise ValueError(f'Expected length of image sublist as {num_frames} but got len(video[0])={len(video[0])!r}') + if any((len(img) != len(video[0]) for img in video)): + raise ValueError('All conditioning frame batches for multicontrolnet must be same size') + else: + assert False + if isinstance(self.controlnet, ControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel)): + if not isinstance(controlnet_conditioning_scale, float): + raise TypeError('For single controlnet: `controlnet_conditioning_scale` must be type `float`.') + elif isinstance(self.controlnet, MultiControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel)): + if isinstance(controlnet_conditioning_scale, list): + if any((isinstance(i, list) for i in controlnet_conditioning_scale)): + raise ValueError('A single batch of multiple conditionings are supported at the moment.') + elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(self.controlnet.nets): + raise ValueError('For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have the same length as the number of controlnets') + else: + assert False + if not isinstance(control_guidance_start, (tuple, list)): + control_guidance_start = [control_guidance_start] + if not isinstance(control_guidance_end, (tuple, list)): + control_guidance_end = [control_guidance_end] + if len(control_guidance_start) != len(control_guidance_end): + raise ValueError(f'`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list.') + if isinstance(self.controlnet, MultiControlNetModel): + if len(control_guidance_start) != len(self.controlnet.nets): + raise ValueError(f'`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}.') + for (start, end) in zip(control_guidance_start, control_guidance_end): + if start >= end: + raise ValueError(f'control guidance start: {start} cannot be larger or equal to control guidance end: {end}.') + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + + def prepare_latents(self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None): + if self.free_noise_enabled: + latents = self._prepare_latents_free_noise(batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + shape = (batch_size, num_channels_latents, num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor) + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def prepare_video(self, video, width, height, batch_size, num_videos_per_prompt, device, dtype, do_classifier_free_guidance=False, guess_mode=False): + video = self.control_video_processor.preprocess_video(video, height=height, width=width).to(dtype=torch.float32) + video = video.permute(0, 2, 1, 3, 4).flatten(0, 1) + video_batch_size = video.shape[0] + if video_batch_size == 1: + repeat_by = batch_size + else: + repeat_by = num_videos_per_prompt + video = video.repeat_interleave(repeat_by, dim=0) + video = video.to(device=device, dtype=dtype) + if do_classifier_free_guidance and (not guess_mode): + video = torch.cat([video] * 2) + return video + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + def __call__(self, prompt: Union[str, List[str]]=None, num_frames: Optional[int]=16, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_videos_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[PipelineImageInput]=None, conditioning_frames: Optional[List[PipelineImageInput]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, controlnet_conditioning_scale: Union[float, List[float]]=1.0, guess_mode: bool=False, control_guidance_start: Union[float, List[float]]=0.0, control_guidance_end: Union[float, List[float]]=1.0, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], decode_chunk_size: int=16): + controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and (not isinstance(control_guidance_end, list)): + mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 + (control_guidance_start, control_guidance_end) = (mult * [control_guidance_start], mult * [control_guidance_end]) + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + num_videos_per_prompt = 1 + self.check_inputs(prompt=prompt, height=height, width=width, num_frames=num_frames, negative_prompt=negative_prompt, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, video=conditioning_frames, controlnet_conditioning_scale=controlnet_conditioning_scale, control_guidance_start=control_guidance_start, control_guidance_end=control_guidance_end) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._interrupt = False + if prompt is not None and isinstance(prompt, (str, dict)): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): + controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) + global_pool_conditions = controlnet.config.global_pool_conditions if isinstance(controlnet, ControlNetModel) else controlnet.nets[0].config.global_pool_conditions + guess_mode = guess_mode or global_pool_conditions + text_encoder_lora_scale = cross_attention_kwargs.get('scale', None) if cross_attention_kwargs is not None else None + if self.free_noise_enabled: + (prompt_embeds, negative_prompt_embeds) = self._encode_prompt_free_noise(prompt=prompt, num_frames=num_frames, device=device, num_videos_per_prompt=num_videos_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + else: + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_videos_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_videos_per_prompt, self.do_classifier_free_guidance) + if isinstance(controlnet, ControlNetModel): + conditioning_frames = self.prepare_video(video=conditioning_frames, width=width, height=height, batch_size=batch_size * num_videos_per_prompt * num_frames, num_videos_per_prompt=num_videos_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=guess_mode) + elif isinstance(controlnet, MultiControlNetModel): + cond_prepared_videos = [] + for frame_ in conditioning_frames: + prepared_video = self.prepare_video(video=frame_, width=width, height=height, batch_size=batch_size * num_videos_per_prompt * num_frames, num_videos_per_prompt=num_videos_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=guess_mode) + cond_prepared_videos.append(prepared_video) + conditioning_frames = cond_prepared_videos + else: + assert False + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_videos_per_prompt, num_channels_latents, num_frames, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'image_embeds': image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None + controlnet_keep = [] + for i in range(len(timesteps)): + keeps = [1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) for (s, e) in zip(control_guidance_start, control_guidance_end)] + controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) + num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1 + for free_init_iter in range(num_free_init_iters): + if self.free_init_enabled: + (latents, timesteps) = self._apply_free_init(latents, free_init_iter, num_inference_steps, device, latents.dtype, generator) + self._num_timesteps = len(timesteps) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=self._num_timesteps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + if guess_mode and self.do_classifier_free_guidance: + control_model_input = latents + control_model_input = self.scheduler.scale_model_input(control_model_input, t) + controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] + else: + control_model_input = latent_model_input + controlnet_prompt_embeds = prompt_embeds + if isinstance(controlnet_keep[i], list): + cond_scale = [c * s for (c, s) in zip(controlnet_conditioning_scale, controlnet_keep[i])] + else: + controlnet_cond_scale = controlnet_conditioning_scale + if isinstance(controlnet_cond_scale, list): + controlnet_cond_scale = controlnet_cond_scale[0] + cond_scale = controlnet_cond_scale * controlnet_keep[i] + control_model_input = torch.transpose(control_model_input, 1, 2) + control_model_input = control_model_input.reshape((-1, control_model_input.shape[2], control_model_input.shape[3], control_model_input.shape[4])) + (down_block_res_samples, mid_block_res_sample) = self.controlnet(control_model_input, t, encoder_hidden_states=controlnet_prompt_embeds, controlnet_cond=conditioning_frames, conditioning_scale=cond_scale, guess_mode=guess_mode, return_dict=False) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, down_block_additional_residuals=down_block_res_samples, mid_block_additional_residual=mid_block_res_sample).sample + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if output_type == 'latent': + video = latents + else: + video_tensor = self.decode_latents(latents, decode_chunk_size) + video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (video,) + return AnimateDiffPipelineOutput(frames=video) + +# File: diffusers-main/src/diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection +from ...image_processor import PipelineImageInput +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ImageProjection, MotionAdapter, UNet2DConditionModel, UNetMotionModel +from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler +from ...utils import USE_PEFT_BACKEND, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ...video_processor import VideoProcessor +from ..free_init_utils import FreeInitMixin +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from .pipeline_output import AnimateDiffPipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers.models import MotionAdapter\n >>> from diffusers import AnimateDiffSDXLPipeline, DDIMScheduler\n >>> from diffusers.utils import export_to_gif\n\n >>> adapter = MotionAdapter.from_pretrained(\n ... "a-r-r-o-w/animatediff-motion-adapter-sdxl-beta", torch_dtype=torch.float16\n ... )\n\n >>> model_id = "stabilityai/stable-diffusion-xl-base-1.0"\n >>> scheduler = DDIMScheduler.from_pretrained(\n ... model_id,\n ... subfolder="scheduler",\n ... clip_sample=False,\n ... timestep_spacing="linspace",\n ... beta_schedule="linear",\n ... steps_offset=1,\n ... )\n >>> pipe = AnimateDiffSDXLPipeline.from_pretrained(\n ... model_id,\n ... motion_adapter=adapter,\n ... scheduler=scheduler,\n ... torch_dtype=torch.float16,\n ... variant="fp16",\n ... ).to("cuda")\n\n >>> # enable memory savings\n >>> pipe.enable_vae_slicing()\n >>> pipe.enable_vae_tiling()\n\n >>> output = pipe(\n ... prompt="a panda surfing in the ocean, realistic, high quality",\n ... negative_prompt="low quality, worst quality",\n ... num_inference_steps=20,\n ... guidance_scale=8,\n ... width=1024,\n ... height=1024,\n ... num_frames=16,\n ... )\n\n >>> frames = output.frames[0]\n >>> export_to_gif(frames, "animation.gif")\n ```\n' + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class AnimateDiffSDXLPipeline(DiffusionPipeline, StableDiffusionMixin, FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin, IPAdapterMixin, FreeInitMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->image_encoder->unet->vae' + _optional_components = ['tokenizer', 'tokenizer_2', 'text_encoder', 'text_encoder_2', 'image_encoder', 'feature_extractor'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'add_text_embeds', 'add_time_ids', 'negative_pooled_prompt_embeds', 'negative_add_time_ids'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: Union[UNet2DConditionModel, UNetMotionModel], motion_adapter: MotionAdapter, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler], image_encoder: CLIPVisionModelWithProjection=None, feature_extractor: CLIPImageProcessor=None, force_zeros_for_empty_prompt: bool=True): + super().__init__() + if isinstance(unet, UNet2DConditionModel): + unet = UNetMotionModel.from_unet2d(unet, motion_adapter) + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, motion_adapter=motion_adapter, scheduler=scheduler, image_encoder=image_encoder, feature_extractor=feature_extractor) + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor) + self.default_sample_size = self.unet.config.sample_size + + def encode_prompt(self, prompt: str, prompt_2: Optional[str]=None, device: Optional[torch.device]=None, num_videos_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[str]=None, negative_prompt_2: Optional[str]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) + else: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for (prompt, tokenizer, text_encoder) in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + text_inputs = tokenizer(prompt, padding='max_length', max_length=tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + prompt_embeds_list.append(prompt_embeds) + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + negative_prompt_embeds_list = [] + for (negative_prompt, tokenizer, text_encoder) in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer(negative_prompt, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True) + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + negative_prompt_embeds_list.append(negative_prompt_embeds) + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + if self.text_encoder_2 is not None: + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + if self.text_encoder_2 is not None: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_videos_per_prompt).view(bs_embed * num_videos_per_prompt, -1) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_videos_per_prompt).view(bs_embed * num_videos_per_prompt, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def decode_latents(self, latents): + latents = 1 / self.vae.config.scaling_factor * latents + (batch_size, channels, num_frames, height, width) = latents.shape + latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) + image = self.vae.decode(latents).sample + video = image[None, :].reshape((batch_size, num_frames, -1) + image.shape[2:]).permute(0, 2, 1, 3, 4) + video = video.float() + return video + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, prompt_2, height, width, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + + def prepare_latents(self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.') + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + return add_time_ids + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor, FusedAttnProcessor2_0)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def guidance_rescale(self): + return self._guidance_rescale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def denoising_end(self): + return self._denoising_end + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, num_frames: int=16, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, timesteps: List[int]=None, sigmas: List[float]=None, denoising_end: Optional[float]=None, guidance_scale: float=5.0, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, num_videos_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, guidance_rescale: float=0.0, original_size: Optional[Tuple[int, int]]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), target_size: Optional[Tuple[int, int]]=None, negative_original_size: Optional[Tuple[int, int]]=None, negative_crops_coords_top_left: Tuple[int, int]=(0, 0), negative_target_size: Optional[Tuple[int, int]]=None, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents']): + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + num_videos_per_prompt = 1 + original_size = original_size or (height, width) + target_size = target_size or (height, width) + self.check_inputs(prompt, prompt_2, height, width, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._guidance_rescale = guidance_rescale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._denoising_end = denoising_end + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt=prompt, prompt_2=prompt_2, device=device, num_videos_per_prompt=num_videos_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=lora_scale, clip_skip=self.clip_skip) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_videos_per_prompt, num_channels_latents, num_frames, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + add_text_embeds = pooled_prompt_embeds + if self.text_encoder_2 is None: + text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) + else: + text_encoder_projection_dim = self.text_encoder_2.config.projection_dim + add_time_ids = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + if negative_original_size is not None and negative_target_size is not None: + negative_add_time_ids = self._get_add_time_ids(negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + else: + negative_add_time_ids = add_time_ids + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) + prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0) + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device).repeat(batch_size * num_videos_per_prompt, 1) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_videos_per_prompt, self.do_classifier_free_guidance) + if self.denoising_end is not None and isinstance(self.denoising_end, float) and (self.denoising_end > 0) and (self.denoising_end < 1): + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - self.denoising_end * self.scheduler.config.num_train_timesteps)) + num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) + timesteps = timesteps[:num_inference_steps] + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_videos_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1 + for free_init_iter in range(num_free_init_iters): + if self.free_init_enabled: + (latents, timesteps) = self._apply_free_init(latents, free_init_iter, num_inference_steps, device, latents.dtype, generator) + self._num_timesteps = len(timesteps) + with self.progress_bar(total=self._num_timesteps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + if ip_adapter_image is not None or ip_adapter_image_embeds: + added_cond_kwargs['image_embeds'] = image_embeds + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + add_text_embeds = callback_outputs.pop('add_text_embeds', add_text_embeds) + negative_pooled_prompt_embeds = callback_outputs.pop('negative_pooled_prompt_embeds', negative_pooled_prompt_embeds) + add_time_ids = callback_outputs.pop('add_time_ids', add_time_ids) + negative_add_time_ids = callback_outputs.pop('negative_add_time_ids', negative_add_time_ids) + progress_bar.update() + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + if output_type == 'latent': + video = latents + else: + video_tensor = self.decode_latents(latents) + video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type) + if needs_upcasting: + self.vae.to(dtype=torch.float16) + self.maybe_free_model_hooks() + if not return_dict: + return (video,) + return AnimateDiffPipelineOutput(frames=video) + +# File: diffusers-main/src/diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import numpy as np +import PIL +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel +from ...models.controlnet_sparsectrl import SparseControlNetModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...models.unets.unet_motion_model import MotionAdapter +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import is_compiled_module, randn_tensor +from ...video_processor import VideoProcessor +from ..free_init_utils import FreeInitMixin +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from .pipeline_output import AnimateDiffPipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```python\n >>> import torch\n >>> from diffusers import AnimateDiffSparseControlNetPipeline\n >>> from diffusers.models import AutoencoderKL, MotionAdapter, SparseControlNetModel\n >>> from diffusers.schedulers import DPMSolverMultistepScheduler\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> model_id = "SG161222/Realistic_Vision_V5.1_noVAE"\n >>> motion_adapter_id = "guoyww/animatediff-motion-adapter-v1-5-3"\n >>> controlnet_id = "guoyww/animatediff-sparsectrl-scribble"\n >>> lora_adapter_id = "guoyww/animatediff-motion-lora-v1-5-3"\n >>> vae_id = "stabilityai/sd-vae-ft-mse"\n >>> device = "cuda"\n\n >>> motion_adapter = MotionAdapter.from_pretrained(motion_adapter_id, torch_dtype=torch.float16).to(device)\n >>> controlnet = SparseControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16).to(device)\n >>> vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=torch.float16).to(device)\n >>> scheduler = DPMSolverMultistepScheduler.from_pretrained(\n ... model_id,\n ... subfolder="scheduler",\n ... beta_schedule="linear",\n ... algorithm_type="dpmsolver++",\n ... use_karras_sigmas=True,\n ... )\n >>> pipe = AnimateDiffSparseControlNetPipeline.from_pretrained(\n ... model_id,\n ... motion_adapter=motion_adapter,\n ... controlnet=controlnet,\n ... vae=vae,\n ... scheduler=scheduler,\n ... torch_dtype=torch.float16,\n ... ).to(device)\n >>> pipe.load_lora_weights(lora_adapter_id, adapter_name="motion_lora")\n >>> pipe.fuse_lora(lora_scale=1.0)\n\n >>> prompt = "an aerial view of a cyberpunk city, night time, neon lights, masterpiece, high quality"\n >>> negative_prompt = "low quality, worst quality, letterboxed"\n\n >>> image_files = [\n ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-1.png",\n ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-2.png",\n ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-3.png",\n ... ]\n >>> condition_frame_indices = [0, 8, 15]\n >>> conditioning_frames = [load_image(img_file) for img_file in image_files]\n\n >>> video = pipe(\n ... prompt=prompt,\n ... negative_prompt=negative_prompt,\n ... num_inference_steps=25,\n ... conditioning_frames=conditioning_frames,\n ... controlnet_conditioning_scale=1.0,\n ... controlnet_frame_indices=condition_frame_indices,\n ... generator=torch.Generator().manual_seed(1337),\n ... ).frames[0]\n >>> export_to_gif(video, "output.gif")\n ```\n' + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +class AnimateDiffSparseControlNetPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, FreeInitMixin): + model_cpu_offload_seq = 'text_encoder->image_encoder->unet->vae' + _optional_components = ['feature_extractor', 'image_encoder', 'motion_adapter'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: Union[UNet2DConditionModel, UNetMotionModel], motion_adapter: MotionAdapter, controlnet: SparseControlNetModel, scheduler: KarrasDiffusionSchedulers, feature_extractor: CLIPImageProcessor=None, image_encoder: CLIPVisionModelWithProjection=None): + super().__init__() + if isinstance(unet, UNet2DConditionModel): + unet = UNetMotionModel.from_unet2d(unet, motion_adapter) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, motion_adapter=motion_adapter, controlnet=controlnet, scheduler=scheduler, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.video_processor = VideoProcessor(do_resize=False, vae_scale_factor=self.vae_scale_factor) + self.control_image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False) + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def decode_latents(self, latents): + latents = 1 / self.vae.config.scaling_factor * latents + (batch_size, channels, num_frames, height, width) = latents.shape + latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) + image = self.vae.decode(latents).sample + video = image[None, :].reshape((batch_size, num_frames, -1) + image.shape[2:]).permute(0, 2, 1, 3, 4) + video = video.float() + return video + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None, image=None, controlnet_conditioning_scale: float=1.0): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + is_compiled = hasattr(F, 'scaled_dot_product_attention') and isinstance(self.controlnet, torch._dynamo.eval_frame.OptimizedModule) + if isinstance(self.controlnet, SparseControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, SparseControlNetModel)): + if isinstance(image, list): + for image_ in image: + self.check_image(image_, prompt, prompt_embeds) + else: + self.check_image(image, prompt, prompt_embeds) + else: + assert False + if isinstance(self.controlnet, SparseControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, SparseControlNetModel)): + if not isinstance(controlnet_conditioning_scale, float): + raise TypeError('For single controlnet: `controlnet_conditioning_scale` must be type `float`.') + else: + assert False + + def check_image(self, image, prompt, prompt_embeds): + image_is_pil = isinstance(image, PIL.Image.Image) + image_is_tensor = isinstance(image, torch.Tensor) + image_is_np = isinstance(image, np.ndarray) + image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) + image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) + image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) + if not image_is_pil and (not image_is_tensor) and (not image_is_np) and (not image_is_pil_list) and (not image_is_tensor_list) and (not image_is_np_list): + raise TypeError(f'image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}') + if image_is_pil: + image_batch_size = 1 + else: + image_batch_size = len(image) + if prompt is not None and isinstance(prompt, str): + prompt_batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + prompt_batch_size = len(prompt) + elif prompt_embeds is not None: + prompt_batch_size = prompt_embeds.shape[0] + if image_batch_size != 1 and image_batch_size != prompt_batch_size: + raise ValueError(f'If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}') + + def prepare_latents(self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def prepare_image(self, image, width, height, device, dtype): + image = self.control_image_processor.preprocess(image, height=height, width=width) + controlnet_images = image.unsqueeze(0).to(device, dtype) + (batch_size, num_frames, channels, height, width) = controlnet_images.shape + assert controlnet_images.min() >= 0 and controlnet_images.max() <= 1 + if self.controlnet.use_simplified_condition_embedding: + controlnet_images = controlnet_images.reshape(batch_size * num_frames, channels, height, width) + controlnet_images = 2 * controlnet_images - 1 + conditioning_frames = retrieve_latents(self.vae.encode(controlnet_images)) * self.vae.config.scaling_factor + conditioning_frames = conditioning_frames.reshape(batch_size, num_frames, 4, height // self.vae_scale_factor, width // self.vae_scale_factor) + else: + conditioning_frames = controlnet_images + conditioning_frames = conditioning_frames.permute(0, 2, 1, 3, 4) + return conditioning_frames + + def prepare_sparse_control_conditioning(self, conditioning_frames: torch.Tensor, num_frames: int, controlnet_frame_indices: int, device: torch.device, dtype: torch.dtype) -> Tuple[torch.Tensor, torch.Tensor]: + assert conditioning_frames.shape[2] >= len(controlnet_frame_indices) + (batch_size, channels, _, height, width) = conditioning_frames.shape + controlnet_cond = torch.zeros((batch_size, channels, num_frames, height, width), dtype=dtype, device=device) + controlnet_cond_mask = torch.zeros((batch_size, 1, num_frames, height, width), dtype=dtype, device=device) + controlnet_cond[:, :, controlnet_frame_indices] = conditioning_frames[:, :, :len(controlnet_frame_indices)] + controlnet_cond_mask[:, :, controlnet_frame_indices] = 1 + return (controlnet_cond, controlnet_cond_mask) + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Optional[Union[str, List[str]]]=None, height: Optional[int]=None, width: Optional[int]=None, num_frames: int=16, num_inference_steps: int=50, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_videos_per_prompt: int=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, conditioning_frames: Optional[List[PipelineImageInput]]=None, output_type: str='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, controlnet_conditioning_scale: Union[float, List[float]]=1.0, controlnet_frame_indices: List[int]=[0], guess_mode: bool=False, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents']): + controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + num_videos_per_prompt = 1 + self.check_inputs(prompt=prompt, height=height, width=width, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, ip_adapter_image=ip_adapter_image, ip_adapter_image_embeds=ip_adapter_image_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, image=conditioning_frames, controlnet_conditioning_scale=controlnet_conditioning_scale) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + global_pool_conditions = controlnet.config.global_pool_conditions if isinstance(controlnet, SparseControlNetModel) else controlnet.nets[0].config.global_pool_conditions + guess_mode = guess_mode or global_pool_conditions + text_encoder_lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_videos_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_videos_per_prompt, self.do_classifier_free_guidance) + conditioning_frames = self.prepare_image(conditioning_frames, width, height, device, controlnet.dtype) + (controlnet_cond, controlnet_cond_mask) = self.prepare_sparse_control_conditioning(conditioning_frames, num_frames, controlnet_frame_indices, device, controlnet.dtype) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_videos_per_prompt, num_channels_latents, num_frames, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'image_embeds': image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None + num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1 + for free_init_iter in range(num_free_init_iters): + if self.free_init_enabled: + (latents, timesteps) = self._apply_free_init(latents, free_init_iter, num_inference_steps, device, latents.dtype, generator) + self._num_timesteps = len(timesteps) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=self._num_timesteps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + if guess_mode and self.do_classifier_free_guidance: + control_model_input = latents + control_model_input = self.scheduler.scale_model_input(control_model_input, t) + controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] + else: + control_model_input = latent_model_input + controlnet_prompt_embeds = prompt_embeds + (down_block_res_samples, mid_block_res_sample) = self.controlnet(control_model_input, t, encoder_hidden_states=controlnet_prompt_embeds, controlnet_cond=controlnet_cond, conditioning_mask=controlnet_cond_mask, conditioning_scale=controlnet_conditioning_scale, guess_mode=guess_mode, return_dict=False) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, down_block_additional_residuals=down_block_res_samples, mid_block_additional_residual=mid_block_res_sample).sample + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if output_type == 'latent': + video = latents + else: + video_tensor = self.decode_latents(latents) + video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (video,) + return AnimateDiffPipelineOutput(frames=video) + +# File: diffusers-main/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...image_processor import PipelineImageInput +from ...loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...models.unets.unet_motion_model import MotionAdapter +from ...schedulers import DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler +from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ...video_processor import VideoProcessor +from ..free_init_utils import FreeInitMixin +from ..free_noise_utils import AnimateDiffFreeNoiseMixin +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from .pipeline_output import AnimateDiffPipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import imageio\n >>> import requests\n >>> import torch\n >>> from diffusers import AnimateDiffVideoToVideoPipeline, DDIMScheduler, MotionAdapter\n >>> from diffusers.utils import export_to_gif\n >>> from io import BytesIO\n >>> from PIL import Image\n\n >>> adapter = MotionAdapter.from_pretrained(\n ... "guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16\n ... )\n >>> pipe = AnimateDiffVideoToVideoPipeline.from_pretrained(\n ... "SG161222/Realistic_Vision_V5.1_noVAE", motion_adapter=adapter\n ... ).to("cuda")\n >>> pipe.scheduler = DDIMScheduler(\n ... beta_schedule="linear", steps_offset=1, clip_sample=False, timespace_spacing="linspace"\n ... )\n\n\n >>> def load_video(file_path: str):\n ... images = []\n\n ... if file_path.startswith(("http://", "https://")):\n ... # If the file_path is a URL\n ... response = requests.get(file_path)\n ... response.raise_for_status()\n ... content = BytesIO(response.content)\n ... vid = imageio.get_reader(content)\n ... else:\n ... # Assuming it\'s a local file path\n ... vid = imageio.get_reader(file_path)\n\n ... for frame in vid:\n ... pil_image = Image.fromarray(frame)\n ... images.append(pil_image)\n\n ... return images\n\n\n >>> video = load_video(\n ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-1.gif"\n ... )\n >>> output = pipe(\n ... video=video, prompt="panda playing a guitar, on a boat, in the ocean, high quality", strength=0.5\n ... )\n >>> frames = output.frames[0]\n >>> export_to_gif(frames, "animation.gif")\n ```\n' + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class AnimateDiffVideoToVideoPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, FreeInitMixin, AnimateDiffFreeNoiseMixin): + model_cpu_offload_seq = 'text_encoder->image_encoder->unet->vae' + _optional_components = ['feature_extractor', 'image_encoder', 'motion_adapter'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, motion_adapter: MotionAdapter, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler], feature_extractor: CLIPImageProcessor=None, image_encoder: CLIPVisionModelWithProjection=None): + super().__init__() + if isinstance(unet, UNet2DConditionModel): + unet = UNetMotionModel.from_unet2d(unet, motion_adapter) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, motion_adapter=motion_adapter, scheduler=scheduler, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor) + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, (str, dict)): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def encode_video(self, video, generator, decode_chunk_size: int=16) -> torch.Tensor: + latents = [] + for i in range(0, len(video), decode_chunk_size): + batch_video = video[i:i + decode_chunk_size] + batch_video = retrieve_latents(self.vae.encode(batch_video), generator=generator) + latents.append(batch_video) + return torch.cat(latents) + + def decode_latents(self, latents, decode_chunk_size: int=16): + latents = 1 / self.vae.config.scaling_factor * latents + (batch_size, channels, num_frames, height, width) = latents.shape + latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) + video = [] + for i in range(0, latents.shape[0], decode_chunk_size): + batch_latents = latents[i:i + decode_chunk_size] + batch_latents = self.vae.decode(batch_latents).sample + video.append(batch_latents) + video = torch.cat(video) + video = video[None, :].reshape((batch_size, num_frames, -1) + video.shape[2:]).permute(0, 2, 1, 3, 4) + video = video.float() + return video + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, strength, height, width, video=None, latents=None, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None): + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, (str, list, dict))): + raise ValueError(f'`prompt` has to be of type `str`, `list` or `dict` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if video is not None and latents is not None: + raise ValueError('Only one of `video` or `latents` should be provided') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def get_timesteps(self, num_inference_steps, timesteps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = timesteps[t_start * self.scheduler.order:] + return (timesteps, num_inference_steps - t_start) + + def prepare_latents(self, video: Optional[torch.Tensor]=None, height: int=64, width: int=64, num_channels_latents: int=4, batch_size: int=1, timestep: Optional[int]=None, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, decode_chunk_size: int=16, add_noise: bool=False) -> torch.Tensor: + num_frames = video.shape[1] if latents is None else latents.shape[2] + shape = (batch_size, num_channels_latents, num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + if self.vae.config.force_upcast: + video = video.float() + self.vae.to(dtype=torch.float32) + if isinstance(generator, list): + if len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + init_latents = [self.encode_video(video[i], generator[i], decode_chunk_size).unsqueeze(0) for i in range(batch_size)] + else: + init_latents = [self.encode_video(vid, generator, decode_chunk_size).unsqueeze(0) for vid in video] + init_latents = torch.cat(init_latents, dim=0) + if self.vae.config.force_upcast: + self.vae.to(dtype) + init_latents = init_latents.to(dtype) + init_latents = self.vae.config.scaling_factor * init_latents + if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: + error_message = f'You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial images (`image`). Please make sure to update your script to pass as many initial images as text prompts' + raise ValueError(error_message) + elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts.') + else: + init_latents = torch.cat([init_latents], dim=0) + noise = randn_tensor(init_latents.shape, generator=generator, device=device, dtype=dtype) + latents = self.scheduler.add_noise(init_latents, noise, timestep).permute(0, 2, 1, 3, 4) + else: + if shape != latents.shape: + raise ValueError(f'`latents` expected to have shape={shape!r}, but found latents.shape={latents.shape!r}') + latents = latents.to(device, dtype=dtype) + if add_noise: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = self.scheduler.add_noise(latents, noise, timestep) + return latents + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + def __call__(self, video: List[List[PipelineImageInput]]=None, prompt: Optional[Union[str, List[str]]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, enforce_inference_steps: bool=False, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, guidance_scale: float=7.5, strength: float=0.8, negative_prompt: Optional[Union[str, List[str]]]=None, num_videos_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], decode_chunk_size: int=16): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + num_videos_per_prompt = 1 + self.check_inputs(prompt=prompt, strength=strength, height=height, width=width, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, video=video, latents=latents, ip_adapter_image=ip_adapter_image, ip_adapter_image_embeds=ip_adapter_image_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._interrupt = False + if prompt is not None and isinstance(prompt, (str, dict)): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + dtype = self.dtype + if not enforce_inference_steps: + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, timesteps, strength, device) + latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt) + else: + denoising_inference_steps = int(num_inference_steps / strength) + (timesteps, denoising_inference_steps) = retrieve_timesteps(self.scheduler, denoising_inference_steps, device, timesteps, sigmas) + timesteps = timesteps[-num_inference_steps:] + latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt) + if latents is None: + video = self.video_processor.preprocess_video(video, height=height, width=width) + video = video.permute(0, 2, 1, 3, 4) + video = video.to(device=device, dtype=dtype) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(video=video, height=height, width=width, num_channels_latents=num_channels_latents, batch_size=batch_size * num_videos_per_prompt, timestep=latent_timestep, dtype=dtype, device=device, generator=generator, latents=latents, decode_chunk_size=decode_chunk_size, add_noise=enforce_inference_steps) + text_encoder_lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + num_frames = latents.shape[2] + if self.free_noise_enabled: + (prompt_embeds, negative_prompt_embeds) = self._encode_prompt_free_noise(prompt=prompt, num_frames=num_frames, device=device, num_videos_per_prompt=num_videos_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + else: + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_videos_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_videos_per_prompt, self.do_classifier_free_guidance) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'image_embeds': image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None + num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1 + for free_init_iter in range(num_free_init_iters): + if self.free_init_enabled: + (latents, timesteps) = self._apply_free_init(latents, free_init_iter, num_inference_steps, device, latents.dtype, generator) + num_inference_steps = len(timesteps) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, timesteps, strength, device) + self._num_timesteps = len(timesteps) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=self._num_timesteps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs).sample + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if output_type == 'latent': + video = latents + else: + video_tensor = self.decode_latents(latents, decode_chunk_size) + video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (video,) + return AnimateDiffPipelineOutput(frames=video) + +# File: diffusers-main/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...image_processor import PipelineImageInput +from ...loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel, UNetMotionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...models.unets.unet_motion_model import MotionAdapter +from ...schedulers import DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler +from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import is_compiled_module, randn_tensor +from ...video_processor import VideoProcessor +from ..controlnet.multicontrolnet import MultiControlNetModel +from ..free_init_utils import FreeInitMixin +from ..free_noise_utils import AnimateDiffFreeNoiseMixin +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from .pipeline_output import AnimateDiffPipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from PIL import Image\n >>> from tqdm.auto import tqdm\n\n >>> from diffusers import AnimateDiffVideoToVideoControlNetPipeline\n >>> from diffusers.utils import export_to_gif, load_video\n >>> from diffusers import AutoencoderKL, ControlNetModel, MotionAdapter, LCMScheduler\n\n >>> controlnet = ControlNetModel.from_pretrained(\n ... "lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16\n ... )\n >>> motion_adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")\n >>> vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)\n\n >>> pipe = AnimateDiffVideoToVideoControlNetPipeline.from_pretrained(\n ... "SG161222/Realistic_Vision_V5.1_noVAE",\n ... motion_adapter=motion_adapter,\n ... controlnet=controlnet,\n ... vae=vae,\n ... ).to(device="cuda", dtype=torch.float16)\n\n >>> pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")\n >>> pipe.load_lora_weights(\n ... "wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora"\n ... )\n >>> pipe.set_adapters(["lcm-lora"], [0.8])\n\n >>> video = load_video(\n ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/dance.gif"\n ... )\n >>> video = [frame.convert("RGB") for frame in video]\n\n >>> from controlnet_aux.processor import OpenposeDetector\n\n >>> open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators").to("cuda")\n >>> for frame in tqdm(video):\n ... conditioning_frames.append(open_pose(frame))\n\n >>> prompt = "astronaut in space, dancing"\n >>> negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"\n\n >>> strength = 0.8\n >>> with torch.inference_mode():\n ... video = pipe(\n ... video=video,\n ... prompt=prompt,\n ... negative_prompt=negative_prompt,\n ... num_inference_steps=10,\n ... guidance_scale=2.0,\n ... controlnet_conditioning_scale=0.75,\n ... conditioning_frames=conditioning_frames,\n ... strength=strength,\n ... generator=torch.Generator().manual_seed(42),\n ... ).frames[0]\n\n >>> video = [frame.resize(conditioning_frames[0].size) for frame in video]\n >>> export_to_gif(video, f"animatediff_vid2vid_controlnet.gif", fps=8)\n ```\n' + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class AnimateDiffVideoToVideoControlNetPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, FreeInitMixin, AnimateDiffFreeNoiseMixin): + model_cpu_offload_seq = 'text_encoder->image_encoder->unet->vae' + _optional_components = ['feature_extractor', 'image_encoder', 'motion_adapter'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, motion_adapter: MotionAdapter, controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler], feature_extractor: CLIPImageProcessor=None, image_encoder: CLIPVisionModelWithProjection=None): + super().__init__() + if isinstance(unet, UNet2DConditionModel): + unet = UNetMotionModel.from_unet2d(unet, motion_adapter) + if isinstance(controlnet, (list, tuple)): + controlnet = MultiControlNetModel(controlnet) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, motion_adapter=motion_adapter, controlnet=controlnet, scheduler=scheduler, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor) + self.control_video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False) + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, (str, dict)): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def encode_video(self, video, generator, decode_chunk_size: int=16) -> torch.Tensor: + latents = [] + for i in range(0, len(video), decode_chunk_size): + batch_video = video[i:i + decode_chunk_size] + batch_video = retrieve_latents(self.vae.encode(batch_video), generator=generator) + latents.append(batch_video) + return torch.cat(latents) + + def decode_latents(self, latents, decode_chunk_size: int=16): + latents = 1 / self.vae.config.scaling_factor * latents + (batch_size, channels, num_frames, height, width) = latents.shape + latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) + video = [] + for i in range(0, latents.shape[0], decode_chunk_size): + batch_latents = latents[i:i + decode_chunk_size] + batch_latents = self.vae.decode(batch_latents).sample + video.append(batch_latents) + video = torch.cat(video) + video = video[None, :].reshape((batch_size, num_frames, -1) + video.shape[2:]).permute(0, 2, 1, 3, 4) + video = video.float() + return video + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, strength, height, width, video=None, conditioning_frames=None, latents=None, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None, controlnet_conditioning_scale=1.0, control_guidance_start=0.0, control_guidance_end=1.0): + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, (str, list, dict))): + raise ValueError(f'`prompt` has to be of type `str`, `list` or `dict` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if video is not None and latents is not None: + raise ValueError('Only one of `video` or `latents` should be provided') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + if isinstance(self.controlnet, MultiControlNetModel): + if isinstance(prompt, list): + logger.warning(f'You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)} prompts. The conditionings will be fixed across the prompts.') + is_compiled = hasattr(F, 'scaled_dot_product_attention') and isinstance(self.controlnet, torch._dynamo.eval_frame.OptimizedModule) + num_frames = len(video) if latents is None else latents.shape[2] + if isinstance(self.controlnet, ControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel)): + if not isinstance(conditioning_frames, list): + raise TypeError(f'For single controlnet, `image` must be of type `list` but got {type(conditioning_frames)}') + if len(conditioning_frames) != num_frames: + raise ValueError(f'Excepted image to have length {num_frames} but got len(conditioning_frames)={len(conditioning_frames)!r}') + elif isinstance(self.controlnet, MultiControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel)): + if not isinstance(conditioning_frames, list) or not isinstance(conditioning_frames[0], list): + raise TypeError(f'For multiple controlnets: `image` must be type list of lists but got type(conditioning_frames)={type(conditioning_frames)!r}') + if len(conditioning_frames[0]) != num_frames: + raise ValueError(f'Expected length of image sublist as {num_frames} but got len(conditioning_frames)={len(conditioning_frames)!r}') + if any((len(img) != len(conditioning_frames[0]) for img in conditioning_frames)): + raise ValueError('All conditioning frame batches for multicontrolnet must be same size') + else: + assert False + if isinstance(self.controlnet, ControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel)): + if not isinstance(controlnet_conditioning_scale, float): + raise TypeError('For single controlnet: `controlnet_conditioning_scale` must be type `float`.') + elif isinstance(self.controlnet, MultiControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel)): + if isinstance(controlnet_conditioning_scale, list): + if any((isinstance(i, list) for i in controlnet_conditioning_scale)): + raise ValueError('A single batch of multiple conditionings are supported at the moment.') + elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(self.controlnet.nets): + raise ValueError('For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have the same length as the number of controlnets') + else: + assert False + if not isinstance(control_guidance_start, (tuple, list)): + control_guidance_start = [control_guidance_start] + if not isinstance(control_guidance_end, (tuple, list)): + control_guidance_end = [control_guidance_end] + if len(control_guidance_start) != len(control_guidance_end): + raise ValueError(f'`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list.') + if isinstance(self.controlnet, MultiControlNetModel): + if len(control_guidance_start) != len(self.controlnet.nets): + raise ValueError(f'`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}.') + for (start, end) in zip(control_guidance_start, control_guidance_end): + if start >= end: + raise ValueError(f'control guidance start: {start} cannot be larger or equal to control guidance end: {end}.') + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + + def get_timesteps(self, num_inference_steps, timesteps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = timesteps[t_start * self.scheduler.order:] + return (timesteps, num_inference_steps - t_start) + + def prepare_latents(self, video: Optional[torch.Tensor]=None, height: int=64, width: int=64, num_channels_latents: int=4, batch_size: int=1, timestep: Optional[int]=None, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, decode_chunk_size: int=16, add_noise: bool=False) -> torch.Tensor: + num_frames = video.shape[1] if latents is None else latents.shape[2] + shape = (batch_size, num_channels_latents, num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + if self.vae.config.force_upcast: + video = video.float() + self.vae.to(dtype=torch.float32) + if isinstance(generator, list): + if len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + init_latents = [self.encode_video(video[i], generator[i], decode_chunk_size).unsqueeze(0) for i in range(batch_size)] + else: + init_latents = [self.encode_video(vid, generator, decode_chunk_size).unsqueeze(0) for vid in video] + init_latents = torch.cat(init_latents, dim=0) + if self.vae.config.force_upcast: + self.vae.to(dtype) + init_latents = init_latents.to(dtype) + init_latents = self.vae.config.scaling_factor * init_latents + if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: + error_message = f'You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial images (`image`). Please make sure to update your script to pass as many initial images as text prompts' + raise ValueError(error_message) + elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts.') + else: + init_latents = torch.cat([init_latents], dim=0) + noise = randn_tensor(init_latents.shape, generator=generator, device=device, dtype=dtype) + latents = self.scheduler.add_noise(init_latents, noise, timestep).permute(0, 2, 1, 3, 4) + else: + if shape != latents.shape: + raise ValueError(f'`latents` expected to have shape={shape!r}, but found latents.shape={latents.shape!r}') + latents = latents.to(device, dtype=dtype) + if add_noise: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = self.scheduler.add_noise(latents, noise, timestep) + return latents + + def prepare_conditioning_frames(self, video, width, height, batch_size, num_videos_per_prompt, device, dtype, do_classifier_free_guidance=False, guess_mode=False): + video = self.control_video_processor.preprocess_video(video, height=height, width=width).to(dtype=torch.float32) + video = video.permute(0, 2, 1, 3, 4).flatten(0, 1) + video_batch_size = video.shape[0] + if video_batch_size == 1: + repeat_by = batch_size + else: + repeat_by = num_videos_per_prompt + video = video.repeat_interleave(repeat_by, dim=0) + video = video.to(device=device, dtype=dtype) + if do_classifier_free_guidance and (not guess_mode): + video = torch.cat([video] * 2) + return video + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + def __call__(self, video: List[List[PipelineImageInput]]=None, prompt: Optional[Union[str, List[str]]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, enforce_inference_steps: bool=False, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, guidance_scale: float=7.5, strength: float=0.8, negative_prompt: Optional[Union[str, List[str]]]=None, num_videos_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, conditioning_frames: Optional[List[PipelineImageInput]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, controlnet_conditioning_scale: Union[float, List[float]]=1.0, guess_mode: bool=False, control_guidance_start: Union[float, List[float]]=0.0, control_guidance_end: Union[float, List[float]]=1.0, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], decode_chunk_size: int=16): + controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and (not isinstance(control_guidance_end, list)): + mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 + (control_guidance_start, control_guidance_end) = (mult * [control_guidance_start], mult * [control_guidance_end]) + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + num_videos_per_prompt = 1 + self.check_inputs(prompt=prompt, strength=strength, height=height, width=width, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, video=video, conditioning_frames=conditioning_frames, latents=latents, ip_adapter_image=ip_adapter_image, ip_adapter_image_embeds=ip_adapter_image_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, controlnet_conditioning_scale=controlnet_conditioning_scale, control_guidance_start=control_guidance_start, control_guidance_end=control_guidance_end) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._interrupt = False + if prompt is not None and isinstance(prompt, (str, dict)): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + dtype = self.dtype + if not enforce_inference_steps: + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, timesteps, strength, device) + latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt) + else: + denoising_inference_steps = int(num_inference_steps / strength) + (timesteps, denoising_inference_steps) = retrieve_timesteps(self.scheduler, denoising_inference_steps, device, timesteps, sigmas) + timesteps = timesteps[-num_inference_steps:] + latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt) + if latents is None: + video = self.video_processor.preprocess_video(video, height=height, width=width) + video = video.permute(0, 2, 1, 3, 4) + video = video.to(device=device, dtype=dtype) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(video=video, height=height, width=width, num_channels_latents=num_channels_latents, batch_size=batch_size * num_videos_per_prompt, timestep=latent_timestep, dtype=dtype, device=device, generator=generator, latents=latents, decode_chunk_size=decode_chunk_size, add_noise=enforce_inference_steps) + text_encoder_lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + num_frames = latents.shape[2] + if self.free_noise_enabled: + (prompt_embeds, negative_prompt_embeds) = self._encode_prompt_free_noise(prompt=prompt, num_frames=num_frames, device=device, num_videos_per_prompt=num_videos_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + else: + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_videos_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_videos_per_prompt, self.do_classifier_free_guidance) + if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): + controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) + global_pool_conditions = controlnet.config.global_pool_conditions if isinstance(controlnet, ControlNetModel) else controlnet.nets[0].config.global_pool_conditions + guess_mode = guess_mode or global_pool_conditions + controlnet_keep = [] + for i in range(len(timesteps)): + keeps = [1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) for (s, e) in zip(control_guidance_start, control_guidance_end)] + controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) + if isinstance(controlnet, ControlNetModel): + conditioning_frames = self.prepare_conditioning_frames(video=conditioning_frames, width=width, height=height, batch_size=batch_size * num_videos_per_prompt * num_frames, num_videos_per_prompt=num_videos_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=guess_mode) + elif isinstance(controlnet, MultiControlNetModel): + cond_prepared_videos = [] + for frame_ in conditioning_frames: + prepared_video = self.prepare_conditioning_frames(video=frame_, width=width, height=height, batch_size=batch_size * num_videos_per_prompt * num_frames, num_videos_per_prompt=num_videos_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=guess_mode) + cond_prepared_videos.append(prepared_video) + conditioning_frames = cond_prepared_videos + else: + assert False + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'image_embeds': image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None + num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1 + for free_init_iter in range(num_free_init_iters): + if self.free_init_enabled: + (latents, timesteps) = self._apply_free_init(latents, free_init_iter, num_inference_steps, device, latents.dtype, generator) + num_inference_steps = len(timesteps) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, timesteps, strength, device) + self._num_timesteps = len(timesteps) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=self._num_timesteps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + if guess_mode and self.do_classifier_free_guidance: + control_model_input = latents + control_model_input = self.scheduler.scale_model_input(control_model_input, t) + controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] + else: + control_model_input = latent_model_input + controlnet_prompt_embeds = prompt_embeds + if isinstance(controlnet_keep[i], list): + cond_scale = [c * s for (c, s) in zip(controlnet_conditioning_scale, controlnet_keep[i])] + else: + controlnet_cond_scale = controlnet_conditioning_scale + if isinstance(controlnet_cond_scale, list): + controlnet_cond_scale = controlnet_cond_scale[0] + cond_scale = controlnet_cond_scale * controlnet_keep[i] + control_model_input = torch.transpose(control_model_input, 1, 2) + control_model_input = control_model_input.reshape((-1, control_model_input.shape[2], control_model_input.shape[3], control_model_input.shape[4])) + (down_block_res_samples, mid_block_res_sample) = self.controlnet(control_model_input, t, encoder_hidden_states=controlnet_prompt_embeds, controlnet_cond=conditioning_frames, conditioning_scale=cond_scale, guess_mode=guess_mode, return_dict=False) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, down_block_additional_residuals=down_block_res_samples, mid_block_additional_residual=mid_block_res_sample).sample + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if output_type == 'latent': + video = latents + else: + video_tensor = self.decode_latents(latents, decode_chunk_size) + video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (video,) + return AnimateDiffPipelineOutput(frames=video) + +# File: diffusers-main/src/diffusers/pipelines/animatediff/pipeline_output.py +from dataclasses import dataclass +from typing import List, Union +import numpy as np +import PIL.Image +import torch +from ...utils import BaseOutput + +@dataclass +class AnimateDiffPipelineOutput(BaseOutput): + frames: Union[torch.Tensor, np.ndarray, List[List[PIL.Image.Image]]] + +# File: diffusers-main/src/diffusers/pipelines/audioldm/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_transformers_available, is_transformers_version +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.27.0')): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import AudioLDMPipeline + _dummy_objects.update({'AudioLDMPipeline': AudioLDMPipeline}) +else: + _import_structure['pipeline_audioldm'] = ['AudioLDMPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.27.0')): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import AudioLDMPipeline + else: + from .pipeline_audioldm import AudioLDMPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/audioldm/pipeline_audioldm.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import torch +import torch.nn.functional as F +from transformers import ClapTextModelWithProjection, RobertaTokenizer, RobertaTokenizerFast, SpeechT5HifiGan +from ...models import AutoencoderKL, UNet2DConditionModel +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline, StableDiffusionMixin +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import AudioLDMPipeline\n >>> import torch\n >>> import scipy\n\n >>> repo_id = "cvssp/audioldm-s-full-v2"\n >>> pipe = AudioLDMPipeline.from_pretrained(repo_id, torch_dtype=torch.float16)\n >>> pipe = pipe.to("cuda")\n\n >>> prompt = "Techno music with a strong, upbeat tempo and high melodic riffs"\n >>> audio = pipe(prompt, num_inference_steps=10, audio_length_in_s=5.0).audios[0]\n\n >>> # save the audio sample as a .wav file\n >>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio)\n ```\n' + +class AudioLDMPipeline(DiffusionPipeline, StableDiffusionMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + + def __init__(self, vae: AutoencoderKL, text_encoder: ClapTextModelWithProjection, tokenizer: Union[RobertaTokenizer, RobertaTokenizerFast], unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, vocoder: SpeechT5HifiGan): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, vocoder=vocoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + + def _encode_prompt(self, prompt, device, num_waveforms_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None): + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + attention_mask = text_inputs.attention_mask + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLAP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask.to(device)) + prompt_embeds = prompt_embeds.text_embeds + prompt_embeds = F.normalize(prompt_embeds, dim=-1) + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + (bs_embed, seq_len) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt) + prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + uncond_input_ids = uncond_input.input_ids.to(device) + attention_mask = uncond_input.attention_mask.to(device) + negative_prompt_embeds = self.text_encoder(uncond_input_ids, attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds.text_embeds + negative_prompt_embeds = F.normalize(negative_prompt_embeds, dim=-1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len) + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + return prompt_embeds + + def decode_latents(self, latents): + latents = 1 / self.vae.config.scaling_factor * latents + mel_spectrogram = self.vae.decode(latents).sample + return mel_spectrogram + + def mel_spectrogram_to_waveform(self, mel_spectrogram): + if mel_spectrogram.dim() == 4: + mel_spectrogram = mel_spectrogram.squeeze(1) + waveform = self.vocoder(mel_spectrogram) + waveform = waveform.cpu().float() + return waveform + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, audio_length_in_s, vocoder_upsample_factor, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None): + min_audio_length_in_s = vocoder_upsample_factor * self.vae_scale_factor + if audio_length_in_s < min_audio_length_in_s: + raise ValueError(f'`audio_length_in_s` has to be a positive value greater than or equal to {min_audio_length_in_s}, but is {audio_length_in_s}.') + if self.vocoder.config.model_in_dim % self.vae_scale_factor != 0: + raise ValueError(f"The number of frequency bins in the vocoder's log-mel spectrogram has to be divisible by the VAE scale factor, but got {self.vocoder.config.model_in_dim} bins and a scale factor of {self.vae_scale_factor}.") + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(self.vocoder.config.model_in_dim) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, audio_length_in_s: Optional[float]=None, num_inference_steps: int=10, guidance_scale: float=2.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_waveforms_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: Optional[int]=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, output_type: Optional[str]='np'): + vocoder_upsample_factor = np.prod(self.vocoder.config.upsample_rates) / self.vocoder.config.sampling_rate + if audio_length_in_s is None: + audio_length_in_s = self.unet.config.sample_size * self.vae_scale_factor * vocoder_upsample_factor + height = int(audio_length_in_s / vocoder_upsample_factor) + original_waveform_length = int(audio_length_in_s * self.vocoder.config.sampling_rate) + if height % self.vae_scale_factor != 0: + height = int(np.ceil(height / self.vae_scale_factor)) * self.vae_scale_factor + logger.info(f'Audio length in seconds {audio_length_in_s} is increased to {height * vocoder_upsample_factor} so that it can be handled by the model. It will be cut to {audio_length_in_s} after the denoising process.') + self.check_inputs(prompt, audio_length_in_s, vocoder_upsample_factor, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + prompt_embeds = self._encode_prompt(prompt, device, num_waveforms_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_waveforms_per_prompt, num_channels_latents, height, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=None, class_labels=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs).sample + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + mel_spectrogram = self.decode_latents(latents) + audio = self.mel_spectrogram_to_waveform(mel_spectrogram) + audio = audio[:, :original_waveform_length] + if output_type == 'np': + audio = audio.numpy() + if not return_dict: + return (audio,) + return AudioPipelineOutput(audios=audio) + +# File: diffusers-main/src/diffusers/pipelines/audioldm2/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, is_transformers_version +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.27.0')): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['modeling_audioldm2'] = ['AudioLDM2ProjectionModel', 'AudioLDM2UNet2DConditionModel'] + _import_structure['pipeline_audioldm2'] = ['AudioLDM2Pipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.27.0')): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .modeling_audioldm2 import AudioLDM2ProjectionModel, AudioLDM2UNet2DConditionModel + from .pipeline_audioldm2 import AudioLDM2Pipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/audioldm2/modeling_audioldm2.py +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Tuple, Union +import torch +import torch.nn as nn +import torch.utils.checkpoint +from ...configuration_utils import ConfigMixin, register_to_config +from ...loaders import UNet2DConditionLoadersMixin +from ...models.activations import get_activation +from ...models.attention_processor import ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnAddedKVProcessor, AttnProcessor +from ...models.embeddings import TimestepEmbedding, Timesteps +from ...models.modeling_utils import ModelMixin +from ...models.resnet import Downsample2D, ResnetBlock2D, Upsample2D +from ...models.transformers.transformer_2d import Transformer2DModel +from ...models.unets.unet_2d_blocks import DownBlock2D, UpBlock2D +from ...models.unets.unet_2d_condition import UNet2DConditionOutput +from ...utils import BaseOutput, is_torch_version, logging +logger = logging.get_logger(__name__) + +def add_special_tokens(hidden_states, attention_mask, sos_token, eos_token): + batch_size = hidden_states.shape[0] + if attention_mask is not None: + new_attn_mask_step = attention_mask.new_ones((batch_size, 1)) + attention_mask = torch.concat([new_attn_mask_step, attention_mask, new_attn_mask_step], dim=-1) + sos_token = sos_token.expand(batch_size, 1, -1) + eos_token = eos_token.expand(batch_size, 1, -1) + hidden_states = torch.concat([sos_token, hidden_states, eos_token], dim=1) + return (hidden_states, attention_mask) + +@dataclass +class AudioLDM2ProjectionModelOutput(BaseOutput): + hidden_states: torch.Tensor + attention_mask: Optional[torch.LongTensor] = None + +class AudioLDM2ProjectionModel(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, text_encoder_dim, text_encoder_1_dim, langauge_model_dim, use_learned_position_embedding=None, max_seq_length=None): + super().__init__() + self.projection = nn.Linear(text_encoder_dim, langauge_model_dim) + self.projection_1 = nn.Linear(text_encoder_1_dim, langauge_model_dim) + self.sos_embed = nn.Parameter(torch.ones(langauge_model_dim)) + self.eos_embed = nn.Parameter(torch.ones(langauge_model_dim)) + self.sos_embed_1 = nn.Parameter(torch.ones(langauge_model_dim)) + self.eos_embed_1 = nn.Parameter(torch.ones(langauge_model_dim)) + self.use_learned_position_embedding = use_learned_position_embedding + if self.use_learned_position_embedding is not None: + self.learnable_positional_embedding = torch.nn.Parameter(torch.zeros((1, text_encoder_1_dim, max_seq_length))) + + def forward(self, hidden_states: Optional[torch.Tensor]=None, hidden_states_1: Optional[torch.Tensor]=None, attention_mask: Optional[torch.LongTensor]=None, attention_mask_1: Optional[torch.LongTensor]=None): + hidden_states = self.projection(hidden_states) + (hidden_states, attention_mask) = add_special_tokens(hidden_states, attention_mask, sos_token=self.sos_embed, eos_token=self.eos_embed) + if self.use_learned_position_embedding is not None: + hidden_states_1 = (hidden_states_1.permute(0, 2, 1) + self.learnable_positional_embedding).permute(0, 2, 1) + hidden_states_1 = self.projection_1(hidden_states_1) + (hidden_states_1, attention_mask_1) = add_special_tokens(hidden_states_1, attention_mask_1, sos_token=self.sos_embed_1, eos_token=self.eos_embed_1) + hidden_states = torch.cat([hidden_states, hidden_states_1], dim=1) + if attention_mask is None and attention_mask_1 is not None: + attention_mask = attention_mask_1.new_ones(hidden_states[:2]) + elif attention_mask is not None and attention_mask_1 is None: + attention_mask_1 = attention_mask.new_ones(hidden_states_1[:2]) + if attention_mask is not None and attention_mask_1 is not None: + attention_mask = torch.cat([attention_mask, attention_mask_1], dim=-1) + else: + attention_mask = None + return AudioLDM2ProjectionModelOutput(hidden_states=hidden_states, attention_mask=attention_mask) + +class AudioLDM2UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__(self, sample_size: Optional[int]=None, in_channels: int=4, out_channels: int=4, flip_sin_to_cos: bool=True, freq_shift: int=0, down_block_types: Tuple[str]=('CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'DownBlock2D'), mid_block_type: Optional[str]='UNetMidBlock2DCrossAttn', up_block_types: Tuple[str]=('UpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D'), only_cross_attention: Union[bool, Tuple[bool]]=False, block_out_channels: Tuple[int]=(320, 640, 1280, 1280), layers_per_block: Union[int, Tuple[int]]=2, downsample_padding: int=1, mid_block_scale_factor: float=1, act_fn: str='silu', norm_num_groups: Optional[int]=32, norm_eps: float=1e-05, cross_attention_dim: Union[int, Tuple[int]]=1280, transformer_layers_per_block: Union[int, Tuple[int]]=1, attention_head_dim: Union[int, Tuple[int]]=8, num_attention_heads: Optional[Union[int, Tuple[int]]]=None, use_linear_projection: bool=False, class_embed_type: Optional[str]=None, num_class_embeds: Optional[int]=None, upcast_attention: bool=False, resnet_time_scale_shift: str='default', time_embedding_type: str='positional', time_embedding_dim: Optional[int]=None, time_embedding_act_fn: Optional[str]=None, timestep_post_act: Optional[str]=None, time_cond_proj_dim: Optional[int]=None, conv_in_kernel: int=3, conv_out_kernel: int=3, projection_class_embeddings_input_dim: Optional[int]=None, class_embeddings_concat: bool=False): + super().__init__() + self.sample_size = sample_size + if num_attention_heads is not None: + raise ValueError('At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.') + num_attention_heads = num_attention_heads or attention_head_dim + if len(down_block_types) != len(up_block_types): + raise ValueError(f'Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}.') + if len(block_out_channels) != len(down_block_types): + raise ValueError(f'Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}.') + if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): + raise ValueError(f'Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}.') + if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): + raise ValueError(f'Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}.') + if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types): + raise ValueError(f'Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}.') + if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): + raise ValueError(f'Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}.') + if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): + raise ValueError(f'Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}.') + conv_in_padding = (conv_in_kernel - 1) // 2 + self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding) + if time_embedding_type == 'positional': + time_embed_dim = time_embedding_dim or block_out_channels[0] * 4 + self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) + timestep_input_dim = block_out_channels[0] + else: + raise ValueError(f'{time_embedding_type} does not exist. Please make sure to use `positional`.') + self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn, post_act_fn=timestep_post_act, cond_proj_dim=time_cond_proj_dim) + if class_embed_type is None and num_class_embeds is not None: + self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) + elif class_embed_type == 'timestep': + self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn) + elif class_embed_type == 'identity': + self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) + elif class_embed_type == 'projection': + if projection_class_embeddings_input_dim is None: + raise ValueError("`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set") + self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + elif class_embed_type == 'simple_projection': + if projection_class_embeddings_input_dim is None: + raise ValueError("`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set") + self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim) + else: + self.class_embedding = None + if time_embedding_act_fn is None: + self.time_embed_act = None + else: + self.time_embed_act = get_activation(time_embedding_act_fn) + self.down_blocks = nn.ModuleList([]) + self.up_blocks = nn.ModuleList([]) + if isinstance(only_cross_attention, bool): + only_cross_attention = [only_cross_attention] * len(down_block_types) + if isinstance(num_attention_heads, int): + num_attention_heads = (num_attention_heads,) * len(down_block_types) + if isinstance(cross_attention_dim, int): + cross_attention_dim = (cross_attention_dim,) * len(down_block_types) + if isinstance(layers_per_block, int): + layers_per_block = [layers_per_block] * len(down_block_types) + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) + if class_embeddings_concat: + blocks_time_embed_dim = time_embed_dim * 2 + else: + blocks_time_embed_dim = time_embed_dim + output_channel = block_out_channels[0] + for (i, down_block_type) in enumerate(down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + down_block = get_down_block(down_block_type, num_layers=layers_per_block[i], transformer_layers_per_block=transformer_layers_per_block[i], in_channels=input_channel, out_channels=output_channel, temb_channels=blocks_time_embed_dim, add_downsample=not is_final_block, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, cross_attention_dim=cross_attention_dim[i], num_attention_heads=num_attention_heads[i], downsample_padding=downsample_padding, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention[i], upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift) + self.down_blocks.append(down_block) + if mid_block_type == 'UNetMidBlock2DCrossAttn': + self.mid_block = UNetMidBlock2DCrossAttn(transformer_layers_per_block=transformer_layers_per_block[-1], in_channels=block_out_channels[-1], temb_channels=blocks_time_embed_dim, resnet_eps=norm_eps, resnet_act_fn=act_fn, output_scale_factor=mid_block_scale_factor, resnet_time_scale_shift=resnet_time_scale_shift, cross_attention_dim=cross_attention_dim[-1], num_attention_heads=num_attention_heads[-1], resnet_groups=norm_num_groups, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention) + else: + raise ValueError(f'unknown mid_block_type : {mid_block_type}. Should be `UNetMidBlock2DCrossAttn` for AudioLDM2.') + self.num_upsamplers = 0 + reversed_block_out_channels = list(reversed(block_out_channels)) + reversed_num_attention_heads = list(reversed(num_attention_heads)) + reversed_layers_per_block = list(reversed(layers_per_block)) + reversed_cross_attention_dim = list(reversed(cross_attention_dim)) + reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) + only_cross_attention = list(reversed(only_cross_attention)) + output_channel = reversed_block_out_channels[0] + for (i, up_block_type) in enumerate(up_block_types): + is_final_block = i == len(block_out_channels) - 1 + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] + if not is_final_block: + add_upsample = True + self.num_upsamplers += 1 + else: + add_upsample = False + up_block = get_up_block(up_block_type, num_layers=reversed_layers_per_block[i] + 1, transformer_layers_per_block=reversed_transformer_layers_per_block[i], in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, temb_channels=blocks_time_embed_dim, add_upsample=add_upsample, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, cross_attention_dim=reversed_cross_attention_dim[i], num_attention_heads=reversed_num_attention_heads[i], use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention[i], upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift) + self.up_blocks.append(up_block) + prev_output_channel = output_channel + if norm_num_groups is not None: + self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps) + self.conv_act = get_activation(act_fn) + else: + self.conv_norm_out = None + self.conv_act = None + conv_out_padding = (conv_out_kernel - 1) // 2 + self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding) + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def set_default_attn_processor(self): + if all((proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnAddedKVProcessor() + elif all((proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnProcessor() + else: + raise ValueError(f'Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}') + self.set_attn_processor(processor) + + def set_attention_slice(self, slice_size): + sliceable_head_dims = [] + + def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): + if hasattr(module, 'set_attention_slice'): + sliceable_head_dims.append(module.sliceable_head_dim) + for child in module.children(): + fn_recursive_retrieve_sliceable_dims(child) + for module in self.children(): + fn_recursive_retrieve_sliceable_dims(module) + num_sliceable_layers = len(sliceable_head_dims) + if slice_size == 'auto': + slice_size = [dim // 2 for dim in sliceable_head_dims] + elif slice_size == 'max': + slice_size = num_sliceable_layers * [1] + slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size + if len(slice_size) != len(sliceable_head_dims): + raise ValueError(f'You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}.') + for i in range(len(slice_size)): + size = slice_size[i] + dim = sliceable_head_dims[i] + if size is not None and size > dim: + raise ValueError(f'size {size} has to be smaller or equal to {dim}.') + + def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): + if hasattr(module, 'set_attention_slice'): + module.set_attention_slice(slice_size.pop()) + for child in module.children(): + fn_recursive_set_attention_slice(child, slice_size) + reversed_slice_size = list(reversed(slice_size)) + for module in self.children(): + fn_recursive_set_attention_slice(module, reversed_slice_size) + + def _set_gradient_checkpointing(self, module, value=False): + if hasattr(module, 'gradient_checkpointing'): + module.gradient_checkpointing = value + + def forward(self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, class_labels: Optional[torch.Tensor]=None, timestep_cond: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, encoder_attention_mask: Optional[torch.Tensor]=None, return_dict: bool=True, encoder_hidden_states_1: Optional[torch.Tensor]=None, encoder_attention_mask_1: Optional[torch.Tensor]=None) -> Union[UNet2DConditionOutput, Tuple]: + default_overall_up_factor = 2 ** self.num_upsamplers + forward_upsample_size = False + upsample_size = None + if any((s % default_overall_up_factor != 0 for s in sample.shape[-2:])): + logger.info('Forward upsample size to force interpolation output size.') + forward_upsample_size = True + if attention_mask is not None: + attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + if encoder_attention_mask is not None: + encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 + encoder_attention_mask = encoder_attention_mask.unsqueeze(1) + if encoder_attention_mask_1 is not None: + encoder_attention_mask_1 = (1 - encoder_attention_mask_1.to(sample.dtype)) * -10000.0 + encoder_attention_mask_1 = encoder_attention_mask_1.unsqueeze(1) + timesteps = timestep + if not torch.is_tensor(timesteps): + is_mps = sample.device.type == 'mps' + if isinstance(timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + timesteps = timesteps.expand(sample.shape[0]) + t_emb = self.time_proj(timesteps) + t_emb = t_emb.to(dtype=sample.dtype) + emb = self.time_embedding(t_emb, timestep_cond) + aug_emb = None + if self.class_embedding is not None: + if class_labels is None: + raise ValueError('class_labels should be provided when num_class_embeds > 0') + if self.config.class_embed_type == 'timestep': + class_labels = self.time_proj(class_labels) + class_labels = class_labels.to(dtype=sample.dtype) + class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) + if self.config.class_embeddings_concat: + emb = torch.cat([emb, class_emb], dim=-1) + else: + emb = emb + class_emb + emb = emb + aug_emb if aug_emb is not None else emb + if self.time_embed_act is not None: + emb = self.time_embed_act(emb) + sample = self.conv_in(sample) + down_block_res_samples = (sample,) + for downsample_block in self.down_blocks: + if hasattr(downsample_block, 'has_cross_attention') and downsample_block.has_cross_attention: + (sample, res_samples) = downsample_block(hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs, encoder_attention_mask=encoder_attention_mask, encoder_hidden_states_1=encoder_hidden_states_1, encoder_attention_mask_1=encoder_attention_mask_1) + else: + (sample, res_samples) = downsample_block(hidden_states=sample, temb=emb) + down_block_res_samples += res_samples + if self.mid_block is not None: + sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs, encoder_attention_mask=encoder_attention_mask, encoder_hidden_states_1=encoder_hidden_states_1, encoder_attention_mask_1=encoder_attention_mask_1) + for (i, upsample_block) in enumerate(self.up_blocks): + is_final_block = i == len(self.up_blocks) - 1 + res_samples = down_block_res_samples[-len(upsample_block.resnets):] + down_block_res_samples = down_block_res_samples[:-len(upsample_block.resnets)] + if not is_final_block and forward_upsample_size: + upsample_size = down_block_res_samples[-1].shape[2:] + if hasattr(upsample_block, 'has_cross_attention') and upsample_block.has_cross_attention: + sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, upsample_size=upsample_size, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, encoder_hidden_states_1=encoder_hidden_states_1, encoder_attention_mask_1=encoder_attention_mask_1) + else: + sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size) + if self.conv_norm_out: + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + if not return_dict: + return (sample,) + return UNet2DConditionOutput(sample=sample) + +def get_down_block(down_block_type, num_layers, in_channels, out_channels, temb_channels, add_downsample, resnet_eps, resnet_act_fn, transformer_layers_per_block=1, num_attention_heads=None, resnet_groups=None, cross_attention_dim=None, downsample_padding=None, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, resnet_time_scale_shift='default'): + down_block_type = down_block_type[7:] if down_block_type.startswith('UNetRes') else down_block_type + if down_block_type == 'DownBlock2D': + return DownBlock2D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, resnet_time_scale_shift=resnet_time_scale_shift) + elif down_block_type == 'CrossAttnDownBlock2D': + if cross_attention_dim is None: + raise ValueError('cross_attention_dim must be specified for CrossAttnDownBlock2D') + return CrossAttnDownBlock2D(num_layers=num_layers, transformer_layers_per_block=transformer_layers_per_block, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift) + raise ValueError(f'{down_block_type} does not exist.') + +def get_up_block(up_block_type, num_layers, in_channels, out_channels, prev_output_channel, temb_channels, add_upsample, resnet_eps, resnet_act_fn, transformer_layers_per_block=1, num_attention_heads=None, resnet_groups=None, cross_attention_dim=None, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, resnet_time_scale_shift='default'): + up_block_type = up_block_type[7:] if up_block_type.startswith('UNetRes') else up_block_type + if up_block_type == 'UpBlock2D': + return UpBlock2D(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, resnet_time_scale_shift=resnet_time_scale_shift) + elif up_block_type == 'CrossAttnUpBlock2D': + if cross_attention_dim is None: + raise ValueError('cross_attention_dim must be specified for CrossAttnUpBlock2D') + return CrossAttnUpBlock2D(num_layers=num_layers, transformer_layers_per_block=transformer_layers_per_block, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift) + raise ValueError(f'{up_block_type} does not exist.') + +class CrossAttnDownBlock2D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, transformer_layers_per_block: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, num_attention_heads=1, cross_attention_dim=1280, output_scale_factor=1.0, downsample_padding=1, add_downsample=True, use_linear_projection=False, only_cross_attention=False, upcast_attention=False): + super().__init__() + resnets = [] + attentions = [] + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + if isinstance(cross_attention_dim, int): + cross_attention_dim = (cross_attention_dim,) + if isinstance(cross_attention_dim, (list, tuple)) and len(cross_attention_dim) > 4: + raise ValueError(f'Only up to 4 cross-attention layers are supported. Ensure that the length of cross-attention dims is less than or equal to 4. Got cross-attention dims {cross_attention_dim} of length {len(cross_attention_dim)}') + self.cross_attention_dim = cross_attention_dim + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append(ResnetBlock2D(in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + for j in range(len(cross_attention_dim)): + attentions.append(Transformer2DModel(num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=transformer_layers_per_block, cross_attention_dim=cross_attention_dim[j], norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, double_self_attention=True if cross_attention_dim[j] is None else False)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + if add_downsample: + self.downsamplers = nn.ModuleList([Downsample2D(out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name='op')]) + else: + self.downsamplers = None + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, encoder_attention_mask: Optional[torch.Tensor]=None, encoder_hidden_states_1: Optional[torch.Tensor]=None, encoder_attention_mask_1: Optional[torch.Tensor]=None): + output_states = () + num_layers = len(self.resnets) + num_attention_per_layer = len(self.attentions) // num_layers + encoder_hidden_states_1 = encoder_hidden_states_1 if encoder_hidden_states_1 is not None else encoder_hidden_states + encoder_attention_mask_1 = encoder_attention_mask_1 if encoder_hidden_states_1 is not None else encoder_attention_mask + for i in range(num_layers): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(self.resnets[i]), hidden_states, temb, **ckpt_kwargs) + for (idx, cross_attention_dim) in enumerate(self.cross_attention_dim): + if cross_attention_dim is not None and idx <= 1: + forward_encoder_hidden_states = encoder_hidden_states + forward_encoder_attention_mask = encoder_attention_mask + elif cross_attention_dim is not None and idx > 1: + forward_encoder_hidden_states = encoder_hidden_states_1 + forward_encoder_attention_mask = encoder_attention_mask_1 + else: + forward_encoder_hidden_states = None + forward_encoder_attention_mask = None + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(self.attentions[i * num_attention_per_layer + idx], return_dict=False), hidden_states, forward_encoder_hidden_states, None, None, cross_attention_kwargs, attention_mask, forward_encoder_attention_mask, **ckpt_kwargs)[0] + else: + hidden_states = self.resnets[i](hidden_states, temb) + for (idx, cross_attention_dim) in enumerate(self.cross_attention_dim): + if cross_attention_dim is not None and idx <= 1: + forward_encoder_hidden_states = encoder_hidden_states + forward_encoder_attention_mask = encoder_attention_mask + elif cross_attention_dim is not None and idx > 1: + forward_encoder_hidden_states = encoder_hidden_states_1 + forward_encoder_attention_mask = encoder_attention_mask_1 + else: + forward_encoder_hidden_states = None + forward_encoder_attention_mask = None + hidden_states = self.attentions[i * num_attention_per_layer + idx](hidden_states, attention_mask=attention_mask, encoder_hidden_states=forward_encoder_hidden_states, encoder_attention_mask=forward_encoder_attention_mask, return_dict=False)[0] + output_states = output_states + (hidden_states,) + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + output_states = output_states + (hidden_states,) + return (hidden_states, output_states) + +class UNetMidBlock2DCrossAttn(nn.Module): + + def __init__(self, in_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, transformer_layers_per_block: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, num_attention_heads=1, output_scale_factor=1.0, cross_attention_dim=1280, use_linear_projection=False, upcast_attention=False): + super().__init__() + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + if isinstance(cross_attention_dim, int): + cross_attention_dim = (cross_attention_dim,) + if isinstance(cross_attention_dim, (list, tuple)) and len(cross_attention_dim) > 4: + raise ValueError(f'Only up to 4 cross-attention layers are supported. Ensure that the length of cross-attention dims is less than or equal to 4. Got cross-attention dims {cross_attention_dim} of length {len(cross_attention_dim)}') + self.cross_attention_dim = cross_attention_dim + resnets = [ResnetBlock2D(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)] + attentions = [] + for i in range(num_layers): + for j in range(len(cross_attention_dim)): + attentions.append(Transformer2DModel(num_attention_heads, in_channels // num_attention_heads, in_channels=in_channels, num_layers=transformer_layers_per_block, cross_attention_dim=cross_attention_dim[j], norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, double_self_attention=True if cross_attention_dim[j] is None else False)) + resnets.append(ResnetBlock2D(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, encoder_attention_mask: Optional[torch.Tensor]=None, encoder_hidden_states_1: Optional[torch.Tensor]=None, encoder_attention_mask_1: Optional[torch.Tensor]=None) -> torch.Tensor: + hidden_states = self.resnets[0](hidden_states, temb) + num_attention_per_layer = len(self.attentions) // (len(self.resnets) - 1) + encoder_hidden_states_1 = encoder_hidden_states_1 if encoder_hidden_states_1 is not None else encoder_hidden_states + encoder_attention_mask_1 = encoder_attention_mask_1 if encoder_hidden_states_1 is not None else encoder_attention_mask + for i in range(len(self.resnets[1:])): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + for (idx, cross_attention_dim) in enumerate(self.cross_attention_dim): + if cross_attention_dim is not None and idx <= 1: + forward_encoder_hidden_states = encoder_hidden_states + forward_encoder_attention_mask = encoder_attention_mask + elif cross_attention_dim is not None and idx > 1: + forward_encoder_hidden_states = encoder_hidden_states_1 + forward_encoder_attention_mask = encoder_attention_mask_1 + else: + forward_encoder_hidden_states = None + forward_encoder_attention_mask = None + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(self.attentions[i * num_attention_per_layer + idx], return_dict=False), hidden_states, forward_encoder_hidden_states, None, None, cross_attention_kwargs, attention_mask, forward_encoder_attention_mask, **ckpt_kwargs)[0] + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(self.resnets[i + 1]), hidden_states, temb, **ckpt_kwargs) + else: + for (idx, cross_attention_dim) in enumerate(self.cross_attention_dim): + if cross_attention_dim is not None and idx <= 1: + forward_encoder_hidden_states = encoder_hidden_states + forward_encoder_attention_mask = encoder_attention_mask + elif cross_attention_dim is not None and idx > 1: + forward_encoder_hidden_states = encoder_hidden_states_1 + forward_encoder_attention_mask = encoder_attention_mask_1 + else: + forward_encoder_hidden_states = None + forward_encoder_attention_mask = None + hidden_states = self.attentions[i * num_attention_per_layer + idx](hidden_states, attention_mask=attention_mask, encoder_hidden_states=forward_encoder_hidden_states, encoder_attention_mask=forward_encoder_attention_mask, return_dict=False)[0] + hidden_states = self.resnets[i + 1](hidden_states, temb) + return hidden_states + +class CrossAttnUpBlock2D(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, prev_output_channel: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, transformer_layers_per_block: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, num_attention_heads=1, cross_attention_dim=1280, output_scale_factor=1.0, add_upsample=True, use_linear_projection=False, only_cross_attention=False, upcast_attention=False): + super().__init__() + resnets = [] + attentions = [] + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + if isinstance(cross_attention_dim, int): + cross_attention_dim = (cross_attention_dim,) + if isinstance(cross_attention_dim, (list, tuple)) and len(cross_attention_dim) > 4: + raise ValueError(f'Only up to 4 cross-attention layers are supported. Ensure that the length of cross-attention dims is less than or equal to 4. Got cross-attention dims {cross_attention_dim} of length {len(cross_attention_dim)}') + self.cross_attention_dim = cross_attention_dim + for i in range(num_layers): + res_skip_channels = in_channels if i == num_layers - 1 else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + resnets.append(ResnetBlock2D(in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + for j in range(len(cross_attention_dim)): + attentions.append(Transformer2DModel(num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=transformer_layers_per_block, cross_attention_dim=cross_attention_dim[j], norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, double_self_attention=True if cross_attention_dim[j] is None else False)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, upsample_size: Optional[int]=None, attention_mask: Optional[torch.Tensor]=None, encoder_attention_mask: Optional[torch.Tensor]=None, encoder_hidden_states_1: Optional[torch.Tensor]=None, encoder_attention_mask_1: Optional[torch.Tensor]=None): + num_layers = len(self.resnets) + num_attention_per_layer = len(self.attentions) // num_layers + encoder_hidden_states_1 = encoder_hidden_states_1 if encoder_hidden_states_1 is not None else encoder_hidden_states + encoder_attention_mask_1 = encoder_attention_mask_1 if encoder_hidden_states_1 is not None else encoder_attention_mask + for i in range(num_layers): + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(self.resnets[i]), hidden_states, temb, **ckpt_kwargs) + for (idx, cross_attention_dim) in enumerate(self.cross_attention_dim): + if cross_attention_dim is not None and idx <= 1: + forward_encoder_hidden_states = encoder_hidden_states + forward_encoder_attention_mask = encoder_attention_mask + elif cross_attention_dim is not None and idx > 1: + forward_encoder_hidden_states = encoder_hidden_states_1 + forward_encoder_attention_mask = encoder_attention_mask_1 + else: + forward_encoder_hidden_states = None + forward_encoder_attention_mask = None + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(self.attentions[i * num_attention_per_layer + idx], return_dict=False), hidden_states, forward_encoder_hidden_states, None, None, cross_attention_kwargs, attention_mask, forward_encoder_attention_mask, **ckpt_kwargs)[0] + else: + hidden_states = self.resnets[i](hidden_states, temb) + for (idx, cross_attention_dim) in enumerate(self.cross_attention_dim): + if cross_attention_dim is not None and idx <= 1: + forward_encoder_hidden_states = encoder_hidden_states + forward_encoder_attention_mask = encoder_attention_mask + elif cross_attention_dim is not None and idx > 1: + forward_encoder_hidden_states = encoder_hidden_states_1 + forward_encoder_attention_mask = encoder_attention_mask_1 + else: + forward_encoder_hidden_states = None + forward_encoder_attention_mask = None + hidden_states = self.attentions[i * num_attention_per_layer + idx](hidden_states, attention_mask=attention_mask, encoder_hidden_states=forward_encoder_hidden_states, encoder_attention_mask=forward_encoder_attention_mask, return_dict=False)[0] + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, upsample_size) + return hidden_states + +# File: diffusers-main/src/diffusers/pipelines/audioldm2/pipeline_audioldm2.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import torch +from transformers import ClapFeatureExtractor, ClapModel, GPT2Model, RobertaTokenizer, RobertaTokenizerFast, SpeechT5HifiGan, T5EncoderModel, T5Tokenizer, T5TokenizerFast, VitsModel, VitsTokenizer +from ...models import AutoencoderKL +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import is_accelerate_available, is_accelerate_version, is_librosa_available, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline +from .modeling_audioldm2 import AudioLDM2ProjectionModel, AudioLDM2UNet2DConditionModel +if is_librosa_available(): + import librosa +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import scipy\n >>> import torch\n >>> from diffusers import AudioLDM2Pipeline\n\n >>> repo_id = "cvssp/audioldm2"\n >>> pipe = AudioLDM2Pipeline.from_pretrained(repo_id, torch_dtype=torch.float16)\n >>> pipe = pipe.to("cuda")\n\n >>> # define the prompts\n >>> prompt = "The sound of a hammer hitting a wooden surface."\n >>> negative_prompt = "Low quality."\n\n >>> # set the seed for generator\n >>> generator = torch.Generator("cuda").manual_seed(0)\n\n >>> # run the generation\n >>> audio = pipe(\n ... prompt,\n ... negative_prompt=negative_prompt,\n ... num_inference_steps=200,\n ... audio_length_in_s=10.0,\n ... num_waveforms_per_prompt=3,\n ... generator=generator,\n ... ).audios\n\n >>> # save the best audio sample (index 0) as a .wav file\n >>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio[0])\n ```\n ```\n #Using AudioLDM2 for Text To Speech\n >>> import scipy\n >>> import torch\n >>> from diffusers import AudioLDM2Pipeline\n\n >>> repo_id = "anhnct/audioldm2_gigaspeech"\n >>> pipe = AudioLDM2Pipeline.from_pretrained(repo_id, torch_dtype=torch.float16)\n >>> pipe = pipe.to("cuda")\n\n >>> # define the prompts\n >>> prompt = "A female reporter is speaking"\n >>> transcript = "wish you have a good day"\n\n >>> # set the seed for generator\n >>> generator = torch.Generator("cuda").manual_seed(0)\n\n >>> # run the generation\n >>> audio = pipe(\n ... prompt,\n ... transcription=transcript,\n ... num_inference_steps=200,\n ... audio_length_in_s=10.0,\n ... num_waveforms_per_prompt=2,\n ... generator=generator,\n ... max_new_tokens=512, #Must set max_new_tokens equa to 512 for TTS\n ... ).audios\n\n >>> # save the best audio sample (index 0) as a .wav file\n >>> scipy.io.wavfile.write("tts.wav", rate=16000, data=audio[0])\n ```\n' + +def prepare_inputs_for_generation(inputs_embeds, attention_mask=None, past_key_values=None, **kwargs): + if past_key_values is not None: + inputs_embeds = inputs_embeds[:, -1:] + return {'inputs_embeds': inputs_embeds, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache')} + +class AudioLDM2Pipeline(DiffusionPipeline): + + def __init__(self, vae: AutoencoderKL, text_encoder: ClapModel, text_encoder_2: Union[T5EncoderModel, VitsModel], projection_model: AudioLDM2ProjectionModel, language_model: GPT2Model, tokenizer: Union[RobertaTokenizer, RobertaTokenizerFast], tokenizer_2: Union[T5Tokenizer, T5TokenizerFast, VitsTokenizer], feature_extractor: ClapFeatureExtractor, unet: AudioLDM2UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, vocoder: SpeechT5HifiGan): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, projection_model=projection_model, language_model=language_model, tokenizer=tokenizer, tokenizer_2=tokenizer_2, feature_extractor=feature_extractor, unet=unet, scheduler=scheduler, vocoder=vocoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + + def enable_vae_slicing(self): + self.vae.enable_slicing() + + def disable_vae_slicing(self): + self.vae.disable_slicing() + + def enable_model_cpu_offload(self, gpu_id=0): + if is_accelerate_available() and is_accelerate_version('>=', '0.17.0.dev0'): + from accelerate import cpu_offload_with_hook + else: + raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.') + device = torch.device(f'cuda:{gpu_id}') + if self.device.type != 'cpu': + self.to('cpu', silence_dtype_warnings=True) + torch.cuda.empty_cache() + model_sequence = [self.text_encoder.text_model, self.text_encoder.text_projection, self.text_encoder_2, self.projection_model, self.language_model, self.unet, self.vae, self.vocoder, self.text_encoder] + hook = None + for cpu_offloaded_model in model_sequence: + (_, hook) = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) + self.final_offload_hook = hook + + def generate_language_model(self, inputs_embeds: torch.Tensor=None, max_new_tokens: int=8, **model_kwargs): + max_new_tokens = max_new_tokens if max_new_tokens is not None else self.language_model.config.max_new_tokens + model_kwargs = self.language_model._get_initial_cache_position(inputs_embeds, model_kwargs) + for _ in range(max_new_tokens): + model_inputs = prepare_inputs_for_generation(inputs_embeds, **model_kwargs) + output = self.language_model(**model_inputs, return_dict=True) + next_hidden_states = output.last_hidden_state + inputs_embeds = torch.cat([inputs_embeds, next_hidden_states[:, -1:, :]], dim=1) + model_kwargs = self.language_model._update_model_kwargs_for_generation(output, model_kwargs) + return inputs_embeds[:, -max_new_tokens:, :] + + def encode_prompt(self, prompt, device, num_waveforms_per_prompt, do_classifier_free_guidance, transcription=None, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, generated_prompt_embeds: Optional[torch.Tensor]=None, negative_generated_prompt_embeds: Optional[torch.Tensor]=None, attention_mask: Optional[torch.LongTensor]=None, negative_attention_mask: Optional[torch.LongTensor]=None, max_new_tokens: Optional[int]=None): + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + tokenizers = [self.tokenizer, self.tokenizer_2] + is_vits_text_encoder = isinstance(self.text_encoder_2, VitsModel) + if is_vits_text_encoder: + text_encoders = [self.text_encoder, self.text_encoder_2.text_encoder] + else: + text_encoders = [self.text_encoder, self.text_encoder_2] + if prompt_embeds is None: + prompt_embeds_list = [] + attention_mask_list = [] + for (tokenizer, text_encoder) in zip(tokenizers, text_encoders): + use_prompt = isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast, T5Tokenizer, T5TokenizerFast)) + text_inputs = tokenizer(prompt if use_prompt else transcription, padding='max_length' if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast, VitsTokenizer)) else True, max_length=tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + attention_mask = text_inputs.attention_mask + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because {text_encoder.config.model_type} can only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}') + text_input_ids = text_input_ids.to(device) + attention_mask = attention_mask.to(device) + if text_encoder.config.model_type == 'clap': + prompt_embeds = text_encoder.get_text_features(text_input_ids, attention_mask=attention_mask) + prompt_embeds = prompt_embeds[:, None, :] + attention_mask = attention_mask.new_ones((batch_size, 1)) + elif is_vits_text_encoder: + for (text_input_id, text_attention_mask) in zip(text_input_ids, attention_mask): + for (idx, phoneme_id) in enumerate(text_input_id): + if phoneme_id == 0: + text_input_id[idx] = 182 + text_attention_mask[idx] = 1 + break + prompt_embeds = text_encoder(text_input_ids, attention_mask=attention_mask, padding_mask=attention_mask.unsqueeze(-1)) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = text_encoder(text_input_ids, attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + prompt_embeds_list.append(prompt_embeds) + attention_mask_list.append(attention_mask) + projection_output = self.projection_model(hidden_states=prompt_embeds_list[0], hidden_states_1=prompt_embeds_list[1], attention_mask=attention_mask_list[0], attention_mask_1=attention_mask_list[1]) + projected_prompt_embeds = projection_output.hidden_states + projected_attention_mask = projection_output.attention_mask + generated_prompt_embeds = self.generate_language_model(projected_prompt_embeds, attention_mask=projected_attention_mask, max_new_tokens=max_new_tokens) + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + attention_mask = attention_mask.to(device=device) if attention_mask is not None else torch.ones(prompt_embeds.shape[:2], dtype=torch.long, device=device) + generated_prompt_embeds = generated_prompt_embeds.to(dtype=self.language_model.dtype, device=device) + (bs_embed, seq_len, hidden_size) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len, hidden_size) + attention_mask = attention_mask.repeat(1, num_waveforms_per_prompt) + attention_mask = attention_mask.view(bs_embed * num_waveforms_per_prompt, seq_len) + (bs_embed, seq_len, hidden_size) = generated_prompt_embeds.shape + generated_prompt_embeds = generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1) + generated_prompt_embeds = generated_prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len, hidden_size) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + negative_prompt_embeds_list = [] + negative_attention_mask_list = [] + max_length = prompt_embeds.shape[1] + for (tokenizer, text_encoder) in zip(tokenizers, text_encoders): + uncond_input = tokenizer(uncond_tokens, padding='max_length', max_length=tokenizer.model_max_length if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast, VitsTokenizer)) else max_length, truncation=True, return_tensors='pt') + uncond_input_ids = uncond_input.input_ids.to(device) + negative_attention_mask = uncond_input.attention_mask.to(device) + if text_encoder.config.model_type == 'clap': + negative_prompt_embeds = text_encoder.get_text_features(uncond_input_ids, attention_mask=negative_attention_mask) + negative_prompt_embeds = negative_prompt_embeds[:, None, :] + negative_attention_mask = negative_attention_mask.new_ones((batch_size, 1)) + elif is_vits_text_encoder: + negative_prompt_embeds = torch.zeros(batch_size, tokenizer.model_max_length, text_encoder.config.hidden_size).to(dtype=self.text_encoder_2.dtype, device=device) + negative_attention_mask = torch.zeros(batch_size, tokenizer.model_max_length).to(dtype=self.text_encoder_2.dtype, device=device) + else: + negative_prompt_embeds = text_encoder(uncond_input_ids, attention_mask=negative_attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds_list.append(negative_prompt_embeds) + negative_attention_mask_list.append(negative_attention_mask) + projection_output = self.projection_model(hidden_states=negative_prompt_embeds_list[0], hidden_states_1=negative_prompt_embeds_list[1], attention_mask=negative_attention_mask_list[0], attention_mask_1=negative_attention_mask_list[1]) + negative_projected_prompt_embeds = projection_output.hidden_states + negative_projected_attention_mask = projection_output.attention_mask + negative_generated_prompt_embeds = self.generate_language_model(negative_projected_prompt_embeds, attention_mask=negative_projected_attention_mask, max_new_tokens=max_new_tokens) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + negative_attention_mask = negative_attention_mask.to(device=device) if negative_attention_mask is not None else torch.ones(negative_prompt_embeds.shape[:2], dtype=torch.long, device=device) + negative_generated_prompt_embeds = negative_generated_prompt_embeds.to(dtype=self.language_model.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len, -1) + negative_attention_mask = negative_attention_mask.repeat(1, num_waveforms_per_prompt) + negative_attention_mask = negative_attention_mask.view(batch_size * num_waveforms_per_prompt, seq_len) + seq_len = negative_generated_prompt_embeds.shape[1] + negative_generated_prompt_embeds = negative_generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1) + negative_generated_prompt_embeds = negative_generated_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len, -1) + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + attention_mask = torch.cat([negative_attention_mask, attention_mask]) + generated_prompt_embeds = torch.cat([negative_generated_prompt_embeds, generated_prompt_embeds]) + return (prompt_embeds, attention_mask, generated_prompt_embeds) + + def mel_spectrogram_to_waveform(self, mel_spectrogram): + if mel_spectrogram.dim() == 4: + mel_spectrogram = mel_spectrogram.squeeze(1) + waveform = self.vocoder(mel_spectrogram) + waveform = waveform.cpu().float() + return waveform + + def score_waveforms(self, text, audio, num_waveforms_per_prompt, device, dtype): + if not is_librosa_available(): + logger.info('Automatic scoring of the generated audio waveforms against the input prompt text requires the `librosa` package to resample the generated waveforms. Returning the audios in the order they were generated. To enable automatic scoring, install `librosa` with: `pip install librosa`.') + return audio + inputs = self.tokenizer(text, return_tensors='pt', padding=True) + resampled_audio = librosa.resample(audio.numpy(), orig_sr=self.vocoder.config.sampling_rate, target_sr=self.feature_extractor.sampling_rate) + inputs['input_features'] = self.feature_extractor(list(resampled_audio), return_tensors='pt', sampling_rate=self.feature_extractor.sampling_rate).input_features.type(dtype) + inputs = inputs.to(device) + logits_per_text = self.text_encoder(**inputs).logits_per_text + indices = torch.argsort(logits_per_text, dim=1, descending=True)[:, :num_waveforms_per_prompt] + audio = torch.index_select(audio, 0, indices.reshape(-1).cpu()) + return audio + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, audio_length_in_s, vocoder_upsample_factor, callback_steps, transcription=None, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, generated_prompt_embeds=None, negative_generated_prompt_embeds=None, attention_mask=None, negative_attention_mask=None): + min_audio_length_in_s = vocoder_upsample_factor * self.vae_scale_factor + if audio_length_in_s < min_audio_length_in_s: + raise ValueError(f'`audio_length_in_s` has to be a positive value greater than or equal to {min_audio_length_in_s}, but is {audio_length_in_s}.') + if self.vocoder.config.model_in_dim % self.vae_scale_factor != 0: + raise ValueError(f"The number of frequency bins in the vocoder's log-mel spectrogram has to be divisible by the VAE scale factor, but got {self.vocoder.config.model_in_dim} bins and a scale factor of {self.vae_scale_factor}.") + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and (prompt_embeds is None or generated_prompt_embeds is None): + raise ValueError('Provide either `prompt`, or `prompt_embeds` and `generated_prompt_embeds`. Cannot leave `prompt` undefined without specifying both `prompt_embeds` and `generated_prompt_embeds`.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_embeds is not None and negative_generated_prompt_embeds is None: + raise ValueError('Cannot forward `negative_prompt_embeds` without `negative_generated_prompt_embeds`. Ensure thatboth arguments are specified') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if attention_mask is not None and attention_mask.shape != prompt_embeds.shape[:2]: + raise ValueError(f'`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:`attention_mask: {attention_mask.shape} != `prompt_embeds` {prompt_embeds.shape}') + if transcription is None: + if self.text_encoder_2.config.model_type == 'vits': + raise ValueError('Cannot forward without transcription. Please make sure to have transcription') + elif transcription is not None and (not isinstance(transcription, str) and (not isinstance(transcription, list))): + raise ValueError(f'`transcription` has to be of type `str` or `list` but is {type(transcription)}') + if generated_prompt_embeds is not None and negative_generated_prompt_embeds is not None: + if generated_prompt_embeds.shape != negative_generated_prompt_embeds.shape: + raise ValueError(f'`generated_prompt_embeds` and `negative_generated_prompt_embeds` must have the same shape when passed directly, but got: `generated_prompt_embeds` {generated_prompt_embeds.shape} != `negative_generated_prompt_embeds` {negative_generated_prompt_embeds.shape}.') + if negative_attention_mask is not None and negative_attention_mask.shape != negative_prompt_embeds.shape[:2]: + raise ValueError(f'`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:`attention_mask: {negative_attention_mask.shape} != `prompt_embeds` {negative_prompt_embeds.shape}') + + def prepare_latents(self, batch_size, num_channels_latents, height, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(self.vocoder.config.model_in_dim) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, transcription: Union[str, List[str]]=None, audio_length_in_s: Optional[float]=None, num_inference_steps: int=200, guidance_scale: float=3.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_waveforms_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, generated_prompt_embeds: Optional[torch.Tensor]=None, negative_generated_prompt_embeds: Optional[torch.Tensor]=None, attention_mask: Optional[torch.LongTensor]=None, negative_attention_mask: Optional[torch.LongTensor]=None, max_new_tokens: Optional[int]=None, return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: Optional[int]=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, output_type: Optional[str]='np'): + vocoder_upsample_factor = np.prod(self.vocoder.config.upsample_rates) / self.vocoder.config.sampling_rate + if audio_length_in_s is None: + audio_length_in_s = self.unet.config.sample_size * self.vae_scale_factor * vocoder_upsample_factor + height = int(audio_length_in_s / vocoder_upsample_factor) + original_waveform_length = int(audio_length_in_s * self.vocoder.config.sampling_rate) + if height % self.vae_scale_factor != 0: + height = int(np.ceil(height / self.vae_scale_factor)) * self.vae_scale_factor + logger.info(f'Audio length in seconds {audio_length_in_s} is increased to {height * vocoder_upsample_factor} so that it can be handled by the model. It will be cut to {audio_length_in_s} after the denoising process.') + self.check_inputs(prompt, audio_length_in_s, vocoder_upsample_factor, callback_steps, transcription, negative_prompt, prompt_embeds, negative_prompt_embeds, generated_prompt_embeds, negative_generated_prompt_embeds, attention_mask, negative_attention_mask) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, attention_mask, generated_prompt_embeds) = self.encode_prompt(prompt, device, num_waveforms_per_prompt, do_classifier_free_guidance, transcription, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, generated_prompt_embeds=generated_prompt_embeds, negative_generated_prompt_embeds=negative_generated_prompt_embeds, attention_mask=attention_mask, negative_attention_mask=negative_attention_mask, max_new_tokens=max_new_tokens) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_waveforms_per_prompt, num_channels_latents, height, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=generated_prompt_embeds, encoder_hidden_states_1=prompt_embeds, encoder_attention_mask_1=attention_mask, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + self.maybe_free_model_hooks() + if not output_type == 'latent': + latents = 1 / self.vae.config.scaling_factor * latents + mel_spectrogram = self.vae.decode(latents).sample + else: + return AudioPipelineOutput(audios=latents) + audio = self.mel_spectrogram_to_waveform(mel_spectrogram) + audio = audio[:, :original_waveform_length] + if num_waveforms_per_prompt > 1 and prompt is not None: + audio = self.score_waveforms(text=prompt, audio=audio, num_waveforms_per_prompt=num_waveforms_per_prompt, device=device, dtype=prompt_embeds.dtype) + if output_type == 'np': + audio = audio.numpy() + if not return_dict: + return (audio,) + return AudioPipelineOutput(audios=audio) + +# File: diffusers-main/src/diffusers/pipelines/aura_flow/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_aura_flow'] = ['AuraFlowPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_aura_flow import AuraFlowPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/aura_flow/pipeline_aura_flow.py +import inspect +from typing import List, Optional, Tuple, Union +import torch +from transformers import T5Tokenizer, UMT5EncoderModel +from ...image_processor import VaeImageProcessor +from ...models import AuraFlowTransformer2DModel, AutoencoderKL +from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor +from ...schedulers import FlowMatchEulerDiscreteScheduler +from ...utils import logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import AuraFlowPipeline\n\n >>> pipe = AuraFlowPipeline.from_pretrained("fal/AuraFlow", torch_dtype=torch.float16)\n >>> pipe = pipe.to("cuda")\n >>> prompt = "A cat holding a sign that says hello world"\n >>> image = pipe(prompt).images[0]\n >>> image.save("aura_flow.png")\n ```\n' + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class AuraFlowPipeline(DiffusionPipeline): + _optional_components = [] + model_cpu_offload_seq = 'text_encoder->transformer->vae' + + def __init__(self, tokenizer: T5Tokenizer, text_encoder: UMT5EncoderModel, vae: AutoencoderKL, transformer: AuraFlowTransformer2DModel, scheduler: FlowMatchEulerDiscreteScheduler): + super().__init__() + self.register_modules(tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, 'vae') and self.vae is not None else 8 + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + + def check_inputs(self, prompt, height, width, negative_prompt, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and prompt_attention_mask is None: + raise ValueError('Must provide `prompt_attention_mask` when specifying `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: + raise ValueError('Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: + raise ValueError(f'`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask` {negative_prompt_attention_mask.shape}.') + + def encode_prompt(self, prompt: Union[str, List[str]], negative_prompt: Union[str, List[str]]=None, do_classifier_free_guidance: bool=True, num_images_per_prompt: int=1, device: Optional[torch.device]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, prompt_attention_mask: Optional[torch.Tensor]=None, negative_prompt_attention_mask: Optional[torch.Tensor]=None, max_sequence_length: int=256): + if device is None: + device = self._execution_device + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + max_length = max_sequence_length + if prompt_embeds is None: + text_inputs = self.tokenizer(prompt, truncation=True, max_length=max_length, padding='max_length', return_tensors='pt') + text_input_ids = text_inputs['input_ids'] + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because T5 can only handle sequences up to {max_length} tokens: {removed_text}') + text_inputs = {k: v.to(device) for (k, v) in text_inputs.items()} + prompt_embeds = self.text_encoder(**text_inputs)[0] + prompt_attention_mask = text_inputs['attention_mask'].unsqueeze(-1).expand(prompt_embeds.shape) + prompt_embeds = prompt_embeds * prompt_attention_mask + if self.text_encoder is not None: + dtype = self.text_encoder.dtype + elif self.transformer is not None: + dtype = self.transformer.dtype + else: + dtype = None + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + prompt_attention_mask = prompt_attention_mask.reshape(bs_embed, -1) + prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, truncation=True, max_length=max_length, padding='max_length', return_tensors='pt') + uncond_input = {k: v.to(device) for (k, v) in uncond_input.items()} + negative_prompt_embeds = self.text_encoder(**uncond_input)[0] + negative_prompt_attention_mask = uncond_input['attention_mask'].unsqueeze(-1).expand(negative_prompt_embeds.shape) + negative_prompt_embeds = negative_prompt_embeds * negative_prompt_attention_mask + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + negative_prompt_attention_mask = negative_prompt_attention_mask.reshape(bs_embed, -1) + negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) + else: + negative_prompt_embeds = None + negative_prompt_attention_mask = None + return (prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask) + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + if latents is not None: + return latents.to(device=device, dtype=dtype) + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + return latents + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor, FusedAttnProcessor2_0)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, negative_prompt: Union[str, List[str]]=None, num_inference_steps: int=50, timesteps: List[int]=None, sigmas: List[float]=None, guidance_scale: float=3.5, num_images_per_prompt: Optional[int]=1, height: Optional[int]=1024, width: Optional[int]=1024, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, prompt_attention_mask: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_attention_mask: Optional[torch.Tensor]=None, max_sequence_length: int=256, output_type: Optional[str]='pil', return_dict: bool=True) -> Union[ImagePipelineOutput, Tuple]: + height = height or self.transformer.config.sample_size * self.vae_scale_factor + width = width or self.transformer.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask) = self.encode_prompt(prompt=prompt, negative_prompt=negative_prompt, do_classifier_free_guidance=do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt, device=device, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, max_sequence_length=max_sequence_length) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + latent_channels = self.transformer.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, latent_channels, height, width, prompt_embeds.dtype, device, generator, latents) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + timestep = torch.tensor([t / 1000]).expand(latent_model_input.shape[0]) + timestep = timestep.to(latents.device, dtype=latents.dtype) + noise_pred = self.transformer(latent_model_input, encoder_hidden_states=prompt_embeds, timestep=timestep, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if output_type == 'latent': + image = latents + else: + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/auto_pipeline.py +from collections import OrderedDict +from huggingface_hub.utils import validate_hf_hub_args +from ..configuration_utils import ConfigMixin +from ..utils import is_sentencepiece_available +from .aura_flow import AuraFlowPipeline +from .controlnet import StableDiffusionControlNetImg2ImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionXLControlNetImg2ImgPipeline, StableDiffusionXLControlNetInpaintPipeline, StableDiffusionXLControlNetPipeline +from .deepfloyd_if import IFImg2ImgPipeline, IFInpaintingPipeline, IFPipeline +from .flux import FluxControlNetPipeline, FluxImg2ImgPipeline, FluxInpaintPipeline, FluxPipeline +from .hunyuandit import HunyuanDiTPipeline +from .kandinsky import KandinskyCombinedPipeline, KandinskyImg2ImgCombinedPipeline, KandinskyImg2ImgPipeline, KandinskyInpaintCombinedPipeline, KandinskyInpaintPipeline, KandinskyPipeline +from .kandinsky2_2 import KandinskyV22CombinedPipeline, KandinskyV22Img2ImgCombinedPipeline, KandinskyV22Img2ImgPipeline, KandinskyV22InpaintCombinedPipeline, KandinskyV22InpaintPipeline, KandinskyV22Pipeline +from .kandinsky3 import Kandinsky3Img2ImgPipeline, Kandinsky3Pipeline +from .latent_consistency_models import LatentConsistencyModelImg2ImgPipeline, LatentConsistencyModelPipeline +from .lumina import LuminaText2ImgPipeline +from .pag import HunyuanDiTPAGPipeline, PixArtSigmaPAGPipeline, StableDiffusion3PAGPipeline, StableDiffusionControlNetPAGPipeline, StableDiffusionPAGPipeline, StableDiffusionXLControlNetPAGImg2ImgPipeline, StableDiffusionXLControlNetPAGPipeline, StableDiffusionXLPAGImg2ImgPipeline, StableDiffusionXLPAGInpaintPipeline, StableDiffusionXLPAGPipeline +from .pixart_alpha import PixArtAlphaPipeline, PixArtSigmaPipeline +from .stable_cascade import StableCascadeCombinedPipeline, StableCascadeDecoderPipeline +from .stable_diffusion import StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionPipeline +from .stable_diffusion_3 import StableDiffusion3Img2ImgPipeline, StableDiffusion3InpaintPipeline, StableDiffusion3Pipeline +from .stable_diffusion_xl import StableDiffusionXLImg2ImgPipeline, StableDiffusionXLInpaintPipeline, StableDiffusionXLPipeline +from .wuerstchen import WuerstchenCombinedPipeline, WuerstchenDecoderPipeline +AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict([('stable-diffusion', StableDiffusionPipeline), ('stable-diffusion-xl', StableDiffusionXLPipeline), ('stable-diffusion-3', StableDiffusion3Pipeline), ('stable-diffusion-3-pag', StableDiffusion3PAGPipeline), ('if', IFPipeline), ('hunyuan', HunyuanDiTPipeline), ('hunyuan-pag', HunyuanDiTPAGPipeline), ('kandinsky', KandinskyCombinedPipeline), ('kandinsky22', KandinskyV22CombinedPipeline), ('kandinsky3', Kandinsky3Pipeline), ('stable-diffusion-controlnet', StableDiffusionControlNetPipeline), ('stable-diffusion-xl-controlnet', StableDiffusionXLControlNetPipeline), ('wuerstchen', WuerstchenCombinedPipeline), ('cascade', StableCascadeCombinedPipeline), ('lcm', LatentConsistencyModelPipeline), ('pixart-alpha', PixArtAlphaPipeline), ('pixart-sigma', PixArtSigmaPipeline), ('stable-diffusion-pag', StableDiffusionPAGPipeline), ('stable-diffusion-controlnet-pag', StableDiffusionControlNetPAGPipeline), ('stable-diffusion-xl-pag', StableDiffusionXLPAGPipeline), ('stable-diffusion-xl-controlnet-pag', StableDiffusionXLControlNetPAGPipeline), ('pixart-sigma-pag', PixArtSigmaPAGPipeline), ('auraflow', AuraFlowPipeline), ('flux', FluxPipeline), ('flux-controlnet', FluxControlNetPipeline), ('lumina', LuminaText2ImgPipeline)]) +AUTO_IMAGE2IMAGE_PIPELINES_MAPPING = OrderedDict([('stable-diffusion', StableDiffusionImg2ImgPipeline), ('stable-diffusion-xl', StableDiffusionXLImg2ImgPipeline), ('stable-diffusion-3', StableDiffusion3Img2ImgPipeline), ('if', IFImg2ImgPipeline), ('kandinsky', KandinskyImg2ImgCombinedPipeline), ('kandinsky22', KandinskyV22Img2ImgCombinedPipeline), ('kandinsky3', Kandinsky3Img2ImgPipeline), ('stable-diffusion-controlnet', StableDiffusionControlNetImg2ImgPipeline), ('stable-diffusion-xl-controlnet', StableDiffusionXLControlNetImg2ImgPipeline), ('stable-diffusion-xl-pag', StableDiffusionXLPAGImg2ImgPipeline), ('stable-diffusion-xl-controlnet-pag', StableDiffusionXLControlNetPAGImg2ImgPipeline), ('lcm', LatentConsistencyModelImg2ImgPipeline), ('flux', FluxImg2ImgPipeline)]) +AUTO_INPAINT_PIPELINES_MAPPING = OrderedDict([('stable-diffusion', StableDiffusionInpaintPipeline), ('stable-diffusion-xl', StableDiffusionXLInpaintPipeline), ('stable-diffusion-3', StableDiffusion3InpaintPipeline), ('if', IFInpaintingPipeline), ('kandinsky', KandinskyInpaintCombinedPipeline), ('kandinsky22', KandinskyV22InpaintCombinedPipeline), ('stable-diffusion-controlnet', StableDiffusionControlNetInpaintPipeline), ('stable-diffusion-xl-controlnet', StableDiffusionXLControlNetInpaintPipeline), ('stable-diffusion-xl-pag', StableDiffusionXLPAGInpaintPipeline), ('flux', FluxInpaintPipeline)]) +_AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict([('kandinsky', KandinskyPipeline), ('kandinsky22', KandinskyV22Pipeline), ('wuerstchen', WuerstchenDecoderPipeline), ('cascade', StableCascadeDecoderPipeline)]) +_AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict([('kandinsky', KandinskyImg2ImgPipeline), ('kandinsky22', KandinskyV22Img2ImgPipeline)]) +_AUTO_INPAINT_DECODER_PIPELINES_MAPPING = OrderedDict([('kandinsky', KandinskyInpaintPipeline), ('kandinsky22', KandinskyV22InpaintPipeline)]) +if is_sentencepiece_available(): + from .kolors import KolorsImg2ImgPipeline, KolorsPipeline + from .pag import KolorsPAGPipeline + AUTO_TEXT2IMAGE_PIPELINES_MAPPING['kolors'] = KolorsPipeline + AUTO_TEXT2IMAGE_PIPELINES_MAPPING['kolors-pag'] = KolorsPAGPipeline + AUTO_IMAGE2IMAGE_PIPELINES_MAPPING['kolors'] = KolorsImg2ImgPipeline +SUPPORTED_TASKS_MAPPINGS = [AUTO_TEXT2IMAGE_PIPELINES_MAPPING, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, AUTO_INPAINT_PIPELINES_MAPPING, _AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING, _AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING, _AUTO_INPAINT_DECODER_PIPELINES_MAPPING] + +def _get_connected_pipeline(pipeline_cls): + if pipeline_cls in _AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING.values(): + return _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False) + if pipeline_cls in _AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING.values(): + return _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False) + if pipeline_cls in _AUTO_INPAINT_DECODER_PIPELINES_MAPPING.values(): + return _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False) + +def _get_task_class(mapping, pipeline_class_name, throw_error_if_not_exist: bool=True): + + def get_model(pipeline_class_name): + for task_mapping in SUPPORTED_TASKS_MAPPINGS: + for (model_name, pipeline) in task_mapping.items(): + if pipeline.__name__ == pipeline_class_name: + return model_name + model_name = get_model(pipeline_class_name) + if model_name is not None: + task_class = mapping.get(model_name, None) + if task_class is not None: + return task_class + if throw_error_if_not_exist: + raise ValueError(f"AutoPipeline can't find a pipeline linked to {pipeline_class_name} for {model_name}") + +class AutoPipelineForText2Image(ConfigMixin): + config_name = 'model_index.json' + + def __init__(self, *args, **kwargs): + raise EnvironmentError(f'{self.__class__.__name__} is designed to be instantiated using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or `{self.__class__.__name__}.from_pipe(pipeline)` methods.') + + @classmethod + @validate_hf_hub_args + def from_pretrained(cls, pretrained_model_or_path, **kwargs): + cache_dir = kwargs.pop('cache_dir', None) + force_download = kwargs.pop('force_download', False) + proxies = kwargs.pop('proxies', None) + token = kwargs.pop('token', None) + local_files_only = kwargs.pop('local_files_only', False) + revision = kwargs.pop('revision', None) + load_config_kwargs = {'cache_dir': cache_dir, 'force_download': force_download, 'proxies': proxies, 'token': token, 'local_files_only': local_files_only, 'revision': revision} + config = cls.load_config(pretrained_model_or_path, **load_config_kwargs) + orig_class_name = config['_class_name'] + if 'controlnet' in kwargs: + orig_class_name = config['_class_name'].replace('Pipeline', 'ControlNetPipeline') + if 'enable_pag' in kwargs: + enable_pag = kwargs.pop('enable_pag') + if enable_pag: + orig_class_name = orig_class_name.replace('Pipeline', 'PAGPipeline') + text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, orig_class_name) + kwargs = {**load_config_kwargs, **kwargs} + return text_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs) + + @classmethod + def from_pipe(cls, pipeline, **kwargs): + original_config = dict(pipeline.config) + original_cls_name = pipeline.__class__.__name__ + text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, original_cls_name) + if 'controlnet' in kwargs: + if kwargs['controlnet'] is not None: + to_replace = 'PAGPipeline' if 'PAG' in text_2_image_cls.__name__ else 'Pipeline' + text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, text_2_image_cls.__name__.replace('ControlNet', '').replace(to_replace, 'ControlNet' + to_replace)) + else: + text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, text_2_image_cls.__name__.replace('ControlNet', '')) + if 'enable_pag' in kwargs: + enable_pag = kwargs.pop('enable_pag') + if enable_pag: + text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, text_2_image_cls.__name__.replace('PAG', '').replace('Pipeline', 'PAGPipeline')) + else: + text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, text_2_image_cls.__name__.replace('PAG', '')) + (expected_modules, optional_kwargs) = text_2_image_cls._get_signature_keys(text_2_image_cls) + pretrained_model_name_or_path = original_config.pop('_name_or_path', None) + passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} + original_class_obj = {k: pipeline.components[k] for (k, v) in pipeline.components.items() if k in expected_modules and k not in passed_class_obj} + passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} + original_pipe_kwargs = {k: original_config[k] for (k, v) in original_config.items() if k in optional_kwargs and k not in passed_pipe_kwargs} + additional_pipe_kwargs = [k[1:] for k in original_config.keys() if k.startswith('_') and k[1:] in optional_kwargs and (k[1:] not in passed_pipe_kwargs)] + for k in additional_pipe_kwargs: + original_pipe_kwargs[k] = original_config.pop(f'_{k}') + text_2_image_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs} + unused_original_config = {f"{('' if k.startswith('_') else '_')}{k}": original_config[k] for (k, v) in original_config.items() if k not in text_2_image_kwargs} + missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(text_2_image_kwargs.keys()) + if len(missing_modules) > 0: + raise ValueError(f'Pipeline {text_2_image_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed') + model = text_2_image_cls(**text_2_image_kwargs) + model.register_to_config(_name_or_path=pretrained_model_name_or_path) + model.register_to_config(**unused_original_config) + return model + +class AutoPipelineForImage2Image(ConfigMixin): + config_name = 'model_index.json' + + def __init__(self, *args, **kwargs): + raise EnvironmentError(f'{self.__class__.__name__} is designed to be instantiated using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or `{self.__class__.__name__}.from_pipe(pipeline)` methods.') + + @classmethod + @validate_hf_hub_args + def from_pretrained(cls, pretrained_model_or_path, **kwargs): + cache_dir = kwargs.pop('cache_dir', None) + force_download = kwargs.pop('force_download', False) + proxies = kwargs.pop('proxies', None) + token = kwargs.pop('token', None) + local_files_only = kwargs.pop('local_files_only', False) + revision = kwargs.pop('revision', None) + load_config_kwargs = {'cache_dir': cache_dir, 'force_download': force_download, 'proxies': proxies, 'token': token, 'local_files_only': local_files_only, 'revision': revision} + config = cls.load_config(pretrained_model_or_path, **load_config_kwargs) + orig_class_name = config['_class_name'] + to_replace = 'Img2ImgPipeline' if 'Img2Img' in config['_class_name'] else 'Pipeline' + if 'controlnet' in kwargs: + orig_class_name = orig_class_name.replace(to_replace, 'ControlNet' + to_replace) + if 'enable_pag' in kwargs: + enable_pag = kwargs.pop('enable_pag') + if enable_pag: + orig_class_name = orig_class_name.replace(to_replace, 'PAG' + to_replace) + image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, orig_class_name) + kwargs = {**load_config_kwargs, **kwargs} + return image_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs) + + @classmethod + def from_pipe(cls, pipeline, **kwargs): + original_config = dict(pipeline.config) + original_cls_name = pipeline.__class__.__name__ + image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, original_cls_name) + if 'controlnet' in kwargs: + if kwargs['controlnet'] is not None: + to_replace = 'Img2ImgPipeline' + if 'PAG' in image_2_image_cls.__name__: + to_replace = 'PAG' + to_replace + image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, image_2_image_cls.__name__.replace('ControlNet', '').replace(to_replace, 'ControlNet' + to_replace)) + else: + image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, image_2_image_cls.__name__.replace('ControlNet', '')) + if 'enable_pag' in kwargs: + enable_pag = kwargs.pop('enable_pag') + if enable_pag: + image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, image_2_image_cls.__name__.replace('PAG', '').replace('Img2ImgPipeline', 'PAGImg2ImgPipeline')) + else: + image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, image_2_image_cls.__name__.replace('PAG', '')) + (expected_modules, optional_kwargs) = image_2_image_cls._get_signature_keys(image_2_image_cls) + pretrained_model_name_or_path = original_config.pop('_name_or_path', None) + passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} + original_class_obj = {k: pipeline.components[k] for (k, v) in pipeline.components.items() if k in expected_modules and k not in passed_class_obj} + passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} + original_pipe_kwargs = {k: original_config[k] for (k, v) in original_config.items() if k in optional_kwargs and k not in passed_pipe_kwargs} + additional_pipe_kwargs = [k[1:] for k in original_config.keys() if k.startswith('_') and k[1:] in optional_kwargs and (k[1:] not in passed_pipe_kwargs)] + for k in additional_pipe_kwargs: + original_pipe_kwargs[k] = original_config.pop(f'_{k}') + image_2_image_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs} + unused_original_config = {f"{('' if k.startswith('_') else '_')}{k}": original_config[k] for (k, v) in original_config.items() if k not in image_2_image_kwargs} + missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(image_2_image_kwargs.keys()) + if len(missing_modules) > 0: + raise ValueError(f'Pipeline {image_2_image_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed') + model = image_2_image_cls(**image_2_image_kwargs) + model.register_to_config(_name_or_path=pretrained_model_name_or_path) + model.register_to_config(**unused_original_config) + return model + +class AutoPipelineForInpainting(ConfigMixin): + config_name = 'model_index.json' + + def __init__(self, *args, **kwargs): + raise EnvironmentError(f'{self.__class__.__name__} is designed to be instantiated using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or `{self.__class__.__name__}.from_pipe(pipeline)` methods.') + + @classmethod + @validate_hf_hub_args + def from_pretrained(cls, pretrained_model_or_path, **kwargs): + cache_dir = kwargs.pop('cache_dir', None) + force_download = kwargs.pop('force_download', False) + proxies = kwargs.pop('proxies', None) + token = kwargs.pop('token', None) + local_files_only = kwargs.pop('local_files_only', False) + revision = kwargs.pop('revision', None) + load_config_kwargs = {'cache_dir': cache_dir, 'force_download': force_download, 'proxies': proxies, 'token': token, 'local_files_only': local_files_only, 'revision': revision} + config = cls.load_config(pretrained_model_or_path, **load_config_kwargs) + orig_class_name = config['_class_name'] + to_replace = 'InpaintPipeline' if 'Inpaint' in config['_class_name'] else 'Pipeline' + if 'controlnet' in kwargs: + orig_class_name = orig_class_name.replace(to_replace, 'ControlNet' + to_replace) + if 'enable_pag' in kwargs: + enable_pag = kwargs.pop('enable_pag') + if enable_pag: + orig_class_name = orig_class_name.replace(to_replace, 'PAG' + to_replace) + inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, orig_class_name) + kwargs = {**load_config_kwargs, **kwargs} + return inpainting_cls.from_pretrained(pretrained_model_or_path, **kwargs) + + @classmethod + def from_pipe(cls, pipeline, **kwargs): + original_config = dict(pipeline.config) + original_cls_name = pipeline.__class__.__name__ + inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, original_cls_name) + if 'controlnet' in kwargs: + if kwargs['controlnet'] is not None: + inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, inpainting_cls.__name__.replace('ControlNet', '').replace('InpaintPipeline', 'ControlNetInpaintPipeline')) + else: + inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, inpainting_cls.__name__.replace('ControlNetInpaintPipeline', 'InpaintPipeline')) + if 'enable_pag' in kwargs: + enable_pag = kwargs.pop('enable_pag') + if enable_pag: + inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, inpainting_cls.__name__.replace('PAG', '').replace('InpaintPipeline', 'PAGInpaintPipeline')) + else: + inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, inpainting_cls.__name__.replace('PAGInpaintPipeline', 'InpaintPipeline')) + (expected_modules, optional_kwargs) = inpainting_cls._get_signature_keys(inpainting_cls) + pretrained_model_name_or_path = original_config.pop('_name_or_path', None) + passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} + original_class_obj = {k: pipeline.components[k] for (k, v) in pipeline.components.items() if k in expected_modules and k not in passed_class_obj} + passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} + original_pipe_kwargs = {k: original_config[k] for (k, v) in original_config.items() if k in optional_kwargs and k not in passed_pipe_kwargs} + additional_pipe_kwargs = [k[1:] for k in original_config.keys() if k.startswith('_') and k[1:] in optional_kwargs and (k[1:] not in passed_pipe_kwargs)] + for k in additional_pipe_kwargs: + original_pipe_kwargs[k] = original_config.pop(f'_{k}') + inpainting_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs} + unused_original_config = {f"{('' if k.startswith('_') else '_')}{k}": original_config[k] for (k, v) in original_config.items() if k not in inpainting_kwargs} + missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(inpainting_kwargs.keys()) + if len(missing_modules) > 0: + raise ValueError(f'Pipeline {inpainting_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed') + model = inpainting_cls(**inpainting_kwargs) + model.register_to_config(_name_or_path=pretrained_model_name_or_path) + model.register_to_config(**unused_original_config) + return model + +# File: diffusers-main/src/diffusers/pipelines/blip_diffusion/__init__.py +from dataclasses import dataclass +from typing import List, Optional, Union +import numpy as np +import PIL +from PIL import Image +from ...utils import OptionalDependencyNotAvailable, is_torch_available, is_transformers_available +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline +else: + from .blip_image_processing import BlipImageProcessor + from .modeling_blip2 import Blip2QFormerModel + from .modeling_ctx_clip import ContextCLIPTextModel + from .pipeline_blip_diffusion import BlipDiffusionPipeline + +# File: diffusers-main/src/diffusers/pipelines/blip_diffusion/blip_image_processing.py +"""""" +from typing import Dict, List, Optional, Union +import numpy as np +import torch +from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict +from transformers.image_transforms import convert_to_rgb, resize, to_channel_dimension_format +from transformers.image_utils import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images +from transformers.utils import TensorType, is_vision_available, logging +from diffusers.utils import numpy_to_pil +if is_vision_available(): + import PIL.Image +logger = logging.get_logger(__name__) + +class BlipImageProcessor(BaseImageProcessor): + model_input_names = ['pixel_values'] + + def __init__(self, do_resize: bool=True, size: Dict[str, int]=None, resample: PILImageResampling=PILImageResampling.BICUBIC, do_rescale: bool=True, rescale_factor: Union[int, float]=1 / 255, do_normalize: bool=True, image_mean: Optional[Union[float, List[float]]]=None, image_std: Optional[Union[float, List[float]]]=None, do_convert_rgb: bool=True, do_center_crop: bool=True, **kwargs) -> None: + super().__init__(**kwargs) + size = size if size is not None else {'height': 224, 'width': 224} + size = get_size_dict(size, default_to_square=True) + self.do_resize = do_resize + self.size = size + self.resample = resample + self.do_rescale = do_rescale + self.rescale_factor = rescale_factor + self.do_normalize = do_normalize + self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN + self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD + self.do_convert_rgb = do_convert_rgb + self.do_center_crop = do_center_crop + + def resize(self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling=PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]]=None, input_data_format: Optional[Union[str, ChannelDimension]]=None, **kwargs) -> np.ndarray: + size = get_size_dict(size) + if 'height' not in size or 'width' not in size: + raise ValueError(f'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}') + output_size = (size['height'], size['width']) + return resize(image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs) + + def preprocess(self, images: ImageInput, do_resize: Optional[bool]=None, size: Optional[Dict[str, int]]=None, resample: PILImageResampling=None, do_rescale: Optional[bool]=None, do_center_crop: Optional[bool]=None, rescale_factor: Optional[float]=None, do_normalize: Optional[bool]=None, image_mean: Optional[Union[float, List[float]]]=None, image_std: Optional[Union[float, List[float]]]=None, return_tensors: Optional[Union[str, TensorType]]=None, do_convert_rgb: bool=None, data_format: ChannelDimension=ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]]=None, **kwargs) -> PIL.Image.Image: + do_resize = do_resize if do_resize is not None else self.do_resize + resample = resample if resample is not None else self.resample + do_rescale = do_rescale if do_rescale is not None else self.do_rescale + rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor + do_normalize = do_normalize if do_normalize is not None else self.do_normalize + image_mean = image_mean if image_mean is not None else self.image_mean + image_std = image_std if image_std is not None else self.image_std + do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb + do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop + size = size if size is not None else self.size + size = get_size_dict(size, default_to_square=False) + images = make_list_of_images(images) + if not valid_images(images): + raise ValueError('Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray.') + if do_resize and size is None or resample is None: + raise ValueError('Size and resample must be specified if do_resize is True.') + if do_rescale and rescale_factor is None: + raise ValueError('Rescale factor must be specified if do_rescale is True.') + if do_normalize and (image_mean is None or image_std is None): + raise ValueError('Image mean and std must be specified if do_normalize is True.') + if do_convert_rgb: + images = [convert_to_rgb(image) for image in images] + images = [to_numpy_array(image) for image in images] + if is_scaled_image(images[0]) and do_rescale: + logger.warning_once('It looks like you are trying to rescale already rescaled images. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.') + if input_data_format is None: + input_data_format = infer_channel_dimension_format(images[0]) + if do_resize: + images = [self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) for image in images] + if do_rescale: + images = [self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images] + if do_normalize: + images = [self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images] + if do_center_crop: + images = [self.center_crop(image, size, input_data_format=input_data_format) for image in images] + images = [to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images] + encoded_outputs = BatchFeature(data={'pixel_values': images}, tensor_type=return_tensors) + return encoded_outputs + + def postprocess(self, sample: torch.Tensor, output_type: str='pil'): + if output_type not in ['pt', 'np', 'pil']: + raise ValueError(f"output_type={output_type} is not supported. Make sure to choose one of ['pt', 'np', or 'pil']") + sample = (sample / 2 + 0.5).clamp(0, 1) + if output_type == 'pt': + return sample + sample = sample.cpu().permute(0, 2, 3, 1).numpy() + if output_type == 'np': + return sample + sample = numpy_to_pil(sample) + return sample + +# File: diffusers-main/src/diffusers/pipelines/blip_diffusion/modeling_blip2.py +from typing import Optional, Tuple, Union +import torch +import torch.utils.checkpoint +from torch import nn +from transformers import BertTokenizer +from transformers.activations import QuickGELUActivation as QuickGELU +from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPooling, BaseModelOutputWithPoolingAndCrossAttentions +from transformers.models.blip_2.configuration_blip_2 import Blip2Config, Blip2VisionConfig +from transformers.models.blip_2.modeling_blip_2 import Blip2Encoder, Blip2PreTrainedModel, Blip2QFormerAttention, Blip2QFormerIntermediate, Blip2QFormerOutput +from transformers.pytorch_utils import apply_chunking_to_forward +from transformers.utils import logging, replace_return_docstrings +logger = logging.get_logger(__name__) + +class Blip2TextEmbeddings(nn.Module): + + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.register_buffer('position_ids', torch.arange(config.max_position_embeddings).expand((1, -1))) + self.position_embedding_type = getattr(config, 'position_embedding_type', 'absolute') + self.config = config + + def forward(self, input_ids=None, position_ids=None, query_embeds=None, past_key_values_length=0): + if input_ids is not None: + seq_length = input_ids.size()[1] + else: + seq_length = 0 + if position_ids is None: + position_ids = self.position_ids[:, past_key_values_length:seq_length + past_key_values_length].clone() + if input_ids is not None: + embeddings = self.word_embeddings(input_ids) + if self.position_embedding_type == 'absolute': + position_embeddings = self.position_embeddings(position_ids) + embeddings = embeddings + position_embeddings + if query_embeds is not None: + batch_size = embeddings.shape[0] + query_embeds = query_embeds.repeat(batch_size, 1, 1) + embeddings = torch.cat((query_embeds, embeddings), dim=1) + else: + embeddings = query_embeds + embeddings = embeddings.to(query_embeds.dtype) + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + +class Blip2VisionEmbeddings(nn.Module): + + def __init__(self, config: Blip2VisionConfig): + super().__init__() + self.config = config + self.embed_dim = config.hidden_size + self.image_size = config.image_size + self.patch_size = config.patch_size + self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim)) + self.patch_embedding = nn.Conv2d(in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False) + self.num_patches = (self.image_size // self.patch_size) ** 2 + self.num_positions = self.num_patches + 1 + self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim)) + + def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: + batch_size = pixel_values.shape[0] + target_dtype = self.patch_embedding.weight.dtype + patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) + patch_embeds = patch_embeds.flatten(2).transpose(1, 2) + class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype) + embeddings = torch.cat([class_embeds, patch_embeds], dim=1) + embeddings = embeddings + self.position_embedding[:, :embeddings.size(1), :].to(target_dtype) + return embeddings + +class Blip2QFormerEncoder(nn.Module): + + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([Blip2QFormerLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward(self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, query_length=0): + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions else None + next_decoder_cache = () if use_cache else None + for i in range(self.config.num_hidden_layers): + layer_module = self.layer[i] + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + if getattr(self.config, 'gradient_checkpointing', False) and self.training: + if use_cache: + logger.warning('`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...') + use_cache = False + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs, past_key_value, output_attentions, query_length) + return custom_forward + layer_outputs = torch.utils.checkpoint.checkpoint(create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask) + else: + layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, query_length) + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + if layer_module.has_cross_attention: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + if not return_dict: + return tuple((v for v in [hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions] if v is not None)) + return BaseModelOutputWithPastAndCrossAttentions(last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions) + +class Blip2QFormerLayer(nn.Module): + + def __init__(self, config, layer_idx): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = Blip2QFormerAttention(config) + self.layer_idx = layer_idx + if layer_idx % config.cross_attention_frequency == 0: + self.crossattention = Blip2QFormerAttention(config, is_cross_attention=True) + self.has_cross_attention = True + else: + self.has_cross_attention = False + self.intermediate = Blip2QFormerIntermediate(config) + self.intermediate_query = Blip2QFormerIntermediate(config) + self.output_query = Blip2QFormerOutput(config) + self.output = Blip2QFormerOutput(config) + + def forward(self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, query_length=0): + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention(hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value) + attention_output = self_attention_outputs[0] + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + if query_length > 0: + query_attention_output = attention_output[:, :query_length, :] + if self.has_cross_attention: + if encoder_hidden_states is None: + raise ValueError('encoder_hidden_states must be given for cross-attention layers') + cross_attention_outputs = self.crossattention(query_attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions=output_attentions) + query_attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] + layer_output = apply_chunking_to_forward(self.feed_forward_chunk_query, self.chunk_size_feed_forward, self.seq_len_dim, query_attention_output) + if attention_output.shape[1] > query_length: + layer_output_text = apply_chunking_to_forward(self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output[:, query_length:, :]) + layer_output = torch.cat([layer_output, layer_output_text], dim=1) + else: + layer_output = apply_chunking_to_forward(self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output) + outputs = (layer_output,) + outputs + outputs = outputs + (present_key_value,) + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + def feed_forward_chunk_query(self, attention_output): + intermediate_output = self.intermediate_query(attention_output) + layer_output = self.output_query(intermediate_output, attention_output) + return layer_output + +class ProjLayer(nn.Module): + + def __init__(self, in_dim, out_dim, hidden_dim, drop_p=0.1, eps=1e-12): + super().__init__() + self.dense1 = nn.Linear(in_dim, hidden_dim) + self.act_fn = QuickGELU() + self.dense2 = nn.Linear(hidden_dim, out_dim) + self.dropout = nn.Dropout(drop_p) + self.LayerNorm = nn.LayerNorm(out_dim, eps=eps) + + def forward(self, x): + x_in = x + x = self.LayerNorm(x) + x = self.dropout(self.dense2(self.act_fn(self.dense1(x)))) + x_in + return x + +class Blip2VisionModel(Blip2PreTrainedModel): + main_input_name = 'pixel_values' + config_class = Blip2VisionConfig + + def __init__(self, config: Blip2VisionConfig): + super().__init__(config) + self.config = config + embed_dim = config.hidden_size + self.embeddings = Blip2VisionEmbeddings(config) + self.pre_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) + self.encoder = Blip2Encoder(config) + self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) + self.post_init() + + @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Blip2VisionConfig) + def forward(self, pixel_values: Optional[torch.Tensor]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None) -> Union[Tuple, BaseModelOutputWithPooling]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if pixel_values is None: + raise ValueError('You have to specify pixel_values') + hidden_states = self.embeddings(pixel_values) + hidden_states = self.pre_layernorm(hidden_states) + encoder_outputs = self.encoder(inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) + last_hidden_state = encoder_outputs[0] + last_hidden_state = self.post_layernorm(last_hidden_state) + pooled_output = last_hidden_state[:, 0, :] + pooled_output = self.post_layernorm(pooled_output) + if not return_dict: + return (last_hidden_state, pooled_output) + encoder_outputs[1:] + return BaseModelOutputWithPooling(last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions) + + def get_input_embeddings(self): + return self.embeddings + +class Blip2QFormerModel(Blip2PreTrainedModel): + + def __init__(self, config: Blip2Config): + super().__init__(config) + self.config = config + self.embeddings = Blip2TextEmbeddings(config.qformer_config) + self.visual_encoder = Blip2VisionModel(config.vision_config) + self.query_tokens = nn.Parameter(torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size)) + if not hasattr(config, 'tokenizer') or config.tokenizer is None: + self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', truncation_side='right') + else: + self.tokenizer = BertTokenizer.from_pretrained(config.tokenizer, truncation_side='right') + self.tokenizer.add_special_tokens({'bos_token': '[DEC]'}) + self.proj_layer = ProjLayer(in_dim=config.qformer_config.hidden_size, out_dim=config.qformer_config.hidden_size, hidden_dim=config.qformer_config.hidden_size * 4, drop_p=0.1, eps=1e-12) + self.encoder = Blip2QFormerEncoder(config.qformer_config) + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + for (layer, heads) in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + def get_extended_attention_mask(self, attention_mask: torch.Tensor, input_shape: Tuple[int], device: torch.device, has_query: bool=False) -> torch.Tensor: + if attention_mask.dim() == 3: + extended_attention_mask = attention_mask[:, None, :, :] + elif attention_mask.dim() == 2: + extended_attention_mask = attention_mask[:, None, None, :] + else: + raise ValueError('Wrong shape for input_ids (shape {}) or attention_mask (shape {})'.format(input_shape, attention_mask.shape)) + extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) + extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 + return extended_attention_mask + + def forward(self, text_input=None, image_input=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None): + text = self.tokenizer(text_input, return_tensors='pt', padding=True) + text = text.to(self.device) + input_ids = text.input_ids + batch_size = input_ids.shape[0] + query_atts = torch.ones((batch_size, self.query_tokens.size()[1]), dtype=torch.long).to(self.device) + attention_mask = torch.cat([query_atts, text.attention_mask], dim=1) + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + past_key_values_length = past_key_values[0][0].shape[2] - self.config.query_length if past_key_values is not None else 0 + query_length = self.query_tokens.shape[1] + embedding_output = self.embeddings(input_ids=input_ids, query_embeds=self.query_tokens, past_key_values_length=past_key_values_length) + input_shape = embedding_output.size()[:-1] + (batch_size, seq_length) = input_shape + device = embedding_output.device + image_embeds_frozen = self.visual_encoder(image_input).last_hidden_state + encoder_hidden_states = image_embeds_frozen + if attention_mask is None: + attention_mask = torch.ones((batch_size, seq_length + past_key_values_length), device=device) + extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device) + if encoder_hidden_states is not None: + if isinstance(encoder_hidden_states, list): + (encoder_batch_size, encoder_sequence_length, _) = encoder_hidden_states[0].size() + else: + (encoder_batch_size, encoder_sequence_length, _) = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + if isinstance(encoder_attention_mask, list): + encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] + elif encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + head_mask = self.get_head_mask(head_mask, self.config.qformer_config.num_hidden_layers) + encoder_outputs = self.encoder(embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, query_length=query_length) + sequence_output = encoder_outputs[0] + pooled_output = sequence_output[:, 0, :] + if not return_dict: + return self.proj_layer(sequence_output[:, :query_length, :]) + return BaseModelOutputWithPoolingAndCrossAttentions(last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions) + +# File: diffusers-main/src/diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +from typing import Optional, Tuple, Union +import torch +from torch import nn +from transformers import CLIPPreTrainedModel +from transformers.modeling_outputs import BaseModelOutputWithPooling +from transformers.models.clip.configuration_clip import CLIPTextConfig +from transformers.models.clip.modeling_clip import CLIPEncoder + +def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int]=None): + (bsz, src_len) = mask.size() + tgt_len = tgt_len if tgt_len is not None else src_len + expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) + inverted_mask = 1.0 - expanded_mask + return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) + +class ContextCLIPTextModel(CLIPPreTrainedModel): + config_class = CLIPTextConfig + _no_split_modules = ['CLIPEncoderLayer'] + + def __init__(self, config: CLIPTextConfig): + super().__init__(config) + self.text_model = ContextCLIPTextTransformer(config) + self.post_init() + + def forward(self, ctx_embeddings: torch.Tensor=None, ctx_begin_pos: list=None, input_ids: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, position_ids: Optional[torch.Tensor]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None) -> Union[Tuple, BaseModelOutputWithPooling]: + return self.text_model(ctx_embeddings=ctx_embeddings, ctx_begin_pos=ctx_begin_pos, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) + +class ContextCLIPTextTransformer(nn.Module): + + def __init__(self, config: CLIPTextConfig): + super().__init__() + self.config = config + embed_dim = config.hidden_size + self.embeddings = ContextCLIPTextEmbeddings(config) + self.encoder = CLIPEncoder(config) + self.final_layer_norm = nn.LayerNorm(embed_dim) + + def forward(self, ctx_embeddings: torch.Tensor, ctx_begin_pos: list, input_ids: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, position_ids: Optional[torch.Tensor]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None) -> Union[Tuple, BaseModelOutputWithPooling]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if input_ids is None: + raise ValueError('You have to specify either input_ids') + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids, ctx_embeddings=ctx_embeddings, ctx_begin_pos=ctx_begin_pos) + (bsz, seq_len) = input_shape + if ctx_embeddings is not None: + seq_len += ctx_embeddings.size(1) + causal_attention_mask = self._build_causal_attention_mask(bsz, seq_len, hidden_states.dtype).to(hidden_states.device) + if attention_mask is not None: + attention_mask = _expand_mask(attention_mask, hidden_states.dtype) + encoder_outputs = self.encoder(inputs_embeds=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) + last_hidden_state = encoder_outputs[0] + last_hidden_state = self.final_layer_norm(last_hidden_state) + pooled_output = last_hidden_state[torch.arange(last_hidden_state.shape[0], device=input_ids.device), input_ids.to(torch.int).argmax(dim=-1)] + if not return_dict: + return (last_hidden_state, pooled_output) + encoder_outputs[1:] + return BaseModelOutputWithPooling(last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions) + + def _build_causal_attention_mask(self, bsz, seq_len, dtype): + mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype) + mask.fill_(torch.tensor(torch.finfo(dtype).min)) + mask.triu_(1) + mask = mask.unsqueeze(1) + return mask + +class ContextCLIPTextEmbeddings(nn.Module): + + def __init__(self, config: CLIPTextConfig): + super().__init__() + embed_dim = config.hidden_size + self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) + self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) + self.register_buffer('position_ids', torch.arange(config.max_position_embeddings).expand((1, -1))) + + def forward(self, ctx_embeddings: torch.Tensor, ctx_begin_pos: list, input_ids: Optional[torch.LongTensor]=None, position_ids: Optional[torch.LongTensor]=None, inputs_embeds: Optional[torch.Tensor]=None) -> torch.Tensor: + if ctx_embeddings is None: + ctx_len = 0 + else: + ctx_len = ctx_embeddings.shape[1] + seq_length = (input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]) + ctx_len + if position_ids is None: + position_ids = self.position_ids[:, :seq_length] + if inputs_embeds is None: + inputs_embeds = self.token_embedding(input_ids) + input_embeds_ctx = [] + bsz = inputs_embeds.shape[0] + if ctx_embeddings is not None: + for i in range(bsz): + cbp = ctx_begin_pos[i] + prefix = inputs_embeds[i, :cbp] + suffix = inputs_embeds[i, cbp:] + input_embeds_ctx.append(torch.cat([prefix, ctx_embeddings[i], suffix], dim=0)) + inputs_embeds = torch.stack(input_embeds_ctx, dim=0) + position_embeddings = self.position_embedding(position_ids) + embeddings = inputs_embeds + position_embeddings + return embeddings + +# File: diffusers-main/src/diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +from typing import List, Optional, Union +import PIL.Image +import torch +from transformers import CLIPTokenizer +from ...models import AutoencoderKL, UNet2DConditionModel +from ...schedulers import PNDMScheduler +from ...utils import logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +from .blip_image_processing import BlipImageProcessor +from .modeling_blip2 import Blip2QFormerModel +from .modeling_ctx_clip import ContextCLIPTextModel +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers.pipelines import BlipDiffusionPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> blip_diffusion_pipe = BlipDiffusionPipeline.from_pretrained(\n ... "Salesforce/blipdiffusion", torch_dtype=torch.float16\n ... ).to("cuda")\n\n\n >>> cond_subject = "dog"\n >>> tgt_subject = "dog"\n >>> text_prompt_input = "swimming underwater"\n\n >>> cond_image = load_image(\n ... "https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/dog.jpg"\n ... )\n >>> guidance_scale = 7.5\n >>> num_inference_steps = 25\n >>> negative_prompt = "over-exposure, under-exposure, saturated, duplicate, out of frame, lowres, cropped, worst quality, low quality, jpeg artifacts, morbid, mutilated, out of frame, ugly, bad anatomy, bad proportions, deformed, blurry, duplicate"\n\n\n >>> output = blip_diffusion_pipe(\n ... text_prompt_input,\n ... cond_image,\n ... cond_subject,\n ... tgt_subject,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=num_inference_steps,\n ... neg_prompt=negative_prompt,\n ... height=512,\n ... width=512,\n ... ).images\n >>> output[0].save("image.png")\n ```\n' + +class BlipDiffusionPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'qformer->text_encoder->unet->vae' + + def __init__(self, tokenizer: CLIPTokenizer, text_encoder: ContextCLIPTextModel, vae: AutoencoderKL, unet: UNet2DConditionModel, scheduler: PNDMScheduler, qformer: Blip2QFormerModel, image_processor: BlipImageProcessor, ctx_begin_pos: int=2, mean: List[float]=None, std: List[float]=None): + super().__init__() + self.register_modules(tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, unet=unet, scheduler=scheduler, qformer=qformer, image_processor=image_processor) + self.register_to_config(ctx_begin_pos=ctx_begin_pos, mean=mean, std=std) + + def get_query_embeddings(self, input_image, src_subject): + return self.qformer(image_input=input_image, text_input=src_subject, return_dict=False) + + def _build_prompt(self, prompts, tgt_subjects, prompt_strength=1.0, prompt_reps=20): + rv = [] + for (prompt, tgt_subject) in zip(prompts, tgt_subjects): + prompt = f'a {tgt_subject} {prompt.strip()}' + rv.append(', '.join([prompt] * int(prompt_strength * prompt_reps))) + return rv + + def prepare_latents(self, batch_size, num_channels, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels, height, width) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device=device, dtype=dtype) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def encode_prompt(self, query_embeds, prompt, device=None): + device = device or self._execution_device + max_len = self.text_encoder.text_model.config.max_position_embeddings + max_len -= self.qformer.config.num_query_tokens + tokenized_prompt = self.tokenizer(prompt, padding='max_length', truncation=True, max_length=max_len, return_tensors='pt').to(device) + batch_size = query_embeds.shape[0] + ctx_begin_pos = [self.config.ctx_begin_pos] * batch_size + text_embeddings = self.text_encoder(input_ids=tokenized_prompt.input_ids, ctx_embeddings=query_embeds, ctx_begin_pos=ctx_begin_pos)[0] + return text_embeddings + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: List[str], reference_image: PIL.Image.Image, source_subject_category: List[str], target_subject_category: List[str], latents: Optional[torch.Tensor]=None, guidance_scale: float=7.5, height: int=512, width: int=512, num_inference_steps: int=50, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, neg_prompt: Optional[str]='', prompt_strength: float=1.0, prompt_reps: int=20, output_type: Optional[str]='pil', return_dict: bool=True): + device = self._execution_device + reference_image = self.image_processor.preprocess(reference_image, image_mean=self.config.mean, image_std=self.config.std, return_tensors='pt')['pixel_values'] + reference_image = reference_image.to(device) + if isinstance(prompt, str): + prompt = [prompt] + if isinstance(source_subject_category, str): + source_subject_category = [source_subject_category] + if isinstance(target_subject_category, str): + target_subject_category = [target_subject_category] + batch_size = len(prompt) + prompt = self._build_prompt(prompts=prompt, tgt_subjects=target_subject_category, prompt_strength=prompt_strength, prompt_reps=prompt_reps) + query_embeds = self.get_query_embeddings(reference_image, source_subject_category) + text_embeddings = self.encode_prompt(query_embeds, prompt, device) + do_classifier_free_guidance = guidance_scale > 1.0 + if do_classifier_free_guidance: + max_length = self.text_encoder.text_model.config.max_position_embeddings + uncond_input = self.tokenizer([neg_prompt] * batch_size, padding='max_length', max_length=max_length, return_tensors='pt') + uncond_embeddings = self.text_encoder(input_ids=uncond_input.input_ids.to(device), ctx_embeddings=None)[0] + text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) + scale_down_factor = 2 ** (len(self.unet.config.block_out_channels) - 1) + latents = self.prepare_latents(batch_size=batch_size, num_channels=self.unet.config.in_channels, height=height // scale_down_factor, width=width // scale_down_factor, generator=generator, latents=latents, dtype=self.unet.dtype, device=device) + extra_set_kwargs = {} + self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) + for (i, t) in enumerate(self.progress_bar(self.scheduler.timesteps)): + do_classifier_free_guidance = guidance_scale > 1.0 + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + noise_pred = self.unet(latent_model_input, timestep=t, encoder_hidden_states=text_embeddings, down_block_additional_residuals=None, mid_block_additional_residual=None)['sample'] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents)['prev_sample'] + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/cogvideo/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_cogvideox'] = ['CogVideoXPipeline'] + _import_structure['pipeline_cogvideox_video2video'] = ['CogVideoXVideoToVideoPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_cogvideox import CogVideoXPipeline + from .pipeline_cogvideox_video2video import CogVideoXVideoToVideoPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py +import inspect +import math +from typing import Callable, Dict, List, Optional, Tuple, Union +import torch +from transformers import T5EncoderModel, T5Tokenizer +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel +from ...models.embeddings import get_3d_rotary_pos_embed +from ...pipelines.pipeline_utils import DiffusionPipeline +from ...schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler +from ...utils import logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ...video_processor import VideoProcessor +from .pipeline_output import CogVideoXPipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```python\n >>> import torch\n >>> from diffusers import CogVideoXPipeline\n >>> from diffusers.utils import export_to_video\n\n >>> # Models: "THUDM/CogVideoX-2b" or "THUDM/CogVideoX-5b"\n >>> pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=torch.float16).to("cuda")\n >>> prompt = (\n ... "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. "\n ... "The panda\'s fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other "\n ... "pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, "\n ... "casting a gentle glow on the scene. The panda\'s face is expressive, showing concentration and joy as it plays. "\n ... "The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical "\n ... "atmosphere of this unique musical performance."\n ... )\n >>> video = pipe(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0]\n >>> export_to_video(video, "output.mp4", fps=8)\n ```\n' + +def get_resize_crop_region_for_grid(src, tgt_width, tgt_height): + tw = tgt_width + th = tgt_height + (h, w) = src + r = h / w + if r > th / tw: + resize_height = th + resize_width = int(round(th / h * w)) + else: + resize_width = tw + resize_height = int(round(tw / w * h)) + crop_top = int(round((th - resize_height) / 2.0)) + crop_left = int(round((tw - resize_width) / 2.0)) + return ((crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)) + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class CogVideoXPipeline(DiffusionPipeline): + _optional_components = [] + model_cpu_offload_seq = 'text_encoder->transformer->vae' + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + + def __init__(self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, vae: AutoencoderKLCogVideoX, transformer: CogVideoXTransformer3DModel, scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler]): + super().__init__() + self.register_modules(tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler) + self.vae_scale_factor_spatial = 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, 'vae') and self.vae is not None else 8 + self.vae_scale_factor_temporal = self.vae.config.temporal_compression_ratio if hasattr(self, 'vae') and self.vae is not None else 4 + self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial) + + def _get_t5_prompt_embeds(self, prompt: Union[str, List[str]]=None, num_videos_per_prompt: int=1, max_sequence_length: int=226, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None): + device = device or self._execution_device + dtype = dtype or self.text_encoder.dtype + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=max_sequence_length, truncation=True, add_special_tokens=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because `max_sequence_length` is set to {max_sequence_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder(text_input_ids.to(device))[0] + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (_, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) + return prompt_embeds + + def encode_prompt(self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]]=None, do_classifier_free_guidance: bool=True, num_videos_per_prompt: int=1, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, max_sequence_length: int=226, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None): + device = device or self._execution_device + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + prompt_embeds = self._get_t5_prompt_embeds(prompt=prompt, num_videos_per_prompt=num_videos_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype) + if do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + negative_prompt_embeds = self._get_t5_prompt_embeds(prompt=negative_prompt, num_videos_per_prompt=num_videos_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype) + return (prompt_embeds, negative_prompt_embeds) + + def prepare_latents(self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None): + shape = (batch_size, (num_frames - 1) // self.vae_scale_factor_temporal + 1, num_channels_latents, height // self.vae_scale_factor_spatial, width // self.vae_scale_factor_spatial) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def decode_latents(self, latents: torch.Tensor) -> torch.Tensor: + latents = latents.permute(0, 2, 1, 3, 4) + latents = 1 / self.vae.config.scaling_factor * latents + frames = self.vae.decode(latents).sample + return frames + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, negative_prompt, callback_on_step_end_tensor_inputs, prompt_embeds=None, negative_prompt_embeds=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def fuse_qkv_projections(self) -> None: + self.fusing_transformer = True + self.transformer.fuse_qkv_projections() + + def unfuse_qkv_projections(self) -> None: + if not self.fusing_transformer: + logger.warning('The Transformer was not initially fused for QKV projections. Doing nothing.') + else: + self.transformer.unfuse_qkv_projections() + self.fusing_transformer = False + + def _prepare_rotary_positional_embeddings(self, height: int, width: int, num_frames: int, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]: + grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) + grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) + base_size_width = 720 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) + base_size_height = 480 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) + grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size_width, base_size_height) + (freqs_cos, freqs_sin) = get_3d_rotary_pos_embed(embed_dim=self.transformer.config.attention_head_dim, crops_coords=grid_crops_coords, grid_size=(grid_height, grid_width), temporal_size=num_frames) + freqs_cos = freqs_cos.to(device=device) + freqs_sin = freqs_sin.to(device=device) + return (freqs_cos, freqs_sin) + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Optional[Union[str, List[str]]]=None, negative_prompt: Optional[Union[str, List[str]]]=None, height: int=480, width: int=720, num_frames: int=49, num_inference_steps: int=50, timesteps: Optional[List[int]]=None, guidance_scale: float=6, use_dynamic_cfg: bool=False, num_videos_per_prompt: int=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.FloatTensor]=None, prompt_embeds: Optional[torch.FloatTensor]=None, negative_prompt_embeds: Optional[torch.FloatTensor]=None, output_type: str='pil', return_dict: bool=True, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], max_sequence_length: int=226) -> Union[CogVideoXPipelineOutput, Tuple]: + if num_frames > 49: + raise ValueError('The number of frames must be less than 49 for now due to static positional embeddings. This will be updated in the future to remove this limitation.') + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + height = height or self.transformer.config.sample_size * self.vae_scale_factor_spatial + width = width or self.transformer.config.sample_size * self.vae_scale_factor_spatial + num_videos_per_prompt = 1 + self.check_inputs(prompt, height, width, negative_prompt, callback_on_step_end_tensor_inputs, prompt_embeds, negative_prompt_embeds) + self._guidance_scale = guidance_scale + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, negative_prompt, do_classifier_free_guidance, num_videos_per_prompt=num_videos_per_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, max_sequence_length=max_sequence_length, device=device) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) + self._num_timesteps = len(timesteps) + latent_channels = self.transformer.config.in_channels + latents = self.prepare_latents(batch_size * num_videos_per_prompt, latent_channels, num_frames, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + image_rotary_emb = self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device) if self.transformer.config.use_rotary_positional_embeddings else None + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + with self.progress_bar(total=num_inference_steps) as progress_bar: + old_pred_original_sample = None + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + timestep = t.expand(latent_model_input.shape[0]) + noise_pred = self.transformer(hidden_states=latent_model_input, encoder_hidden_states=prompt_embeds, timestep=timestep, image_rotary_emb=image_rotary_emb, return_dict=False)[0] + noise_pred = noise_pred.float() + if use_dynamic_cfg: + self._guidance_scale = 1 + guidance_scale * ((1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2) + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + if not isinstance(self.scheduler, CogVideoXDPMScheduler): + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + else: + (latents, old_pred_original_sample) = self.scheduler.step(noise_pred, old_pred_original_sample, t, timesteps[i - 1] if i > 0 else None, latents, **extra_step_kwargs, return_dict=False) + latents = latents.to(prompt_embeds.dtype) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if not output_type == 'latent': + video = self.decode_latents(latents) + video = self.video_processor.postprocess_video(video=video, output_type=output_type) + else: + video = latents + self.maybe_free_model_hooks() + if not return_dict: + return (video,) + return CogVideoXPipelineOutput(frames=video) + +# File: diffusers-main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +import inspect +import math +from typing import Callable, Dict, List, Optional, Tuple, Union +import torch +from PIL import Image +from transformers import T5EncoderModel, T5Tokenizer +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel +from ...models.embeddings import get_3d_rotary_pos_embed +from ...pipelines.pipeline_utils import DiffusionPipeline +from ...schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler +from ...utils import logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ...video_processor import VideoProcessor +from .pipeline_output import CogVideoXPipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```python\n >>> import torch\n >>> from diffusers import CogVideoXDPMScheduler, CogVideoXVideoToVideoPipeline\n >>> from diffusers.utils import export_to_video, load_video\n\n >>> # Models: "THUDM/CogVideoX-2b" or "THUDM/CogVideoX-5b"\n >>> pipe = CogVideoXVideoToVideoPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16)\n >>> pipe.to("cuda")\n >>> pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config)\n\n >>> input_video = load_video(\n ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/hiker.mp4"\n ... )\n >>> prompt = (\n ... "An astronaut stands triumphantly at the peak of a towering mountain. Panorama of rugged peaks and "\n ... "valleys. Very futuristic vibe and animated aesthetic. Highlights of purple and golden colors in "\n ... "the scene. The sky is looks like an animated/cartoonish dream of galaxies, nebulae, stars, planets, "\n ... "moons, but the remainder of the scene is mostly realistic."\n ... )\n\n >>> video = pipe(\n ... video=input_video, prompt=prompt, strength=0.8, guidance_scale=6, num_inference_steps=50\n ... ).frames[0]\n >>> export_to_video(video, "output.mp4", fps=8)\n ```\n' + +def get_resize_crop_region_for_grid(src, tgt_width, tgt_height): + tw = tgt_width + th = tgt_height + (h, w) = src + r = h / w + if r > th / tw: + resize_height = th + resize_width = int(round(th / h * w)) + else: + resize_width = tw + resize_height = int(round(tw / w * h)) + crop_top = int(round((th - resize_height) / 2.0)) + crop_left = int(round((tw - resize_width) / 2.0)) + return ((crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)) + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +class CogVideoXVideoToVideoPipeline(DiffusionPipeline): + _optional_components = [] + model_cpu_offload_seq = 'text_encoder->transformer->vae' + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + + def __init__(self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, vae: AutoencoderKLCogVideoX, transformer: CogVideoXTransformer3DModel, scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler]): + super().__init__() + self.register_modules(tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler) + self.vae_scale_factor_spatial = 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, 'vae') and self.vae is not None else 8 + self.vae_scale_factor_temporal = self.vae.config.temporal_compression_ratio if hasattr(self, 'vae') and self.vae is not None else 4 + self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial) + + def _get_t5_prompt_embeds(self, prompt: Union[str, List[str]]=None, num_videos_per_prompt: int=1, max_sequence_length: int=226, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None): + device = device or self._execution_device + dtype = dtype or self.text_encoder.dtype + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=max_sequence_length, truncation=True, add_special_tokens=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because `max_sequence_length` is set to {max_sequence_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder(text_input_ids.to(device))[0] + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (_, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) + return prompt_embeds + + def encode_prompt(self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]]=None, do_classifier_free_guidance: bool=True, num_videos_per_prompt: int=1, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, max_sequence_length: int=226, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None): + device = device or self._execution_device + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + prompt_embeds = self._get_t5_prompt_embeds(prompt=prompt, num_videos_per_prompt=num_videos_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype) + if do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + negative_prompt_embeds = self._get_t5_prompt_embeds(prompt=negative_prompt, num_videos_per_prompt=num_videos_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype) + return (prompt_embeds, negative_prompt_embeds) + + def prepare_latents(self, video: Optional[torch.Tensor]=None, batch_size: int=1, num_channels_latents: int=16, height: int=60, width: int=90, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None, generator: Optional[torch.Generator]=None, latents: Optional[torch.Tensor]=None, timestep: Optional[torch.Tensor]=None): + num_frames = (video.size(2) - 1) // self.vae_scale_factor_temporal + 1 if latents is None else latents.size(1) + shape = (batch_size, num_frames, num_channels_latents, height // self.vae_scale_factor_spatial, width // self.vae_scale_factor_spatial) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + if isinstance(generator, list): + if len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + init_latents = [retrieve_latents(self.vae.encode(video[i].unsqueeze(0)), generator[i]) for i in range(batch_size)] + else: + init_latents = [retrieve_latents(self.vae.encode(vid.unsqueeze(0)), generator) for vid in video] + init_latents = torch.cat(init_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) + init_latents = self.vae.config.scaling_factor * init_latents + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = self.scheduler.add_noise(init_latents, noise, timestep) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def decode_latents(self, latents: torch.Tensor) -> torch.Tensor: + latents = latents.permute(0, 2, 1, 3, 4) + latents = 1 / self.vae.config.scaling_factor * latents + frames = self.vae.decode(latents).sample + return frames + + def get_timesteps(self, num_inference_steps, timesteps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = timesteps[t_start * self.scheduler.order:] + return (timesteps, num_inference_steps - t_start) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, strength, negative_prompt, callback_on_step_end_tensor_inputs, video=None, latents=None, prompt_embeds=None, negative_prompt_embeds=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if video is not None and latents is not None: + raise ValueError('Only one of `video` or `latents` should be provided') + + def fuse_qkv_projections(self) -> None: + self.fusing_transformer = True + self.transformer.fuse_qkv_projections() + + def unfuse_qkv_projections(self) -> None: + if not self.fusing_transformer: + logger.warning('The Transformer was not initially fused for QKV projections. Doing nothing.') + else: + self.transformer.unfuse_qkv_projections() + self.fusing_transformer = False + + def _prepare_rotary_positional_embeddings(self, height: int, width: int, num_frames: int, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]: + grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) + grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) + base_size_width = 720 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) + base_size_height = 480 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) + grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size_width, base_size_height) + (freqs_cos, freqs_sin) = get_3d_rotary_pos_embed(embed_dim=self.transformer.config.attention_head_dim, crops_coords=grid_crops_coords, grid_size=(grid_height, grid_width), temporal_size=num_frames) + freqs_cos = freqs_cos.to(device=device) + freqs_sin = freqs_sin.to(device=device) + return (freqs_cos, freqs_sin) + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, video: List[Image.Image]=None, prompt: Optional[Union[str, List[str]]]=None, negative_prompt: Optional[Union[str, List[str]]]=None, height: int=480, width: int=720, num_inference_steps: int=50, timesteps: Optional[List[int]]=None, strength: float=0.8, guidance_scale: float=6, use_dynamic_cfg: bool=False, num_videos_per_prompt: int=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.FloatTensor]=None, prompt_embeds: Optional[torch.FloatTensor]=None, negative_prompt_embeds: Optional[torch.FloatTensor]=None, output_type: str='pil', return_dict: bool=True, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], max_sequence_length: int=226) -> Union[CogVideoXPipelineOutput, Tuple]: + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + height = height or self.transformer.config.sample_size * self.vae_scale_factor_spatial + width = width or self.transformer.config.sample_size * self.vae_scale_factor_spatial + num_videos_per_prompt = 1 + self.check_inputs(prompt, height, width, strength, negative_prompt, callback_on_step_end_tensor_inputs, prompt_embeds, negative_prompt_embeds) + self._guidance_scale = guidance_scale + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, negative_prompt, do_classifier_free_guidance, num_videos_per_prompt=num_videos_per_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, max_sequence_length=max_sequence_length, device=device) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, timesteps, strength, device) + latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt) + self._num_timesteps = len(timesteps) + if latents is None: + video = self.video_processor.preprocess_video(video, height=height, width=width) + video = video.to(device=device, dtype=prompt_embeds.dtype) + latent_channels = self.transformer.config.in_channels + latents = self.prepare_latents(video, batch_size * num_videos_per_prompt, latent_channels, height, width, prompt_embeds.dtype, device, generator, latents, latent_timestep) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + image_rotary_emb = self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device) if self.transformer.config.use_rotary_positional_embeddings else None + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + with self.progress_bar(total=num_inference_steps) as progress_bar: + old_pred_original_sample = None + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + timestep = t.expand(latent_model_input.shape[0]) + noise_pred = self.transformer(hidden_states=latent_model_input, encoder_hidden_states=prompt_embeds, timestep=timestep, image_rotary_emb=image_rotary_emb, return_dict=False)[0] + noise_pred = noise_pred.float() + if use_dynamic_cfg: + self._guidance_scale = 1 + guidance_scale * ((1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2) + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + if not isinstance(self.scheduler, CogVideoXDPMScheduler): + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + else: + (latents, old_pred_original_sample) = self.scheduler.step(noise_pred, old_pred_original_sample, t, timesteps[i - 1] if i > 0 else None, latents, **extra_step_kwargs, return_dict=False) + latents = latents.to(prompt_embeds.dtype) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if not output_type == 'latent': + video = self.decode_latents(latents) + video = self.video_processor.postprocess_video(video=video, output_type=output_type) + else: + video = latents + self.maybe_free_model_hooks() + if not return_dict: + return (video,) + return CogVideoXPipelineOutput(frames=video) + +# File: diffusers-main/src/diffusers/pipelines/cogvideo/pipeline_output.py +from dataclasses import dataclass +import torch +from diffusers.utils import BaseOutput + +@dataclass +class CogVideoXPipelineOutput(BaseOutput): + frames: torch.Tensor + +# File: diffusers-main/src/diffusers/pipelines/consistency_models/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, _LazyModule +_import_structure = {'pipeline_consistency_models': ['ConsistencyModelPipeline']} +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + from .pipeline_consistency_models import ConsistencyModelPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + +# File: diffusers-main/src/diffusers/pipelines/consistency_models/pipeline_consistency_models.py +from typing import Callable, List, Optional, Union +import torch +from ...models import UNet2DModel +from ...schedulers import CMStochasticIterativeScheduler +from ...utils import logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n\n >>> from diffusers import ConsistencyModelPipeline\n\n >>> device = "cuda"\n >>> # Load the cd_imagenet64_l2 checkpoint.\n >>> model_id_or_path = "openai/diffusers-cd_imagenet64_l2"\n >>> pipe = ConsistencyModelPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16)\n >>> pipe.to(device)\n\n >>> # Onestep Sampling\n >>> image = pipe(num_inference_steps=1).images[0]\n >>> image.save("cd_imagenet64_l2_onestep_sample.png")\n\n >>> # Onestep sampling, class-conditional image generation\n >>> # ImageNet-64 class label 145 corresponds to king penguins\n >>> image = pipe(num_inference_steps=1, class_labels=145).images[0]\n >>> image.save("cd_imagenet64_l2_onestep_sample_penguin.png")\n\n >>> # Multistep sampling, class-conditional image generation\n >>> # Timesteps can be explicitly specified; the particular timesteps below are from the original GitHub repo:\n >>> # https://github.com/openai/consistency_models/blob/main/scripts/launch.sh#L77\n >>> image = pipe(num_inference_steps=None, timesteps=[22, 0], class_labels=145).images[0]\n >>> image.save("cd_imagenet64_l2_multistep_sample_penguin.png")\n ```\n' + +class ConsistencyModelPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'unet' + + def __init__(self, unet: UNet2DModel, scheduler: CMStochasticIterativeScheduler) -> None: + super().__init__() + self.register_modules(unet=unet, scheduler=scheduler) + self.safety_checker = None + + def prepare_latents(self, batch_size, num_channels, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels, height, width) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device=device, dtype=dtype) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def postprocess_image(self, sample: torch.Tensor, output_type: str='pil'): + if output_type not in ['pt', 'np', 'pil']: + raise ValueError(f"output_type={output_type} is not supported. Make sure to choose one of ['pt', 'np', or 'pil']") + sample = (sample / 2 + 0.5).clamp(0, 1) + if output_type == 'pt': + return sample + sample = sample.cpu().permute(0, 2, 3, 1).numpy() + if output_type == 'np': + return sample + sample = self.numpy_to_pil(sample) + return sample + + def prepare_class_labels(self, batch_size, device, class_labels=None): + if self.unet.config.num_class_embeds is not None: + if isinstance(class_labels, list): + class_labels = torch.tensor(class_labels, dtype=torch.int) + elif isinstance(class_labels, int): + assert batch_size == 1, 'Batch size must be 1 if classes is an int' + class_labels = torch.tensor([class_labels], dtype=torch.int) + elif class_labels is None: + class_labels = torch.randint(0, self.unet.config.num_class_embeds, size=(batch_size,)) + class_labels = class_labels.to(device) + else: + class_labels = None + return class_labels + + def check_inputs(self, num_inference_steps, timesteps, latents, batch_size, img_size, callback_steps): + if num_inference_steps is None and timesteps is None: + raise ValueError('Exactly one of `num_inference_steps` or `timesteps` must be supplied.') + if num_inference_steps is not None and timesteps is not None: + logger.warning(f'Both `num_inference_steps`: {num_inference_steps} and `timesteps`: {timesteps} are supplied; `timesteps` will be used over `num_inference_steps`.') + if latents is not None: + expected_shape = (batch_size, 3, img_size, img_size) + if latents.shape != expected_shape: + raise ValueError(f'The shape of latents is {latents.shape} but is expected to be {expected_shape}.') + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, batch_size: int=1, class_labels: Optional[Union[torch.Tensor, List[int], int]]=None, num_inference_steps: int=1, timesteps: List[int]=None, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1): + img_size = self.unet.config.sample_size + device = self._execution_device + self.check_inputs(num_inference_steps, timesteps, latents, batch_size, img_size, callback_steps) + sample = self.prepare_latents(batch_size=batch_size, num_channels=self.unet.config.in_channels, height=img_size, width=img_size, dtype=self.unet.dtype, device=device, generator=generator, latents=latents) + class_labels = self.prepare_class_labels(batch_size, device, class_labels=class_labels) + if timesteps is not None: + self.scheduler.set_timesteps(timesteps=timesteps, device=device) + timesteps = self.scheduler.timesteps + num_inference_steps = len(timesteps) + else: + self.scheduler.set_timesteps(num_inference_steps) + timesteps = self.scheduler.timesteps + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + scaled_sample = self.scheduler.scale_model_input(sample, t) + model_output = self.unet(scaled_sample, t, class_labels=class_labels, return_dict=False)[0] + sample = self.scheduler.step(model_output, t, sample, generator=generator)[0] + progress_bar.update() + if callback is not None and i % callback_steps == 0: + callback(i, t, sample) + image = self.postprocess_image(sample, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/controlnet/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_flax_available, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['multicontrolnet'] = ['MultiControlNetModel'] + _import_structure['pipeline_controlnet'] = ['StableDiffusionControlNetPipeline'] + _import_structure['pipeline_controlnet_blip_diffusion'] = ['BlipDiffusionControlNetPipeline'] + _import_structure['pipeline_controlnet_img2img'] = ['StableDiffusionControlNetImg2ImgPipeline'] + _import_structure['pipeline_controlnet_inpaint'] = ['StableDiffusionControlNetInpaintPipeline'] + _import_structure['pipeline_controlnet_inpaint_sd_xl'] = ['StableDiffusionXLControlNetInpaintPipeline'] + _import_structure['pipeline_controlnet_sd_xl'] = ['StableDiffusionXLControlNetPipeline'] + _import_structure['pipeline_controlnet_sd_xl_img2img'] = ['StableDiffusionXLControlNetImg2ImgPipeline'] +try: + if not (is_transformers_available() and is_flax_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_flax_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_flax_and_transformers_objects)) +else: + _import_structure['pipeline_flax_controlnet'] = ['FlaxStableDiffusionControlNetPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .multicontrolnet import MultiControlNetModel + from .pipeline_controlnet import StableDiffusionControlNetPipeline + from .pipeline_controlnet_blip_diffusion import BlipDiffusionControlNetPipeline + from .pipeline_controlnet_img2img import StableDiffusionControlNetImg2ImgPipeline + from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline + from .pipeline_controlnet_inpaint_sd_xl import StableDiffusionXLControlNetInpaintPipeline + from .pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline + from .pipeline_controlnet_sd_xl_img2img import StableDiffusionXLControlNetImg2ImgPipeline + try: + if not (is_transformers_available() and is_flax_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_flax_and_transformers_objects import * + else: + from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/controlnet/multicontrolnet.py +import os +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import torch +from torch import nn +from ...models.controlnet import ControlNetModel, ControlNetOutput +from ...models.modeling_utils import ModelMixin +from ...utils import logging +logger = logging.get_logger(__name__) + +class MultiControlNetModel(ModelMixin): + + def __init__(self, controlnets: Union[List[ControlNetModel], Tuple[ControlNetModel]]): + super().__init__() + self.nets = nn.ModuleList(controlnets) + + def forward(self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, controlnet_cond: List[torch.tensor], conditioning_scale: List[float], class_labels: Optional[torch.Tensor]=None, timestep_cond: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, added_cond_kwargs: Optional[Dict[str, torch.Tensor]]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, guess_mode: bool=False, return_dict: bool=True) -> Union[ControlNetOutput, Tuple]: + for (i, (image, scale, controlnet)) in enumerate(zip(controlnet_cond, conditioning_scale, self.nets)): + (down_samples, mid_sample) = controlnet(sample=sample, timestep=timestep, encoder_hidden_states=encoder_hidden_states, controlnet_cond=image, conditioning_scale=scale, class_labels=class_labels, timestep_cond=timestep_cond, attention_mask=attention_mask, added_cond_kwargs=added_cond_kwargs, cross_attention_kwargs=cross_attention_kwargs, guess_mode=guess_mode, return_dict=return_dict) + if i == 0: + (down_block_res_samples, mid_block_res_sample) = (down_samples, mid_sample) + else: + down_block_res_samples = [samples_prev + samples_curr for (samples_prev, samples_curr) in zip(down_block_res_samples, down_samples)] + mid_block_res_sample += mid_sample + return (down_block_res_samples, mid_block_res_sample) + + def save_pretrained(self, save_directory: Union[str, os.PathLike], is_main_process: bool=True, save_function: Callable=None, safe_serialization: bool=True, variant: Optional[str]=None): + for (idx, controlnet) in enumerate(self.nets): + suffix = '' if idx == 0 else f'_{idx}' + controlnet.save_pretrained(save_directory + suffix, is_main_process=is_main_process, save_function=save_function, safe_serialization=safe_serialization, variant=variant) + + @classmethod + def from_pretrained(cls, pretrained_model_path: Optional[Union[str, os.PathLike]], **kwargs): + idx = 0 + controlnets = [] + model_path_to_load = pretrained_model_path + while os.path.isdir(model_path_to_load): + controlnet = ControlNetModel.from_pretrained(model_path_to_load, **kwargs) + controlnets.append(controlnet) + idx += 1 + model_path_to_load = pretrained_model_path + f'_{idx}' + logger.info(f'{len(controlnets)} controlnets loaded from {pretrained_model_path}.') + if len(controlnets) == 0: + raise ValueError(f"No ControlNets found under {os.path.dirname(pretrained_model_path)}. Expected at least {pretrained_model_path + '_0'}.") + return cls(controlnets) + +# File: diffusers-main/src/diffusers/pipelines/controlnet/pipeline_controlnet.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion.pipeline_output import StableDiffusionPipelineOutput +from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker +from .multicontrolnet import MultiControlNetModel +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> # !pip install opencv-python transformers accelerate\n >>> from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler\n >>> from diffusers.utils import load_image\n >>> import numpy as np\n >>> import torch\n\n >>> import cv2\n >>> from PIL import Image\n\n >>> # download an image\n >>> image = load_image(\n ... "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"\n ... )\n >>> image = np.array(image)\n\n >>> # get canny image\n >>> image = cv2.Canny(image, 100, 200)\n >>> image = image[:, :, None]\n >>> image = np.concatenate([image, image, image], axis=2)\n >>> canny_image = Image.fromarray(image)\n\n >>> # load control net and stable diffusion v1-5\n >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)\n >>> pipe = StableDiffusionControlNetPipeline.from_pretrained(\n ... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16\n ... )\n\n >>> # speed up diffusion process with faster scheduler and memory optimization\n >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)\n >>> # remove following line if xformers is not installed\n >>> pipe.enable_xformers_memory_efficient_attention()\n\n >>> pipe.enable_model_cpu_offload()\n\n >>> # generate image\n >>> generator = torch.manual_seed(0)\n >>> image = pipe(\n ... "futuristic-looking woman", num_inference_steps=20, generator=generator, image=canny_image\n ... ).images[0]\n ```\n' + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusionControlNetPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->image_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor', 'image_encoder'] + _exclude_from_cpu_offload = ['safety_checker'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: CLIPVisionModelWithProjection=None, requires_safety_checker: bool=True): + super().__init__() + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + if isinstance(controlnet, (list, tuple)): + controlnet = MultiControlNetModel(controlnet) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) + self.control_image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, image, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, controlnet_conditioning_scale=1.0, control_guidance_start=0.0, control_guidance_end=1.0, callback_on_step_end_tensor_inputs=None): + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + is_compiled = hasattr(F, 'scaled_dot_product_attention') and isinstance(self.controlnet, torch._dynamo.eval_frame.OptimizedModule) + if isinstance(self.controlnet, ControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel)): + self.check_image(image, prompt, prompt_embeds) + elif isinstance(self.controlnet, MultiControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel)): + if not isinstance(image, list): + raise TypeError('For multiple controlnets: `image` must be type `list`') + elif any((isinstance(i, list) for i in image)): + transposed_image = [list(t) for t in zip(*image)] + if len(transposed_image) != len(self.controlnet.nets): + raise ValueError(f'For multiple controlnets: if you pass`image` as a list of list, each sublist must have the same length as the number of controlnets, but the sublists in `image` got {len(transposed_image)} images and {len(self.controlnet.nets)} ControlNets.') + for image_ in transposed_image: + self.check_image(image_, prompt, prompt_embeds) + elif len(image) != len(self.controlnet.nets): + raise ValueError(f'For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets.') + else: + for image_ in image: + self.check_image(image_, prompt, prompt_embeds) + else: + assert False + if isinstance(self.controlnet, ControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel)): + if not isinstance(controlnet_conditioning_scale, float): + raise TypeError('For single controlnet: `controlnet_conditioning_scale` must be type `float`.') + elif isinstance(self.controlnet, MultiControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel)): + if isinstance(controlnet_conditioning_scale, list): + if any((isinstance(i, list) for i in controlnet_conditioning_scale)): + raise ValueError('A single batch of varying conditioning scale settings (e.g. [[1.0, 0.5], [0.2, 0.8]]) is not supported at the moment. The conditioning scale must be fixed across the batch.') + elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(self.controlnet.nets): + raise ValueError('For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have the same length as the number of controlnets') + else: + assert False + if not isinstance(control_guidance_start, (tuple, list)): + control_guidance_start = [control_guidance_start] + if not isinstance(control_guidance_end, (tuple, list)): + control_guidance_end = [control_guidance_end] + if len(control_guidance_start) != len(control_guidance_end): + raise ValueError(f'`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list.') + if isinstance(self.controlnet, MultiControlNetModel): + if len(control_guidance_start) != len(self.controlnet.nets): + raise ValueError(f'`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}.') + for (start, end) in zip(control_guidance_start, control_guidance_end): + if start >= end: + raise ValueError(f'control guidance start: {start} cannot be larger or equal to control guidance end: {end}.') + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def check_image(self, image, prompt, prompt_embeds): + image_is_pil = isinstance(image, PIL.Image.Image) + image_is_tensor = isinstance(image, torch.Tensor) + image_is_np = isinstance(image, np.ndarray) + image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) + image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) + image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) + if not image_is_pil and (not image_is_tensor) and (not image_is_np) and (not image_is_pil_list) and (not image_is_tensor_list) and (not image_is_np_list): + raise TypeError(f'image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}') + if image_is_pil: + image_batch_size = 1 + else: + image_batch_size = len(image) + if prompt is not None and isinstance(prompt, str): + prompt_batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + prompt_batch_size = len(prompt) + elif prompt_embeds is not None: + prompt_batch_size = prompt_embeds.shape[0] + if image_batch_size != 1 and image_batch_size != prompt_batch_size: + raise ValueError(f'If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}') + + def prepare_image(self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False, guess_mode=False): + image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) + image_batch_size = image.shape[0] + if image_batch_size == 1: + repeat_by = batch_size + else: + repeat_by = num_images_per_prompt + image = image.repeat_interleave(repeat_by, dim=0) + image = image.to(device=device, dtype=dtype) + if do_classifier_free_guidance and (not guess_mode): + image = torch.cat([image] * 2) + return image + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, image: PipelineImageInput=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, timesteps: List[int]=None, sigmas: List[float]=None, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, controlnet_conditioning_scale: Union[float, List[float]]=1.0, guess_mode: bool=False, control_guidance_start: Union[float, List[float]]=0.0, control_guidance_end: Union[float, List[float]]=1.0, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`') + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and (not isinstance(control_guidance_end, list)): + mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 + (control_guidance_start, control_guidance_end) = (mult * [control_guidance_start], mult * [control_guidance_end]) + self.check_inputs(prompt, image, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, controlnet_conditioning_scale, control_guidance_start, control_guidance_end, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): + controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) + global_pool_conditions = controlnet.config.global_pool_conditions if isinstance(controlnet, ControlNetModel) else controlnet.nets[0].config.global_pool_conditions + guess_mode = guess_mode or global_pool_conditions + text_encoder_lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + if isinstance(controlnet, ControlNetModel): + image = self.prepare_image(image=image, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=guess_mode) + (height, width) = image.shape[-2:] + elif isinstance(controlnet, MultiControlNetModel): + images = [] + if isinstance(image[0], list): + image = [list(t) for t in zip(*image)] + for image_ in image: + image_ = self.prepare_image(image=image_, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=guess_mode) + images.append(image_) + image = images + (height, width) = image[0].shape[-2:] + else: + assert False + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + self._num_timesteps = len(timesteps) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'image_embeds': image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None + controlnet_keep = [] + for i in range(len(timesteps)): + keeps = [1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) for (s, e) in zip(control_guidance_start, control_guidance_end)] + controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + is_unet_compiled = is_compiled_module(self.unet) + is_controlnet_compiled = is_compiled_module(self.controlnet) + is_torch_higher_equal_2_1 = is_torch_version('>=', '2.1') + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1: + torch._inductor.cudagraph_mark_step_begin() + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + if guess_mode and self.do_classifier_free_guidance: + control_model_input = latents + control_model_input = self.scheduler.scale_model_input(control_model_input, t) + controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] + else: + control_model_input = latent_model_input + controlnet_prompt_embeds = prompt_embeds + if isinstance(controlnet_keep[i], list): + cond_scale = [c * s for (c, s) in zip(controlnet_conditioning_scale, controlnet_keep[i])] + else: + controlnet_cond_scale = controlnet_conditioning_scale + if isinstance(controlnet_cond_scale, list): + controlnet_cond_scale = controlnet_cond_scale[0] + cond_scale = controlnet_cond_scale * controlnet_keep[i] + (down_block_res_samples, mid_block_res_sample) = self.controlnet(control_model_input, t, encoder_hidden_states=controlnet_prompt_embeds, controlnet_cond=image, conditioning_scale=cond_scale, guess_mode=guess_mode, return_dict=False) + if guess_mode and self.do_classifier_free_guidance: + down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] + mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, down_block_additional_residuals=down_block_res_samples, mid_block_additional_residual=mid_block_res_sample, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None: + self.unet.to('cpu') + self.controlnet.to('cpu') + torch.cuda.empty_cache() + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +from typing import List, Optional, Union +import PIL.Image +import torch +from transformers import CLIPTokenizer +from ...models import AutoencoderKL, ControlNetModel, UNet2DConditionModel +from ...schedulers import PNDMScheduler +from ...utils import logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..blip_diffusion.blip_image_processing import BlipImageProcessor +from ..blip_diffusion.modeling_blip2 import Blip2QFormerModel +from ..blip_diffusion.modeling_ctx_clip import ContextCLIPTextModel +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers.pipelines import BlipDiffusionControlNetPipeline\n >>> from diffusers.utils import load_image\n >>> from controlnet_aux import CannyDetector\n >>> import torch\n\n >>> blip_diffusion_pipe = BlipDiffusionControlNetPipeline.from_pretrained(\n ... "Salesforce/blipdiffusion-controlnet", torch_dtype=torch.float16\n ... ).to("cuda")\n\n >>> style_subject = "flower"\n >>> tgt_subject = "teapot"\n >>> text_prompt = "on a marble table"\n\n >>> cldm_cond_image = load_image(\n ... "https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/kettle.jpg"\n ... ).resize((512, 512))\n >>> canny = CannyDetector()\n >>> cldm_cond_image = canny(cldm_cond_image, 30, 70, output_type="pil")\n >>> style_image = load_image(\n ... "https://huggingface.co/datasets/ayushtues/blipdiffusion_images/resolve/main/flower.jpg"\n ... )\n >>> guidance_scale = 7.5\n >>> num_inference_steps = 50\n >>> negative_prompt = "over-exposure, under-exposure, saturated, duplicate, out of frame, lowres, cropped, worst quality, low quality, jpeg artifacts, morbid, mutilated, out of frame, ugly, bad anatomy, bad proportions, deformed, blurry, duplicate"\n\n\n >>> output = blip_diffusion_pipe(\n ... text_prompt,\n ... style_image,\n ... cldm_cond_image,\n ... style_subject,\n ... tgt_subject,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=num_inference_steps,\n ... neg_prompt=negative_prompt,\n ... height=512,\n ... width=512,\n ... ).images\n >>> output[0].save("image.png")\n ```\n' + +class BlipDiffusionControlNetPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'qformer->text_encoder->unet->vae' + + def __init__(self, tokenizer: CLIPTokenizer, text_encoder: ContextCLIPTextModel, vae: AutoencoderKL, unet: UNet2DConditionModel, scheduler: PNDMScheduler, qformer: Blip2QFormerModel, controlnet: ControlNetModel, image_processor: BlipImageProcessor, ctx_begin_pos: int=2, mean: List[float]=None, std: List[float]=None): + super().__init__() + self.register_modules(tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, unet=unet, scheduler=scheduler, qformer=qformer, controlnet=controlnet, image_processor=image_processor) + self.register_to_config(ctx_begin_pos=ctx_begin_pos, mean=mean, std=std) + + def get_query_embeddings(self, input_image, src_subject): + return self.qformer(image_input=input_image, text_input=src_subject, return_dict=False) + + def _build_prompt(self, prompts, tgt_subjects, prompt_strength=1.0, prompt_reps=20): + rv = [] + for (prompt, tgt_subject) in zip(prompts, tgt_subjects): + prompt = f'a {tgt_subject} {prompt.strip()}' + rv.append(', '.join([prompt] * int(prompt_strength * prompt_reps))) + return rv + + def prepare_latents(self, batch_size, num_channels, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels, height, width) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device=device, dtype=dtype) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def encode_prompt(self, query_embeds, prompt, device=None): + device = device or self._execution_device + max_len = self.text_encoder.text_model.config.max_position_embeddings + max_len -= self.qformer.config.num_query_tokens + tokenized_prompt = self.tokenizer(prompt, padding='max_length', truncation=True, max_length=max_len, return_tensors='pt').to(device) + batch_size = query_embeds.shape[0] + ctx_begin_pos = [self.config.ctx_begin_pos] * batch_size + text_embeddings = self.text_encoder(input_ids=tokenized_prompt.input_ids, ctx_embeddings=query_embeds, ctx_begin_pos=ctx_begin_pos)[0] + return text_embeddings + + def prepare_control_image(self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False): + image = self.image_processor.preprocess(image, size={'width': width, 'height': height}, do_rescale=True, do_center_crop=False, do_normalize=False, return_tensors='pt')['pixel_values'].to(device) + image_batch_size = image.shape[0] + if image_batch_size == 1: + repeat_by = batch_size + else: + repeat_by = num_images_per_prompt + image = image.repeat_interleave(repeat_by, dim=0) + image = image.to(device=device, dtype=dtype) + if do_classifier_free_guidance: + image = torch.cat([image] * 2) + return image + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: List[str], reference_image: PIL.Image.Image, condtioning_image: PIL.Image.Image, source_subject_category: List[str], target_subject_category: List[str], latents: Optional[torch.Tensor]=None, guidance_scale: float=7.5, height: int=512, width: int=512, num_inference_steps: int=50, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, neg_prompt: Optional[str]='', prompt_strength: float=1.0, prompt_reps: int=20, output_type: Optional[str]='pil', return_dict: bool=True): + device = self._execution_device + reference_image = self.image_processor.preprocess(reference_image, image_mean=self.config.mean, image_std=self.config.std, return_tensors='pt')['pixel_values'] + reference_image = reference_image.to(device) + if isinstance(prompt, str): + prompt = [prompt] + if isinstance(source_subject_category, str): + source_subject_category = [source_subject_category] + if isinstance(target_subject_category, str): + target_subject_category = [target_subject_category] + batch_size = len(prompt) + prompt = self._build_prompt(prompts=prompt, tgt_subjects=target_subject_category, prompt_strength=prompt_strength, prompt_reps=prompt_reps) + query_embeds = self.get_query_embeddings(reference_image, source_subject_category) + text_embeddings = self.encode_prompt(query_embeds, prompt, device) + do_classifier_free_guidance = guidance_scale > 1.0 + if do_classifier_free_guidance: + max_length = self.text_encoder.text_model.config.max_position_embeddings + uncond_input = self.tokenizer([neg_prompt] * batch_size, padding='max_length', max_length=max_length, return_tensors='pt') + uncond_embeddings = self.text_encoder(input_ids=uncond_input.input_ids.to(device), ctx_embeddings=None)[0] + text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) + scale_down_factor = 2 ** (len(self.unet.config.block_out_channels) - 1) + latents = self.prepare_latents(batch_size=batch_size, num_channels=self.unet.config.in_channels, height=height // scale_down_factor, width=width // scale_down_factor, generator=generator, latents=latents, dtype=self.unet.dtype, device=device) + extra_set_kwargs = {} + self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) + cond_image = self.prepare_control_image(image=condtioning_image, width=width, height=height, batch_size=batch_size, num_images_per_prompt=1, device=device, dtype=self.controlnet.dtype, do_classifier_free_guidance=do_classifier_free_guidance) + for (i, t) in enumerate(self.progress_bar(self.scheduler.timesteps)): + do_classifier_free_guidance = guidance_scale > 1.0 + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + (down_block_res_samples, mid_block_res_sample) = self.controlnet(latent_model_input, t, encoder_hidden_states=text_embeddings, controlnet_cond=cond_image, return_dict=False) + noise_pred = self.unet(latent_model_input, timestep=t, encoder_hidden_states=text_embeddings, down_block_additional_residuals=down_block_res_samples, mid_block_additional_residual=mid_block_res_sample)['sample'] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents)['prev_sample'] + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import is_compiled_module, randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion import StableDiffusionPipelineOutput +from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker +from .multicontrolnet import MultiControlNetModel +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> # !pip install opencv-python transformers accelerate\n >>> from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, UniPCMultistepScheduler\n >>> from diffusers.utils import load_image\n >>> import numpy as np\n >>> import torch\n\n >>> import cv2\n >>> from PIL import Image\n\n >>> # download an image\n >>> image = load_image(\n ... "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"\n ... )\n >>> np_image = np.array(image)\n\n >>> # get canny image\n >>> np_image = cv2.Canny(np_image, 100, 200)\n >>> np_image = np_image[:, :, None]\n >>> np_image = np.concatenate([np_image, np_image, np_image], axis=2)\n >>> canny_image = Image.fromarray(np_image)\n\n >>> # load control net and stable diffusion v1-5\n >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)\n >>> pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(\n ... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16\n ... )\n\n >>> # speed up diffusion process with faster scheduler and memory optimization\n >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)\n >>> pipe.enable_model_cpu_offload()\n\n >>> # generate image\n >>> generator = torch.manual_seed(0)\n >>> image = pipe(\n ... "futuristic-looking woman",\n ... num_inference_steps=20,\n ... generator=generator,\n ... image=image,\n ... control_image=canny_image,\n ... ).images[0]\n ```\n' + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +def prepare_image(image): + if isinstance(image, torch.Tensor): + if image.ndim == 3: + image = image.unsqueeze(0) + image = image.to(dtype=torch.float32) + else: + if isinstance(image, (PIL.Image.Image, np.ndarray)): + image = [image] + if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): + image = [np.array(i.convert('RGB'))[None, :] for i in image] + image = np.concatenate(image, axis=0) + elif isinstance(image, list) and isinstance(image[0], np.ndarray): + image = np.concatenate([i[None, :] for i in image], axis=0) + image = image.transpose(0, 3, 1, 2) + image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 + return image + +class StableDiffusionControlNetImg2ImgPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor', 'image_encoder'] + _exclude_from_cpu_offload = ['safety_checker'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: CLIPVisionModelWithProjection=None, requires_safety_checker: bool=True): + super().__init__() + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + if isinstance(controlnet, (list, tuple)): + controlnet = MultiControlNetModel(controlnet) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) + self.control_image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, image, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, controlnet_conditioning_scale=1.0, control_guidance_start=0.0, control_guidance_end=1.0, callback_on_step_end_tensor_inputs=None): + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if isinstance(self.controlnet, MultiControlNetModel): + if isinstance(prompt, list): + logger.warning(f'You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)} prompts. The conditionings will be fixed across the prompts.') + is_compiled = hasattr(F, 'scaled_dot_product_attention') and isinstance(self.controlnet, torch._dynamo.eval_frame.OptimizedModule) + if isinstance(self.controlnet, ControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel)): + self.check_image(image, prompt, prompt_embeds) + elif isinstance(self.controlnet, MultiControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel)): + if not isinstance(image, list): + raise TypeError('For multiple controlnets: `image` must be type `list`') + elif any((isinstance(i, list) for i in image)): + raise ValueError('A single batch of multiple conditionings are supported at the moment.') + elif len(image) != len(self.controlnet.nets): + raise ValueError(f'For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets.') + for image_ in image: + self.check_image(image_, prompt, prompt_embeds) + else: + assert False + if isinstance(self.controlnet, ControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel)): + if not isinstance(controlnet_conditioning_scale, float): + raise TypeError('For single controlnet: `controlnet_conditioning_scale` must be type `float`.') + elif isinstance(self.controlnet, MultiControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel)): + if isinstance(controlnet_conditioning_scale, list): + if any((isinstance(i, list) for i in controlnet_conditioning_scale)): + raise ValueError('A single batch of multiple conditionings are supported at the moment.') + elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(self.controlnet.nets): + raise ValueError('For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have the same length as the number of controlnets') + else: + assert False + if len(control_guidance_start) != len(control_guidance_end): + raise ValueError(f'`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list.') + if isinstance(self.controlnet, MultiControlNetModel): + if len(control_guidance_start) != len(self.controlnet.nets): + raise ValueError(f'`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}.') + for (start, end) in zip(control_guidance_start, control_guidance_end): + if start >= end: + raise ValueError(f'control guidance start: {start} cannot be larger or equal to control guidance end: {end}.') + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def check_image(self, image, prompt, prompt_embeds): + image_is_pil = isinstance(image, PIL.Image.Image) + image_is_tensor = isinstance(image, torch.Tensor) + image_is_np = isinstance(image, np.ndarray) + image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) + image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) + image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) + if not image_is_pil and (not image_is_tensor) and (not image_is_np) and (not image_is_pil_list) and (not image_is_tensor_list) and (not image_is_np_list): + raise TypeError(f'image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}') + if image_is_pil: + image_batch_size = 1 + else: + image_batch_size = len(image) + if prompt is not None and isinstance(prompt, str): + prompt_batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + prompt_batch_size = len(prompt) + elif prompt_embeds is not None: + prompt_batch_size = prompt_embeds.shape[0] + if image_batch_size != 1 and image_batch_size != prompt_batch_size: + raise ValueError(f'If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}') + + def prepare_control_image(self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False, guess_mode=False): + image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) + image_batch_size = image.shape[0] + if image_batch_size == 1: + repeat_by = batch_size + else: + repeat_by = num_images_per_prompt + image = image.repeat_interleave(repeat_by, dim=0) + image = image.to(device=device, dtype=dtype) + if do_classifier_free_guidance and (not guess_mode): + image = torch.cat([image] * 2) + return image + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + + def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): + if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}') + image = image.to(device=device, dtype=dtype) + batch_size = batch_size * num_images_per_prompt + if image.shape[1] == 4: + init_latents = image + else: + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + elif isinstance(generator, list): + if image.shape[0] < batch_size and batch_size % image.shape[0] == 0: + image = torch.cat([image] * (batch_size // image.shape[0]), dim=0) + elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} ') + init_latents = [retrieve_latents(self.vae.encode(image[i:i + 1]), generator=generator[i]) for i in range(batch_size)] + init_latents = torch.cat(init_latents, dim=0) + else: + init_latents = retrieve_latents(self.vae.encode(image), generator=generator) + init_latents = self.vae.config.scaling_factor * init_latents + if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: + deprecation_message = f'You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial images (`image`). Initial images are now duplicating to match the number of text prompts. Note that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update your script to pass as many initial images as text prompts to suppress this warning.' + deprecate('len(prompt) != len(image)', '1.0.0', deprecation_message, standard_warn=False) + additional_image_per_prompt = batch_size // init_latents.shape[0] + init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) + elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts.') + else: + init_latents = torch.cat([init_latents], dim=0) + shape = init_latents.shape + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + init_latents = self.scheduler.add_noise(init_latents, noise, timestep) + latents = init_latents + return latents + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, image: PipelineImageInput=None, control_image: PipelineImageInput=None, height: Optional[int]=None, width: Optional[int]=None, strength: float=0.8, num_inference_steps: int=50, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, controlnet_conditioning_scale: Union[float, List[float]]=0.8, guess_mode: bool=False, control_guidance_start: Union[float, List[float]]=0.0, control_guidance_end: Union[float, List[float]]=1.0, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`') + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and (not isinstance(control_guidance_end, list)): + mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 + (control_guidance_start, control_guidance_end) = (mult * [control_guidance_start], mult * [control_guidance_end]) + self.check_inputs(prompt, control_image, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, controlnet_conditioning_scale, control_guidance_start, control_guidance_end, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): + controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) + global_pool_conditions = controlnet.config.global_pool_conditions if isinstance(controlnet, ControlNetModel) else controlnet.nets[0].config.global_pool_conditions + guess_mode = guess_mode or global_pool_conditions + text_encoder_lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) + if isinstance(controlnet, ControlNetModel): + control_image = self.prepare_control_image(image=control_image, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=guess_mode) + elif isinstance(controlnet, MultiControlNetModel): + control_images = [] + for control_image_ in control_image: + control_image_ = self.prepare_control_image(image=control_image_, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=guess_mode) + control_images.append(control_image_) + control_image = control_images + else: + assert False + self.scheduler.set_timesteps(num_inference_steps, device=device) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + self._num_timesteps = len(timesteps) + if latents is None: + latents = self.prepare_latents(image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'image_embeds': image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None + controlnet_keep = [] + for i in range(len(timesteps)): + keeps = [1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) for (s, e) in zip(control_guidance_start, control_guidance_end)] + controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + if guess_mode and self.do_classifier_free_guidance: + control_model_input = latents + control_model_input = self.scheduler.scale_model_input(control_model_input, t) + controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] + else: + control_model_input = latent_model_input + controlnet_prompt_embeds = prompt_embeds + if isinstance(controlnet_keep[i], list): + cond_scale = [c * s for (c, s) in zip(controlnet_conditioning_scale, controlnet_keep[i])] + else: + controlnet_cond_scale = controlnet_conditioning_scale + if isinstance(controlnet_cond_scale, list): + controlnet_cond_scale = controlnet_cond_scale[0] + cond_scale = controlnet_cond_scale * controlnet_keep[i] + (down_block_res_samples, mid_block_res_sample) = self.controlnet(control_model_input, t, encoder_hidden_states=controlnet_prompt_embeds, controlnet_cond=control_image, conditioning_scale=cond_scale, guess_mode=guess_mode, return_dict=False) + if guess_mode and self.do_classifier_free_guidance: + down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] + mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=self.cross_attention_kwargs, down_block_additional_residuals=down_block_res_samples, mid_block_additional_residual=mid_block_res_sample, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None: + self.unet.to('cpu') + self.controlnet.to('cpu') + torch.cuda.empty_cache() + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import is_compiled_module, randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion import StableDiffusionPipelineOutput +from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker +from .multicontrolnet import MultiControlNetModel +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> # !pip install transformers accelerate\n >>> from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel, DDIMScheduler\n >>> from diffusers.utils import load_image\n >>> import numpy as np\n >>> import torch\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy.png"\n ... )\n >>> init_image = init_image.resize((512, 512))\n\n >>> generator = torch.Generator(device="cpu").manual_seed(1)\n\n >>> mask_image = load_image(\n ... "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy_mask.png"\n ... )\n >>> mask_image = mask_image.resize((512, 512))\n\n\n >>> def make_canny_condition(image):\n ... image = np.array(image)\n ... image = cv2.Canny(image, 100, 200)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... image = Image.fromarray(image)\n ... return image\n\n\n >>> control_image = make_canny_condition(init_image)\n\n >>> controlnet = ControlNetModel.from_pretrained(\n ... "lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16\n ... )\n >>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(\n ... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16\n ... )\n\n >>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)\n >>> pipe.enable_model_cpu_offload()\n\n >>> # generate image\n >>> image = pipe(\n ... "a handsome man with ray-ban sunglasses",\n ... num_inference_steps=20,\n ... generator=generator,\n ... eta=1.0,\n ... image=init_image,\n ... mask_image=mask_image,\n ... control_image=control_image,\n ... ).images[0]\n ```\n' + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->image_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor', 'image_encoder'] + _exclude_from_cpu_offload = ['safety_checker'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: CLIPVisionModelWithProjection=None, requires_safety_checker: bool=True): + super().__init__() + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + if isinstance(controlnet, (list, tuple)): + controlnet = MultiControlNetModel(controlnet) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.mask_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True) + self.control_image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + + def check_inputs(self, prompt, image, mask_image, height, width, callback_steps, output_type, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, controlnet_conditioning_scale=1.0, control_guidance_start=0.0, control_guidance_end=1.0, callback_on_step_end_tensor_inputs=None, padding_mask_crop=None): + if height is not None and height % 8 != 0 or (width is not None and width % 8 != 0): + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if padding_mask_crop is not None: + if not isinstance(image, PIL.Image.Image): + raise ValueError(f'The image should be a PIL image when inpainting mask crop, but is of type {type(image)}.') + if not isinstance(mask_image, PIL.Image.Image): + raise ValueError(f'The mask image should be a PIL image when inpainting mask crop, but is of type {type(mask_image)}.') + if output_type != 'pil': + raise ValueError(f'The output type should be PIL when inpainting mask crop, but is {output_type}.') + if isinstance(self.controlnet, MultiControlNetModel): + if isinstance(prompt, list): + logger.warning(f'You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)} prompts. The conditionings will be fixed across the prompts.') + is_compiled = hasattr(F, 'scaled_dot_product_attention') and isinstance(self.controlnet, torch._dynamo.eval_frame.OptimizedModule) + if isinstance(self.controlnet, ControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel)): + self.check_image(image, prompt, prompt_embeds) + elif isinstance(self.controlnet, MultiControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel)): + if not isinstance(image, list): + raise TypeError('For multiple controlnets: `image` must be type `list`') + elif any((isinstance(i, list) for i in image)): + raise ValueError('A single batch of multiple conditionings are supported at the moment.') + elif len(image) != len(self.controlnet.nets): + raise ValueError(f'For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets.') + for image_ in image: + self.check_image(image_, prompt, prompt_embeds) + else: + assert False + if isinstance(self.controlnet, ControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel)): + if not isinstance(controlnet_conditioning_scale, float): + raise TypeError('For single controlnet: `controlnet_conditioning_scale` must be type `float`.') + elif isinstance(self.controlnet, MultiControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel)): + if isinstance(controlnet_conditioning_scale, list): + if any((isinstance(i, list) for i in controlnet_conditioning_scale)): + raise ValueError('A single batch of multiple conditionings are supported at the moment.') + elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(self.controlnet.nets): + raise ValueError('For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have the same length as the number of controlnets') + else: + assert False + if len(control_guidance_start) != len(control_guidance_end): + raise ValueError(f'`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list.') + if isinstance(self.controlnet, MultiControlNetModel): + if len(control_guidance_start) != len(self.controlnet.nets): + raise ValueError(f'`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}.') + for (start, end) in zip(control_guidance_start, control_guidance_end): + if start >= end: + raise ValueError(f'control guidance start: {start} cannot be larger or equal to control guidance end: {end}.') + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def check_image(self, image, prompt, prompt_embeds): + image_is_pil = isinstance(image, PIL.Image.Image) + image_is_tensor = isinstance(image, torch.Tensor) + image_is_np = isinstance(image, np.ndarray) + image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) + image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) + image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) + if not image_is_pil and (not image_is_tensor) and (not image_is_np) and (not image_is_pil_list) and (not image_is_tensor_list) and (not image_is_np_list): + raise TypeError(f'image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}') + if image_is_pil: + image_batch_size = 1 + else: + image_batch_size = len(image) + if prompt is not None and isinstance(prompt, str): + prompt_batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + prompt_batch_size = len(prompt) + elif prompt_embeds is not None: + prompt_batch_size = prompt_embeds.shape[0] + if image_batch_size != 1 and image_batch_size != prompt_batch_size: + raise ValueError(f'If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}') + + def prepare_control_image(self, image, width, height, batch_size, num_images_per_prompt, device, dtype, crops_coords, resize_mode, do_classifier_free_guidance=False, guess_mode=False): + image = self.control_image_processor.preprocess(image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode).to(dtype=torch.float32) + image_batch_size = image.shape[0] + if image_batch_size == 1: + repeat_by = batch_size + else: + repeat_by = num_images_per_prompt + image = image.repeat_interleave(repeat_by, dim=0) + image = image.to(device=device, dtype=dtype) + if do_classifier_free_guidance and (not guess_mode): + image = torch.cat([image] * 2) + return image + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, image=None, timestep=None, is_strength_max=True, return_noise=False, return_image_latents=False): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if (image is None or timestep is None) and (not is_strength_max): + raise ValueError('Since strength < 1. initial latents are to be initialised as a combination of Image + Noise.However, either the image or the noise timestep has not been provided.') + if return_image_latents or (latents is None and (not is_strength_max)): + image = image.to(device=device, dtype=dtype) + if image.shape[1] == 4: + image_latents = image + else: + image_latents = self._encode_vae_image(image=image, generator=generator) + image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) + if latents is None: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep) + latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents + else: + noise = latents.to(device) + latents = noise * self.scheduler.init_noise_sigma + outputs = (latents,) + if return_noise: + outputs += (noise,) + if return_image_latents: + outputs += (image_latents,) + return outputs + + def prepare_mask_latents(self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance): + mask = torch.nn.functional.interpolate(mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)) + mask = mask.to(device=device, dtype=dtype) + masked_image = masked_image.to(device=device, dtype=dtype) + if masked_image.shape[1] == 4: + masked_image_latents = masked_image + else: + masked_image_latents = self._encode_vae_image(masked_image, generator=generator) + if mask.shape[0] < batch_size: + if not batch_size % mask.shape[0] == 0: + raise ValueError(f"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number of masks that you pass is divisible by the total requested batch size.") + mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) + if masked_image_latents.shape[0] < batch_size: + if not batch_size % masked_image_latents.shape[0] == 0: + raise ValueError(f"The passed images and the required batch size don't match. Images are supposed to be duplicated to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed. Make sure the number of images that you pass is divisible by the total requested batch size.") + masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) + mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask + masked_image_latents = torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents + masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) + return (mask, masked_image_latents) + + def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): + if isinstance(generator, list): + image_latents = [retrieve_latents(self.vae.encode(image[i:i + 1]), generator=generator[i]) for i in range(image.shape[0])] + image_latents = torch.cat(image_latents, dim=0) + else: + image_latents = retrieve_latents(self.vae.encode(image), generator=generator) + image_latents = self.vae.config.scaling_factor * image_latents + return image_latents + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, image: PipelineImageInput=None, mask_image: PipelineImageInput=None, control_image: PipelineImageInput=None, height: Optional[int]=None, width: Optional[int]=None, padding_mask_crop: Optional[int]=None, strength: float=1.0, num_inference_steps: int=50, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, controlnet_conditioning_scale: Union[float, List[float]]=0.5, guess_mode: bool=False, control_guidance_start: Union[float, List[float]]=0.0, control_guidance_end: Union[float, List[float]]=1.0, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`') + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and (not isinstance(control_guidance_end, list)): + mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 + (control_guidance_start, control_guidance_end) = (mult * [control_guidance_start], mult * [control_guidance_end]) + self.check_inputs(prompt, control_image, mask_image, height, width, callback_steps, output_type, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, controlnet_conditioning_scale, control_guidance_start, control_guidance_end, callback_on_step_end_tensor_inputs, padding_mask_crop) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if padding_mask_crop is not None: + (height, width) = self.image_processor.get_default_height_width(image, height, width) + crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop) + resize_mode = 'fill' + else: + crops_coords = None + resize_mode = 'default' + device = self._execution_device + if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): + controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) + global_pool_conditions = controlnet.config.global_pool_conditions if isinstance(controlnet, ControlNetModel) else controlnet.nets[0].config.global_pool_conditions + guess_mode = guess_mode or global_pool_conditions + text_encoder_lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + if isinstance(controlnet, ControlNetModel): + control_image = self.prepare_control_image(image=control_image, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, crops_coords=crops_coords, resize_mode=resize_mode, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=guess_mode) + elif isinstance(controlnet, MultiControlNetModel): + control_images = [] + for control_image_ in control_image: + control_image_ = self.prepare_control_image(image=control_image_, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, crops_coords=crops_coords, resize_mode=resize_mode, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=guess_mode) + control_images.append(control_image_) + control_image = control_images + else: + assert False + original_image = image + init_image = self.image_processor.preprocess(image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode) + init_image = init_image.to(dtype=torch.float32) + mask = self.mask_processor.preprocess(mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords) + masked_image = init_image * (mask < 0.5) + (_, _, height, width) = init_image.shape + self.scheduler.set_timesteps(num_inference_steps, device=device) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps=num_inference_steps, strength=strength, device=device) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + is_strength_max = strength == 1.0 + self._num_timesteps = len(timesteps) + num_channels_latents = self.vae.config.latent_channels + num_channels_unet = self.unet.config.in_channels + return_image_latents = num_channels_unet == 4 + latents_outputs = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, image=init_image, timestep=latent_timestep, is_strength_max=is_strength_max, return_noise=True, return_image_latents=return_image_latents) + if return_image_latents: + (latents, noise, image_latents) = latents_outputs + else: + (latents, noise) = latents_outputs + (mask, masked_image_latents) = self.prepare_mask_latents(mask, masked_image, batch_size * num_images_per_prompt, height, width, prompt_embeds.dtype, device, generator, self.do_classifier_free_guidance) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'image_embeds': image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None + controlnet_keep = [] + for i in range(len(timesteps)): + keeps = [1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) for (s, e) in zip(control_guidance_start, control_guidance_end)] + controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + if guess_mode and self.do_classifier_free_guidance: + control_model_input = latents + control_model_input = self.scheduler.scale_model_input(control_model_input, t) + controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] + else: + control_model_input = latent_model_input + controlnet_prompt_embeds = prompt_embeds + if isinstance(controlnet_keep[i], list): + cond_scale = [c * s for (c, s) in zip(controlnet_conditioning_scale, controlnet_keep[i])] + else: + controlnet_cond_scale = controlnet_conditioning_scale + if isinstance(controlnet_cond_scale, list): + controlnet_cond_scale = controlnet_cond_scale[0] + cond_scale = controlnet_cond_scale * controlnet_keep[i] + (down_block_res_samples, mid_block_res_sample) = self.controlnet(control_model_input, t, encoder_hidden_states=controlnet_prompt_embeds, controlnet_cond=control_image, conditioning_scale=cond_scale, guess_mode=guess_mode, return_dict=False) + if guess_mode and self.do_classifier_free_guidance: + down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] + mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) + if num_channels_unet == 9: + latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=self.cross_attention_kwargs, down_block_additional_residuals=down_block_res_samples, mid_block_additional_residual=mid_block_res_sample, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if num_channels_unet == 4: + init_latents_proper = image_latents + if self.do_classifier_free_guidance: + (init_mask, _) = mask.chunk(2) + else: + init_mask = mask + if i < len(timesteps) - 1: + noise_timestep = timesteps[i + 1] + init_latents_proper = self.scheduler.add_noise(init_latents_proper, noise, torch.tensor([noise_timestep])) + latents = (1 - init_mask) * init_latents_proper + init_mask * latents + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None: + self.unet.to('cpu') + self.controlnet.to('cpu') + torch.cuda.empty_cache() + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + if padding_mask_crop is not None: + image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image] + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel +from ...models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, is_invisible_watermark_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import is_compiled_module, randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput +from .multicontrolnet import MultiControlNetModel +if is_invisible_watermark_available(): + from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker +logger = logging.get_logger(__name__) + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> # !pip install transformers accelerate\n >>> from diffusers import StableDiffusionXLControlNetInpaintPipeline, ControlNetModel, DDIMScheduler\n >>> from diffusers.utils import load_image\n >>> from PIL import Image\n >>> import numpy as np\n >>> import torch\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy.png"\n ... )\n >>> init_image = init_image.resize((1024, 1024))\n\n >>> generator = torch.Generator(device="cpu").manual_seed(1)\n\n >>> mask_image = load_image(\n ... "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy_mask.png"\n ... )\n >>> mask_image = mask_image.resize((1024, 1024))\n\n\n >>> def make_canny_condition(image):\n ... image = np.array(image)\n ... image = cv2.Canny(image, 100, 200)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... image = Image.fromarray(image)\n ... return image\n\n\n >>> control_image = make_canny_condition(init_image)\n\n >>> controlnet = ControlNetModel.from_pretrained(\n ... "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16\n ... )\n >>> pipe = StableDiffusionXLControlNetInpaintPipeline.from_pretrained(\n ... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16\n ... )\n\n >>> pipe.enable_model_cpu_offload()\n\n >>> # generate image\n >>> image = pipe(\n ... "a handsome man with ray-ban sunglasses",\n ... num_inference_steps=20,\n ... generator=generator,\n ... eta=1.0,\n ... image=init_image,\n ... mask_image=mask_image,\n ... control_image=control_image,\n ... ).images[0]\n ```\n' + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +class StableDiffusionXLControlNetInpaintPipeline(DiffusionPipeline, StableDiffusionMixin, StableDiffusionXLLoraLoaderMixin, FromSingleFileMixin, IPAdapterMixin, TextualInversionLoaderMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->unet->vae' + _optional_components = ['tokenizer', 'tokenizer_2', 'text_encoder', 'text_encoder_2', 'image_encoder', 'feature_extractor'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'add_text_embeds', 'add_time_ids', 'negative_pooled_prompt_embeds', 'add_neg_time_ids', 'mask', 'masked_image_latents'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], scheduler: KarrasDiffusionSchedulers, requires_aesthetics_score: bool=False, force_zeros_for_empty_prompt: bool=True, add_watermarker: Optional[bool]=None, feature_extractor: Optional[CLIPImageProcessor]=None, image_encoder: Optional[CLIPVisionModelWithProjection]=None): + super().__init__() + if isinstance(controlnet, (list, tuple)): + controlnet = MultiControlNetModel(controlnet) + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, controlnet=controlnet, scheduler=scheduler, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.register_to_config(requires_aesthetics_score=requires_aesthetics_score) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.mask_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True) + self.control_image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False) + add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() + if add_watermarker: + self.watermark = StableDiffusionXLWatermarker() + else: + self.watermark = None + + def encode_prompt(self, prompt: str, prompt_2: Optional[str]=None, device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[str]=None, negative_prompt_2: Optional[str]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) + else: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for (prompt, tokenizer, text_encoder) in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + text_inputs = tokenizer(prompt, padding='max_length', max_length=tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + prompt_embeds_list.append(prompt_embeds) + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + negative_prompt_embeds_list = [] + for (negative_prompt, tokenizer, text_encoder) in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer(negative_prompt, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True) + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + negative_prompt_embeds_list.append(negative_prompt_embeds) + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + if self.text_encoder_2 is not None: + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + if self.text_encoder_2 is not None: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_image(self, image, prompt, prompt_embeds): + image_is_pil = isinstance(image, PIL.Image.Image) + image_is_tensor = isinstance(image, torch.Tensor) + image_is_np = isinstance(image, np.ndarray) + image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) + image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) + image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) + if not image_is_pil and (not image_is_tensor) and (not image_is_np) and (not image_is_pil_list) and (not image_is_tensor_list) and (not image_is_np_list): + raise TypeError(f'image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}') + if image_is_pil: + image_batch_size = 1 + else: + image_batch_size = len(image) + if prompt is not None and isinstance(prompt, str): + prompt_batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + prompt_batch_size = len(prompt) + elif prompt_embeds is not None: + prompt_batch_size = prompt_embeds.shape[0] + if image_batch_size != 1 and image_batch_size != prompt_batch_size: + raise ValueError(f'If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}') + + def check_inputs(self, prompt, prompt_2, image, mask_image, strength, num_inference_steps, callback_steps, output_type, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, controlnet_conditioning_scale=1.0, control_guidance_start=0.0, control_guidance_end=1.0, callback_on_step_end_tensor_inputs=None, padding_mask_crop=None): + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if num_inference_steps is None: + raise ValueError('`num_inference_steps` cannot be None.') + elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0: + raise ValueError(f'`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type {type(num_inference_steps)}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if padding_mask_crop is not None: + if not isinstance(image, PIL.Image.Image): + raise ValueError(f'The image should be a PIL image when inpainting mask crop, but is of type {type(image)}.') + if not isinstance(mask_image, PIL.Image.Image): + raise ValueError(f'The mask image should be a PIL image when inpainting mask crop, but is of type {type(mask_image)}.') + if output_type != 'pil': + raise ValueError(f'The output type should be PIL when inpainting mask crop, but is {output_type}.') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + if isinstance(self.controlnet, MultiControlNetModel): + if isinstance(prompt, list): + logger.warning(f'You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)} prompts. The conditionings will be fixed across the prompts.') + is_compiled = hasattr(F, 'scaled_dot_product_attention') and isinstance(self.controlnet, torch._dynamo.eval_frame.OptimizedModule) + if isinstance(self.controlnet, ControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel)): + self.check_image(image, prompt, prompt_embeds) + elif isinstance(self.controlnet, MultiControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel)): + if not isinstance(image, list): + raise TypeError('For multiple controlnets: `image` must be type `list`') + elif any((isinstance(i, list) for i in image)): + raise ValueError('A single batch of multiple conditionings are supported at the moment.') + elif len(image) != len(self.controlnet.nets): + raise ValueError(f'For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets.') + for image_ in image: + self.check_image(image_, prompt, prompt_embeds) + else: + assert False + if isinstance(self.controlnet, ControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel)): + if not isinstance(controlnet_conditioning_scale, float): + raise TypeError('For single controlnet: `controlnet_conditioning_scale` must be type `float`.') + elif isinstance(self.controlnet, MultiControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel)): + if isinstance(controlnet_conditioning_scale, list): + if any((isinstance(i, list) for i in controlnet_conditioning_scale)): + raise ValueError('A single batch of multiple conditionings are supported at the moment.') + elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(self.controlnet.nets): + raise ValueError('For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have the same length as the number of controlnets') + else: + assert False + if not isinstance(control_guidance_start, (tuple, list)): + control_guidance_start = [control_guidance_start] + if not isinstance(control_guidance_end, (tuple, list)): + control_guidance_end = [control_guidance_end] + if len(control_guidance_start) != len(control_guidance_end): + raise ValueError(f'`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list.') + if isinstance(self.controlnet, MultiControlNetModel): + if len(control_guidance_start) != len(self.controlnet.nets): + raise ValueError(f'`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}.') + for (start, end) in zip(control_guidance_start, control_guidance_end): + if start >= end: + raise ValueError(f'control guidance start: {start} cannot be larger or equal to control guidance end: {end}.') + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def prepare_control_image(self, image, width, height, batch_size, num_images_per_prompt, device, dtype, crops_coords, resize_mode, do_classifier_free_guidance=False, guess_mode=False): + image = self.control_image_processor.preprocess(image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode).to(dtype=torch.float32) + image_batch_size = image.shape[0] + if image_batch_size == 1: + repeat_by = batch_size + else: + repeat_by = num_images_per_prompt + image = image.repeat_interleave(repeat_by, dim=0) + image = image.to(device=device, dtype=dtype) + if do_classifier_free_guidance and (not guess_mode): + image = torch.cat([image] * 2) + return image + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, image=None, timestep=None, is_strength_max=True, add_noise=True, return_noise=False, return_image_latents=False): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if (image is None or timestep is None) and (not is_strength_max): + raise ValueError('Since strength < 1. initial latents are to be initialised as a combination of Image + Noise.However, either the image or the noise timestep has not been provided.') + if return_image_latents or (latents is None and (not is_strength_max)): + image = image.to(device=device, dtype=dtype) + if image.shape[1] == 4: + image_latents = image + else: + image_latents = self._encode_vae_image(image=image, generator=generator) + image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) + if latents is None and add_noise: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep) + latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents + elif add_noise: + noise = latents.to(device) + latents = noise * self.scheduler.init_noise_sigma + else: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = image_latents.to(device) + outputs = (latents,) + if return_noise: + outputs += (noise,) + if return_image_latents: + outputs += (image_latents,) + return outputs + + def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): + dtype = image.dtype + if self.vae.config.force_upcast: + image = image.float() + self.vae.to(dtype=torch.float32) + if isinstance(generator, list): + image_latents = [retrieve_latents(self.vae.encode(image[i:i + 1]), generator=generator[i]) for i in range(image.shape[0])] + image_latents = torch.cat(image_latents, dim=0) + else: + image_latents = retrieve_latents(self.vae.encode(image), generator=generator) + if self.vae.config.force_upcast: + self.vae.to(dtype) + image_latents = image_latents.to(dtype) + image_latents = self.vae.config.scaling_factor * image_latents + return image_latents + + def prepare_mask_latents(self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance): + mask = torch.nn.functional.interpolate(mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)) + mask = mask.to(device=device, dtype=dtype) + if mask.shape[0] < batch_size: + if not batch_size % mask.shape[0] == 0: + raise ValueError(f"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number of masks that you pass is divisible by the total requested batch size.") + mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) + mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask + masked_image_latents = None + if masked_image is not None: + masked_image = masked_image.to(device=device, dtype=dtype) + masked_image_latents = self._encode_vae_image(masked_image, generator=generator) + if masked_image_latents.shape[0] < batch_size: + if not batch_size % masked_image_latents.shape[0] == 0: + raise ValueError(f"The passed images and the required batch size don't match. Images are supposed to be duplicated to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed. Make sure the number of images that you pass is divisible by the total requested batch size.") + masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) + masked_image_latents = torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents + masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) + return (mask, masked_image_latents) + + def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None): + if denoising_start is None: + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + else: + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - denoising_start * self.scheduler.config.num_train_timesteps)) + num_inference_steps = (self.scheduler.timesteps < discrete_timestep_cutoff).sum().item() + if self.scheduler.order == 2 and num_inference_steps % 2 == 0: + num_inference_steps = num_inference_steps + 1 + t_start = len(self.scheduler.timesteps) - num_inference_steps + timesteps = self.scheduler.timesteps[t_start:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start) + return (timesteps, num_inference_steps) + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, aesthetic_score, negative_aesthetic_score, dtype, text_encoder_projection_dim=None): + if self.config.requires_aesthetics_score: + add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,)) + add_neg_time_ids = list(original_size + crops_coords_top_left + (negative_aesthetic_score,)) + else: + add_time_ids = list(original_size + crops_coords_top_left + target_size) + add_neg_time_ids = list(original_size + crops_coords_top_left + target_size) + passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + if expected_add_embed_dim > passed_add_embed_dim and expected_add_embed_dim - passed_add_embed_dim == self.unet.config.addition_time_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model.') + elif expected_add_embed_dim < passed_add_embed_dim and passed_add_embed_dim - expected_add_embed_dim == self.unet.config.addition_time_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model.') + elif expected_add_embed_dim != passed_add_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.') + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype) + return (add_time_ids, add_neg_time_ids) + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, image: PipelineImageInput=None, mask_image: PipelineImageInput=None, control_image: Union[PipelineImageInput, List[PipelineImageInput]]=None, height: Optional[int]=None, width: Optional[int]=None, padding_mask_crop: Optional[int]=None, strength: float=0.9999, num_inference_steps: int=50, denoising_start: Optional[float]=None, denoising_end: Optional[float]=None, guidance_scale: float=5.0, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, controlnet_conditioning_scale: Union[float, List[float]]=1.0, guess_mode: bool=False, control_guidance_start: Union[float, List[float]]=0.0, control_guidance_end: Union[float, List[float]]=1.0, guidance_rescale: float=0.0, original_size: Tuple[int, int]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), target_size: Tuple[int, int]=None, aesthetic_score: float=6.0, negative_aesthetic_score: float=2.5, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`') + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and (not isinstance(control_guidance_end, list)): + mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 + (control_guidance_start, control_guidance_end) = (mult * [control_guidance_start], mult * [control_guidance_end]) + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and (not isinstance(control_guidance_end, list)): + mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 + (control_guidance_start, control_guidance_end) = (mult * [control_guidance_start], mult * [control_guidance_end]) + self.check_inputs(prompt, prompt_2, control_image, mask_image, strength, num_inference_steps, callback_steps, output_type, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, controlnet_conditioning_scale, control_guidance_start, control_guidance_end, callback_on_step_end_tensor_inputs, padding_mask_crop) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): + controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) + text_encoder_lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt=prompt, prompt_2=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + + def denoising_value_valid(dnv): + return isinstance(dnv, float) and 0 < dnv < 1 + self.scheduler.set_timesteps(num_inference_steps, device=device) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device, denoising_start=denoising_start if denoising_value_valid(denoising_start) else None) + if num_inference_steps < 1: + raise ValueError(f'After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipelinesteps is {num_inference_steps} which is < 1 and not appropriate for this pipeline.') + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + is_strength_max = strength == 1.0 + self._num_timesteps = len(timesteps) + if padding_mask_crop is not None: + (height, width) = self.image_processor.get_default_height_width(image, height, width) + crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop) + resize_mode = 'fill' + else: + crops_coords = None + resize_mode = 'default' + original_image = image + init_image = self.image_processor.preprocess(image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode) + init_image = init_image.to(dtype=torch.float32) + if isinstance(controlnet, ControlNetModel): + control_image = self.prepare_control_image(image=control_image, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, crops_coords=crops_coords, resize_mode=resize_mode, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=guess_mode) + elif isinstance(controlnet, MultiControlNetModel): + control_images = [] + for control_image_ in control_image: + control_image_ = self.prepare_control_image(image=control_image_, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, crops_coords=crops_coords, resize_mode=resize_mode, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=guess_mode) + control_images.append(control_image_) + control_image = control_images + else: + raise ValueError(f'{controlnet.__class__} is not supported.') + mask = self.mask_processor.preprocess(mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords) + masked_image = init_image * (mask < 0.5) + (_, _, height, width) = init_image.shape + num_channels_latents = self.vae.config.latent_channels + num_channels_unet = self.unet.config.in_channels + return_image_latents = num_channels_unet == 4 + add_noise = True if denoising_start is None else False + latents_outputs = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, image=init_image, timestep=latent_timestep, is_strength_max=is_strength_max, add_noise=add_noise, return_noise=True, return_image_latents=return_image_latents) + if return_image_latents: + (latents, noise, image_latents) = latents_outputs + else: + (latents, noise) = latents_outputs + (mask, masked_image_latents) = self.prepare_mask_latents(mask, masked_image, batch_size * num_images_per_prompt, height, width, prompt_embeds.dtype, device, generator, self.do_classifier_free_guidance) + if num_channels_unet == 9: + num_channels_mask = mask.shape[1] + num_channels_masked_image = masked_image_latents.shape[1] + if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: + raise ValueError(f'Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} + `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image} = {num_channels_latents + num_channels_masked_image + num_channels_mask}. Please verify the config of `pipeline.unet` or your `mask_image` or `image` input.') + elif num_channels_unet != 4: + raise ValueError(f'The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}.') + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + controlnet_keep = [] + for i in range(len(timesteps)): + keeps = [1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) for (s, e) in zip(control_guidance_start, control_guidance_end)] + controlnet_keep.append(keeps if isinstance(controlnet, MultiControlNetModel) else keeps[0]) + (height, width) = latents.shape[-2:] + height = height * self.vae_scale_factor + width = width * self.vae_scale_factor + original_size = original_size or (height, width) + target_size = target_size or (height, width) + add_text_embeds = pooled_prompt_embeds + if self.text_encoder_2 is None: + text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) + else: + text_encoder_projection_dim = self.text_encoder_2.config.projection_dim + (add_time_ids, add_neg_time_ids) = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, aesthetic_score, negative_aesthetic_score, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1) + add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0) + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + if denoising_end is not None and denoising_start is not None and denoising_value_valid(denoising_end) and denoising_value_valid(denoising_start) and (denoising_start >= denoising_end): + raise ValueError(f'`denoising_start`: {denoising_start} cannot be larger than or equal to `denoising_end`: ' + f' {denoising_end} when using type float.') + elif denoising_end is not None and denoising_value_valid(denoising_end): + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - denoising_end * self.scheduler.config.num_train_timesteps)) + num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) + timesteps = timesteps[:num_inference_steps] + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + if guess_mode and self.do_classifier_free_guidance: + control_model_input = latents + control_model_input = self.scheduler.scale_model_input(control_model_input, t) + controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] + controlnet_added_cond_kwargs = {'text_embeds': add_text_embeds.chunk(2)[1], 'time_ids': add_time_ids.chunk(2)[1]} + else: + control_model_input = latent_model_input + controlnet_prompt_embeds = prompt_embeds + controlnet_added_cond_kwargs = added_cond_kwargs + if isinstance(controlnet_keep[i], list): + cond_scale = [c * s for (c, s) in zip(controlnet_conditioning_scale, controlnet_keep[i])] + else: + controlnet_cond_scale = controlnet_conditioning_scale + if isinstance(controlnet_cond_scale, list): + controlnet_cond_scale = controlnet_cond_scale[0] + cond_scale = controlnet_cond_scale * controlnet_keep[i] + (down_block_res_samples, mid_block_res_sample) = self.controlnet(control_model_input, t, encoder_hidden_states=controlnet_prompt_embeds, controlnet_cond=control_image, conditioning_scale=cond_scale, guess_mode=guess_mode, added_cond_kwargs=controlnet_added_cond_kwargs, return_dict=False) + if guess_mode and self.do_classifier_free_guidance: + down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] + mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + added_cond_kwargs['image_embeds'] = image_embeds + if num_channels_unet == 9: + latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=self.cross_attention_kwargs, down_block_additional_residuals=down_block_res_samples, mid_block_additional_residual=mid_block_res_sample, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + if self.do_classifier_free_guidance and guidance_rescale > 0.0: + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if num_channels_unet == 4: + init_latents_proper = image_latents + if self.do_classifier_free_guidance: + (init_mask, _) = mask.chunk(2) + else: + init_mask = mask + if i < len(timesteps) - 1: + noise_timestep = timesteps[i + 1] + init_latents_proper = self.scheduler.add_noise(init_latents_proper, noise, torch.tensor([noise_timestep])) + latents = (1 - init_mask) * init_latents_proper + init_mask * latents + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None: + self.unet.to('cpu') + self.controlnet.to('cpu') + torch.cuda.empty_cache() + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + else: + return StableDiffusionXLPipelineOutput(images=latents) + if self.watermark is not None: + image = self.watermark.apply_watermark(image) + image = self.image_processor.postprocess(image, output_type=output_type) + if padding_mask_crop is not None: + image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image] + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return StableDiffusionXLPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection +from diffusers.utils.import_utils import is_invisible_watermark_available +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel +from ...models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput +if is_invisible_watermark_available(): + from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker +from .multicontrolnet import MultiControlNetModel +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> # !pip install opencv-python transformers accelerate\n >>> from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL\n >>> from diffusers.utils import load_image\n >>> import numpy as np\n >>> import torch\n\n >>> import cv2\n >>> from PIL import Image\n\n >>> prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"\n >>> negative_prompt = "low quality, bad quality, sketches"\n\n >>> # download an image\n >>> image = load_image(\n ... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"\n ... )\n\n >>> # initialize the models and pipeline\n >>> controlnet_conditioning_scale = 0.5 # recommended for good generalization\n >>> controlnet = ControlNetModel.from_pretrained(\n ... "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16\n ... )\n >>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)\n >>> pipe = StableDiffusionXLControlNetPipeline.from_pretrained(\n ... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16\n ... )\n >>> pipe.enable_model_cpu_offload()\n\n >>> # get canny image\n >>> image = np.array(image)\n >>> image = cv2.Canny(image, 100, 200)\n >>> image = image[:, :, None]\n >>> image = np.concatenate([image, image, image], axis=2)\n >>> canny_image = Image.fromarray(image)\n\n >>> # generate image\n >>> image = pipe(\n ... prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image\n ... ).images[0]\n ```\n' + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusionXLControlNetPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionXLLoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->image_encoder->unet->vae' + _optional_components = ['tokenizer', 'tokenizer_2', 'text_encoder', 'text_encoder_2', 'feature_extractor', 'image_encoder'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'add_text_embeds', 'add_time_ids', 'negative_pooled_prompt_embeds', 'negative_add_time_ids'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], scheduler: KarrasDiffusionSchedulers, force_zeros_for_empty_prompt: bool=True, add_watermarker: Optional[bool]=None, feature_extractor: CLIPImageProcessor=None, image_encoder: CLIPVisionModelWithProjection=None): + super().__init__() + if isinstance(controlnet, (list, tuple)): + controlnet = MultiControlNetModel(controlnet) + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, controlnet=controlnet, scheduler=scheduler, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) + self.control_image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False) + add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() + if add_watermarker: + self.watermark = StableDiffusionXLWatermarker() + else: + self.watermark = None + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + + def encode_prompt(self, prompt: str, prompt_2: Optional[str]=None, device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[str]=None, negative_prompt_2: Optional[str]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) + else: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for (prompt, tokenizer, text_encoder) in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + text_inputs = tokenizer(prompt, padding='max_length', max_length=tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + prompt_embeds_list.append(prompt_embeds) + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + negative_prompt_embeds_list = [] + for (negative_prompt, tokenizer, text_encoder) in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer(negative_prompt, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True) + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + negative_prompt_embeds_list.append(negative_prompt_embeds) + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + if self.text_encoder_2 is not None: + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + if self.text_encoder_2 is not None: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, prompt_2, image, callback_steps, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, negative_pooled_prompt_embeds=None, controlnet_conditioning_scale=1.0, control_guidance_start=0.0, control_guidance_end=1.0, callback_on_step_end_tensor_inputs=None): + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + if isinstance(self.controlnet, MultiControlNetModel): + if isinstance(prompt, list): + logger.warning(f'You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)} prompts. The conditionings will be fixed across the prompts.') + is_compiled = hasattr(F, 'scaled_dot_product_attention') and isinstance(self.controlnet, torch._dynamo.eval_frame.OptimizedModule) + if isinstance(self.controlnet, ControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel)): + self.check_image(image, prompt, prompt_embeds) + elif isinstance(self.controlnet, MultiControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel)): + if not isinstance(image, list): + raise TypeError('For multiple controlnets: `image` must be type `list`') + elif any((isinstance(i, list) for i in image)): + raise ValueError('A single batch of multiple conditionings are supported at the moment.') + elif len(image) != len(self.controlnet.nets): + raise ValueError(f'For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets.') + for image_ in image: + self.check_image(image_, prompt, prompt_embeds) + else: + assert False + if isinstance(self.controlnet, ControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel)): + if not isinstance(controlnet_conditioning_scale, float): + raise TypeError('For single controlnet: `controlnet_conditioning_scale` must be type `float`.') + elif isinstance(self.controlnet, MultiControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel)): + if isinstance(controlnet_conditioning_scale, list): + if any((isinstance(i, list) for i in controlnet_conditioning_scale)): + raise ValueError('A single batch of multiple conditionings are supported at the moment.') + elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(self.controlnet.nets): + raise ValueError('For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have the same length as the number of controlnets') + else: + assert False + if not isinstance(control_guidance_start, (tuple, list)): + control_guidance_start = [control_guidance_start] + if not isinstance(control_guidance_end, (tuple, list)): + control_guidance_end = [control_guidance_end] + if len(control_guidance_start) != len(control_guidance_end): + raise ValueError(f'`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list.') + if isinstance(self.controlnet, MultiControlNetModel): + if len(control_guidance_start) != len(self.controlnet.nets): + raise ValueError(f'`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}.') + for (start, end) in zip(control_guidance_start, control_guidance_end): + if start >= end: + raise ValueError(f'control guidance start: {start} cannot be larger or equal to control guidance end: {end}.') + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def check_image(self, image, prompt, prompt_embeds): + image_is_pil = isinstance(image, PIL.Image.Image) + image_is_tensor = isinstance(image, torch.Tensor) + image_is_np = isinstance(image, np.ndarray) + image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) + image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) + image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) + if not image_is_pil and (not image_is_tensor) and (not image_is_np) and (not image_is_pil_list) and (not image_is_tensor_list) and (not image_is_np_list): + raise TypeError(f'image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}') + if image_is_pil: + image_batch_size = 1 + else: + image_batch_size = len(image) + if prompt is not None and isinstance(prompt, str): + prompt_batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + prompt_batch_size = len(prompt) + elif prompt_embeds is not None: + prompt_batch_size = prompt_embeds.shape[0] + if image_batch_size != 1 and image_batch_size != prompt_batch_size: + raise ValueError(f'If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}') + + def prepare_image(self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False, guess_mode=False): + image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) + image_batch_size = image.shape[0] + if image_batch_size == 1: + repeat_by = batch_size + else: + repeat_by = num_images_per_prompt + image = image.repeat_interleave(repeat_by, dim=0) + image = image.to(device=device, dtype=dtype) + if do_classifier_free_guidance and (not guess_mode): + image = torch.cat([image] * 2) + return image + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.') + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + return add_time_ids + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def denoising_end(self): + return self._denoising_end + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, image: PipelineImageInput=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, timesteps: List[int]=None, sigmas: List[float]=None, denoising_end: Optional[float]=None, guidance_scale: float=5.0, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, controlnet_conditioning_scale: Union[float, List[float]]=1.0, guess_mode: bool=False, control_guidance_start: Union[float, List[float]]=0.0, control_guidance_end: Union[float, List[float]]=1.0, original_size: Tuple[int, int]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), target_size: Tuple[int, int]=None, negative_original_size: Optional[Tuple[int, int]]=None, negative_crops_coords_top_left: Tuple[int, int]=(0, 0), negative_target_size: Optional[Tuple[int, int]]=None, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`') + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and (not isinstance(control_guidance_end, list)): + mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 + (control_guidance_start, control_guidance_end) = (mult * [control_guidance_start], mult * [control_guidance_end]) + self.check_inputs(prompt, prompt_2, image, callback_steps, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, negative_pooled_prompt_embeds, controlnet_conditioning_scale, control_guidance_start, control_guidance_end, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._denoising_end = denoising_end + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): + controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) + global_pool_conditions = controlnet.config.global_pool_conditions if isinstance(controlnet, ControlNetModel) else controlnet.nets[0].config.global_pool_conditions + guess_mode = guess_mode or global_pool_conditions + text_encoder_lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt, prompt_2, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + if isinstance(controlnet, ControlNetModel): + image = self.prepare_image(image=image, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=guess_mode) + (height, width) = image.shape[-2:] + elif isinstance(controlnet, MultiControlNetModel): + images = [] + for image_ in image: + image_ = self.prepare_image(image=image_, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=guess_mode) + images.append(image_) + image = images + (height, width) = image[0].shape[-2:] + else: + assert False + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + self._num_timesteps = len(timesteps) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + controlnet_keep = [] + for i in range(len(timesteps)): + keeps = [1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) for (s, e) in zip(control_guidance_start, control_guidance_end)] + controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) + if isinstance(image, list): + original_size = original_size or image[0].shape[-2:] + else: + original_size = original_size or image.shape[-2:] + target_size = target_size or (height, width) + add_text_embeds = pooled_prompt_embeds + if self.text_encoder_2 is None: + text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) + else: + text_encoder_projection_dim = self.text_encoder_2.config.projection_dim + add_time_ids = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + if negative_original_size is not None and negative_target_size is not None: + negative_add_time_ids = self._get_add_time_ids(negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + else: + negative_add_time_ids = add_time_ids + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + if self.denoising_end is not None and isinstance(self.denoising_end, float) and (self.denoising_end > 0) and (self.denoising_end < 1): + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - self.denoising_end * self.scheduler.config.num_train_timesteps)) + num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) + timesteps = timesteps[:num_inference_steps] + is_unet_compiled = is_compiled_module(self.unet) + is_controlnet_compiled = is_compiled_module(self.controlnet) + is_torch_higher_equal_2_1 = is_torch_version('>=', '2.1') + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1: + torch._inductor.cudagraph_mark_step_begin() + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + if guess_mode and self.do_classifier_free_guidance: + control_model_input = latents + control_model_input = self.scheduler.scale_model_input(control_model_input, t) + controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] + controlnet_added_cond_kwargs = {'text_embeds': add_text_embeds.chunk(2)[1], 'time_ids': add_time_ids.chunk(2)[1]} + else: + control_model_input = latent_model_input + controlnet_prompt_embeds = prompt_embeds + controlnet_added_cond_kwargs = added_cond_kwargs + if isinstance(controlnet_keep[i], list): + cond_scale = [c * s for (c, s) in zip(controlnet_conditioning_scale, controlnet_keep[i])] + else: + controlnet_cond_scale = controlnet_conditioning_scale + if isinstance(controlnet_cond_scale, list): + controlnet_cond_scale = controlnet_cond_scale[0] + cond_scale = controlnet_cond_scale * controlnet_keep[i] + (down_block_res_samples, mid_block_res_sample) = self.controlnet(control_model_input, t, encoder_hidden_states=controlnet_prompt_embeds, controlnet_cond=image, conditioning_scale=cond_scale, guess_mode=guess_mode, added_cond_kwargs=controlnet_added_cond_kwargs, return_dict=False) + if guess_mode and self.do_classifier_free_guidance: + down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] + mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + added_cond_kwargs['image_embeds'] = image_embeds + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, down_block_additional_residuals=down_block_res_samples, mid_block_additional_residual=mid_block_res_sample, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + add_text_embeds = callback_outputs.pop('add_text_embeds', add_text_embeds) + negative_pooled_prompt_embeds = callback_outputs.pop('negative_pooled_prompt_embeds', negative_pooled_prompt_embeds) + add_time_ids = callback_outputs.pop('add_time_ids', add_time_ids) + negative_add_time_ids = callback_outputs.pop('negative_add_time_ids', negative_add_time_ids) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + has_latents_mean = hasattr(self.vae.config, 'latents_mean') and self.vae.config.latents_mean is not None + has_latents_std = hasattr(self.vae.config, 'latents_std') and self.vae.config.latents_std is not None + if has_latents_mean and has_latents_std: + latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) + latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) + latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean + else: + latents = latents / self.vae.config.scaling_factor + image = self.vae.decode(latents, return_dict=False)[0] + if needs_upcasting: + self.vae.to(dtype=torch.float16) + else: + image = latents + if not output_type == 'latent': + if self.watermark is not None: + image = self.watermark.apply_watermark(image) + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return StableDiffusionXLPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection +from diffusers.utils.import_utils import is_invisible_watermark_available +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel +from ...models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import is_compiled_module, randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput +if is_invisible_watermark_available(): + from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker +from .multicontrolnet import MultiControlNetModel +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> # pip install accelerate transformers safetensors diffusers\n\n >>> import torch\n >>> import numpy as np\n >>> from PIL import Image\n\n >>> from transformers import DPTImageProcessor, DPTForDepthEstimation\n >>> from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, AutoencoderKL\n >>> from diffusers.utils import load_image\n\n\n >>> depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")\n >>> feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")\n >>> controlnet = ControlNetModel.from_pretrained(\n ... "diffusers/controlnet-depth-sdxl-1.0-small",\n ... variant="fp16",\n ... use_safetensors=True,\n ... torch_dtype=torch.float16,\n ... )\n >>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)\n >>> pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(\n ... "stabilityai/stable-diffusion-xl-base-1.0",\n ... controlnet=controlnet,\n ... vae=vae,\n ... variant="fp16",\n ... use_safetensors=True,\n ... torch_dtype=torch.float16,\n ... )\n >>> pipe.enable_model_cpu_offload()\n\n\n >>> def get_depth_map(image):\n ... image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")\n ... with torch.no_grad(), torch.autocast("cuda"):\n ... depth_map = depth_estimator(image).predicted_depth\n\n ... depth_map = torch.nn.functional.interpolate(\n ... depth_map.unsqueeze(1),\n ... size=(1024, 1024),\n ... mode="bicubic",\n ... align_corners=False,\n ... )\n ... depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)\n ... depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)\n ... depth_map = (depth_map - depth_min) / (depth_max - depth_min)\n ... image = torch.cat([depth_map] * 3, dim=1)\n ... image = image.permute(0, 2, 3, 1).cpu().numpy()[0]\n ... image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))\n ... return image\n\n\n >>> prompt = "A robot, 4k photo"\n >>> image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((1024, 1024))\n >>> controlnet_conditioning_scale = 0.5 # recommended for good generalization\n >>> depth_image = get_depth_map(image)\n\n >>> images = pipe(\n ... prompt,\n ... image=image,\n ... control_image=depth_image,\n ... strength=0.99,\n ... num_inference_steps=50,\n ... controlnet_conditioning_scale=controlnet_conditioning_scale,\n ... ).images\n >>> images[0].save(f"robot_cat.png")\n ```\n' + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +class StableDiffusionXLControlNetImg2ImgPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionXLLoraLoaderMixin, FromSingleFileMixin, IPAdapterMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->image_encoder->unet->vae' + _optional_components = ['tokenizer', 'tokenizer_2', 'text_encoder', 'text_encoder_2', 'feature_extractor', 'image_encoder'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'add_text_embeds', 'add_time_ids', 'negative_pooled_prompt_embeds', 'add_neg_time_ids'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], scheduler: KarrasDiffusionSchedulers, requires_aesthetics_score: bool=False, force_zeros_for_empty_prompt: bool=True, add_watermarker: Optional[bool]=None, feature_extractor: CLIPImageProcessor=None, image_encoder: CLIPVisionModelWithProjection=None): + super().__init__() + if isinstance(controlnet, (list, tuple)): + controlnet = MultiControlNetModel(controlnet) + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, controlnet=controlnet, scheduler=scheduler, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) + self.control_image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False) + add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() + if add_watermarker: + self.watermark = StableDiffusionXLWatermarker() + else: + self.watermark = None + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.register_to_config(requires_aesthetics_score=requires_aesthetics_score) + + def encode_prompt(self, prompt: str, prompt_2: Optional[str]=None, device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[str]=None, negative_prompt_2: Optional[str]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) + else: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for (prompt, tokenizer, text_encoder) in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + text_inputs = tokenizer(prompt, padding='max_length', max_length=tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + prompt_embeds_list.append(prompt_embeds) + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + negative_prompt_embeds_list = [] + for (negative_prompt, tokenizer, text_encoder) in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer(negative_prompt, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True) + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + negative_prompt_embeds_list.append(negative_prompt_embeds) + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + if self.text_encoder_2 is not None: + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + if self.text_encoder_2 is not None: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, prompt_2, image, strength, num_inference_steps, callback_steps, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, controlnet_conditioning_scale=1.0, control_guidance_start=0.0, control_guidance_end=1.0, callback_on_step_end_tensor_inputs=None): + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if num_inference_steps is None: + raise ValueError('`num_inference_steps` cannot be None.') + elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0: + raise ValueError(f'`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type {type(num_inference_steps)}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + if isinstance(self.controlnet, MultiControlNetModel): + if isinstance(prompt, list): + logger.warning(f'You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)} prompts. The conditionings will be fixed across the prompts.') + is_compiled = hasattr(F, 'scaled_dot_product_attention') and isinstance(self.controlnet, torch._dynamo.eval_frame.OptimizedModule) + if isinstance(self.controlnet, ControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel)): + self.check_image(image, prompt, prompt_embeds) + elif isinstance(self.controlnet, MultiControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel)): + if not isinstance(image, list): + raise TypeError('For multiple controlnets: `image` must be type `list`') + elif any((isinstance(i, list) for i in image)): + raise ValueError('A single batch of multiple conditionings are supported at the moment.') + elif len(image) != len(self.controlnet.nets): + raise ValueError(f'For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets.') + for image_ in image: + self.check_image(image_, prompt, prompt_embeds) + else: + assert False + if isinstance(self.controlnet, ControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel)): + if not isinstance(controlnet_conditioning_scale, float): + raise TypeError('For single controlnet: `controlnet_conditioning_scale` must be type `float`.') + elif isinstance(self.controlnet, MultiControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel)): + if isinstance(controlnet_conditioning_scale, list): + if any((isinstance(i, list) for i in controlnet_conditioning_scale)): + raise ValueError('A single batch of multiple conditionings are supported at the moment.') + elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(self.controlnet.nets): + raise ValueError('For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have the same length as the number of controlnets') + else: + assert False + if not isinstance(control_guidance_start, (tuple, list)): + control_guidance_start = [control_guidance_start] + if not isinstance(control_guidance_end, (tuple, list)): + control_guidance_end = [control_guidance_end] + if len(control_guidance_start) != len(control_guidance_end): + raise ValueError(f'`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list.') + if isinstance(self.controlnet, MultiControlNetModel): + if len(control_guidance_start) != len(self.controlnet.nets): + raise ValueError(f'`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}.') + for (start, end) in zip(control_guidance_start, control_guidance_end): + if start >= end: + raise ValueError(f'control guidance start: {start} cannot be larger or equal to control guidance end: {end}.') + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def check_image(self, image, prompt, prompt_embeds): + image_is_pil = isinstance(image, PIL.Image.Image) + image_is_tensor = isinstance(image, torch.Tensor) + image_is_np = isinstance(image, np.ndarray) + image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) + image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) + image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) + if not image_is_pil and (not image_is_tensor) and (not image_is_np) and (not image_is_pil_list) and (not image_is_tensor_list) and (not image_is_np_list): + raise TypeError(f'image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}') + if image_is_pil: + image_batch_size = 1 + else: + image_batch_size = len(image) + if prompt is not None and isinstance(prompt, str): + prompt_batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + prompt_batch_size = len(prompt) + elif prompt_embeds is not None: + prompt_batch_size = prompt_embeds.shape[0] + if image_batch_size != 1 and image_batch_size != prompt_batch_size: + raise ValueError(f'If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}') + + def prepare_control_image(self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False, guess_mode=False): + image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) + image_batch_size = image.shape[0] + if image_batch_size == 1: + repeat_by = batch_size + else: + repeat_by = num_images_per_prompt + image = image.repeat_interleave(repeat_by, dim=0) + image = image.to(device=device, dtype=dtype) + if do_classifier_free_guidance and (not guess_mode): + image = torch.cat([image] * 2) + return image + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + + def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True): + if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}') + latents_mean = latents_std = None + if hasattr(self.vae.config, 'latents_mean') and self.vae.config.latents_mean is not None: + latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1) + if hasattr(self.vae.config, 'latents_std') and self.vae.config.latents_std is not None: + latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1) + if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None: + self.text_encoder_2.to('cpu') + torch.cuda.empty_cache() + image = image.to(device=device, dtype=dtype) + batch_size = batch_size * num_images_per_prompt + if image.shape[1] == 4: + init_latents = image + else: + if self.vae.config.force_upcast: + image = image.float() + self.vae.to(dtype=torch.float32) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + elif isinstance(generator, list): + if image.shape[0] < batch_size and batch_size % image.shape[0] == 0: + image = torch.cat([image] * (batch_size // image.shape[0]), dim=0) + elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} ') + init_latents = [retrieve_latents(self.vae.encode(image[i:i + 1]), generator=generator[i]) for i in range(batch_size)] + init_latents = torch.cat(init_latents, dim=0) + else: + init_latents = retrieve_latents(self.vae.encode(image), generator=generator) + if self.vae.config.force_upcast: + self.vae.to(dtype) + init_latents = init_latents.to(dtype) + if latents_mean is not None and latents_std is not None: + latents_mean = latents_mean.to(device=device, dtype=dtype) + latents_std = latents_std.to(device=device, dtype=dtype) + init_latents = (init_latents - latents_mean) * self.vae.config.scaling_factor / latents_std + else: + init_latents = self.vae.config.scaling_factor * init_latents + if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: + additional_image_per_prompt = batch_size // init_latents.shape[0] + init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) + elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts.') + else: + init_latents = torch.cat([init_latents], dim=0) + if add_noise: + shape = init_latents.shape + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + init_latents = self.scheduler.add_noise(init_latents, noise, timestep) + latents = init_latents + return latents + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, aesthetic_score, negative_aesthetic_score, negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype, text_encoder_projection_dim=None): + if self.config.requires_aesthetics_score: + add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,)) + add_neg_time_ids = list(negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)) + else: + add_time_ids = list(original_size + crops_coords_top_left + target_size) + add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size) + passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + if expected_add_embed_dim > passed_add_embed_dim and expected_add_embed_dim - passed_add_embed_dim == self.unet.config.addition_time_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model.') + elif expected_add_embed_dim < passed_add_embed_dim and passed_add_embed_dim - expected_add_embed_dim == self.unet.config.addition_time_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model.') + elif expected_add_embed_dim != passed_add_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.') + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype) + return (add_time_ids, add_neg_time_ids) + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, image: PipelineImageInput=None, control_image: PipelineImageInput=None, height: Optional[int]=None, width: Optional[int]=None, strength: float=0.8, num_inference_steps: int=50, guidance_scale: float=5.0, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, controlnet_conditioning_scale: Union[float, List[float]]=0.8, guess_mode: bool=False, control_guidance_start: Union[float, List[float]]=0.0, control_guidance_end: Union[float, List[float]]=1.0, original_size: Tuple[int, int]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), target_size: Tuple[int, int]=None, negative_original_size: Optional[Tuple[int, int]]=None, negative_crops_coords_top_left: Tuple[int, int]=(0, 0), negative_target_size: Optional[Tuple[int, int]]=None, aesthetic_score: float=6.0, negative_aesthetic_score: float=2.5, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`') + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and (not isinstance(control_guidance_end, list)): + mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 + (control_guidance_start, control_guidance_end) = (mult * [control_guidance_start], mult * [control_guidance_end]) + self.check_inputs(prompt, prompt_2, control_image, strength, num_inference_steps, callback_steps, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, controlnet_conditioning_scale, control_guidance_start, control_guidance_end, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): + controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) + global_pool_conditions = controlnet.config.global_pool_conditions if isinstance(controlnet, ControlNetModel) else controlnet.nets[0].config.global_pool_conditions + guess_mode = guess_mode or global_pool_conditions + text_encoder_lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt, prompt_2, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) + if isinstance(controlnet, ControlNetModel): + control_image = self.prepare_control_image(image=control_image, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=guess_mode) + (height, width) = control_image.shape[-2:] + elif isinstance(controlnet, MultiControlNetModel): + control_images = [] + for control_image_ in control_image: + control_image_ = self.prepare_control_image(image=control_image_, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=guess_mode) + control_images.append(control_image_) + control_image = control_images + (height, width) = control_image[0].shape[-2:] + else: + assert False + self.scheduler.set_timesteps(num_inference_steps, device=device) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + self._num_timesteps = len(timesteps) + if latents is None: + latents = self.prepare_latents(image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator, True) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + controlnet_keep = [] + for i in range(len(timesteps)): + keeps = [1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) for (s, e) in zip(control_guidance_start, control_guidance_end)] + controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) + if isinstance(control_image, list): + original_size = original_size or control_image[0].shape[-2:] + else: + original_size = original_size or control_image.shape[-2:] + target_size = target_size or (height, width) + if negative_original_size is None: + negative_original_size = original_size + if negative_target_size is None: + negative_target_size = target_size + add_text_embeds = pooled_prompt_embeds + if self.text_encoder_2 is None: + text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) + else: + text_encoder_projection_dim = self.text_encoder_2.config.projection_dim + (add_time_ids, add_neg_time_ids) = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, aesthetic_score, negative_aesthetic_score, negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1) + add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0) + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + if guess_mode and self.do_classifier_free_guidance: + control_model_input = latents + control_model_input = self.scheduler.scale_model_input(control_model_input, t) + controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] + controlnet_added_cond_kwargs = {'text_embeds': add_text_embeds.chunk(2)[1], 'time_ids': add_time_ids.chunk(2)[1]} + else: + control_model_input = latent_model_input + controlnet_prompt_embeds = prompt_embeds + controlnet_added_cond_kwargs = added_cond_kwargs + if isinstance(controlnet_keep[i], list): + cond_scale = [c * s for (c, s) in zip(controlnet_conditioning_scale, controlnet_keep[i])] + else: + controlnet_cond_scale = controlnet_conditioning_scale + if isinstance(controlnet_cond_scale, list): + controlnet_cond_scale = controlnet_cond_scale[0] + cond_scale = controlnet_cond_scale * controlnet_keep[i] + (down_block_res_samples, mid_block_res_sample) = self.controlnet(control_model_input, t, encoder_hidden_states=controlnet_prompt_embeds, controlnet_cond=control_image, conditioning_scale=cond_scale, guess_mode=guess_mode, added_cond_kwargs=controlnet_added_cond_kwargs, return_dict=False) + if guess_mode and self.do_classifier_free_guidance: + down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] + mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + added_cond_kwargs['image_embeds'] = image_embeds + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=self.cross_attention_kwargs, down_block_additional_residuals=down_block_res_samples, mid_block_additional_residual=mid_block_res_sample, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + add_text_embeds = callback_outputs.pop('add_text_embeds', add_text_embeds) + negative_pooled_prompt_embeds = callback_outputs.pop('negative_pooled_prompt_embeds', negative_pooled_prompt_embeds) + add_time_ids = callback_outputs.pop('add_time_ids', add_time_ids) + add_neg_time_ids = callback_outputs.pop('add_neg_time_ids', add_neg_time_ids) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None: + self.unet.to('cpu') + self.controlnet.to('cpu') + torch.cuda.empty_cache() + if not output_type == 'latent': + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + has_latents_mean = hasattr(self.vae.config, 'latents_mean') and self.vae.config.latents_mean is not None + has_latents_std = hasattr(self.vae.config, 'latents_std') and self.vae.config.latents_std is not None + if has_latents_mean and has_latents_std: + latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) + latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) + latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean + else: + latents = latents / self.vae.config.scaling_factor + image = self.vae.decode(latents, return_dict=False)[0] + if needs_upcasting: + self.vae.to(dtype=torch.float16) + else: + image = latents + return StableDiffusionXLPipelineOutput(images=image) + if self.watermark is not None: + image = self.watermark.apply_watermark(image) + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return StableDiffusionXLPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +import warnings +from functools import partial +from typing import Dict, List, Optional, Union +import jax +import jax.numpy as jnp +import numpy as np +from flax.core.frozen_dict import FrozenDict +from flax.jax_utils import unreplicate +from flax.training.common_utils import shard +from PIL import Image +from transformers import CLIPImageProcessor, CLIPTokenizer, FlaxCLIPTextModel +from ...models import FlaxAutoencoderKL, FlaxControlNetModel, FlaxUNet2DConditionModel +from ...schedulers import FlaxDDIMScheduler, FlaxDPMSolverMultistepScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler +from ...utils import PIL_INTERPOLATION, logging, replace_example_docstring +from ..pipeline_flax_utils import FlaxDiffusionPipeline +from ..stable_diffusion import FlaxStableDiffusionPipelineOutput +from ..stable_diffusion.safety_checker_flax import FlaxStableDiffusionSafetyChecker +logger = logging.get_logger(__name__) +DEBUG = False +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import jax\n >>> import numpy as np\n >>> import jax.numpy as jnp\n >>> from flax.jax_utils import replicate\n >>> from flax.training.common_utils import shard\n >>> from diffusers.utils import load_image, make_image_grid\n >>> from PIL import Image\n >>> from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel\n\n\n >>> def create_key(seed=0):\n ... return jax.random.PRNGKey(seed)\n\n\n >>> rng = create_key(0)\n\n >>> # get canny image\n >>> canny_image = load_image(\n ... "https://huggingface.co/datasets/YiYiXu/test-doc-assets/resolve/main/blog_post_cell_10_output_0.jpeg"\n ... )\n\n >>> prompts = "best quality, extremely detailed"\n >>> negative_prompts = "monochrome, lowres, bad anatomy, worst quality, low quality"\n\n >>> # load control net and stable diffusion v1-5\n >>> controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(\n ... "lllyasviel/sd-controlnet-canny", from_pt=True, dtype=jnp.float32\n ... )\n >>> pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(\n ... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.float32\n ... )\n >>> params["controlnet"] = controlnet_params\n\n >>> num_samples = jax.device_count()\n >>> rng = jax.random.split(rng, jax.device_count())\n\n >>> prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)\n >>> negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples)\n >>> processed_image = pipe.prepare_image_inputs([canny_image] * num_samples)\n\n >>> p_params = replicate(params)\n >>> prompt_ids = shard(prompt_ids)\n >>> negative_prompt_ids = shard(negative_prompt_ids)\n >>> processed_image = shard(processed_image)\n\n >>> output = pipe(\n ... prompt_ids=prompt_ids,\n ... image=processed_image,\n ... params=p_params,\n ... prng_seed=rng,\n ... num_inference_steps=50,\n ... neg_prompt_ids=negative_prompt_ids,\n ... jit=True,\n ... ).images\n\n >>> output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))\n >>> output_images = make_image_grid(output_images, num_samples // 4, 4)\n >>> output_images.save("generated_image.png")\n ```\n' + +class FlaxStableDiffusionControlNetPipeline(FlaxDiffusionPipeline): + + def __init__(self, vae: FlaxAutoencoderKL, text_encoder: FlaxCLIPTextModel, tokenizer: CLIPTokenizer, unet: FlaxUNet2DConditionModel, controlnet: FlaxControlNetModel, scheduler: Union[FlaxDDIMScheduler, FlaxPNDMScheduler, FlaxLMSDiscreteScheduler, FlaxDPMSolverMultistepScheduler], safety_checker: FlaxStableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, dtype: jnp.dtype=jnp.float32): + super().__init__() + self.dtype = dtype + if safety_checker is None: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + + def prepare_text_inputs(self, prompt: Union[str, List[str]]): + if not isinstance(prompt, (str, list)): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='np') + return text_input.input_ids + + def prepare_image_inputs(self, image: Union[Image.Image, List[Image.Image]]): + if not isinstance(image, (Image.Image, list)): + raise ValueError(f'image has to be of type `PIL.Image.Image` or list but is {type(image)}') + if isinstance(image, Image.Image): + image = [image] + processed_images = jnp.concatenate([preprocess(img, jnp.float32) for img in image]) + return processed_images + + def _get_has_nsfw_concepts(self, features, params): + has_nsfw_concepts = self.safety_checker(features, params) + return has_nsfw_concepts + + def _run_safety_checker(self, images, safety_model_params, jit=False): + pil_images = [Image.fromarray(image) for image in images] + features = self.feature_extractor(pil_images, return_tensors='np').pixel_values + if jit: + features = shard(features) + has_nsfw_concepts = _p_get_has_nsfw_concepts(self, features, safety_model_params) + has_nsfw_concepts = unshard(has_nsfw_concepts) + safety_model_params = unreplicate(safety_model_params) + else: + has_nsfw_concepts = self._get_has_nsfw_concepts(features, safety_model_params) + images_was_copied = False + for (idx, has_nsfw_concept) in enumerate(has_nsfw_concepts): + if has_nsfw_concept: + if not images_was_copied: + images_was_copied = True + images = images.copy() + images[idx] = np.zeros(images[idx].shape, dtype=np.uint8) + if any(has_nsfw_concepts): + warnings.warn('Potential NSFW content was detected in one or more images. A black image will be returned instead. Try again with a different prompt and/or seed.') + return (images, has_nsfw_concepts) + + def _generate(self, prompt_ids: jnp.ndarray, image: jnp.ndarray, params: Union[Dict, FrozenDict], prng_seed: jax.Array, num_inference_steps: int, guidance_scale: float, latents: Optional[jnp.ndarray]=None, neg_prompt_ids: Optional[jnp.ndarray]=None, controlnet_conditioning_scale: float=1.0): + (height, width) = image.shape[-2:] + if height % 64 != 0 or width % 64 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 64 but are {height} and {width}.') + prompt_embeds = self.text_encoder(prompt_ids, params=params['text_encoder'])[0] + batch_size = prompt_ids.shape[0] + max_length = prompt_ids.shape[-1] + if neg_prompt_ids is None: + uncond_input = self.tokenizer([''] * batch_size, padding='max_length', max_length=max_length, return_tensors='np').input_ids + else: + uncond_input = neg_prompt_ids + negative_prompt_embeds = self.text_encoder(uncond_input, params=params['text_encoder'])[0] + context = jnp.concatenate([negative_prompt_embeds, prompt_embeds]) + image = jnp.concatenate([image] * 2) + latents_shape = (batch_size, self.unet.config.in_channels, height // self.vae_scale_factor, width // self.vae_scale_factor) + if latents is None: + latents = jax.random.normal(prng_seed, shape=latents_shape, dtype=jnp.float32) + elif latents.shape != latents_shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}') + + def loop_body(step, args): + (latents, scheduler_state) = args + latents_input = jnp.concatenate([latents] * 2) + t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step] + timestep = jnp.broadcast_to(t, latents_input.shape[0]) + latents_input = self.scheduler.scale_model_input(scheduler_state, latents_input, t) + (down_block_res_samples, mid_block_res_sample) = self.controlnet.apply({'params': params['controlnet']}, jnp.array(latents_input), jnp.array(timestep, dtype=jnp.int32), encoder_hidden_states=context, controlnet_cond=image, conditioning_scale=controlnet_conditioning_scale, return_dict=False) + noise_pred = self.unet.apply({'params': params['unet']}, jnp.array(latents_input), jnp.array(timestep, dtype=jnp.int32), encoder_hidden_states=context, down_block_additional_residuals=down_block_res_samples, mid_block_additional_residual=mid_block_res_sample).sample + (noise_pred_uncond, noise_prediction_text) = jnp.split(noise_pred, 2, axis=0) + noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond) + (latents, scheduler_state) = self.scheduler.step(scheduler_state, noise_pred, t, latents).to_tuple() + return (latents, scheduler_state) + scheduler_state = self.scheduler.set_timesteps(params['scheduler'], num_inference_steps=num_inference_steps, shape=latents_shape) + latents = latents * params['scheduler'].init_noise_sigma + if DEBUG: + for i in range(num_inference_steps): + (latents, scheduler_state) = loop_body(i, (latents, scheduler_state)) + else: + (latents, _) = jax.lax.fori_loop(0, num_inference_steps, loop_body, (latents, scheduler_state)) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.apply({'params': params['vae']}, latents, method=self.vae.decode).sample + image = (image / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1) + return image + + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt_ids: jnp.ndarray, image: jnp.ndarray, params: Union[Dict, FrozenDict], prng_seed: jax.Array, num_inference_steps: int=50, guidance_scale: Union[float, jnp.ndarray]=7.5, latents: jnp.ndarray=None, neg_prompt_ids: jnp.ndarray=None, controlnet_conditioning_scale: Union[float, jnp.ndarray]=1.0, return_dict: bool=True, jit: bool=False): + (height, width) = image.shape[-2:] + if isinstance(guidance_scale, float): + guidance_scale = jnp.array([guidance_scale] * prompt_ids.shape[0]) + if len(prompt_ids.shape) > 2: + guidance_scale = guidance_scale[:, None] + if isinstance(controlnet_conditioning_scale, float): + controlnet_conditioning_scale = jnp.array([controlnet_conditioning_scale] * prompt_ids.shape[0]) + if len(prompt_ids.shape) > 2: + controlnet_conditioning_scale = controlnet_conditioning_scale[:, None] + if jit: + images = _p_generate(self, prompt_ids, image, params, prng_seed, num_inference_steps, guidance_scale, latents, neg_prompt_ids, controlnet_conditioning_scale) + else: + images = self._generate(prompt_ids, image, params, prng_seed, num_inference_steps, guidance_scale, latents, neg_prompt_ids, controlnet_conditioning_scale) + if self.safety_checker is not None: + safety_params = params['safety_checker'] + images_uint8_casted = (images * 255).round().astype('uint8') + (num_devices, batch_size) = images.shape[:2] + images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3) + (images_uint8_casted, has_nsfw_concept) = self._run_safety_checker(images_uint8_casted, safety_params, jit) + images = np.array(images) + if any(has_nsfw_concept): + for (i, is_nsfw) in enumerate(has_nsfw_concept): + if is_nsfw: + images[i] = np.asarray(images_uint8_casted[i]) + images = images.reshape(num_devices, batch_size, height, width, 3) + else: + images = np.asarray(images) + has_nsfw_concept = False + if not return_dict: + return (images, has_nsfw_concept) + return FlaxStableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept) + +@partial(jax.pmap, in_axes=(None, 0, 0, 0, 0, None, 0, 0, 0, 0), static_broadcasted_argnums=(0, 5)) +def _p_generate(pipe, prompt_ids, image, params, prng_seed, num_inference_steps, guidance_scale, latents, neg_prompt_ids, controlnet_conditioning_scale): + return pipe._generate(prompt_ids, image, params, prng_seed, num_inference_steps, guidance_scale, latents, neg_prompt_ids, controlnet_conditioning_scale) + +@partial(jax.pmap, static_broadcasted_argnums=(0,)) +def _p_get_has_nsfw_concepts(pipe, features, params): + return pipe._get_has_nsfw_concepts(features, params) + +def unshard(x: jnp.ndarray): + (num_devices, batch_size) = x.shape[:2] + rest = x.shape[2:] + return x.reshape(num_devices * batch_size, *rest) + +def preprocess(image, dtype): + image = image.convert('RGB') + (w, h) = image.size + (w, h) = (x - x % 64 for x in (w, h)) + image = image.resize((w, h), resample=PIL_INTERPOLATION['lanczos']) + image = jnp.array(image).astype(dtype) / 255.0 + image = image[None].transpose(0, 3, 1, 2) + return image + +# File: diffusers-main/src/diffusers/pipelines/controlnet_hunyuandit/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_hunyuandit_controlnet'] = ['HunyuanDiTControlNetPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_hunyuandit_controlnet import HunyuanDiTControlNetPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +import inspect +from typing import Callable, Dict, List, Optional, Tuple, Union +import numpy as np +import torch +from transformers import BertModel, BertTokenizer, CLIPImageProcessor, MT5Tokenizer, T5EncoderModel +from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...models import AutoencoderKL, HunyuanDiT2DControlNetModel, HunyuanDiT2DModel, HunyuanDiT2DMultiControlNetModel +from ...models.embeddings import get_2d_rotary_pos_embed +from ...pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker +from ...schedulers import DDPMScheduler +from ...utils import is_torch_xla_available, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n from diffusers import HunyuanDiT2DControlNetModel, HunyuanDiTControlNetPipeline\n import torch\n\n controlnet = HunyuanDiT2DControlNetModel.from_pretrained(\n "Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny", torch_dtype=torch.float16\n )\n\n pipe = HunyuanDiTControlNetPipeline.from_pretrained(\n "Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16\n )\n pipe.to("cuda")\n\n from diffusers.utils import load_image\n\n cond_image = load_image(\n "https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny/resolve/main/canny.jpg?download=true"\n )\n\n ## You may also use English prompt as HunyuanDiT supports both English and Chinese\n prompt = "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围"\n # prompt="At night, an ancient Chinese-style lion statue stands in front of the hotel, its eyes gleaming as if guarding the building. The background is the hotel entrance at night, with a close-up, eye-level, and centered composition. This photo presents a realistic photographic style, embodies Chinese sculpture culture, and reveals a mysterious atmosphere."\n image = pipe(\n prompt,\n height=1024,\n width=1024,\n control_image=cond_image,\n num_inference_steps=50,\n ).images[0]\n ```\n' +STANDARD_RATIO = np.array([1.0, 4.0 / 3.0, 3.0 / 4.0, 16.0 / 9.0, 9.0 / 16.0]) +STANDARD_SHAPE = [[(1024, 1024), (1280, 1280)], [(1024, 768), (1152, 864), (1280, 960)], [(768, 1024), (864, 1152), (960, 1280)], [(1280, 768)], [(768, 1280)]] +STANDARD_AREA = [np.array([w * h for (w, h) in shapes]) for shapes in STANDARD_SHAPE] +SUPPORTED_SHAPE = [(1024, 1024), (1280, 1280), (1024, 768), (1152, 864), (1280, 960), (768, 1024), (864, 1152), (960, 1280), (1280, 768), (768, 1280)] + +def map_to_standard_shapes(target_width, target_height): + target_ratio = target_width / target_height + closest_ratio_idx = np.argmin(np.abs(STANDARD_RATIO - target_ratio)) + closest_area_idx = np.argmin(np.abs(STANDARD_AREA[closest_ratio_idx] - target_width * target_height)) + (width, height) = STANDARD_SHAPE[closest_ratio_idx][closest_area_idx] + return (width, height) + +def get_resize_crop_region_for_grid(src, tgt_size): + th = tw = tgt_size + (h, w) = src + r = h / w + if r > 1: + resize_height = th + resize_width = int(round(th / h * w)) + else: + resize_width = tw + resize_height = int(round(tw / w * h)) + crop_top = int(round((th - resize_height) / 2.0)) + crop_left = int(round((tw - resize_width) / 2.0)) + return ((crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)) + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +class HunyuanDiTControlNetPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->transformer->vae' + _optional_components = ['safety_checker', 'feature_extractor', 'text_encoder_2', 'tokenizer_2', 'text_encoder', 'tokenizer'] + _exclude_from_cpu_offload = ['safety_checker'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'prompt_embeds_2', 'negative_prompt_embeds_2'] + + def __init__(self, vae: AutoencoderKL, text_encoder: BertModel, tokenizer: BertTokenizer, transformer: HunyuanDiT2DModel, scheduler: DDPMScheduler, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, controlnet: Union[HunyuanDiT2DControlNetModel, List[HunyuanDiT2DControlNetModel], Tuple[HunyuanDiT2DControlNetModel], HunyuanDiT2DMultiControlNetModel], text_encoder_2=T5EncoderModel, tokenizer_2=MT5Tokenizer, requires_safety_checker: bool=True): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, tokenizer_2=tokenizer_2, transformer=transformer, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, text_encoder_2=text_encoder_2, controlnet=controlnet) + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, 'vae') and self.vae is not None else 8 + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + self.default_sample_size = self.transformer.config.sample_size if hasattr(self, 'transformer') and self.transformer is not None else 128 + + def encode_prompt(self, prompt: str, device: torch.device=None, dtype: torch.dtype=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[str]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, prompt_attention_mask: Optional[torch.Tensor]=None, negative_prompt_attention_mask: Optional[torch.Tensor]=None, max_sequence_length: Optional[int]=None, text_encoder_index: int=0): + if dtype is None: + if self.text_encoder_2 is not None: + dtype = self.text_encoder_2.dtype + elif self.transformer is not None: + dtype = self.transformer.dtype + else: + dtype = None + if device is None: + device = self._execution_device + tokenizers = [self.tokenizer, self.tokenizer_2] + text_encoders = [self.text_encoder, self.text_encoder_2] + tokenizer = tokenizers[text_encoder_index] + text_encoder = text_encoders[text_encoder_index] + if max_sequence_length is None: + if text_encoder_index == 0: + max_length = 77 + if text_encoder_index == 1: + max_length = 256 + else: + max_length = max_sequence_length + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + text_inputs = tokenizer(prompt, padding='max_length', max_length=max_length, truncation=True, return_attention_mask=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}') + prompt_attention_mask = text_inputs.attention_mask.to(device) + prompt_embeds = text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask) + prompt_embeds = prompt_embeds[0] + prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + negative_prompt_attention_mask = uncond_input.attention_mask.to(device) + negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + return (prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, prompt_embeds_2=None, negative_prompt_embeds_2=None, prompt_attention_mask_2=None, negative_prompt_attention_mask_2=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is None and prompt_embeds_2 is None: + raise ValueError('Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if prompt_embeds is not None and prompt_attention_mask is None: + raise ValueError('Must provide `prompt_attention_mask` when specifying `prompt_embeds`.') + if prompt_embeds_2 is not None and prompt_attention_mask_2 is None: + raise ValueError('Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: + raise ValueError('Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.') + if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None: + raise ValueError('Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None: + if prompt_embeds_2.shape != negative_prompt_embeds_2.shape: + raise ValueError(f'`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2` {negative_prompt_embeds_2.shape}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def prepare_image(self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False, guess_mode=False): + if isinstance(image, torch.Tensor): + pass + else: + image = self.image_processor.preprocess(image, height=height, width=width) + image_batch_size = image.shape[0] + if image_batch_size == 1: + repeat_by = batch_size + else: + repeat_by = num_images_per_prompt + image = image.repeat_interleave(repeat_by, dim=0) + image = image.to(device=device, dtype=dtype) + if do_classifier_free_guidance and (not guess_mode): + image = torch.cat([image] * 2) + return image + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def guidance_rescale(self): + return self._guidance_rescale + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: Optional[int]=50, guidance_scale: Optional[float]=5.0, control_image: PipelineImageInput=None, controlnet_conditioning_scale: Union[float, List[float]]=1.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: Optional[float]=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, prompt_embeds_2: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds_2: Optional[torch.Tensor]=None, prompt_attention_mask: Optional[torch.Tensor]=None, prompt_attention_mask_2: Optional[torch.Tensor]=None, negative_prompt_attention_mask: Optional[torch.Tensor]=None, negative_prompt_attention_mask_2: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], guidance_rescale: float=0.0, original_size: Optional[Tuple[int, int]]=(1024, 1024), target_size: Optional[Tuple[int, int]]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), use_resolution_binning: bool=True): + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + height = int(height // 16 * 16) + width = int(width // 16 * 16) + if use_resolution_binning and (height, width) not in SUPPORTED_SHAPE: + (width, height) = map_to_standard_shapes(width, height) + height = int(height) + width = int(width) + logger.warning(f'Reshaped to (height, width)=({height}, {width}), Supported shapes are {SUPPORTED_SHAPE}') + self.check_inputs(prompt, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask, prompt_embeds_2, negative_prompt_embeds_2, prompt_attention_mask_2, negative_prompt_attention_mask_2, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._guidance_rescale = guidance_rescale + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + (prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask) = self.encode_prompt(prompt=prompt, device=device, dtype=self.transformer.dtype, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, max_sequence_length=77, text_encoder_index=0) + (prompt_embeds_2, negative_prompt_embeds_2, prompt_attention_mask_2, negative_prompt_attention_mask_2) = self.encode_prompt(prompt=prompt, device=device, dtype=self.transformer.dtype, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds_2, negative_prompt_embeds=negative_prompt_embeds_2, prompt_attention_mask=prompt_attention_mask_2, negative_prompt_attention_mask=negative_prompt_attention_mask_2, max_sequence_length=256, text_encoder_index=1) + if isinstance(self.controlnet, HunyuanDiT2DControlNetModel): + control_image = self.prepare_image(image=control_image, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=self.dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=False) + (height, width) = control_image.shape[-2:] + control_image = self.vae.encode(control_image).latent_dist.sample() + control_image = control_image * self.vae.config.scaling_factor + elif isinstance(self.controlnet, HunyuanDiT2DMultiControlNetModel): + control_images = [] + for control_image_ in control_image: + control_image_ = self.prepare_image(image=control_image_, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=self.dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=False) + control_image_ = self.vae.encode(control_image_).latent_dist.sample() + control_image_ = control_image_ * self.vae.config.scaling_factor + control_images.append(control_image_) + control_image = control_images + else: + assert False + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.transformer.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + grid_height = height // 8 // self.transformer.config.patch_size + grid_width = width // 8 // self.transformer.config.patch_size + base_size = 512 // 8 // self.transformer.config.patch_size + grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size) + image_rotary_emb = get_2d_rotary_pos_embed(self.transformer.inner_dim // self.transformer.num_heads, grid_crops_coords, (grid_height, grid_width)) + style = torch.tensor([0], device=device) + target_size = target_size or (height, width) + add_time_ids = list(original_size + target_size + crops_coords_top_left) + add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask]) + prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2]) + prompt_attention_mask_2 = torch.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2]) + add_time_ids = torch.cat([add_time_ids] * 2, dim=0) + style = torch.cat([style] * 2, dim=0) + prompt_embeds = prompt_embeds.to(device=device) + prompt_attention_mask = prompt_attention_mask.to(device=device) + prompt_embeds_2 = prompt_embeds_2.to(device=device) + prompt_attention_mask_2 = prompt_attention_mask_2.to(device=device) + add_time_ids = add_time_ids.to(dtype=prompt_embeds.dtype, device=device).repeat(batch_size * num_images_per_prompt, 1) + style = style.to(device=device).repeat(batch_size * num_images_per_prompt) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to(dtype=latent_model_input.dtype) + control_block_samples = self.controlnet(latent_model_input, t_expand, encoder_hidden_states=prompt_embeds, text_embedding_mask=prompt_attention_mask, encoder_hidden_states_t5=prompt_embeds_2, text_embedding_mask_t5=prompt_attention_mask_2, image_meta_size=add_time_ids, style=style, image_rotary_emb=image_rotary_emb, return_dict=False, controlnet_cond=control_image, conditioning_scale=controlnet_conditioning_scale)[0] + noise_pred = self.transformer(latent_model_input, t_expand, encoder_hidden_states=prompt_embeds, text_embedding_mask=prompt_attention_mask, encoder_hidden_states_t5=prompt_embeds_2, text_embedding_mask_t5=prompt_attention_mask_2, image_meta_size=add_time_ids, style=style, image_rotary_emb=image_rotary_emb, return_dict=False, controlnet_block_samples=control_block_samples)[0] + (noise_pred, _) = noise_pred.chunk(2, dim=1) + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + if self.do_classifier_free_guidance and guidance_rescale > 0.0: + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + prompt_embeds_2 = callback_outputs.pop('prompt_embeds_2', prompt_embeds_2) + negative_prompt_embeds_2 = callback_outputs.pop('negative_prompt_embeds_2', negative_prompt_embeds_2) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if XLA_AVAILABLE: + xm.mark_step() + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/controlnet_sd3/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_flax_available, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_stable_diffusion_3_controlnet'] = ['StableDiffusion3ControlNetPipeline'] + _import_structure['pipeline_stable_diffusion_3_controlnet_inpainting'] = ['StableDiffusion3ControlNetInpaintingPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_stable_diffusion_3_controlnet import StableDiffusion3ControlNetPipeline + from .pipeline_stable_diffusion_3_controlnet_inpainting import StableDiffusion3ControlNetInpaintingPipeline + try: + if not (is_transformers_available() and is_flax_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_flax_and_transformers_objects import * +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import torch +from transformers import CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel, T5TokenizerFast +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, SD3LoraLoaderMixin +from ...models.autoencoders import AutoencoderKL +from ...models.controlnet_sd3 import SD3ControlNetModel, SD3MultiControlNetModel +from ...models.transformers import SD3Transformer2DModel +from ...schedulers import FlowMatchEulerDiscreteScheduler +from ...utils import USE_PEFT_BACKEND, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from ..stable_diffusion_3.pipeline_output import StableDiffusion3PipelineOutput +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import StableDiffusion3ControlNetPipeline\n >>> from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel\n >>> from diffusers.utils import load_image\n\n >>> controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16)\n\n >>> pipe = StableDiffusion3ControlNetPipeline.from_pretrained(\n ... "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n >>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")\n >>> prompt = "A girl holding a sign that says InstantX"\n >>> image = pipe(prompt, control_image=control_image, controlnet_conditioning_scale=0.7).images[0]\n >>> image.save("sd3.png")\n ```\n' + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusion3ControlNetPipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->text_encoder_3->transformer->vae' + _optional_components = [] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'negative_pooled_prompt_embeds'] + + def __init__(self, transformer: SD3Transformer2DModel, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, text_encoder_2: CLIPTextModelWithProjection, tokenizer_2: CLIPTokenizer, text_encoder_3: T5EncoderModel, tokenizer_3: T5TokenizerFast, controlnet: Union[SD3ControlNetModel, List[SD3ControlNetModel], Tuple[SD3ControlNetModel], SD3MultiControlNetModel]): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, text_encoder_3=text_encoder_3, tokenizer=tokenizer, tokenizer_2=tokenizer_2, tokenizer_3=tokenizer_3, transformer=transformer, scheduler=scheduler, controlnet=controlnet) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, 'vae') and self.vae is not None else 8 + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.tokenizer_max_length = self.tokenizer.model_max_length if hasattr(self, 'tokenizer') and self.tokenizer is not None else 77 + self.default_sample_size = self.transformer.config.sample_size if hasattr(self, 'transformer') and self.transformer is not None else 128 + + def _get_t5_prompt_embeds(self, prompt: Union[str, List[str]]=None, num_images_per_prompt: int=1, max_sequence_length: int=256, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None): + device = device or self._execution_device + dtype = dtype or self.text_encoder.dtype + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + if self.text_encoder_3 is None: + return torch.zeros((batch_size * num_images_per_prompt, self.tokenizer_max_length, self.transformer.config.joint_attention_dim), device=device, dtype=dtype) + text_inputs = self.tokenizer_3(prompt, padding='max_length', max_length=max_sequence_length, truncation=True, add_special_tokens=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer_3(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because `max_sequence_length` is set to {max_sequence_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0] + dtype = self.text_encoder_3.dtype + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (_, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + return prompt_embeds + + def _get_clip_prompt_embeds(self, prompt: Union[str, List[str]], num_images_per_prompt: int=1, device: Optional[torch.device]=None, clip_skip: Optional[int]=None, clip_model_index: int=0): + device = device or self._execution_device + clip_tokenizers = [self.tokenizer, self.tokenizer_2] + clip_text_encoders = [self.text_encoder, self.text_encoder_2] + tokenizer = clip_tokenizers[clip_model_index] + text_encoder = clip_text_encoders[clip_model_index] + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + text_inputs = tokenizer(prompt, padding='max_length', max_length=self.tokenizer_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + (_, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1) + pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1) + return (prompt_embeds, pooled_prompt_embeds) + + def encode_prompt(self, prompt: Union[str, List[str]], prompt_2: Union[str, List[str]], prompt_3: Union[str, List[str]], device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, negative_prompt_3: Optional[Union[str, List[str]]]=None, prompt_embeds: Optional[torch.FloatTensor]=None, negative_prompt_embeds: Optional[torch.FloatTensor]=None, pooled_prompt_embeds: Optional[torch.FloatTensor]=None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor]=None, clip_skip: Optional[int]=None, max_sequence_length: int=256, lora_scale: Optional[float]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + prompt_3 = prompt_3 or prompt + prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3 + (prompt_embed, pooled_prompt_embed) = self._get_clip_prompt_embeds(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=clip_skip, clip_model_index=0) + (prompt_2_embed, pooled_prompt_2_embed) = self._get_clip_prompt_embeds(prompt=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=clip_skip, clip_model_index=1) + clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1) + t5_prompt_embed = self._get_t5_prompt_embeds(prompt=prompt_3, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device) + clip_prompt_embeds = torch.nn.functional.pad(clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])) + prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2) + pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt_3 = negative_prompt_3 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + negative_prompt_3 = batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3 + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + (negative_prompt_embed, negative_pooled_prompt_embed) = self._get_clip_prompt_embeds(negative_prompt, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=None, clip_model_index=0) + (negative_prompt_2_embed, negative_pooled_prompt_2_embed) = self._get_clip_prompt_embeds(negative_prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=None, clip_model_index=1) + negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1) + t5_negative_prompt_embed = self._get_t5_prompt_embeds(prompt=negative_prompt_3, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device) + negative_clip_prompt_embeds = torch.nn.functional.pad(negative_clip_prompt_embeds, (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1])) + negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2) + negative_pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1) + if self.text_encoder is not None: + if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def check_inputs(self, prompt, prompt_2, prompt_3, height, width, negative_prompt=None, negative_prompt_2=None, negative_prompt_3=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, max_sequence_length=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_3 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + elif prompt_3 is not None and (not isinstance(prompt_3, str) and (not isinstance(prompt_3, list))): + raise ValueError(f'`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_3 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + if max_sequence_length is not None and max_sequence_length > 512: + raise ValueError(f'`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + if latents is not None: + return latents.to(device=device, dtype=dtype) + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + return latents + + def prepare_image(self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False, guess_mode=False): + if isinstance(image, torch.Tensor): + pass + else: + image = self.image_processor.preprocess(image, height=height, width=width) + image_batch_size = image.shape[0] + if image_batch_size == 1: + repeat_by = batch_size + else: + repeat_by = num_images_per_prompt + image = image.repeat_interleave(repeat_by, dim=0) + image = image.to(device=device, dtype=dtype) + if do_classifier_free_guidance and (not guess_mode): + image = torch.cat([image] * 2) + return image + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def joint_attention_kwargs(self): + return self._joint_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, prompt_3: Optional[Union[str, List[str]]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=28, timesteps: List[int]=None, guidance_scale: float=7.0, control_guidance_start: Union[float, List[float]]=0.0, control_guidance_end: Union[float, List[float]]=1.0, control_image: PipelineImageInput=None, controlnet_conditioning_scale: Union[float, List[float]]=1.0, controlnet_pooled_projections: Optional[torch.FloatTensor]=None, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, negative_prompt_3: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.FloatTensor]=None, prompt_embeds: Optional[torch.FloatTensor]=None, negative_prompt_embeds: Optional[torch.FloatTensor]=None, pooled_prompt_embeds: Optional[torch.FloatTensor]=None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, joint_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], max_sequence_length: int=256): + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and (not isinstance(control_guidance_end, list)): + mult = len(self.controlnet.nets) if isinstance(self.controlnet, SD3MultiControlNetModel) else 1 + (control_guidance_start, control_guidance_end) = (mult * [control_guidance_start], mult * [control_guidance_end]) + self.check_inputs(prompt, prompt_2, prompt_3, height, width, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_3=negative_prompt_3, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._joint_attention_kwargs = joint_attention_kwargs + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + dtype = self.transformer.dtype + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt=prompt, prompt_2=prompt_2, prompt_3=prompt_3, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_3=negative_prompt_3, do_classifier_free_guidance=self.do_classifier_free_guidance, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, device=device, clip_skip=self.clip_skip, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) + if isinstance(self.controlnet, SD3ControlNetModel): + control_image = self.prepare_image(image=control_image, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=False) + (height, width) = control_image.shape[-2:] + control_image = self.vae.encode(control_image).latent_dist.sample() + control_image = control_image * self.vae.config.scaling_factor + elif isinstance(self.controlnet, SD3MultiControlNetModel): + control_images = [] + for control_image_ in control_image: + control_image_ = self.prepare_image(image=control_image_, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=False) + control_image_ = self.vae.encode(control_image_).latent_dist.sample() + control_image_ = control_image_ * self.vae.config.scaling_factor + control_images.append(control_image_) + control_image = control_images + else: + assert False + if controlnet_pooled_projections is None: + controlnet_pooled_projections = torch.zeros_like(pooled_prompt_embeds) + else: + controlnet_pooled_projections = controlnet_pooled_projections or pooled_prompt_embeds + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + self._num_timesteps = len(timesteps) + num_channels_latents = self.transformer.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + controlnet_keep = [] + for i in range(len(timesteps)): + keeps = [1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) for (s, e) in zip(control_guidance_start, control_guidance_end)] + controlnet_keep.append(keeps[0] if isinstance(self.controlnet, SD3ControlNetModel) else keeps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + timestep = t.expand(latent_model_input.shape[0]) + if isinstance(controlnet_keep[i], list): + cond_scale = [c * s for (c, s) in zip(controlnet_conditioning_scale, controlnet_keep[i])] + else: + controlnet_cond_scale = controlnet_conditioning_scale + if isinstance(controlnet_cond_scale, list): + controlnet_cond_scale = controlnet_cond_scale[0] + cond_scale = controlnet_cond_scale * controlnet_keep[i] + control_block_samples = self.controlnet(hidden_states=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds, pooled_projections=controlnet_pooled_projections, joint_attention_kwargs=self.joint_attention_kwargs, controlnet_cond=control_image, conditioning_scale=cond_scale, return_dict=False)[0] + noise_pred = self.transformer(hidden_states=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds, pooled_projections=pooled_prompt_embeds, block_controlnet_hidden_states=control_block_samples, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + latents = latents.to(latents_dtype) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + negative_pooled_prompt_embeds = callback_outputs.pop('negative_pooled_prompt_embeds', negative_pooled_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if XLA_AVAILABLE: + xm.mark_step() + if output_type == 'latent': + image = latents + else: + latents = latents / self.vae.config.scaling_factor + self.vae.config.shift_factor + image = self.vae.decode(latents, return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return StableDiffusion3PipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import torch +from transformers import CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel, T5TokenizerFast +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, SD3LoraLoaderMixin +from ...models.autoencoders import AutoencoderKL +from ...models.controlnet_sd3 import SD3ControlNetModel, SD3MultiControlNetModel +from ...models.transformers import SD3Transformer2DModel +from ...schedulers import FlowMatchEulerDiscreteScheduler +from ...utils import USE_PEFT_BACKEND, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from ..stable_diffusion_3.pipeline_output import StableDiffusion3PipelineOutput +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers.utils import load_image, check_min_version\n >>> from diffusers.pipelines import StableDiffusion3ControlNetInpaintingPipeline\n >>> from diffusers.models.controlnet_sd3 import SD3ControlNetModel\n\n >>> controlnet = SD3ControlNetModel.from_pretrained(\n ... "alimama-creative/SD3-Controlnet-Inpainting", use_safetensors=True, extra_conditioning_channels=1\n ... )\n >>> pipe = StableDiffusion3ControlNetInpaintingPipeline.from_pretrained(\n ... "stabilityai/stable-diffusion-3-medium-diffusers",\n ... controlnet=controlnet,\n ... torch_dtype=torch.float16,\n ... )\n >>> pipe.text_encoder.to(torch.float16)\n >>> pipe.controlnet.to(torch.float16)\n >>> pipe.to("cuda")\n\n >>> image = load_image(\n ... "https://huggingface.co/alimama-creative/SD3-Controlnet-Inpainting/resolve/main/images/dog.png"\n ... )\n >>> mask = load_image(\n ... "https://huggingface.co/alimama-creative/SD3-Controlnet-Inpainting/resolve/main/images/dog_mask.png"\n ... )\n >>> width = 1024\n >>> height = 1024\n >>> prompt = "A cat is sitting next to a puppy."\n >>> generator = torch.Generator(device="cuda").manual_seed(24)\n >>> res_image = pipe(\n ... negative_prompt="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",\n ... prompt=prompt,\n ... height=height,\n ... width=width,\n ... control_image=image,\n ... control_mask=mask,\n ... num_inference_steps=28,\n ... generator=generator,\n ... controlnet_conditioning_scale=0.95,\n ... guidance_scale=7,\n ... ).images[0]\n >>> res_image.save(f"sd3.png")\n ```\n' + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusion3ControlNetInpaintingPipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->text_encoder_3->transformer->vae' + _optional_components = [] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'negative_pooled_prompt_embeds'] + + def __init__(self, transformer: SD3Transformer2DModel, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, text_encoder_2: CLIPTextModelWithProjection, tokenizer_2: CLIPTokenizer, text_encoder_3: T5EncoderModel, tokenizer_3: T5TokenizerFast, controlnet: Union[SD3ControlNetModel, List[SD3ControlNetModel], Tuple[SD3ControlNetModel], SD3MultiControlNetModel]): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, text_encoder_3=text_encoder_3, tokenizer=tokenizer, tokenizer_2=tokenizer_2, tokenizer_3=tokenizer_3, transformer=transformer, scheduler=scheduler, controlnet=controlnet) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, 'vae') and self.vae is not None else 8 + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_resize=True, do_convert_rgb=True, do_normalize=True) + self.mask_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_resize=True, do_convert_grayscale=True, do_normalize=False, do_binarize=True) + self.tokenizer_max_length = self.tokenizer.model_max_length if hasattr(self, 'tokenizer') and self.tokenizer is not None else 77 + self.default_sample_size = self.transformer.config.sample_size if hasattr(self, 'transformer') and self.transformer is not None else 128 + + def _get_t5_prompt_embeds(self, prompt: Union[str, List[str]]=None, num_images_per_prompt: int=1, max_sequence_length: int=256, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None): + device = device or self._execution_device + dtype = dtype or self.text_encoder.dtype + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + if self.text_encoder_3 is None: + return torch.zeros((batch_size * num_images_per_prompt, self.tokenizer_max_length, self.transformer.config.joint_attention_dim), device=device, dtype=dtype) + text_inputs = self.tokenizer_3(prompt, padding='max_length', max_length=max_sequence_length, truncation=True, add_special_tokens=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer_3(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because `max_sequence_length` is set to {max_sequence_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0] + dtype = self.text_encoder_3.dtype + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (_, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + return prompt_embeds + + def _get_clip_prompt_embeds(self, prompt: Union[str, List[str]], num_images_per_prompt: int=1, device: Optional[torch.device]=None, clip_skip: Optional[int]=None, clip_model_index: int=0): + device = device or self._execution_device + clip_tokenizers = [self.tokenizer, self.tokenizer_2] + clip_text_encoders = [self.text_encoder, self.text_encoder_2] + tokenizer = clip_tokenizers[clip_model_index] + text_encoder = clip_text_encoders[clip_model_index] + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + text_inputs = tokenizer(prompt, padding='max_length', max_length=self.tokenizer_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + (_, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1) + pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1) + return (prompt_embeds, pooled_prompt_embeds) + + def encode_prompt(self, prompt: Union[str, List[str]], prompt_2: Union[str, List[str]], prompt_3: Union[str, List[str]], device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, negative_prompt_3: Optional[Union[str, List[str]]]=None, prompt_embeds: Optional[torch.FloatTensor]=None, negative_prompt_embeds: Optional[torch.FloatTensor]=None, pooled_prompt_embeds: Optional[torch.FloatTensor]=None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor]=None, clip_skip: Optional[int]=None, max_sequence_length: int=256, lora_scale: Optional[float]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + prompt_3 = prompt_3 or prompt + prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3 + (prompt_embed, pooled_prompt_embed) = self._get_clip_prompt_embeds(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=clip_skip, clip_model_index=0) + (prompt_2_embed, pooled_prompt_2_embed) = self._get_clip_prompt_embeds(prompt=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=clip_skip, clip_model_index=1) + clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1) + t5_prompt_embed = self._get_t5_prompt_embeds(prompt=prompt_3, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device) + clip_prompt_embeds = torch.nn.functional.pad(clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])) + prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2) + pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt_3 = negative_prompt_3 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + negative_prompt_3 = batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3 + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + (negative_prompt_embed, negative_pooled_prompt_embed) = self._get_clip_prompt_embeds(negative_prompt, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=None, clip_model_index=0) + (negative_prompt_2_embed, negative_pooled_prompt_2_embed) = self._get_clip_prompt_embeds(negative_prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=None, clip_model_index=1) + negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1) + t5_negative_prompt_embed = self._get_t5_prompt_embeds(prompt=negative_prompt_3, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device) + negative_clip_prompt_embeds = torch.nn.functional.pad(negative_clip_prompt_embeds, (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1])) + negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2) + negative_pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1) + if self.text_encoder is not None: + if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def check_inputs(self, prompt, prompt_2, prompt_3, height, width, negative_prompt=None, negative_prompt_2=None, negative_prompt_3=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, max_sequence_length=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_3 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + elif prompt_3 is not None and (not isinstance(prompt_3, str) and (not isinstance(prompt_3, list))): + raise ValueError(f'`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_3 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + if max_sequence_length is not None and max_sequence_length > 512: + raise ValueError(f'`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + if latents is not None: + return latents.to(device=device, dtype=dtype) + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + return latents + + def prepare_image_with_mask(self, image, mask, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False, guess_mode=False): + if isinstance(image, torch.Tensor): + pass + else: + image = self.image_processor.preprocess(image, height=height, width=width) + image_batch_size = image.shape[0] + if image_batch_size == 1: + repeat_by = batch_size + else: + repeat_by = num_images_per_prompt + image = image.repeat_interleave(repeat_by, dim=0) + image = image.to(device=device, dtype=dtype) + if isinstance(mask, torch.Tensor): + pass + else: + mask = self.mask_processor.preprocess(mask, height=height, width=width) + mask = mask.repeat_interleave(repeat_by, dim=0) + mask = mask.to(device=device, dtype=dtype) + masked_image = image.clone() + masked_image[(mask > 0.5).repeat(1, 3, 1, 1)] = -1 + image_latents = self.vae.encode(masked_image).latent_dist.sample() + image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor + image_latents = image_latents.to(dtype) + mask = torch.nn.functional.interpolate(mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)) + mask = 1 - mask + control_image = torch.cat([image_latents, mask], dim=1) + if do_classifier_free_guidance and (not guess_mode): + control_image = torch.cat([control_image] * 2) + return control_image + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def joint_attention_kwargs(self): + return self._joint_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, prompt_3: Optional[Union[str, List[str]]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=28, timesteps: List[int]=None, guidance_scale: float=7.0, control_guidance_start: Union[float, List[float]]=0.0, control_guidance_end: Union[float, List[float]]=1.0, control_image: PipelineImageInput=None, control_mask: PipelineImageInput=None, controlnet_conditioning_scale: Union[float, List[float]]=1.0, controlnet_pooled_projections: Optional[torch.FloatTensor]=None, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, negative_prompt_3: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.FloatTensor]=None, prompt_embeds: Optional[torch.FloatTensor]=None, negative_prompt_embeds: Optional[torch.FloatTensor]=None, pooled_prompt_embeds: Optional[torch.FloatTensor]=None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, joint_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], max_sequence_length: int=256): + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and (not isinstance(control_guidance_end, list)): + mult = len(self.controlnet.nets) if isinstance(self.controlnet, SD3MultiControlNetModel) else 1 + (control_guidance_start, control_guidance_end) = (mult * [control_guidance_start], mult * [control_guidance_end]) + self.check_inputs(prompt, prompt_2, prompt_3, height, width, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_3=negative_prompt_3, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._joint_attention_kwargs = joint_attention_kwargs + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + dtype = self.transformer.dtype + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt=prompt, prompt_2=prompt_2, prompt_3=prompt_3, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_3=negative_prompt_3, do_classifier_free_guidance=self.do_classifier_free_guidance, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, device=device, clip_skip=self.clip_skip, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) + if isinstance(self.controlnet, SD3ControlNetModel): + control_image = self.prepare_image_with_mask(image=control_image, mask=control_mask, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=False) + (latent_height, latent_width) = control_image.shape[-2:] + height = latent_height * self.vae_scale_factor + width = latent_width * self.vae_scale_factor + elif isinstance(self.controlnet, SD3MultiControlNetModel): + raise NotImplementedError('MultiControlNetModel is not supported for SD3ControlNetInpaintingPipeline.') + else: + assert False + if controlnet_pooled_projections is None: + controlnet_pooled_projections = torch.zeros_like(pooled_prompt_embeds) + else: + controlnet_pooled_projections = controlnet_pooled_projections or pooled_prompt_embeds + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + self._num_timesteps = len(timesteps) + num_channels_latents = self.transformer.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + controlnet_keep = [] + for i in range(len(timesteps)): + keeps = [1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) for (s, e) in zip(control_guidance_start, control_guidance_end)] + controlnet_keep.append(keeps[0] if isinstance(self.controlnet, SD3ControlNetModel) else keeps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + timestep = t.expand(latent_model_input.shape[0]) + if isinstance(controlnet_keep[i], list): + cond_scale = [c * s for (c, s) in zip(controlnet_conditioning_scale, controlnet_keep[i])] + else: + controlnet_cond_scale = controlnet_conditioning_scale + if isinstance(controlnet_cond_scale, list): + controlnet_cond_scale = controlnet_cond_scale[0] + cond_scale = controlnet_cond_scale * controlnet_keep[i] + control_block_samples = self.controlnet(hidden_states=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds, pooled_projections=controlnet_pooled_projections, joint_attention_kwargs=self.joint_attention_kwargs, controlnet_cond=control_image, conditioning_scale=cond_scale, return_dict=False)[0] + noise_pred = self.transformer(hidden_states=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds, pooled_projections=pooled_prompt_embeds, block_controlnet_hidden_states=control_block_samples, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + latents = latents.to(latents_dtype) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + negative_pooled_prompt_embeds = callback_outputs.pop('negative_pooled_prompt_embeds', negative_pooled_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if XLA_AVAILABLE: + xm.mark_step() + if output_type == 'latent': + image = latents + else: + latents = latents / self.vae.config.scaling_factor + self.vae.config.shift_factor + latents = latents.to(dtype=self.vae.dtype) + image = self.vae.decode(latents, return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return StableDiffusion3PipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/controlnet_xs/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_flax_available, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_controlnet_xs'] = ['StableDiffusionControlNetXSPipeline'] + _import_structure['pipeline_controlnet_xs_sd_xl'] = ['StableDiffusionXLControlNetXSPipeline'] +try: + if not (is_transformers_available() and is_flax_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_flax_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_flax_and_transformers_objects)) +else: + pass +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_controlnet_xs import StableDiffusionControlNetXSPipeline + from .pipeline_controlnet_xs_sd_xl import StableDiffusionXLControlNetXSPipeline + try: + if not (is_transformers_available() and is_flax_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_flax_and_transformers_objects import * + else: + pass +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ControlNetXSAdapter, UNet2DConditionModel, UNetControlNetXSModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion.pipeline_output import StableDiffusionPipelineOutput +from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> # !pip install opencv-python transformers accelerate\n >>> from diffusers import StableDiffusionControlNetXSPipeline, ControlNetXSAdapter\n >>> from diffusers.utils import load_image\n >>> import numpy as np\n >>> import torch\n\n >>> import cv2\n >>> from PIL import Image\n\n >>> prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"\n >>> negative_prompt = "low quality, bad quality, sketches"\n\n >>> # download an image\n >>> image = load_image(\n ... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"\n ... )\n\n >>> # initialize the models and pipeline\n >>> controlnet_conditioning_scale = 0.5\n\n >>> controlnet = ControlNetXSAdapter.from_pretrained(\n ... "UmerHA/Testing-ConrolNetXS-SD2.1-canny", torch_dtype=torch.float16\n ... )\n >>> pipe = StableDiffusionControlNetXSPipeline.from_pretrained(\n ... "stabilityai/stable-diffusion-2-1-base", controlnet=controlnet, torch_dtype=torch.float16\n ... )\n >>> pipe.enable_model_cpu_offload()\n\n >>> # get canny image\n >>> image = np.array(image)\n >>> image = cv2.Canny(image, 100, 200)\n >>> image = image[:, :, None]\n >>> image = np.concatenate([image, image, image], axis=2)\n >>> canny_image = Image.fromarray(image)\n >>> # generate image\n >>> image = pipe(\n ... prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image\n ... ).images[0]\n ```\n' + +class StableDiffusionControlNetXSPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor'] + _exclude_from_cpu_offload = ['safety_checker'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: Union[UNet2DConditionModel, UNetControlNetXSModel], controlnet: ControlNetXSAdapter, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool=True): + super().__init__() + if isinstance(unet, UNet2DConditionModel): + unet = UNetControlNetXSModel.from_unet(unet, controlnet) + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) + self.control_image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, image, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, controlnet_conditioning_scale=1.0, control_guidance_start=0.0, control_guidance_end=1.0, callback_on_step_end_tensor_inputs=None): + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + is_compiled = hasattr(F, 'scaled_dot_product_attention') and isinstance(self.unet, torch._dynamo.eval_frame.OptimizedModule) + if isinstance(self.unet, UNetControlNetXSModel) or (is_compiled and isinstance(self.unet._orig_mod, UNetControlNetXSModel)): + self.check_image(image, prompt, prompt_embeds) + if not isinstance(controlnet_conditioning_scale, float): + raise TypeError('For single controlnet: `controlnet_conditioning_scale` must be type `float`.') + else: + assert False + (start, end) = (control_guidance_start, control_guidance_end) + if start >= end: + raise ValueError(f'control guidance start: {start} cannot be larger or equal to control guidance end: {end}.') + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + + def check_image(self, image, prompt, prompt_embeds): + image_is_pil = isinstance(image, PIL.Image.Image) + image_is_tensor = isinstance(image, torch.Tensor) + image_is_np = isinstance(image, np.ndarray) + image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) + image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) + image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) + if not image_is_pil and (not image_is_tensor) and (not image_is_np) and (not image_is_pil_list) and (not image_is_tensor_list) and (not image_is_np_list): + raise TypeError(f'image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}') + if image_is_pil: + image_batch_size = 1 + else: + image_batch_size = len(image) + if prompt is not None and isinstance(prompt, str): + prompt_batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + prompt_batch_size = len(prompt) + elif prompt_embeds is not None: + prompt_batch_size = prompt_embeds.shape[0] + if image_batch_size != 1 and image_batch_size != prompt_batch_size: + raise ValueError(f'If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}') + + def prepare_image(self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False): + image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) + image_batch_size = image.shape[0] + if image_batch_size == 1: + repeat_by = batch_size + else: + repeat_by = num_images_per_prompt + image = image.repeat_interleave(repeat_by, dim=0) + image = image.to(device=device, dtype=dtype) + if do_classifier_free_guidance: + image = torch.cat([image] * 2) + return image + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, image: PipelineImageInput=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, controlnet_conditioning_scale: Union[float, List[float]]=1.0, control_guidance_start: float=0.0, control_guidance_end: float=1.0, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents']): + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + unet = self.unet._orig_mod if is_compiled_module(self.unet) else self.unet + self.check_inputs(prompt, image, negative_prompt, prompt_embeds, negative_prompt_embeds, controlnet_conditioning_scale, control_guidance_start, control_guidance_end, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + text_encoder_lora_scale = cross_attention_kwargs.get('scale', None) if cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + image = self.prepare_image(image=image, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=unet.dtype, do_classifier_free_guidance=do_classifier_free_guidance) + (height, width) = image.shape[-2:] + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + self._num_timesteps = len(timesteps) + is_controlnet_compiled = is_compiled_module(self.unet) + is_torch_higher_equal_2_1 = is_torch_version('>=', '2.1') + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if is_controlnet_compiled and is_torch_higher_equal_2_1: + torch._inductor.cudagraph_mark_step_begin() + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + apply_control = i / len(timesteps) >= control_guidance_start and (i + 1) / len(timesteps) <= control_guidance_end + noise_pred = self.unet(sample=latent_model_input, timestep=t, encoder_hidden_states=prompt_embeds, controlnet_cond=image, conditioning_scale=controlnet_conditioning_scale, cross_attention_kwargs=cross_attention_kwargs, return_dict=True, apply_control=apply_control).sample + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None: + self.unet.to('cpu') + self.controlnet.to('cpu') + torch.cuda.empty_cache() + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer +from diffusers.utils.import_utils import is_invisible_watermark_available +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ControlNetXSAdapter, UNet2DConditionModel, UNetControlNetXSModel +from ...models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor +from ..pipeline_utils import DiffusionPipeline +from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput +if is_invisible_watermark_available(): + from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> # !pip install opencv-python transformers accelerate\n >>> from diffusers import StableDiffusionXLControlNetXSPipeline, ControlNetXSAdapter, AutoencoderKL\n >>> from diffusers.utils import load_image\n >>> import numpy as np\n >>> import torch\n\n >>> import cv2\n >>> from PIL import Image\n\n >>> prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"\n >>> negative_prompt = "low quality, bad quality, sketches"\n\n >>> # download an image\n >>> image = load_image(\n ... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"\n ... )\n\n >>> # initialize the models and pipeline\n >>> controlnet_conditioning_scale = 0.5\n >>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)\n >>> controlnet = ControlNetXSAdapter.from_pretrained(\n ... "UmerHA/Testing-ConrolNetXS-SDXL-canny", torch_dtype=torch.float16\n ... )\n >>> pipe = StableDiffusionXLControlNetXSPipeline.from_pretrained(\n ... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16\n ... )\n >>> pipe.enable_model_cpu_offload()\n\n >>> # get canny image\n >>> image = np.array(image)\n >>> image = cv2.Canny(image, 100, 200)\n >>> image = image[:, :, None]\n >>> image = np.concatenate([image, image, image], axis=2)\n >>> canny_image = Image.fromarray(image)\n\n >>> # generate image\n >>> image = pipe(\n ... prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image\n ... ).images[0]\n ```\n' + +class StableDiffusionXLControlNetXSPipeline(DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionXLLoraLoaderMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->unet->vae' + _optional_components = ['tokenizer', 'tokenizer_2', 'text_encoder', 'text_encoder_2', 'feature_extractor'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'add_text_embeds', 'add_time_ids', 'negative_pooled_prompt_embeds', 'negative_add_time_ids'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: Union[UNet2DConditionModel, UNetControlNetXSModel], controlnet: ControlNetXSAdapter, scheduler: KarrasDiffusionSchedulers, force_zeros_for_empty_prompt: bool=True, add_watermarker: Optional[bool]=None, feature_extractor: CLIPImageProcessor=None): + super().__init__() + if isinstance(unet, UNet2DConditionModel): + unet = UNetControlNetXSModel.from_unet(unet, controlnet) + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, controlnet=controlnet, scheduler=scheduler, feature_extractor=feature_extractor) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) + self.control_image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False) + add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() + if add_watermarker: + self.watermark = StableDiffusionXLWatermarker() + else: + self.watermark = None + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + + def encode_prompt(self, prompt: str, prompt_2: Optional[str]=None, device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[str]=None, negative_prompt_2: Optional[str]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) + else: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for (prompt, tokenizer, text_encoder) in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + text_inputs = tokenizer(prompt, padding='max_length', max_length=tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + prompt_embeds_list.append(prompt_embeds) + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + negative_prompt_embeds_list = [] + for (negative_prompt, tokenizer, text_encoder) in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer(negative_prompt, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True) + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + negative_prompt_embeds_list.append(negative_prompt_embeds) + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + if self.text_encoder_2 is not None: + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + if self.text_encoder_2 is not None: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, prompt_2, image, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, controlnet_conditioning_scale=1.0, control_guidance_start=0.0, control_guidance_end=1.0, callback_on_step_end_tensor_inputs=None): + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + is_compiled = hasattr(F, 'scaled_dot_product_attention') and isinstance(self.unet, torch._dynamo.eval_frame.OptimizedModule) + if isinstance(self.unet, UNetControlNetXSModel) or (is_compiled and isinstance(self.unet._orig_mod, UNetControlNetXSModel)): + self.check_image(image, prompt, prompt_embeds) + if not isinstance(controlnet_conditioning_scale, float): + raise TypeError('For single controlnet: `controlnet_conditioning_scale` must be type `float`.') + else: + assert False + (start, end) = (control_guidance_start, control_guidance_end) + if start >= end: + raise ValueError(f'control guidance start: {start} cannot be larger or equal to control guidance end: {end}.') + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + + def check_image(self, image, prompt, prompt_embeds): + image_is_pil = isinstance(image, PIL.Image.Image) + image_is_tensor = isinstance(image, torch.Tensor) + image_is_np = isinstance(image, np.ndarray) + image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) + image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) + image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) + if not image_is_pil and (not image_is_tensor) and (not image_is_np) and (not image_is_pil_list) and (not image_is_tensor_list) and (not image_is_np_list): + raise TypeError(f'image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}') + if image_is_pil: + image_batch_size = 1 + else: + image_batch_size = len(image) + if prompt is not None and isinstance(prompt, str): + prompt_batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + prompt_batch_size = len(prompt) + elif prompt_embeds is not None: + prompt_batch_size = prompt_embeds.shape[0] + if image_batch_size != 1 and image_batch_size != prompt_batch_size: + raise ValueError(f'If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}') + + def prepare_image(self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False): + image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) + image_batch_size = image.shape[0] + if image_batch_size == 1: + repeat_by = batch_size + else: + repeat_by = num_images_per_prompt + image = image.repeat_interleave(repeat_by, dim=0) + image = image.to(device=device, dtype=dtype) + if do_classifier_free_guidance: + image = torch.cat([image] * 2) + return image + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + expected_add_embed_dim = self.unet.base_add_embedding.linear_1.in_features + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.') + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + return add_time_ids + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, image: PipelineImageInput=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=5.0, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, controlnet_conditioning_scale: Union[float, List[float]]=1.0, control_guidance_start: float=0.0, control_guidance_end: float=1.0, original_size: Tuple[int, int]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), target_size: Tuple[int, int]=None, negative_original_size: Optional[Tuple[int, int]]=None, negative_crops_coords_top_left: Tuple[int, int]=(0, 0), negative_target_size: Optional[Tuple[int, int]]=None, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents']): + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + unet = self.unet._orig_mod if is_compiled_module(self.unet) else self.unet + self.check_inputs(prompt, prompt_2, image, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, controlnet_conditioning_scale, control_guidance_start, control_guidance_end, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + text_encoder_lora_scale = cross_attention_kwargs.get('scale', None) if cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt, prompt_2, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip) + if isinstance(unet, UNetControlNetXSModel): + image = self.prepare_image(image=image, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=unet.dtype, do_classifier_free_guidance=do_classifier_free_guidance) + (height, width) = image.shape[-2:] + else: + assert False + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + if isinstance(image, list): + original_size = original_size or image[0].shape[-2:] + else: + original_size = original_size or image.shape[-2:] + target_size = target_size or (height, width) + add_text_embeds = pooled_prompt_embeds + if self.text_encoder_2 is None: + text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) + else: + text_encoder_projection_dim = self.text_encoder_2.config.projection_dim + add_time_ids = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + if negative_original_size is not None and negative_target_size is not None: + negative_add_time_ids = self._get_add_time_ids(negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + else: + negative_add_time_ids = add_time_ids + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + self._num_timesteps = len(timesteps) + is_controlnet_compiled = is_compiled_module(self.unet) + is_torch_higher_equal_2_1 = is_torch_version('>=', '2.1') + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if is_controlnet_compiled and is_torch_higher_equal_2_1: + torch._inductor.cudagraph_mark_step_begin() + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + apply_control = i / len(timesteps) >= control_guidance_start and (i + 1) / len(timesteps) <= control_guidance_end + noise_pred = self.unet(sample=latent_model_input, timestep=t, encoder_hidden_states=prompt_embeds, controlnet_cond=image, conditioning_scale=controlnet_conditioning_scale, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=True, apply_control=apply_control).sample + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + if not output_type == 'latent': + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + if needs_upcasting: + self.vae.to(dtype=torch.float16) + else: + image = latents + if not output_type == 'latent': + if self.watermark is not None: + image = self.watermark.apply_watermark(image) + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return StableDiffusionXLPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/dance_diffusion/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, _LazyModule +_import_structure = {'pipeline_dance_diffusion': ['DanceDiffusionPipeline']} +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + from .pipeline_dance_diffusion import DanceDiffusionPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + +# File: diffusers-main/src/diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +from typing import List, Optional, Tuple, Union +import torch +from ...utils import logging +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline +logger = logging.get_logger(__name__) + +class DanceDiffusionPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'unet' + + def __init__(self, unet, scheduler): + super().__init__() + self.register_modules(unet=unet, scheduler=scheduler) + + @torch.no_grad() + def __call__(self, batch_size: int=1, num_inference_steps: int=100, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, audio_length_in_s: Optional[float]=None, return_dict: bool=True) -> Union[AudioPipelineOutput, Tuple]: + if audio_length_in_s is None: + audio_length_in_s = self.unet.config.sample_size / self.unet.config.sample_rate + sample_size = audio_length_in_s * self.unet.config.sample_rate + down_scale_factor = 2 ** len(self.unet.up_blocks) + if sample_size < 3 * down_scale_factor: + raise ValueError(f"{audio_length_in_s} is too small. Make sure it's bigger or equal to {3 * down_scale_factor / self.unet.config.sample_rate}.") + original_sample_size = int(sample_size) + if sample_size % down_scale_factor != 0: + sample_size = (audio_length_in_s * self.unet.config.sample_rate // down_scale_factor + 1) * down_scale_factor + logger.info(f'{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising process.') + sample_size = int(sample_size) + dtype = next(self.unet.parameters()).dtype + shape = (batch_size, self.unet.config.in_channels, sample_size) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + audio = randn_tensor(shape, generator=generator, device=self._execution_device, dtype=dtype) + self.scheduler.set_timesteps(num_inference_steps, device=audio.device) + self.scheduler.timesteps = self.scheduler.timesteps.to(dtype) + for t in self.progress_bar(self.scheduler.timesteps): + model_output = self.unet(audio, t).sample + audio = self.scheduler.step(model_output, t, audio).prev_sample + audio = audio.clamp(-1, 1).float().cpu().numpy() + audio = audio[:, :, :original_sample_size] + if not return_dict: + return (audio,) + return AudioPipelineOutput(audios=audio) + +# File: diffusers-main/src/diffusers/pipelines/ddim/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, _LazyModule +_import_structure = {'pipeline_ddim': ['DDIMPipeline']} +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + from .pipeline_ddim import DDIMPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + +# File: diffusers-main/src/diffusers/pipelines/ddim/pipeline_ddim.py +from typing import List, Optional, Tuple, Union +import torch +from ...schedulers import DDIMScheduler +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput + +class DDIMPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'unet' + + def __init__(self, unet, scheduler): + super().__init__() + scheduler = DDIMScheduler.from_config(scheduler.config) + self.register_modules(unet=unet, scheduler=scheduler) + + @torch.no_grad() + def __call__(self, batch_size: int=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, eta: float=0.0, num_inference_steps: int=50, use_clipped_model_output: Optional[bool]=None, output_type: Optional[str]='pil', return_dict: bool=True) -> Union[ImagePipelineOutput, Tuple]: + if isinstance(self.unet.config.sample_size, int): + image_shape = (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) + else: + image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + image = randn_tensor(image_shape, generator=generator, device=self._execution_device, dtype=self.unet.dtype) + self.scheduler.set_timesteps(num_inference_steps) + for t in self.progress_bar(self.scheduler.timesteps): + model_output = self.unet(image, t).sample + image = self.scheduler.step(model_output, t, image, eta=eta, use_clipped_model_output=use_clipped_model_output, generator=generator).prev_sample + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).numpy() + if output_type == 'pil': + image = self.numpy_to_pil(image) + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/ddpm/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, _LazyModule +_import_structure = {'pipeline_ddpm': ['DDPMPipeline']} +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + from .pipeline_ddpm import DDPMPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + +# File: diffusers-main/src/diffusers/pipelines/ddpm/pipeline_ddpm.py +from typing import List, Optional, Tuple, Union +import torch +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput + +class DDPMPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'unet' + + def __init__(self, unet, scheduler): + super().__init__() + self.register_modules(unet=unet, scheduler=scheduler) + + @torch.no_grad() + def __call__(self, batch_size: int=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, num_inference_steps: int=1000, output_type: Optional[str]='pil', return_dict: bool=True) -> Union[ImagePipelineOutput, Tuple]: + if isinstance(self.unet.config.sample_size, int): + image_shape = (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) + else: + image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) + if self.device.type == 'mps': + image = randn_tensor(image_shape, generator=generator) + image = image.to(self.device) + else: + image = randn_tensor(image_shape, generator=generator, device=self.device) + self.scheduler.set_timesteps(num_inference_steps) + for t in self.progress_bar(self.scheduler.timesteps): + model_output = self.unet(image, t).sample + image = self.scheduler.step(model_output, t, image, generator=generator).prev_sample + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).numpy() + if output_type == 'pil': + image = self.numpy_to_pil(image) + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/deepfloyd_if/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {'timesteps': ['fast27_timesteps', 'smart100_timesteps', 'smart185_timesteps', 'smart27_timesteps', 'smart50_timesteps', 'super100_timesteps', 'super27_timesteps', 'super40_timesteps']} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_if'] = ['IFPipeline'] + _import_structure['pipeline_if_img2img'] = ['IFImg2ImgPipeline'] + _import_structure['pipeline_if_img2img_superresolution'] = ['IFImg2ImgSuperResolutionPipeline'] + _import_structure['pipeline_if_inpainting'] = ['IFInpaintingPipeline'] + _import_structure['pipeline_if_inpainting_superresolution'] = ['IFInpaintingSuperResolutionPipeline'] + _import_structure['pipeline_if_superresolution'] = ['IFSuperResolutionPipeline'] + _import_structure['pipeline_output'] = ['IFPipelineOutput'] + _import_structure['safety_checker'] = ['IFSafetyChecker'] + _import_structure['watermark'] = ['IFWatermarker'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_if import IFPipeline + from .pipeline_if_img2img import IFImg2ImgPipeline + from .pipeline_if_img2img_superresolution import IFImg2ImgSuperResolutionPipeline + from .pipeline_if_inpainting import IFInpaintingPipeline + from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline + from .pipeline_if_superresolution import IFSuperResolutionPipeline + from .pipeline_output import IFPipelineOutput + from .safety_checker import IFSafetyChecker + from .timesteps import fast27_timesteps, smart27_timesteps, smart50_timesteps, smart100_timesteps, smart185_timesteps, super27_timesteps, super40_timesteps, super100_timesteps + from .watermark import IFWatermarker +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/deepfloyd_if/pipeline_if.py +import html +import inspect +import re +import urllib.parse as ul +from typing import Any, Callable, Dict, List, Optional, Union +import torch +from transformers import CLIPImageProcessor, T5EncoderModel, T5Tokenizer +from ...loaders import StableDiffusionLoraLoaderMixin +from ...models import UNet2DConditionModel +from ...schedulers import DDPMScheduler +from ...utils import BACKENDS_MAPPING, is_bs4_available, is_ftfy_available, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .pipeline_output import IFPipelineOutput +from .safety_checker import IFSafetyChecker +from .watermark import IFWatermarker +logger = logging.get_logger(__name__) +if is_bs4_available(): + from bs4 import BeautifulSoup +if is_ftfy_available(): + import ftfy +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import IFPipeline, IFSuperResolutionPipeline, DiffusionPipeline\n >>> from diffusers.utils import pt_to_pil\n >>> import torch\n\n >>> pipe = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)\n >>> pipe.enable_model_cpu_offload()\n\n >>> prompt = \'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"\'\n >>> prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)\n\n >>> image = pipe(prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, output_type="pt").images\n\n >>> # save intermediate image\n >>> pil_image = pt_to_pil(image)\n >>> pil_image[0].save("./if_stage_I.png")\n\n >>> super_res_1_pipe = IFSuperResolutionPipeline.from_pretrained(\n ... "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16\n ... )\n >>> super_res_1_pipe.enable_model_cpu_offload()\n\n >>> image = super_res_1_pipe(\n ... image=image, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, output_type="pt"\n ... ).images\n\n >>> # save intermediate image\n >>> pil_image = pt_to_pil(image)\n >>> pil_image[0].save("./if_stage_I.png")\n\n >>> safety_modules = {\n ... "feature_extractor": pipe.feature_extractor,\n ... "safety_checker": pipe.safety_checker,\n ... "watermarker": pipe.watermarker,\n ... }\n >>> super_res_2_pipe = DiffusionPipeline.from_pretrained(\n ... "stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16\n ... )\n >>> super_res_2_pipe.enable_model_cpu_offload()\n\n >>> image = super_res_2_pipe(\n ... prompt=prompt,\n ... image=image,\n ... ).images\n >>> image[0].save("./if_stage_II.png")\n ```\n' + +class IFPipeline(DiffusionPipeline, StableDiffusionLoraLoaderMixin): + tokenizer: T5Tokenizer + text_encoder: T5EncoderModel + unet: UNet2DConditionModel + scheduler: DDPMScheduler + feature_extractor: Optional[CLIPImageProcessor] + safety_checker: Optional[IFSafetyChecker] + watermarker: Optional[IFWatermarker] + bad_punct_regex = re.compile('[' + '#®•©™&@·º½¾¿¡§~' + '\\)' + '\\(' + '\\]' + '\\[' + '\\}' + '\\{' + '\\|' + '\\' + '\\/' + '\\*' + ']{1,}') + _optional_components = ['tokenizer', 'text_encoder', 'safety_checker', 'feature_extractor', 'watermarker'] + model_cpu_offload_seq = 'text_encoder->unet' + _exclude_from_cpu_offload = ['watermarker'] + + def __init__(self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, unet: UNet2DConditionModel, scheduler: DDPMScheduler, safety_checker: Optional[IFSafetyChecker], feature_extractor: Optional[CLIPImageProcessor], watermarker: Optional[IFWatermarker], requires_safety_checker: bool=True): + super().__init__() + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the IF license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.register_modules(tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, watermarker=watermarker) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + @torch.no_grad() + def encode_prompt(self, prompt: Union[str, List[str]], do_classifier_free_guidance: bool=True, num_images_per_prompt: int=1, device: Optional[torch.device]=None, negative_prompt: Optional[Union[str, List[str]]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, clean_caption: bool=False): + if prompt is not None and negative_prompt is not None: + if type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + if device is None: + device = self._execution_device + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + max_length = 77 + if prompt_embeds is None: + prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=max_length, truncation=True, add_special_tokens=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {max_length} tokens: {removed_text}') + attention_mask = text_inputs.attention_mask.to(device) + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + if self.text_encoder is not None: + dtype = self.text_encoder.dtype + elif self.unet is not None: + dtype = self.unet.dtype + else: + dtype = None + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors='pt') + attention_mask = uncond_input.attention_mask.to(device) + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + else: + negative_prompt_embeds = None + return (prompt_embeds, negative_prompt_embeds) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is not None: + safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors='pt').to(device) + (image, nsfw_detected, watermark_detected) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype=dtype)) + else: + nsfw_detected = None + watermark_detected = None + return (image, nsfw_detected, watermark_detected) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None): + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def prepare_intermediate_images(self, batch_size, num_channels, height, width, dtype, device, generator): + shape = (batch_size, num_channels, height, width) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + intermediate_images = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + intermediate_images = intermediate_images * self.scheduler.init_noise_sigma + return intermediate_images + + def _text_preprocessing(self, text, clean_caption=False): + if clean_caption and (not is_bs4_available()): + logger.warning(BACKENDS_MAPPING['bs4'][-1].format('Setting `clean_caption=True`')) + logger.warning('Setting `clean_caption` to False...') + clean_caption = False + if clean_caption and (not is_ftfy_available()): + logger.warning(BACKENDS_MAPPING['ftfy'][-1].format('Setting `clean_caption=True`')) + logger.warning('Setting `clean_caption` to False...') + clean_caption = False + if not isinstance(text, (tuple, list)): + text = [text] + + def process(text: str): + if clean_caption: + text = self._clean_caption(text) + text = self._clean_caption(text) + else: + text = text.lower().strip() + return text + return [process(t) for t in text] + + def _clean_caption(self, caption): + caption = str(caption) + caption = ul.unquote_plus(caption) + caption = caption.strip().lower() + caption = re.sub('', 'person', caption) + caption = re.sub('\\b((?:https?:(?:\\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\\w/-]*\\b\\/?(?!@)))', '', caption) + caption = re.sub('\\b((?:www:(?:\\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\\w/-]*\\b\\/?(?!@)))', '', caption) + caption = BeautifulSoup(caption, features='html.parser').text + caption = re.sub('@[\\w\\d]+\\b', '', caption) + caption = re.sub('[\\u31c0-\\u31ef]+', '', caption) + caption = re.sub('[\\u31f0-\\u31ff]+', '', caption) + caption = re.sub('[\\u3200-\\u32ff]+', '', caption) + caption = re.sub('[\\u3300-\\u33ff]+', '', caption) + caption = re.sub('[\\u3400-\\u4dbf]+', '', caption) + caption = re.sub('[\\u4dc0-\\u4dff]+', '', caption) + caption = re.sub('[\\u4e00-\\u9fff]+', '', caption) + caption = re.sub('[\\u002D\\u058A\\u05BE\\u1400\\u1806\\u2010-\\u2015\\u2E17\\u2E1A\\u2E3A\\u2E3B\\u2E40\\u301C\\u3030\\u30A0\\uFE31\\uFE32\\uFE58\\uFE63\\uFF0D]+', '-', caption) + caption = re.sub('[`´«»“”¨]', '"', caption) + caption = re.sub('[‘’]', "'", caption) + caption = re.sub('"?', '', caption) + caption = re.sub('&', '', caption) + caption = re.sub('\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}', ' ', caption) + caption = re.sub('\\d:\\d\\d\\s+$', '', caption) + caption = re.sub('\\\\n', ' ', caption) + caption = re.sub('#\\d{1,3}\\b', '', caption) + caption = re.sub('#\\d{5,}\\b', '', caption) + caption = re.sub('\\b\\d{6,}\\b', '', caption) + caption = re.sub('[\\S]+\\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)', '', caption) + caption = re.sub('[\\"\\\']{2,}', '"', caption) + caption = re.sub('[\\.]{2,}', ' ', caption) + caption = re.sub(self.bad_punct_regex, ' ', caption) + caption = re.sub('\\s+\\.\\s+', ' ', caption) + regex2 = re.compile('(?:\\-|\\_)') + if len(re.findall(regex2, caption)) > 3: + caption = re.sub(regex2, ' ', caption) + caption = ftfy.fix_text(caption) + caption = html.unescape(html.unescape(caption)) + caption = re.sub('\\b[a-zA-Z]{1,3}\\d{3,15}\\b', '', caption) + caption = re.sub('\\b[a-zA-Z]+\\d+[a-zA-Z]+\\b', '', caption) + caption = re.sub('\\b\\d+[a-zA-Z]+\\d+\\b', '', caption) + caption = re.sub('(worldwide\\s+)?(free\\s+)?shipping', '', caption) + caption = re.sub('(free\\s)?download(\\sfree)?', '', caption) + caption = re.sub('\\bclick\\b\\s(?:for|on)\\s\\w+', '', caption) + caption = re.sub('\\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\\simage[s]?)?', '', caption) + caption = re.sub('\\bpage\\s+\\d+\\b', '', caption) + caption = re.sub('\\b\\d*[a-zA-Z]+\\d+[a-zA-Z]+\\d+[a-zA-Z\\d]*\\b', ' ', caption) + caption = re.sub('\\b\\d+\\.?\\d*[xх×]\\d+\\.?\\d*\\b', '', caption) + caption = re.sub('\\b\\s+\\:\\s+', ': ', caption) + caption = re.sub('(\\D[,\\./])\\b', '\\1 ', caption) + caption = re.sub('\\s+', ' ', caption) + caption.strip() + caption = re.sub('^[\\"\\\']([\\w\\W]+)[\\"\\\']$', '\\1', caption) + caption = re.sub("^[\\'\\_,\\-\\:;]", '', caption) + caption = re.sub("[\\'\\_,\\-\\:\\-\\+]$", '', caption) + caption = re.sub('^\\.\\S+$', '', caption) + return caption.strip() + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, num_inference_steps: int=100, timesteps: List[int]=None, guidance_scale: float=7.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, height: Optional[int]=None, width: Optional[int]=None, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, clean_caption: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None): + self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + height = height or self.unet.config.sample_size + width = width or self.unet.config.sample_size + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt, device=device, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clean_caption=clean_caption) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + if timesteps is not None: + self.scheduler.set_timesteps(timesteps=timesteps, device=device) + timesteps = self.scheduler.timesteps + num_inference_steps = len(timesteps) + else: + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(0) + intermediate_images = self.prepare_intermediate_images(batch_size * num_images_per_prompt, self.unet.config.in_channels, height, width, prompt_embeds.dtype, device, generator) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + if hasattr(self, 'text_encoder_offload_hook') and self.text_encoder_offload_hook is not None: + self.text_encoder_offload_hook.offload() + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + model_input = torch.cat([intermediate_images] * 2) if do_classifier_free_guidance else intermediate_images + model_input = self.scheduler.scale_model_input(model_input, t) + noise_pred = self.unet(model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + (noise_pred_uncond, _) = noise_pred_uncond.split(model_input.shape[1], dim=1) + (noise_pred_text, predicted_variance) = noise_pred_text.split(model_input.shape[1], dim=1) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) + if self.scheduler.config.variance_type not in ['learned', 'learned_range']: + (noise_pred, _) = noise_pred.split(model_input.shape[1], dim=1) + intermediate_images = self.scheduler.step(noise_pred, t, intermediate_images, **extra_step_kwargs, return_dict=False)[0] + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + callback(i, t, intermediate_images) + image = intermediate_images + if output_type == 'pil': + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + (image, nsfw_detected, watermark_detected) = self.run_safety_checker(image, device, prompt_embeds.dtype) + image = self.numpy_to_pil(image) + if self.watermarker is not None: + image = self.watermarker.apply_watermark(image, self.unet.config.sample_size) + elif output_type == 'pt': + nsfw_detected = None + watermark_detected = None + if hasattr(self, 'unet_offload_hook') and self.unet_offload_hook is not None: + self.unet_offload_hook.offload() + else: + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + (image, nsfw_detected, watermark_detected) = self.run_safety_checker(image, device, prompt_embeds.dtype) + self.maybe_free_model_hooks() + if not return_dict: + return (image, nsfw_detected, watermark_detected) + return IFPipelineOutput(images=image, nsfw_detected=nsfw_detected, watermark_detected=watermark_detected) + +# File: diffusers-main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +import html +import inspect +import re +import urllib.parse as ul +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from transformers import CLIPImageProcessor, T5EncoderModel, T5Tokenizer +from ...loaders import StableDiffusionLoraLoaderMixin +from ...models import UNet2DConditionModel +from ...schedulers import DDPMScheduler +from ...utils import BACKENDS_MAPPING, PIL_INTERPOLATION, is_bs4_available, is_ftfy_available, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .pipeline_output import IFPipelineOutput +from .safety_checker import IFSafetyChecker +from .watermark import IFWatermarker +logger = logging.get_logger(__name__) +if is_bs4_available(): + from bs4 import BeautifulSoup +if is_ftfy_available(): + import ftfy + +def resize(images: PIL.Image.Image, img_size: int) -> PIL.Image.Image: + (w, h) = images.size + coef = w / h + (w, h) = (img_size, img_size) + if coef >= 1: + w = int(round(img_size / 8 * coef) * 8) + else: + h = int(round(img_size / 8 / coef) * 8) + images = images.resize((w, h), resample=PIL_INTERPOLATION['bicubic'], reducing_gap=None) + return images +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline, DiffusionPipeline\n >>> from diffusers.utils import pt_to_pil\n >>> import torch\n >>> from PIL import Image\n >>> import requests\n >>> from io import BytesIO\n\n >>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"\n >>> response = requests.get(url)\n >>> original_image = Image.open(BytesIO(response.content)).convert("RGB")\n >>> original_image = original_image.resize((768, 512))\n\n >>> pipe = IFImg2ImgPipeline.from_pretrained(\n ... "DeepFloyd/IF-I-XL-v1.0",\n ... variant="fp16",\n ... torch_dtype=torch.float16,\n ... )\n >>> pipe.enable_model_cpu_offload()\n\n >>> prompt = "A fantasy landscape in style minecraft"\n >>> prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)\n\n >>> image = pipe(\n ... image=original_image,\n ... prompt_embeds=prompt_embeds,\n ... negative_prompt_embeds=negative_embeds,\n ... output_type="pt",\n ... ).images\n\n >>> # save intermediate image\n >>> pil_image = pt_to_pil(image)\n >>> pil_image[0].save("./if_stage_I.png")\n\n >>> super_res_1_pipe = IFImg2ImgSuperResolutionPipeline.from_pretrained(\n ... "DeepFloyd/IF-II-L-v1.0",\n ... text_encoder=None,\n ... variant="fp16",\n ... torch_dtype=torch.float16,\n ... )\n >>> super_res_1_pipe.enable_model_cpu_offload()\n\n >>> image = super_res_1_pipe(\n ... image=image,\n ... original_image=original_image,\n ... prompt_embeds=prompt_embeds,\n ... negative_prompt_embeds=negative_embeds,\n ... ).images\n >>> image[0].save("./if_stage_II.png")\n ```\n' + +class IFImg2ImgPipeline(DiffusionPipeline, StableDiffusionLoraLoaderMixin): + tokenizer: T5Tokenizer + text_encoder: T5EncoderModel + unet: UNet2DConditionModel + scheduler: DDPMScheduler + feature_extractor: Optional[CLIPImageProcessor] + safety_checker: Optional[IFSafetyChecker] + watermarker: Optional[IFWatermarker] + bad_punct_regex = re.compile('[' + '#®•©™&@·º½¾¿¡§~' + '\\)' + '\\(' + '\\]' + '\\[' + '\\}' + '\\{' + '\\|' + '\\' + '\\/' + '\\*' + ']{1,}') + _optional_components = ['tokenizer', 'text_encoder', 'safety_checker', 'feature_extractor', 'watermarker'] + model_cpu_offload_seq = 'text_encoder->unet' + _exclude_from_cpu_offload = ['watermarker'] + + def __init__(self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, unet: UNet2DConditionModel, scheduler: DDPMScheduler, safety_checker: Optional[IFSafetyChecker], feature_extractor: Optional[CLIPImageProcessor], watermarker: Optional[IFWatermarker], requires_safety_checker: bool=True): + super().__init__() + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the IF license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.register_modules(tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, watermarker=watermarker) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + @torch.no_grad() + def encode_prompt(self, prompt: Union[str, List[str]], do_classifier_free_guidance: bool=True, num_images_per_prompt: int=1, device: Optional[torch.device]=None, negative_prompt: Optional[Union[str, List[str]]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, clean_caption: bool=False): + if prompt is not None and negative_prompt is not None: + if type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + if device is None: + device = self._execution_device + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + max_length = 77 + if prompt_embeds is None: + prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=max_length, truncation=True, add_special_tokens=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {max_length} tokens: {removed_text}') + attention_mask = text_inputs.attention_mask.to(device) + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + if self.text_encoder is not None: + dtype = self.text_encoder.dtype + elif self.unet is not None: + dtype = self.unet.dtype + else: + dtype = None + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors='pt') + attention_mask = uncond_input.attention_mask.to(device) + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + else: + negative_prompt_embeds = None + return (prompt_embeds, negative_prompt_embeds) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is not None: + safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors='pt').to(device) + (image, nsfw_detected, watermark_detected) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype=dtype)) + else: + nsfw_detected = None + watermark_detected = None + return (image, nsfw_detected, watermark_detected) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, image, batch_size, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None): + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if isinstance(image, list): + check_image_type = image[0] + else: + check_image_type = image + if not isinstance(check_image_type, torch.Tensor) and (not isinstance(check_image_type, PIL.Image.Image)) and (not isinstance(check_image_type, np.ndarray)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is {type(check_image_type)}') + if isinstance(image, list): + image_batch_size = len(image) + elif isinstance(image, torch.Tensor): + image_batch_size = image.shape[0] + elif isinstance(image, PIL.Image.Image): + image_batch_size = 1 + elif isinstance(image, np.ndarray): + image_batch_size = image.shape[0] + else: + assert False + if batch_size != image_batch_size: + raise ValueError(f'image batch size: {image_batch_size} must be same as prompt batch size {batch_size}') + + def _text_preprocessing(self, text, clean_caption=False): + if clean_caption and (not is_bs4_available()): + logger.warning(BACKENDS_MAPPING['bs4'][-1].format('Setting `clean_caption=True`')) + logger.warning('Setting `clean_caption` to False...') + clean_caption = False + if clean_caption and (not is_ftfy_available()): + logger.warning(BACKENDS_MAPPING['ftfy'][-1].format('Setting `clean_caption=True`')) + logger.warning('Setting `clean_caption` to False...') + clean_caption = False + if not isinstance(text, (tuple, list)): + text = [text] + + def process(text: str): + if clean_caption: + text = self._clean_caption(text) + text = self._clean_caption(text) + else: + text = text.lower().strip() + return text + return [process(t) for t in text] + + def _clean_caption(self, caption): + caption = str(caption) + caption = ul.unquote_plus(caption) + caption = caption.strip().lower() + caption = re.sub('', 'person', caption) + caption = re.sub('\\b((?:https?:(?:\\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\\w/-]*\\b\\/?(?!@)))', '', caption) + caption = re.sub('\\b((?:www:(?:\\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\\w/-]*\\b\\/?(?!@)))', '', caption) + caption = BeautifulSoup(caption, features='html.parser').text + caption = re.sub('@[\\w\\d]+\\b', '', caption) + caption = re.sub('[\\u31c0-\\u31ef]+', '', caption) + caption = re.sub('[\\u31f0-\\u31ff]+', '', caption) + caption = re.sub('[\\u3200-\\u32ff]+', '', caption) + caption = re.sub('[\\u3300-\\u33ff]+', '', caption) + caption = re.sub('[\\u3400-\\u4dbf]+', '', caption) + caption = re.sub('[\\u4dc0-\\u4dff]+', '', caption) + caption = re.sub('[\\u4e00-\\u9fff]+', '', caption) + caption = re.sub('[\\u002D\\u058A\\u05BE\\u1400\\u1806\\u2010-\\u2015\\u2E17\\u2E1A\\u2E3A\\u2E3B\\u2E40\\u301C\\u3030\\u30A0\\uFE31\\uFE32\\uFE58\\uFE63\\uFF0D]+', '-', caption) + caption = re.sub('[`´«»“”¨]', '"', caption) + caption = re.sub('[‘’]', "'", caption) + caption = re.sub('"?', '', caption) + caption = re.sub('&', '', caption) + caption = re.sub('\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}', ' ', caption) + caption = re.sub('\\d:\\d\\d\\s+$', '', caption) + caption = re.sub('\\\\n', ' ', caption) + caption = re.sub('#\\d{1,3}\\b', '', caption) + caption = re.sub('#\\d{5,}\\b', '', caption) + caption = re.sub('\\b\\d{6,}\\b', '', caption) + caption = re.sub('[\\S]+\\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)', '', caption) + caption = re.sub('[\\"\\\']{2,}', '"', caption) + caption = re.sub('[\\.]{2,}', ' ', caption) + caption = re.sub(self.bad_punct_regex, ' ', caption) + caption = re.sub('\\s+\\.\\s+', ' ', caption) + regex2 = re.compile('(?:\\-|\\_)') + if len(re.findall(regex2, caption)) > 3: + caption = re.sub(regex2, ' ', caption) + caption = ftfy.fix_text(caption) + caption = html.unescape(html.unescape(caption)) + caption = re.sub('\\b[a-zA-Z]{1,3}\\d{3,15}\\b', '', caption) + caption = re.sub('\\b[a-zA-Z]+\\d+[a-zA-Z]+\\b', '', caption) + caption = re.sub('\\b\\d+[a-zA-Z]+\\d+\\b', '', caption) + caption = re.sub('(worldwide\\s+)?(free\\s+)?shipping', '', caption) + caption = re.sub('(free\\s)?download(\\sfree)?', '', caption) + caption = re.sub('\\bclick\\b\\s(?:for|on)\\s\\w+', '', caption) + caption = re.sub('\\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\\simage[s]?)?', '', caption) + caption = re.sub('\\bpage\\s+\\d+\\b', '', caption) + caption = re.sub('\\b\\d*[a-zA-Z]+\\d+[a-zA-Z]+\\d+[a-zA-Z\\d]*\\b', ' ', caption) + caption = re.sub('\\b\\d+\\.?\\d*[xх×]\\d+\\.?\\d*\\b', '', caption) + caption = re.sub('\\b\\s+\\:\\s+', ': ', caption) + caption = re.sub('(\\D[,\\./])\\b', '\\1 ', caption) + caption = re.sub('\\s+', ' ', caption) + caption.strip() + caption = re.sub('^[\\"\\\']([\\w\\W]+)[\\"\\\']$', '\\1', caption) + caption = re.sub("^[\\'\\_,\\-\\:;]", '', caption) + caption = re.sub("[\\'\\_,\\-\\:\\-\\+]$", '', caption) + caption = re.sub('^\\.\\S+$', '', caption) + return caption.strip() + + def preprocess_image(self, image: PIL.Image.Image) -> torch.Tensor: + if not isinstance(image, list): + image = [image] + + def numpy_to_pt(images): + if images.ndim == 3: + images = images[..., None] + images = torch.from_numpy(images.transpose(0, 3, 1, 2)) + return images + if isinstance(image[0], PIL.Image.Image): + new_image = [] + for image_ in image: + image_ = image_.convert('RGB') + image_ = resize(image_, self.unet.config.sample_size) + image_ = np.array(image_) + image_ = image_.astype(np.float32) + image_ = image_ / 127.5 - 1 + new_image.append(image_) + image = new_image + image = np.stack(image, axis=0) + image = numpy_to_pt(image) + elif isinstance(image[0], np.ndarray): + image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0) + image = numpy_to_pt(image) + elif isinstance(image[0], torch.Tensor): + image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0) + return image + + def get_timesteps(self, num_inference_steps, strength): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + + def prepare_intermediate_images(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): + (_, channels, height, width) = image.shape + batch_size = batch_size * num_images_per_prompt + shape = (batch_size, channels, height, width) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + image = image.repeat_interleave(num_images_per_prompt, dim=0) + image = self.scheduler.add_noise(image, noise, timestep) + return image + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, image: Union[PIL.Image.Image, torch.Tensor, np.ndarray, List[PIL.Image.Image], List[torch.Tensor], List[np.ndarray]]=None, strength: float=0.7, num_inference_steps: int=80, timesteps: List[int]=None, guidance_scale: float=10.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, clean_caption: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None): + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + self.check_inputs(prompt, image, batch_size, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt, device=device, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clean_caption=clean_caption) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + dtype = prompt_embeds.dtype + if timesteps is not None: + self.scheduler.set_timesteps(timesteps=timesteps, device=device) + timesteps = self.scheduler.timesteps + num_inference_steps = len(timesteps) + else: + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength) + image = self.preprocess_image(image) + image = image.to(device=device, dtype=dtype) + noise_timestep = timesteps[0:1] + noise_timestep = noise_timestep.repeat(batch_size * num_images_per_prompt) + intermediate_images = self.prepare_intermediate_images(image, noise_timestep, batch_size, num_images_per_prompt, dtype, device, generator) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + if hasattr(self, 'text_encoder_offload_hook') and self.text_encoder_offload_hook is not None: + self.text_encoder_offload_hook.offload() + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + model_input = torch.cat([intermediate_images] * 2) if do_classifier_free_guidance else intermediate_images + model_input = self.scheduler.scale_model_input(model_input, t) + noise_pred = self.unet(model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + (noise_pred_uncond, _) = noise_pred_uncond.split(model_input.shape[1], dim=1) + (noise_pred_text, predicted_variance) = noise_pred_text.split(model_input.shape[1], dim=1) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) + if self.scheduler.config.variance_type not in ['learned', 'learned_range']: + (noise_pred, _) = noise_pred.split(model_input.shape[1], dim=1) + intermediate_images = self.scheduler.step(noise_pred, t, intermediate_images, **extra_step_kwargs, return_dict=False)[0] + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + callback(i, t, intermediate_images) + image = intermediate_images + if output_type == 'pil': + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + (image, nsfw_detected, watermark_detected) = self.run_safety_checker(image, device, prompt_embeds.dtype) + image = self.numpy_to_pil(image) + if self.watermarker is not None: + self.watermarker.apply_watermark(image, self.unet.config.sample_size) + elif output_type == 'pt': + nsfw_detected = None + watermark_detected = None + if hasattr(self, 'unet_offload_hook') and self.unet_offload_hook is not None: + self.unet_offload_hook.offload() + else: + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + (image, nsfw_detected, watermark_detected) = self.run_safety_checker(image, device, prompt_embeds.dtype) + self.maybe_free_model_hooks() + if not return_dict: + return (image, nsfw_detected, watermark_detected) + return IFPipelineOutput(images=image, nsfw_detected=nsfw_detected, watermark_detected=watermark_detected) + +# File: diffusers-main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +import html +import inspect +import re +import urllib.parse as ul +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, T5EncoderModel, T5Tokenizer +from ...loaders import StableDiffusionLoraLoaderMixin +from ...models import UNet2DConditionModel +from ...schedulers import DDPMScheduler +from ...utils import BACKENDS_MAPPING, PIL_INTERPOLATION, is_bs4_available, is_ftfy_available, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .pipeline_output import IFPipelineOutput +from .safety_checker import IFSafetyChecker +from .watermark import IFWatermarker +if is_bs4_available(): + from bs4 import BeautifulSoup +if is_ftfy_available(): + import ftfy +logger = logging.get_logger(__name__) + +def resize(images: PIL.Image.Image, img_size: int) -> PIL.Image.Image: + (w, h) = images.size + coef = w / h + (w, h) = (img_size, img_size) + if coef >= 1: + w = int(round(img_size / 8 * coef) * 8) + else: + h = int(round(img_size / 8 / coef) * 8) + images = images.resize((w, h), resample=PIL_INTERPOLATION['bicubic'], reducing_gap=None) + return images +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline, DiffusionPipeline\n >>> from diffusers.utils import pt_to_pil\n >>> import torch\n >>> from PIL import Image\n >>> import requests\n >>> from io import BytesIO\n\n >>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"\n >>> response = requests.get(url)\n >>> original_image = Image.open(BytesIO(response.content)).convert("RGB")\n >>> original_image = original_image.resize((768, 512))\n\n >>> pipe = IFImg2ImgPipeline.from_pretrained(\n ... "DeepFloyd/IF-I-XL-v1.0",\n ... variant="fp16",\n ... torch_dtype=torch.float16,\n ... )\n >>> pipe.enable_model_cpu_offload()\n\n >>> prompt = "A fantasy landscape in style minecraft"\n >>> prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)\n\n >>> image = pipe(\n ... image=original_image,\n ... prompt_embeds=prompt_embeds,\n ... negative_prompt_embeds=negative_embeds,\n ... output_type="pt",\n ... ).images\n\n >>> # save intermediate image\n >>> pil_image = pt_to_pil(image)\n >>> pil_image[0].save("./if_stage_I.png")\n\n >>> super_res_1_pipe = IFImg2ImgSuperResolutionPipeline.from_pretrained(\n ... "DeepFloyd/IF-II-L-v1.0",\n ... text_encoder=None,\n ... variant="fp16",\n ... torch_dtype=torch.float16,\n ... )\n >>> super_res_1_pipe.enable_model_cpu_offload()\n\n >>> image = super_res_1_pipe(\n ... image=image,\n ... original_image=original_image,\n ... prompt_embeds=prompt_embeds,\n ... negative_prompt_embeds=negative_embeds,\n ... ).images\n >>> image[0].save("./if_stage_II.png")\n ```\n' + +class IFImg2ImgSuperResolutionPipeline(DiffusionPipeline, StableDiffusionLoraLoaderMixin): + tokenizer: T5Tokenizer + text_encoder: T5EncoderModel + unet: UNet2DConditionModel + scheduler: DDPMScheduler + image_noising_scheduler: DDPMScheduler + feature_extractor: Optional[CLIPImageProcessor] + safety_checker: Optional[IFSafetyChecker] + watermarker: Optional[IFWatermarker] + bad_punct_regex = re.compile('[' + '#®•©™&@·º½¾¿¡§~' + '\\)' + '\\(' + '\\]' + '\\[' + '\\}' + '\\{' + '\\|' + '\\' + '\\/' + '\\*' + ']{1,}') + _optional_components = ['tokenizer', 'text_encoder', 'safety_checker', 'feature_extractor'] + model_cpu_offload_seq = 'text_encoder->unet' + _exclude_from_cpu_offload = ['watermarker'] + + def __init__(self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, unet: UNet2DConditionModel, scheduler: DDPMScheduler, image_noising_scheduler: DDPMScheduler, safety_checker: Optional[IFSafetyChecker], feature_extractor: Optional[CLIPImageProcessor], watermarker: Optional[IFWatermarker], requires_safety_checker: bool=True): + super().__init__() + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the IF license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + if unet.config.in_channels != 6: + logger.warning("It seems like you have loaded a checkpoint that shall not be used for super resolution from {unet.config._name_or_path} as it accepts {unet.config.in_channels} input channels instead of 6. Please make sure to pass a super resolution checkpoint as the `'unet'`: IFSuperResolutionPipeline.from_pretrained(unet=super_resolution_unet, ...)`.") + self.register_modules(tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, image_noising_scheduler=image_noising_scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, watermarker=watermarker) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _text_preprocessing(self, text, clean_caption=False): + if clean_caption and (not is_bs4_available()): + logger.warning(BACKENDS_MAPPING['bs4'][-1].format('Setting `clean_caption=True`')) + logger.warning('Setting `clean_caption` to False...') + clean_caption = False + if clean_caption and (not is_ftfy_available()): + logger.warning(BACKENDS_MAPPING['ftfy'][-1].format('Setting `clean_caption=True`')) + logger.warning('Setting `clean_caption` to False...') + clean_caption = False + if not isinstance(text, (tuple, list)): + text = [text] + + def process(text: str): + if clean_caption: + text = self._clean_caption(text) + text = self._clean_caption(text) + else: + text = text.lower().strip() + return text + return [process(t) for t in text] + + def _clean_caption(self, caption): + caption = str(caption) + caption = ul.unquote_plus(caption) + caption = caption.strip().lower() + caption = re.sub('', 'person', caption) + caption = re.sub('\\b((?:https?:(?:\\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\\w/-]*\\b\\/?(?!@)))', '', caption) + caption = re.sub('\\b((?:www:(?:\\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\\w/-]*\\b\\/?(?!@)))', '', caption) + caption = BeautifulSoup(caption, features='html.parser').text + caption = re.sub('@[\\w\\d]+\\b', '', caption) + caption = re.sub('[\\u31c0-\\u31ef]+', '', caption) + caption = re.sub('[\\u31f0-\\u31ff]+', '', caption) + caption = re.sub('[\\u3200-\\u32ff]+', '', caption) + caption = re.sub('[\\u3300-\\u33ff]+', '', caption) + caption = re.sub('[\\u3400-\\u4dbf]+', '', caption) + caption = re.sub('[\\u4dc0-\\u4dff]+', '', caption) + caption = re.sub('[\\u4e00-\\u9fff]+', '', caption) + caption = re.sub('[\\u002D\\u058A\\u05BE\\u1400\\u1806\\u2010-\\u2015\\u2E17\\u2E1A\\u2E3A\\u2E3B\\u2E40\\u301C\\u3030\\u30A0\\uFE31\\uFE32\\uFE58\\uFE63\\uFF0D]+', '-', caption) + caption = re.sub('[`´«»“”¨]', '"', caption) + caption = re.sub('[‘’]', "'", caption) + caption = re.sub('"?', '', caption) + caption = re.sub('&', '', caption) + caption = re.sub('\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}', ' ', caption) + caption = re.sub('\\d:\\d\\d\\s+$', '', caption) + caption = re.sub('\\\\n', ' ', caption) + caption = re.sub('#\\d{1,3}\\b', '', caption) + caption = re.sub('#\\d{5,}\\b', '', caption) + caption = re.sub('\\b\\d{6,}\\b', '', caption) + caption = re.sub('[\\S]+\\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)', '', caption) + caption = re.sub('[\\"\\\']{2,}', '"', caption) + caption = re.sub('[\\.]{2,}', ' ', caption) + caption = re.sub(self.bad_punct_regex, ' ', caption) + caption = re.sub('\\s+\\.\\s+', ' ', caption) + regex2 = re.compile('(?:\\-|\\_)') + if len(re.findall(regex2, caption)) > 3: + caption = re.sub(regex2, ' ', caption) + caption = ftfy.fix_text(caption) + caption = html.unescape(html.unescape(caption)) + caption = re.sub('\\b[a-zA-Z]{1,3}\\d{3,15}\\b', '', caption) + caption = re.sub('\\b[a-zA-Z]+\\d+[a-zA-Z]+\\b', '', caption) + caption = re.sub('\\b\\d+[a-zA-Z]+\\d+\\b', '', caption) + caption = re.sub('(worldwide\\s+)?(free\\s+)?shipping', '', caption) + caption = re.sub('(free\\s)?download(\\sfree)?', '', caption) + caption = re.sub('\\bclick\\b\\s(?:for|on)\\s\\w+', '', caption) + caption = re.sub('\\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\\simage[s]?)?', '', caption) + caption = re.sub('\\bpage\\s+\\d+\\b', '', caption) + caption = re.sub('\\b\\d*[a-zA-Z]+\\d+[a-zA-Z]+\\d+[a-zA-Z\\d]*\\b', ' ', caption) + caption = re.sub('\\b\\d+\\.?\\d*[xх×]\\d+\\.?\\d*\\b', '', caption) + caption = re.sub('\\b\\s+\\:\\s+', ': ', caption) + caption = re.sub('(\\D[,\\./])\\b', '\\1 ', caption) + caption = re.sub('\\s+', ' ', caption) + caption.strip() + caption = re.sub('^[\\"\\\']([\\w\\W]+)[\\"\\\']$', '\\1', caption) + caption = re.sub("^[\\'\\_,\\-\\:;]", '', caption) + caption = re.sub("[\\'\\_,\\-\\:\\-\\+]$", '', caption) + caption = re.sub('^\\.\\S+$', '', caption) + return caption.strip() + + @torch.no_grad() + def encode_prompt(self, prompt: Union[str, List[str]], do_classifier_free_guidance: bool=True, num_images_per_prompt: int=1, device: Optional[torch.device]=None, negative_prompt: Optional[Union[str, List[str]]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, clean_caption: bool=False): + if prompt is not None and negative_prompt is not None: + if type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + if device is None: + device = self._execution_device + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + max_length = 77 + if prompt_embeds is None: + prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=max_length, truncation=True, add_special_tokens=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {max_length} tokens: {removed_text}') + attention_mask = text_inputs.attention_mask.to(device) + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + if self.text_encoder is not None: + dtype = self.text_encoder.dtype + elif self.unet is not None: + dtype = self.unet.dtype + else: + dtype = None + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors='pt') + attention_mask = uncond_input.attention_mask.to(device) + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + else: + negative_prompt_embeds = None + return (prompt_embeds, negative_prompt_embeds) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is not None: + safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors='pt').to(device) + (image, nsfw_detected, watermark_detected) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype=dtype)) + else: + nsfw_detected = None + watermark_detected = None + return (image, nsfw_detected, watermark_detected) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, image, original_image, batch_size, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None): + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if isinstance(image, list): + check_image_type = image[0] + else: + check_image_type = image + if not isinstance(check_image_type, torch.Tensor) and (not isinstance(check_image_type, PIL.Image.Image)) and (not isinstance(check_image_type, np.ndarray)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is {type(check_image_type)}') + if isinstance(image, list): + image_batch_size = len(image) + elif isinstance(image, torch.Tensor): + image_batch_size = image.shape[0] + elif isinstance(image, PIL.Image.Image): + image_batch_size = 1 + elif isinstance(image, np.ndarray): + image_batch_size = image.shape[0] + else: + assert False + if batch_size != image_batch_size: + raise ValueError(f'image batch size: {image_batch_size} must be same as prompt batch size {batch_size}') + if isinstance(original_image, list): + check_image_type = original_image[0] + else: + check_image_type = original_image + if not isinstance(check_image_type, torch.Tensor) and (not isinstance(check_image_type, PIL.Image.Image)) and (not isinstance(check_image_type, np.ndarray)): + raise ValueError(f'`original_image` has to be of type `torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is {type(check_image_type)}') + if isinstance(original_image, list): + image_batch_size = len(original_image) + elif isinstance(original_image, torch.Tensor): + image_batch_size = original_image.shape[0] + elif isinstance(original_image, PIL.Image.Image): + image_batch_size = 1 + elif isinstance(original_image, np.ndarray): + image_batch_size = original_image.shape[0] + else: + assert False + if batch_size != image_batch_size: + raise ValueError(f'original_image batch size: {image_batch_size} must be same as prompt batch size {batch_size}') + + def preprocess_original_image(self, image: PIL.Image.Image) -> torch.Tensor: + if not isinstance(image, list): + image = [image] + + def numpy_to_pt(images): + if images.ndim == 3: + images = images[..., None] + images = torch.from_numpy(images.transpose(0, 3, 1, 2)) + return images + if isinstance(image[0], PIL.Image.Image): + new_image = [] + for image_ in image: + image_ = image_.convert('RGB') + image_ = resize(image_, self.unet.config.sample_size) + image_ = np.array(image_) + image_ = image_.astype(np.float32) + image_ = image_ / 127.5 - 1 + new_image.append(image_) + image = new_image + image = np.stack(image, axis=0) + image = numpy_to_pt(image) + elif isinstance(image[0], np.ndarray): + image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0) + image = numpy_to_pt(image) + elif isinstance(image[0], torch.Tensor): + image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0) + return image + + def preprocess_image(self, image: PIL.Image.Image, num_images_per_prompt, device) -> torch.Tensor: + if not isinstance(image, torch.Tensor) and (not isinstance(image, list)): + image = [image] + if isinstance(image[0], PIL.Image.Image): + image = [np.array(i).astype(np.float32) / 127.5 - 1.0 for i in image] + image = np.stack(image, axis=0) + image = torch.from_numpy(image.transpose(0, 3, 1, 2)) + elif isinstance(image[0], np.ndarray): + image = np.stack(image, axis=0) + if image.ndim == 5: + image = image[0] + image = torch.from_numpy(image.transpose(0, 3, 1, 2)) + elif isinstance(image, list) and isinstance(image[0], torch.Tensor): + dims = image[0].ndim + if dims == 3: + image = torch.stack(image, dim=0) + elif dims == 4: + image = torch.concat(image, dim=0) + else: + raise ValueError(f'Image must have 3 or 4 dimensions, instead got {dims}') + image = image.to(device=device, dtype=self.unet.dtype) + image = image.repeat_interleave(num_images_per_prompt, dim=0) + return image + + def get_timesteps(self, num_inference_steps, strength): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + + def prepare_intermediate_images(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): + (_, channels, height, width) = image.shape + batch_size = batch_size * num_images_per_prompt + shape = (batch_size, channels, height, width) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + image = image.repeat_interleave(num_images_per_prompt, dim=0) + image = self.scheduler.add_noise(image, noise, timestep) + return image + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, image: Union[PIL.Image.Image, np.ndarray, torch.Tensor], original_image: Union[PIL.Image.Image, torch.Tensor, np.ndarray, List[PIL.Image.Image], List[torch.Tensor], List[np.ndarray]]=None, strength: float=0.8, prompt: Union[str, List[str]]=None, num_inference_steps: int=50, timesteps: List[int]=None, guidance_scale: float=4.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, noise_level: int=250, clean_caption: bool=True): + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + self.check_inputs(prompt, image, original_image, batch_size, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + do_classifier_free_guidance = guidance_scale > 1.0 + device = self._execution_device + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt, device=device, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clean_caption=clean_caption) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + dtype = prompt_embeds.dtype + if timesteps is not None: + self.scheduler.set_timesteps(timesteps=timesteps, device=device) + timesteps = self.scheduler.timesteps + num_inference_steps = len(timesteps) + else: + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength) + original_image = self.preprocess_original_image(original_image) + original_image = original_image.to(device=device, dtype=dtype) + noise_timestep = timesteps[0:1] + noise_timestep = noise_timestep.repeat(batch_size * num_images_per_prompt) + intermediate_images = self.prepare_intermediate_images(original_image, noise_timestep, batch_size, num_images_per_prompt, dtype, device, generator) + (_, _, height, width) = original_image.shape + image = self.preprocess_image(image, num_images_per_prompt, device) + upscaled = F.interpolate(image, (height, width), mode='bilinear', align_corners=True) + noise_level = torch.tensor([noise_level] * upscaled.shape[0], device=upscaled.device) + noise = randn_tensor(upscaled.shape, generator=generator, device=upscaled.device, dtype=upscaled.dtype) + upscaled = self.image_noising_scheduler.add_noise(upscaled, noise, timesteps=noise_level) + if do_classifier_free_guidance: + noise_level = torch.cat([noise_level] * 2) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + if hasattr(self, 'text_encoder_offload_hook') and self.text_encoder_offload_hook is not None: + self.text_encoder_offload_hook.offload() + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + model_input = torch.cat([intermediate_images, upscaled], dim=1) + model_input = torch.cat([model_input] * 2) if do_classifier_free_guidance else model_input + model_input = self.scheduler.scale_model_input(model_input, t) + noise_pred = self.unet(model_input, t, encoder_hidden_states=prompt_embeds, class_labels=noise_level, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + (noise_pred_uncond, _) = noise_pred_uncond.split(model_input.shape[1] // 2, dim=1) + (noise_pred_text, predicted_variance) = noise_pred_text.split(model_input.shape[1] // 2, dim=1) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) + if self.scheduler.config.variance_type not in ['learned', 'learned_range']: + (noise_pred, _) = noise_pred.split(intermediate_images.shape[1], dim=1) + intermediate_images = self.scheduler.step(noise_pred, t, intermediate_images, **extra_step_kwargs, return_dict=False)[0] + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + callback(i, t, intermediate_images) + image = intermediate_images + if output_type == 'pil': + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + (image, nsfw_detected, watermark_detected) = self.run_safety_checker(image, device, prompt_embeds.dtype) + image = self.numpy_to_pil(image) + if self.watermarker is not None: + self.watermarker.apply_watermark(image, self.unet.config.sample_size) + elif output_type == 'pt': + nsfw_detected = None + watermark_detected = None + else: + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + (image, nsfw_detected, watermark_detected) = self.run_safety_checker(image, device, prompt_embeds.dtype) + self.maybe_free_model_hooks() + if not return_dict: + return (image, nsfw_detected, watermark_detected) + return IFPipelineOutput(images=image, nsfw_detected=nsfw_detected, watermark_detected=watermark_detected) + +# File: diffusers-main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +import html +import inspect +import re +import urllib.parse as ul +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from transformers import CLIPImageProcessor, T5EncoderModel, T5Tokenizer +from ...loaders import StableDiffusionLoraLoaderMixin +from ...models import UNet2DConditionModel +from ...schedulers import DDPMScheduler +from ...utils import BACKENDS_MAPPING, PIL_INTERPOLATION, is_bs4_available, is_ftfy_available, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .pipeline_output import IFPipelineOutput +from .safety_checker import IFSafetyChecker +from .watermark import IFWatermarker +logger = logging.get_logger(__name__) +if is_bs4_available(): + from bs4 import BeautifulSoup +if is_ftfy_available(): + import ftfy + +def resize(images: PIL.Image.Image, img_size: int) -> PIL.Image.Image: + (w, h) = images.size + coef = w / h + (w, h) = (img_size, img_size) + if coef >= 1: + w = int(round(img_size / 8 * coef) * 8) + else: + h = int(round(img_size / 8 / coef) * 8) + images = images.resize((w, h), resample=PIL_INTERPOLATION['bicubic'], reducing_gap=None) + return images +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, DiffusionPipeline\n >>> from diffusers.utils import pt_to_pil\n >>> import torch\n >>> from PIL import Image\n >>> import requests\n >>> from io import BytesIO\n\n >>> url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/if/person.png"\n >>> response = requests.get(url)\n >>> original_image = Image.open(BytesIO(response.content)).convert("RGB")\n >>> original_image = original_image\n\n >>> url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/if/glasses_mask.png"\n >>> response = requests.get(url)\n >>> mask_image = Image.open(BytesIO(response.content))\n >>> mask_image = mask_image\n\n >>> pipe = IFInpaintingPipeline.from_pretrained(\n ... "DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16\n ... )\n >>> pipe.enable_model_cpu_offload()\n\n >>> prompt = "blue sunglasses"\n >>> prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)\n\n >>> image = pipe(\n ... image=original_image,\n ... mask_image=mask_image,\n ... prompt_embeds=prompt_embeds,\n ... negative_prompt_embeds=negative_embeds,\n ... output_type="pt",\n ... ).images\n\n >>> # save intermediate image\n >>> pil_image = pt_to_pil(image)\n >>> pil_image[0].save("./if_stage_I.png")\n\n >>> super_res_1_pipe = IFInpaintingSuperResolutionPipeline.from_pretrained(\n ... "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16\n ... )\n >>> super_res_1_pipe.enable_model_cpu_offload()\n\n >>> image = super_res_1_pipe(\n ... image=image,\n ... mask_image=mask_image,\n ... original_image=original_image,\n ... prompt_embeds=prompt_embeds,\n ... negative_prompt_embeds=negative_embeds,\n ... ).images\n >>> image[0].save("./if_stage_II.png")\n ```\n' + +class IFInpaintingPipeline(DiffusionPipeline, StableDiffusionLoraLoaderMixin): + tokenizer: T5Tokenizer + text_encoder: T5EncoderModel + unet: UNet2DConditionModel + scheduler: DDPMScheduler + feature_extractor: Optional[CLIPImageProcessor] + safety_checker: Optional[IFSafetyChecker] + watermarker: Optional[IFWatermarker] + bad_punct_regex = re.compile('[' + '#®•©™&@·º½¾¿¡§~' + '\\)' + '\\(' + '\\]' + '\\[' + '\\}' + '\\{' + '\\|' + '\\' + '\\/' + '\\*' + ']{1,}') + _optional_components = ['tokenizer', 'text_encoder', 'safety_checker', 'feature_extractor', 'watermarker'] + model_cpu_offload_seq = 'text_encoder->unet' + _exclude_from_cpu_offload = ['watermarker'] + + def __init__(self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, unet: UNet2DConditionModel, scheduler: DDPMScheduler, safety_checker: Optional[IFSafetyChecker], feature_extractor: Optional[CLIPImageProcessor], watermarker: Optional[IFWatermarker], requires_safety_checker: bool=True): + super().__init__() + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the IF license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.register_modules(tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, watermarker=watermarker) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + @torch.no_grad() + def encode_prompt(self, prompt: Union[str, List[str]], do_classifier_free_guidance: bool=True, num_images_per_prompt: int=1, device: Optional[torch.device]=None, negative_prompt: Optional[Union[str, List[str]]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, clean_caption: bool=False): + if prompt is not None and negative_prompt is not None: + if type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + if device is None: + device = self._execution_device + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + max_length = 77 + if prompt_embeds is None: + prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=max_length, truncation=True, add_special_tokens=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {max_length} tokens: {removed_text}') + attention_mask = text_inputs.attention_mask.to(device) + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + if self.text_encoder is not None: + dtype = self.text_encoder.dtype + elif self.unet is not None: + dtype = self.unet.dtype + else: + dtype = None + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors='pt') + attention_mask = uncond_input.attention_mask.to(device) + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + else: + negative_prompt_embeds = None + return (prompt_embeds, negative_prompt_embeds) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is not None: + safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors='pt').to(device) + (image, nsfw_detected, watermark_detected) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype=dtype)) + else: + nsfw_detected = None + watermark_detected = None + return (image, nsfw_detected, watermark_detected) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, image, mask_image, batch_size, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None): + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if isinstance(image, list): + check_image_type = image[0] + else: + check_image_type = image + if not isinstance(check_image_type, torch.Tensor) and (not isinstance(check_image_type, PIL.Image.Image)) and (not isinstance(check_image_type, np.ndarray)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is {type(check_image_type)}') + if isinstance(image, list): + image_batch_size = len(image) + elif isinstance(image, torch.Tensor): + image_batch_size = image.shape[0] + elif isinstance(image, PIL.Image.Image): + image_batch_size = 1 + elif isinstance(image, np.ndarray): + image_batch_size = image.shape[0] + else: + assert False + if batch_size != image_batch_size: + raise ValueError(f'image batch size: {image_batch_size} must be same as prompt batch size {batch_size}') + if isinstance(mask_image, list): + check_image_type = mask_image[0] + else: + check_image_type = mask_image + if not isinstance(check_image_type, torch.Tensor) and (not isinstance(check_image_type, PIL.Image.Image)) and (not isinstance(check_image_type, np.ndarray)): + raise ValueError(f'`mask_image` has to be of type `torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is {type(check_image_type)}') + if isinstance(mask_image, list): + image_batch_size = len(mask_image) + elif isinstance(mask_image, torch.Tensor): + image_batch_size = mask_image.shape[0] + elif isinstance(mask_image, PIL.Image.Image): + image_batch_size = 1 + elif isinstance(mask_image, np.ndarray): + image_batch_size = mask_image.shape[0] + else: + assert False + if image_batch_size != 1 and batch_size != image_batch_size: + raise ValueError(f'mask_image batch size: {image_batch_size} must be `1` or the same as prompt batch size {batch_size}') + + def _text_preprocessing(self, text, clean_caption=False): + if clean_caption and (not is_bs4_available()): + logger.warning(BACKENDS_MAPPING['bs4'][-1].format('Setting `clean_caption=True`')) + logger.warning('Setting `clean_caption` to False...') + clean_caption = False + if clean_caption and (not is_ftfy_available()): + logger.warning(BACKENDS_MAPPING['ftfy'][-1].format('Setting `clean_caption=True`')) + logger.warning('Setting `clean_caption` to False...') + clean_caption = False + if not isinstance(text, (tuple, list)): + text = [text] + + def process(text: str): + if clean_caption: + text = self._clean_caption(text) + text = self._clean_caption(text) + else: + text = text.lower().strip() + return text + return [process(t) for t in text] + + def _clean_caption(self, caption): + caption = str(caption) + caption = ul.unquote_plus(caption) + caption = caption.strip().lower() + caption = re.sub('', 'person', caption) + caption = re.sub('\\b((?:https?:(?:\\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\\w/-]*\\b\\/?(?!@)))', '', caption) + caption = re.sub('\\b((?:www:(?:\\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\\w/-]*\\b\\/?(?!@)))', '', caption) + caption = BeautifulSoup(caption, features='html.parser').text + caption = re.sub('@[\\w\\d]+\\b', '', caption) + caption = re.sub('[\\u31c0-\\u31ef]+', '', caption) + caption = re.sub('[\\u31f0-\\u31ff]+', '', caption) + caption = re.sub('[\\u3200-\\u32ff]+', '', caption) + caption = re.sub('[\\u3300-\\u33ff]+', '', caption) + caption = re.sub('[\\u3400-\\u4dbf]+', '', caption) + caption = re.sub('[\\u4dc0-\\u4dff]+', '', caption) + caption = re.sub('[\\u4e00-\\u9fff]+', '', caption) + caption = re.sub('[\\u002D\\u058A\\u05BE\\u1400\\u1806\\u2010-\\u2015\\u2E17\\u2E1A\\u2E3A\\u2E3B\\u2E40\\u301C\\u3030\\u30A0\\uFE31\\uFE32\\uFE58\\uFE63\\uFF0D]+', '-', caption) + caption = re.sub('[`´«»“”¨]', '"', caption) + caption = re.sub('[‘’]', "'", caption) + caption = re.sub('"?', '', caption) + caption = re.sub('&', '', caption) + caption = re.sub('\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}', ' ', caption) + caption = re.sub('\\d:\\d\\d\\s+$', '', caption) + caption = re.sub('\\\\n', ' ', caption) + caption = re.sub('#\\d{1,3}\\b', '', caption) + caption = re.sub('#\\d{5,}\\b', '', caption) + caption = re.sub('\\b\\d{6,}\\b', '', caption) + caption = re.sub('[\\S]+\\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)', '', caption) + caption = re.sub('[\\"\\\']{2,}', '"', caption) + caption = re.sub('[\\.]{2,}', ' ', caption) + caption = re.sub(self.bad_punct_regex, ' ', caption) + caption = re.sub('\\s+\\.\\s+', ' ', caption) + regex2 = re.compile('(?:\\-|\\_)') + if len(re.findall(regex2, caption)) > 3: + caption = re.sub(regex2, ' ', caption) + caption = ftfy.fix_text(caption) + caption = html.unescape(html.unescape(caption)) + caption = re.sub('\\b[a-zA-Z]{1,3}\\d{3,15}\\b', '', caption) + caption = re.sub('\\b[a-zA-Z]+\\d+[a-zA-Z]+\\b', '', caption) + caption = re.sub('\\b\\d+[a-zA-Z]+\\d+\\b', '', caption) + caption = re.sub('(worldwide\\s+)?(free\\s+)?shipping', '', caption) + caption = re.sub('(free\\s)?download(\\sfree)?', '', caption) + caption = re.sub('\\bclick\\b\\s(?:for|on)\\s\\w+', '', caption) + caption = re.sub('\\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\\simage[s]?)?', '', caption) + caption = re.sub('\\bpage\\s+\\d+\\b', '', caption) + caption = re.sub('\\b\\d*[a-zA-Z]+\\d+[a-zA-Z]+\\d+[a-zA-Z\\d]*\\b', ' ', caption) + caption = re.sub('\\b\\d+\\.?\\d*[xх×]\\d+\\.?\\d*\\b', '', caption) + caption = re.sub('\\b\\s+\\:\\s+', ': ', caption) + caption = re.sub('(\\D[,\\./])\\b', '\\1 ', caption) + caption = re.sub('\\s+', ' ', caption) + caption.strip() + caption = re.sub('^[\\"\\\']([\\w\\W]+)[\\"\\\']$', '\\1', caption) + caption = re.sub("^[\\'\\_,\\-\\:;]", '', caption) + caption = re.sub("[\\'\\_,\\-\\:\\-\\+]$", '', caption) + caption = re.sub('^\\.\\S+$', '', caption) + return caption.strip() + + def preprocess_image(self, image: PIL.Image.Image) -> torch.Tensor: + if not isinstance(image, list): + image = [image] + + def numpy_to_pt(images): + if images.ndim == 3: + images = images[..., None] + images = torch.from_numpy(images.transpose(0, 3, 1, 2)) + return images + if isinstance(image[0], PIL.Image.Image): + new_image = [] + for image_ in image: + image_ = image_.convert('RGB') + image_ = resize(image_, self.unet.config.sample_size) + image_ = np.array(image_) + image_ = image_.astype(np.float32) + image_ = image_ / 127.5 - 1 + new_image.append(image_) + image = new_image + image = np.stack(image, axis=0) + image = numpy_to_pt(image) + elif isinstance(image[0], np.ndarray): + image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0) + image = numpy_to_pt(image) + elif isinstance(image[0], torch.Tensor): + image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0) + return image + + def preprocess_mask_image(self, mask_image) -> torch.Tensor: + if not isinstance(mask_image, list): + mask_image = [mask_image] + if isinstance(mask_image[0], torch.Tensor): + mask_image = torch.cat(mask_image, axis=0) if mask_image[0].ndim == 4 else torch.stack(mask_image, axis=0) + if mask_image.ndim == 2: + mask_image = mask_image.unsqueeze(0).unsqueeze(0) + elif mask_image.ndim == 3 and mask_image.shape[0] == 1: + mask_image = mask_image.unsqueeze(0) + elif mask_image.ndim == 3 and mask_image.shape[0] != 1: + mask_image = mask_image.unsqueeze(1) + mask_image[mask_image < 0.5] = 0 + mask_image[mask_image >= 0.5] = 1 + elif isinstance(mask_image[0], PIL.Image.Image): + new_mask_image = [] + for mask_image_ in mask_image: + mask_image_ = mask_image_.convert('L') + mask_image_ = resize(mask_image_, self.unet.config.sample_size) + mask_image_ = np.array(mask_image_) + mask_image_ = mask_image_[None, None, :] + new_mask_image.append(mask_image_) + mask_image = new_mask_image + mask_image = np.concatenate(mask_image, axis=0) + mask_image = mask_image.astype(np.float32) / 255.0 + mask_image[mask_image < 0.5] = 0 + mask_image[mask_image >= 0.5] = 1 + mask_image = torch.from_numpy(mask_image) + elif isinstance(mask_image[0], np.ndarray): + mask_image = np.concatenate([m[None, None, :] for m in mask_image], axis=0) + mask_image[mask_image < 0.5] = 0 + mask_image[mask_image >= 0.5] = 1 + mask_image = torch.from_numpy(mask_image) + return mask_image + + def get_timesteps(self, num_inference_steps, strength): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + + def prepare_intermediate_images(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, mask_image, generator=None): + (image_batch_size, channels, height, width) = image.shape + batch_size = batch_size * num_images_per_prompt + shape = (batch_size, channels, height, width) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + image = image.repeat_interleave(num_images_per_prompt, dim=0) + noised_image = self.scheduler.add_noise(image, noise, timestep) + image = (1 - mask_image) * image + mask_image * noised_image + return image + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, image: Union[PIL.Image.Image, torch.Tensor, np.ndarray, List[PIL.Image.Image], List[torch.Tensor], List[np.ndarray]]=None, mask_image: Union[PIL.Image.Image, torch.Tensor, np.ndarray, List[PIL.Image.Image], List[torch.Tensor], List[np.ndarray]]=None, strength: float=1.0, num_inference_steps: int=50, timesteps: List[int]=None, guidance_scale: float=7.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, clean_caption: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None): + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + self.check_inputs(prompt, image, mask_image, batch_size, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt, device=device, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clean_caption=clean_caption) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + dtype = prompt_embeds.dtype + if timesteps is not None: + self.scheduler.set_timesteps(timesteps=timesteps, device=device) + timesteps = self.scheduler.timesteps + num_inference_steps = len(timesteps) + else: + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength) + image = self.preprocess_image(image) + image = image.to(device=device, dtype=dtype) + mask_image = self.preprocess_mask_image(mask_image) + mask_image = mask_image.to(device=device, dtype=dtype) + if mask_image.shape[0] == 1: + mask_image = mask_image.repeat_interleave(batch_size * num_images_per_prompt, dim=0) + else: + mask_image = mask_image.repeat_interleave(num_images_per_prompt, dim=0) + noise_timestep = timesteps[0:1] + noise_timestep = noise_timestep.repeat(batch_size * num_images_per_prompt) + intermediate_images = self.prepare_intermediate_images(image, noise_timestep, batch_size, num_images_per_prompt, dtype, device, mask_image, generator) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + if hasattr(self, 'text_encoder_offload_hook') and self.text_encoder_offload_hook is not None: + self.text_encoder_offload_hook.offload() + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + model_input = torch.cat([intermediate_images] * 2) if do_classifier_free_guidance else intermediate_images + model_input = self.scheduler.scale_model_input(model_input, t) + noise_pred = self.unet(model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + (noise_pred_uncond, _) = noise_pred_uncond.split(model_input.shape[1], dim=1) + (noise_pred_text, predicted_variance) = noise_pred_text.split(model_input.shape[1], dim=1) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) + if self.scheduler.config.variance_type not in ['learned', 'learned_range']: + (noise_pred, _) = noise_pred.split(model_input.shape[1], dim=1) + prev_intermediate_images = intermediate_images + intermediate_images = self.scheduler.step(noise_pred, t, intermediate_images, **extra_step_kwargs, return_dict=False)[0] + intermediate_images = (1 - mask_image) * prev_intermediate_images + mask_image * intermediate_images + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + callback(i, t, intermediate_images) + image = intermediate_images + if output_type == 'pil': + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + (image, nsfw_detected, watermark_detected) = self.run_safety_checker(image, device, prompt_embeds.dtype) + image = self.numpy_to_pil(image) + if self.watermarker is not None: + self.watermarker.apply_watermark(image, self.unet.config.sample_size) + elif output_type == 'pt': + nsfw_detected = None + watermark_detected = None + if hasattr(self, 'unet_offload_hook') and self.unet_offload_hook is not None: + self.unet_offload_hook.offload() + else: + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + (image, nsfw_detected, watermark_detected) = self.run_safety_checker(image, device, prompt_embeds.dtype) + self.maybe_free_model_hooks() + if not return_dict: + return (image, nsfw_detected, watermark_detected) + return IFPipelineOutput(images=image, nsfw_detected=nsfw_detected, watermark_detected=watermark_detected) + +# File: diffusers-main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +import html +import inspect +import re +import urllib.parse as ul +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, T5EncoderModel, T5Tokenizer +from ...loaders import StableDiffusionLoraLoaderMixin +from ...models import UNet2DConditionModel +from ...schedulers import DDPMScheduler +from ...utils import BACKENDS_MAPPING, PIL_INTERPOLATION, is_bs4_available, is_ftfy_available, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .pipeline_output import IFPipelineOutput +from .safety_checker import IFSafetyChecker +from .watermark import IFWatermarker +if is_bs4_available(): + from bs4 import BeautifulSoup +if is_ftfy_available(): + import ftfy +logger = logging.get_logger(__name__) + +def resize(images: PIL.Image.Image, img_size: int) -> PIL.Image.Image: + (w, h) = images.size + coef = w / h + (w, h) = (img_size, img_size) + if coef >= 1: + w = int(round(img_size / 8 * coef) * 8) + else: + h = int(round(img_size / 8 / coef) * 8) + images = images.resize((w, h), resample=PIL_INTERPOLATION['bicubic'], reducing_gap=None) + return images +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, DiffusionPipeline\n >>> from diffusers.utils import pt_to_pil\n >>> import torch\n >>> from PIL import Image\n >>> import requests\n >>> from io import BytesIO\n\n >>> url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/if/person.png"\n >>> response = requests.get(url)\n >>> original_image = Image.open(BytesIO(response.content)).convert("RGB")\n >>> original_image = original_image\n\n >>> url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/if/glasses_mask.png"\n >>> response = requests.get(url)\n >>> mask_image = Image.open(BytesIO(response.content))\n >>> mask_image = mask_image\n\n >>> pipe = IFInpaintingPipeline.from_pretrained(\n ... "DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16\n ... )\n >>> pipe.enable_model_cpu_offload()\n\n >>> prompt = "blue sunglasses"\n\n >>> prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)\n >>> image = pipe(\n ... image=original_image,\n ... mask_image=mask_image,\n ... prompt_embeds=prompt_embeds,\n ... negative_prompt_embeds=negative_embeds,\n ... output_type="pt",\n ... ).images\n\n >>> # save intermediate image\n >>> pil_image = pt_to_pil(image)\n >>> pil_image[0].save("./if_stage_I.png")\n\n >>> super_res_1_pipe = IFInpaintingSuperResolutionPipeline.from_pretrained(\n ... "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16\n ... )\n >>> super_res_1_pipe.enable_model_cpu_offload()\n\n >>> image = super_res_1_pipe(\n ... image=image,\n ... mask_image=mask_image,\n ... original_image=original_image,\n ... prompt_embeds=prompt_embeds,\n ... negative_prompt_embeds=negative_embeds,\n ... ).images\n >>> image[0].save("./if_stage_II.png")\n ```\n ' + +class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, StableDiffusionLoraLoaderMixin): + tokenizer: T5Tokenizer + text_encoder: T5EncoderModel + unet: UNet2DConditionModel + scheduler: DDPMScheduler + image_noising_scheduler: DDPMScheduler + feature_extractor: Optional[CLIPImageProcessor] + safety_checker: Optional[IFSafetyChecker] + watermarker: Optional[IFWatermarker] + bad_punct_regex = re.compile('[' + '#®•©™&@·º½¾¿¡§~' + '\\)' + '\\(' + '\\]' + '\\[' + '\\}' + '\\{' + '\\|' + '\\' + '\\/' + '\\*' + ']{1,}') + model_cpu_offload_seq = 'text_encoder->unet' + _optional_components = ['tokenizer', 'text_encoder', 'safety_checker', 'feature_extractor', 'watermarker'] + _exclude_from_cpu_offload = ['watermarker'] + + def __init__(self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, unet: UNet2DConditionModel, scheduler: DDPMScheduler, image_noising_scheduler: DDPMScheduler, safety_checker: Optional[IFSafetyChecker], feature_extractor: Optional[CLIPImageProcessor], watermarker: Optional[IFWatermarker], requires_safety_checker: bool=True): + super().__init__() + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the IF license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + if unet.config.in_channels != 6: + logger.warning("It seems like you have loaded a checkpoint that shall not be used for super resolution from {unet.config._name_or_path} as it accepts {unet.config.in_channels} input channels instead of 6. Please make sure to pass a super resolution checkpoint as the `'unet'`: IFSuperResolutionPipeline.from_pretrained(unet=super_resolution_unet, ...)`.") + self.register_modules(tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, image_noising_scheduler=image_noising_scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, watermarker=watermarker) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _text_preprocessing(self, text, clean_caption=False): + if clean_caption and (not is_bs4_available()): + logger.warning(BACKENDS_MAPPING['bs4'][-1].format('Setting `clean_caption=True`')) + logger.warning('Setting `clean_caption` to False...') + clean_caption = False + if clean_caption and (not is_ftfy_available()): + logger.warning(BACKENDS_MAPPING['ftfy'][-1].format('Setting `clean_caption=True`')) + logger.warning('Setting `clean_caption` to False...') + clean_caption = False + if not isinstance(text, (tuple, list)): + text = [text] + + def process(text: str): + if clean_caption: + text = self._clean_caption(text) + text = self._clean_caption(text) + else: + text = text.lower().strip() + return text + return [process(t) for t in text] + + def _clean_caption(self, caption): + caption = str(caption) + caption = ul.unquote_plus(caption) + caption = caption.strip().lower() + caption = re.sub('', 'person', caption) + caption = re.sub('\\b((?:https?:(?:\\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\\w/-]*\\b\\/?(?!@)))', '', caption) + caption = re.sub('\\b((?:www:(?:\\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\\w/-]*\\b\\/?(?!@)))', '', caption) + caption = BeautifulSoup(caption, features='html.parser').text + caption = re.sub('@[\\w\\d]+\\b', '', caption) + caption = re.sub('[\\u31c0-\\u31ef]+', '', caption) + caption = re.sub('[\\u31f0-\\u31ff]+', '', caption) + caption = re.sub('[\\u3200-\\u32ff]+', '', caption) + caption = re.sub('[\\u3300-\\u33ff]+', '', caption) + caption = re.sub('[\\u3400-\\u4dbf]+', '', caption) + caption = re.sub('[\\u4dc0-\\u4dff]+', '', caption) + caption = re.sub('[\\u4e00-\\u9fff]+', '', caption) + caption = re.sub('[\\u002D\\u058A\\u05BE\\u1400\\u1806\\u2010-\\u2015\\u2E17\\u2E1A\\u2E3A\\u2E3B\\u2E40\\u301C\\u3030\\u30A0\\uFE31\\uFE32\\uFE58\\uFE63\\uFF0D]+', '-', caption) + caption = re.sub('[`´«»“”¨]', '"', caption) + caption = re.sub('[‘’]', "'", caption) + caption = re.sub('"?', '', caption) + caption = re.sub('&', '', caption) + caption = re.sub('\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}', ' ', caption) + caption = re.sub('\\d:\\d\\d\\s+$', '', caption) + caption = re.sub('\\\\n', ' ', caption) + caption = re.sub('#\\d{1,3}\\b', '', caption) + caption = re.sub('#\\d{5,}\\b', '', caption) + caption = re.sub('\\b\\d{6,}\\b', '', caption) + caption = re.sub('[\\S]+\\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)', '', caption) + caption = re.sub('[\\"\\\']{2,}', '"', caption) + caption = re.sub('[\\.]{2,}', ' ', caption) + caption = re.sub(self.bad_punct_regex, ' ', caption) + caption = re.sub('\\s+\\.\\s+', ' ', caption) + regex2 = re.compile('(?:\\-|\\_)') + if len(re.findall(regex2, caption)) > 3: + caption = re.sub(regex2, ' ', caption) + caption = ftfy.fix_text(caption) + caption = html.unescape(html.unescape(caption)) + caption = re.sub('\\b[a-zA-Z]{1,3}\\d{3,15}\\b', '', caption) + caption = re.sub('\\b[a-zA-Z]+\\d+[a-zA-Z]+\\b', '', caption) + caption = re.sub('\\b\\d+[a-zA-Z]+\\d+\\b', '', caption) + caption = re.sub('(worldwide\\s+)?(free\\s+)?shipping', '', caption) + caption = re.sub('(free\\s)?download(\\sfree)?', '', caption) + caption = re.sub('\\bclick\\b\\s(?:for|on)\\s\\w+', '', caption) + caption = re.sub('\\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\\simage[s]?)?', '', caption) + caption = re.sub('\\bpage\\s+\\d+\\b', '', caption) + caption = re.sub('\\b\\d*[a-zA-Z]+\\d+[a-zA-Z]+\\d+[a-zA-Z\\d]*\\b', ' ', caption) + caption = re.sub('\\b\\d+\\.?\\d*[xх×]\\d+\\.?\\d*\\b', '', caption) + caption = re.sub('\\b\\s+\\:\\s+', ': ', caption) + caption = re.sub('(\\D[,\\./])\\b', '\\1 ', caption) + caption = re.sub('\\s+', ' ', caption) + caption.strip() + caption = re.sub('^[\\"\\\']([\\w\\W]+)[\\"\\\']$', '\\1', caption) + caption = re.sub("^[\\'\\_,\\-\\:;]", '', caption) + caption = re.sub("[\\'\\_,\\-\\:\\-\\+]$", '', caption) + caption = re.sub('^\\.\\S+$', '', caption) + return caption.strip() + + @torch.no_grad() + def encode_prompt(self, prompt: Union[str, List[str]], do_classifier_free_guidance: bool=True, num_images_per_prompt: int=1, device: Optional[torch.device]=None, negative_prompt: Optional[Union[str, List[str]]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, clean_caption: bool=False): + if prompt is not None and negative_prompt is not None: + if type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + if device is None: + device = self._execution_device + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + max_length = 77 + if prompt_embeds is None: + prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=max_length, truncation=True, add_special_tokens=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {max_length} tokens: {removed_text}') + attention_mask = text_inputs.attention_mask.to(device) + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + if self.text_encoder is not None: + dtype = self.text_encoder.dtype + elif self.unet is not None: + dtype = self.unet.dtype + else: + dtype = None + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors='pt') + attention_mask = uncond_input.attention_mask.to(device) + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + else: + negative_prompt_embeds = None + return (prompt_embeds, negative_prompt_embeds) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is not None: + safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors='pt').to(device) + (image, nsfw_detected, watermark_detected) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype=dtype)) + else: + nsfw_detected = None + watermark_detected = None + return (image, nsfw_detected, watermark_detected) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, image, original_image, mask_image, batch_size, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None): + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if isinstance(image, list): + check_image_type = image[0] + else: + check_image_type = image + if not isinstance(check_image_type, torch.Tensor) and (not isinstance(check_image_type, PIL.Image.Image)) and (not isinstance(check_image_type, np.ndarray)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is {type(check_image_type)}') + if isinstance(image, list): + image_batch_size = len(image) + elif isinstance(image, torch.Tensor): + image_batch_size = image.shape[0] + elif isinstance(image, PIL.Image.Image): + image_batch_size = 1 + elif isinstance(image, np.ndarray): + image_batch_size = image.shape[0] + else: + assert False + if batch_size != image_batch_size: + raise ValueError(f'image batch size: {image_batch_size} must be same as prompt batch size {batch_size}') + if isinstance(original_image, list): + check_image_type = original_image[0] + else: + check_image_type = original_image + if not isinstance(check_image_type, torch.Tensor) and (not isinstance(check_image_type, PIL.Image.Image)) and (not isinstance(check_image_type, np.ndarray)): + raise ValueError(f'`original_image` has to be of type `torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is {type(check_image_type)}') + if isinstance(original_image, list): + image_batch_size = len(original_image) + elif isinstance(original_image, torch.Tensor): + image_batch_size = original_image.shape[0] + elif isinstance(original_image, PIL.Image.Image): + image_batch_size = 1 + elif isinstance(original_image, np.ndarray): + image_batch_size = original_image.shape[0] + else: + assert False + if batch_size != image_batch_size: + raise ValueError(f'original_image batch size: {image_batch_size} must be same as prompt batch size {batch_size}') + if isinstance(mask_image, list): + check_image_type = mask_image[0] + else: + check_image_type = mask_image + if not isinstance(check_image_type, torch.Tensor) and (not isinstance(check_image_type, PIL.Image.Image)) and (not isinstance(check_image_type, np.ndarray)): + raise ValueError(f'`mask_image` has to be of type `torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is {type(check_image_type)}') + if isinstance(mask_image, list): + image_batch_size = len(mask_image) + elif isinstance(mask_image, torch.Tensor): + image_batch_size = mask_image.shape[0] + elif isinstance(mask_image, PIL.Image.Image): + image_batch_size = 1 + elif isinstance(mask_image, np.ndarray): + image_batch_size = mask_image.shape[0] + else: + assert False + if image_batch_size != 1 and batch_size != image_batch_size: + raise ValueError(f'mask_image batch size: {image_batch_size} must be `1` or the same as prompt batch size {batch_size}') + + def preprocess_original_image(self, image: PIL.Image.Image) -> torch.Tensor: + if not isinstance(image, list): + image = [image] + + def numpy_to_pt(images): + if images.ndim == 3: + images = images[..., None] + images = torch.from_numpy(images.transpose(0, 3, 1, 2)) + return images + if isinstance(image[0], PIL.Image.Image): + new_image = [] + for image_ in image: + image_ = image_.convert('RGB') + image_ = resize(image_, self.unet.config.sample_size) + image_ = np.array(image_) + image_ = image_.astype(np.float32) + image_ = image_ / 127.5 - 1 + new_image.append(image_) + image = new_image + image = np.stack(image, axis=0) + image = numpy_to_pt(image) + elif isinstance(image[0], np.ndarray): + image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0) + image = numpy_to_pt(image) + elif isinstance(image[0], torch.Tensor): + image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0) + return image + + def preprocess_image(self, image: PIL.Image.Image, num_images_per_prompt, device) -> torch.Tensor: + if not isinstance(image, torch.Tensor) and (not isinstance(image, list)): + image = [image] + if isinstance(image[0], PIL.Image.Image): + image = [np.array(i).astype(np.float32) / 127.5 - 1.0 for i in image] + image = np.stack(image, axis=0) + image = torch.from_numpy(image.transpose(0, 3, 1, 2)) + elif isinstance(image[0], np.ndarray): + image = np.stack(image, axis=0) + if image.ndim == 5: + image = image[0] + image = torch.from_numpy(image.transpose(0, 3, 1, 2)) + elif isinstance(image, list) and isinstance(image[0], torch.Tensor): + dims = image[0].ndim + if dims == 3: + image = torch.stack(image, dim=0) + elif dims == 4: + image = torch.concat(image, dim=0) + else: + raise ValueError(f'Image must have 3 or 4 dimensions, instead got {dims}') + image = image.to(device=device, dtype=self.unet.dtype) + image = image.repeat_interleave(num_images_per_prompt, dim=0) + return image + + def preprocess_mask_image(self, mask_image) -> torch.Tensor: + if not isinstance(mask_image, list): + mask_image = [mask_image] + if isinstance(mask_image[0], torch.Tensor): + mask_image = torch.cat(mask_image, axis=0) if mask_image[0].ndim == 4 else torch.stack(mask_image, axis=0) + if mask_image.ndim == 2: + mask_image = mask_image.unsqueeze(0).unsqueeze(0) + elif mask_image.ndim == 3 and mask_image.shape[0] == 1: + mask_image = mask_image.unsqueeze(0) + elif mask_image.ndim == 3 and mask_image.shape[0] != 1: + mask_image = mask_image.unsqueeze(1) + mask_image[mask_image < 0.5] = 0 + mask_image[mask_image >= 0.5] = 1 + elif isinstance(mask_image[0], PIL.Image.Image): + new_mask_image = [] + for mask_image_ in mask_image: + mask_image_ = mask_image_.convert('L') + mask_image_ = resize(mask_image_, self.unet.config.sample_size) + mask_image_ = np.array(mask_image_) + mask_image_ = mask_image_[None, None, :] + new_mask_image.append(mask_image_) + mask_image = new_mask_image + mask_image = np.concatenate(mask_image, axis=0) + mask_image = mask_image.astype(np.float32) / 255.0 + mask_image[mask_image < 0.5] = 0 + mask_image[mask_image >= 0.5] = 1 + mask_image = torch.from_numpy(mask_image) + elif isinstance(mask_image[0], np.ndarray): + mask_image = np.concatenate([m[None, None, :] for m in mask_image], axis=0) + mask_image[mask_image < 0.5] = 0 + mask_image[mask_image >= 0.5] = 1 + mask_image = torch.from_numpy(mask_image) + return mask_image + + def get_timesteps(self, num_inference_steps, strength): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + + def prepare_intermediate_images(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, mask_image, generator=None): + (image_batch_size, channels, height, width) = image.shape + batch_size = batch_size * num_images_per_prompt + shape = (batch_size, channels, height, width) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + image = image.repeat_interleave(num_images_per_prompt, dim=0) + noised_image = self.scheduler.add_noise(image, noise, timestep) + image = (1 - mask_image) * image + mask_image * noised_image + return image + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, image: Union[PIL.Image.Image, np.ndarray, torch.Tensor], original_image: Union[PIL.Image.Image, torch.Tensor, np.ndarray, List[PIL.Image.Image], List[torch.Tensor], List[np.ndarray]]=None, mask_image: Union[PIL.Image.Image, torch.Tensor, np.ndarray, List[PIL.Image.Image], List[torch.Tensor], List[np.ndarray]]=None, strength: float=0.8, prompt: Union[str, List[str]]=None, num_inference_steps: int=100, timesteps: List[int]=None, guidance_scale: float=4.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, noise_level: int=0, clean_caption: bool=True): + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + self.check_inputs(prompt, image, original_image, mask_image, batch_size, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + do_classifier_free_guidance = guidance_scale > 1.0 + device = self._execution_device + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt, device=device, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clean_caption=clean_caption) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + dtype = prompt_embeds.dtype + if timesteps is not None: + self.scheduler.set_timesteps(timesteps=timesteps, device=device) + timesteps = self.scheduler.timesteps + num_inference_steps = len(timesteps) + else: + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength) + original_image = self.preprocess_original_image(original_image) + original_image = original_image.to(device=device, dtype=dtype) + mask_image = self.preprocess_mask_image(mask_image) + mask_image = mask_image.to(device=device, dtype=dtype) + if mask_image.shape[0] == 1: + mask_image = mask_image.repeat_interleave(batch_size * num_images_per_prompt, dim=0) + else: + mask_image = mask_image.repeat_interleave(num_images_per_prompt, dim=0) + noise_timestep = timesteps[0:1] + noise_timestep = noise_timestep.repeat(batch_size * num_images_per_prompt) + intermediate_images = self.prepare_intermediate_images(original_image, noise_timestep, batch_size, num_images_per_prompt, dtype, device, mask_image, generator) + (_, _, height, width) = original_image.shape + image = self.preprocess_image(image, num_images_per_prompt, device) + upscaled = F.interpolate(image, (height, width), mode='bilinear', align_corners=True) + noise_level = torch.tensor([noise_level] * upscaled.shape[0], device=upscaled.device) + noise = randn_tensor(upscaled.shape, generator=generator, device=upscaled.device, dtype=upscaled.dtype) + upscaled = self.image_noising_scheduler.add_noise(upscaled, noise, timesteps=noise_level) + if do_classifier_free_guidance: + noise_level = torch.cat([noise_level] * 2) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + if hasattr(self, 'text_encoder_offload_hook') and self.text_encoder_offload_hook is not None: + self.text_encoder_offload_hook.offload() + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + model_input = torch.cat([intermediate_images, upscaled], dim=1) + model_input = torch.cat([model_input] * 2) if do_classifier_free_guidance else model_input + model_input = self.scheduler.scale_model_input(model_input, t) + noise_pred = self.unet(model_input, t, encoder_hidden_states=prompt_embeds, class_labels=noise_level, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + (noise_pred_uncond, _) = noise_pred_uncond.split(model_input.shape[1] // 2, dim=1) + (noise_pred_text, predicted_variance) = noise_pred_text.split(model_input.shape[1] // 2, dim=1) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) + if self.scheduler.config.variance_type not in ['learned', 'learned_range']: + (noise_pred, _) = noise_pred.split(intermediate_images.shape[1], dim=1) + prev_intermediate_images = intermediate_images + intermediate_images = self.scheduler.step(noise_pred, t, intermediate_images, **extra_step_kwargs, return_dict=False)[0] + intermediate_images = (1 - mask_image) * prev_intermediate_images + mask_image * intermediate_images + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + callback(i, t, intermediate_images) + image = intermediate_images + if output_type == 'pil': + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + (image, nsfw_detected, watermark_detected) = self.run_safety_checker(image, device, prompt_embeds.dtype) + image = self.numpy_to_pil(image) + if self.watermarker is not None: + self.watermarker.apply_watermark(image, self.unet.config.sample_size) + elif output_type == 'pt': + nsfw_detected = None + watermark_detected = None + else: + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + (image, nsfw_detected, watermark_detected) = self.run_safety_checker(image, device, prompt_embeds.dtype) + self.maybe_free_model_hooks() + if not return_dict: + return (image, nsfw_detected, watermark_detected) + return IFPipelineOutput(images=image, nsfw_detected=nsfw_detected, watermark_detected=watermark_detected) + +# File: diffusers-main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +import html +import inspect +import re +import urllib.parse as ul +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, T5EncoderModel, T5Tokenizer +from ...loaders import StableDiffusionLoraLoaderMixin +from ...models import UNet2DConditionModel +from ...schedulers import DDPMScheduler +from ...utils import BACKENDS_MAPPING, is_bs4_available, is_ftfy_available, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .pipeline_output import IFPipelineOutput +from .safety_checker import IFSafetyChecker +from .watermark import IFWatermarker +if is_bs4_available(): + from bs4 import BeautifulSoup +if is_ftfy_available(): + import ftfy +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import IFPipeline, IFSuperResolutionPipeline, DiffusionPipeline\n >>> from diffusers.utils import pt_to_pil\n >>> import torch\n\n >>> pipe = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)\n >>> pipe.enable_model_cpu_offload()\n\n >>> prompt = \'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"\'\n >>> prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)\n\n >>> image = pipe(prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, output_type="pt").images\n\n >>> # save intermediate image\n >>> pil_image = pt_to_pil(image)\n >>> pil_image[0].save("./if_stage_I.png")\n\n >>> super_res_1_pipe = IFSuperResolutionPipeline.from_pretrained(\n ... "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16\n ... )\n >>> super_res_1_pipe.enable_model_cpu_offload()\n\n >>> image = super_res_1_pipe(\n ... image=image, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds\n ... ).images\n >>> image[0].save("./if_stage_II.png")\n ```\n' + +class IFSuperResolutionPipeline(DiffusionPipeline, StableDiffusionLoraLoaderMixin): + tokenizer: T5Tokenizer + text_encoder: T5EncoderModel + unet: UNet2DConditionModel + scheduler: DDPMScheduler + image_noising_scheduler: DDPMScheduler + feature_extractor: Optional[CLIPImageProcessor] + safety_checker: Optional[IFSafetyChecker] + watermarker: Optional[IFWatermarker] + bad_punct_regex = re.compile('[' + '#®•©™&@·º½¾¿¡§~' + '\\)' + '\\(' + '\\]' + '\\[' + '\\}' + '\\{' + '\\|' + '\\' + '\\/' + '\\*' + ']{1,}') + _optional_components = ['tokenizer', 'text_encoder', 'safety_checker', 'feature_extractor', 'watermarker'] + model_cpu_offload_seq = 'text_encoder->unet' + _exclude_from_cpu_offload = ['watermarker'] + + def __init__(self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, unet: UNet2DConditionModel, scheduler: DDPMScheduler, image_noising_scheduler: DDPMScheduler, safety_checker: Optional[IFSafetyChecker], feature_extractor: Optional[CLIPImageProcessor], watermarker: Optional[IFWatermarker], requires_safety_checker: bool=True): + super().__init__() + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the IF license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + if unet.config.in_channels != 6: + logger.warning("It seems like you have loaded a checkpoint that shall not be used for super resolution from {unet.config._name_or_path} as it accepts {unet.config.in_channels} input channels instead of 6. Please make sure to pass a super resolution checkpoint as the `'unet'`: IFSuperResolutionPipeline.from_pretrained(unet=super_resolution_unet, ...)`.") + self.register_modules(tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, image_noising_scheduler=image_noising_scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, watermarker=watermarker) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _text_preprocessing(self, text, clean_caption=False): + if clean_caption and (not is_bs4_available()): + logger.warning(BACKENDS_MAPPING['bs4'][-1].format('Setting `clean_caption=True`')) + logger.warning('Setting `clean_caption` to False...') + clean_caption = False + if clean_caption and (not is_ftfy_available()): + logger.warning(BACKENDS_MAPPING['ftfy'][-1].format('Setting `clean_caption=True`')) + logger.warning('Setting `clean_caption` to False...') + clean_caption = False + if not isinstance(text, (tuple, list)): + text = [text] + + def process(text: str): + if clean_caption: + text = self._clean_caption(text) + text = self._clean_caption(text) + else: + text = text.lower().strip() + return text + return [process(t) for t in text] + + def _clean_caption(self, caption): + caption = str(caption) + caption = ul.unquote_plus(caption) + caption = caption.strip().lower() + caption = re.sub('', 'person', caption) + caption = re.sub('\\b((?:https?:(?:\\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\\w/-]*\\b\\/?(?!@)))', '', caption) + caption = re.sub('\\b((?:www:(?:\\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\\w/-]*\\b\\/?(?!@)))', '', caption) + caption = BeautifulSoup(caption, features='html.parser').text + caption = re.sub('@[\\w\\d]+\\b', '', caption) + caption = re.sub('[\\u31c0-\\u31ef]+', '', caption) + caption = re.sub('[\\u31f0-\\u31ff]+', '', caption) + caption = re.sub('[\\u3200-\\u32ff]+', '', caption) + caption = re.sub('[\\u3300-\\u33ff]+', '', caption) + caption = re.sub('[\\u3400-\\u4dbf]+', '', caption) + caption = re.sub('[\\u4dc0-\\u4dff]+', '', caption) + caption = re.sub('[\\u4e00-\\u9fff]+', '', caption) + caption = re.sub('[\\u002D\\u058A\\u05BE\\u1400\\u1806\\u2010-\\u2015\\u2E17\\u2E1A\\u2E3A\\u2E3B\\u2E40\\u301C\\u3030\\u30A0\\uFE31\\uFE32\\uFE58\\uFE63\\uFF0D]+', '-', caption) + caption = re.sub('[`´«»“”¨]', '"', caption) + caption = re.sub('[‘’]', "'", caption) + caption = re.sub('"?', '', caption) + caption = re.sub('&', '', caption) + caption = re.sub('\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}', ' ', caption) + caption = re.sub('\\d:\\d\\d\\s+$', '', caption) + caption = re.sub('\\\\n', ' ', caption) + caption = re.sub('#\\d{1,3}\\b', '', caption) + caption = re.sub('#\\d{5,}\\b', '', caption) + caption = re.sub('\\b\\d{6,}\\b', '', caption) + caption = re.sub('[\\S]+\\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)', '', caption) + caption = re.sub('[\\"\\\']{2,}', '"', caption) + caption = re.sub('[\\.]{2,}', ' ', caption) + caption = re.sub(self.bad_punct_regex, ' ', caption) + caption = re.sub('\\s+\\.\\s+', ' ', caption) + regex2 = re.compile('(?:\\-|\\_)') + if len(re.findall(regex2, caption)) > 3: + caption = re.sub(regex2, ' ', caption) + caption = ftfy.fix_text(caption) + caption = html.unescape(html.unescape(caption)) + caption = re.sub('\\b[a-zA-Z]{1,3}\\d{3,15}\\b', '', caption) + caption = re.sub('\\b[a-zA-Z]+\\d+[a-zA-Z]+\\b', '', caption) + caption = re.sub('\\b\\d+[a-zA-Z]+\\d+\\b', '', caption) + caption = re.sub('(worldwide\\s+)?(free\\s+)?shipping', '', caption) + caption = re.sub('(free\\s)?download(\\sfree)?', '', caption) + caption = re.sub('\\bclick\\b\\s(?:for|on)\\s\\w+', '', caption) + caption = re.sub('\\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\\simage[s]?)?', '', caption) + caption = re.sub('\\bpage\\s+\\d+\\b', '', caption) + caption = re.sub('\\b\\d*[a-zA-Z]+\\d+[a-zA-Z]+\\d+[a-zA-Z\\d]*\\b', ' ', caption) + caption = re.sub('\\b\\d+\\.?\\d*[xх×]\\d+\\.?\\d*\\b', '', caption) + caption = re.sub('\\b\\s+\\:\\s+', ': ', caption) + caption = re.sub('(\\D[,\\./])\\b', '\\1 ', caption) + caption = re.sub('\\s+', ' ', caption) + caption.strip() + caption = re.sub('^[\\"\\\']([\\w\\W]+)[\\"\\\']$', '\\1', caption) + caption = re.sub("^[\\'\\_,\\-\\:;]", '', caption) + caption = re.sub("[\\'\\_,\\-\\:\\-\\+]$", '', caption) + caption = re.sub('^\\.\\S+$', '', caption) + return caption.strip() + + @torch.no_grad() + def encode_prompt(self, prompt: Union[str, List[str]], do_classifier_free_guidance: bool=True, num_images_per_prompt: int=1, device: Optional[torch.device]=None, negative_prompt: Optional[Union[str, List[str]]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, clean_caption: bool=False): + if prompt is not None and negative_prompt is not None: + if type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + if device is None: + device = self._execution_device + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + max_length = 77 + if prompt_embeds is None: + prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=max_length, truncation=True, add_special_tokens=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {max_length} tokens: {removed_text}') + attention_mask = text_inputs.attention_mask.to(device) + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + if self.text_encoder is not None: + dtype = self.text_encoder.dtype + elif self.unet is not None: + dtype = self.unet.dtype + else: + dtype = None + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors='pt') + attention_mask = uncond_input.attention_mask.to(device) + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + else: + negative_prompt_embeds = None + return (prompt_embeds, negative_prompt_embeds) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is not None: + safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors='pt').to(device) + (image, nsfw_detected, watermark_detected) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype=dtype)) + else: + nsfw_detected = None + watermark_detected = None + return (image, nsfw_detected, watermark_detected) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, image, batch_size, noise_level, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None): + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if noise_level < 0 or noise_level >= self.image_noising_scheduler.config.num_train_timesteps: + raise ValueError(f'`noise_level`: {noise_level} must be a valid timestep in `self.noising_scheduler`, [0, {self.image_noising_scheduler.config.num_train_timesteps})') + if isinstance(image, list): + check_image_type = image[0] + else: + check_image_type = image + if not isinstance(check_image_type, torch.Tensor) and (not isinstance(check_image_type, PIL.Image.Image)) and (not isinstance(check_image_type, np.ndarray)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is {type(check_image_type)}') + if isinstance(image, list): + image_batch_size = len(image) + elif isinstance(image, torch.Tensor): + image_batch_size = image.shape[0] + elif isinstance(image, PIL.Image.Image): + image_batch_size = 1 + elif isinstance(image, np.ndarray): + image_batch_size = image.shape[0] + else: + assert False + if batch_size != image_batch_size: + raise ValueError(f'image batch size: {image_batch_size} must be same as prompt batch size {batch_size}') + + def prepare_intermediate_images(self, batch_size, num_channels, height, width, dtype, device, generator): + shape = (batch_size, num_channels, height, width) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + intermediate_images = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + intermediate_images = intermediate_images * self.scheduler.init_noise_sigma + return intermediate_images + + def preprocess_image(self, image, num_images_per_prompt, device): + if not isinstance(image, torch.Tensor) and (not isinstance(image, list)): + image = [image] + if isinstance(image[0], PIL.Image.Image): + image = [np.array(i).astype(np.float32) / 127.5 - 1.0 for i in image] + image = np.stack(image, axis=0) + image = torch.from_numpy(image.transpose(0, 3, 1, 2)) + elif isinstance(image[0], np.ndarray): + image = np.stack(image, axis=0) + if image.ndim == 5: + image = image[0] + image = torch.from_numpy(image.transpose(0, 3, 1, 2)) + elif isinstance(image, list) and isinstance(image[0], torch.Tensor): + dims = image[0].ndim + if dims == 3: + image = torch.stack(image, dim=0) + elif dims == 4: + image = torch.concat(image, dim=0) + else: + raise ValueError(f'Image must have 3 or 4 dimensions, instead got {dims}') + image = image.to(device=device, dtype=self.unet.dtype) + image = image.repeat_interleave(num_images_per_prompt, dim=0) + return image + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, height: int=None, width: int=None, image: Union[PIL.Image.Image, np.ndarray, torch.Tensor]=None, num_inference_steps: int=50, timesteps: List[int]=None, guidance_scale: float=4.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, noise_level: int=250, clean_caption: bool=True): + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + self.check_inputs(prompt, image, batch_size, noise_level, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + height = height or self.unet.config.sample_size + width = width or self.unet.config.sample_size + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt, device=device, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clean_caption=clean_caption) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + if timesteps is not None: + self.scheduler.set_timesteps(timesteps=timesteps, device=device) + timesteps = self.scheduler.timesteps + num_inference_steps = len(timesteps) + else: + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(0) + num_channels = self.unet.config.in_channels // 2 + intermediate_images = self.prepare_intermediate_images(batch_size * num_images_per_prompt, num_channels, height, width, prompt_embeds.dtype, device, generator) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + image = self.preprocess_image(image, num_images_per_prompt, device) + upscaled = F.interpolate(image, (height, width), mode='bilinear', align_corners=True) + noise_level = torch.tensor([noise_level] * upscaled.shape[0], device=upscaled.device) + noise = randn_tensor(upscaled.shape, generator=generator, device=upscaled.device, dtype=upscaled.dtype) + upscaled = self.image_noising_scheduler.add_noise(upscaled, noise, timesteps=noise_level) + if do_classifier_free_guidance: + noise_level = torch.cat([noise_level] * 2) + if hasattr(self, 'text_encoder_offload_hook') and self.text_encoder_offload_hook is not None: + self.text_encoder_offload_hook.offload() + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + model_input = torch.cat([intermediate_images, upscaled], dim=1) + model_input = torch.cat([model_input] * 2) if do_classifier_free_guidance else model_input + model_input = self.scheduler.scale_model_input(model_input, t) + noise_pred = self.unet(model_input, t, encoder_hidden_states=prompt_embeds, class_labels=noise_level, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + (noise_pred_uncond, _) = noise_pred_uncond.split(model_input.shape[1] // 2, dim=1) + (noise_pred_text, predicted_variance) = noise_pred_text.split(model_input.shape[1] // 2, dim=1) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) + if self.scheduler.config.variance_type not in ['learned', 'learned_range']: + (noise_pred, _) = noise_pred.split(intermediate_images.shape[1], dim=1) + intermediate_images = self.scheduler.step(noise_pred, t, intermediate_images, **extra_step_kwargs, return_dict=False)[0] + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + callback(i, t, intermediate_images) + image = intermediate_images + if output_type == 'pil': + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + (image, nsfw_detected, watermark_detected) = self.run_safety_checker(image, device, prompt_embeds.dtype) + image = self.numpy_to_pil(image) + if self.watermarker is not None: + self.watermarker.apply_watermark(image, self.unet.config.sample_size) + elif output_type == 'pt': + nsfw_detected = None + watermark_detected = None + if hasattr(self, 'unet_offload_hook') and self.unet_offload_hook is not None: + self.unet_offload_hook.offload() + else: + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + (image, nsfw_detected, watermark_detected) = self.run_safety_checker(image, device, prompt_embeds.dtype) + self.maybe_free_model_hooks() + if not return_dict: + return (image, nsfw_detected, watermark_detected) + return IFPipelineOutput(images=image, nsfw_detected=nsfw_detected, watermark_detected=watermark_detected) + +# File: diffusers-main/src/diffusers/pipelines/deepfloyd_if/pipeline_output.py +from dataclasses import dataclass +from typing import List, Optional, Union +import numpy as np +import PIL.Image +from ...utils import BaseOutput + +@dataclass +class IFPipelineOutput(BaseOutput): + images: Union[List[PIL.Image.Image], np.ndarray] + nsfw_detected: Optional[List[bool]] + watermark_detected: Optional[List[bool]] + +# File: diffusers-main/src/diffusers/pipelines/deepfloyd_if/safety_checker.py +import numpy as np +import torch +import torch.nn as nn +from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel +from ...utils import logging +logger = logging.get_logger(__name__) + +class IFSafetyChecker(PreTrainedModel): + config_class = CLIPConfig + _no_split_modules = ['CLIPEncoderLayer'] + + def __init__(self, config: CLIPConfig): + super().__init__(config) + self.vision_model = CLIPVisionModelWithProjection(config.vision_config) + self.p_head = nn.Linear(config.vision_config.projection_dim, 1) + self.w_head = nn.Linear(config.vision_config.projection_dim, 1) + + @torch.no_grad() + def forward(self, clip_input, images, p_threshold=0.5, w_threshold=0.5): + image_embeds = self.vision_model(clip_input)[0] + nsfw_detected = self.p_head(image_embeds) + nsfw_detected = nsfw_detected.flatten() + nsfw_detected = nsfw_detected > p_threshold + nsfw_detected = nsfw_detected.tolist() + if any(nsfw_detected): + logger.warning('Potential NSFW content was detected in one or more images. A black image will be returned instead. Try again with a different prompt and/or seed.') + for (idx, nsfw_detected_) in enumerate(nsfw_detected): + if nsfw_detected_: + images[idx] = np.zeros(images[idx].shape) + watermark_detected = self.w_head(image_embeds) + watermark_detected = watermark_detected.flatten() + watermark_detected = watermark_detected > w_threshold + watermark_detected = watermark_detected.tolist() + if any(watermark_detected): + logger.warning('Potential watermarked content was detected in one or more images. A black image will be returned instead. Try again with a different prompt and/or seed.') + for (idx, watermark_detected_) in enumerate(watermark_detected): + if watermark_detected_: + images[idx] = np.zeros(images[idx].shape) + return (images, nsfw_detected, watermark_detected) + +# File: diffusers-main/src/diffusers/pipelines/deepfloyd_if/timesteps.py +fast27_timesteps = [999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0] +smart27_timesteps = [999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0] +smart50_timesteps = [999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0] +smart100_timesteps = [999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0] +smart185_timesteps = [999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0] +super27_timesteps = [999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0] +super40_timesteps = [999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0] +super100_timesteps = [999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0] + +# File: diffusers-main/src/diffusers/pipelines/deepfloyd_if/watermark.py +from typing import List +import PIL.Image +import torch +from PIL import Image +from ...configuration_utils import ConfigMixin +from ...models.modeling_utils import ModelMixin +from ...utils import PIL_INTERPOLATION + +class IFWatermarker(ModelMixin, ConfigMixin): + + def __init__(self): + super().__init__() + self.register_buffer('watermark_image', torch.zeros((62, 62, 4))) + self.watermark_image_as_pil = None + + def apply_watermark(self, images: List[PIL.Image.Image], sample_size=None): + h = images[0].height + w = images[0].width + sample_size = sample_size or h + coef = min(h / sample_size, w / sample_size) + (img_h, img_w) = (int(h / coef), int(w / coef)) if coef < 1 else (h, w) + (S1, S2) = (1024 ** 2, img_w * img_h) + K = (S2 / S1) ** 0.5 + (wm_size, wm_x, wm_y) = (int(K * 62), img_w - int(14 * K), img_h - int(14 * K)) + if self.watermark_image_as_pil is None: + watermark_image = self.watermark_image.to(torch.uint8).cpu().numpy() + watermark_image = Image.fromarray(watermark_image, mode='RGBA') + self.watermark_image_as_pil = watermark_image + wm_img = self.watermark_image_as_pil.resize((wm_size, wm_size), PIL_INTERPOLATION['bicubic'], reducing_gap=None) + for pil_img in images: + pil_img.paste(wm_img, box=(wm_x - wm_size, wm_y - wm_size, wm_x, wm_y), mask=wm_img.split()[-1]) + return images + +# File: diffusers-main/src/diffusers/pipelines/deprecated/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_librosa_available, is_note_seq_available, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_pt_objects + _dummy_objects.update(get_objects_from_module(dummy_pt_objects)) +else: + _import_structure['latent_diffusion_uncond'] = ['LDMPipeline'] + _import_structure['pndm'] = ['PNDMPipeline'] + _import_structure['repaint'] = ['RePaintPipeline'] + _import_structure['score_sde_ve'] = ['ScoreSdeVePipeline'] + _import_structure['stochastic_karras_ve'] = ['KarrasVePipeline'] +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['alt_diffusion'] = ['AltDiffusionImg2ImgPipeline', 'AltDiffusionPipeline', 'AltDiffusionPipelineOutput'] + _import_structure['versatile_diffusion'] = ['VersatileDiffusionDualGuidedPipeline', 'VersatileDiffusionImageVariationPipeline', 'VersatileDiffusionPipeline', 'VersatileDiffusionTextToImagePipeline'] + _import_structure['vq_diffusion'] = ['VQDiffusionPipeline'] + _import_structure['stable_diffusion_variants'] = ['CycleDiffusionPipeline', 'StableDiffusionInpaintPipelineLegacy', 'StableDiffusionPix2PixZeroPipeline', 'StableDiffusionParadigmsPipeline', 'StableDiffusionModelEditingPipeline'] +try: + if not (is_torch_available() and is_librosa_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_librosa_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_librosa_objects)) +else: + _import_structure['audio_diffusion'] = ['AudioDiffusionPipeline', 'Mel'] +try: + if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_transformers_and_torch_and_note_seq_objects + _dummy_objects.update(get_objects_from_module(dummy_transformers_and_torch_and_note_seq_objects)) +else: + _import_structure['spectrogram_diffusion'] = ['MidiProcessor', 'SpectrogramDiffusionPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_pt_objects import * + else: + from .latent_diffusion_uncond import LDMPipeline + from .pndm import PNDMPipeline + from .repaint import RePaintPipeline + from .score_sde_ve import ScoreSdeVePipeline + from .stochastic_karras_ve import KarrasVePipeline + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .alt_diffusion import AltDiffusionImg2ImgPipeline, AltDiffusionPipeline, AltDiffusionPipelineOutput + from .audio_diffusion import AudioDiffusionPipeline, Mel + from .spectrogram_diffusion import SpectrogramDiffusionPipeline + from .stable_diffusion_variants import CycleDiffusionPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionModelEditingPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPix2PixZeroPipeline + from .stochastic_karras_ve import KarrasVePipeline + from .versatile_diffusion import VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline + from .vq_diffusion import VQDiffusionPipeline + try: + if not (is_torch_available() and is_librosa_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_librosa_objects import * + else: + from .audio_diffusion import AudioDiffusionPipeline, Mel + try: + if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * + else: + from .spectrogram_diffusion import MidiProcessor, SpectrogramDiffusionPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/alt_diffusion/__init__.py +from typing import TYPE_CHECKING +from ....utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ....utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['modeling_roberta_series'] = ['RobertaSeriesModelWithTransformation'] + _import_structure['pipeline_alt_diffusion'] = ['AltDiffusionPipeline'] + _import_structure['pipeline_alt_diffusion_img2img'] = ['AltDiffusionImg2ImgPipeline'] + _import_structure['pipeline_output'] = ['AltDiffusionPipelineOutput'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ....utils.dummy_torch_and_transformers_objects import * + else: + from .modeling_roberta_series import RobertaSeriesModelWithTransformation + from .pipeline_alt_diffusion import AltDiffusionPipeline + from .pipeline_alt_diffusion_img2img import AltDiffusionImg2ImgPipeline + from .pipeline_output import AltDiffusionPipelineOutput +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +from dataclasses import dataclass +from typing import Optional, Tuple +import torch +from torch import nn +from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel +from transformers.utils import ModelOutput + +@dataclass +class TransformationModelOutput(ModelOutput): + projection_state: Optional[torch.Tensor] = None + last_hidden_state: torch.Tensor = None + hidden_states: Optional[Tuple[torch.Tensor]] = None + attentions: Optional[Tuple[torch.Tensor]] = None + +class RobertaSeriesConfig(XLMRobertaConfig): + + def __init__(self, pad_token_id=1, bos_token_id=0, eos_token_id=2, project_dim=512, pooler_fn='cls', learn_encoder=False, use_attention_mask=True, **kwargs): + super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) + self.project_dim = project_dim + self.pooler_fn = pooler_fn + self.learn_encoder = learn_encoder + self.use_attention_mask = use_attention_mask + +class RobertaSeriesModelWithTransformation(RobertaPreTrainedModel): + _keys_to_ignore_on_load_unexpected = ['pooler', 'logit_scale'] + _keys_to_ignore_on_load_missing = ['position_ids', 'predictions.decoder.bias'] + base_model_prefix = 'roberta' + config_class = RobertaSeriesConfig + + def __init__(self, config): + super().__init__(config) + self.roberta = XLMRobertaModel(config) + self.transformation = nn.Linear(config.hidden_size, config.project_dim) + self.has_pre_transformation = getattr(config, 'has_pre_transformation', False) + if self.has_pre_transformation: + self.transformation_pre = nn.Linear(config.hidden_size, config.project_dim) + self.pre_LN = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.post_init() + + def forward(self, input_ids: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, token_type_ids: Optional[torch.Tensor]=None, position_ids: Optional[torch.Tensor]=None, head_mask: Optional[torch.Tensor]=None, inputs_embeds: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, encoder_attention_mask: Optional[torch.Tensor]=None, output_attentions: Optional[bool]=None, return_dict: Optional[bool]=None, output_hidden_states: Optional[bool]=None): + """""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=True if self.has_pre_transformation else output_hidden_states, return_dict=return_dict) + if self.has_pre_transformation: + sequence_output2 = outputs['hidden_states'][-2] + sequence_output2 = self.pre_LN(sequence_output2) + projection_state2 = self.transformation_pre(sequence_output2) + return TransformationModelOutput(projection_state=projection_state2, last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions) + else: + projection_state = self.transformation(outputs.last_hidden_state) + return TransformationModelOutput(projection_state=projection_state, last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import torch +from packaging import version +from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, XLMRobertaTokenizer +from ....configuration_utils import FrozenDict +from ....image_processor import PipelineImageInput, VaeImageProcessor +from ....loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ....models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ....models.lora import adjust_lora_scale_text_encoder +from ....schedulers import KarrasDiffusionSchedulers +from ....utils import USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ....utils.torch_utils import randn_tensor +from ...pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ...stable_diffusion.safety_checker import StableDiffusionSafetyChecker +from .modeling_roberta_series import RobertaSeriesModelWithTransformation +from .pipeline_output import AltDiffusionPipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import AltDiffusionPipeline\n\n >>> pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion-m9", torch_dtype=torch.float16)\n >>> pipe = pipe.to("cuda")\n\n >>> # "dark elf princess, highly detailed, d & d, fantasy, highly detailed, digital painting, trending on artstation, concept art, sharp focus, illustration, art by artgerm and greg rutkowski and fuji choko and viktoria gavrilenko and hoang lap"\n >>> prompt = "黑暗精灵公主,非常详细,幻想,非常详细,数字绘画,概念艺术,敏锐的焦点,插图"\n >>> image = pipe(prompt).images[0]\n ```\n' + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class AltDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->image_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor', 'image_encoder'] + _exclude_from_cpu_offload = ['safety_checker'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + + def __init__(self, vae: AutoencoderKL, text_encoder: RobertaSeriesModelWithTransformation, tokenizer: XLMRobertaTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: CLIPVisionModelWithProjection=None, requires_safety_checker: bool=True): + super().__init__() + if hasattr(scheduler.config, 'steps_offset') and scheduler.config.steps_offset != 1: + deprecation_message = f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset` should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure to update the config accordingly as leaving `steps_offset` might led to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('steps_offset!=1', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['steps_offset'] = 1 + scheduler._internal_dict = FrozenDict(new_config) + if hasattr(scheduler.config, 'clip_sample') and scheduler.config.clip_sample is True: + deprecation_message = f'The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`. `clip_sample` should be set to False in the configuration file. Please make sure to update the config accordingly as not setting `clip_sample` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('clip_sample not set', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['clip_sample'] = False + scheduler._internal_dict = FrozenDict(new_config) + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Alt Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + is_unet_version_less_0_9_0 = hasattr(unet.config, '_diffusers_version') and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse('0.9.0.dev0') + is_unet_sample_size_less_64 = hasattr(unet.config, 'sample_size') and unet.config.sample_size < 64 + if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: + deprecation_message = "The configuration file of the unet has set the default `sample_size` to smaller than 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n- CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5 \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the configuration file. Please make sure to update the config accordingly as leaving `sample_size=32` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `unet/config.json` file" + deprecate('sample_size<64', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(unet.config) + new_config['sample_size'] = 64 + unet._internal_dict = FrozenDict(new_config) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def guidance_rescale(self): + return self._guidance_rescale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, timesteps: List[int]=None, sigmas: List[float]=None, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, guidance_rescale: float=0.0, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`') + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._guidance_rescale = guidance_rescale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, clip_skip=self.clip_skip) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + if ip_adapter_image is not None: + output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True + (image_embeds, negative_image_embeds) = self.encode_image(ip_adapter_image, device, num_images_per_prompt, output_hidden_state) + if self.do_classifier_free_guidance: + image_embeds = torch.cat([negative_image_embeds, image_embeds]) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'image_embeds': image_embeds} if ip_adapter_image is not None else None + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return AltDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from packaging import version +from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, XLMRobertaTokenizer +from ....configuration_utils import FrozenDict +from ....image_processor import PipelineImageInput, VaeImageProcessor +from ....loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ....models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ....models.lora import adjust_lora_scale_text_encoder +from ....schedulers import KarrasDiffusionSchedulers +from ....utils import PIL_INTERPOLATION, USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ....utils.torch_utils import randn_tensor +from ...pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ...stable_diffusion.safety_checker import StableDiffusionSafetyChecker +from .modeling_roberta_series import RobertaSeriesModelWithTransformation +from .pipeline_output import AltDiffusionPipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import requests\n >>> import torch\n >>> from PIL import Image\n >>> from io import BytesIO\n\n >>> from diffusers import AltDiffusionImg2ImgPipeline\n\n >>> device = "cuda"\n >>> model_id_or_path = "BAAI/AltDiffusion-m9"\n >>> pipe = AltDiffusionImg2ImgPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"\n\n >>> response = requests.get(url)\n >>> init_image = Image.open(BytesIO(response.content)).convert("RGB")\n >>> init_image = init_image.resize((768, 512))\n\n >>> # "A fantasy landscape, trending on artstation"\n >>> prompt = "幻想风景, artstation"\n\n >>> images = pipe(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5).images\n >>> images[0].save("幻想风景.png")\n ```\n' + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +def preprocess(image): + deprecation_message = 'The preprocess method is deprecated and will be removed in diffusers 1.0.0. Please use VaeImageProcessor.preprocess(...) instead' + deprecate('preprocess', '1.0.0', deprecation_message, standard_warn=False) + if isinstance(image, torch.Tensor): + return image + elif isinstance(image, PIL.Image.Image): + image = [image] + if isinstance(image[0], PIL.Image.Image): + (w, h) = image[0].size + (w, h) = (x - x % 8 for x in (w, h)) + image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['lanczos']))[None, :] for i in image] + image = np.concatenate(image, axis=0) + image = np.array(image).astype(np.float32) / 255.0 + image = image.transpose(0, 3, 1, 2) + image = 2.0 * image - 1.0 + image = torch.from_numpy(image) + elif isinstance(image[0], torch.Tensor): + image = torch.cat(image, dim=0) + return image + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class AltDiffusionImg2ImgPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->image_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor', 'image_encoder'] + _exclude_from_cpu_offload = ['safety_checker'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + + def __init__(self, vae: AutoencoderKL, text_encoder: RobertaSeriesModelWithTransformation, tokenizer: XLMRobertaTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: CLIPVisionModelWithProjection=None, requires_safety_checker: bool=True): + super().__init__() + if hasattr(scheduler.config, 'steps_offset') and scheduler.config.steps_offset != 1: + deprecation_message = f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset` should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure to update the config accordingly as leaving `steps_offset` might led to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('steps_offset!=1', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['steps_offset'] = 1 + scheduler._internal_dict = FrozenDict(new_config) + if hasattr(scheduler.config, 'clip_sample') and scheduler.config.clip_sample is True: + deprecation_message = f'The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`. `clip_sample` should be set to False in the configuration file. Please make sure to update the config accordingly as not setting `clip_sample` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('clip_sample not set', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['clip_sample'] = False + scheduler._internal_dict = FrozenDict(new_config) + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Alt Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + is_unet_version_less_0_9_0 = hasattr(unet.config, '_diffusers_version') and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse('0.9.0.dev0') + is_unet_sample_size_less_64 = hasattr(unet.config, 'sample_size') and unet.config.sample_size < 64 + if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: + deprecation_message = "The configuration file of the unet has set the default `sample_size` to smaller than 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n- CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5 \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the configuration file. Please make sure to update the config accordingly as leaving `sample_size=32` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `unet/config.json` file" + deprecate('sample_size<64', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(unet.config) + new_config['sample_size'] = 64 + unet._internal_dict = FrozenDict(new_config) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, strength, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None): + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + return (timesteps, num_inference_steps - t_start) + + def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): + if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}') + image = image.to(device=device, dtype=dtype) + batch_size = batch_size * num_images_per_prompt + if image.shape[1] == 4: + init_latents = image + else: + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + elif isinstance(generator, list): + init_latents = [retrieve_latents(self.vae.encode(image[i:i + 1]), generator=generator[i]) for i in range(batch_size)] + init_latents = torch.cat(init_latents, dim=0) + else: + init_latents = retrieve_latents(self.vae.encode(image), generator=generator) + init_latents = self.vae.config.scaling_factor * init_latents + if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: + deprecation_message = f'You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial images (`image`). Initial images are now duplicating to match the number of text prompts. Note that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update your script to pass as many initial images as text prompts to suppress this warning.' + deprecate('len(prompt) != len(image)', '1.0.0', deprecation_message, standard_warn=False) + additional_image_per_prompt = batch_size // init_latents.shape[0] + init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) + elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts.') + else: + init_latents = torch.cat([init_latents], dim=0) + shape = init_latents.shape + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + init_latents = self.scheduler.add_noise(init_latents, noise, timestep) + latents = init_latents + return latents + + def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, image: PipelineImageInput=None, strength: float=0.8, num_inference_steps: Optional[int]=50, timesteps: List[int]=None, sigmas: List[float]=None, guidance_scale: Optional[float]=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: Optional[float]=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: int=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + self.check_inputs(prompt, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + text_encoder_lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + if ip_adapter_image is not None: + output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True + (image_embeds, negative_image_embeds) = self.encode_image(ip_adapter_image, device, num_images_per_prompt, output_hidden_state) + if self.do_classifier_free_guidance: + image_embeds = torch.cat([negative_image_embeds, image_embeds]) + image = self.image_processor.preprocess(image) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + latents = self.prepare_latents(image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'image_embeds': image_embeds} if ip_adapter_image is not None else None + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return AltDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/alt_diffusion/pipeline_output.py +from dataclasses import dataclass +from typing import List, Optional, Union +import numpy as np +import PIL.Image +from ....utils import BaseOutput + +@dataclass +class AltDiffusionPipelineOutput(BaseOutput): + images: Union[List[PIL.Image.Image], np.ndarray] + nsfw_content_detected: Optional[List[bool]] + +# File: diffusers-main/src/diffusers/pipelines/deprecated/audio_diffusion/__init__.py +from typing import TYPE_CHECKING +from ....utils import DIFFUSERS_SLOW_IMPORT, _LazyModule +_import_structure = {'mel': ['Mel'], 'pipeline_audio_diffusion': ['AudioDiffusionPipeline']} +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + from .mel import Mel + from .pipeline_audio_diffusion import AudioDiffusionPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/audio_diffusion/mel.py +import numpy as np +from ....configuration_utils import ConfigMixin, register_to_config +from ....schedulers.scheduling_utils import SchedulerMixin +try: + import librosa + _librosa_can_be_imported = True + _import_error = '' +except Exception as e: + _librosa_can_be_imported = False + _import_error = f'Cannot import librosa because {e}. Make sure to correctly install librosa to be able to install it.' +from PIL import Image + +class Mel(ConfigMixin, SchedulerMixin): + config_name = 'mel_config.json' + + @register_to_config + def __init__(self, x_res: int=256, y_res: int=256, sample_rate: int=22050, n_fft: int=2048, hop_length: int=512, top_db: int=80, n_iter: int=32): + self.hop_length = hop_length + self.sr = sample_rate + self.n_fft = n_fft + self.top_db = top_db + self.n_iter = n_iter + self.set_resolution(x_res, y_res) + self.audio = None + if not _librosa_can_be_imported: + raise ValueError(_import_error) + + def set_resolution(self, x_res: int, y_res: int): + self.x_res = x_res + self.y_res = y_res + self.n_mels = self.y_res + self.slice_size = self.x_res * self.hop_length - 1 + + def load_audio(self, audio_file: str=None, raw_audio: np.ndarray=None): + if audio_file is not None: + (self.audio, _) = librosa.load(audio_file, mono=True, sr=self.sr) + else: + self.audio = raw_audio + if len(self.audio) < self.x_res * self.hop_length: + self.audio = np.concatenate([self.audio, np.zeros((self.x_res * self.hop_length - len(self.audio),))]) + + def get_number_of_slices(self) -> int: + return len(self.audio) // self.slice_size + + def get_audio_slice(self, slice: int=0) -> np.ndarray: + return self.audio[self.slice_size * slice:self.slice_size * (slice + 1)] + + def get_sample_rate(self) -> int: + return self.sr + + def audio_slice_to_image(self, slice: int) -> Image.Image: + S = librosa.feature.melspectrogram(y=self.get_audio_slice(slice), sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length, n_mels=self.n_mels) + log_S = librosa.power_to_db(S, ref=np.max, top_db=self.top_db) + bytedata = (((log_S + self.top_db) * 255 / self.top_db).clip(0, 255) + 0.5).astype(np.uint8) + image = Image.fromarray(bytedata) + return image + + def image_to_audio(self, image: Image.Image) -> np.ndarray: + bytedata = np.frombuffer(image.tobytes(), dtype='uint8').reshape((image.height, image.width)) + log_S = bytedata.astype('float') * self.top_db / 255 - self.top_db + S = librosa.db_to_power(log_S) + audio = librosa.feature.inverse.mel_to_audio(S, sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length, n_iter=self.n_iter) + return audio + +# File: diffusers-main/src/diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +from math import acos, sin +from typing import List, Tuple, Union +import numpy as np +import torch +from PIL import Image +from ....models import AutoencoderKL, UNet2DConditionModel +from ....schedulers import DDIMScheduler, DDPMScheduler +from ....utils.torch_utils import randn_tensor +from ...pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput +from .mel import Mel + +class AudioDiffusionPipeline(DiffusionPipeline): + _optional_components = ['vqvae'] + + def __init__(self, vqvae: AutoencoderKL, unet: UNet2DConditionModel, mel: Mel, scheduler: Union[DDIMScheduler, DDPMScheduler]): + super().__init__() + self.register_modules(unet=unet, scheduler=scheduler, mel=mel, vqvae=vqvae) + + def get_default_steps(self) -> int: + return 50 if isinstance(self.scheduler, DDIMScheduler) else 1000 + + @torch.no_grad() + def __call__(self, batch_size: int=1, audio_file: str=None, raw_audio: np.ndarray=None, slice: int=0, start_step: int=0, steps: int=None, generator: torch.Generator=None, mask_start_secs: float=0, mask_end_secs: float=0, step_generator: torch.Generator=None, eta: float=0, noise: torch.Tensor=None, encoding: torch.Tensor=None, return_dict=True) -> Union[Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]]]: + steps = steps or self.get_default_steps() + self.scheduler.set_timesteps(steps) + step_generator = step_generator or generator + if isinstance(self.unet.config.sample_size, int): + self.unet.config.sample_size = (self.unet.config.sample_size, self.unet.config.sample_size) + if noise is None: + noise = randn_tensor((batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1]), generator=generator, device=self.device) + images = noise + mask = None + if audio_file is not None or raw_audio is not None: + self.mel.load_audio(audio_file, raw_audio) + input_image = self.mel.audio_slice_to_image(slice) + input_image = np.frombuffer(input_image.tobytes(), dtype='uint8').reshape((input_image.height, input_image.width)) + input_image = input_image / 255 * 2 - 1 + input_images = torch.tensor(input_image[np.newaxis, :, :], dtype=torch.float).to(self.device) + if self.vqvae is not None: + input_images = self.vqvae.encode(torch.unsqueeze(input_images, 0)).latent_dist.sample(generator=generator)[0] + input_images = self.vqvae.config.scaling_factor * input_images + if start_step > 0: + images[0, 0] = self.scheduler.add_noise(input_images, noise, self.scheduler.timesteps[start_step - 1]) + pixels_per_second = self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length + mask_start = int(mask_start_secs * pixels_per_second) + mask_end = int(mask_end_secs * pixels_per_second) + mask = self.scheduler.add_noise(input_images, noise, torch.tensor(self.scheduler.timesteps[start_step:])) + for (step, t) in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): + if isinstance(self.unet, UNet2DConditionModel): + model_output = self.unet(images, t, encoding)['sample'] + else: + model_output = self.unet(images, t)['sample'] + if isinstance(self.scheduler, DDIMScheduler): + images = self.scheduler.step(model_output=model_output, timestep=t, sample=images, eta=eta, generator=step_generator)['prev_sample'] + else: + images = self.scheduler.step(model_output=model_output, timestep=t, sample=images, generator=step_generator)['prev_sample'] + if mask is not None: + if mask_start > 0: + images[:, :, :, :mask_start] = mask[:, step, :, :mask_start] + if mask_end > 0: + images[:, :, :, -mask_end:] = mask[:, step, :, -mask_end:] + if self.vqvae is not None: + images = 1 / self.vqvae.config.scaling_factor * images + images = self.vqvae.decode(images)['sample'] + images = (images / 2 + 0.5).clamp(0, 1) + images = images.cpu().permute(0, 2, 3, 1).numpy() + images = (images * 255).round().astype('uint8') + images = list((Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_, mode='RGB').convert('L') for _ in images)) + audios = [self.mel.image_to_audio(_) for _ in images] + if not return_dict: + return (images, (self.mel.get_sample_rate(), audios)) + return BaseOutput(**AudioPipelineOutput(np.array(audios)[:, np.newaxis, :]), **ImagePipelineOutput(images)) + + @torch.no_grad() + def encode(self, images: List[Image.Image], steps: int=50) -> np.ndarray: + assert isinstance(self.scheduler, DDIMScheduler) + self.scheduler.set_timesteps(steps) + sample = np.array([np.frombuffer(image.tobytes(), dtype='uint8').reshape((1, image.height, image.width)) for image in images]) + sample = sample / 255 * 2 - 1 + sample = torch.Tensor(sample).to(self.device) + for t in self.progress_bar(torch.flip(self.scheduler.timesteps, (0,))): + prev_timestep = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps + alpha_prod_t = self.scheduler.alphas_cumprod[t] + alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod + beta_prod_t = 1 - alpha_prod_t + model_output = self.unet(sample, t)['sample'] + pred_sample_direction = (1 - alpha_prod_t_prev) ** 0.5 * model_output + sample = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) + sample = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output + return sample + + @staticmethod + def slerp(x0: torch.Tensor, x1: torch.Tensor, alpha: float) -> torch.Tensor: + theta = acos(torch.dot(torch.flatten(x0), torch.flatten(x1)) / torch.norm(x0) / torch.norm(x1)) + return sin((1 - alpha) * theta) * x0 / sin(theta) + sin(alpha * theta) * x1 / sin(theta) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/latent_diffusion_uncond/__init__.py +from typing import TYPE_CHECKING +from ....utils import DIFFUSERS_SLOW_IMPORT, _LazyModule +_import_structure = {'pipeline_latent_diffusion_uncond': ['LDMPipeline']} +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + from .pipeline_latent_diffusion_uncond import LDMPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +import inspect +from typing import List, Optional, Tuple, Union +import torch +from ....models import UNet2DModel, VQModel +from ....schedulers import DDIMScheduler +from ....utils.torch_utils import randn_tensor +from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput + +class LDMPipeline(DiffusionPipeline): + + def __init__(self, vqvae: VQModel, unet: UNet2DModel, scheduler: DDIMScheduler): + super().__init__() + self.register_modules(vqvae=vqvae, unet=unet, scheduler=scheduler) + + @torch.no_grad() + def __call__(self, batch_size: int=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, eta: float=0.0, num_inference_steps: int=50, output_type: Optional[str]='pil', return_dict: bool=True, **kwargs) -> Union[Tuple, ImagePipelineOutput]: + latents = randn_tensor((batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=generator) + latents = latents.to(self.device) + latents = latents * self.scheduler.init_noise_sigma + self.scheduler.set_timesteps(num_inference_steps) + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_kwargs = {} + if accepts_eta: + extra_kwargs['eta'] = eta + for t in self.progress_bar(self.scheduler.timesteps): + latent_model_input = self.scheduler.scale_model_input(latents, t) + noise_prediction = self.unet(latent_model_input, t).sample + latents = self.scheduler.step(noise_prediction, t, latents, **extra_kwargs).prev_sample + latents = latents / self.vqvae.config.scaling_factor + image = self.vqvae.decode(latents).sample + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).numpy() + if output_type == 'pil': + image = self.numpy_to_pil(image) + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/pndm/__init__.py +from typing import TYPE_CHECKING +from ....utils import DIFFUSERS_SLOW_IMPORT, _LazyModule +_import_structure = {'pipeline_pndm': ['PNDMPipeline']} +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + from .pipeline_pndm import PNDMPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +from typing import List, Optional, Tuple, Union +import torch +from ....models import UNet2DModel +from ....schedulers import PNDMScheduler +from ....utils.torch_utils import randn_tensor +from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput + +class PNDMPipeline(DiffusionPipeline): + unet: UNet2DModel + scheduler: PNDMScheduler + + def __init__(self, unet: UNet2DModel, scheduler: PNDMScheduler): + super().__init__() + scheduler = PNDMScheduler.from_config(scheduler.config) + self.register_modules(unet=unet, scheduler=scheduler) + + @torch.no_grad() + def __call__(self, batch_size: int=1, num_inference_steps: int=50, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, output_type: Optional[str]='pil', return_dict: bool=True, **kwargs) -> Union[ImagePipelineOutput, Tuple]: + image = randn_tensor((batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=generator, device=self.device) + self.scheduler.set_timesteps(num_inference_steps) + for t in self.progress_bar(self.scheduler.timesteps): + model_output = self.unet(image, t).sample + image = self.scheduler.step(model_output, t, image).prev_sample + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).numpy() + if output_type == 'pil': + image = self.numpy_to_pil(image) + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/repaint/__init__.py +from typing import TYPE_CHECKING +from ....utils import DIFFUSERS_SLOW_IMPORT, _LazyModule +_import_structure = {'pipeline_repaint': ['RePaintPipeline']} +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + from .pipeline_repaint import RePaintPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +from typing import List, Optional, Tuple, Union +import numpy as np +import PIL.Image +import torch +from ....models import UNet2DModel +from ....schedulers import RePaintScheduler +from ....utils import PIL_INTERPOLATION, deprecate, logging +from ....utils.torch_utils import randn_tensor +from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput +logger = logging.get_logger(__name__) + +def _preprocess_image(image: Union[List, PIL.Image.Image, torch.Tensor]): + deprecation_message = 'The preprocess method is deprecated and will be removed in diffusers 1.0.0. Please use VaeImageProcessor.preprocess(...) instead' + deprecate('preprocess', '1.0.0', deprecation_message, standard_warn=False) + if isinstance(image, torch.Tensor): + return image + elif isinstance(image, PIL.Image.Image): + image = [image] + if isinstance(image[0], PIL.Image.Image): + (w, h) = image[0].size + (w, h) = (x - x % 8 for x in (w, h)) + image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['lanczos']))[None, :] for i in image] + image = np.concatenate(image, axis=0) + image = np.array(image).astype(np.float32) / 255.0 + image = image.transpose(0, 3, 1, 2) + image = 2.0 * image - 1.0 + image = torch.from_numpy(image) + elif isinstance(image[0], torch.Tensor): + image = torch.cat(image, dim=0) + return image + +def _preprocess_mask(mask: Union[List, PIL.Image.Image, torch.Tensor]): + if isinstance(mask, torch.Tensor): + return mask + elif isinstance(mask, PIL.Image.Image): + mask = [mask] + if isinstance(mask[0], PIL.Image.Image): + (w, h) = mask[0].size + (w, h) = (x - x % 32 for x in (w, h)) + mask = [np.array(m.convert('L').resize((w, h), resample=PIL_INTERPOLATION['nearest']))[None, :] for m in mask] + mask = np.concatenate(mask, axis=0) + mask = mask.astype(np.float32) / 255.0 + mask[mask < 0.5] = 0 + mask[mask >= 0.5] = 1 + mask = torch.from_numpy(mask) + elif isinstance(mask[0], torch.Tensor): + mask = torch.cat(mask, dim=0) + return mask + +class RePaintPipeline(DiffusionPipeline): + unet: UNet2DModel + scheduler: RePaintScheduler + model_cpu_offload_seq = 'unet' + + def __init__(self, unet, scheduler): + super().__init__() + self.register_modules(unet=unet, scheduler=scheduler) + + @torch.no_grad() + def __call__(self, image: Union[torch.Tensor, PIL.Image.Image], mask_image: Union[torch.Tensor, PIL.Image.Image], num_inference_steps: int=250, eta: float=0.0, jump_length: int=10, jump_n_sample: int=10, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, output_type: Optional[str]='pil', return_dict: bool=True) -> Union[ImagePipelineOutput, Tuple]: + original_image = image + original_image = _preprocess_image(original_image) + original_image = original_image.to(device=self._execution_device, dtype=self.unet.dtype) + mask_image = _preprocess_mask(mask_image) + mask_image = mask_image.to(device=self._execution_device, dtype=self.unet.dtype) + batch_size = original_image.shape[0] + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + image_shape = original_image.shape + image = randn_tensor(image_shape, generator=generator, device=self._execution_device, dtype=self.unet.dtype) + self.scheduler.set_timesteps(num_inference_steps, jump_length, jump_n_sample, self._execution_device) + self.scheduler.eta = eta + t_last = self.scheduler.timesteps[0] + 1 + generator = generator[0] if isinstance(generator, list) else generator + for (i, t) in enumerate(self.progress_bar(self.scheduler.timesteps)): + if t < t_last: + model_output = self.unet(image, t).sample + image = self.scheduler.step(model_output, t, image, original_image, mask_image, generator).prev_sample + else: + image = self.scheduler.undo_step(image, t_last, generator) + t_last = t + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).numpy() + if output_type == 'pil': + image = self.numpy_to_pil(image) + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/score_sde_ve/__init__.py +from typing import TYPE_CHECKING +from ....utils import DIFFUSERS_SLOW_IMPORT, _LazyModule +_import_structure = {'pipeline_score_sde_ve': ['ScoreSdeVePipeline']} +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + from .pipeline_score_sde_ve import ScoreSdeVePipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +from typing import List, Optional, Tuple, Union +import torch +from ....models import UNet2DModel +from ....schedulers import ScoreSdeVeScheduler +from ....utils.torch_utils import randn_tensor +from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput + +class ScoreSdeVePipeline(DiffusionPipeline): + unet: UNet2DModel + scheduler: ScoreSdeVeScheduler + + def __init__(self, unet: UNet2DModel, scheduler: ScoreSdeVeScheduler): + super().__init__() + self.register_modules(unet=unet, scheduler=scheduler) + + @torch.no_grad() + def __call__(self, batch_size: int=1, num_inference_steps: int=2000, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, output_type: Optional[str]='pil', return_dict: bool=True, **kwargs) -> Union[ImagePipelineOutput, Tuple]: + img_size = self.unet.config.sample_size + shape = (batch_size, 3, img_size, img_size) + model = self.unet + sample = randn_tensor(shape, generator=generator) * self.scheduler.init_noise_sigma + sample = sample.to(self.device) + self.scheduler.set_timesteps(num_inference_steps) + self.scheduler.set_sigmas(num_inference_steps) + for (i, t) in enumerate(self.progress_bar(self.scheduler.timesteps)): + sigma_t = self.scheduler.sigmas[i] * torch.ones(shape[0], device=self.device) + for _ in range(self.scheduler.config.correct_steps): + model_output = self.unet(sample, sigma_t).sample + sample = self.scheduler.step_correct(model_output, sample, generator=generator).prev_sample + model_output = model(sample, sigma_t).sample + output = self.scheduler.step_pred(model_output, t, sample, generator=generator) + (sample, sample_mean) = (output.prev_sample, output.prev_sample_mean) + sample = sample_mean.clamp(0, 1) + sample = sample.cpu().permute(0, 2, 3, 1).numpy() + if output_type == 'pil': + sample = self.numpy_to_pil(sample) + if not return_dict: + return (sample,) + return ImagePipelineOutput(images=sample) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/spectrogram_diffusion/__init__.py +from typing import TYPE_CHECKING +from ....utils import DIFFUSERS_SLOW_IMPORT, _LazyModule, is_note_seq_available, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, get_objects_from_module +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ....utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['continous_encoder'] = ['SpectrogramContEncoder'] + _import_structure['notes_encoder'] = ['SpectrogramNotesEncoder'] + _import_structure['pipeline_spectrogram_diffusion'] = ['SpectrogramContEncoder', 'SpectrogramDiffusionPipeline', 'T5FilmDecoder'] +try: + if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ....utils import dummy_transformers_and_torch_and_note_seq_objects + _dummy_objects.update(get_objects_from_module(dummy_transformers_and_torch_and_note_seq_objects)) +else: + _import_structure['midi_utils'] = ['MidiProcessor'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ....utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_spectrogram_diffusion import SpectrogramDiffusionPipeline + from .pipeline_spectrogram_diffusion import SpectrogramContEncoder + from .pipeline_spectrogram_diffusion import SpectrogramNotesEncoder + from .pipeline_spectrogram_diffusion import T5FilmDecoder + try: + if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ....utils.dummy_transformers_and_torch_and_note_seq_objects import * + else: + from .midi_utils import MidiProcessor +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +import torch +import torch.nn as nn +from transformers.modeling_utils import ModuleUtilsMixin +from transformers.models.t5.modeling_t5 import T5Block, T5Config, T5LayerNorm +from ....configuration_utils import ConfigMixin, register_to_config +from ....models import ModelMixin + +class SpectrogramContEncoder(ModelMixin, ConfigMixin, ModuleUtilsMixin): + + @register_to_config + def __init__(self, input_dims: int, targets_context_length: int, d_model: int, dropout_rate: float, num_layers: int, num_heads: int, d_kv: int, d_ff: int, feed_forward_proj: str, is_decoder: bool=False): + super().__init__() + self.input_proj = nn.Linear(input_dims, d_model, bias=False) + self.position_encoding = nn.Embedding(targets_context_length, d_model) + self.position_encoding.weight.requires_grad = False + self.dropout_pre = nn.Dropout(p=dropout_rate) + t5config = T5Config(d_model=d_model, num_heads=num_heads, d_kv=d_kv, d_ff=d_ff, feed_forward_proj=feed_forward_proj, dropout_rate=dropout_rate, is_decoder=is_decoder, is_encoder_decoder=False) + self.encoders = nn.ModuleList() + for lyr_num in range(num_layers): + lyr = T5Block(t5config) + self.encoders.append(lyr) + self.layer_norm = T5LayerNorm(d_model) + self.dropout_post = nn.Dropout(p=dropout_rate) + + def forward(self, encoder_inputs, encoder_inputs_mask): + x = self.input_proj(encoder_inputs) + max_positions = encoder_inputs.shape[1] + input_positions = torch.arange(max_positions, device=encoder_inputs.device) + seq_lens = encoder_inputs_mask.sum(-1) + input_positions = torch.roll(input_positions.unsqueeze(0), tuple(seq_lens.tolist()), dims=0) + x += self.position_encoding(input_positions) + x = self.dropout_pre(x) + input_shape = encoder_inputs.size() + extended_attention_mask = self.get_extended_attention_mask(encoder_inputs_mask, input_shape) + for lyr in self.encoders: + x = lyr(x, extended_attention_mask)[0] + x = self.layer_norm(x) + return (self.dropout_post(x), encoder_inputs_mask) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +import dataclasses +import math +import os +from typing import Any, Callable, List, Mapping, MutableMapping, Optional, Sequence, Tuple, Union +import numpy as np +import torch +import torch.nn.functional as F +from ....utils import is_note_seq_available +from .pipeline_spectrogram_diffusion import TARGET_FEATURE_LENGTH +if is_note_seq_available(): + import note_seq +else: + raise ImportError('Please install note-seq via `pip install note-seq`') +INPUT_FEATURE_LENGTH = 2048 +SAMPLE_RATE = 16000 +HOP_SIZE = 320 +FRAME_RATE = int(SAMPLE_RATE // HOP_SIZE) +DEFAULT_STEPS_PER_SECOND = 100 +DEFAULT_MAX_SHIFT_SECONDS = 10 +DEFAULT_NUM_VELOCITY_BINS = 1 +SLAKH_CLASS_PROGRAMS = {'Acoustic Piano': 0, 'Electric Piano': 4, 'Chromatic Percussion': 8, 'Organ': 16, 'Acoustic Guitar': 24, 'Clean Electric Guitar': 26, 'Distorted Electric Guitar': 29, 'Acoustic Bass': 32, 'Electric Bass': 33, 'Violin': 40, 'Viola': 41, 'Cello': 42, 'Contrabass': 43, 'Orchestral Harp': 46, 'Timpani': 47, 'String Ensemble': 48, 'Synth Strings': 50, 'Choir and Voice': 52, 'Orchestral Hit': 55, 'Trumpet': 56, 'Trombone': 57, 'Tuba': 58, 'French Horn': 60, 'Brass Section': 61, 'Soprano/Alto Sax': 64, 'Tenor Sax': 66, 'Baritone Sax': 67, 'Oboe': 68, 'English Horn': 69, 'Bassoon': 70, 'Clarinet': 71, 'Pipe': 73, 'Synth Lead': 80, 'Synth Pad': 88} + +@dataclasses.dataclass +class NoteRepresentationConfig: + onsets_only: bool + include_ties: bool + +@dataclasses.dataclass +class NoteEventData: + pitch: int + velocity: Optional[int] = None + program: Optional[int] = None + is_drum: Optional[bool] = None + instrument: Optional[int] = None + +@dataclasses.dataclass +class NoteEncodingState: + active_pitches: MutableMapping[Tuple[int, int], int] = dataclasses.field(default_factory=dict) + +@dataclasses.dataclass +class EventRange: + type: str + min_value: int + max_value: int + +@dataclasses.dataclass +class Event: + type: str + value: int + +class Tokenizer: + + def __init__(self, regular_ids: int): + self._num_special_tokens = 3 + self._num_regular_tokens = regular_ids + + def encode(self, token_ids): + encoded = [] + for token_id in token_ids: + if not 0 <= token_id < self._num_regular_tokens: + raise ValueError(f'token_id {token_id} does not fall within valid range of [0, {self._num_regular_tokens})') + encoded.append(token_id + self._num_special_tokens) + encoded.append(1) + encoded = encoded + [0] * (INPUT_FEATURE_LENGTH - len(encoded)) + return encoded + +class Codec: + + def __init__(self, max_shift_steps: int, steps_per_second: float, event_ranges: List[EventRange]): + self.steps_per_second = steps_per_second + self._shift_range = EventRange(type='shift', min_value=0, max_value=max_shift_steps) + self._event_ranges = [self._shift_range] + event_ranges + assert len(self._event_ranges) == len({er.type for er in self._event_ranges}) + + @property + def num_classes(self) -> int: + return sum((er.max_value - er.min_value + 1 for er in self._event_ranges)) + + def is_shift_event_index(self, index: int) -> bool: + return self._shift_range.min_value <= index and index <= self._shift_range.max_value + + @property + def max_shift_steps(self) -> int: + return self._shift_range.max_value + + def encode_event(self, event: Event) -> int: + offset = 0 + for er in self._event_ranges: + if event.type == er.type: + if not er.min_value <= event.value <= er.max_value: + raise ValueError(f'Event value {event.value} is not within valid range [{er.min_value}, {er.max_value}] for type {event.type}') + return offset + event.value - er.min_value + offset += er.max_value - er.min_value + 1 + raise ValueError(f'Unknown event type: {event.type}') + + def event_type_range(self, event_type: str) -> Tuple[int, int]: + offset = 0 + for er in self._event_ranges: + if event_type == er.type: + return (offset, offset + (er.max_value - er.min_value)) + offset += er.max_value - er.min_value + 1 + raise ValueError(f'Unknown event type: {event_type}') + + def decode_event_index(self, index: int) -> Event: + offset = 0 + for er in self._event_ranges: + if offset <= index <= offset + er.max_value - er.min_value: + return Event(type=er.type, value=er.min_value + index - offset) + offset += er.max_value - er.min_value + 1 + raise ValueError(f'Unknown event index: {index}') + +@dataclasses.dataclass +class ProgramGranularity: + tokens_map_fn: Callable[[Sequence[int], Codec], Sequence[int]] + program_map_fn: Callable[[int], int] + +def drop_programs(tokens, codec: Codec): + (min_program_id, max_program_id) = codec.event_type_range('program') + return tokens[(tokens < min_program_id) | (tokens > max_program_id)] + +def programs_to_midi_classes(tokens, codec): + (min_program_id, max_program_id) = codec.event_type_range('program') + is_program = (tokens >= min_program_id) & (tokens <= max_program_id) + return np.where(is_program, min_program_id + 8 * ((tokens - min_program_id) // 8), tokens) +PROGRAM_GRANULARITIES = {'flat': ProgramGranularity(tokens_map_fn=drop_programs, program_map_fn=lambda program: 0), 'midi_class': ProgramGranularity(tokens_map_fn=programs_to_midi_classes, program_map_fn=lambda program: 8 * (program // 8)), 'full': ProgramGranularity(tokens_map_fn=lambda tokens, codec: tokens, program_map_fn=lambda program: program)} + +def frame(signal, frame_length, frame_step, pad_end=False, pad_value=0, axis=-1): + signal_length = signal.shape[axis] + if pad_end: + frames_overlap = frame_length - frame_step + rest_samples = np.abs(signal_length - frames_overlap) % np.abs(frame_length - frames_overlap) + pad_size = int(frame_length - rest_samples) + if pad_size != 0: + pad_axis = [0] * signal.ndim + pad_axis[axis] = pad_size + signal = F.pad(signal, pad_axis, 'constant', pad_value) + frames = signal.unfold(axis, frame_length, frame_step) + return frames + +def program_to_slakh_program(program): + for slakh_program in sorted(SLAKH_CLASS_PROGRAMS.values(), reverse=True): + if program >= slakh_program: + return slakh_program + +def audio_to_frames(samples, hop_size: int, frame_rate: int) -> Tuple[Sequence[Sequence[int]], torch.Tensor]: + frame_size = hop_size + samples = np.pad(samples, [0, frame_size - len(samples) % frame_size], mode='constant') + frames = frame(torch.Tensor(samples).unsqueeze(0), frame_length=frame_size, frame_step=frame_size, pad_end=False) + num_frames = len(samples) // frame_size + times = np.arange(num_frames) / frame_rate + return (frames, times) + +def note_sequence_to_onsets_and_offsets_and_programs(ns: note_seq.NoteSequence) -> Tuple[Sequence[float], Sequence[NoteEventData]]: + notes = sorted(ns.notes, key=lambda note: (note.is_drum, note.program, note.pitch)) + times = [note.end_time for note in notes if not note.is_drum] + [note.start_time for note in notes] + values = [NoteEventData(pitch=note.pitch, velocity=0, program=note.program, is_drum=False) for note in notes if not note.is_drum] + [NoteEventData(pitch=note.pitch, velocity=note.velocity, program=note.program, is_drum=note.is_drum) for note in notes] + return (times, values) + +def num_velocity_bins_from_codec(codec: Codec): + (lo, hi) = codec.event_type_range('velocity') + return hi - lo + +def segment(a, n): + return [a[i:i + n] for i in range(0, len(a), n)] + +def velocity_to_bin(velocity, num_velocity_bins): + if velocity == 0: + return 0 + else: + return math.ceil(num_velocity_bins * velocity / note_seq.MAX_MIDI_VELOCITY) + +def note_event_data_to_events(state: Optional[NoteEncodingState], value: NoteEventData, codec: Codec) -> Sequence[Event]: + if value.velocity is None: + return [Event('pitch', value.pitch)] + else: + num_velocity_bins = num_velocity_bins_from_codec(codec) + velocity_bin = velocity_to_bin(value.velocity, num_velocity_bins) + if value.program is None: + if state is not None: + state.active_pitches[value.pitch, 0] = velocity_bin + return [Event('velocity', velocity_bin), Event('pitch', value.pitch)] + elif value.is_drum: + return [Event('velocity', velocity_bin), Event('drum', value.pitch)] + else: + if state is not None: + state.active_pitches[value.pitch, value.program] = velocity_bin + return [Event('program', value.program), Event('velocity', velocity_bin), Event('pitch', value.pitch)] + +def note_encoding_state_to_events(state: NoteEncodingState) -> Sequence[Event]: + events = [] + for (pitch, program) in sorted(state.active_pitches.keys(), key=lambda k: k[::-1]): + if state.active_pitches[pitch, program]: + events += [Event('program', program), Event('pitch', pitch)] + events.append(Event('tie', 0)) + return events + +def encode_and_index_events(state, event_times, event_values, codec, frame_times, encode_event_fn, encoding_state_to_events_fn=None): + indices = np.argsort(event_times, kind='stable') + event_steps = [round(event_times[i] * codec.steps_per_second) for i in indices] + event_values = [event_values[i] for i in indices] + events = [] + state_events = [] + event_start_indices = [] + state_event_indices = [] + cur_step = 0 + cur_event_idx = 0 + cur_state_event_idx = 0 + + def fill_event_start_indices_to_cur_step(): + while len(event_start_indices) < len(frame_times) and frame_times[len(event_start_indices)] < cur_step / codec.steps_per_second: + event_start_indices.append(cur_event_idx) + state_event_indices.append(cur_state_event_idx) + for (event_step, event_value) in zip(event_steps, event_values): + while event_step > cur_step: + events.append(codec.encode_event(Event(type='shift', value=1))) + cur_step += 1 + fill_event_start_indices_to_cur_step() + cur_event_idx = len(events) + cur_state_event_idx = len(state_events) + if encoding_state_to_events_fn: + for e in encoding_state_to_events_fn(state): + state_events.append(codec.encode_event(e)) + for e in encode_event_fn(state, event_value, codec): + events.append(codec.encode_event(e)) + while cur_step / codec.steps_per_second <= frame_times[-1]: + events.append(codec.encode_event(Event(type='shift', value=1))) + cur_step += 1 + fill_event_start_indices_to_cur_step() + cur_event_idx = len(events) + event_end_indices = event_start_indices[1:] + [len(events)] + events = np.array(events).astype(np.int32) + state_events = np.array(state_events).astype(np.int32) + event_start_indices = segment(np.array(event_start_indices).astype(np.int32), TARGET_FEATURE_LENGTH) + event_end_indices = segment(np.array(event_end_indices).astype(np.int32), TARGET_FEATURE_LENGTH) + state_event_indices = segment(np.array(state_event_indices).astype(np.int32), TARGET_FEATURE_LENGTH) + outputs = [] + for (start_indices, end_indices, event_indices) in zip(event_start_indices, event_end_indices, state_event_indices): + outputs.append({'inputs': events, 'event_start_indices': start_indices, 'event_end_indices': end_indices, 'state_events': state_events, 'state_event_indices': event_indices}) + return outputs + +def extract_sequence_with_indices(features, state_events_end_token=None, feature_key='inputs'): + features = features.copy() + start_idx = features['event_start_indices'][0] + end_idx = features['event_end_indices'][-1] + features[feature_key] = features[feature_key][start_idx:end_idx] + if state_events_end_token is not None: + state_event_start_idx = features['state_event_indices'][0] + state_event_end_idx = state_event_start_idx + 1 + while features['state_events'][state_event_end_idx - 1] != state_events_end_token: + state_event_end_idx += 1 + features[feature_key] = np.concatenate([features['state_events'][state_event_start_idx:state_event_end_idx], features[feature_key]], axis=0) + return features + +def map_midi_programs(feature, codec: Codec, granularity_type: str='full', feature_key: str='inputs') -> Mapping[str, Any]: + granularity = PROGRAM_GRANULARITIES[granularity_type] + feature[feature_key] = granularity.tokens_map_fn(feature[feature_key], codec) + return feature + +def run_length_encode_shifts_fn(features, codec: Codec, feature_key: str='inputs', state_change_event_types: Sequence[str]=()) -> Callable[[Mapping[str, Any]], Mapping[str, Any]]: + state_change_event_ranges = [codec.event_type_range(event_type) for event_type in state_change_event_types] + + def run_length_encode_shifts(features: MutableMapping[str, Any]) -> Mapping[str, Any]: + events = features[feature_key] + shift_steps = 0 + total_shift_steps = 0 + output = np.array([], dtype=np.int32) + current_state = np.zeros(len(state_change_event_ranges), dtype=np.int32) + for event in events: + if codec.is_shift_event_index(event): + shift_steps += 1 + total_shift_steps += 1 + else: + is_redundant = False + for (i, (min_index, max_index)) in enumerate(state_change_event_ranges): + if min_index <= event and event <= max_index: + if current_state[i] == event: + is_redundant = True + current_state[i] = event + if is_redundant: + continue + if shift_steps > 0: + shift_steps = total_shift_steps + while shift_steps > 0: + output_steps = np.minimum(codec.max_shift_steps, shift_steps) + output = np.concatenate([output, [output_steps]], axis=0) + shift_steps -= output_steps + output = np.concatenate([output, [event]], axis=0) + features[feature_key] = output + return features + return run_length_encode_shifts(features) + +def note_representation_processor_chain(features, codec: Codec, note_representation_config: NoteRepresentationConfig): + tie_token = codec.encode_event(Event('tie', 0)) + state_events_end_token = tie_token if note_representation_config.include_ties else None + features = extract_sequence_with_indices(features, state_events_end_token=state_events_end_token, feature_key='inputs') + features = map_midi_programs(features, codec) + features = run_length_encode_shifts_fn(features, codec, state_change_event_types=['velocity', 'program']) + return features + +class MidiProcessor: + + def __init__(self): + self.codec = Codec(max_shift_steps=DEFAULT_MAX_SHIFT_SECONDS * DEFAULT_STEPS_PER_SECOND, steps_per_second=DEFAULT_STEPS_PER_SECOND, event_ranges=[EventRange('pitch', note_seq.MIN_MIDI_PITCH, note_seq.MAX_MIDI_PITCH), EventRange('velocity', 0, DEFAULT_NUM_VELOCITY_BINS), EventRange('tie', 0, 0), EventRange('program', note_seq.MIN_MIDI_PROGRAM, note_seq.MAX_MIDI_PROGRAM), EventRange('drum', note_seq.MIN_MIDI_PITCH, note_seq.MAX_MIDI_PITCH)]) + self.tokenizer = Tokenizer(self.codec.num_classes) + self.note_representation_config = NoteRepresentationConfig(onsets_only=False, include_ties=True) + + def __call__(self, midi: Union[bytes, os.PathLike, str]): + if not isinstance(midi, bytes): + with open(midi, 'rb') as f: + midi = f.read() + ns = note_seq.midi_to_note_sequence(midi) + ns_sus = note_seq.apply_sustain_control_changes(ns) + for note in ns_sus.notes: + if not note.is_drum: + note.program = program_to_slakh_program(note.program) + samples = np.zeros(int(ns_sus.total_time * SAMPLE_RATE)) + (_, frame_times) = audio_to_frames(samples, HOP_SIZE, FRAME_RATE) + (times, values) = note_sequence_to_onsets_and_offsets_and_programs(ns_sus) + events = encode_and_index_events(state=NoteEncodingState(), event_times=times, event_values=values, frame_times=frame_times, codec=self.codec, encode_event_fn=note_event_data_to_events, encoding_state_to_events_fn=note_encoding_state_to_events) + events = [note_representation_processor_chain(event, self.codec, self.note_representation_config) for event in events] + input_tokens = [self.tokenizer.encode(event['inputs']) for event in events] + return input_tokens + +# File: diffusers-main/src/diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +import torch +import torch.nn as nn +from transformers.modeling_utils import ModuleUtilsMixin +from transformers.models.t5.modeling_t5 import T5Block, T5Config, T5LayerNorm +from ....configuration_utils import ConfigMixin, register_to_config +from ....models import ModelMixin + +class SpectrogramNotesEncoder(ModelMixin, ConfigMixin, ModuleUtilsMixin): + + @register_to_config + def __init__(self, max_length: int, vocab_size: int, d_model: int, dropout_rate: float, num_layers: int, num_heads: int, d_kv: int, d_ff: int, feed_forward_proj: str, is_decoder: bool=False): + super().__init__() + self.token_embedder = nn.Embedding(vocab_size, d_model) + self.position_encoding = nn.Embedding(max_length, d_model) + self.position_encoding.weight.requires_grad = False + self.dropout_pre = nn.Dropout(p=dropout_rate) + t5config = T5Config(vocab_size=vocab_size, d_model=d_model, num_heads=num_heads, d_kv=d_kv, d_ff=d_ff, dropout_rate=dropout_rate, feed_forward_proj=feed_forward_proj, is_decoder=is_decoder, is_encoder_decoder=False) + self.encoders = nn.ModuleList() + for lyr_num in range(num_layers): + lyr = T5Block(t5config) + self.encoders.append(lyr) + self.layer_norm = T5LayerNorm(d_model) + self.dropout_post = nn.Dropout(p=dropout_rate) + + def forward(self, encoder_input_tokens, encoder_inputs_mask): + x = self.token_embedder(encoder_input_tokens) + seq_length = encoder_input_tokens.shape[1] + inputs_positions = torch.arange(seq_length, device=encoder_input_tokens.device) + x += self.position_encoding(inputs_positions) + x = self.dropout_pre(x) + input_shape = encoder_input_tokens.size() + extended_attention_mask = self.get_extended_attention_mask(encoder_inputs_mask, input_shape) + for lyr in self.encoders: + x = lyr(x, extended_attention_mask)[0] + x = self.layer_norm(x) + return (self.dropout_post(x), encoder_inputs_mask) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +import math +from typing import Any, Callable, List, Optional, Tuple, Union +import numpy as np +import torch +from ....models import T5FilmDecoder +from ....schedulers import DDPMScheduler +from ....utils import is_onnx_available, logging +from ....utils.torch_utils import randn_tensor +if is_onnx_available(): + from ...onnx_utils import OnnxRuntimeModel +from ...pipeline_utils import AudioPipelineOutput, DiffusionPipeline +from .continuous_encoder import SpectrogramContEncoder +from .notes_encoder import SpectrogramNotesEncoder +logger = logging.get_logger(__name__) +TARGET_FEATURE_LENGTH = 256 + +class SpectrogramDiffusionPipeline(DiffusionPipeline): + _optional_components = ['melgan'] + + def __init__(self, notes_encoder: SpectrogramNotesEncoder, continuous_encoder: SpectrogramContEncoder, decoder: T5FilmDecoder, scheduler: DDPMScheduler, melgan: OnnxRuntimeModel if is_onnx_available() else Any) -> None: + super().__init__() + self.min_value = math.log(1e-05) + self.max_value = 4.0 + self.n_dims = 128 + self.register_modules(notes_encoder=notes_encoder, continuous_encoder=continuous_encoder, decoder=decoder, scheduler=scheduler, melgan=melgan) + + def scale_features(self, features, output_range=(-1.0, 1.0), clip=False): + (min_out, max_out) = output_range + if clip: + features = torch.clip(features, self.min_value, self.max_value) + zero_one = (features - self.min_value) / (self.max_value - self.min_value) + return zero_one * (max_out - min_out) + min_out + + def scale_to_features(self, outputs, input_range=(-1.0, 1.0), clip=False): + (min_out, max_out) = input_range + outputs = torch.clip(outputs, min_out, max_out) if clip else outputs + zero_one = (outputs - min_out) / (max_out - min_out) + return zero_one * (self.max_value - self.min_value) + self.min_value + + def encode(self, input_tokens, continuous_inputs, continuous_mask): + tokens_mask = input_tokens > 0 + (tokens_encoded, tokens_mask) = self.notes_encoder(encoder_input_tokens=input_tokens, encoder_inputs_mask=tokens_mask) + (continuous_encoded, continuous_mask) = self.continuous_encoder(encoder_inputs=continuous_inputs, encoder_inputs_mask=continuous_mask) + return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] + + def decode(self, encodings_and_masks, input_tokens, noise_time): + timesteps = noise_time + if not torch.is_tensor(timesteps): + timesteps = torch.tensor([timesteps], dtype=torch.long, device=input_tokens.device) + elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: + timesteps = timesteps[None].to(input_tokens.device) + timesteps = timesteps * torch.ones(input_tokens.shape[0], dtype=timesteps.dtype, device=timesteps.device) + logits = self.decoder(encodings_and_masks=encodings_and_masks, decoder_input_tokens=input_tokens, decoder_noise_time=timesteps) + return logits + + @torch.no_grad() + def __call__(self, input_tokens: List[List[int]], generator: Optional[torch.Generator]=None, num_inference_steps: int=100, return_dict: bool=True, output_type: str='np', callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1) -> Union[AudioPipelineOutput, Tuple]: + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + '' + pred_mel = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims], dtype=np.float32) + full_pred_mel = np.zeros([1, 0, self.n_dims], np.float32) + ones = torch.ones((1, TARGET_FEATURE_LENGTH), dtype=bool, device=self.device) + for (i, encoder_input_tokens) in enumerate(input_tokens): + if i == 0: + encoder_continuous_inputs = torch.from_numpy(pred_mel[:1].copy()).to(device=self.device, dtype=self.decoder.dtype) + encoder_continuous_mask = torch.zeros((1, TARGET_FEATURE_LENGTH), dtype=bool, device=self.device) + else: + encoder_continuous_mask = ones + encoder_continuous_inputs = self.scale_features(encoder_continuous_inputs, output_range=[-1.0, 1.0], clip=True) + encodings_and_masks = self.encode(input_tokens=torch.IntTensor([encoder_input_tokens]).to(device=self.device), continuous_inputs=encoder_continuous_inputs, continuous_mask=encoder_continuous_mask) + x = randn_tensor(shape=encoder_continuous_inputs.shape, generator=generator, device=self.device, dtype=self.decoder.dtype) + self.scheduler.set_timesteps(num_inference_steps) + for (j, t) in enumerate(self.progress_bar(self.scheduler.timesteps)): + output = self.decode(encodings_and_masks=encodings_and_masks, input_tokens=x, noise_time=t / self.scheduler.config.num_train_timesteps) + x = self.scheduler.step(output, t, x, generator=generator).prev_sample + mel = self.scale_to_features(x, input_range=[-1.0, 1.0]) + encoder_continuous_inputs = mel[:1] + pred_mel = mel.cpu().float().numpy() + full_pred_mel = np.concatenate([full_pred_mel, pred_mel[:1]], axis=1) + if callback is not None and i % callback_steps == 0: + callback(i, full_pred_mel) + logger.info('Generated segment', i) + if output_type == 'np' and (not is_onnx_available()): + raise ValueError("Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'.") + elif output_type == 'np' and self.melgan is None: + raise ValueError("Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'.") + if output_type == 'np': + output = self.melgan(input_features=full_pred_mel.astype(np.float32)) + else: + output = full_pred_mel + if not return_dict: + return (output,) + return AudioPipelineOutput(audios=output) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +from typing import TYPE_CHECKING +from ....utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ....utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_cycle_diffusion'] = ['CycleDiffusionPipeline'] + _import_structure['pipeline_stable_diffusion_inpaint_legacy'] = ['StableDiffusionInpaintPipelineLegacy'] + _import_structure['pipeline_stable_diffusion_model_editing'] = ['StableDiffusionModelEditingPipeline'] + _import_structure['pipeline_stable_diffusion_paradigms'] = ['StableDiffusionParadigmsPipeline'] + _import_structure['pipeline_stable_diffusion_pix2pix_zero'] = ['StableDiffusionPix2PixZeroPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ....utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_cycle_diffusion import CycleDiffusionPipeline + from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy + from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline + from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline + from .pipeline_stable_diffusion_pix2pix_zero import StableDiffusionPix2PixZeroPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from packaging import version +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer +from ....configuration_utils import FrozenDict +from ....image_processor import PipelineImageInput, VaeImageProcessor +from ....loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ....models import AutoencoderKL, UNet2DConditionModel +from ....models.lora import adjust_lora_scale_text_encoder +from ....schedulers import DDIMScheduler +from ....utils import PIL_INTERPOLATION, USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers +from ....utils.torch_utils import randn_tensor +from ...pipeline_utils import DiffusionPipeline +from ...stable_diffusion.pipeline_output import StableDiffusionPipelineOutput +from ...stable_diffusion.safety_checker import StableDiffusionSafetyChecker +logger = logging.get_logger(__name__) + +def preprocess(image): + deprecation_message = 'The preprocess method is deprecated and will be removed in diffusers 1.0.0. Please use VaeImageProcessor.preprocess(...) instead' + deprecate('preprocess', '1.0.0', deprecation_message, standard_warn=False) + if isinstance(image, torch.Tensor): + return image + elif isinstance(image, PIL.Image.Image): + image = [image] + if isinstance(image[0], PIL.Image.Image): + (w, h) = image[0].size + (w, h) = (x - x % 8 for x in (w, h)) + image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['lanczos']))[None, :] for i in image] + image = np.concatenate(image, axis=0) + image = np.array(image).astype(np.float32) / 255.0 + image = image.transpose(0, 3, 1, 2) + image = 2.0 * image - 1.0 + image = torch.from_numpy(image) + elif isinstance(image[0], torch.Tensor): + image = torch.cat(image, dim=0) + return image + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +def posterior_sample(scheduler, latents, timestep, clean_latents, generator, eta): + prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps + if prev_timestep <= 0: + return clean_latents + alpha_prod_t = scheduler.alphas_cumprod[timestep] + alpha_prod_t_prev = scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod + variance = scheduler._get_variance(timestep, prev_timestep) + std_dev_t = eta * variance ** 0.5 + e_t = (latents - alpha_prod_t ** 0.5 * clean_latents) / (1 - alpha_prod_t) ** 0.5 + dir_xt = (1.0 - alpha_prod_t_prev - std_dev_t ** 2) ** 0.5 * e_t + noise = std_dev_t * randn_tensor(clean_latents.shape, dtype=clean_latents.dtype, device=clean_latents.device, generator=generator) + prev_latents = alpha_prod_t_prev ** 0.5 * clean_latents + dir_xt + noise + return prev_latents + +def compute_noise(scheduler, prev_latents, latents, timestep, noise_pred, eta): + prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps + alpha_prod_t = scheduler.alphas_cumprod[timestep] + alpha_prod_t_prev = scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod + beta_prod_t = 1 - alpha_prod_t + pred_original_sample = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 + if scheduler.config.clip_sample: + pred_original_sample = torch.clamp(pred_original_sample, -1, 1) + variance = scheduler._get_variance(timestep, prev_timestep) + std_dev_t = eta * variance ** 0.5 + pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t ** 2) ** 0.5 * noise_pred + noise = (prev_latents - (alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction)) / (variance ** 0.5 * eta) + return noise + +class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: DDIMScheduler, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool=True): + super().__init__() + if hasattr(scheduler.config, 'steps_offset') and scheduler.config.steps_offset != 1: + deprecation_message = f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset` should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure to update the config accordingly as leaving `steps_offset` might led to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('steps_offset!=1', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['steps_offset'] = 1 + scheduler._internal_dict = FrozenDict(new_config) + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + is_unet_version_less_0_9_0 = hasattr(unet.config, '_diffusers_version') and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse('0.9.0.dev0') + is_unet_sample_size_less_64 = hasattr(unet.config, 'sample_size') and unet.config.sample_size < 64 + if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: + deprecation_message = "The configuration file of the unet has set the default `sample_size` to smaller than 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n- CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5 \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the configuration file. Please make sure to update the config accordingly as leaving `sample_size=32` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `unet/config.json` file" + deprecate('sample_size<64', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(unet.config) + new_config['sample_size'] = 64 + unet._internal_dict = FrozenDict(new_config) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def check_inputs(self, prompt, strength, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None): + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + + def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): + image = image.to(device=device, dtype=dtype) + batch_size = image.shape[0] + if image.shape[1] == 4: + init_latents = image + else: + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if isinstance(generator, list): + init_latents = [retrieve_latents(self.vae.encode(image[i:i + 1]), generator=generator[i]) for i in range(image.shape[0])] + init_latents = torch.cat(init_latents, dim=0) + else: + init_latents = retrieve_latents(self.vae.encode(image), generator=generator) + init_latents = self.vae.config.scaling_factor * init_latents + if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: + deprecation_message = f'You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial images (`image`). Initial images are now duplicating to match the number of text prompts. Note that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update your script to pass as many initial images as text prompts to suppress this warning.' + deprecate('len(prompt) != len(image)', '1.0.0', deprecation_message, standard_warn=False) + additional_image_per_prompt = batch_size // init_latents.shape[0] + init_latents = torch.cat([init_latents] * additional_image_per_prompt * num_images_per_prompt, dim=0) + elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts.') + else: + init_latents = torch.cat([init_latents] * num_images_per_prompt, dim=0) + shape = init_latents.shape + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + clean_latents = init_latents + init_latents = self.scheduler.add_noise(init_latents, noise, timestep) + latents = init_latents + return (latents, clean_latents) + + @torch.no_grad() + def __call__(self, prompt: Union[str, List[str]], source_prompt: Union[str, List[str]], image: PipelineImageInput=None, strength: float=0.8, num_inference_steps: Optional[int]=50, guidance_scale: Optional[float]=7.5, source_guidance_scale: Optional[float]=1, num_images_per_prompt: Optional[int]=1, eta: Optional[float]=0.1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: Optional[int]=None): + self.check_inputs(prompt, strength, callback_steps) + batch_size = 1 if isinstance(prompt, str) else len(prompt) + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + text_encoder_lora_scale = cross_attention_kwargs.get('scale', None) if cross_attention_kwargs is not None else None + prompt_embeds_tuple = self.encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, prompt_embeds=prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip) + source_prompt_embeds_tuple = self.encode_prompt(source_prompt, device, num_images_per_prompt, do_classifier_free_guidance, None, clip_skip=clip_skip) + if prompt_embeds_tuple[1] is not None: + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + else: + prompt_embeds = prompt_embeds_tuple[0] + if source_prompt_embeds_tuple[1] is not None: + source_prompt_embeds = torch.cat([source_prompt_embeds_tuple[1], source_prompt_embeds_tuple[0]]) + else: + source_prompt_embeds = source_prompt_embeds_tuple[0] + image = self.image_processor.preprocess(image) + self.scheduler.set_timesteps(num_inference_steps, device=device) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + (latents, clean_latents) = self.prepare_latents(image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator) + source_latents = latents + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + generator = extra_step_kwargs.pop('generator', None) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + source_latent_model_input = torch.cat([source_latents] * 2) if do_classifier_free_guidance else source_latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + source_latent_model_input = self.scheduler.scale_model_input(source_latent_model_input, t) + if do_classifier_free_guidance: + concat_latent_model_input = torch.stack([source_latent_model_input[0], latent_model_input[0], source_latent_model_input[1], latent_model_input[1]], dim=0) + concat_prompt_embeds = torch.stack([source_prompt_embeds[0], prompt_embeds[0], source_prompt_embeds[1], prompt_embeds[1]], dim=0) + else: + concat_latent_model_input = torch.cat([source_latent_model_input, latent_model_input], dim=0) + concat_prompt_embeds = torch.cat([source_prompt_embeds, prompt_embeds], dim=0) + concat_noise_pred = self.unet(concat_latent_model_input, t, cross_attention_kwargs=cross_attention_kwargs, encoder_hidden_states=concat_prompt_embeds).sample + if do_classifier_free_guidance: + (source_noise_pred_uncond, noise_pred_uncond, source_noise_pred_text, noise_pred_text) = concat_noise_pred.chunk(4, dim=0) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + source_noise_pred = source_noise_pred_uncond + source_guidance_scale * (source_noise_pred_text - source_noise_pred_uncond) + else: + (source_noise_pred, noise_pred) = concat_noise_pred.chunk(2, dim=0) + prev_source_latents = posterior_sample(self.scheduler, source_latents, t, clean_latents, generator=generator, **extra_step_kwargs) + noise = compute_noise(self.scheduler, prev_source_latents, source_latents, t, source_noise_pred, **extra_step_kwargs) + source_latents = prev_source_latents + latents = self.scheduler.step(noise_pred, t, latents, variance_noise=noise, **extra_step_kwargs).prev_sample + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +import inspect +from typing import Callable, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTokenizer +from ....configuration_utils import FrozenDict +from ....schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler +from ....utils import deprecate, logging +from ...onnx_utils import ORT_TO_NP_TYPE, OnnxRuntimeModel +from ...pipeline_utils import DiffusionPipeline +from ...stable_diffusion.pipeline_output import StableDiffusionPipelineOutput +logger = logging.get_logger(__name__) + +def preprocess(image): + (w, h) = image.size + (w, h) = (x - x % 32 for x in (w, h)) + image = image.resize((w, h), resample=PIL.Image.LANCZOS) + image = np.array(image).astype(np.float32) / 255.0 + image = image[None].transpose(0, 3, 1, 2) + return 2.0 * image - 1.0 + +def preprocess_mask(mask, scale_factor=8): + mask = mask.convert('L') + (w, h) = mask.size + (w, h) = (x - x % 32 for x in (w, h)) + mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL.Image.NEAREST) + mask = np.array(mask).astype(np.float32) / 255.0 + mask = np.tile(mask, (4, 1, 1)) + mask = mask[None].transpose(0, 1, 2, 3) + mask = 1 - mask + return mask + +class OnnxStableDiffusionInpaintPipelineLegacy(DiffusionPipeline): + _optional_components = ['safety_checker', 'feature_extractor'] + _is_onnx = True + vae_encoder: OnnxRuntimeModel + vae_decoder: OnnxRuntimeModel + text_encoder: OnnxRuntimeModel + tokenizer: CLIPTokenizer + unet: OnnxRuntimeModel + scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] + safety_checker: OnnxRuntimeModel + feature_extractor: CLIPImageProcessor + + def __init__(self, vae_encoder: OnnxRuntimeModel, vae_decoder: OnnxRuntimeModel, text_encoder: OnnxRuntimeModel, tokenizer: CLIPTokenizer, unet: OnnxRuntimeModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: OnnxRuntimeModel, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool=True): + super().__init__() + if hasattr(scheduler.config, 'steps_offset') and scheduler.config.steps_offset != 1: + deprecation_message = f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset` should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure to update the config accordingly as leaving `steps_offset` might led to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('steps_offset!=1', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['steps_offset'] = 1 + scheduler._internal_dict = FrozenDict(new_config) + if hasattr(scheduler.config, 'clip_sample') and scheduler.config.clip_sample is True: + deprecation_message = f'The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`. `clip_sample` should be set to False in the configuration file. Please make sure to update the config accordingly as not setting `clip_sample` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('clip_sample not set', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['clip_sample'] = False + scheduler._internal_dict = FrozenDict(new_config) + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.register_modules(vae_encoder=vae_encoder, vae_decoder=vae_decoder, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt: Union[str, List[str]], num_images_per_prompt: Optional[int], do_classifier_free_guidance: bool, negative_prompt: Optional[str], prompt_embeds: Optional[np.ndarray]=None, negative_prompt_embeds: Optional[np.ndarray]=None): + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='np') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='max_length', return_tensors='np').input_ids + if not np.array_equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0] + prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] * batch_size + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='np') + negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0] + if do_classifier_free_guidance: + negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0) + prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds]) + return prompt_embeds + + def check_inputs(self, prompt, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None): + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def __call__(self, prompt: Union[str, List[str]], image: Union[np.ndarray, PIL.Image.Image]=None, mask_image: Union[np.ndarray, PIL.Image.Image]=None, strength: float=0.8, num_inference_steps: Optional[int]=50, guidance_scale: Optional[float]=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: Optional[float]=0.0, generator: Optional[np.random.RandomState]=None, prompt_embeds: Optional[np.ndarray]=None, negative_prompt_embeds: Optional[np.ndarray]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, np.ndarray], None]]=None, callback_steps: int=1): + self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if generator is None: + generator = np.random + self.scheduler.set_timesteps(num_inference_steps) + if isinstance(image, PIL.Image.Image): + image = preprocess(image) + do_classifier_free_guidance = guidance_scale > 1.0 + prompt_embeds = self._encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds) + latents_dtype = prompt_embeds.dtype + image = image.astype(latents_dtype) + init_latents = self.vae_encoder(sample=image)[0] + init_latents = 0.18215 * init_latents + init_latents = np.concatenate([init_latents] * num_images_per_prompt, axis=0) + init_latents_orig = init_latents + if not isinstance(mask_image, np.ndarray): + mask_image = preprocess_mask(mask_image, 8) + mask_image = mask_image.astype(latents_dtype) + mask = np.concatenate([mask_image] * num_images_per_prompt, axis=0) + if not mask.shape == init_latents.shape: + raise ValueError('The mask and image should be the same size!') + offset = self.scheduler.config.get('steps_offset', 0) + init_timestep = int(num_inference_steps * strength) + offset + init_timestep = min(init_timestep, num_inference_steps) + timesteps = self.scheduler.timesteps.numpy()[-init_timestep] + timesteps = np.array([timesteps] * batch_size * num_images_per_prompt) + noise = generator.randn(*init_latents.shape).astype(latents_dtype) + init_latents = self.scheduler.add_noise(torch.from_numpy(init_latents), torch.from_numpy(noise), torch.from_numpy(timesteps)) + init_latents = init_latents.numpy() + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + latents = init_latents + t_start = max(num_inference_steps - init_timestep + offset, 0) + timesteps = self.scheduler.timesteps[t_start:].numpy() + timestep_dtype = next((input.type for input in self.unet.model.get_inputs() if input.name == 'timestep'), 'tensor(float)') + timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] + for (i, t) in enumerate(self.progress_bar(timesteps)): + latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + timestep = np.array([t], dtype=timestep_dtype) + noise_pred = self.unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = np.split(noise_pred, 2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs).prev_sample + latents = latents.numpy() + init_latents_proper = self.scheduler.add_noise(torch.from_numpy(init_latents_orig), torch.from_numpy(noise), torch.from_numpy(np.array([t]))) + init_latents_proper = init_latents_proper.numpy() + latents = init_latents_proper * mask + latents * (1 - mask) + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + latents = 1 / 0.18215 * latents + image = np.concatenate([self.vae_decoder(latent_sample=latents[i:i + 1])[0] for i in range(latents.shape[0])]) + image = np.clip(image / 2 + 0.5, 0, 1) + image = image.transpose((0, 2, 3, 1)) + if self.safety_checker is not None: + safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors='np').pixel_values.astype(image.dtype) + (images, has_nsfw_concept) = ([], []) + for i in range(image.shape[0]): + (image_i, has_nsfw_concept_i) = self.safety_checker(clip_input=safety_checker_input[i:i + 1], images=image[i:i + 1]) + images.append(image_i) + has_nsfw_concept.append(has_nsfw_concept_i[0]) + image = np.concatenate(images) + else: + has_nsfw_concept = None + if output_type == 'pil': + image = self.numpy_to_pil(image) + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from packaging import version +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer +from ....configuration_utils import FrozenDict +from ....image_processor import VaeImageProcessor +from ....loaders import FromSingleFileMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ....models import AutoencoderKL, UNet2DConditionModel +from ....models.lora import adjust_lora_scale_text_encoder +from ....schedulers import KarrasDiffusionSchedulers +from ....utils import PIL_INTERPOLATION, USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers +from ....utils.torch_utils import randn_tensor +from ...pipeline_utils import DiffusionPipeline +from ...stable_diffusion import StableDiffusionPipelineOutput +from ...stable_diffusion.safety_checker import StableDiffusionSafetyChecker +logger = logging.get_logger(__name__) + +def preprocess_image(image, batch_size): + (w, h) = image.size + (w, h) = (x - x % 8 for x in (w, h)) + image = image.resize((w, h), resample=PIL_INTERPOLATION['lanczos']) + image = np.array(image).astype(np.float32) / 255.0 + image = np.vstack([image[None].transpose(0, 3, 1, 2)] * batch_size) + image = torch.from_numpy(image) + return 2.0 * image - 1.0 + +def preprocess_mask(mask, batch_size, scale_factor=8): + if not isinstance(mask, torch.Tensor): + mask = mask.convert('L') + (w, h) = mask.size + (w, h) = (x - x % 8 for x in (w, h)) + mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION['nearest']) + mask = np.array(mask).astype(np.float32) / 255.0 + mask = np.tile(mask, (4, 1, 1)) + mask = np.vstack([mask[None]] * batch_size) + mask = 1 - mask + mask = torch.from_numpy(mask) + return mask + else: + valid_mask_channel_sizes = [1, 3] + if mask.shape[3] in valid_mask_channel_sizes: + mask = mask.permute(0, 3, 1, 2) + elif mask.shape[1] not in valid_mask_channel_sizes: + raise ValueError(f'Mask channel dimension of size in {valid_mask_channel_sizes} should be second or fourth dimension, but received mask of shape {tuple(mask.shape)}') + mask = mask.mean(dim=1, keepdim=True) + (h, w) = mask.shape[-2:] + (h, w) = (x - x % 8 for x in (h, w)) + mask = torch.nn.functional.interpolate(mask, (h // scale_factor, w // scale_factor)) + return mask + +class StableDiffusionInpaintPipelineLegacy(DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _optional_components = ['feature_extractor'] + _exclude_from_cpu_offload = ['safety_checker'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool=True): + super().__init__() + deprecation_message = f'The class {self.__class__} is deprecated and will be removed in v1.0.0. You can achieve exactly the same functionalityby loading your model into `StableDiffusionInpaintPipeline` instead. See https://github.com/huggingface/diffusers/pull/3533for more information.' + deprecate('legacy is outdated', '1.0.0', deprecation_message, standard_warn=False) + if hasattr(scheduler.config, 'steps_offset') and scheduler.config.steps_offset != 1: + deprecation_message = f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset` should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure to update the config accordingly as leaving `steps_offset` might led to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('steps_offset!=1', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['steps_offset'] = 1 + scheduler._internal_dict = FrozenDict(new_config) + if hasattr(scheduler.config, 'clip_sample') and scheduler.config.clip_sample is True: + deprecation_message = f'The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`. `clip_sample` should be set to False in the configuration file. Please make sure to update the config accordingly as not setting `clip_sample` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('clip_sample not set', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['clip_sample'] = False + scheduler._internal_dict = FrozenDict(new_config) + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + is_unet_version_less_0_9_0 = hasattr(unet.config, '_diffusers_version') and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse('0.9.0.dev0') + is_unet_sample_size_less_64 = hasattr(unet.config, 'sample_size') and unet.config.sample_size < 64 + if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: + deprecation_message = "The configuration file of the unet has set the default `sample_size` to smaller than 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n- CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5 \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the configuration file. Please make sure to update the config accordingly as leaving `sample_size=32` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `unet/config.json` file" + deprecate('sample_size<64', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(unet.config) + new_config['sample_size'] = 64 + unet._internal_dict = FrozenDict(new_config) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, strength, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None): + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + return (timesteps, num_inference_steps - t_start) + + def prepare_latents(self, image, timestep, num_images_per_prompt, dtype, device, generator): + image = image.to(device=device, dtype=dtype) + init_latent_dist = self.vae.encode(image).latent_dist + init_latents = init_latent_dist.sample(generator=generator) + init_latents = self.vae.config.scaling_factor * init_latents + init_latents = torch.cat([init_latents] * num_images_per_prompt, dim=0) + init_latents_orig = init_latents + noise = randn_tensor(init_latents.shape, generator=generator, device=device, dtype=dtype) + init_latents = self.scheduler.add_noise(init_latents, noise, timestep) + latents = init_latents + return (latents, init_latents_orig, noise) + + @torch.no_grad() + def __call__(self, prompt: Union[str, List[str]]=None, image: Union[torch.Tensor, PIL.Image.Image]=None, mask_image: Union[torch.Tensor, PIL.Image.Image]=None, strength: float=0.8, num_inference_steps: Optional[int]=50, guidance_scale: Optional[float]=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, add_predicted_noise: Optional[bool]=False, eta: Optional[float]=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: Optional[int]=None): + self.check_inputs(prompt, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + text_encoder_lora_scale = cross_attention_kwargs.get('scale', None) if cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + if not isinstance(image, torch.Tensor): + image = preprocess_image(image, batch_size) + mask_image = preprocess_mask(mask_image, batch_size, self.vae_scale_factor) + self.scheduler.set_timesteps(num_inference_steps, device=device) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + (latents, init_latents_orig, noise) = self.prepare_latents(image, latent_timestep, num_images_per_prompt, prompt_embeds.dtype, device, generator) + mask = mask_image.to(device=device, dtype=latents.dtype) + mask = torch.cat([mask] * num_images_per_prompt) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if add_predicted_noise: + init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise_pred_uncond, torch.tensor([t])) + else: + init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t])) + latents = init_latents_proper * mask + latents * (1 - mask) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + latents = init_latents_orig * mask + latents * (1 - mask) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +import copy +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer +from ....image_processor import VaeImageProcessor +from ....loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ....models import AutoencoderKL, UNet2DConditionModel +from ....models.lora import adjust_lora_scale_text_encoder +from ....schedulers import PNDMScheduler +from ....schedulers.scheduling_utils import SchedulerMixin +from ....utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers +from ....utils.torch_utils import randn_tensor +from ...pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ...stable_diffusion.pipeline_output import StableDiffusionPipelineOutput +from ...stable_diffusion.safety_checker import StableDiffusionSafetyChecker +logger = logging.get_logger(__name__) +AUGS_CONST = ['A photo of ', 'An image of ', 'A picture of '] + +class StableDiffusionModelEditingPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor'] + _exclude_from_cpu_offload = ['safety_checker'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: SchedulerMixin, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool=True, with_to_k: bool=True, with_augs: list=AUGS_CONST): + super().__init__() + if isinstance(scheduler, PNDMScheduler): + logger.error('PNDMScheduler for this pipeline is currently not supported.') + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + self.with_to_k = with_to_k + self.with_augs = with_augs + ca_layers = [] + + def append_ca(net_): + if net_.__class__.__name__ == 'CrossAttention': + ca_layers.append(net_) + elif hasattr(net_, 'children'): + for net__ in net_.children(): + append_ca(net__) + for net in self.unet.named_children(): + if 'down' in net[0]: + append_ca(net[1]) + elif 'up' in net[0]: + append_ca(net[1]) + elif 'mid' in net[0]: + append_ca(net[1]) + self.ca_clip_layers = [l for l in ca_layers if l.to_v.in_features == 768] + self.projection_matrices = [l.to_v for l in self.ca_clip_layers] + self.og_matrices = [copy.deepcopy(l.to_v) for l in self.ca_clip_layers] + if self.with_to_k: + self.projection_matrices = self.projection_matrices + [l.to_k for l in self.ca_clip_layers] + self.og_matrices = self.og_matrices + [copy.deepcopy(l.to_k) for l in self.ca_clip_layers] + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @torch.no_grad() + def edit_model(self, source_prompt: str, destination_prompt: str, lamb: float=0.1, restart_params: bool=True): + if restart_params: + num_ca_clip_layers = len(self.ca_clip_layers) + for (idx_, l) in enumerate(self.ca_clip_layers): + l.to_v = copy.deepcopy(self.og_matrices[idx_]) + self.projection_matrices[idx_] = l.to_v + if self.with_to_k: + l.to_k = copy.deepcopy(self.og_matrices[num_ca_clip_layers + idx_]) + self.projection_matrices[num_ca_clip_layers + idx_] = l.to_k + old_texts = [source_prompt] + new_texts = [destination_prompt] + base = old_texts[0] if old_texts[0][0:1] != 'A' else 'a' + old_texts[0][1:] + for aug in self.with_augs: + old_texts.append(aug + base) + base = new_texts[0] if new_texts[0][0:1] != 'A' else 'a' + new_texts[0][1:] + for aug in self.with_augs: + new_texts.append(aug + base) + (old_embs, new_embs) = ([], []) + for (old_text, new_text) in zip(old_texts, new_texts): + text_input = self.tokenizer([old_text, new_text], padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0] + (old_emb, new_emb) = text_embeddings + old_embs.append(old_emb) + new_embs.append(new_emb) + idxs_replaces = [] + for (old_text, new_text) in zip(old_texts, new_texts): + tokens_a = self.tokenizer(old_text).input_ids + tokens_b = self.tokenizer(new_text).input_ids + tokens_a = [self.tokenizer.encode('a ')[1] if self.tokenizer.decode(t) == 'an' else t for t in tokens_a] + tokens_b = [self.tokenizer.encode('a ')[1] if self.tokenizer.decode(t) == 'an' else t for t in tokens_b] + num_orig_tokens = len(tokens_a) + idxs_replace = [] + j = 0 + for i in range(num_orig_tokens): + curr_token = tokens_a[i] + while tokens_b[j] != curr_token: + j += 1 + idxs_replace.append(j) + j += 1 + while j < 77: + idxs_replace.append(j) + j += 1 + while len(idxs_replace) < 77: + idxs_replace.append(76) + idxs_replaces.append(idxs_replace) + (contexts, valuess) = ([], []) + for (old_emb, new_emb, idxs_replace) in zip(old_embs, new_embs, idxs_replaces): + context = old_emb.detach() + values = [] + with torch.no_grad(): + for layer in self.projection_matrices: + values.append(layer(new_emb[idxs_replace]).detach()) + contexts.append(context) + valuess.append(values) + for layer_num in range(len(self.projection_matrices)): + mat1 = lamb * self.projection_matrices[layer_num].weight + mat2 = lamb * torch.eye(self.projection_matrices[layer_num].weight.shape[1], device=self.projection_matrices[layer_num].weight.device) + for (context, values) in zip(contexts, valuess): + context_vector = context.reshape(context.shape[0], context.shape[1], 1) + context_vector_T = context.reshape(context.shape[0], 1, context.shape[1]) + value_vector = values[layer_num].reshape(values[layer_num].shape[0], values[layer_num].shape[1], 1) + for_mat1 = (value_vector @ context_vector_T).sum(dim=0) + for_mat2 = (context_vector @ context_vector_T).sum(dim=0) + mat1 += for_mat1 + mat2 += for_mat2 + self.projection_matrices[layer_num].weight = torch.nn.Parameter(mat1 @ torch.inverse(mat2)) + + @torch.no_grad() + def __call__(self, prompt: Union[str, List[str]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: Optional[int]=None): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + text_encoder_lora_scale = cross_attention_kwargs.get('scale', None) if cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs).sample + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer +from ....image_processor import VaeImageProcessor +from ....loaders import FromSingleFileMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ....models import AutoencoderKL, UNet2DConditionModel +from ....models.lora import adjust_lora_scale_text_encoder +from ....schedulers import KarrasDiffusionSchedulers +from ....utils import USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ....utils.torch_utils import randn_tensor +from ...pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ...stable_diffusion.pipeline_output import StableDiffusionPipelineOutput +from ...stable_diffusion.safety_checker import StableDiffusionSafetyChecker +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import DDPMParallelScheduler\n >>> from diffusers import StableDiffusionParadigmsPipeline\n\n >>> scheduler = DDPMParallelScheduler.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="scheduler")\n\n >>> pipe = StableDiffusionParadigmsPipeline.from_pretrained(\n ... "runwayml/stable-diffusion-v1-5", scheduler=scheduler, torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n >>> ngpu, batch_per_device = torch.cuda.device_count(), 5\n >>> pipe.wrapped_unet = torch.nn.DataParallel(pipe.unet, device_ids=[d for d in range(ngpu)])\n\n >>> prompt = "a photo of an astronaut riding a horse on mars"\n >>> image = pipe(prompt, parallel=ngpu * batch_per_device, num_inference_steps=1000).images[0]\n ```\n' + +class StableDiffusionParadigmsPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor'] + _exclude_from_cpu_offload = ['safety_checker'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool=True): + super().__init__() + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + self.wrapped_unet = self.unet + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def _cumsum(self, input, dim, debug=False): + if debug: + return torch.cumsum(input.cpu().float(), dim=dim).to(input.device) + else: + return torch.cumsum(input, dim=dim) + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, parallel: int=10, tolerance: float=0.1, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, debug: bool=False, clip_skip: int=None): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clip_skip=clip_skip) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + self.scheduler.set_timesteps(num_inference_steps, device=device) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + extra_step_kwargs.pop('generator', None) + scheduler = self.scheduler + parallel = min(parallel, len(scheduler.timesteps)) + begin_idx = 0 + end_idx = parallel + latents_time_evolution_buffer = torch.stack([latents] * (len(scheduler.timesteps) + 1)) + noise_array = torch.zeros_like(latents_time_evolution_buffer) + for j in range(len(scheduler.timesteps)): + base_noise = randn_tensor(shape=latents.shape, generator=generator, device=latents.device, dtype=prompt_embeds.dtype) + noise = self.scheduler._get_variance(scheduler.timesteps[j]) ** 0.5 * base_noise + noise_array[j] = noise.clone() + inverse_variance_norm = 1.0 / torch.tensor([scheduler._get_variance(scheduler.timesteps[j]) for j in range(len(scheduler.timesteps))] + [0]).to(noise_array.device) + latent_dim = noise_array[0, 0].numel() + inverse_variance_norm = inverse_variance_norm[:, None] / latent_dim + scaled_tolerance = tolerance ** 2 + with self.progress_bar(total=num_inference_steps) as progress_bar: + steps = 0 + while begin_idx < len(scheduler.timesteps): + parallel_len = end_idx - begin_idx + block_prompt_embeds = torch.stack([prompt_embeds] * parallel_len) + block_latents = latents_time_evolution_buffer[begin_idx:end_idx] + block_t = scheduler.timesteps[begin_idx:end_idx, None].repeat(1, batch_size * num_images_per_prompt) + t_vec = block_t + if do_classifier_free_guidance: + t_vec = t_vec.repeat(1, 2) + latent_model_input = torch.cat([block_latents] * 2, dim=1) if do_classifier_free_guidance else block_latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t_vec) + net = self.wrapped_unet if parallel_len > 3 else self.unet + model_output = net(latent_model_input.flatten(0, 1), t_vec.flatten(0, 1), encoder_hidden_states=block_prompt_embeds.flatten(0, 1), cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + per_latent_shape = model_output.shape[1:] + if do_classifier_free_guidance: + model_output = model_output.reshape(parallel_len, 2, batch_size * num_images_per_prompt, *per_latent_shape) + (noise_pred_uncond, noise_pred_text) = (model_output[:, 0], model_output[:, 1]) + model_output = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + model_output = model_output.reshape(parallel_len * batch_size * num_images_per_prompt, *per_latent_shape) + block_latents_denoise = scheduler.batch_step_no_noise(model_output=model_output, timesteps=block_t.flatten(0, 1), sample=block_latents.flatten(0, 1), **extra_step_kwargs).reshape(block_latents.shape) + delta = block_latents_denoise - block_latents + cumulative_delta = self._cumsum(delta, dim=0, debug=debug) + cumulative_noise = self._cumsum(noise_array[begin_idx:end_idx], dim=0, debug=debug) + if scheduler._is_ode_scheduler: + cumulative_noise = 0 + block_latents_new = latents_time_evolution_buffer[begin_idx][None,] + cumulative_delta + cumulative_noise + cur_error = torch.linalg.norm((block_latents_new - latents_time_evolution_buffer[begin_idx + 1:end_idx + 1]).reshape(parallel_len, batch_size * num_images_per_prompt, -1), dim=-1).pow(2) + error_ratio = cur_error * inverse_variance_norm[begin_idx + 1:end_idx + 1] + error_ratio = torch.nn.functional.pad(error_ratio, (0, 0, 0, 1), value=1000000000.0) + any_error_at_time = torch.max(error_ratio > scaled_tolerance, dim=1).values.int() + ind = torch.argmax(any_error_at_time).item() + new_begin_idx = begin_idx + min(1 + ind, parallel) + new_end_idx = min(new_begin_idx + parallel, len(scheduler.timesteps)) + latents_time_evolution_buffer[begin_idx + 1:end_idx + 1] = block_latents_new + latents_time_evolution_buffer[end_idx:new_end_idx + 1] = latents_time_evolution_buffer[end_idx][None,] + steps += 1 + progress_bar.update(new_begin_idx - begin_idx) + if callback is not None and steps % callback_steps == 0: + callback(begin_idx, block_t[begin_idx], latents_time_evolution_buffer[begin_idx]) + begin_idx = new_begin_idx + end_idx = new_end_idx + latents = latents_time_evolution_buffer[-1] + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +import inspect +from dataclasses import dataclass +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import BlipForConditionalGeneration, BlipProcessor, CLIPImageProcessor, CLIPTextModel, CLIPTokenizer +from ....image_processor import PipelineImageInput, VaeImageProcessor +from ....loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ....models import AutoencoderKL, UNet2DConditionModel +from ....models.attention_processor import Attention +from ....models.lora import adjust_lora_scale_text_encoder +from ....schedulers import DDIMScheduler, DDPMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler +from ....schedulers.scheduling_ddim_inverse import DDIMInverseScheduler +from ....utils import PIL_INTERPOLATION, USE_PEFT_BACKEND, BaseOutput, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ....utils.torch_utils import randn_tensor +from ...pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ...stable_diffusion.pipeline_output import StableDiffusionPipelineOutput +from ...stable_diffusion.safety_checker import StableDiffusionSafetyChecker +logger = logging.get_logger(__name__) + +@dataclass +class Pix2PixInversionPipelineOutput(BaseOutput, TextualInversionLoaderMixin): + latents: torch.Tensor + images: Union[List[PIL.Image.Image], np.ndarray] +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import requests\n >>> import torch\n\n >>> from diffusers import DDIMScheduler, StableDiffusionPix2PixZeroPipeline\n\n\n >>> def download(embedding_url, local_filepath):\n ... r = requests.get(embedding_url)\n ... with open(local_filepath, "wb") as f:\n ... f.write(r.content)\n\n\n >>> model_ckpt = "CompVis/stable-diffusion-v1-4"\n >>> pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained(model_ckpt, torch_dtype=torch.float16)\n >>> pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)\n >>> pipeline.to("cuda")\n\n >>> prompt = "a high resolution painting of a cat in the style of van gough"\n >>> source_emb_url = "https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/cat.pt"\n >>> target_emb_url = "https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/dog.pt"\n\n >>> for url in [source_emb_url, target_emb_url]:\n ... download(url, url.split("/")[-1])\n\n >>> src_embeds = torch.load(source_emb_url.split("/")[-1])\n >>> target_embeds = torch.load(target_emb_url.split("/")[-1])\n >>> images = pipeline(\n ... prompt,\n ... source_embeds=src_embeds,\n ... target_embeds=target_embeds,\n ... num_inference_steps=50,\n ... cross_attention_guidance_amount=0.15,\n ... ).images\n\n >>> images[0].save("edited_image_dog.png")\n ```\n' +EXAMPLE_INVERT_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from transformers import BlipForConditionalGeneration, BlipProcessor\n >>> from diffusers import DDIMScheduler, DDIMInverseScheduler, StableDiffusionPix2PixZeroPipeline\n\n >>> import requests\n >>> from PIL import Image\n\n >>> captioner_id = "Salesforce/blip-image-captioning-base"\n >>> processor = BlipProcessor.from_pretrained(captioner_id)\n >>> model = BlipForConditionalGeneration.from_pretrained(\n ... captioner_id, torch_dtype=torch.float16, low_cpu_mem_usage=True\n ... )\n\n >>> sd_model_ckpt = "CompVis/stable-diffusion-v1-4"\n >>> pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained(\n ... sd_model_ckpt,\n ... caption_generator=model,\n ... caption_processor=processor,\n ... torch_dtype=torch.float16,\n ... safety_checker=None,\n ... )\n\n >>> pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)\n >>> pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config)\n >>> pipeline.enable_model_cpu_offload()\n\n >>> img_url = "https://github.com/pix2pixzero/pix2pix-zero/raw/main/assets/test_images/cats/cat_6.png"\n\n >>> raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB").resize((512, 512))\n >>> # generate caption\n >>> caption = pipeline.generate_caption(raw_image)\n\n >>> # "a photography of a cat with flowers and dai dai daie - daie - daie kasaii"\n >>> inv_latents = pipeline.invert(caption, image=raw_image).latents\n >>> # we need to generate source and target embeds\n\n >>> source_prompts = ["a cat sitting on the street", "a cat playing in the field", "a face of a cat"]\n\n >>> target_prompts = ["a dog sitting on the street", "a dog playing in the field", "a face of a dog"]\n\n >>> source_embeds = pipeline.get_embeds(source_prompts)\n >>> target_embeds = pipeline.get_embeds(target_prompts)\n >>> # the latents can then be used to edit a real image\n >>> # when using Stable Diffusion 2 or other models that use v-prediction\n >>> # set `cross_attention_guidance_amount` to 0.01 or less to avoid input latent gradient explosion\n\n >>> image = pipeline(\n ... caption,\n ... source_embeds=source_embeds,\n ... target_embeds=target_embeds,\n ... num_inference_steps=50,\n ... cross_attention_guidance_amount=0.15,\n ... generator=generator,\n ... latents=inv_latents,\n ... negative_prompt=caption,\n ... ).images[0]\n >>> image.save("edited_image.png")\n ```\n' + +def preprocess(image): + deprecation_message = 'The preprocess method is deprecated and will be removed in diffusers 1.0.0. Please use VaeImageProcessor.preprocess(...) instead' + deprecate('preprocess', '1.0.0', deprecation_message, standard_warn=False) + if isinstance(image, torch.Tensor): + return image + elif isinstance(image, PIL.Image.Image): + image = [image] + if isinstance(image[0], PIL.Image.Image): + (w, h) = image[0].size + (w, h) = (x - x % 8 for x in (w, h)) + image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['lanczos']))[None, :] for i in image] + image = np.concatenate(image, axis=0) + image = np.array(image).astype(np.float32) / 255.0 + image = image.transpose(0, 3, 1, 2) + image = 2.0 * image - 1.0 + image = torch.from_numpy(image) + elif isinstance(image[0], torch.Tensor): + image = torch.cat(image, dim=0) + return image + +def prepare_unet(unet: UNet2DConditionModel): + pix2pix_zero_attn_procs = {} + for name in unet.attn_processors.keys(): + module_name = name.replace('.processor', '') + module = unet.get_submodule(module_name) + if 'attn2' in name: + pix2pix_zero_attn_procs[name] = Pix2PixZeroAttnProcessor(is_pix2pix_zero=True) + module.requires_grad_(True) + else: + pix2pix_zero_attn_procs[name] = Pix2PixZeroAttnProcessor(is_pix2pix_zero=False) + module.requires_grad_(False) + unet.set_attn_processor(pix2pix_zero_attn_procs) + return unet + +class Pix2PixZeroL2Loss: + + def __init__(self): + self.loss = 0.0 + + def compute_loss(self, predictions, targets): + self.loss += ((predictions - targets) ** 2).sum((1, 2)).mean(0) + +class Pix2PixZeroAttnProcessor: + + def __init__(self, is_pix2pix_zero=False): + self.is_pix2pix_zero = is_pix2pix_zero + if self.is_pix2pix_zero: + self.reference_cross_attn_map = {} + + def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, timestep=None, loss=None): + (batch_size, sequence_length, _) = hidden_states.shape + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + query = attn.to_q(hidden_states) + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + query = attn.head_to_batch_dim(query) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + attention_probs = attn.get_attention_scores(query, key, attention_mask) + if self.is_pix2pix_zero and timestep is not None: + if loss is None: + self.reference_cross_attn_map[timestep.item()] = attention_probs.detach().cpu() + elif loss is not None: + prev_attn_probs = self.reference_cross_attn_map.pop(timestep.item()) + loss.compute_loss(attention_probs, prev_attn_probs.to(attention_probs.device)) + hidden_states = torch.bmm(attention_probs, value) + hidden_states = attn.batch_to_head_dim(hidden_states) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + return hidden_states + +class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline, StableDiffusionMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor', 'caption_generator', 'caption_processor', 'inverse_scheduler'] + _exclude_from_cpu_offload = ['safety_checker'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[DDPMScheduler, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler], feature_extractor: CLIPImageProcessor, safety_checker: StableDiffusionSafetyChecker, inverse_scheduler: DDIMInverseScheduler, caption_generator: BlipForConditionalGeneration, caption_processor: BlipProcessor, requires_safety_checker: bool=True): + super().__init__() + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, caption_processor=caption_processor, caption_generator=caption_generator, inverse_scheduler=inverse_scheduler) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, source_embeds, target_embeds, callback_steps, prompt_embeds=None): + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if source_embeds is None and target_embeds is None: + raise ValueError('`source_embeds` and `target_embeds` cannot be undefined.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @torch.no_grad() + def generate_caption(self, images): + text = 'a photography of' + prev_device = self.caption_generator.device + device = self._execution_device + inputs = self.caption_processor(images, text, return_tensors='pt').to(device=device, dtype=self.caption_generator.dtype) + self.caption_generator.to(device) + outputs = self.caption_generator.generate(**inputs, max_new_tokens=128) + self.caption_generator.to(prev_device) + caption = self.caption_processor.batch_decode(outputs, skip_special_tokens=True)[0] + return caption + + def construct_direction(self, embs_source: torch.Tensor, embs_target: torch.Tensor): + return (embs_target.mean(0) - embs_source.mean(0)).unsqueeze(0) + + @torch.no_grad() + def get_embeds(self, prompt: List[str], batch_size: int=16) -> torch.Tensor: + num_prompts = len(prompt) + embeds = [] + for i in range(0, num_prompts, batch_size): + prompt_slice = prompt[i:i + batch_size] + input_ids = self.tokenizer(prompt_slice, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt').input_ids + input_ids = input_ids.to(self.text_encoder.device) + embeds.append(self.text_encoder(input_ids)[0]) + return torch.cat(embeds, dim=0).mean(0)[None] + + def prepare_image_latents(self, image, batch_size, dtype, device, generator=None): + if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}') + image = image.to(device=device, dtype=dtype) + if image.shape[1] == 4: + latents = image + else: + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if isinstance(generator, list): + latents = [self.vae.encode(image[i:i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)] + latents = torch.cat(latents, dim=0) + else: + latents = self.vae.encode(image).latent_dist.sample(generator) + latents = self.vae.config.scaling_factor * latents + if batch_size != latents.shape[0]: + if batch_size % latents.shape[0] == 0: + deprecation_message = f'You have passed {batch_size} text prompts (`prompt`), but only {latents.shape[0]} initial images (`image`). Initial images are now duplicating to match the number of text prompts. Note that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update your script to pass as many initial images as text prompts to suppress this warning.' + deprecate('len(prompt) != len(image)', '1.0.0', deprecation_message, standard_warn=False) + additional_latents_per_image = batch_size // latents.shape[0] + latents = torch.cat([latents] * additional_latents_per_image, dim=0) + else: + raise ValueError(f'Cannot duplicate `image` of batch size {latents.shape[0]} to {batch_size} text prompts.') + else: + latents = torch.cat([latents], dim=0) + return latents + + def get_epsilon(self, model_output: torch.Tensor, sample: torch.Tensor, timestep: int): + pred_type = self.inverse_scheduler.config.prediction_type + alpha_prod_t = self.inverse_scheduler.alphas_cumprod[timestep] + beta_prod_t = 1 - alpha_prod_t + if pred_type == 'epsilon': + return model_output + elif pred_type == 'sample': + return (sample - alpha_prod_t ** 0.5 * model_output) / beta_prod_t ** 0.5 + elif pred_type == 'v_prediction': + return alpha_prod_t ** 0.5 * model_output + beta_prod_t ** 0.5 * sample + else: + raise ValueError(f'prediction_type given as {pred_type} must be one of `epsilon`, `sample`, or `v_prediction`') + + def auto_corr_loss(self, hidden_states, generator=None): + reg_loss = 0.0 + for i in range(hidden_states.shape[0]): + for j in range(hidden_states.shape[1]): + noise = hidden_states[i:i + 1, j:j + 1, :, :] + while True: + roll_amount = torch.randint(noise.shape[2] // 2, (1,), generator=generator).item() + reg_loss += (noise * torch.roll(noise, shifts=roll_amount, dims=2)).mean() ** 2 + reg_loss += (noise * torch.roll(noise, shifts=roll_amount, dims=3)).mean() ** 2 + if noise.shape[2] <= 8: + break + noise = F.avg_pool2d(noise, kernel_size=2) + return reg_loss + + def kl_divergence(self, hidden_states): + mean = hidden_states.mean() + var = hidden_states.var() + return var + mean ** 2 - 1 - torch.log(var + 1e-07) + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Optional[Union[str, List[str]]]=None, source_embeds: torch.Tensor=None, target_embeds: torch.Tensor=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, cross_attention_guidance_amount: float=0.1, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: Optional[int]=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: Optional[int]=None): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, source_embeds, target_embeds, callback_steps, prompt_embeds) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if cross_attention_kwargs is None: + cross_attention_kwargs = {} + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clip_skip=clip_skip) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + latents_init = latents.clone() + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + self.unet = prepare_unet(self.unet) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs={'timestep': t}).sample + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + edit_direction = self.construct_direction(source_embeds, target_embeds).to(prompt_embeds.device) + prompt_embeds_edit = prompt_embeds.clone() + prompt_embeds_edit[1:2] += edit_direction + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + latents = latents_init + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + x_in = latent_model_input.detach().clone() + x_in.requires_grad = True + opt = torch.optim.SGD([x_in], lr=cross_attention_guidance_amount) + with torch.enable_grad(): + loss = Pix2PixZeroL2Loss() + noise_pred = self.unet(x_in, t, encoder_hidden_states=prompt_embeds_edit.detach(), cross_attention_kwargs={'timestep': t, 'loss': loss}).sample + loss.loss.backward(retain_graph=False) + opt.step() + noise_pred = self.unet(x_in.detach(), t, encoder_hidden_states=prompt_embeds_edit, cross_attention_kwargs={'timestep': None}).sample + latents = x_in.detach().chunk(2)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_INVERT_DOC_STRING) + def invert(self, prompt: Optional[str]=None, image: PipelineImageInput=None, num_inference_steps: int=50, guidance_scale: float=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, cross_attention_guidance_amount: float=0.1, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: Optional[int]=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, lambda_auto_corr: float=20.0, lambda_kl: float=20.0, num_reg_steps: int=5, num_auto_corr_rolls: int=5): + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if cross_attention_kwargs is None: + cross_attention_kwargs = {} + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + image = self.image_processor.preprocess(image) + latents = self.prepare_image_latents(image, batch_size, self.vae.dtype, device, generator) + num_images_per_prompt = 1 + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, prompt_embeds=prompt_embeds) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + self.inverse_scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.inverse_scheduler.timesteps + self.unet = prepare_unet(self.unet) + num_warmup_steps = len(timesteps) - num_inference_steps * self.inverse_scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.inverse_scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs={'timestep': t}).sample + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + with torch.enable_grad(): + for _ in range(num_reg_steps): + if lambda_auto_corr > 0: + for _ in range(num_auto_corr_rolls): + var = torch.autograd.Variable(noise_pred.detach().clone(), requires_grad=True) + var_epsilon = self.get_epsilon(var, latent_model_input.detach(), t) + l_ac = self.auto_corr_loss(var_epsilon, generator=generator) + l_ac.backward() + grad = var.grad.detach() / num_auto_corr_rolls + noise_pred = noise_pred - lambda_auto_corr * grad + if lambda_kl > 0: + var = torch.autograd.Variable(noise_pred.detach().clone(), requires_grad=True) + var_epsilon = self.get_epsilon(var, latent_model_input.detach(), t) + l_kld = self.kl_divergence(var_epsilon) + l_kld.backward() + grad = var.grad.detach() + noise_pred = noise_pred - lambda_kl * grad + noise_pred = noise_pred.detach() + latents = self.inverse_scheduler.step(noise_pred, t, latents).prev_sample + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.inverse_scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + inverted_latents = latents.detach().clone() + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (inverted_latents, image) + return Pix2PixInversionPipelineOutput(latents=inverted_latents, images=image) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/stochastic_karras_ve/__init__.py +from typing import TYPE_CHECKING +from ....utils import DIFFUSERS_SLOW_IMPORT, _LazyModule +_import_structure = {'pipeline_stochastic_karras_ve': ['KarrasVePipeline']} +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + from .pipeline_stochastic_karras_ve import KarrasVePipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +from typing import List, Optional, Tuple, Union +import torch +from ....models import UNet2DModel +from ....schedulers import KarrasVeScheduler +from ....utils.torch_utils import randn_tensor +from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput + +class KarrasVePipeline(DiffusionPipeline): + unet: UNet2DModel + scheduler: KarrasVeScheduler + + def __init__(self, unet: UNet2DModel, scheduler: KarrasVeScheduler): + super().__init__() + self.register_modules(unet=unet, scheduler=scheduler) + + @torch.no_grad() + def __call__(self, batch_size: int=1, num_inference_steps: int=50, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, output_type: Optional[str]='pil', return_dict: bool=True, **kwargs) -> Union[Tuple, ImagePipelineOutput]: + img_size = self.unet.config.sample_size + shape = (batch_size, 3, img_size, img_size) + model = self.unet + sample = randn_tensor(shape, generator=generator, device=self.device) * self.scheduler.init_noise_sigma + self.scheduler.set_timesteps(num_inference_steps) + for t in self.progress_bar(self.scheduler.timesteps): + sigma = self.scheduler.schedule[t] + sigma_prev = self.scheduler.schedule[t - 1] if t > 0 else 0 + (sample_hat, sigma_hat) = self.scheduler.add_noise_to_input(sample, sigma, generator=generator) + model_output = sigma_hat / 2 * model((sample_hat + 1) / 2, sigma_hat / 2).sample + step_output = self.scheduler.step(model_output, sigma_hat, sigma_prev, sample_hat) + if sigma_prev != 0: + model_output = sigma_prev / 2 * model((step_output.prev_sample + 1) / 2, sigma_prev / 2).sample + step_output = self.scheduler.step_correct(model_output, sigma_hat, sigma_prev, sample_hat, step_output.prev_sample, step_output['derivative']) + sample = step_output.prev_sample + sample = (sample / 2 + 0.5).clamp(0, 1) + image = sample.cpu().permute(0, 2, 3, 1).numpy() + if output_type == 'pil': + image = self.numpy_to_pil(image) + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/versatile_diffusion/__init__.py +from typing import TYPE_CHECKING +from ....utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_transformers_available, is_transformers_version +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ....utils.dummy_torch_and_transformers_objects import VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline + _dummy_objects.update({'VersatileDiffusionDualGuidedPipeline': VersatileDiffusionDualGuidedPipeline, 'VersatileDiffusionImageVariationPipeline': VersatileDiffusionImageVariationPipeline, 'VersatileDiffusionPipeline': VersatileDiffusionPipeline, 'VersatileDiffusionTextToImagePipeline': VersatileDiffusionTextToImagePipeline}) +else: + _import_structure['modeling_text_unet'] = ['UNetFlatConditionModel'] + _import_structure['pipeline_versatile_diffusion'] = ['VersatileDiffusionPipeline'] + _import_structure['pipeline_versatile_diffusion_dual_guided'] = ['VersatileDiffusionDualGuidedPipeline'] + _import_structure['pipeline_versatile_diffusion_image_variation'] = ['VersatileDiffusionImageVariationPipeline'] + _import_structure['pipeline_versatile_diffusion_text_to_image'] = ['VersatileDiffusionTextToImagePipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ....utils.dummy_torch_and_transformers_objects import VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline + else: + from .pipeline_versatile_diffusion import VersatileDiffusionPipeline + from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline + from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline + from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +from typing import Any, Dict, List, Optional, Tuple, Union +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from diffusers.utils import deprecate +from ....configuration_utils import ConfigMixin, register_to_config +from ....models import ModelMixin +from ....models.activations import get_activation +from ....models.attention_processor import ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, Attention, AttentionProcessor, AttnAddedKVProcessor, AttnAddedKVProcessor2_0, AttnProcessor +from ....models.embeddings import GaussianFourierProjection, ImageHintTimeEmbedding, ImageProjection, ImageTimeEmbedding, TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps +from ....models.resnet import ResnetBlockCondNorm2D +from ....models.transformers.dual_transformer_2d import DualTransformer2DModel +from ....models.transformers.transformer_2d import Transformer2DModel +from ....models.unets.unet_2d_condition import UNet2DConditionOutput +from ....utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers +from ....utils.torch_utils import apply_freeu +logger = logging.get_logger(__name__) + +def get_down_block(down_block_type, num_layers, in_channels, out_channels, temb_channels, add_downsample, resnet_eps, resnet_act_fn, num_attention_heads, transformer_layers_per_block, attention_type, attention_head_dim, resnet_groups=None, cross_attention_dim=None, downsample_padding=None, dual_cross_attention=False, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, resnet_time_scale_shift='default', resnet_skip_time_act=False, resnet_out_scale_factor=1.0, cross_attention_norm=None, dropout=0.0): + down_block_type = down_block_type[7:] if down_block_type.startswith('UNetRes') else down_block_type + if down_block_type == 'DownBlockFlat': + return DownBlockFlat(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, dropout=dropout, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, resnet_time_scale_shift=resnet_time_scale_shift) + elif down_block_type == 'CrossAttnDownBlockFlat': + if cross_attention_dim is None: + raise ValueError('cross_attention_dim must be specified for CrossAttnDownBlockFlat') + return CrossAttnDownBlockFlat(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, dropout=dropout, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, resnet_time_scale_shift=resnet_time_scale_shift) + raise ValueError(f'{down_block_type} is not supported.') + +def get_up_block(up_block_type, num_layers, in_channels, out_channels, prev_output_channel, temb_channels, add_upsample, resnet_eps, resnet_act_fn, num_attention_heads, transformer_layers_per_block, resolution_idx, attention_type, attention_head_dim, resnet_groups=None, cross_attention_dim=None, dual_cross_attention=False, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, resnet_time_scale_shift='default', resnet_skip_time_act=False, resnet_out_scale_factor=1.0, cross_attention_norm=None, dropout=0.0): + up_block_type = up_block_type[7:] if up_block_type.startswith('UNetRes') else up_block_type + if up_block_type == 'UpBlockFlat': + return UpBlockFlat(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, dropout=dropout, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, resnet_time_scale_shift=resnet_time_scale_shift) + elif up_block_type == 'CrossAttnUpBlockFlat': + if cross_attention_dim is None: + raise ValueError('cross_attention_dim must be specified for CrossAttnUpBlockFlat') + return CrossAttnUpBlockFlat(num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, dropout=dropout, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, resnet_time_scale_shift=resnet_time_scale_shift) + raise ValueError(f'{up_block_type} is not supported.') + +class FourierEmbedder(nn.Module): + + def __init__(self, num_freqs=64, temperature=100): + super().__init__() + self.num_freqs = num_freqs + self.temperature = temperature + freq_bands = temperature ** (torch.arange(num_freqs) / num_freqs) + freq_bands = freq_bands[None, None, None] + self.register_buffer('freq_bands', freq_bands, persistent=False) + + def __call__(self, x): + x = self.freq_bands * x.unsqueeze(-1) + return torch.stack((x.sin(), x.cos()), dim=-1).permute(0, 1, 3, 4, 2).reshape(*x.shape[:2], -1) + +class GLIGENTextBoundingboxProjection(nn.Module): + + def __init__(self, positive_len, out_dim, feature_type, fourier_freqs=8): + super().__init__() + self.positive_len = positive_len + self.out_dim = out_dim + self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs) + self.position_dim = fourier_freqs * 2 * 4 + if isinstance(out_dim, tuple): + out_dim = out_dim[0] + if feature_type == 'text-only': + self.linears = nn.Sequential(nn.Linear(self.positive_len + self.position_dim, 512), nn.SiLU(), nn.Linear(512, 512), nn.SiLU(), nn.Linear(512, out_dim)) + self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) + elif feature_type == 'text-image': + self.linears_text = nn.Sequential(nn.Linear(self.positive_len + self.position_dim, 512), nn.SiLU(), nn.Linear(512, 512), nn.SiLU(), nn.Linear(512, out_dim)) + self.linears_image = nn.Sequential(nn.Linear(self.positive_len + self.position_dim, 512), nn.SiLU(), nn.Linear(512, 512), nn.SiLU(), nn.Linear(512, out_dim)) + self.null_text_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) + self.null_image_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) + self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim])) + + def forward(self, boxes, masks, positive_embeddings=None, phrases_masks=None, image_masks=None, phrases_embeddings=None, image_embeddings=None): + masks = masks.unsqueeze(-1) + xyxy_embedding = self.fourier_embedder(boxes) + xyxy_null = self.null_position_feature.view(1, 1, -1) + xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null + if positive_embeddings: + positive_null = self.null_positive_feature.view(1, 1, -1) + positive_embeddings = positive_embeddings * masks + (1 - masks) * positive_null + objs = self.linears(torch.cat([positive_embeddings, xyxy_embedding], dim=-1)) + else: + phrases_masks = phrases_masks.unsqueeze(-1) + image_masks = image_masks.unsqueeze(-1) + text_null = self.null_text_feature.view(1, 1, -1) + image_null = self.null_image_feature.view(1, 1, -1) + phrases_embeddings = phrases_embeddings * phrases_masks + (1 - phrases_masks) * text_null + image_embeddings = image_embeddings * image_masks + (1 - image_masks) * image_null + objs_text = self.linears_text(torch.cat([phrases_embeddings, xyxy_embedding], dim=-1)) + objs_image = self.linears_image(torch.cat([image_embeddings, xyxy_embedding], dim=-1)) + objs = torch.cat([objs_text, objs_image], dim=1) + return objs + +class UNetFlatConditionModel(ModelMixin, ConfigMixin): + _supports_gradient_checkpointing = True + _no_split_modules = ['BasicTransformerBlock', 'ResnetBlockFlat', 'CrossAttnUpBlockFlat'] + + @register_to_config + def __init__(self, sample_size: Optional[int]=None, in_channels: int=4, out_channels: int=4, center_input_sample: bool=False, flip_sin_to_cos: bool=True, freq_shift: int=0, down_block_types: Tuple[str]=('CrossAttnDownBlockFlat', 'CrossAttnDownBlockFlat', 'CrossAttnDownBlockFlat', 'DownBlockFlat'), mid_block_type: Optional[str]='UNetMidBlockFlatCrossAttn', up_block_types: Tuple[str]=('UpBlockFlat', 'CrossAttnUpBlockFlat', 'CrossAttnUpBlockFlat', 'CrossAttnUpBlockFlat'), only_cross_attention: Union[bool, Tuple[bool]]=False, block_out_channels: Tuple[int]=(320, 640, 1280, 1280), layers_per_block: Union[int, Tuple[int]]=2, downsample_padding: int=1, mid_block_scale_factor: float=1, dropout: float=0.0, act_fn: str='silu', norm_num_groups: Optional[int]=32, norm_eps: float=1e-05, cross_attention_dim: Union[int, Tuple[int]]=1280, transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]]=1, reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]]=None, encoder_hid_dim: Optional[int]=None, encoder_hid_dim_type: Optional[str]=None, attention_head_dim: Union[int, Tuple[int]]=8, num_attention_heads: Optional[Union[int, Tuple[int]]]=None, dual_cross_attention: bool=False, use_linear_projection: bool=False, class_embed_type: Optional[str]=None, addition_embed_type: Optional[str]=None, addition_time_embed_dim: Optional[int]=None, num_class_embeds: Optional[int]=None, upcast_attention: bool=False, resnet_time_scale_shift: str='default', resnet_skip_time_act: bool=False, resnet_out_scale_factor: int=1.0, time_embedding_type: str='positional', time_embedding_dim: Optional[int]=None, time_embedding_act_fn: Optional[str]=None, timestep_post_act: Optional[str]=None, time_cond_proj_dim: Optional[int]=None, conv_in_kernel: int=3, conv_out_kernel: int=3, projection_class_embeddings_input_dim: Optional[int]=None, attention_type: str='default', class_embeddings_concat: bool=False, mid_block_only_cross_attention: Optional[bool]=None, cross_attention_norm: Optional[str]=None, addition_embed_type_num_heads=64): + super().__init__() + self.sample_size = sample_size + if num_attention_heads is not None: + raise ValueError('At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.') + num_attention_heads = num_attention_heads or attention_head_dim + if len(down_block_types) != len(up_block_types): + raise ValueError(f'Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}.') + if len(block_out_channels) != len(down_block_types): + raise ValueError(f'Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}.') + if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): + raise ValueError(f'Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}.') + if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): + raise ValueError(f'Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}.') + if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types): + raise ValueError(f'Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}.') + if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): + raise ValueError(f'Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}.') + if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): + raise ValueError(f'Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}.') + if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None: + for layer_number_per_block in transformer_layers_per_block: + if isinstance(layer_number_per_block, list): + raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.") + conv_in_padding = (conv_in_kernel - 1) // 2 + self.conv_in = LinearMultiDim(in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding) + if time_embedding_type == 'fourier': + time_embed_dim = time_embedding_dim or block_out_channels[0] * 2 + if time_embed_dim % 2 != 0: + raise ValueError(f'`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.') + self.time_proj = GaussianFourierProjection(time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos) + timestep_input_dim = time_embed_dim + elif time_embedding_type == 'positional': + time_embed_dim = time_embedding_dim or block_out_channels[0] * 4 + self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) + timestep_input_dim = block_out_channels[0] + else: + raise ValueError(f'{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`.') + self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn, post_act_fn=timestep_post_act, cond_proj_dim=time_cond_proj_dim) + if encoder_hid_dim_type is None and encoder_hid_dim is not None: + encoder_hid_dim_type = 'text_proj' + self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type) + logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.") + if encoder_hid_dim is None and encoder_hid_dim_type is not None: + raise ValueError(f'`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}.') + if encoder_hid_dim_type == 'text_proj': + self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) + elif encoder_hid_dim_type == 'text_image_proj': + self.encoder_hid_proj = TextImageProjection(text_embed_dim=encoder_hid_dim, image_embed_dim=cross_attention_dim, cross_attention_dim=cross_attention_dim) + elif encoder_hid_dim_type == 'image_proj': + self.encoder_hid_proj = ImageProjection(image_embed_dim=encoder_hid_dim, cross_attention_dim=cross_attention_dim) + elif encoder_hid_dim_type is not None: + raise ValueError(f"`encoder_hid_dim_type`: {encoder_hid_dim_type} must be None, 'text_proj', 'text_image_proj' or 'image_proj'.") + else: + self.encoder_hid_proj = None + if class_embed_type is None and num_class_embeds is not None: + self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) + elif class_embed_type == 'timestep': + self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn) + elif class_embed_type == 'identity': + self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) + elif class_embed_type == 'projection': + if projection_class_embeddings_input_dim is None: + raise ValueError("`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set") + self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + elif class_embed_type == 'simple_projection': + if projection_class_embeddings_input_dim is None: + raise ValueError("`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set") + self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim) + else: + self.class_embedding = None + if addition_embed_type == 'text': + if encoder_hid_dim is not None: + text_time_embedding_from_dim = encoder_hid_dim + else: + text_time_embedding_from_dim = cross_attention_dim + self.add_embedding = TextTimeEmbedding(text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads) + elif addition_embed_type == 'text_image': + self.add_embedding = TextImageTimeEmbedding(text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim) + elif addition_embed_type == 'text_time': + self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift) + self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + elif addition_embed_type == 'image': + self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) + elif addition_embed_type == 'image_hint': + self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) + elif addition_embed_type is not None: + raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.") + if time_embedding_act_fn is None: + self.time_embed_act = None + else: + self.time_embed_act = get_activation(time_embedding_act_fn) + self.down_blocks = nn.ModuleList([]) + self.up_blocks = nn.ModuleList([]) + if isinstance(only_cross_attention, bool): + if mid_block_only_cross_attention is None: + mid_block_only_cross_attention = only_cross_attention + only_cross_attention = [only_cross_attention] * len(down_block_types) + if mid_block_only_cross_attention is None: + mid_block_only_cross_attention = False + if isinstance(num_attention_heads, int): + num_attention_heads = (num_attention_heads,) * len(down_block_types) + if isinstance(attention_head_dim, int): + attention_head_dim = (attention_head_dim,) * len(down_block_types) + if isinstance(cross_attention_dim, int): + cross_attention_dim = (cross_attention_dim,) * len(down_block_types) + if isinstance(layers_per_block, int): + layers_per_block = [layers_per_block] * len(down_block_types) + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) + if class_embeddings_concat: + blocks_time_embed_dim = time_embed_dim * 2 + else: + blocks_time_embed_dim = time_embed_dim + output_channel = block_out_channels[0] + for (i, down_block_type) in enumerate(down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + down_block = get_down_block(down_block_type, num_layers=layers_per_block[i], transformer_layers_per_block=transformer_layers_per_block[i], in_channels=input_channel, out_channels=output_channel, temb_channels=blocks_time_embed_dim, add_downsample=not is_final_block, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, cross_attention_dim=cross_attention_dim[i], num_attention_heads=num_attention_heads[i], downsample_padding=downsample_padding, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention[i], upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, attention_type=attention_type, resnet_skip_time_act=resnet_skip_time_act, resnet_out_scale_factor=resnet_out_scale_factor, cross_attention_norm=cross_attention_norm, attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, dropout=dropout) + self.down_blocks.append(down_block) + if mid_block_type == 'UNetMidBlockFlatCrossAttn': + self.mid_block = UNetMidBlockFlatCrossAttn(transformer_layers_per_block=transformer_layers_per_block[-1], in_channels=block_out_channels[-1], temb_channels=blocks_time_embed_dim, dropout=dropout, resnet_eps=norm_eps, resnet_act_fn=act_fn, output_scale_factor=mid_block_scale_factor, resnet_time_scale_shift=resnet_time_scale_shift, cross_attention_dim=cross_attention_dim[-1], num_attention_heads=num_attention_heads[-1], resnet_groups=norm_num_groups, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, attention_type=attention_type) + elif mid_block_type == 'UNetMidBlockFlatSimpleCrossAttn': + self.mid_block = UNetMidBlockFlatSimpleCrossAttn(in_channels=block_out_channels[-1], temb_channels=blocks_time_embed_dim, dropout=dropout, resnet_eps=norm_eps, resnet_act_fn=act_fn, output_scale_factor=mid_block_scale_factor, cross_attention_dim=cross_attention_dim[-1], attention_head_dim=attention_head_dim[-1], resnet_groups=norm_num_groups, resnet_time_scale_shift=resnet_time_scale_shift, skip_time_act=resnet_skip_time_act, only_cross_attention=mid_block_only_cross_attention, cross_attention_norm=cross_attention_norm) + elif mid_block_type == 'UNetMidBlockFlat': + self.mid_block = UNetMidBlockFlat(in_channels=block_out_channels[-1], temb_channels=blocks_time_embed_dim, dropout=dropout, num_layers=0, resnet_eps=norm_eps, resnet_act_fn=act_fn, output_scale_factor=mid_block_scale_factor, resnet_groups=norm_num_groups, resnet_time_scale_shift=resnet_time_scale_shift, add_attention=False) + elif mid_block_type is None: + self.mid_block = None + else: + raise ValueError(f'unknown mid_block_type : {mid_block_type}') + self.num_upsamplers = 0 + reversed_block_out_channels = list(reversed(block_out_channels)) + reversed_num_attention_heads = list(reversed(num_attention_heads)) + reversed_layers_per_block = list(reversed(layers_per_block)) + reversed_cross_attention_dim = list(reversed(cross_attention_dim)) + reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) if reverse_transformer_layers_per_block is None else reverse_transformer_layers_per_block + only_cross_attention = list(reversed(only_cross_attention)) + output_channel = reversed_block_out_channels[0] + for (i, up_block_type) in enumerate(up_block_types): + is_final_block = i == len(block_out_channels) - 1 + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] + if not is_final_block: + add_upsample = True + self.num_upsamplers += 1 + else: + add_upsample = False + up_block = get_up_block(up_block_type, num_layers=reversed_layers_per_block[i] + 1, transformer_layers_per_block=reversed_transformer_layers_per_block[i], in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, temb_channels=blocks_time_embed_dim, add_upsample=add_upsample, resnet_eps=norm_eps, resnet_act_fn=act_fn, resolution_idx=i, resnet_groups=norm_num_groups, cross_attention_dim=reversed_cross_attention_dim[i], num_attention_heads=reversed_num_attention_heads[i], dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention[i], upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, attention_type=attention_type, resnet_skip_time_act=resnet_skip_time_act, resnet_out_scale_factor=resnet_out_scale_factor, cross_attention_norm=cross_attention_norm, attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, dropout=dropout) + self.up_blocks.append(up_block) + prev_output_channel = output_channel + if norm_num_groups is not None: + self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps) + self.conv_act = get_activation(act_fn) + else: + self.conv_norm_out = None + self.conv_act = None + conv_out_padding = (conv_out_kernel - 1) // 2 + self.conv_out = LinearMultiDim(block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding) + if attention_type in ['gated', 'gated-text-image']: + positive_len = 768 + if isinstance(cross_attention_dim, int): + positive_len = cross_attention_dim + elif isinstance(cross_attention_dim, (list, tuple)): + positive_len = cross_attention_dim[0] + feature_type = 'text-only' if attention_type == 'gated' else 'text-image' + self.position_net = GLIGENTextBoundingboxProjection(positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type) + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def set_default_attn_processor(self): + if all((proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnAddedKVProcessor() + elif all((proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnProcessor() + else: + raise ValueError(f'Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}') + self.set_attn_processor(processor) + + def set_attention_slice(self, slice_size): + sliceable_head_dims = [] + + def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): + if hasattr(module, 'set_attention_slice'): + sliceable_head_dims.append(module.sliceable_head_dim) + for child in module.children(): + fn_recursive_retrieve_sliceable_dims(child) + for module in self.children(): + fn_recursive_retrieve_sliceable_dims(module) + num_sliceable_layers = len(sliceable_head_dims) + if slice_size == 'auto': + slice_size = [dim // 2 for dim in sliceable_head_dims] + elif slice_size == 'max': + slice_size = num_sliceable_layers * [1] + slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size + if len(slice_size) != len(sliceable_head_dims): + raise ValueError(f'You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}.') + for i in range(len(slice_size)): + size = slice_size[i] + dim = sliceable_head_dims[i] + if size is not None and size > dim: + raise ValueError(f'size {size} has to be smaller or equal to {dim}.') + + def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): + if hasattr(module, 'set_attention_slice'): + module.set_attention_slice(slice_size.pop()) + for child in module.children(): + fn_recursive_set_attention_slice(child, slice_size) + reversed_slice_size = list(reversed(slice_size)) + for module in self.children(): + fn_recursive_set_attention_slice(module, reversed_slice_size) + + def _set_gradient_checkpointing(self, module, value=False): + if hasattr(module, 'gradient_checkpointing'): + module.gradient_checkpointing = value + + def enable_freeu(self, s1, s2, b1, b2): + for (i, upsample_block) in enumerate(self.up_blocks): + setattr(upsample_block, 's1', s1) + setattr(upsample_block, 's2', s2) + setattr(upsample_block, 'b1', b1) + setattr(upsample_block, 'b2', b2) + + def disable_freeu(self): + freeu_keys = {'s1', 's2', 'b1', 'b2'} + for (i, upsample_block) in enumerate(self.up_blocks): + for k in freeu_keys: + if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None: + setattr(upsample_block, k, None) + + def fuse_qkv_projections(self): + self.original_attn_processors = None + for (_, attn_processor) in self.attn_processors.items(): + if 'Added' in str(attn_processor.__class__.__name__): + raise ValueError('`fuse_qkv_projections()` is not supported for models having added KV projections.') + self.original_attn_processors = self.attn_processors + for module in self.modules(): + if isinstance(module, Attention): + module.fuse_projections(fuse=True) + + def unfuse_qkv_projections(self): + if self.original_attn_processors is not None: + self.set_attn_processor(self.original_attn_processors) + + def unload_lora(self): + deprecate('unload_lora', '0.28.0', 'Calling `unload_lora()` is deprecated and will be removed in a future version. Please install `peft` and then call `disable_adapters().') + for module in self.modules(): + if hasattr(module, 'set_lora_layer'): + module.set_lora_layer(None) + + def forward(self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, class_labels: Optional[torch.Tensor]=None, timestep_cond: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, added_cond_kwargs: Optional[Dict[str, torch.Tensor]]=None, down_block_additional_residuals: Optional[Tuple[torch.Tensor]]=None, mid_block_additional_residual: Optional[torch.Tensor]=None, down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]]=None, encoder_attention_mask: Optional[torch.Tensor]=None, return_dict: bool=True) -> Union[UNet2DConditionOutput, Tuple]: + default_overall_up_factor = 2 ** self.num_upsamplers + forward_upsample_size = False + upsample_size = None + for dim in sample.shape[-2:]: + if dim % default_overall_up_factor != 0: + forward_upsample_size = True + break + if attention_mask is not None: + attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + if encoder_attention_mask is not None: + encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 + encoder_attention_mask = encoder_attention_mask.unsqueeze(1) + if self.config.center_input_sample: + sample = 2 * sample - 1.0 + timesteps = timestep + if not torch.is_tensor(timesteps): + is_mps = sample.device.type == 'mps' + if isinstance(timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + timesteps = timesteps.expand(sample.shape[0]) + t_emb = self.time_proj(timesteps) + t_emb = t_emb.to(dtype=sample.dtype) + emb = self.time_embedding(t_emb, timestep_cond) + aug_emb = None + if self.class_embedding is not None: + if class_labels is None: + raise ValueError('class_labels should be provided when num_class_embeds > 0') + if self.config.class_embed_type == 'timestep': + class_labels = self.time_proj(class_labels) + class_labels = class_labels.to(dtype=sample.dtype) + class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) + if self.config.class_embeddings_concat: + emb = torch.cat([emb, class_emb], dim=-1) + else: + emb = emb + class_emb + if self.config.addition_embed_type == 'text': + aug_emb = self.add_embedding(encoder_hidden_states) + elif self.config.addition_embed_type == 'text_image': + if 'image_embeds' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`") + image_embs = added_cond_kwargs.get('image_embeds') + text_embs = added_cond_kwargs.get('text_embeds', encoder_hidden_states) + aug_emb = self.add_embedding(text_embs, image_embs) + elif self.config.addition_embed_type == 'text_time': + if 'text_embeds' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`") + text_embeds = added_cond_kwargs.get('text_embeds') + if 'time_ids' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`") + time_ids = added_cond_kwargs.get('time_ids') + time_embeds = self.add_time_proj(time_ids.flatten()) + time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) + add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) + add_embeds = add_embeds.to(emb.dtype) + aug_emb = self.add_embedding(add_embeds) + elif self.config.addition_embed_type == 'image': + if 'image_embeds' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`") + image_embs = added_cond_kwargs.get('image_embeds') + aug_emb = self.add_embedding(image_embs) + elif self.config.addition_embed_type == 'image_hint': + if 'image_embeds' not in added_cond_kwargs or 'hint' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`") + image_embs = added_cond_kwargs.get('image_embeds') + hint = added_cond_kwargs.get('hint') + (aug_emb, hint) = self.add_embedding(image_embs, hint) + sample = torch.cat([sample, hint], dim=1) + emb = emb + aug_emb if aug_emb is not None else emb + if self.time_embed_act is not None: + emb = self.time_embed_act(emb) + if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == 'text_proj': + encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) + elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == 'text_image_proj': + if 'image_embeds' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`") + image_embeds = added_cond_kwargs.get('image_embeds') + encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) + elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == 'image_proj': + if 'image_embeds' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`") + image_embeds = added_cond_kwargs.get('image_embeds') + encoder_hidden_states = self.encoder_hid_proj(image_embeds) + elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == 'ip_image_proj': + if 'image_embeds' not in added_cond_kwargs: + raise ValueError(f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`") + image_embeds = added_cond_kwargs.get('image_embeds') + image_embeds = self.encoder_hid_proj(image_embeds) + encoder_hidden_states = (encoder_hidden_states, image_embeds) + sample = self.conv_in(sample) + if cross_attention_kwargs is not None and cross_attention_kwargs.get('gligen', None) is not None: + cross_attention_kwargs = cross_attention_kwargs.copy() + gligen_args = cross_attention_kwargs.pop('gligen') + cross_attention_kwargs['gligen'] = {'objs': self.position_net(**gligen_args)} + lora_scale = cross_attention_kwargs.get('scale', 1.0) if cross_attention_kwargs is not None else 1.0 + if USE_PEFT_BACKEND: + scale_lora_layers(self, lora_scale) + is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None + is_adapter = down_intrablock_additional_residuals is not None + if not is_adapter and mid_block_additional_residual is None and (down_block_additional_residuals is not None): + deprecate('T2I should not use down_block_additional_residuals', '1.3.0', 'Passing intrablock residual connections with `down_block_additional_residuals` is deprecated and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ', standard_warn=False) + down_intrablock_additional_residuals = down_block_additional_residuals + is_adapter = True + down_block_res_samples = (sample,) + for downsample_block in self.down_blocks: + if hasattr(downsample_block, 'has_cross_attention') and downsample_block.has_cross_attention: + additional_residuals = {} + if is_adapter and len(down_intrablock_additional_residuals) > 0: + additional_residuals['additional_residuals'] = down_intrablock_additional_residuals.pop(0) + (sample, res_samples) = downsample_block(hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs, encoder_attention_mask=encoder_attention_mask, **additional_residuals) + else: + (sample, res_samples) = downsample_block(hidden_states=sample, temb=emb) + if is_adapter and len(down_intrablock_additional_residuals) > 0: + sample += down_intrablock_additional_residuals.pop(0) + down_block_res_samples += res_samples + if is_controlnet: + new_down_block_res_samples = () + for (down_block_res_sample, down_block_additional_residual) in zip(down_block_res_samples, down_block_additional_residuals): + down_block_res_sample = down_block_res_sample + down_block_additional_residual + new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) + down_block_res_samples = new_down_block_res_samples + if self.mid_block is not None: + if hasattr(self.mid_block, 'has_cross_attention') and self.mid_block.has_cross_attention: + sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs, encoder_attention_mask=encoder_attention_mask) + else: + sample = self.mid_block(sample, emb) + if is_adapter and len(down_intrablock_additional_residuals) > 0 and (sample.shape == down_intrablock_additional_residuals[0].shape): + sample += down_intrablock_additional_residuals.pop(0) + if is_controlnet: + sample = sample + mid_block_additional_residual + for (i, upsample_block) in enumerate(self.up_blocks): + is_final_block = i == len(self.up_blocks) - 1 + res_samples = down_block_res_samples[-len(upsample_block.resnets):] + down_block_res_samples = down_block_res_samples[:-len(upsample_block.resnets)] + if not is_final_block and forward_upsample_size: + upsample_size = down_block_res_samples[-1].shape[2:] + if hasattr(upsample_block, 'has_cross_attention') and upsample_block.has_cross_attention: + sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, upsample_size=upsample_size, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask) + else: + sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size, scale=lora_scale) + if self.conv_norm_out: + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + if USE_PEFT_BACKEND: + unscale_lora_layers(self, lora_scale) + if not return_dict: + return (sample,) + return UNet2DConditionOutput(sample=sample) + +class LinearMultiDim(nn.Linear): + + def __init__(self, in_features, out_features=None, second_dim=4, *args, **kwargs): + in_features = [in_features, second_dim, 1] if isinstance(in_features, int) else list(in_features) + if out_features is None: + out_features = in_features + out_features = [out_features, second_dim, 1] if isinstance(out_features, int) else list(out_features) + self.in_features_multidim = in_features + self.out_features_multidim = out_features + super().__init__(np.array(in_features).prod(), np.array(out_features).prod()) + + def forward(self, input_tensor, *args, **kwargs): + shape = input_tensor.shape + n_dim = len(self.in_features_multidim) + input_tensor = input_tensor.reshape(*shape[0:-n_dim], self.in_features) + output_tensor = super().forward(input_tensor) + output_tensor = output_tensor.view(*shape[0:-n_dim], *self.out_features_multidim) + return output_tensor + +class ResnetBlockFlat(nn.Module): + + def __init__(self, *, in_channels, out_channels=None, dropout=0.0, temb_channels=512, groups=32, groups_out=None, pre_norm=True, eps=1e-06, time_embedding_norm='default', use_in_shortcut=None, second_dim=4, **kwargs): + super().__init__() + self.pre_norm = pre_norm + self.pre_norm = True + in_channels = [in_channels, second_dim, 1] if isinstance(in_channels, int) else list(in_channels) + self.in_channels_prod = np.array(in_channels).prod() + self.channels_multidim = in_channels + if out_channels is not None: + out_channels = [out_channels, second_dim, 1] if isinstance(out_channels, int) else list(out_channels) + out_channels_prod = np.array(out_channels).prod() + self.out_channels_multidim = out_channels + else: + out_channels_prod = self.in_channels_prod + self.out_channels_multidim = self.channels_multidim + self.time_embedding_norm = time_embedding_norm + if groups_out is None: + groups_out = groups + self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=self.in_channels_prod, eps=eps, affine=True) + self.conv1 = torch.nn.Conv2d(self.in_channels_prod, out_channels_prod, kernel_size=1, padding=0) + if temb_channels is not None: + self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels_prod) + else: + self.time_emb_proj = None + self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels_prod, eps=eps, affine=True) + self.dropout = torch.nn.Dropout(dropout) + self.conv2 = torch.nn.Conv2d(out_channels_prod, out_channels_prod, kernel_size=1, padding=0) + self.nonlinearity = nn.SiLU() + self.use_in_shortcut = self.in_channels_prod != out_channels_prod if use_in_shortcut is None else use_in_shortcut + self.conv_shortcut = None + if self.use_in_shortcut: + self.conv_shortcut = torch.nn.Conv2d(self.in_channels_prod, out_channels_prod, kernel_size=1, stride=1, padding=0) + + def forward(self, input_tensor, temb): + shape = input_tensor.shape + n_dim = len(self.channels_multidim) + input_tensor = input_tensor.reshape(*shape[0:-n_dim], self.in_channels_prod, 1, 1) + input_tensor = input_tensor.view(-1, self.in_channels_prod, 1, 1) + hidden_states = input_tensor + hidden_states = self.norm1(hidden_states) + hidden_states = self.nonlinearity(hidden_states) + hidden_states = self.conv1(hidden_states) + if temb is not None: + temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None] + hidden_states = hidden_states + temb + hidden_states = self.norm2(hidden_states) + hidden_states = self.nonlinearity(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.conv2(hidden_states) + if self.conv_shortcut is not None: + input_tensor = self.conv_shortcut(input_tensor) + output_tensor = input_tensor + hidden_states + output_tensor = output_tensor.view(*shape[0:-n_dim], -1) + output_tensor = output_tensor.view(*shape[0:-n_dim], *self.out_channels_multidim) + return output_tensor + +class DownBlockFlat(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, output_scale_factor: float=1.0, add_downsample: bool=True, downsample_padding: int=1): + super().__init__() + resnets = [] + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append(ResnetBlockFlat(in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + self.resnets = nn.ModuleList(resnets) + if add_downsample: + self.downsamplers = nn.ModuleList([LinearMultiDim(out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name='op')]) + else: + self.downsamplers = None + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]: + output_states = () + for resnet in self.resnets: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + if is_torch_version('>=', '1.11.0'): + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, use_reentrant=False) + else: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + else: + hidden_states = resnet(hidden_states, temb) + output_states = output_states + (hidden_states,) + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + output_states = output_states + (hidden_states,) + return (hidden_states, output_states) + +class CrossAttnDownBlockFlat(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, transformer_layers_per_block: Union[int, Tuple[int]]=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, num_attention_heads: int=1, cross_attention_dim: int=1280, output_scale_factor: float=1.0, downsample_padding: int=1, add_downsample: bool=True, dual_cross_attention: bool=False, use_linear_projection: bool=False, only_cross_attention: bool=False, upcast_attention: bool=False, attention_type: str='default'): + super().__init__() + resnets = [] + attentions = [] + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * num_layers + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append(ResnetBlockFlat(in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + if not dual_cross_attention: + attentions.append(Transformer2DModel(num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, attention_type=attention_type)) + else: + attentions.append(DualTransformer2DModel(num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + if add_downsample: + self.downsamplers = nn.ModuleList([LinearMultiDim(out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name='op')]) + else: + self.downsamplers = None + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, encoder_attention_mask: Optional[torch.Tensor]=None, additional_residuals: Optional[torch.Tensor]=None) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]: + output_states = () + blocks = list(zip(self.resnets, self.attentions)) + for (i, (resnet, attn)) in enumerate(blocks): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False)[0] + else: + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False)[0] + if i == len(blocks) - 1 and additional_residuals is not None: + hidden_states = hidden_states + additional_residuals + output_states = output_states + (hidden_states,) + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + output_states = output_states + (hidden_states,) + return (hidden_states, output_states) + +class UpBlockFlat(nn.Module): + + def __init__(self, in_channels: int, prev_output_channel: int, out_channels: int, temb_channels: int, resolution_idx: Optional[int]=None, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, output_scale_factor: float=1.0, add_upsample: bool=True): + super().__init__() + resnets = [] + for i in range(num_layers): + res_skip_channels = in_channels if i == num_layers - 1 else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + resnets.append(ResnetBlockFlat(in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + self.resnets = nn.ModuleList(resnets) + if add_upsample: + self.upsamplers = nn.ModuleList([LinearMultiDim(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward(self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor]=None, upsample_size: Optional[int]=None, *args, **kwargs) -> torch.Tensor: + if len(args) > 0 or kwargs.get('scale', None) is not None: + deprecation_message = 'The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`.' + deprecate('scale', '1.0.0', deprecation_message) + is_freeu_enabled = getattr(self, 's1', None) and getattr(self, 's2', None) and getattr(self, 'b1', None) and getattr(self, 'b2', None) + for resnet in self.resnets: + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + if is_freeu_enabled: + (hidden_states, res_hidden_states) = apply_freeu(self.resolution_idx, hidden_states, res_hidden_states, s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2) + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + if is_torch_version('>=', '1.11.0'): + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, use_reentrant=False) + else: + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + else: + hidden_states = resnet(hidden_states, temb) + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, upsample_size) + return hidden_states + +class CrossAttnUpBlockFlat(nn.Module): + + def __init__(self, in_channels: int, out_channels: int, prev_output_channel: int, temb_channels: int, resolution_idx: Optional[int]=None, dropout: float=0.0, num_layers: int=1, transformer_layers_per_block: Union[int, Tuple[int]]=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, num_attention_heads: int=1, cross_attention_dim: int=1280, output_scale_factor: float=1.0, add_upsample: bool=True, dual_cross_attention: bool=False, use_linear_projection: bool=False, only_cross_attention: bool=False, upcast_attention: bool=False, attention_type: str='default'): + super().__init__() + resnets = [] + attentions = [] + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * num_layers + for i in range(num_layers): + res_skip_channels = in_channels if i == num_layers - 1 else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + resnets.append(ResnetBlockFlat(in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + if not dual_cross_attention: + attentions.append(Transformer2DModel(num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, attention_type=attention_type)) + else: + attentions.append(DualTransformer2DModel(num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + if add_upsample: + self.upsamplers = nn.ModuleList([LinearMultiDim(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward(self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, upsample_size: Optional[int]=None, attention_mask: Optional[torch.Tensor]=None, encoder_attention_mask: Optional[torch.Tensor]=None) -> torch.Tensor: + if cross_attention_kwargs is not None: + if cross_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.') + is_freeu_enabled = getattr(self, 's1', None) and getattr(self, 's2', None) and getattr(self, 'b1', None) and getattr(self, 'b2', None) + for (resnet, attn) in zip(self.resnets, self.attentions): + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + if is_freeu_enabled: + (hidden_states, res_hidden_states) = apply_freeu(self.resolution_idx, hidden_states, res_hidden_states, s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2) + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False)[0] + else: + hidden_states = resnet(hidden_states, temb) + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False)[0] + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, upsample_size) + return hidden_states + +class UNetMidBlockFlat(nn.Module): + + def __init__(self, in_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, attn_groups: Optional[int]=None, resnet_pre_norm: bool=True, add_attention: bool=True, attention_head_dim: int=1, output_scale_factor: float=1.0): + super().__init__() + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + self.add_attention = add_attention + if attn_groups is None: + attn_groups = resnet_groups if resnet_time_scale_shift == 'default' else None + if resnet_time_scale_shift == 'spatial': + resnets = [ResnetBlockCondNorm2D(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm='spatial', non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor)] + else: + resnets = [ResnetBlockFlat(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)] + attentions = [] + if attention_head_dim is None: + logger.warning(f'It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}.') + attention_head_dim = in_channels + for _ in range(num_layers): + if self.add_attention: + attentions.append(Attention(in_channels, heads=in_channels // attention_head_dim, dim_head=attention_head_dim, rescale_output_factor=output_scale_factor, eps=resnet_eps, norm_num_groups=attn_groups, spatial_norm_dim=temb_channels if resnet_time_scale_shift == 'spatial' else None, residual_connection=True, bias=True, upcast_softmax=True, _from_deprecated_attn_block=True)) + else: + attentions.append(None) + if resnet_time_scale_shift == 'spatial': + resnets.append(ResnetBlockCondNorm2D(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm='spatial', non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor)) + else: + resnets.append(ResnetBlockFlat(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None) -> torch.Tensor: + hidden_states = self.resnets[0](hidden_states, temb) + for (attn, resnet) in zip(self.attentions, self.resnets[1:]): + if attn is not None: + hidden_states = attn(hidden_states, temb=temb) + hidden_states = resnet(hidden_states, temb) + return hidden_states + +class UNetMidBlockFlatCrossAttn(nn.Module): + + def __init__(self, in_channels: int, temb_channels: int, out_channels: Optional[int]=None, dropout: float=0.0, num_layers: int=1, transformer_layers_per_block: Union[int, Tuple[int]]=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_groups_out: Optional[int]=None, resnet_pre_norm: bool=True, num_attention_heads: int=1, output_scale_factor: float=1.0, cross_attention_dim: int=1280, dual_cross_attention: bool=False, use_linear_projection: bool=False, upcast_attention: bool=False, attention_type: str='default'): + super().__init__() + out_channels = out_channels or in_channels + self.in_channels = in_channels + self.out_channels = out_channels + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * num_layers + resnet_groups_out = resnet_groups_out or resnet_groups + resnets = [ResnetBlockFlat(in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, groups_out=resnet_groups_out, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)] + attentions = [] + for i in range(num_layers): + if not dual_cross_attention: + attentions.append(Transformer2DModel(num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups_out, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, attention_type=attention_type)) + else: + attentions.append(DualTransformer2DModel(num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups)) + resnets.append(ResnetBlockFlat(in_channels=out_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups_out, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + self.gradient_checkpointing = False + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, encoder_attention_mask: Optional[torch.Tensor]=None) -> torch.Tensor: + if cross_attention_kwargs is not None: + if cross_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.') + hidden_states = self.resnets[0](hidden_states, temb) + for (attn, resnet) in zip(self.attentions, self.resnets[1:]): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + return custom_forward + ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {} + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False)[0] + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs) + else: + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False)[0] + hidden_states = resnet(hidden_states, temb) + return hidden_states + +class UNetMidBlockFlatSimpleCrossAttn(nn.Module): + + def __init__(self, in_channels: int, temb_channels: int, dropout: float=0.0, num_layers: int=1, resnet_eps: float=1e-06, resnet_time_scale_shift: str='default', resnet_act_fn: str='swish', resnet_groups: int=32, resnet_pre_norm: bool=True, attention_head_dim: int=1, output_scale_factor: float=1.0, cross_attention_dim: int=1280, skip_time_act: bool=False, only_cross_attention: bool=False, cross_attention_norm: Optional[str]=None): + super().__init__() + self.has_cross_attention = True + self.attention_head_dim = attention_head_dim + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + self.num_heads = in_channels // self.attention_head_dim + resnets = [ResnetBlockFlat(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, skip_time_act=skip_time_act)] + attentions = [] + for _ in range(num_layers): + processor = AttnAddedKVProcessor2_0() if hasattr(F, 'scaled_dot_product_attention') else AttnAddedKVProcessor() + attentions.append(Attention(query_dim=in_channels, cross_attention_dim=in_channels, heads=self.num_heads, dim_head=self.attention_head_dim, added_kv_proj_dim=cross_attention_dim, norm_num_groups=resnet_groups, bias=True, upcast_softmax=True, only_cross_attention=only_cross_attention, cross_attention_norm=cross_attention_norm, processor=processor)) + resnets.append(ResnetBlockFlat(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, skip_time_act=skip_time_act)) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, encoder_attention_mask: Optional[torch.Tensor]=None) -> torch.Tensor: + cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} + if cross_attention_kwargs.get('scale', None) is not None: + logger.warning('Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.') + if attention_mask is None: + mask = None if encoder_hidden_states is None else encoder_attention_mask + else: + mask = attention_mask + hidden_states = self.resnets[0](hidden_states, temb) + for (attn, resnet) in zip(self.attentions, self.resnets[1:]): + hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=mask, **cross_attention_kwargs) + hidden_states = resnet(hidden_states, temb) + return hidden_states + +# File: diffusers-main/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +import inspect +from typing import Callable, List, Optional, Union +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModel +from ....models import AutoencoderKL, UNet2DConditionModel +from ....schedulers import KarrasDiffusionSchedulers +from ....utils import logging +from ...pipeline_utils import DiffusionPipeline +from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline +from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline +from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline +logger = logging.get_logger(__name__) + +class VersatileDiffusionPipeline(DiffusionPipeline): + tokenizer: CLIPTokenizer + image_feature_extractor: CLIPImageProcessor + text_encoder: CLIPTextModel + image_encoder: CLIPVisionModel + image_unet: UNet2DConditionModel + text_unet: UNet2DConditionModel + vae: AutoencoderKL + scheduler: KarrasDiffusionSchedulers + + def __init__(self, tokenizer: CLIPTokenizer, image_feature_extractor: CLIPImageProcessor, text_encoder: CLIPTextModel, image_encoder: CLIPVisionModel, image_unet: UNet2DConditionModel, text_unet: UNet2DConditionModel, vae: AutoencoderKL, scheduler: KarrasDiffusionSchedulers): + super().__init__() + self.register_modules(tokenizer=tokenizer, image_feature_extractor=image_feature_extractor, text_encoder=text_encoder, image_encoder=image_encoder, image_unet=image_unet, text_unet=text_unet, vae=vae, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + + @torch.no_grad() + def image_variation(self, image: Union[torch.Tensor, PIL.Image.Image], height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1): + expected_components = inspect.signature(VersatileDiffusionImageVariationPipeline.__init__).parameters.keys() + components = {name: component for (name, component) in self.components.items() if name in expected_components} + return VersatileDiffusionImageVariationPipeline(**components)(image=image, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, eta=eta, generator=generator, latents=latents, output_type=output_type, return_dict=return_dict, callback=callback, callback_steps=callback_steps) + + @torch.no_grad() + def text_to_image(self, prompt: Union[str, List[str]], height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1): + expected_components = inspect.signature(VersatileDiffusionTextToImagePipeline.__init__).parameters.keys() + components = {name: component for (name, component) in self.components.items() if name in expected_components} + temp_pipeline = VersatileDiffusionTextToImagePipeline(**components) + output = temp_pipeline(prompt=prompt, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, eta=eta, generator=generator, latents=latents, output_type=output_type, return_dict=return_dict, callback=callback, callback_steps=callback_steps) + temp_pipeline._swap_unet_attention_blocks() + return output + + @torch.no_grad() + def dual_guided(self, prompt: Union[PIL.Image.Image, List[PIL.Image.Image]], image: Union[str, List[str]], text_to_image_strength: float=0.5, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=7.5, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1): + expected_components = inspect.signature(VersatileDiffusionDualGuidedPipeline.__init__).parameters.keys() + components = {name: component for (name, component) in self.components.items() if name in expected_components} + temp_pipeline = VersatileDiffusionDualGuidedPipeline(**components) + output = temp_pipeline(prompt=prompt, image=image, text_to_image_strength=text_to_image_strength, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, num_images_per_prompt=num_images_per_prompt, eta=eta, generator=generator, latents=latents, output_type=output_type, return_dict=return_dict, callback=callback, callback_steps=callback_steps) + temp_pipeline._revert_dual_attention() + return output + +# File: diffusers-main/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +import inspect +from typing import Callable, List, Optional, Tuple, Union +import numpy as np +import PIL.Image +import torch +import torch.utils.checkpoint +from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection +from ....image_processor import VaeImageProcessor +from ....models import AutoencoderKL, DualTransformer2DModel, Transformer2DModel, UNet2DConditionModel +from ....schedulers import KarrasDiffusionSchedulers +from ....utils import deprecate, logging +from ....utils.torch_utils import randn_tensor +from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput +from .modeling_text_unet import UNetFlatConditionModel +logger = logging.get_logger(__name__) + +class VersatileDiffusionDualGuidedPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'bert->unet->vqvae' + tokenizer: CLIPTokenizer + image_feature_extractor: CLIPImageProcessor + text_encoder: CLIPTextModelWithProjection + image_encoder: CLIPVisionModelWithProjection + image_unet: UNet2DConditionModel + text_unet: UNetFlatConditionModel + vae: AutoencoderKL + scheduler: KarrasDiffusionSchedulers + _optional_components = ['text_unet'] + + def __init__(self, tokenizer: CLIPTokenizer, image_feature_extractor: CLIPImageProcessor, text_encoder: CLIPTextModelWithProjection, image_encoder: CLIPVisionModelWithProjection, image_unet: UNet2DConditionModel, text_unet: UNetFlatConditionModel, vae: AutoencoderKL, scheduler: KarrasDiffusionSchedulers): + super().__init__() + self.register_modules(tokenizer=tokenizer, image_feature_extractor=image_feature_extractor, text_encoder=text_encoder, image_encoder=image_encoder, image_unet=image_unet, text_unet=text_unet, vae=vae, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + if self.text_unet is not None and ('dual_cross_attention' not in self.image_unet.config or not self.image_unet.config.dual_cross_attention): + self._convert_to_dual_attention() + + def remove_unused_weights(self): + self.register_modules(text_unet=None) + + def _convert_to_dual_attention(self): + for (name, module) in self.image_unet.named_modules(): + if isinstance(module, Transformer2DModel): + (parent_name, index) = name.rsplit('.', 1) + index = int(index) + image_transformer = self.image_unet.get_submodule(parent_name)[index] + text_transformer = self.text_unet.get_submodule(parent_name)[index] + config = image_transformer.config + dual_transformer = DualTransformer2DModel(num_attention_heads=config.num_attention_heads, attention_head_dim=config.attention_head_dim, in_channels=config.in_channels, num_layers=config.num_layers, dropout=config.dropout, norm_num_groups=config.norm_num_groups, cross_attention_dim=config.cross_attention_dim, attention_bias=config.attention_bias, sample_size=config.sample_size, num_vector_embeds=config.num_vector_embeds, activation_fn=config.activation_fn, num_embeds_ada_norm=config.num_embeds_ada_norm) + dual_transformer.transformers[0] = image_transformer + dual_transformer.transformers[1] = text_transformer + self.image_unet.get_submodule(parent_name)[index] = dual_transformer + self.image_unet.register_to_config(dual_cross_attention=True) + + def _revert_dual_attention(self): + for (name, module) in self.image_unet.named_modules(): + if isinstance(module, DualTransformer2DModel): + (parent_name, index) = name.rsplit('.', 1) + index = int(index) + self.image_unet.get_submodule(parent_name)[index] = module.transformers[0] + self.image_unet.register_to_config(dual_cross_attention=False) + + def _encode_text_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance): + + def normalize_embeddings(encoder_output): + embeds = self.text_encoder.text_projection(encoder_output.last_hidden_state) + embeds_pooled = encoder_output.text_embeds + embeds = embeds / torch.norm(embeds_pooled.unsqueeze(1), dim=-1, keepdim=True) + return embeds + batch_size = len(prompt) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='max_length', return_tensors='pt').input_ids + if not torch.equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = normalize_embeddings(prompt_embeds) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + uncond_tokens = [''] * batch_size + max_length = text_input_ids.shape[-1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = normalize_embeddings(negative_prompt_embeds) + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + return prompt_embeds + + def _encode_image_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance): + + def normalize_embeddings(encoder_output): + embeds = self.image_encoder.vision_model.post_layernorm(encoder_output.last_hidden_state) + embeds = self.image_encoder.visual_projection(embeds) + embeds_pooled = embeds[:, 0:1] + embeds = embeds / torch.norm(embeds_pooled, dim=-1, keepdim=True) + return embeds + batch_size = len(prompt) if isinstance(prompt, list) else 1 + image_input = self.image_feature_extractor(images=prompt, return_tensors='pt') + pixel_values = image_input.pixel_values.to(device).to(self.image_encoder.dtype) + image_embeddings = self.image_encoder(pixel_values) + image_embeddings = normalize_embeddings(image_embeddings) + (bs_embed, seq_len, _) = image_embeddings.shape + image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) + image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + uncond_images = [np.zeros((512, 512, 3)) + 0.5] * batch_size + uncond_images = self.image_feature_extractor(images=uncond_images, return_tensors='pt') + pixel_values = uncond_images.pixel_values.to(device).to(self.image_encoder.dtype) + negative_prompt_embeds = self.image_encoder(pixel_values) + negative_prompt_embeds = normalize_embeddings(negative_prompt_embeds) + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) + return image_embeddings + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, image, height, width, callback_steps): + if not isinstance(prompt, str) and (not isinstance(prompt, PIL.Image.Image)) and (not isinstance(prompt, list)): + raise ValueError(f'`prompt` has to be of type `str` `PIL.Image` or `list` but is {type(prompt)}') + if not isinstance(image, str) and (not isinstance(image, PIL.Image.Image)) and (not isinstance(image, list)): + raise ValueError(f'`image` has to be of type `str` `PIL.Image` or `list` but is {type(image)}') + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def set_transformer_params(self, mix_ratio: float=0.5, condition_types: Tuple=('text', 'image')): + for (name, module) in self.image_unet.named_modules(): + if isinstance(module, DualTransformer2DModel): + module.mix_ratio = mix_ratio + for (i, type) in enumerate(condition_types): + if type == 'text': + module.condition_lengths[i] = self.text_encoder.config.max_position_embeddings + module.transformer_index_for_condition[i] = 1 + else: + module.condition_lengths[i] = 257 + module.transformer_index_for_condition[i] = 0 + + @torch.no_grad() + def __call__(self, prompt: Union[PIL.Image.Image, List[PIL.Image.Image]], image: Union[str, List[str]], text_to_image_strength: float=0.5, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=7.5, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, **kwargs): + height = height or self.image_unet.config.sample_size * self.vae_scale_factor + width = width or self.image_unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, image, height, width, callback_steps) + prompt = [prompt] if not isinstance(prompt, list) else prompt + image = [image] if not isinstance(image, list) else image + batch_size = len(prompt) + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + prompt_embeds = self._encode_text_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance) + image_embeddings = self._encode_image_prompt(image, device, num_images_per_prompt, do_classifier_free_guidance) + dual_prompt_embeddings = torch.cat([prompt_embeds, image_embeddings], dim=1) + prompt_types = ('text', 'image') + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.image_unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, dual_prompt_embeddings.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + self.set_transformer_params(text_to_image_strength, prompt_types) + for (i, t) in enumerate(self.progress_bar(timesteps)): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.image_unet(latent_model_input, t, encoder_hidden_states=dual_prompt_embeddings).sample + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + else: + image = latents + image = self.image_processor.postprocess(image, output_type=output_type) + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +import inspect +from typing import Callable, List, Optional, Union +import numpy as np +import PIL.Image +import torch +import torch.utils.checkpoint +from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection +from ....image_processor import VaeImageProcessor +from ....models import AutoencoderKL, UNet2DConditionModel +from ....schedulers import KarrasDiffusionSchedulers +from ....utils import deprecate, logging +from ....utils.torch_utils import randn_tensor +from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput +logger = logging.get_logger(__name__) + +class VersatileDiffusionImageVariationPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'bert->unet->vqvae' + image_feature_extractor: CLIPImageProcessor + image_encoder: CLIPVisionModelWithProjection + image_unet: UNet2DConditionModel + vae: AutoencoderKL + scheduler: KarrasDiffusionSchedulers + + def __init__(self, image_feature_extractor: CLIPImageProcessor, image_encoder: CLIPVisionModelWithProjection, image_unet: UNet2DConditionModel, vae: AutoencoderKL, scheduler: KarrasDiffusionSchedulers): + super().__init__() + self.register_modules(image_feature_extractor=image_feature_extractor, image_encoder=image_encoder, image_unet=image_unet, vae=vae, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt): + + def normalize_embeddings(encoder_output): + embeds = self.image_encoder.vision_model.post_layernorm(encoder_output.last_hidden_state) + embeds = self.image_encoder.visual_projection(embeds) + embeds_pooled = embeds[:, 0:1] + embeds = embeds / torch.norm(embeds_pooled, dim=-1, keepdim=True) + return embeds + if isinstance(prompt, torch.Tensor) and len(prompt.shape) == 4: + prompt = list(prompt) + batch_size = len(prompt) if isinstance(prompt, list) else 1 + image_input = self.image_feature_extractor(images=prompt, return_tensors='pt') + pixel_values = image_input.pixel_values.to(device).to(self.image_encoder.dtype) + image_embeddings = self.image_encoder(pixel_values) + image_embeddings = normalize_embeddings(image_embeddings) + (bs_embed, seq_len, _) = image_embeddings.shape + image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) + image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + uncond_images: List[str] + if negative_prompt is None: + uncond_images = [np.zeros((512, 512, 3)) + 0.5] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, PIL.Image.Image): + uncond_images = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_images = negative_prompt + uncond_images = self.image_feature_extractor(images=uncond_images, return_tensors='pt') + pixel_values = uncond_images.pixel_values.to(device).to(self.image_encoder.dtype) + negative_prompt_embeds = self.image_encoder(pixel_values) + negative_prompt_embeds = normalize_embeddings(negative_prompt_embeds) + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) + return image_embeddings + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, image, height, width, callback_steps): + if not isinstance(image, torch.Tensor) and (not isinstance(image, PIL.Image.Image)) and (not isinstance(image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is {type(image)}') + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @torch.no_grad() + def __call__(self, image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor], height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, **kwargs): + height = height or self.image_unet.config.sample_size * self.vae_scale_factor + width = width or self.image_unet.config.sample_size * self.vae_scale_factor + self.check_inputs(image, height, width, callback_steps) + batch_size = 1 if isinstance(image, PIL.Image.Image) else len(image) + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + image_embeddings = self._encode_prompt(image, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.image_unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, image_embeddings.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + for (i, t) in enumerate(self.progress_bar(timesteps)): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.image_unet(latent_model_input, t, encoder_hidden_states=image_embeddings).sample + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + else: + image = latents + image = self.image_processor.postprocess(image, output_type=output_type) + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +import inspect +from typing import Callable, List, Optional, Union +import torch +import torch.utils.checkpoint +from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer +from ....image_processor import VaeImageProcessor +from ....models import AutoencoderKL, Transformer2DModel, UNet2DConditionModel +from ....schedulers import KarrasDiffusionSchedulers +from ....utils import deprecate, logging +from ....utils.torch_utils import randn_tensor +from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput +from .modeling_text_unet import UNetFlatConditionModel +logger = logging.get_logger(__name__) + +class VersatileDiffusionTextToImagePipeline(DiffusionPipeline): + model_cpu_offload_seq = 'bert->unet->vqvae' + tokenizer: CLIPTokenizer + image_feature_extractor: CLIPImageProcessor + text_encoder: CLIPTextModelWithProjection + image_unet: UNet2DConditionModel + text_unet: UNetFlatConditionModel + vae: AutoencoderKL + scheduler: KarrasDiffusionSchedulers + _optional_components = ['text_unet'] + + def __init__(self, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModelWithProjection, image_unet: UNet2DConditionModel, text_unet: UNetFlatConditionModel, vae: AutoencoderKL, scheduler: KarrasDiffusionSchedulers): + super().__init__() + self.register_modules(tokenizer=tokenizer, text_encoder=text_encoder, image_unet=image_unet, text_unet=text_unet, vae=vae, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + if self.text_unet is not None: + self._swap_unet_attention_blocks() + + def _swap_unet_attention_blocks(self): + for (name, module) in self.image_unet.named_modules(): + if isinstance(module, Transformer2DModel): + (parent_name, index) = name.rsplit('.', 1) + index = int(index) + (self.image_unet.get_submodule(parent_name)[index], self.text_unet.get_submodule(parent_name)[index]) = (self.text_unet.get_submodule(parent_name)[index], self.image_unet.get_submodule(parent_name)[index]) + + def remove_unused_weights(self): + self.register_modules(text_unet=None) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt): + + def normalize_embeddings(encoder_output): + embeds = self.text_encoder.text_projection(encoder_output.last_hidden_state) + embeds_pooled = encoder_output.text_embeds + embeds = embeds / torch.norm(embeds_pooled.unsqueeze(1), dim=-1, keepdim=True) + return embeds + batch_size = len(prompt) if isinstance(prompt, list) else 1 + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='max_length', return_tensors='pt').input_ids + if not torch.equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = normalize_embeddings(prompt_embeds) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + max_length = text_input_ids.shape[-1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = normalize_embeddings(negative_prompt_embeds) + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + return prompt_embeds + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @torch.no_grad() + def __call__(self, prompt: Union[str, List[str]], height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, **kwargs): + height = height or self.image_unet.config.sample_size * self.vae_scale_factor + width = width or self.image_unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, height, width, callback_steps) + batch_size = 1 if isinstance(prompt, str) else len(prompt) + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + prompt_embeds = self._encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.image_unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + for (i, t) in enumerate(self.progress_bar(timesteps)): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.image_unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + else: + image = latents + image = self.image_processor.postprocess(image, output_type=output_type) + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/vq_diffusion/__init__.py +from typing import TYPE_CHECKING +from ....utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ....utils.dummy_torch_and_transformers_objects import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline + _dummy_objects.update({'LearnedClassifierFreeSamplingEmbeddings': LearnedClassifierFreeSamplingEmbeddings, 'VQDiffusionPipeline': VQDiffusionPipeline}) +else: + _import_structure['pipeline_vq_diffusion'] = ['LearnedClassifierFreeSamplingEmbeddings', 'VQDiffusionPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ....utils.dummy_torch_and_transformers_objects import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline + else: + from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +from typing import Callable, List, Optional, Tuple, Union +import torch +from transformers import CLIPTextModel, CLIPTokenizer +from ....configuration_utils import ConfigMixin, register_to_config +from ....models import ModelMixin, Transformer2DModel, VQModel +from ....schedulers import VQDiffusionScheduler +from ....utils import logging +from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput +logger = logging.get_logger(__name__) + +class LearnedClassifierFreeSamplingEmbeddings(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, learnable: bool, hidden_size: Optional[int]=None, length: Optional[int]=None): + super().__init__() + self.learnable = learnable + if self.learnable: + assert hidden_size is not None, 'learnable=True requires `hidden_size` to be set' + assert length is not None, 'learnable=True requires `length` to be set' + embeddings = torch.zeros(length, hidden_size) + else: + embeddings = None + self.embeddings = torch.nn.Parameter(embeddings) + +class VQDiffusionPipeline(DiffusionPipeline): + vqvae: VQModel + text_encoder: CLIPTextModel + tokenizer: CLIPTokenizer + transformer: Transformer2DModel + learned_classifier_free_sampling_embeddings: LearnedClassifierFreeSamplingEmbeddings + scheduler: VQDiffusionScheduler + + def __init__(self, vqvae: VQModel, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, transformer: Transformer2DModel, scheduler: VQDiffusionScheduler, learned_classifier_free_sampling_embeddings: LearnedClassifierFreeSamplingEmbeddings): + super().__init__() + self.register_modules(vqvae=vqvae, transformer=transformer, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=scheduler, learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings) + + def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance): + batch_size = len(prompt) if isinstance(prompt, list) else 1 + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, return_tensors='pt') + text_input_ids = text_inputs.input_ids + if text_input_ids.shape[-1] > self.tokenizer.model_max_length: + removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length:]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + text_input_ids = text_input_ids[:, :self.tokenizer.model_max_length] + prompt_embeds = self.text_encoder(text_input_ids.to(self.device))[0] + prompt_embeds = prompt_embeds / prompt_embeds.norm(dim=-1, keepdim=True) + prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + if self.learned_classifier_free_sampling_embeddings.learnable: + negative_prompt_embeds = self.learned_classifier_free_sampling_embeddings.embeddings + negative_prompt_embeds = negative_prompt_embeds.unsqueeze(0).repeat(batch_size, 1, 1) + else: + uncond_tokens = [''] * batch_size + max_length = text_input_ids.shape[-1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(self.device))[0] + negative_prompt_embeds = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1, keepdim=True) + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + return prompt_embeds + + @torch.no_grad() + def __call__(self, prompt: Union[str, List[str]], num_inference_steps: int=100, guidance_scale: float=5.0, truncation_rate: float=1.0, num_images_per_prompt: int=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1) -> Union[ImagePipelineOutput, Tuple]: + if isinstance(prompt, str): + batch_size = 1 + elif isinstance(prompt, list): + batch_size = len(prompt) + else: + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + batch_size = batch_size * num_images_per_prompt + do_classifier_free_guidance = guidance_scale > 1.0 + prompt_embeds = self._encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance) + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + latents_shape = (batch_size, self.transformer.num_latent_pixels) + if latents is None: + mask_class = self.transformer.num_vector_embeds - 1 + latents = torch.full(latents_shape, mask_class).to(self.device) + else: + if latents.shape != latents_shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}') + if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): + raise ValueError(f'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0, {self.transformer.num_vector_embeds - 1} (inclusive).') + latents = latents.to(self.device) + self.scheduler.set_timesteps(num_inference_steps, device=self.device) + timesteps_tensor = self.scheduler.timesteps.to(self.device) + sample = latents + for (i, t) in enumerate(self.progress_bar(timesteps_tensor)): + latent_model_input = torch.cat([sample] * 2) if do_classifier_free_guidance else sample + model_output = self.transformer(latent_model_input, encoder_hidden_states=prompt_embeds, timestep=t).sample + if do_classifier_free_guidance: + (model_output_uncond, model_output_text) = model_output.chunk(2) + model_output = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) + model_output -= torch.logsumexp(model_output, dim=1, keepdim=True) + model_output = self.truncate(model_output, truncation_rate) + model_output = model_output.clamp(-70) + sample = self.scheduler.step(model_output, timestep=t, sample=sample, generator=generator).prev_sample + if callback is not None and i % callback_steps == 0: + callback(i, t, sample) + embedding_channels = self.vqvae.config.vq_embed_dim + embeddings_shape = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) + embeddings = self.vqvae.quantize.get_codebook_entry(sample, shape=embeddings_shape) + image = self.vqvae.decode(embeddings, force_not_quantize=True).sample + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).numpy() + if output_type == 'pil': + image = self.numpy_to_pil(image) + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + + def truncate(self, log_p_x_0: torch.Tensor, truncation_rate: float) -> torch.Tensor: + (sorted_log_p_x_0, indices) = torch.sort(log_p_x_0, 1, descending=True) + sorted_p_x_0 = torch.exp(sorted_log_p_x_0) + keep_mask = sorted_p_x_0.cumsum(dim=1) < truncation_rate + all_true = torch.full_like(keep_mask[:, 0:1, :], True) + keep_mask = torch.cat((all_true, keep_mask), dim=1) + keep_mask = keep_mask[:, :-1, :] + keep_mask = keep_mask.gather(1, indices.argsort(1)) + rv = log_p_x_0.clone() + rv[~keep_mask] = -torch.inf + return rv + +# File: diffusers-main/src/diffusers/pipelines/dit/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, _LazyModule +_import_structure = {'pipeline_dit': ['DiTPipeline']} +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + from .pipeline_dit import DiTPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + +# File: diffusers-main/src/diffusers/pipelines/dit/pipeline_dit.py +from typing import Dict, List, Optional, Tuple, Union +import torch +from ...models import AutoencoderKL, DiTTransformer2DModel +from ...schedulers import KarrasDiffusionSchedulers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput + +class DiTPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'transformer->vae' + + def __init__(self, transformer: DiTTransformer2DModel, vae: AutoencoderKL, scheduler: KarrasDiffusionSchedulers, id2label: Optional[Dict[int, str]]=None): + super().__init__() + self.register_modules(transformer=transformer, vae=vae, scheduler=scheduler) + self.labels = {} + if id2label is not None: + for (key, value) in id2label.items(): + for label in value.split(','): + self.labels[label.lstrip().rstrip()] = int(key) + self.labels = dict(sorted(self.labels.items())) + + def get_label_ids(self, label: Union[str, List[str]]) -> List[int]: + if not isinstance(label, list): + label = list(label) + for l in label: + if l not in self.labels: + raise ValueError(f'{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.') + return [self.labels[l] for l in label] + + @torch.no_grad() + def __call__(self, class_labels: List[int], guidance_scale: float=4.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, num_inference_steps: int=50, output_type: Optional[str]='pil', return_dict: bool=True) -> Union[ImagePipelineOutput, Tuple]: + batch_size = len(class_labels) + latent_size = self.transformer.config.sample_size + latent_channels = self.transformer.config.in_channels + latents = randn_tensor(shape=(batch_size, latent_channels, latent_size, latent_size), generator=generator, device=self._execution_device, dtype=self.transformer.dtype) + latent_model_input = torch.cat([latents] * 2) if guidance_scale > 1 else latents + class_labels = torch.tensor(class_labels, device=self._execution_device).reshape(-1) + class_null = torch.tensor([1000] * batch_size, device=self._execution_device) + class_labels_input = torch.cat([class_labels, class_null], 0) if guidance_scale > 1 else class_labels + self.scheduler.set_timesteps(num_inference_steps) + for t in self.progress_bar(self.scheduler.timesteps): + if guidance_scale > 1: + half = latent_model_input[:len(latent_model_input) // 2] + latent_model_input = torch.cat([half, half], dim=0) + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + timesteps = t + if not torch.is_tensor(timesteps): + is_mps = latent_model_input.device.type == 'mps' + if isinstance(timesteps, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=latent_model_input.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(latent_model_input.device) + timesteps = timesteps.expand(latent_model_input.shape[0]) + noise_pred = self.transformer(latent_model_input, timestep=timesteps, class_labels=class_labels_input).sample + if guidance_scale > 1: + (eps, rest) = (noise_pred[:, :latent_channels], noise_pred[:, latent_channels:]) + (cond_eps, uncond_eps) = torch.split(eps, len(eps) // 2, dim=0) + half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps) + eps = torch.cat([half_eps, half_eps], dim=0) + noise_pred = torch.cat([eps, rest], dim=1) + if self.transformer.config.out_channels // 2 == latent_channels: + (model_output, _) = torch.split(noise_pred, latent_channels, dim=1) + else: + model_output = noise_pred + latent_model_input = self.scheduler.step(model_output, t, latent_model_input).prev_sample + if guidance_scale > 1: + (latents, _) = latent_model_input.chunk(2, dim=0) + else: + latents = latent_model_input + latents = 1 / self.vae.config.scaling_factor * latents + samples = self.vae.decode(latents).sample + samples = (samples / 2 + 0.5).clamp(0, 1) + samples = samples.cpu().permute(0, 2, 3, 1).float().numpy() + if output_type == 'pil': + samples = self.numpy_to_pil(samples) + self.maybe_free_model_hooks() + if not return_dict: + return (samples,) + return ImagePipelineOutput(images=samples) + +# File: diffusers-main/src/diffusers/pipelines/flux/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_additional_imports = {} +_import_structure = {'pipeline_output': ['FluxPipelineOutput']} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_flux'] = ['FluxPipeline'] + _import_structure['pipeline_flux_controlnet'] = ['FluxControlNetPipeline'] + _import_structure['pipeline_flux_img2img'] = ['FluxImg2ImgPipeline'] + _import_structure['pipeline_flux_inpaint'] = ['FluxInpaintPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_flux import FluxPipeline + from .pipeline_flux_controlnet import FluxControlNetPipeline + from .pipeline_flux_img2img import FluxImg2ImgPipeline + from .pipeline_flux_inpaint import FluxInpaintPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + for (name, value) in _additional_imports.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/flux/pipeline_flux.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import torch +from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast +from ...image_processor import VaeImageProcessor +from ...loaders import FluxLoraLoaderMixin, FromSingleFileMixin +from ...models.autoencoders import AutoencoderKL +from ...models.transformers import FluxTransformer2DModel +from ...schedulers import FlowMatchEulerDiscreteScheduler +from ...utils import USE_PEFT_BACKEND, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .pipeline_output import FluxPipelineOutput +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import FluxPipeline\n\n >>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)\n >>> pipe.to("cuda")\n >>> prompt = "A cat holding a sign that says hello world"\n >>> # Depending on the variant being used, the pipeline call will slightly vary.\n >>> # Refer to the pipeline documentation for more details.\n >>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]\n >>> image.save("flux.png")\n ```\n' + +def calculate_shift(image_seq_len, base_seq_len: int=256, max_seq_len: int=4096, base_shift: float=0.5, max_shift: float=1.16): + m = (max_shift - base_shift) / (max_seq_len - base_seq_len) + b = base_shift - m * base_seq_len + mu = image_seq_len * m + b + return mu + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class FluxPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->transformer->vae' + _optional_components = [] + _callback_tensor_inputs = ['latents', 'prompt_embeds'] + + def __init__(self, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, text_encoder_2: T5EncoderModel, tokenizer_2: T5TokenizerFast, transformer: FluxTransformer2DModel): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, transformer=transformer, scheduler=scheduler) + self.vae_scale_factor = 2 ** len(self.vae.config.block_out_channels) if hasattr(self, 'vae') and self.vae is not None else 16 + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.tokenizer_max_length = self.tokenizer.model_max_length if hasattr(self, 'tokenizer') and self.tokenizer is not None else 77 + self.default_sample_size = 64 + + def _get_t5_prompt_embeds(self, prompt: Union[str, List[str]]=None, num_images_per_prompt: int=1, max_sequence_length: int=512, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None): + device = device or self._execution_device + dtype = dtype or self.text_encoder.dtype + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + text_inputs = self.tokenizer_2(prompt, padding='max_length', max_length=max_sequence_length, truncation=True, return_length=False, return_overflowing_tokens=False, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer_2(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because `max_sequence_length` is set to {max_sequence_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] + dtype = self.text_encoder_2.dtype + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (_, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + return prompt_embeds + + def _get_clip_prompt_embeds(self, prompt: Union[str, List[str]], num_images_per_prompt: int=1, device: Optional[torch.device]=None): + device = device or self._execution_device + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer_max_length, truncation=True, return_overflowing_tokens=False, return_length=False, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer_max_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) + prompt_embeds = prompt_embeds.pooler_output + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) + return prompt_embeds + + def encode_prompt(self, prompt: Union[str, List[str]], prompt_2: Union[str, List[str]], device: Optional[torch.device]=None, num_images_per_prompt: int=1, prompt_embeds: Optional[torch.FloatTensor]=None, pooled_prompt_embeds: Optional[torch.FloatTensor]=None, max_sequence_length: int=512, lora_scale: Optional[float]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + pooled_prompt_embeds = self._get_clip_prompt_embeds(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt) + prompt_embeds = self._get_t5_prompt_embeds(prompt=prompt_2, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device) + if self.text_encoder is not None: + if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype + text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) + return (prompt_embeds, pooled_prompt_embeds, text_ids) + + def check_inputs(self, prompt, prompt_2, height, width, prompt_embeds=None, pooled_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, max_sequence_length=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if max_sequence_length is not None and max_sequence_length > 512: + raise ValueError(f'`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}') + + @staticmethod + def _prepare_latent_image_ids(batch_size, height, width, device, dtype): + latent_image_ids = torch.zeros(height // 2, width // 2, 3) + latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] + latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] + (latent_image_id_height, latent_image_id_width, latent_image_id_channels) = latent_image_ids.shape + latent_image_ids = latent_image_ids.reshape(latent_image_id_height * latent_image_id_width, latent_image_id_channels) + return latent_image_ids.to(device=device, dtype=dtype) + + @staticmethod + def _pack_latents(latents, batch_size, num_channels_latents, height, width): + latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) + latents = latents.permute(0, 2, 4, 1, 3, 5) + latents = latents.reshape(batch_size, height // 2 * (width // 2), num_channels_latents * 4) + return latents + + @staticmethod + def _unpack_latents(latents, height, width, vae_scale_factor): + (batch_size, num_patches, channels) = latents.shape + height = height // vae_scale_factor + width = width // vae_scale_factor + latents = latents.view(batch_size, height, width, channels // 4, 2, 2) + latents = latents.permute(0, 3, 1, 4, 2, 5) + latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2) + return latents + + def enable_vae_slicing(self): + self.vae.enable_slicing() + + def disable_vae_slicing(self): + self.vae.disable_slicing() + + def enable_vae_tiling(self): + self.vae.enable_tiling() + + def disable_vae_tiling(self): + self.vae.disable_tiling() + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + height = 2 * (int(height) // self.vae_scale_factor) + width = 2 * (int(width) // self.vae_scale_factor) + shape = (batch_size, num_channels_latents, height, width) + if latents is not None: + latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) + return (latents.to(device=device, dtype=dtype), latent_image_ids) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) + latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) + return (latents, latent_image_ids) + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def joint_attention_kwargs(self): + return self._joint_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=28, timesteps: List[int]=None, guidance_scale: float=3.5, num_images_per_prompt: Optional[int]=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.FloatTensor]=None, prompt_embeds: Optional[torch.FloatTensor]=None, pooled_prompt_embeds: Optional[torch.FloatTensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, joint_attention_kwargs: Optional[Dict[str, Any]]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], max_sequence_length: int=512): + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + self.check_inputs(prompt, prompt_2, height, width, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length) + self._guidance_scale = guidance_scale + self._joint_attention_kwargs = joint_attention_kwargs + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + lora_scale = self.joint_attention_kwargs.get('scale', None) if self.joint_attention_kwargs is not None else None + (prompt_embeds, pooled_prompt_embeds, text_ids) = self.encode_prompt(prompt=prompt, prompt_2=prompt_2, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, device=device, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, lora_scale=lora_scale) + num_channels_latents = self.transformer.config.in_channels // 4 + (latents, latent_image_ids) = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) + image_seq_len = latents.shape[1] + mu = calculate_shift(image_seq_len, self.scheduler.config.base_image_seq_len, self.scheduler.config.max_image_seq_len, self.scheduler.config.base_shift, self.scheduler.config.max_shift) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas, mu=mu) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + self._num_timesteps = len(timesteps) + if self.transformer.config.guidance_embeds: + guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) + guidance = guidance.expand(latents.shape[0]) + else: + guidance = None + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + timestep = t.expand(latents.shape[0]).to(latents.dtype) + noise_pred = self.transformer(hidden_states=latents, timestep=timestep / 1000, guidance=guidance, pooled_projections=pooled_prompt_embeds, encoder_hidden_states=prompt_embeds, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False)[0] + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + latents = latents.to(latents_dtype) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if XLA_AVAILABLE: + xm.mark_step() + if output_type == 'latent': + image = latents + else: + latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) + latents = latents / self.vae.config.scaling_factor + self.vae.config.shift_factor + image = self.vae.decode(latents, return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return FluxPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/flux/pipeline_flux_controlnet.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import numpy as np +import torch +from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FluxLoraLoaderMixin, FromSingleFileMixin +from ...models.autoencoders import AutoencoderKL +from ...models.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel +from ...models.transformers import FluxTransformer2DModel +from ...schedulers import FlowMatchEulerDiscreteScheduler +from ...utils import USE_PEFT_BACKEND, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .pipeline_output import FluxPipelineOutput +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers.utils import load_image\n >>> from diffusers import FluxControlNetPipeline\n >>> from diffusers import FluxControlNetModel\n\n >>> controlnet_model = "InstantX/FLUX.1-dev-controlnet-canny"\n >>> controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)\n >>> pipe = FluxControlNetPipeline.from_pretrained(\n ... base_model, controlnet=controlnet, torch_dtype=torch.bfloat16\n ... )\n >>> pipe.to("cuda")\n >>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")\n >>> prompt = "A girl in city, 25 years old, cool, futuristic"\n >>> image = pipe(\n ... prompt,\n ... control_image=control_image,\n ... controlnet_conditioning_scale=0.6,\n ... num_inference_steps=28,\n ... guidance_scale=3.5,\n ... ).images[0]\n >>> image.save("flux.png")\n ```\n' + +def calculate_shift(image_seq_len, base_seq_len: int=256, max_seq_len: int=4096, base_shift: float=0.5, max_shift: float=1.16): + m = (max_shift - base_shift) / (max_seq_len - base_seq_len) + b = base_shift - m * base_seq_len + mu = image_seq_len * m + b + return mu + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class FluxControlNetPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->transformer->vae' + _optional_components = [] + _callback_tensor_inputs = ['latents', 'prompt_embeds'] + + def __init__(self, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, text_encoder_2: T5EncoderModel, tokenizer_2: T5TokenizerFast, transformer: FluxTransformer2DModel, controlnet: Union[FluxControlNetModel, List[FluxControlNetModel], Tuple[FluxControlNetModel], FluxMultiControlNetModel]): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, transformer=transformer, scheduler=scheduler, controlnet=controlnet) + self.vae_scale_factor = 2 ** len(self.vae.config.block_out_channels) if hasattr(self, 'vae') and self.vae is not None else 16 + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.tokenizer_max_length = self.tokenizer.model_max_length if hasattr(self, 'tokenizer') and self.tokenizer is not None else 77 + self.default_sample_size = 64 + + def _get_t5_prompt_embeds(self, prompt: Union[str, List[str]]=None, num_images_per_prompt: int=1, max_sequence_length: int=512, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None): + device = device or self._execution_device + dtype = dtype or self.text_encoder.dtype + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + text_inputs = self.tokenizer_2(prompt, padding='max_length', max_length=max_sequence_length, truncation=True, return_length=False, return_overflowing_tokens=False, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer_2(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because `max_sequence_length` is set to {max_sequence_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] + dtype = self.text_encoder_2.dtype + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (_, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + return prompt_embeds + + def _get_clip_prompt_embeds(self, prompt: Union[str, List[str]], num_images_per_prompt: int=1, device: Optional[torch.device]=None): + device = device or self._execution_device + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer_max_length, truncation=True, return_overflowing_tokens=False, return_length=False, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer_max_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) + prompt_embeds = prompt_embeds.pooler_output + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) + return prompt_embeds + + def encode_prompt(self, prompt: Union[str, List[str]], prompt_2: Union[str, List[str]], device: Optional[torch.device]=None, num_images_per_prompt: int=1, prompt_embeds: Optional[torch.FloatTensor]=None, pooled_prompt_embeds: Optional[torch.FloatTensor]=None, max_sequence_length: int=512, lora_scale: Optional[float]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + pooled_prompt_embeds = self._get_clip_prompt_embeds(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt) + prompt_embeds = self._get_t5_prompt_embeds(prompt=prompt_2, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device) + if self.text_encoder is not None: + if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype + text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) + return (prompt_embeds, pooled_prompt_embeds, text_ids) + + def check_inputs(self, prompt, prompt_2, height, width, prompt_embeds=None, pooled_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, max_sequence_length=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if max_sequence_length is not None and max_sequence_length > 512: + raise ValueError(f'`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}') + + @staticmethod + def _prepare_latent_image_ids(batch_size, height, width, device, dtype): + latent_image_ids = torch.zeros(height // 2, width // 2, 3) + latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] + latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] + (latent_image_id_height, latent_image_id_width, latent_image_id_channels) = latent_image_ids.shape + latent_image_ids = latent_image_ids.reshape(latent_image_id_height * latent_image_id_width, latent_image_id_channels) + return latent_image_ids.to(device=device, dtype=dtype) + + @staticmethod + def _pack_latents(latents, batch_size, num_channels_latents, height, width): + latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) + latents = latents.permute(0, 2, 4, 1, 3, 5) + latents = latents.reshape(batch_size, height // 2 * (width // 2), num_channels_latents * 4) + return latents + + @staticmethod + def _unpack_latents(latents, height, width, vae_scale_factor): + (batch_size, num_patches, channels) = latents.shape + height = height // vae_scale_factor + width = width // vae_scale_factor + latents = latents.view(batch_size, height, width, channels // 4, 2, 2) + latents = latents.permute(0, 3, 1, 4, 2, 5) + latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2) + return latents + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + height = 2 * (int(height) // self.vae_scale_factor) + width = 2 * (int(width) // self.vae_scale_factor) + shape = (batch_size, num_channels_latents, height, width) + if latents is not None: + latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) + return (latents.to(device=device, dtype=dtype), latent_image_ids) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) + latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) + return (latents, latent_image_ids) + + def prepare_image(self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False, guess_mode=False): + if isinstance(image, torch.Tensor): + pass + else: + image = self.image_processor.preprocess(image, height=height, width=width) + image_batch_size = image.shape[0] + if image_batch_size == 1: + repeat_by = batch_size + else: + repeat_by = num_images_per_prompt + image = image.repeat_interleave(repeat_by, dim=0) + image = image.to(device=device, dtype=dtype) + if do_classifier_free_guidance and (not guess_mode): + image = torch.cat([image] * 2) + return image + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def joint_attention_kwargs(self): + return self._joint_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=28, timesteps: List[int]=None, guidance_scale: float=7.0, control_image: PipelineImageInput=None, control_mode: Optional[Union[int, List[int]]]=None, controlnet_conditioning_scale: Union[float, List[float]]=1.0, num_images_per_prompt: Optional[int]=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.FloatTensor]=None, prompt_embeds: Optional[torch.FloatTensor]=None, pooled_prompt_embeds: Optional[torch.FloatTensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, joint_attention_kwargs: Optional[Dict[str, Any]]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], max_sequence_length: int=512): + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + self.check_inputs(prompt, prompt_2, height, width, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length) + self._guidance_scale = guidance_scale + self._joint_attention_kwargs = joint_attention_kwargs + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + dtype = self.transformer.dtype + lora_scale = self.joint_attention_kwargs.get('scale', None) if self.joint_attention_kwargs is not None else None + (prompt_embeds, pooled_prompt_embeds, text_ids) = self.encode_prompt(prompt=prompt, prompt_2=prompt_2, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, device=device, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, lora_scale=lora_scale) + num_channels_latents = self.transformer.config.in_channels // 4 + if isinstance(self.controlnet, FluxControlNetModel): + control_image = self.prepare_image(image=control_image, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=dtype) + (height, width) = control_image.shape[-2:] + control_image = self.vae.encode(control_image).latent_dist.sample() + control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor + (height_control_image, width_control_image) = control_image.shape[2:] + control_image = self._pack_latents(control_image, batch_size * num_images_per_prompt, num_channels_latents, height_control_image, width_control_image) + if control_mode is not None: + control_mode = torch.tensor(control_mode).to(device, dtype=torch.long) + control_mode = control_mode.reshape([-1, 1]) + elif isinstance(self.controlnet, FluxMultiControlNetModel): + control_images = [] + for control_image_ in control_image: + control_image_ = self.prepare_image(image=control_image_, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=dtype) + (height, width) = control_image_.shape[-2:] + control_image_ = self.vae.encode(control_image_).latent_dist.sample() + control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor + (height_control_image, width_control_image) = control_image_.shape[2:] + control_image_ = self._pack_latents(control_image_, batch_size * num_images_per_prompt, num_channels_latents, height_control_image, width_control_image) + control_images.append(control_image_) + control_image = control_images + control_mode_ = [] + if isinstance(control_mode, list): + for cmode in control_mode: + if cmode is None: + control_mode_.append(-1) + else: + control_mode_.append(cmode) + control_mode = torch.tensor(control_mode_).to(device, dtype=torch.long) + control_mode = control_mode.reshape([-1, 1]) + num_channels_latents = self.transformer.config.in_channels // 4 + (latents, latent_image_ids) = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) + image_seq_len = latents.shape[1] + mu = calculate_shift(image_seq_len, self.scheduler.config.base_image_seq_len, self.scheduler.config.max_image_seq_len, self.scheduler.config.base_shift, self.scheduler.config.max_shift) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas, mu=mu) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + timestep = t.expand(latents.shape[0]).to(latents.dtype) + if self.transformer.config.guidance_embeds: + guidance = torch.tensor([guidance_scale], device=device) + guidance = guidance.expand(latents.shape[0]) + else: + guidance = None + (controlnet_block_samples, controlnet_single_block_samples) = self.controlnet(hidden_states=latents, controlnet_cond=control_image, controlnet_mode=control_mode, conditioning_scale=controlnet_conditioning_scale, timestep=timestep / 1000, guidance=guidance, pooled_projections=pooled_prompt_embeds, encoder_hidden_states=prompt_embeds, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False) + noise_pred = self.transformer(hidden_states=latents, timestep=timestep / 1000, guidance=guidance, pooled_projections=pooled_prompt_embeds, encoder_hidden_states=prompt_embeds, controlnet_block_samples=controlnet_block_samples, controlnet_single_block_samples=controlnet_single_block_samples, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False)[0] + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + latents = latents.to(latents_dtype) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if XLA_AVAILABLE: + xm.mark_step() + if output_type == 'latent': + image = latents + else: + latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) + latents = latents / self.vae.config.scaling_factor + self.vae.config.shift_factor + image = self.vae.decode(latents, return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return FluxPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/flux/pipeline_flux_img2img.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import torch +from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FluxLoraLoaderMixin +from ...models.autoencoders import AutoencoderKL +from ...models.transformers import FluxTransformer2DModel +from ...schedulers import FlowMatchEulerDiscreteScheduler +from ...utils import USE_PEFT_BACKEND, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .pipeline_output import FluxPipelineOutput +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n\n >>> from diffusers import FluxImg2ImgPipeline\n >>> from diffusers.utils import load_image\n\n >>> device = "cuda"\n >>> pipe = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)\n >>> pipe = pipe.to(device)\n\n >>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"\n >>> init_image = load_image(url).resize((1024, 1024))\n\n >>> prompt = "cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney, 8k"\n\n >>> images = pipe(\n ... prompt=prompt, image=init_image, num_inference_steps=4, strength=0.95, guidance_scale=0.0\n ... ).images[0]\n ```\n' + +def calculate_shift(image_seq_len, base_seq_len: int=256, max_seq_len: int=4096, base_shift: float=0.5, max_shift: float=1.16): + m = (max_shift - base_shift) / (max_seq_len - base_seq_len) + b = base_shift - m * base_seq_len + mu = image_seq_len * m + b + return mu + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class FluxImg2ImgPipeline(DiffusionPipeline, FluxLoraLoaderMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->transformer->vae' + _optional_components = [] + _callback_tensor_inputs = ['latents', 'prompt_embeds'] + + def __init__(self, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, text_encoder_2: T5EncoderModel, tokenizer_2: T5TokenizerFast, transformer: FluxTransformer2DModel): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, transformer=transformer, scheduler=scheduler) + self.vae_scale_factor = 2 ** len(self.vae.config.block_out_channels) if hasattr(self, 'vae') and self.vae is not None else 16 + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.tokenizer_max_length = self.tokenizer.model_max_length if hasattr(self, 'tokenizer') and self.tokenizer is not None else 77 + self.default_sample_size = 64 + + def _get_t5_prompt_embeds(self, prompt: Union[str, List[str]]=None, num_images_per_prompt: int=1, max_sequence_length: int=512, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None): + device = device or self._execution_device + dtype = dtype or self.text_encoder.dtype + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + text_inputs = self.tokenizer_2(prompt, padding='max_length', max_length=max_sequence_length, truncation=True, return_length=False, return_overflowing_tokens=False, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer_2(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because `max_sequence_length` is set to {max_sequence_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] + dtype = self.text_encoder_2.dtype + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (_, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + return prompt_embeds + + def _get_clip_prompt_embeds(self, prompt: Union[str, List[str]], num_images_per_prompt: int=1, device: Optional[torch.device]=None): + device = device or self._execution_device + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer_max_length, truncation=True, return_overflowing_tokens=False, return_length=False, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer_max_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) + prompt_embeds = prompt_embeds.pooler_output + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) + return prompt_embeds + + def encode_prompt(self, prompt: Union[str, List[str]], prompt_2: Union[str, List[str]], device: Optional[torch.device]=None, num_images_per_prompt: int=1, prompt_embeds: Optional[torch.FloatTensor]=None, pooled_prompt_embeds: Optional[torch.FloatTensor]=None, max_sequence_length: int=512, lora_scale: Optional[float]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + pooled_prompt_embeds = self._get_clip_prompt_embeds(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt) + prompt_embeds = self._get_t5_prompt_embeds(prompt=prompt_2, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device) + if self.text_encoder is not None: + if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype + text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) + return (prompt_embeds, pooled_prompt_embeds, text_ids) + + def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): + if isinstance(generator, list): + image_latents = [retrieve_latents(self.vae.encode(image[i:i + 1]), generator=generator[i]) for i in range(image.shape[0])] + image_latents = torch.cat(image_latents, dim=0) + else: + image_latents = retrieve_latents(self.vae.encode(image), generator=generator) + image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor + return image_latents + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(num_inference_steps * strength, num_inference_steps) + t_start = int(max(num_inference_steps - init_timestep, 0)) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + + def check_inputs(self, prompt, prompt_2, strength, height, width, prompt_embeds=None, pooled_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, max_sequence_length=None): + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if max_sequence_length is not None and max_sequence_length > 512: + raise ValueError(f'`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}') + + @staticmethod + def _prepare_latent_image_ids(batch_size, height, width, device, dtype): + latent_image_ids = torch.zeros(height // 2, width // 2, 3) + latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] + latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] + (latent_image_id_height, latent_image_id_width, latent_image_id_channels) = latent_image_ids.shape + latent_image_ids = latent_image_ids.reshape(latent_image_id_height * latent_image_id_width, latent_image_id_channels) + return latent_image_ids.to(device=device, dtype=dtype) + + @staticmethod + def _pack_latents(latents, batch_size, num_channels_latents, height, width): + latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) + latents = latents.permute(0, 2, 4, 1, 3, 5) + latents = latents.reshape(batch_size, height // 2 * (width // 2), num_channels_latents * 4) + return latents + + @staticmethod + def _unpack_latents(latents, height, width, vae_scale_factor): + (batch_size, num_patches, channels) = latents.shape + height = height // vae_scale_factor + width = width // vae_scale_factor + latents = latents.view(batch_size, height, width, channels // 4, 2, 2) + latents = latents.permute(0, 3, 1, 4, 2, 5) + latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2) + return latents + + def prepare_latents(self, image, timestep, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + height = 2 * (int(height) // self.vae_scale_factor) + width = 2 * (int(width) // self.vae_scale_factor) + shape = (batch_size, num_channels_latents, height, width) + latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) + if latents is not None: + return (latents.to(device=device, dtype=dtype), latent_image_ids) + image = image.to(device=device, dtype=dtype) + image_latents = self._encode_vae_image(image=image, generator=generator) + if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: + additional_image_per_prompt = batch_size // image_latents.shape[0] + image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) + elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts.') + else: + image_latents = torch.cat([image_latents], dim=0) + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = self.scheduler.scale_noise(image_latents, timestep, noise) + latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) + return (latents, latent_image_ids) + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def joint_attention_kwargs(self): + return self._joint_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, image: PipelineImageInput=None, height: Optional[int]=None, width: Optional[int]=None, strength: float=0.6, num_inference_steps: int=28, timesteps: List[int]=None, guidance_scale: float=7.0, num_images_per_prompt: Optional[int]=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.FloatTensor]=None, prompt_embeds: Optional[torch.FloatTensor]=None, pooled_prompt_embeds: Optional[torch.FloatTensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, joint_attention_kwargs: Optional[Dict[str, Any]]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], max_sequence_length: int=512): + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + self.check_inputs(prompt, prompt_2, strength, height, width, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length) + self._guidance_scale = guidance_scale + self._joint_attention_kwargs = joint_attention_kwargs + self._interrupt = False + init_image = self.image_processor.preprocess(image, height=height, width=width) + init_image = init_image.to(dtype=torch.float32) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + lora_scale = self.joint_attention_kwargs.get('scale', None) if self.joint_attention_kwargs is not None else None + (prompt_embeds, pooled_prompt_embeds, text_ids) = self.encode_prompt(prompt=prompt, prompt_2=prompt_2, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, device=device, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, lora_scale=lora_scale) + sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) + image_seq_len = int(height) // self.vae_scale_factor * (int(width) // self.vae_scale_factor) + mu = calculate_shift(image_seq_len, self.scheduler.config.base_image_seq_len, self.scheduler.config.max_image_seq_len, self.scheduler.config.base_shift, self.scheduler.config.max_shift) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas, mu=mu) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device) + if num_inference_steps < 1: + raise ValueError(f'After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipelinesteps is {num_inference_steps} which is < 1 and not appropriate for this pipeline.') + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + num_channels_latents = self.transformer.config.in_channels // 4 + (latents, latent_image_ids) = self.prepare_latents(init_image, latent_timestep, batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + self._num_timesteps = len(timesteps) + if self.transformer.config.guidance_embeds: + guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) + guidance = guidance.expand(latents.shape[0]) + else: + guidance = None + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + timestep = t.expand(latents.shape[0]).to(latents.dtype) + noise_pred = self.transformer(hidden_states=latents, timestep=timestep / 1000, guidance=guidance, pooled_projections=pooled_prompt_embeds, encoder_hidden_states=prompt_embeds, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False)[0] + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + latents = latents.to(latents_dtype) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if XLA_AVAILABLE: + xm.mark_step() + if output_type == 'latent': + image = latents + else: + latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) + latents = latents / self.vae.config.scaling_factor + self.vae.config.shift_factor + image = self.vae.decode(latents, return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return FluxPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/flux/pipeline_flux_inpaint.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FluxLoraLoaderMixin +from ...models.autoencoders import AutoencoderKL +from ...models.transformers import FluxTransformer2DModel +from ...schedulers import FlowMatchEulerDiscreteScheduler +from ...utils import USE_PEFT_BACKEND, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .pipeline_output import FluxPipelineOutput +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import FluxInpaintPipeline\n >>> from diffusers.utils import load_image\n\n >>> pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)\n >>> pipe.to("cuda")\n >>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"\n >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"\n >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"\n >>> source = load_image(img_url)\n >>> mask = load_image(mask_url)\n >>> image = pipe(prompt=prompt, image=source, mask_image=mask).images[0]\n >>> image.save("flux_inpainting.png")\n ```\n' + +def calculate_shift(image_seq_len, base_seq_len: int=256, max_seq_len: int=4096, base_shift: float=0.5, max_shift: float=1.16): + m = (max_shift - base_shift) / (max_seq_len - base_seq_len) + b = base_shift - m * base_seq_len + mu = image_seq_len * m + b + return mu + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class FluxInpaintPipeline(DiffusionPipeline, FluxLoraLoaderMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->transformer->vae' + _optional_components = [] + _callback_tensor_inputs = ['latents', 'prompt_embeds'] + + def __init__(self, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, text_encoder_2: T5EncoderModel, tokenizer_2: T5TokenizerFast, transformer: FluxTransformer2DModel): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, transformer=transformer, scheduler=scheduler) + self.vae_scale_factor = 2 ** len(self.vae.config.block_out_channels) if hasattr(self, 'vae') and self.vae is not None else 16 + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.mask_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, vae_latent_channels=self.vae.config.latent_channels, do_normalize=False, do_binarize=True, do_convert_grayscale=True) + self.tokenizer_max_length = self.tokenizer.model_max_length if hasattr(self, 'tokenizer') and self.tokenizer is not None else 77 + self.default_sample_size = 64 + + def _get_t5_prompt_embeds(self, prompt: Union[str, List[str]]=None, num_images_per_prompt: int=1, max_sequence_length: int=512, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None): + device = device or self._execution_device + dtype = dtype or self.text_encoder.dtype + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + text_inputs = self.tokenizer_2(prompt, padding='max_length', max_length=max_sequence_length, truncation=True, return_length=False, return_overflowing_tokens=False, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer_2(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because `max_sequence_length` is set to {max_sequence_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] + dtype = self.text_encoder_2.dtype + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (_, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + return prompt_embeds + + def _get_clip_prompt_embeds(self, prompt: Union[str, List[str]], num_images_per_prompt: int=1, device: Optional[torch.device]=None): + device = device or self._execution_device + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer_max_length, truncation=True, return_overflowing_tokens=False, return_length=False, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer_max_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) + prompt_embeds = prompt_embeds.pooler_output + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) + return prompt_embeds + + def encode_prompt(self, prompt: Union[str, List[str]], prompt_2: Union[str, List[str]], device: Optional[torch.device]=None, num_images_per_prompt: int=1, prompt_embeds: Optional[torch.FloatTensor]=None, pooled_prompt_embeds: Optional[torch.FloatTensor]=None, max_sequence_length: int=512, lora_scale: Optional[float]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + pooled_prompt_embeds = self._get_clip_prompt_embeds(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt) + prompt_embeds = self._get_t5_prompt_embeds(prompt=prompt_2, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device) + if self.text_encoder is not None: + if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype + text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) + return (prompt_embeds, pooled_prompt_embeds, text_ids) + + def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): + if isinstance(generator, list): + image_latents = [retrieve_latents(self.vae.encode(image[i:i + 1]), generator=generator[i]) for i in range(image.shape[0])] + image_latents = torch.cat(image_latents, dim=0) + else: + image_latents = retrieve_latents(self.vae.encode(image), generator=generator) + image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor + return image_latents + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(num_inference_steps * strength, num_inference_steps) + t_start = int(max(num_inference_steps - init_timestep, 0)) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + + def check_inputs(self, prompt, prompt_2, image, mask_image, strength, height, width, output_type, prompt_embeds=None, pooled_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, padding_mask_crop=None, max_sequence_length=None): + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if padding_mask_crop is not None: + if not isinstance(image, PIL.Image.Image): + raise ValueError(f'The image should be a PIL image when inpainting mask crop, but is of type {type(image)}.') + if not isinstance(mask_image, PIL.Image.Image): + raise ValueError(f'The mask image should be a PIL image when inpainting mask crop, but is of type {type(mask_image)}.') + if output_type != 'pil': + raise ValueError(f'The output type should be PIL when inpainting mask crop, but is {output_type}.') + if max_sequence_length is not None and max_sequence_length > 512: + raise ValueError(f'`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}') + + @staticmethod + def _prepare_latent_image_ids(batch_size, height, width, device, dtype): + latent_image_ids = torch.zeros(height // 2, width // 2, 3) + latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] + latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] + (latent_image_id_height, latent_image_id_width, latent_image_id_channels) = latent_image_ids.shape + latent_image_ids = latent_image_ids.reshape(latent_image_id_height * latent_image_id_width, latent_image_id_channels) + return latent_image_ids.to(device=device, dtype=dtype) + + @staticmethod + def _pack_latents(latents, batch_size, num_channels_latents, height, width): + latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) + latents = latents.permute(0, 2, 4, 1, 3, 5) + latents = latents.reshape(batch_size, height // 2 * (width // 2), num_channels_latents * 4) + return latents + + @staticmethod + def _unpack_latents(latents, height, width, vae_scale_factor): + (batch_size, num_patches, channels) = latents.shape + height = height // vae_scale_factor + width = width // vae_scale_factor + latents = latents.view(batch_size, height, width, channels // 4, 2, 2) + latents = latents.permute(0, 3, 1, 4, 2, 5) + latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2) + return latents + + def prepare_latents(self, image, timestep, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + height = 2 * (int(height) // self.vae_scale_factor) + width = 2 * (int(width) // self.vae_scale_factor) + shape = (batch_size, num_channels_latents, height, width) + latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) + image = image.to(device=device, dtype=dtype) + image_latents = self._encode_vae_image(image=image, generator=generator) + if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: + additional_image_per_prompt = batch_size // image_latents.shape[0] + image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) + elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts.') + else: + image_latents = torch.cat([image_latents], dim=0) + if latents is None: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = self.scheduler.scale_noise(image_latents, timestep, noise) + else: + noise = latents.to(device) + latents = noise + noise = self._pack_latents(noise, batch_size, num_channels_latents, height, width) + image_latents = self._pack_latents(image_latents, batch_size, num_channels_latents, height, width) + latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) + return (latents, noise, image_latents, latent_image_ids) + + def prepare_mask_latents(self, mask, masked_image, batch_size, num_channels_latents, num_images_per_prompt, height, width, dtype, device, generator): + height = 2 * (int(height) // self.vae_scale_factor) + width = 2 * (int(width) // self.vae_scale_factor) + mask = torch.nn.functional.interpolate(mask, size=(height, width)) + mask = mask.to(device=device, dtype=dtype) + batch_size = batch_size * num_images_per_prompt + masked_image = masked_image.to(device=device, dtype=dtype) + if masked_image.shape[1] == 16: + masked_image_latents = masked_image + else: + masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator) + masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor + if mask.shape[0] < batch_size: + if not batch_size % mask.shape[0] == 0: + raise ValueError(f"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number of masks that you pass is divisible by the total requested batch size.") + mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) + if masked_image_latents.shape[0] < batch_size: + if not batch_size % masked_image_latents.shape[0] == 0: + raise ValueError(f"The passed images and the required batch size don't match. Images are supposed to be duplicated to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed. Make sure the number of images that you pass is divisible by the total requested batch size.") + masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) + masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) + masked_image_latents = self._pack_latents(masked_image_latents, batch_size, num_channels_latents, height, width) + mask = self._pack_latents(mask.repeat(1, num_channels_latents, 1, 1), batch_size, num_channels_latents, height, width) + return (mask, masked_image_latents) + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def joint_attention_kwargs(self): + return self._joint_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, image: PipelineImageInput=None, mask_image: PipelineImageInput=None, masked_image_latents: PipelineImageInput=None, height: Optional[int]=None, width: Optional[int]=None, padding_mask_crop: Optional[int]=None, strength: float=0.6, num_inference_steps: int=28, timesteps: List[int]=None, guidance_scale: float=7.0, num_images_per_prompt: Optional[int]=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.FloatTensor]=None, prompt_embeds: Optional[torch.FloatTensor]=None, pooled_prompt_embeds: Optional[torch.FloatTensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, joint_attention_kwargs: Optional[Dict[str, Any]]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], max_sequence_length: int=512): + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + self.check_inputs(prompt, prompt_2, image, mask_image, strength, height, width, output_type=output_type, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, padding_mask_crop=padding_mask_crop, max_sequence_length=max_sequence_length) + self._guidance_scale = guidance_scale + self._joint_attention_kwargs = joint_attention_kwargs + self._interrupt = False + if padding_mask_crop is not None: + crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop) + resize_mode = 'fill' + else: + crops_coords = None + resize_mode = 'default' + original_image = image + init_image = self.image_processor.preprocess(image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode) + init_image = init_image.to(dtype=torch.float32) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + lora_scale = self.joint_attention_kwargs.get('scale', None) if self.joint_attention_kwargs is not None else None + (prompt_embeds, pooled_prompt_embeds, text_ids) = self.encode_prompt(prompt=prompt, prompt_2=prompt_2, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, device=device, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, lora_scale=lora_scale) + sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) + image_seq_len = int(height) // self.vae_scale_factor * (int(width) // self.vae_scale_factor) + mu = calculate_shift(image_seq_len, self.scheduler.config.base_image_seq_len, self.scheduler.config.max_image_seq_len, self.scheduler.config.base_shift, self.scheduler.config.max_shift) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas, mu=mu) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device) + if num_inference_steps < 1: + raise ValueError(f'After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipelinesteps is {num_inference_steps} which is < 1 and not appropriate for this pipeline.') + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + num_channels_latents = self.transformer.config.in_channels // 4 + num_channels_transformer = self.transformer.config.in_channels + (latents, noise, image_latents, latent_image_ids) = self.prepare_latents(init_image, latent_timestep, batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + mask_condition = self.mask_processor.preprocess(mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords) + if masked_image_latents is None: + masked_image = init_image * (mask_condition < 0.5) + else: + masked_image = masked_image_latents + (mask, masked_image_latents) = self.prepare_mask_latents(mask_condition, masked_image, batch_size, num_channels_latents, num_images_per_prompt, height, width, prompt_embeds.dtype, device, generator) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + self._num_timesteps = len(timesteps) + if self.transformer.config.guidance_embeds: + guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) + guidance = guidance.expand(latents.shape[0]) + else: + guidance = None + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + timestep = t.expand(latents.shape[0]).to(latents.dtype) + noise_pred = self.transformer(hidden_states=latents, timestep=timestep / 1000, guidance=guidance, pooled_projections=pooled_prompt_embeds, encoder_hidden_states=prompt_embeds, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False)[0] + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + init_latents_proper = image_latents + init_mask = mask + if i < len(timesteps) - 1: + noise_timestep = timesteps[i + 1] + init_latents_proper = self.scheduler.scale_noise(init_latents_proper, torch.tensor([noise_timestep]), noise) + latents = (1 - init_mask) * init_latents_proper + init_mask * latents + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + latents = latents.to(latents_dtype) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if XLA_AVAILABLE: + xm.mark_step() + if output_type == 'latent': + image = latents + else: + latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) + latents = latents / self.vae.config.scaling_factor + self.vae.config.shift_factor + image = self.vae.decode(latents, return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return FluxPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/flux/pipeline_output.py +from dataclasses import dataclass +from typing import List, Union +import numpy as np +import PIL.Image +from ...utils import BaseOutput + +@dataclass +class FluxPipelineOutput(BaseOutput): + images: Union[List[PIL.Image.Image], np.ndarray] + +# File: diffusers-main/src/diffusers/pipelines/free_init_utils.py +import math +from typing import Tuple, Union +import torch +import torch.fft as fft +from ..utils.torch_utils import randn_tensor + +class FreeInitMixin: + + def enable_free_init(self, num_iters: int=3, use_fast_sampling: bool=False, method: str='butterworth', order: int=4, spatial_stop_frequency: float=0.25, temporal_stop_frequency: float=0.25): + self._free_init_num_iters = num_iters + self._free_init_use_fast_sampling = use_fast_sampling + self._free_init_method = method + self._free_init_order = order + self._free_init_spatial_stop_frequency = spatial_stop_frequency + self._free_init_temporal_stop_frequency = temporal_stop_frequency + + def disable_free_init(self): + self._free_init_num_iters = None + + @property + def free_init_enabled(self): + return hasattr(self, '_free_init_num_iters') and self._free_init_num_iters is not None + + def _get_free_init_freq_filter(self, shape: Tuple[int, ...], device: Union[str, torch.dtype], filter_type: str, order: float, spatial_stop_frequency: float, temporal_stop_frequency: float) -> torch.Tensor: + (time, height, width) = (shape[-3], shape[-2], shape[-1]) + mask = torch.zeros(shape) + if spatial_stop_frequency == 0 or temporal_stop_frequency == 0: + return mask + if filter_type == 'butterworth': + + def retrieve_mask(x): + return 1 / (1 + (x / spatial_stop_frequency ** 2) ** order) + elif filter_type == 'gaussian': + + def retrieve_mask(x): + return math.exp(-1 / (2 * spatial_stop_frequency ** 2) * x) + elif filter_type == 'ideal': + + def retrieve_mask(x): + return 1 if x <= spatial_stop_frequency * 2 else 0 + else: + raise NotImplementedError('`filter_type` must be one of gaussian, butterworth or ideal') + for t in range(time): + for h in range(height): + for w in range(width): + d_square = (spatial_stop_frequency / temporal_stop_frequency * (2 * t / time - 1)) ** 2 + (2 * h / height - 1) ** 2 + (2 * w / width - 1) ** 2 + mask[..., t, h, w] = retrieve_mask(d_square) + return mask.to(device) + + def _apply_freq_filter(self, x: torch.Tensor, noise: torch.Tensor, low_pass_filter: torch.Tensor) -> torch.Tensor: + x_freq = fft.fftn(x, dim=(-3, -2, -1)) + x_freq = fft.fftshift(x_freq, dim=(-3, -2, -1)) + noise_freq = fft.fftn(noise, dim=(-3, -2, -1)) + noise_freq = fft.fftshift(noise_freq, dim=(-3, -2, -1)) + high_pass_filter = 1 - low_pass_filter + x_freq_low = x_freq * low_pass_filter + noise_freq_high = noise_freq * high_pass_filter + x_freq_mixed = x_freq_low + noise_freq_high + x_freq_mixed = fft.ifftshift(x_freq_mixed, dim=(-3, -2, -1)) + x_mixed = fft.ifftn(x_freq_mixed, dim=(-3, -2, -1)).real + return x_mixed + + def _apply_free_init(self, latents: torch.Tensor, free_init_iteration: int, num_inference_steps: int, device: torch.device, dtype: torch.dtype, generator: torch.Generator): + if free_init_iteration == 0: + self._free_init_initial_noise = latents.detach().clone() + else: + latent_shape = latents.shape + free_init_filter_shape = (1, *latent_shape[1:]) + free_init_freq_filter = self._get_free_init_freq_filter(shape=free_init_filter_shape, device=device, filter_type=self._free_init_method, order=self._free_init_order, spatial_stop_frequency=self._free_init_spatial_stop_frequency, temporal_stop_frequency=self._free_init_temporal_stop_frequency) + current_diffuse_timestep = self.scheduler.config.num_train_timesteps - 1 + diffuse_timesteps = torch.full((latent_shape[0],), current_diffuse_timestep).long() + z_t = self.scheduler.add_noise(original_samples=latents, noise=self._free_init_initial_noise, timesteps=diffuse_timesteps.to(device)).to(dtype=torch.float32) + z_rand = randn_tensor(shape=latent_shape, generator=generator, device=device, dtype=torch.float32) + latents = self._apply_freq_filter(z_t, z_rand, low_pass_filter=free_init_freq_filter) + latents = latents.to(dtype) + if self._free_init_use_fast_sampling: + num_inference_steps = max(1, int(num_inference_steps / self._free_init_num_iters * (free_init_iteration + 1))) + if num_inference_steps > 0: + self.scheduler.set_timesteps(num_inference_steps, device=device) + return (latents, self.scheduler.timesteps) + +# File: diffusers-main/src/diffusers/pipelines/free_noise_utils.py +from typing import Callable, Dict, List, Optional, Tuple, Union +import torch +import torch.nn as nn +from ..models.attention import BasicTransformerBlock, FreeNoiseTransformerBlock +from ..models.resnet import Downsample2D, ResnetBlock2D, Upsample2D +from ..models.transformers.transformer_2d import Transformer2DModel +from ..models.unets.unet_motion_model import AnimateDiffTransformer3D, CrossAttnDownBlockMotion, DownBlockMotion, UpBlockMotion +from ..pipelines.pipeline_utils import DiffusionPipeline +from ..utils import logging +from ..utils.torch_utils import randn_tensor +logger = logging.get_logger(__name__) + +class SplitInferenceModule(nn.Module): + + def __init__(self, module: nn.Module, split_size: int=1, split_dim: int=0, input_kwargs_to_split: List[str]=['hidden_states']) -> None: + super().__init__() + self.module = module + self.split_size = split_size + self.split_dim = split_dim + self.input_kwargs_to_split = set(input_kwargs_to_split) + + def forward(self, *args, **kwargs) -> Union[torch.Tensor, Tuple[torch.Tensor]]: + split_inputs = {} + for key in list(kwargs.keys()): + if key not in self.input_kwargs_to_split or not torch.is_tensor(kwargs[key]): + continue + split_inputs[key] = torch.split(kwargs[key], self.split_size, self.split_dim) + kwargs.pop(key) + results = [] + for split_input in zip(*split_inputs.values()): + inputs = dict(zip(split_inputs.keys(), split_input)) + inputs.update(kwargs) + intermediate_tensor_or_tensor_tuple = self.module(*args, **inputs) + results.append(intermediate_tensor_or_tensor_tuple) + if isinstance(results[0], torch.Tensor): + return torch.cat(results, dim=self.split_dim) + elif isinstance(results[0], tuple): + return tuple([torch.cat(x, dim=self.split_dim) for x in zip(*results)]) + else: + raise ValueError("In order to use the SplitInferenceModule, it is necessary for the underlying `module` to either return a torch.Tensor or a tuple of torch.Tensor's.") + +class AnimateDiffFreeNoiseMixin: + + def _enable_free_noise_in_block(self, block: Union[CrossAttnDownBlockMotion, DownBlockMotion, UpBlockMotion]): + for motion_module in block.motion_modules: + num_transformer_blocks = len(motion_module.transformer_blocks) + for i in range(num_transformer_blocks): + if isinstance(motion_module.transformer_blocks[i], FreeNoiseTransformerBlock): + motion_module.transformer_blocks[i].set_free_noise_properties(self._free_noise_context_length, self._free_noise_context_stride, self._free_noise_weighting_scheme) + else: + assert isinstance(motion_module.transformer_blocks[i], BasicTransformerBlock) + basic_transfomer_block = motion_module.transformer_blocks[i] + motion_module.transformer_blocks[i] = FreeNoiseTransformerBlock(dim=basic_transfomer_block.dim, num_attention_heads=basic_transfomer_block.num_attention_heads, attention_head_dim=basic_transfomer_block.attention_head_dim, dropout=basic_transfomer_block.dropout, cross_attention_dim=basic_transfomer_block.cross_attention_dim, activation_fn=basic_transfomer_block.activation_fn, attention_bias=basic_transfomer_block.attention_bias, only_cross_attention=basic_transfomer_block.only_cross_attention, double_self_attention=basic_transfomer_block.double_self_attention, positional_embeddings=basic_transfomer_block.positional_embeddings, num_positional_embeddings=basic_transfomer_block.num_positional_embeddings, context_length=self._free_noise_context_length, context_stride=self._free_noise_context_stride, weighting_scheme=self._free_noise_weighting_scheme).to(device=self.device, dtype=self.dtype) + motion_module.transformer_blocks[i].load_state_dict(basic_transfomer_block.state_dict(), strict=True) + motion_module.transformer_blocks[i].set_chunk_feed_forward(basic_transfomer_block._chunk_size, basic_transfomer_block._chunk_dim) + + def _disable_free_noise_in_block(self, block: Union[CrossAttnDownBlockMotion, DownBlockMotion, UpBlockMotion]): + for motion_module in block.motion_modules: + num_transformer_blocks = len(motion_module.transformer_blocks) + for i in range(num_transformer_blocks): + if isinstance(motion_module.transformer_blocks[i], FreeNoiseTransformerBlock): + free_noise_transfomer_block = motion_module.transformer_blocks[i] + motion_module.transformer_blocks[i] = BasicTransformerBlock(dim=free_noise_transfomer_block.dim, num_attention_heads=free_noise_transfomer_block.num_attention_heads, attention_head_dim=free_noise_transfomer_block.attention_head_dim, dropout=free_noise_transfomer_block.dropout, cross_attention_dim=free_noise_transfomer_block.cross_attention_dim, activation_fn=free_noise_transfomer_block.activation_fn, attention_bias=free_noise_transfomer_block.attention_bias, only_cross_attention=free_noise_transfomer_block.only_cross_attention, double_self_attention=free_noise_transfomer_block.double_self_attention, positional_embeddings=free_noise_transfomer_block.positional_embeddings, num_positional_embeddings=free_noise_transfomer_block.num_positional_embeddings).to(device=self.device, dtype=self.dtype) + motion_module.transformer_blocks[i].load_state_dict(free_noise_transfomer_block.state_dict(), strict=True) + motion_module.transformer_blocks[i].set_chunk_feed_forward(free_noise_transfomer_block._chunk_size, free_noise_transfomer_block._chunk_dim) + + def _check_inputs_free_noise(self, prompt, negative_prompt, prompt_embeds, negative_prompt_embeds, num_frames) -> None: + if not isinstance(prompt, (str, dict)): + raise ValueError(f'Expected `prompt` to have type `str` or `dict` but found type(prompt)={type(prompt)!r}') + if negative_prompt is not None: + if not isinstance(negative_prompt, (str, dict)): + raise ValueError(f'Expected `negative_prompt` to have type `str` or `dict` but found type(negative_prompt)={type(negative_prompt)!r}') + if prompt_embeds is not None or negative_prompt_embeds is not None: + raise ValueError('`prompt_embeds` and `negative_prompt_embeds` is not supported in FreeNoise yet.') + frame_indices = [isinstance(x, int) for x in prompt.keys()] + frame_prompts = [isinstance(x, str) for x in prompt.values()] + min_frame = min(list(prompt.keys())) + max_frame = max(list(prompt.keys())) + if not all(frame_indices): + raise ValueError('Expected integer keys in `prompt` dict for FreeNoise.') + if not all(frame_prompts): + raise ValueError('Expected str values in `prompt` dict for FreeNoise.') + if min_frame != 0: + raise ValueError('The minimum frame index in `prompt` dict must be 0 as a starting prompt is necessary.') + if max_frame >= num_frames: + raise ValueError(f'The maximum frame index in `prompt` dict must be lesser than num_frames={num_frames!r} and follow 0-based indexing.') + + def _encode_prompt_free_noise(self, prompt: Union[str, Dict[int, str]], num_frames: int, device: torch.device, num_videos_per_prompt: int, do_classifier_free_guidance: bool, negative_prompt: Optional[Union[str, Dict[int, str]]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None) -> torch.Tensor: + if negative_prompt is None: + negative_prompt = '' + if isinstance(prompt, str): + prompt = {0: prompt} + if isinstance(negative_prompt, str): + negative_prompt = {0: negative_prompt} + self._check_inputs_free_noise(prompt, negative_prompt, prompt_embeds, negative_prompt_embeds, num_frames) + prompt = dict(sorted(prompt.items())) + negative_prompt = dict(sorted(negative_prompt.items())) + prompt[num_frames - 1] = prompt[list(prompt.keys())[-1]] + negative_prompt[num_frames - 1] = negative_prompt[list(negative_prompt.keys())[-1]] + frame_indices = list(prompt.keys()) + frame_prompts = list(prompt.values()) + frame_negative_indices = list(negative_prompt.keys()) + frame_negative_prompts = list(negative_prompt.values()) + (prompt_embeds, _) = self.encode_prompt(prompt=frame_prompts, device=device, num_images_per_prompt=num_videos_per_prompt, do_classifier_free_guidance=False, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, lora_scale=lora_scale, clip_skip=clip_skip) + shape = (num_frames, *prompt_embeds.shape[1:]) + prompt_interpolation_embeds = prompt_embeds.new_zeros(shape) + for i in range(len(frame_indices) - 1): + start_frame = frame_indices[i] + end_frame = frame_indices[i + 1] + start_tensor = prompt_embeds[i].unsqueeze(0) + end_tensor = prompt_embeds[i + 1].unsqueeze(0) + prompt_interpolation_embeds[start_frame:end_frame + 1] = self._free_noise_prompt_interpolation_callback(start_frame, end_frame, start_tensor, end_tensor) + negative_prompt_embeds = None + negative_prompt_interpolation_embeds = None + if do_classifier_free_guidance: + (_, negative_prompt_embeds) = self.encode_prompt(prompt=[''] * len(frame_negative_prompts), device=device, num_images_per_prompt=num_videos_per_prompt, do_classifier_free_guidance=True, negative_prompt=frame_negative_prompts, prompt_embeds=None, negative_prompt_embeds=None, lora_scale=lora_scale, clip_skip=clip_skip) + negative_prompt_interpolation_embeds = negative_prompt_embeds.new_zeros(shape) + for i in range(len(frame_negative_indices) - 1): + start_frame = frame_negative_indices[i] + end_frame = frame_negative_indices[i + 1] + start_tensor = negative_prompt_embeds[i].unsqueeze(0) + end_tensor = negative_prompt_embeds[i + 1].unsqueeze(0) + negative_prompt_interpolation_embeds[start_frame:end_frame + 1] = self._free_noise_prompt_interpolation_callback(start_frame, end_frame, start_tensor, end_tensor) + prompt_embeds = prompt_interpolation_embeds + negative_prompt_embeds = negative_prompt_interpolation_embeds + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + return (prompt_embeds, negative_prompt_embeds) + + def _prepare_latents_free_noise(self, batch_size: int, num_channels_latents: int, num_frames: int, height: int, width: int, dtype: torch.dtype, device: torch.device, generator: Optional[torch.Generator]=None, latents: Optional[torch.Tensor]=None): + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + context_num_frames = self._free_noise_context_length if self._free_noise_context_length == 'repeat_context' else num_frames + shape = (batch_size, num_channels_latents, context_num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor) + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + if self._free_noise_noise_type == 'random': + return latents + else: + if latents.size(2) == num_frames: + return latents + elif latents.size(2) != self._free_noise_context_length: + raise ValueError(f'You have passed `latents` as a parameter to FreeNoise. The expected number of frames is either {num_frames} or {self._free_noise_context_length}, but found {latents.size(2)}') + latents = latents.to(device) + if self._free_noise_noise_type == 'shuffle_context': + for i in range(self._free_noise_context_length, num_frames, self._free_noise_context_stride): + window_start = max(0, i - self._free_noise_context_length) + window_end = min(num_frames, window_start + self._free_noise_context_stride) + window_length = window_end - window_start + if window_length == 0: + break + indices = torch.LongTensor(list(range(window_start, window_end))) + shuffled_indices = indices[torch.randperm(window_length, generator=generator)] + current_start = i + current_end = min(num_frames, current_start + window_length) + if current_end == current_start + window_length: + latents[:, :, current_start:current_end] = latents[:, :, shuffled_indices] + else: + prefix_length = current_end - current_start + shuffled_indices = shuffled_indices[:prefix_length] + latents[:, :, current_start:current_end] = latents[:, :, shuffled_indices] + elif self._free_noise_noise_type == 'repeat_context': + num_repeats = (num_frames + self._free_noise_context_length - 1) // self._free_noise_context_length + latents = torch.cat([latents] * num_repeats, dim=2) + latents = latents[:, :, :num_frames] + return latents + + def _lerp(self, start_index: int, end_index: int, start_tensor: torch.Tensor, end_tensor: torch.Tensor) -> torch.Tensor: + num_indices = end_index - start_index + 1 + interpolated_tensors = [] + for i in range(num_indices): + alpha = i / (num_indices - 1) + interpolated_tensor = (1 - alpha) * start_tensor + alpha * end_tensor + interpolated_tensors.append(interpolated_tensor) + interpolated_tensors = torch.cat(interpolated_tensors) + return interpolated_tensors + + def enable_free_noise(self, context_length: Optional[int]=16, context_stride: int=4, weighting_scheme: str='pyramid', noise_type: str='shuffle_context', prompt_interpolation_callback: Optional[Callable[[DiffusionPipeline, int, int, torch.Tensor, torch.Tensor], torch.Tensor]]=None) -> None: + allowed_weighting_scheme = ['flat', 'pyramid', 'delayed_reverse_sawtooth'] + allowed_noise_type = ['shuffle_context', 'repeat_context', 'random'] + if context_length > self.motion_adapter.config.motion_max_seq_length: + logger.warning(f'You have set context_length={context_length!r} which is greater than self.motion_adapter.config.motion_max_seq_length={self.motion_adapter.config.motion_max_seq_length!r}. This can lead to bad generation results.') + if weighting_scheme not in allowed_weighting_scheme: + raise ValueError(f'The parameter `weighting_scheme` must be one of {allowed_weighting_scheme}, but got weighting_scheme={weighting_scheme!r}') + if noise_type not in allowed_noise_type: + raise ValueError(f'The parameter `noise_type` must be one of {allowed_noise_type}, but got noise_type={noise_type!r}') + self._free_noise_context_length = context_length or self.motion_adapter.config.motion_max_seq_length + self._free_noise_context_stride = context_stride + self._free_noise_weighting_scheme = weighting_scheme + self._free_noise_noise_type = noise_type + self._free_noise_prompt_interpolation_callback = prompt_interpolation_callback or self._lerp + if hasattr(self.unet.mid_block, 'motion_modules'): + blocks = [*self.unet.down_blocks, self.unet.mid_block, *self.unet.up_blocks] + else: + blocks = [*self.unet.down_blocks, *self.unet.up_blocks] + for block in blocks: + self._enable_free_noise_in_block(block) + + def disable_free_noise(self) -> None: + self._free_noise_context_length = None + if hasattr(self.unet.mid_block, 'motion_modules'): + blocks = [*self.unet.down_blocks, self.unet.mid_block, *self.unet.up_blocks] + else: + blocks = [*self.unet.down_blocks, *self.unet.up_blocks] + blocks = [*self.unet.down_blocks, self.unet.mid_block, *self.unet.up_blocks] + for block in blocks: + self._disable_free_noise_in_block(block) + + def _enable_split_inference_motion_modules_(self, motion_modules: List[AnimateDiffTransformer3D], spatial_split_size: int) -> None: + for motion_module in motion_modules: + motion_module.proj_in = SplitInferenceModule(motion_module.proj_in, spatial_split_size, 0, ['input']) + for i in range(len(motion_module.transformer_blocks)): + motion_module.transformer_blocks[i] = SplitInferenceModule(motion_module.transformer_blocks[i], spatial_split_size, 0, ['hidden_states', 'encoder_hidden_states']) + motion_module.proj_out = SplitInferenceModule(motion_module.proj_out, spatial_split_size, 0, ['input']) + + def _enable_split_inference_attentions_(self, attentions: List[Transformer2DModel], temporal_split_size: int) -> None: + for i in range(len(attentions)): + attentions[i] = SplitInferenceModule(attentions[i], temporal_split_size, 0, ['hidden_states', 'encoder_hidden_states']) + + def _enable_split_inference_resnets_(self, resnets: List[ResnetBlock2D], temporal_split_size: int) -> None: + for i in range(len(resnets)): + resnets[i] = SplitInferenceModule(resnets[i], temporal_split_size, 0, ['input_tensor', 'temb']) + + def _enable_split_inference_samplers_(self, samplers: Union[List[Downsample2D], List[Upsample2D]], temporal_split_size: int) -> None: + for i in range(len(samplers)): + samplers[i] = SplitInferenceModule(samplers[i], temporal_split_size, 0, ['hidden_states']) + + def enable_free_noise_split_inference(self, spatial_split_size: int=256, temporal_split_size: int=16) -> None: + blocks = [*self.unet.down_blocks, self.unet.mid_block, *self.unet.up_blocks] + for block in blocks: + if getattr(block, 'motion_modules', None) is not None: + self._enable_split_inference_motion_modules_(block.motion_modules, spatial_split_size) + if getattr(block, 'attentions', None) is not None: + self._enable_split_inference_attentions_(block.attentions, temporal_split_size) + if getattr(block, 'resnets', None) is not None: + self._enable_split_inference_resnets_(block.resnets, temporal_split_size) + if getattr(block, 'downsamplers', None) is not None: + self._enable_split_inference_samplers_(block.downsamplers, temporal_split_size) + if getattr(block, 'upsamplers', None) is not None: + self._enable_split_inference_samplers_(block.upsamplers, temporal_split_size) + + @property + def free_noise_enabled(self): + return hasattr(self, '_free_noise_context_length') and self._free_noise_context_length is not None + +# File: diffusers-main/src/diffusers/pipelines/hunyuandit/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_hunyuandit'] = ['HunyuanDiTPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_hunyuandit import HunyuanDiTPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +import inspect +from typing import Callable, Dict, List, Optional, Tuple, Union +import numpy as np +import torch +from transformers import BertModel, BertTokenizer, CLIPImageProcessor, MT5Tokenizer, T5EncoderModel +from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import VaeImageProcessor +from ...models import AutoencoderKL, HunyuanDiT2DModel +from ...models.embeddings import get_2d_rotary_pos_embed +from ...pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker +from ...schedulers import DDPMScheduler +from ...utils import is_torch_xla_available, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import HunyuanDiTPipeline\n\n >>> pipe = HunyuanDiTPipeline.from_pretrained(\n ... "Tencent-Hunyuan/HunyuanDiT-Diffusers", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> # You may also use English prompt as HunyuanDiT supports both English and Chinese\n >>> # prompt = "An astronaut riding a horse"\n >>> prompt = "一个宇航员在骑马"\n >>> image = pipe(prompt).images[0]\n ```\n' +STANDARD_RATIO = np.array([1.0, 4.0 / 3.0, 3.0 / 4.0, 16.0 / 9.0, 9.0 / 16.0]) +STANDARD_SHAPE = [[(1024, 1024), (1280, 1280)], [(1024, 768), (1152, 864), (1280, 960)], [(768, 1024), (864, 1152), (960, 1280)], [(1280, 768)], [(768, 1280)]] +STANDARD_AREA = [np.array([w * h for (w, h) in shapes]) for shapes in STANDARD_SHAPE] +SUPPORTED_SHAPE = [(1024, 1024), (1280, 1280), (1024, 768), (1152, 864), (1280, 960), (768, 1024), (864, 1152), (960, 1280), (1280, 768), (768, 1280)] + +def map_to_standard_shapes(target_width, target_height): + target_ratio = target_width / target_height + closest_ratio_idx = np.argmin(np.abs(STANDARD_RATIO - target_ratio)) + closest_area_idx = np.argmin(np.abs(STANDARD_AREA[closest_ratio_idx] - target_width * target_height)) + (width, height) = STANDARD_SHAPE[closest_ratio_idx][closest_area_idx] + return (width, height) + +def get_resize_crop_region_for_grid(src, tgt_size): + th = tw = tgt_size + (h, w) = src + r = h / w + if r > 1: + resize_height = th + resize_width = int(round(th / h * w)) + else: + resize_width = tw + resize_height = int(round(tw / w * h)) + crop_top = int(round((th - resize_height) / 2.0)) + crop_left = int(round((tw - resize_width) / 2.0)) + return ((crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)) + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +class HunyuanDiTPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->transformer->vae' + _optional_components = ['safety_checker', 'feature_extractor', 'text_encoder_2', 'tokenizer_2', 'text_encoder', 'tokenizer'] + _exclude_from_cpu_offload = ['safety_checker'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'prompt_embeds_2', 'negative_prompt_embeds_2'] + + def __init__(self, vae: AutoencoderKL, text_encoder: BertModel, tokenizer: BertTokenizer, transformer: HunyuanDiT2DModel, scheduler: DDPMScheduler, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool=True, text_encoder_2=T5EncoderModel, tokenizer_2=MT5Tokenizer): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, tokenizer_2=tokenizer_2, transformer=transformer, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, text_encoder_2=text_encoder_2) + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, 'vae') and self.vae is not None else 8 + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + self.default_sample_size = self.transformer.config.sample_size if hasattr(self, 'transformer') and self.transformer is not None else 128 + + def encode_prompt(self, prompt: str, device: torch.device=None, dtype: torch.dtype=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[str]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, prompt_attention_mask: Optional[torch.Tensor]=None, negative_prompt_attention_mask: Optional[torch.Tensor]=None, max_sequence_length: Optional[int]=None, text_encoder_index: int=0): + if dtype is None: + if self.text_encoder_2 is not None: + dtype = self.text_encoder_2.dtype + elif self.transformer is not None: + dtype = self.transformer.dtype + else: + dtype = None + if device is None: + device = self._execution_device + tokenizers = [self.tokenizer, self.tokenizer_2] + text_encoders = [self.text_encoder, self.text_encoder_2] + tokenizer = tokenizers[text_encoder_index] + text_encoder = text_encoders[text_encoder_index] + if max_sequence_length is None: + if text_encoder_index == 0: + max_length = 77 + if text_encoder_index == 1: + max_length = 256 + else: + max_length = max_sequence_length + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + text_inputs = tokenizer(prompt, padding='max_length', max_length=max_length, truncation=True, return_attention_mask=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}') + prompt_attention_mask = text_inputs.attention_mask.to(device) + prompt_embeds = text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask) + prompt_embeds = prompt_embeds[0] + prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + negative_prompt_attention_mask = uncond_input.attention_mask.to(device) + negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + return (prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, prompt_embeds_2=None, negative_prompt_embeds_2=None, prompt_attention_mask_2=None, negative_prompt_attention_mask_2=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is None and prompt_embeds_2 is None: + raise ValueError('Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if prompt_embeds is not None and prompt_attention_mask is None: + raise ValueError('Must provide `prompt_attention_mask` when specifying `prompt_embeds`.') + if prompt_embeds_2 is not None and prompt_attention_mask_2 is None: + raise ValueError('Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: + raise ValueError('Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.') + if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None: + raise ValueError('Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None: + if prompt_embeds_2.shape != negative_prompt_embeds_2.shape: + raise ValueError(f'`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2` {negative_prompt_embeds_2.shape}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def guidance_rescale(self): + return self._guidance_rescale + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: Optional[int]=50, guidance_scale: Optional[float]=5.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: Optional[float]=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, prompt_embeds_2: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds_2: Optional[torch.Tensor]=None, prompt_attention_mask: Optional[torch.Tensor]=None, prompt_attention_mask_2: Optional[torch.Tensor]=None, negative_prompt_attention_mask: Optional[torch.Tensor]=None, negative_prompt_attention_mask_2: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], guidance_rescale: float=0.0, original_size: Optional[Tuple[int, int]]=(1024, 1024), target_size: Optional[Tuple[int, int]]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), use_resolution_binning: bool=True): + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + height = int(height // 16 * 16) + width = int(width // 16 * 16) + if use_resolution_binning and (height, width) not in SUPPORTED_SHAPE: + (width, height) = map_to_standard_shapes(width, height) + height = int(height) + width = int(width) + logger.warning(f'Reshaped to (height, width)=({height}, {width}), Supported shapes are {SUPPORTED_SHAPE}') + self.check_inputs(prompt, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask, prompt_embeds_2, negative_prompt_embeds_2, prompt_attention_mask_2, negative_prompt_attention_mask_2, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._guidance_rescale = guidance_rescale + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + (prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask) = self.encode_prompt(prompt=prompt, device=device, dtype=self.transformer.dtype, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, max_sequence_length=77, text_encoder_index=0) + (prompt_embeds_2, negative_prompt_embeds_2, prompt_attention_mask_2, negative_prompt_attention_mask_2) = self.encode_prompt(prompt=prompt, device=device, dtype=self.transformer.dtype, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds_2, negative_prompt_embeds=negative_prompt_embeds_2, prompt_attention_mask=prompt_attention_mask_2, negative_prompt_attention_mask=negative_prompt_attention_mask_2, max_sequence_length=256, text_encoder_index=1) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.transformer.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + grid_height = height // 8 // self.transformer.config.patch_size + grid_width = width // 8 // self.transformer.config.patch_size + base_size = 512 // 8 // self.transformer.config.patch_size + grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size) + image_rotary_emb = get_2d_rotary_pos_embed(self.transformer.inner_dim // self.transformer.num_heads, grid_crops_coords, (grid_height, grid_width)) + style = torch.tensor([0], device=device) + target_size = target_size or (height, width) + add_time_ids = list(original_size + target_size + crops_coords_top_left) + add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask]) + prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2]) + prompt_attention_mask_2 = torch.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2]) + add_time_ids = torch.cat([add_time_ids] * 2, dim=0) + style = torch.cat([style] * 2, dim=0) + prompt_embeds = prompt_embeds.to(device=device) + prompt_attention_mask = prompt_attention_mask.to(device=device) + prompt_embeds_2 = prompt_embeds_2.to(device=device) + prompt_attention_mask_2 = prompt_attention_mask_2.to(device=device) + add_time_ids = add_time_ids.to(dtype=prompt_embeds.dtype, device=device).repeat(batch_size * num_images_per_prompt, 1) + style = style.to(device=device).repeat(batch_size * num_images_per_prompt) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to(dtype=latent_model_input.dtype) + noise_pred = self.transformer(latent_model_input, t_expand, encoder_hidden_states=prompt_embeds, text_embedding_mask=prompt_attention_mask, encoder_hidden_states_t5=prompt_embeds_2, text_embedding_mask_t5=prompt_attention_mask_2, image_meta_size=add_time_ids, style=style, image_rotary_emb=image_rotary_emb, return_dict=False)[0] + (noise_pred, _) = noise_pred.chunk(2, dim=1) + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + if self.do_classifier_free_guidance and guidance_rescale > 0.0: + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + prompt_embeds_2 = callback_outputs.pop('prompt_embeds_2', prompt_embeds_2) + negative_prompt_embeds_2 = callback_outputs.pop('negative_prompt_embeds_2', negative_prompt_embeds_2) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if XLA_AVAILABLE: + xm.mark_step() + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/i2vgen_xl/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_i2vgen_xl'] = ['I2VGenXLPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_i2vgen_xl import I2VGenXLPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +import inspect +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Tuple, Union +import numpy as np +import PIL +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...models import AutoencoderKL +from ...models.unets.unet_i2vgen_xl import I2VGenXLUNet +from ...schedulers import DDIMScheduler +from ...utils import BaseOutput, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ...video_processor import VideoProcessor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import I2VGenXLPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> pipeline = I2VGenXLPipeline.from_pretrained(\n ... "ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16"\n ... )\n >>> pipeline.enable_model_cpu_offload()\n\n >>> image_url = (\n ... "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/i2vgen_xl_images/img_0009.png"\n ... )\n >>> image = load_image(image_url).convert("RGB")\n\n >>> prompt = "Papers were floating in the air on a table in the library"\n >>> negative_prompt = "Distorted, discontinuous, Ugly, blurry, low resolution, motionless, static, disfigured, disconnected limbs, Ugly faces, incomplete arms"\n >>> generator = torch.manual_seed(8888)\n\n >>> frames = pipeline(\n ... prompt=prompt,\n ... image=image,\n ... num_inference_steps=50,\n ... negative_prompt=negative_prompt,\n ... guidance_scale=9.0,\n ... generator=generator,\n ... ).frames[0]\n >>> video_path = export_to_gif(frames, "i2v.gif")\n ```\n' + +@dataclass +class I2VGenXLPipelineOutput(BaseOutput): + frames: Union[torch.Tensor, np.ndarray, List[List[PIL.Image.Image]]] + +class I2VGenXLPipeline(DiffusionPipeline, StableDiffusionMixin): + model_cpu_offload_seq = 'text_encoder->image_encoder->unet->vae' + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, image_encoder: CLIPVisionModelWithProjection, feature_extractor: CLIPImageProcessor, unet: I2VGenXLUNet, scheduler: DDIMScheduler): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, image_encoder=image_encoder, feature_extractor=feature_extractor, unet=unet, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor, do_resize=False) + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + def encode_prompt(self, prompt, device, num_videos_per_prompt, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, clip_skip: Optional[int]=None): + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1) + if self.do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + else: + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + negative_prompt_embeds = negative_prompt_embeds[-1][-(clip_skip + 1)] + negative_prompt_embeds = self.text_encoder.text_model.final_layer_norm(negative_prompt_embeds) + if self.do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) + return (prompt_embeds, negative_prompt_embeds) + + def _encode_image(self, image, device, num_videos_per_prompt): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.video_processor.pil_to_numpy(image) + image = self.video_processor.numpy_to_pt(image) + image = self.feature_extractor(images=image, do_normalize=True, do_center_crop=False, do_resize=False, do_rescale=False, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + image_embeddings = self.image_encoder(image).image_embeds + image_embeddings = image_embeddings.unsqueeze(1) + (bs_embed, seq_len, _) = image_embeddings.shape + image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1) + image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1) + if self.do_classifier_free_guidance: + negative_image_embeddings = torch.zeros_like(image_embeddings) + image_embeddings = torch.cat([negative_image_embeddings, image_embeddings]) + return image_embeddings + + def decode_latents(self, latents, decode_chunk_size=None): + latents = 1 / self.vae.config.scaling_factor * latents + (batch_size, channels, num_frames, height, width) = latents.shape + latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) + if decode_chunk_size is not None: + frames = [] + for i in range(0, latents.shape[0], decode_chunk_size): + frame = self.vae.decode(latents[i:i + decode_chunk_size]).sample + frames.append(frame) + image = torch.cat(frames, dim=0) + else: + image = self.vae.decode(latents).sample + decode_shape = (batch_size, num_frames, -1) + image.shape[2:] + video = image[None, :].reshape(decode_shape).permute(0, 2, 1, 3, 4) + video = video.float() + return video + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, image, height, width, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if not isinstance(image, torch.Tensor) and (not isinstance(image, PIL.Image.Image)) and (not isinstance(image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is {type(image)}') + + def prepare_image_latents(self, image, device, num_frames, num_videos_per_prompt): + image = image.to(device=device) + image_latents = self.vae.encode(image).latent_dist.sample() + image_latents = image_latents * self.vae.config.scaling_factor + image_latents = image_latents.unsqueeze(2) + frame_position_mask = [] + for frame_idx in range(num_frames - 1): + scale = (frame_idx + 1) / (num_frames - 1) + frame_position_mask.append(torch.ones_like(image_latents[:, :, :1]) * scale) + if frame_position_mask: + frame_position_mask = torch.cat(frame_position_mask, dim=2) + image_latents = torch.cat([image_latents, frame_position_mask], dim=2) + image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1, 1) + if self.do_classifier_free_guidance: + image_latents = torch.cat([image_latents] * 2) + return image_latents + + def prepare_latents(self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, image: PipelineImageInput=None, height: Optional[int]=704, width: Optional[int]=1280, target_fps: Optional[int]=16, num_frames: int=16, num_inference_steps: int=50, guidance_scale: float=9.0, negative_prompt: Optional[Union[str, List[str]]]=None, eta: float=0.0, num_videos_per_prompt: Optional[int]=1, decode_chunk_size: Optional[int]=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: Optional[int]=1): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, image, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + self._guidance_scale = guidance_scale + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_videos_per_prompt, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clip_skip=clip_skip) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + cropped_image = _center_crop_wide(image, (width, width)) + cropped_image = _resize_bilinear(cropped_image, (self.feature_extractor.crop_size['width'], self.feature_extractor.crop_size['height'])) + image_embeddings = self._encode_image(cropped_image, device, num_videos_per_prompt) + resized_image = _center_crop_wide(image, (width, height)) + image = self.video_processor.preprocess(resized_image).to(device=device, dtype=image_embeddings.dtype) + image_latents = self.prepare_image_latents(image, device=device, num_frames=num_frames, num_videos_per_prompt=num_videos_per_prompt) + if self.do_classifier_free_guidance: + fps_tensor = torch.tensor([target_fps, target_fps]).to(device) + else: + fps_tensor = torch.tensor([target_fps]).to(device) + fps_tensor = fps_tensor.repeat(batch_size * num_videos_per_prompt, 1).ravel() + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_videos_per_prompt, num_channels_latents, num_frames, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, fps=fps_tensor, image_latents=image_latents, image_embeddings=image_embeddings, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + (batch_size, channel, frames, width, height) = latents.shape + latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channel, width, height) + noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channel, width, height) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + latents = latents[None, :].reshape(batch_size, frames, channel, width, height).permute(0, 2, 1, 3, 4) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if output_type == 'latent': + video = latents + else: + video_tensor = self.decode_latents(latents, decode_chunk_size=decode_chunk_size) + video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (video,) + return I2VGenXLPipelineOutput(frames=video) + +def _convert_pt_to_pil(image: Union[torch.Tensor, List[torch.Tensor]]): + if isinstance(image, list) and isinstance(image[0], torch.Tensor): + image = torch.cat(image, 0) + if isinstance(image, torch.Tensor): + if image.ndim == 3: + image = image.unsqueeze(0) + image_numpy = VaeImageProcessor.pt_to_numpy(image) + image_pil = VaeImageProcessor.numpy_to_pil(image_numpy) + image = image_pil + return image + +def _resize_bilinear(image: Union[torch.Tensor, List[torch.Tensor], PIL.Image.Image, List[PIL.Image.Image]], resolution: Tuple[int, int]): + image = _convert_pt_to_pil(image) + if isinstance(image, list): + image = [u.resize(resolution, PIL.Image.BILINEAR) for u in image] + else: + image = image.resize(resolution, PIL.Image.BILINEAR) + return image + +def _center_crop_wide(image: Union[torch.Tensor, List[torch.Tensor], PIL.Image.Image, List[PIL.Image.Image]], resolution: Tuple[int, int]): + image = _convert_pt_to_pil(image) + if isinstance(image, list): + scale = min(image[0].size[0] / resolution[0], image[0].size[1] / resolution[1]) + image = [u.resize((round(u.width // scale), round(u.height // scale)), resample=PIL.Image.BOX) for u in image] + x1 = (image[0].width - resolution[0]) // 2 + y1 = (image[0].height - resolution[1]) // 2 + image = [u.crop((x1, y1, x1 + resolution[0], y1 + resolution[1])) for u in image] + return image + else: + scale = min(image.size[0] / resolution[0], image.size[1] / resolution[1]) + image = image.resize((round(image.width // scale), round(image.height // scale)), resample=PIL.Image.BOX) + x1 = (image.width - resolution[0]) // 2 + y1 = (image.height - resolution[1]) // 2 + image = image.crop((x1, y1, x1 + resolution[0], y1 + resolution[1])) + return image + +# File: diffusers-main/src/diffusers/pipelines/kandinsky/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_kandinsky'] = ['KandinskyPipeline'] + _import_structure['pipeline_kandinsky_combined'] = ['KandinskyCombinedPipeline', 'KandinskyImg2ImgCombinedPipeline', 'KandinskyInpaintCombinedPipeline'] + _import_structure['pipeline_kandinsky_img2img'] = ['KandinskyImg2ImgPipeline'] + _import_structure['pipeline_kandinsky_inpaint'] = ['KandinskyInpaintPipeline'] + _import_structure['pipeline_kandinsky_prior'] = ['KandinskyPriorPipeline', 'KandinskyPriorPipelineOutput'] + _import_structure['text_encoder'] = ['MultilingualCLIP'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_kandinsky import KandinskyPipeline + from .pipeline_kandinsky_combined import KandinskyCombinedPipeline, KandinskyImg2ImgCombinedPipeline, KandinskyInpaintCombinedPipeline + from .pipeline_kandinsky_img2img import KandinskyImg2ImgPipeline + from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline + from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput + from .text_encoder import MultilingualCLIP +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/kandinsky/pipeline_kandinsky.py +from typing import Callable, List, Optional, Union +import torch +from transformers import XLMRobertaTokenizer +from ...models import UNet2DConditionModel, VQModel +from ...schedulers import DDIMScheduler, DDPMScheduler +from ...utils import logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +from .text_encoder import MultilingualCLIP +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' + +def get_new_h_w(h, w, scale_factor=8): + new_h = h // scale_factor ** 2 + if h % scale_factor ** 2 != 0: + new_h += 1 + new_w = w // scale_factor ** 2 + if w % scale_factor ** 2 != 0: + new_w += 1 + return (new_h * scale_factor, new_w * scale_factor) + +class KandinskyPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'text_encoder->unet->movq' + + def __init__(self, text_encoder: MultilingualCLIP, tokenizer: XLMRobertaTokenizer, unet: UNet2DConditionModel, scheduler: Union[DDIMScheduler, DDPMScheduler], movq: VQModel): + super().__init__() + self.register_modules(text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, movq=movq) + self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) + + def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + if latents.shape != shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}') + latents = latents.to(device) + latents = latents * scheduler.init_noise_sigma + return latents + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None): + batch_size = len(prompt) if isinstance(prompt, list) else 1 + text_inputs = self.tokenizer(prompt, padding='max_length', truncation=True, max_length=77, return_attention_mask=True, add_special_tokens=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + text_input_ids = text_input_ids.to(device) + text_mask = text_inputs.attention_mask.to(device) + (prompt_embeds, text_encoder_hidden_states) = self.text_encoder(input_ids=text_input_ids, attention_mask=text_mask) + prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) + text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=77, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors='pt') + uncond_text_input_ids = uncond_input.input_ids.to(device) + uncond_text_mask = uncond_input.attention_mask.to(device) + (negative_prompt_embeds, uncond_text_encoder_hidden_states) = self.text_encoder(input_ids=uncond_text_input_ids, attention_mask=uncond_text_mask) + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) + seq_len = uncond_text_encoder_hidden_states.shape[1] + uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) + uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(batch_size * num_images_per_prompt, seq_len, -1) + uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) + text_mask = torch.cat([uncond_text_mask, text_mask]) + return (prompt_embeds, text_encoder_hidden_states, text_mask) + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]], image_embeds: Union[torch.Tensor, List[torch.Tensor]], negative_image_embeds: Union[torch.Tensor, List[torch.Tensor]], negative_prompt: Optional[Union[str, List[str]]]=None, height: int=512, width: int=512, num_inference_steps: int=100, guidance_scale: float=4.0, num_images_per_prompt: int=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, return_dict: bool=True): + if isinstance(prompt, str): + batch_size = 1 + elif isinstance(prompt, list): + batch_size = len(prompt) + else: + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + device = self._execution_device + batch_size = batch_size * num_images_per_prompt + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, text_encoder_hidden_states, _) = self._encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt) + if isinstance(image_embeds, list): + image_embeds = torch.cat(image_embeds, dim=0) + if isinstance(negative_image_embeds, list): + negative_image_embeds = torch.cat(negative_image_embeds, dim=0) + if do_classifier_free_guidance: + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to(dtype=prompt_embeds.dtype, device=device) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps_tensor = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + (height, width) = get_new_h_w(height, width, self.movq_scale_factor) + latents = self.prepare_latents((batch_size, num_channels_latents, height, width), text_encoder_hidden_states.dtype, device, generator, latents, self.scheduler) + for (i, t) in enumerate(self.progress_bar(timesteps_tensor)): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + added_cond_kwargs = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} + noise_pred = self.unet(sample=latent_model_input, timestep=t, encoder_hidden_states=text_encoder_hidden_states, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred, variance_pred) = noise_pred.split(latents.shape[1], dim=1) + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + (_, variance_pred_text) = variance_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) + if not (hasattr(self.scheduler.config, 'variance_type') and self.scheduler.config.variance_type in ['learned', 'learned_range']): + (noise_pred, _) = noise_pred.split(latents.shape[1], dim=1) + latents = self.scheduler.step(noise_pred, t, latents, generator=generator).prev_sample + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + image = self.movq.decode(latents, force_not_quantize=True)['sample'] + self.maybe_free_model_hooks() + if output_type not in ['pt', 'np', 'pil']: + raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}') + if output_type in ['np', 'pil']: + image = image * 0.5 + 0.5 + image = image.clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + if output_type == 'pil': + image = self.numpy_to_pil(image) + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +from typing import Callable, List, Optional, Union +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection, XLMRobertaTokenizer +from ...models import PriorTransformer, UNet2DConditionModel, VQModel +from ...schedulers import DDIMScheduler, DDPMScheduler, UnCLIPScheduler +from ...utils import replace_example_docstring +from ..pipeline_utils import DiffusionPipeline +from .pipeline_kandinsky import KandinskyPipeline +from .pipeline_kandinsky_img2img import KandinskyImg2ImgPipeline +from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline +from .pipeline_kandinsky_prior import KandinskyPriorPipeline +from .text_encoder import MultilingualCLIP +TEXT2IMAGE_EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n from diffusers import AutoPipelineForText2Image\n import torch\n\n pipe = AutoPipelineForText2Image.from_pretrained(\n "kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16\n )\n pipe.enable_model_cpu_offload()\n\n prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k"\n\n image = pipe(prompt=prompt, num_inference_steps=25).images[0]\n ```\n' +IMAGE2IMAGE_EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n from diffusers import AutoPipelineForImage2Image\n import torch\n import requests\n from io import BytesIO\n from PIL import Image\n import os\n\n pipe = AutoPipelineForImage2Image.from_pretrained(\n "kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16\n )\n pipe.enable_model_cpu_offload()\n\n prompt = "A fantasy landscape, Cinematic lighting"\n negative_prompt = "low quality, bad quality"\n\n url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"\n\n response = requests.get(url)\n image = Image.open(BytesIO(response.content)).convert("RGB")\n image.thumbnail((768, 768))\n\n image = pipe(prompt=prompt, image=original_image, num_inference_steps=25).images[0]\n ```\n' +INPAINT_EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n from diffusers import AutoPipelineForInpainting\n from diffusers.utils import load_image\n import torch\n import numpy as np\n\n pipe = AutoPipelineForInpainting.from_pretrained(\n "kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16\n )\n pipe.enable_model_cpu_offload()\n\n prompt = "A fantasy landscape, Cinematic lighting"\n negative_prompt = "low quality, bad quality"\n\n original_image = load_image(\n "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png"\n )\n\n mask = np.zeros((768, 768), dtype=np.float32)\n # Let\'s mask out an area above the cat\'s head\n mask[:250, 250:-250] = 1\n\n image = pipe(prompt=prompt, image=original_image, mask_image=mask, num_inference_steps=25).images[0]\n ```\n' + +class KandinskyCombinedPipeline(DiffusionPipeline): + _load_connected_pipes = True + model_cpu_offload_seq = 'text_encoder->unet->movq->prior_prior->prior_image_encoder->prior_text_encoder' + _exclude_from_cpu_offload = ['prior_prior'] + + def __init__(self, text_encoder: MultilingualCLIP, tokenizer: XLMRobertaTokenizer, unet: UNet2DConditionModel, scheduler: Union[DDIMScheduler, DDPMScheduler], movq: VQModel, prior_prior: PriorTransformer, prior_image_encoder: CLIPVisionModelWithProjection, prior_text_encoder: CLIPTextModelWithProjection, prior_tokenizer: CLIPTokenizer, prior_scheduler: UnCLIPScheduler, prior_image_processor: CLIPImageProcessor): + super().__init__() + self.register_modules(text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, movq=movq, prior_prior=prior_prior, prior_image_encoder=prior_image_encoder, prior_text_encoder=prior_text_encoder, prior_tokenizer=prior_tokenizer, prior_scheduler=prior_scheduler, prior_image_processor=prior_image_processor) + self.prior_pipe = KandinskyPriorPipeline(prior=prior_prior, image_encoder=prior_image_encoder, text_encoder=prior_text_encoder, tokenizer=prior_tokenizer, scheduler=prior_scheduler, image_processor=prior_image_processor) + self.decoder_pipe = KandinskyPipeline(text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, movq=movq) + + def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable]=None): + self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op) + + def enable_sequential_cpu_offload(self, gpu_id=0): + self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id) + self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id) + + def progress_bar(self, iterable=None, total=None): + self.prior_pipe.progress_bar(iterable=iterable, total=total) + self.decoder_pipe.progress_bar(iterable=iterable, total=total) + self.decoder_pipe.enable_model_cpu_offload() + + def set_progress_bar_config(self, **kwargs): + self.prior_pipe.set_progress_bar_config(**kwargs) + self.decoder_pipe.set_progress_bar_config(**kwargs) + + @torch.no_grad() + @replace_example_docstring(TEXT2IMAGE_EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]]=None, num_inference_steps: int=100, guidance_scale: float=4.0, num_images_per_prompt: int=1, height: int=512, width: int=512, prior_guidance_scale: float=4.0, prior_num_inference_steps: int=25, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, return_dict: bool=True): + prior_outputs = self.prior_pipe(prompt=prompt, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, num_inference_steps=prior_num_inference_steps, generator=generator, latents=latents, guidance_scale=prior_guidance_scale, output_type='pt', return_dict=False) + image_embeds = prior_outputs[0] + negative_image_embeds = prior_outputs[1] + prompt = [prompt] if not isinstance(prompt, (list, tuple)) else prompt + if len(prompt) < image_embeds.shape[0] and image_embeds.shape[0] % len(prompt) == 0: + prompt = image_embeds.shape[0] // len(prompt) * prompt + outputs = self.decoder_pipe(prompt=prompt, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=guidance_scale, output_type=output_type, callback=callback, callback_steps=callback_steps, return_dict=return_dict) + self.maybe_free_model_hooks() + return outputs + +class KandinskyImg2ImgCombinedPipeline(DiffusionPipeline): + _load_connected_pipes = True + model_cpu_offload_seq = 'prior_text_encoder->prior_image_encoder->prior_prior->text_encoder->unet->movq' + _exclude_from_cpu_offload = ['prior_prior'] + + def __init__(self, text_encoder: MultilingualCLIP, tokenizer: XLMRobertaTokenizer, unet: UNet2DConditionModel, scheduler: Union[DDIMScheduler, DDPMScheduler], movq: VQModel, prior_prior: PriorTransformer, prior_image_encoder: CLIPVisionModelWithProjection, prior_text_encoder: CLIPTextModelWithProjection, prior_tokenizer: CLIPTokenizer, prior_scheduler: UnCLIPScheduler, prior_image_processor: CLIPImageProcessor): + super().__init__() + self.register_modules(text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, movq=movq, prior_prior=prior_prior, prior_image_encoder=prior_image_encoder, prior_text_encoder=prior_text_encoder, prior_tokenizer=prior_tokenizer, prior_scheduler=prior_scheduler, prior_image_processor=prior_image_processor) + self.prior_pipe = KandinskyPriorPipeline(prior=prior_prior, image_encoder=prior_image_encoder, text_encoder=prior_text_encoder, tokenizer=prior_tokenizer, scheduler=prior_scheduler, image_processor=prior_image_processor) + self.decoder_pipe = KandinskyImg2ImgPipeline(text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, movq=movq) + + def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable]=None): + self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op) + + def enable_sequential_cpu_offload(self, gpu_id=0): + self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id) + self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id) + + def progress_bar(self, iterable=None, total=None): + self.prior_pipe.progress_bar(iterable=iterable, total=total) + self.decoder_pipe.progress_bar(iterable=iterable, total=total) + self.decoder_pipe.enable_model_cpu_offload() + + def set_progress_bar_config(self, **kwargs): + self.prior_pipe.set_progress_bar_config(**kwargs) + self.decoder_pipe.set_progress_bar_config(**kwargs) + + @torch.no_grad() + @replace_example_docstring(IMAGE2IMAGE_EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]], image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]], negative_prompt: Optional[Union[str, List[str]]]=None, num_inference_steps: int=100, guidance_scale: float=4.0, num_images_per_prompt: int=1, strength: float=0.3, height: int=512, width: int=512, prior_guidance_scale: float=4.0, prior_num_inference_steps: int=25, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, return_dict: bool=True): + prior_outputs = self.prior_pipe(prompt=prompt, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, num_inference_steps=prior_num_inference_steps, generator=generator, latents=latents, guidance_scale=prior_guidance_scale, output_type='pt', return_dict=False) + image_embeds = prior_outputs[0] + negative_image_embeds = prior_outputs[1] + prompt = [prompt] if not isinstance(prompt, (list, tuple)) else prompt + image = [image] if isinstance(prompt, PIL.Image.Image) else image + if len(prompt) < image_embeds.shape[0] and image_embeds.shape[0] % len(prompt) == 0: + prompt = image_embeds.shape[0] // len(prompt) * prompt + if isinstance(image, (list, tuple)) and len(image) < image_embeds.shape[0] and (image_embeds.shape[0] % len(image) == 0): + image = image_embeds.shape[0] // len(image) * image + outputs = self.decoder_pipe(prompt=prompt, image=image, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, strength=strength, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=guidance_scale, output_type=output_type, callback=callback, callback_steps=callback_steps, return_dict=return_dict) + self.maybe_free_model_hooks() + return outputs + +class KandinskyInpaintCombinedPipeline(DiffusionPipeline): + _load_connected_pipes = True + model_cpu_offload_seq = 'prior_text_encoder->prior_image_encoder->prior_prior->text_encoder->unet->movq' + _exclude_from_cpu_offload = ['prior_prior'] + + def __init__(self, text_encoder: MultilingualCLIP, tokenizer: XLMRobertaTokenizer, unet: UNet2DConditionModel, scheduler: Union[DDIMScheduler, DDPMScheduler], movq: VQModel, prior_prior: PriorTransformer, prior_image_encoder: CLIPVisionModelWithProjection, prior_text_encoder: CLIPTextModelWithProjection, prior_tokenizer: CLIPTokenizer, prior_scheduler: UnCLIPScheduler, prior_image_processor: CLIPImageProcessor): + super().__init__() + self.register_modules(text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, movq=movq, prior_prior=prior_prior, prior_image_encoder=prior_image_encoder, prior_text_encoder=prior_text_encoder, prior_tokenizer=prior_tokenizer, prior_scheduler=prior_scheduler, prior_image_processor=prior_image_processor) + self.prior_pipe = KandinskyPriorPipeline(prior=prior_prior, image_encoder=prior_image_encoder, text_encoder=prior_text_encoder, tokenizer=prior_tokenizer, scheduler=prior_scheduler, image_processor=prior_image_processor) + self.decoder_pipe = KandinskyInpaintPipeline(text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, movq=movq) + + def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable]=None): + self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op) + + def enable_sequential_cpu_offload(self, gpu_id=0): + self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id) + self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id) + + def progress_bar(self, iterable=None, total=None): + self.prior_pipe.progress_bar(iterable=iterable, total=total) + self.decoder_pipe.progress_bar(iterable=iterable, total=total) + self.decoder_pipe.enable_model_cpu_offload() + + def set_progress_bar_config(self, **kwargs): + self.prior_pipe.set_progress_bar_config(**kwargs) + self.decoder_pipe.set_progress_bar_config(**kwargs) + + @torch.no_grad() + @replace_example_docstring(INPAINT_EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]], image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]], mask_image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]], negative_prompt: Optional[Union[str, List[str]]]=None, num_inference_steps: int=100, guidance_scale: float=4.0, num_images_per_prompt: int=1, height: int=512, width: int=512, prior_guidance_scale: float=4.0, prior_num_inference_steps: int=25, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, return_dict: bool=True): + prior_outputs = self.prior_pipe(prompt=prompt, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, num_inference_steps=prior_num_inference_steps, generator=generator, latents=latents, guidance_scale=prior_guidance_scale, output_type='pt', return_dict=False) + image_embeds = prior_outputs[0] + negative_image_embeds = prior_outputs[1] + prompt = [prompt] if not isinstance(prompt, (list, tuple)) else prompt + image = [image] if isinstance(prompt, PIL.Image.Image) else image + mask_image = [mask_image] if isinstance(mask_image, PIL.Image.Image) else mask_image + if len(prompt) < image_embeds.shape[0] and image_embeds.shape[0] % len(prompt) == 0: + prompt = image_embeds.shape[0] // len(prompt) * prompt + if isinstance(image, (list, tuple)) and len(image) < image_embeds.shape[0] and (image_embeds.shape[0] % len(image) == 0): + image = image_embeds.shape[0] // len(image) * image + if isinstance(mask_image, (list, tuple)) and len(mask_image) < image_embeds.shape[0] and (image_embeds.shape[0] % len(mask_image) == 0): + mask_image = image_embeds.shape[0] // len(mask_image) * mask_image + outputs = self.decoder_pipe(prompt=prompt, image=image, mask_image=mask_image, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=guidance_scale, output_type=output_type, callback=callback, callback_steps=callback_steps, return_dict=return_dict) + self.maybe_free_model_hooks() + return outputs + +# File: diffusers-main/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +from typing import Callable, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from PIL import Image +from transformers import XLMRobertaTokenizer +from ...models import UNet2DConditionModel, VQModel +from ...schedulers import DDIMScheduler +from ...utils import logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +from .text_encoder import MultilingualCLIP +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import KandinskyImg2ImgPipeline, KandinskyPriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyImg2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... prompt,\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' + +def get_new_h_w(h, w, scale_factor=8): + new_h = h // scale_factor ** 2 + if h % scale_factor ** 2 != 0: + new_h += 1 + new_w = w // scale_factor ** 2 + if w % scale_factor ** 2 != 0: + new_w += 1 + return (new_h * scale_factor, new_w * scale_factor) + +def prepare_image(pil_image, w=512, h=512): + pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1) + arr = np.array(pil_image.convert('RGB')) + arr = arr.astype(np.float32) / 127.5 - 1 + arr = np.transpose(arr, [2, 0, 1]) + image = torch.from_numpy(arr).unsqueeze(0) + return image + +class KandinskyImg2ImgPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'text_encoder->unet->movq' + + def __init__(self, text_encoder: MultilingualCLIP, movq: VQModel, tokenizer: XLMRobertaTokenizer, unet: UNet2DConditionModel, scheduler: DDIMScheduler): + super().__init__() + self.register_modules(text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, movq=movq) + self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start:] + return (timesteps, num_inference_steps - t_start) + + def prepare_latents(self, latents, latent_timestep, shape, dtype, device, generator, scheduler): + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + if latents.shape != shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}') + latents = latents.to(device) + latents = latents * scheduler.init_noise_sigma + shape = latents.shape + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = self.add_noise(latents, noise, latent_timestep) + return latents + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None): + batch_size = len(prompt) if isinstance(prompt, list) else 1 + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=77, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + text_input_ids = text_input_ids.to(device) + text_mask = text_inputs.attention_mask.to(device) + (prompt_embeds, text_encoder_hidden_states) = self.text_encoder(input_ids=text_input_ids, attention_mask=text_mask) + prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) + text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=77, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors='pt') + uncond_text_input_ids = uncond_input.input_ids.to(device) + uncond_text_mask = uncond_input.attention_mask.to(device) + (negative_prompt_embeds, uncond_text_encoder_hidden_states) = self.text_encoder(input_ids=uncond_text_input_ids, attention_mask=uncond_text_mask) + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) + seq_len = uncond_text_encoder_hidden_states.shape[1] + uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) + uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(batch_size * num_images_per_prompt, seq_len, -1) + uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) + text_mask = torch.cat([uncond_text_mask, text_mask]) + return (prompt_embeds, text_encoder_hidden_states, text_mask) + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + betas = torch.linspace(0.0001, 0.02, 1000, dtype=torch.float32) + alphas = 1.0 - betas + alphas_cumprod = torch.cumprod(alphas, dim=0) + alphas_cumprod = alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) + timesteps = timesteps.to(original_samples.device) + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(original_samples.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise + return noisy_samples + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]], image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]], image_embeds: torch.Tensor, negative_image_embeds: torch.Tensor, negative_prompt: Optional[Union[str, List[str]]]=None, height: int=512, width: int=512, num_inference_steps: int=100, strength: float=0.3, guidance_scale: float=7.0, num_images_per_prompt: int=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, output_type: Optional[str]='pil', callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, return_dict: bool=True): + if isinstance(prompt, str): + batch_size = 1 + elif isinstance(prompt, list): + batch_size = len(prompt) + else: + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + device = self._execution_device + batch_size = batch_size * num_images_per_prompt + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, text_encoder_hidden_states, _) = self._encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt) + if isinstance(image_embeds, list): + image_embeds = torch.cat(image_embeds, dim=0) + if isinstance(negative_image_embeds, list): + negative_image_embeds = torch.cat(negative_image_embeds, dim=0) + if do_classifier_free_guidance: + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to(dtype=prompt_embeds.dtype, device=device) + if not isinstance(image, list): + image = [image] + if not all((isinstance(i, (PIL.Image.Image, torch.Tensor)) for i in image)): + raise ValueError(f'Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support PIL image and pytorch tensor') + image = torch.cat([prepare_image(i, width, height) for i in image], dim=0) + image = image.to(dtype=prompt_embeds.dtype, device=device) + latents = self.movq.encode(image)['latents'] + latents = latents.repeat_interleave(num_images_per_prompt, dim=0) + self.scheduler.set_timesteps(num_inference_steps, device=device) + (timesteps_tensor, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device) + latent_timestep = int(self.scheduler.config.num_train_timesteps * strength) - 2 + latent_timestep = torch.tensor([latent_timestep] * batch_size, dtype=timesteps_tensor.dtype, device=device) + num_channels_latents = self.unet.config.in_channels + (height, width) = get_new_h_w(height, width, self.movq_scale_factor) + latents = self.prepare_latents(latents, latent_timestep, (batch_size, num_channels_latents, height, width), text_encoder_hidden_states.dtype, device, generator, self.scheduler) + for (i, t) in enumerate(self.progress_bar(timesteps_tensor)): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + added_cond_kwargs = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} + noise_pred = self.unet(sample=latent_model_input, timestep=t, encoder_hidden_states=text_encoder_hidden_states, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred, variance_pred) = noise_pred.split(latents.shape[1], dim=1) + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + (_, variance_pred_text) = variance_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) + if not (hasattr(self.scheduler.config, 'variance_type') and self.scheduler.config.variance_type in ['learned', 'learned_range']): + (noise_pred, _) = noise_pred.split(latents.shape[1], dim=1) + latents = self.scheduler.step(noise_pred, t, latents, generator=generator).prev_sample + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + image = self.movq.decode(latents, force_not_quantize=True)['sample'] + self.maybe_free_model_hooks() + if output_type not in ['pt', 'np', 'pil']: + raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}') + if output_type in ['np', 'pil']: + image = image * 0.5 + 0.5 + image = image.clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + if output_type == 'pil': + image = self.numpy_to_pil(image) + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +from copy import deepcopy +from typing import Callable, List, Optional, Union +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from packaging import version +from PIL import Image +from transformers import XLMRobertaTokenizer +from ... import __version__ +from ...models import UNet2DConditionModel, VQModel +from ...schedulers import DDIMScheduler +from ...utils import logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +from .text_encoder import MultilingualCLIP +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import KandinskyInpaintPipeline, KandinskyPriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n >>> import numpy as np\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "a hat"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyInpaintPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... )\n\n >>> mask = np.zeros((768, 768), dtype=np.float32)\n >>> mask[:250, 250:-250] = 1\n\n >>> out = pipe(\n ... prompt,\n ... image=init_image,\n ... mask_image=mask,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... )\n\n >>> image = out.images[0]\n >>> image.save("cat_with_hat.png")\n ```\n' + +def get_new_h_w(h, w, scale_factor=8): + new_h = h // scale_factor ** 2 + if h % scale_factor ** 2 != 0: + new_h += 1 + new_w = w // scale_factor ** 2 + if w % scale_factor ** 2 != 0: + new_w += 1 + return (new_h * scale_factor, new_w * scale_factor) + +def prepare_mask(masks): + prepared_masks = [] + for mask in masks: + old_mask = deepcopy(mask) + for i in range(mask.shape[1]): + for j in range(mask.shape[2]): + if old_mask[0][i][j] == 1: + continue + if i != 0: + mask[:, i - 1, j] = 0 + if j != 0: + mask[:, i, j - 1] = 0 + if i != 0 and j != 0: + mask[:, i - 1, j - 1] = 0 + if i != mask.shape[1] - 1: + mask[:, i + 1, j] = 0 + if j != mask.shape[2] - 1: + mask[:, i, j + 1] = 0 + if i != mask.shape[1] - 1 and j != mask.shape[2] - 1: + mask[:, i + 1, j + 1] = 0 + prepared_masks.append(mask) + return torch.stack(prepared_masks, dim=0) + +def prepare_mask_and_masked_image(image, mask, height, width): + if image is None: + raise ValueError('`image` input cannot be undefined.') + if mask is None: + raise ValueError('`mask_image` input cannot be undefined.') + if isinstance(image, torch.Tensor): + if not isinstance(mask, torch.Tensor): + raise TypeError(f'`image` is a torch.Tensor but `mask` (type: {type(mask)} is not') + if image.ndim == 3: + assert image.shape[0] == 3, 'Image outside a batch should be of shape (3, H, W)' + image = image.unsqueeze(0) + if mask.ndim == 2: + mask = mask.unsqueeze(0).unsqueeze(0) + if mask.ndim == 3: + if mask.shape[0] == 1: + mask = mask.unsqueeze(0) + else: + mask = mask.unsqueeze(1) + assert image.ndim == 4 and mask.ndim == 4, 'Image and Mask must have 4 dimensions' + assert image.shape[-2:] == mask.shape[-2:], 'Image and Mask must have the same spatial dimensions' + assert image.shape[0] == mask.shape[0], 'Image and Mask must have the same batch size' + if image.min() < -1 or image.max() > 1: + raise ValueError('Image should be in [-1, 1] range') + if mask.min() < 0 or mask.max() > 1: + raise ValueError('Mask should be in [0, 1] range') + mask[mask < 0.5] = 0 + mask[mask >= 0.5] = 1 + image = image.to(dtype=torch.float32) + elif isinstance(mask, torch.Tensor): + raise TypeError(f'`mask` is a torch.Tensor but `image` (type: {type(image)} is not') + else: + if isinstance(image, (PIL.Image.Image, np.ndarray)): + image = [image] + if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): + image = [i.resize((width, height), resample=Image.BICUBIC, reducing_gap=1) for i in image] + image = [np.array(i.convert('RGB'))[None, :] for i in image] + image = np.concatenate(image, axis=0) + elif isinstance(image, list) and isinstance(image[0], np.ndarray): + image = np.concatenate([i[None, :] for i in image], axis=0) + image = image.transpose(0, 3, 1, 2) + image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 + if isinstance(mask, (PIL.Image.Image, np.ndarray)): + mask = [mask] + if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image): + mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask] + mask = np.concatenate([np.array(m.convert('L'))[None, None, :] for m in mask], axis=0) + mask = mask.astype(np.float32) / 255.0 + elif isinstance(mask, list) and isinstance(mask[0], np.ndarray): + mask = np.concatenate([m[None, None, :] for m in mask], axis=0) + mask[mask < 0.5] = 0 + mask[mask >= 0.5] = 1 + mask = torch.from_numpy(mask) + mask = 1 - mask + return (mask, image) + +class KandinskyInpaintPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'text_encoder->unet->movq' + + def __init__(self, text_encoder: MultilingualCLIP, movq: VQModel, tokenizer: XLMRobertaTokenizer, unet: UNet2DConditionModel, scheduler: DDIMScheduler): + super().__init__() + self.register_modules(text_encoder=text_encoder, movq=movq, tokenizer=tokenizer, unet=unet, scheduler=scheduler) + self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) + self._warn_has_been_called = False + + def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + if latents.shape != shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}') + latents = latents.to(device) + latents = latents * scheduler.init_noise_sigma + return latents + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None): + batch_size = len(prompt) if isinstance(prompt, list) else 1 + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=77, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + text_input_ids = text_input_ids.to(device) + text_mask = text_inputs.attention_mask.to(device) + (prompt_embeds, text_encoder_hidden_states) = self.text_encoder(input_ids=text_input_ids, attention_mask=text_mask) + prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) + text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=77, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors='pt') + uncond_text_input_ids = uncond_input.input_ids.to(device) + uncond_text_mask = uncond_input.attention_mask.to(device) + (negative_prompt_embeds, uncond_text_encoder_hidden_states) = self.text_encoder(input_ids=uncond_text_input_ids, attention_mask=uncond_text_mask) + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) + seq_len = uncond_text_encoder_hidden_states.shape[1] + uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) + uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(batch_size * num_images_per_prompt, seq_len, -1) + uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) + text_mask = torch.cat([uncond_text_mask, text_mask]) + return (prompt_embeds, text_encoder_hidden_states, text_mask) + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]], image: Union[torch.Tensor, PIL.Image.Image], mask_image: Union[torch.Tensor, PIL.Image.Image, np.ndarray], image_embeds: torch.Tensor, negative_image_embeds: torch.Tensor, negative_prompt: Optional[Union[str, List[str]]]=None, height: int=512, width: int=512, num_inference_steps: int=100, guidance_scale: float=4.0, num_images_per_prompt: int=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, return_dict: bool=True): + if not self._warn_has_been_called and version.parse(version.parse(__version__).base_version) < version.parse('0.23.0.dev0'): + logger.warning("Please note that the expected format of `mask_image` has recently been changed. Before diffusers == 0.19.0, Kandinsky Inpainting pipelines repainted black pixels and preserved black pixels. As of diffusers==0.19.0 this behavior has been inverted. Now white pixels are repainted and black pixels are preserved. This way, Kandinsky's masking behavior is aligned with Stable Diffusion. THIS means that you HAVE to invert the input mask to have the same behavior as before as explained in https://github.com/huggingface/diffusers/pull/4207. This warning will be surpressed after the first inference call and will be removed in diffusers>0.23.0") + self._warn_has_been_called = True + if isinstance(prompt, str): + batch_size = 1 + elif isinstance(prompt, list): + batch_size = len(prompt) + else: + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + device = self._execution_device + batch_size = batch_size * num_images_per_prompt + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, text_encoder_hidden_states, _) = self._encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt) + if isinstance(image_embeds, list): + image_embeds = torch.cat(image_embeds, dim=0) + if isinstance(negative_image_embeds, list): + negative_image_embeds = torch.cat(negative_image_embeds, dim=0) + if do_classifier_free_guidance: + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to(dtype=prompt_embeds.dtype, device=device) + (mask_image, image) = prepare_mask_and_masked_image(image, mask_image, height, width) + image = image.to(dtype=prompt_embeds.dtype, device=device) + image = self.movq.encode(image)['latents'] + mask_image = mask_image.to(dtype=prompt_embeds.dtype, device=device) + image_shape = tuple(image.shape[-2:]) + mask_image = F.interpolate(mask_image, image_shape, mode='nearest') + mask_image = prepare_mask(mask_image) + masked_image = image * mask_image + mask_image = mask_image.repeat_interleave(num_images_per_prompt, dim=0) + masked_image = masked_image.repeat_interleave(num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + mask_image = mask_image.repeat(2, 1, 1, 1) + masked_image = masked_image.repeat(2, 1, 1, 1) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps_tensor = self.scheduler.timesteps + num_channels_latents = self.movq.config.latent_channels + (sample_height, sample_width) = get_new_h_w(height, width, self.movq_scale_factor) + latents = self.prepare_latents((batch_size, num_channels_latents, sample_height, sample_width), text_encoder_hidden_states.dtype, device, generator, latents, self.scheduler) + num_channels_mask = mask_image.shape[1] + num_channels_masked_image = masked_image.shape[1] + if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: + raise ValueError(f'Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} + `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image} = {num_channels_latents + num_channels_masked_image + num_channels_mask}. Please verify the config of `pipeline.unet` or your `mask_image` or `image` input.') + for (i, t) in enumerate(self.progress_bar(timesteps_tensor)): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = torch.cat([latent_model_input, masked_image, mask_image], dim=1) + added_cond_kwargs = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} + noise_pred = self.unet(sample=latent_model_input, timestep=t, encoder_hidden_states=text_encoder_hidden_states, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred, variance_pred) = noise_pred.split(latents.shape[1], dim=1) + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + (_, variance_pred_text) = variance_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) + if not (hasattr(self.scheduler.config, 'variance_type') and self.scheduler.config.variance_type in ['learned', 'learned_range']): + (noise_pred, _) = noise_pred.split(latents.shape[1], dim=1) + latents = self.scheduler.step(noise_pred, t, latents, generator=generator).prev_sample + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + image = self.movq.decode(latents, force_not_quantize=True)['sample'] + self.maybe_free_model_hooks() + if output_type not in ['pt', 'np', 'pil']: + raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}') + if output_type in ['np', 'pil']: + image = image * 0.5 + 0.5 + image = image.clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + if output_type == 'pil': + image = self.numpy_to_pil(image) + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +from dataclasses import dataclass +from typing import List, Optional, Union +import numpy as np +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection +from ...models import PriorTransformer +from ...schedulers import UnCLIPScheduler +from ...utils import BaseOutput, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' +EXAMPLE_INTERPOLATE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPriorPipeline, KandinskyPipeline\n >>> from diffusers.utils import load_image\n >>> import PIL\n\n >>> import torch\n >>> from torchvision import transforms\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> img1 = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... )\n\n >>> img2 = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/starry_night.jpeg"\n ... )\n\n >>> images_texts = ["a cat", img1, img2]\n >>> weights = [0.3, 0.3, 0.4]\n >>> image_emb, zero_image_emb = pipe_prior.interpolate(images_texts, weights)\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... "",\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=150,\n ... ).images[0]\n\n >>> image.save("starry_cat.png")\n ```\n' + +@dataclass +class KandinskyPriorPipelineOutput(BaseOutput): + image_embeds: Union[torch.Tensor, np.ndarray] + negative_image_embeds: Union[torch.Tensor, np.ndarray] + +class KandinskyPriorPipeline(DiffusionPipeline): + _exclude_from_cpu_offload = ['prior'] + model_cpu_offload_seq = 'text_encoder->prior' + + def __init__(self, prior: PriorTransformer, image_encoder: CLIPVisionModelWithProjection, text_encoder: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, scheduler: UnCLIPScheduler, image_processor: CLIPImageProcessor): + super().__init__() + self.register_modules(prior=prior, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=scheduler, image_encoder=image_encoder, image_processor=image_processor) + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_INTERPOLATE_DOC_STRING) + def interpolate(self, images_and_prompts: List[Union[str, PIL.Image.Image, torch.Tensor]], weights: List[float], num_images_per_prompt: int=1, num_inference_steps: int=25, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, negative_prior_prompt: Optional[str]=None, negative_prompt: str='', guidance_scale: float=4.0, device=None): + device = device or self.device + if len(images_and_prompts) != len(weights): + raise ValueError(f'`images_and_prompts` contains {len(images_and_prompts)} items and `weights` contains {len(weights)} items - they should be lists of same length') + image_embeddings = [] + for (cond, weight) in zip(images_and_prompts, weights): + if isinstance(cond, str): + image_emb = self(cond, num_inference_steps=num_inference_steps, num_images_per_prompt=num_images_per_prompt, generator=generator, latents=latents, negative_prompt=negative_prior_prompt, guidance_scale=guidance_scale).image_embeds + elif isinstance(cond, (PIL.Image.Image, torch.Tensor)): + if isinstance(cond, PIL.Image.Image): + cond = self.image_processor(cond, return_tensors='pt').pixel_values[0].unsqueeze(0).to(dtype=self.image_encoder.dtype, device=device) + image_emb = self.image_encoder(cond)['image_embeds'] + else: + raise ValueError(f'`images_and_prompts` can only contains elements to be of type `str`, `PIL.Image.Image` or `torch.Tensor` but is {type(cond)}') + image_embeddings.append(image_emb * weight) + image_emb = torch.cat(image_embeddings).sum(dim=0, keepdim=True) + out_zero = self(negative_prompt, num_inference_steps=num_inference_steps, num_images_per_prompt=num_images_per_prompt, generator=generator, latents=latents, negative_prompt=negative_prior_prompt, guidance_scale=guidance_scale) + zero_image_emb = out_zero.negative_image_embeds if negative_prompt == '' else out_zero.image_embeds + return KandinskyPriorPipelineOutput(image_embeds=image_emb, negative_image_embeds=zero_image_emb) + + def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + if latents.shape != shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}') + latents = latents.to(device) + latents = latents * scheduler.init_noise_sigma + return latents + + def get_zero_embed(self, batch_size=1, device=None): + device = device or self.device + zero_img = torch.zeros(1, 3, self.image_encoder.config.image_size, self.image_encoder.config.image_size).to(device=device, dtype=self.image_encoder.dtype) + zero_image_emb = self.image_encoder(zero_img)['image_embeds'] + zero_image_emb = zero_image_emb.repeat(batch_size, 1) + return zero_image_emb + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None): + batch_size = len(prompt) if isinstance(prompt, list) else 1 + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + text_mask = text_inputs.attention_mask.bool().to(device) + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + text_input_ids = text_input_ids[:, :self.tokenizer.model_max_length] + text_encoder_output = self.text_encoder(text_input_ids.to(device)) + prompt_embeds = text_encoder_output.text_embeds + text_encoder_hidden_states = text_encoder_output.last_hidden_state + prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) + text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + uncond_text_mask = uncond_input.attention_mask.bool().to(device) + negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) + negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds + uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) + seq_len = uncond_text_encoder_hidden_states.shape[1] + uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) + uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(batch_size * num_images_per_prompt, seq_len, -1) + uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) + text_mask = torch.cat([uncond_text_mask, text_mask]) + return (prompt_embeds, text_encoder_hidden_states, text_mask) + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: int=1, num_inference_steps: int=25, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, guidance_scale: float=4.0, output_type: Optional[str]='pt', return_dict: bool=True): + if isinstance(prompt, str): + prompt = [prompt] + elif not isinstance(prompt, list): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if isinstance(negative_prompt, str): + negative_prompt = [negative_prompt] + elif not isinstance(negative_prompt, list) and negative_prompt is not None: + raise ValueError(f'`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}') + if negative_prompt is not None: + prompt = prompt + negative_prompt + negative_prompt = 2 * negative_prompt + device = self._execution_device + batch_size = len(prompt) + batch_size = batch_size * num_images_per_prompt + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, text_encoder_hidden_states, text_mask) = self._encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt) + self.scheduler.set_timesteps(num_inference_steps, device=device) + prior_timesteps_tensor = self.scheduler.timesteps + embedding_dim = self.prior.config.embedding_dim + latents = self.prepare_latents((batch_size, embedding_dim), prompt_embeds.dtype, device, generator, latents, self.scheduler) + for (i, t) in enumerate(self.progress_bar(prior_timesteps_tensor)): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + predicted_image_embedding = self.prior(latent_model_input, timestep=t, proj_embedding=prompt_embeds, encoder_hidden_states=text_encoder_hidden_states, attention_mask=text_mask).predicted_image_embedding + if do_classifier_free_guidance: + (predicted_image_embedding_uncond, predicted_image_embedding_text) = predicted_image_embedding.chunk(2) + predicted_image_embedding = predicted_image_embedding_uncond + guidance_scale * (predicted_image_embedding_text - predicted_image_embedding_uncond) + if i + 1 == prior_timesteps_tensor.shape[0]: + prev_timestep = None + else: + prev_timestep = prior_timesteps_tensor[i + 1] + latents = self.scheduler.step(predicted_image_embedding, timestep=t, sample=latents, generator=generator, prev_timestep=prev_timestep).prev_sample + latents = self.prior.post_process_latents(latents) + image_embeddings = latents + if negative_prompt is None: + zero_embeds = self.get_zero_embed(latents.shape[0], device=latents.device) + self.maybe_free_model_hooks() + else: + (image_embeddings, zero_embeds) = image_embeddings.chunk(2) + if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None: + self.prior_hook.offload() + if output_type not in ['pt', 'np']: + raise ValueError(f'Only the output types `pt` and `np` are supported not output_type={output_type}') + if output_type == 'np': + image_embeddings = image_embeddings.cpu().numpy() + zero_embeds = zero_embeds.cpu().numpy() + if not return_dict: + return (image_embeddings, zero_embeds) + return KandinskyPriorPipelineOutput(image_embeds=image_embeddings, negative_image_embeds=zero_embeds) + +# File: diffusers-main/src/diffusers/pipelines/kandinsky/text_encoder.py +import torch +from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel + +class MCLIPConfig(XLMRobertaConfig): + model_type = 'M-CLIP' + + def __init__(self, transformerDimSize=1024, imageDimSize=768, **kwargs): + self.transformerDimensions = transformerDimSize + self.numDims = imageDimSize + super().__init__(**kwargs) + +class MultilingualCLIP(PreTrainedModel): + config_class = MCLIPConfig + + def __init__(self, config, *args, **kwargs): + super().__init__(config, *args, **kwargs) + self.transformer = XLMRobertaModel(config) + self.LinearTransformation = torch.nn.Linear(in_features=config.transformerDimensions, out_features=config.numDims) + + def forward(self, input_ids, attention_mask): + embs = self.transformer(input_ids=input_ids, attention_mask=attention_mask)[0] + embs2 = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None] + return (self.LinearTransformation(embs2), embs) + +# File: diffusers-main/src/diffusers/pipelines/kandinsky2_2/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_kandinsky2_2'] = ['KandinskyV22Pipeline'] + _import_structure['pipeline_kandinsky2_2_combined'] = ['KandinskyV22CombinedPipeline', 'KandinskyV22Img2ImgCombinedPipeline', 'KandinskyV22InpaintCombinedPipeline'] + _import_structure['pipeline_kandinsky2_2_controlnet'] = ['KandinskyV22ControlnetPipeline'] + _import_structure['pipeline_kandinsky2_2_controlnet_img2img'] = ['KandinskyV22ControlnetImg2ImgPipeline'] + _import_structure['pipeline_kandinsky2_2_img2img'] = ['KandinskyV22Img2ImgPipeline'] + _import_structure['pipeline_kandinsky2_2_inpainting'] = ['KandinskyV22InpaintPipeline'] + _import_structure['pipeline_kandinsky2_2_prior'] = ['KandinskyV22PriorPipeline'] + _import_structure['pipeline_kandinsky2_2_prior_emb2emb'] = ['KandinskyV22PriorEmb2EmbPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_kandinsky2_2 import KandinskyV22Pipeline + from .pipeline_kandinsky2_2_combined import KandinskyV22CombinedPipeline, KandinskyV22Img2ImgCombinedPipeline, KandinskyV22InpaintCombinedPipeline + from .pipeline_kandinsky2_2_controlnet import KandinskyV22ControlnetPipeline + from .pipeline_kandinsky2_2_controlnet_img2img import KandinskyV22ControlnetImg2ImgPipeline + from .pipeline_kandinsky2_2_img2img import KandinskyV22Img2ImgPipeline + from .pipeline_kandinsky2_2_inpainting import KandinskyV22InpaintPipeline + from .pipeline_kandinsky2_2_prior import KandinskyV22PriorPipeline + from .pipeline_kandinsky2_2_prior_emb2emb import KandinskyV22PriorEmb2EmbPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +from typing import Callable, Dict, List, Optional, Union +import torch +from ...models import UNet2DConditionModel, VQModel +from ...schedulers import DDPMScheduler +from ...utils import deprecate, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' + +def downscale_height_and_width(height, width, scale_factor=8): + new_height = height // scale_factor ** 2 + if height % scale_factor ** 2 != 0: + new_height += 1 + new_width = width // scale_factor ** 2 + if width % scale_factor ** 2 != 0: + new_width += 1 + return (new_height * scale_factor, new_width * scale_factor) + +class KandinskyV22Pipeline(DiffusionPipeline): + model_cpu_offload_seq = 'unet->movq' + _callback_tensor_inputs = ['latents', 'image_embeds', 'negative_image_embeds'] + + def __init__(self, unet: UNet2DConditionModel, scheduler: DDPMScheduler, movq: VQModel): + super().__init__() + self.register_modules(unet=unet, scheduler=scheduler, movq=movq) + self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) + + def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + if latents.shape != shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}') + latents = latents.to(device) + latents = latents * scheduler.init_noise_sigma + return latents + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, image_embeds: Union[torch.Tensor, List[torch.Tensor]], negative_image_embeds: Union[torch.Tensor, List[torch.Tensor]], height: int=512, width: int=512, num_inference_steps: int=100, guidance_scale: float=4.0, num_images_per_prompt: int=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + device = self._execution_device + self._guidance_scale = guidance_scale + if isinstance(image_embeds, list): + image_embeds = torch.cat(image_embeds, dim=0) + batch_size = image_embeds.shape[0] * num_images_per_prompt + if isinstance(negative_image_embeds, list): + negative_image_embeds = torch.cat(negative_image_embeds, dim=0) + if self.do_classifier_free_guidance: + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to(dtype=self.unet.dtype, device=device) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + (height, width) = downscale_height_and_width(height, width, self.movq_scale_factor) + latents = self.prepare_latents((batch_size, num_channels_latents, height, width), image_embeds.dtype, device, generator, latents, self.scheduler) + self._num_timesteps = len(timesteps) + for (i, t) in enumerate(self.progress_bar(timesteps)): + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + added_cond_kwargs = {'image_embeds': image_embeds} + noise_pred = self.unet(sample=latent_model_input, timestep=t, encoder_hidden_states=None, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred, variance_pred) = noise_pred.split(latents.shape[1], dim=1) + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + (_, variance_pred_text) = variance_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) + if not (hasattr(self.scheduler.config, 'variance_type') and self.scheduler.config.variance_type in ['learned', 'learned_range']): + (noise_pred, _) = noise_pred.split(latents.shape[1], dim=1) + latents = self.scheduler.step(noise_pred, t, latents, generator=generator)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + image_embeds = callback_outputs.pop('image_embeds', image_embeds) + negative_image_embeds = callback_outputs.pop('negative_image_embeds', negative_image_embeds) + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if output_type not in ['pt', 'np', 'pil', 'latent']: + raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}') + if not output_type == 'latent': + image = self.movq.decode(latents, force_not_quantize=True)['sample'] + if output_type in ['np', 'pil']: + image = image * 0.5 + 0.5 + image = image.clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + if output_type == 'pil': + image = self.numpy_to_pil(image) + else: + image = latents + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +from typing import Callable, Dict, List, Optional, Union +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection +from ...models import PriorTransformer, UNet2DConditionModel, VQModel +from ...schedulers import DDPMScheduler, UnCLIPScheduler +from ...utils import deprecate, logging, replace_example_docstring +from ..pipeline_utils import DiffusionPipeline +from .pipeline_kandinsky2_2 import KandinskyV22Pipeline +from .pipeline_kandinsky2_2_img2img import KandinskyV22Img2ImgPipeline +from .pipeline_kandinsky2_2_inpainting import KandinskyV22InpaintPipeline +from .pipeline_kandinsky2_2_prior import KandinskyV22PriorPipeline +logger = logging.get_logger(__name__) +TEXT2IMAGE_EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n from diffusers import AutoPipelineForText2Image\n import torch\n\n pipe = AutoPipelineForText2Image.from_pretrained(\n "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n )\n pipe.enable_model_cpu_offload()\n\n prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k"\n\n image = pipe(prompt=prompt, num_inference_steps=25).images[0]\n ```\n' +IMAGE2IMAGE_EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n from diffusers import AutoPipelineForImage2Image\n import torch\n import requests\n from io import BytesIO\n from PIL import Image\n import os\n\n pipe = AutoPipelineForImage2Image.from_pretrained(\n "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n )\n pipe.enable_model_cpu_offload()\n\n prompt = "A fantasy landscape, Cinematic lighting"\n negative_prompt = "low quality, bad quality"\n\n url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"\n\n response = requests.get(url)\n image = Image.open(BytesIO(response.content)).convert("RGB")\n image.thumbnail((768, 768))\n\n image = pipe(prompt=prompt, image=original_image, num_inference_steps=25).images[0]\n ```\n' +INPAINT_EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n from diffusers import AutoPipelineForInpainting\n from diffusers.utils import load_image\n import torch\n import numpy as np\n\n pipe = AutoPipelineForInpainting.from_pretrained(\n "kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16\n )\n pipe.enable_model_cpu_offload()\n\n prompt = "A fantasy landscape, Cinematic lighting"\n negative_prompt = "low quality, bad quality"\n\n original_image = load_image(\n "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png"\n )\n\n mask = np.zeros((768, 768), dtype=np.float32)\n # Let\'s mask out an area above the cat\'s head\n mask[:250, 250:-250] = 1\n\n image = pipe(prompt=prompt, image=original_image, mask_image=mask, num_inference_steps=25).images[0]\n ```\n' + +class KandinskyV22CombinedPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'prior_text_encoder->prior_image_encoder->unet->movq' + _load_connected_pipes = True + _exclude_from_cpu_offload = ['prior_prior'] + + def __init__(self, unet: UNet2DConditionModel, scheduler: DDPMScheduler, movq: VQModel, prior_prior: PriorTransformer, prior_image_encoder: CLIPVisionModelWithProjection, prior_text_encoder: CLIPTextModelWithProjection, prior_tokenizer: CLIPTokenizer, prior_scheduler: UnCLIPScheduler, prior_image_processor: CLIPImageProcessor): + super().__init__() + self.register_modules(unet=unet, scheduler=scheduler, movq=movq, prior_prior=prior_prior, prior_image_encoder=prior_image_encoder, prior_text_encoder=prior_text_encoder, prior_tokenizer=prior_tokenizer, prior_scheduler=prior_scheduler, prior_image_processor=prior_image_processor) + self.prior_pipe = KandinskyV22PriorPipeline(prior=prior_prior, image_encoder=prior_image_encoder, text_encoder=prior_text_encoder, tokenizer=prior_tokenizer, scheduler=prior_scheduler, image_processor=prior_image_processor) + self.decoder_pipe = KandinskyV22Pipeline(unet=unet, scheduler=scheduler, movq=movq) + + def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable]=None): + self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op) + + def enable_sequential_cpu_offload(self, gpu_id: Optional[int]=None, device: Union[torch.device, str]='cuda'): + self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) + self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) + + def progress_bar(self, iterable=None, total=None): + self.prior_pipe.progress_bar(iterable=iterable, total=total) + self.decoder_pipe.progress_bar(iterable=iterable, total=total) + self.decoder_pipe.enable_model_cpu_offload() + + def set_progress_bar_config(self, **kwargs): + self.prior_pipe.set_progress_bar_config(**kwargs) + self.decoder_pipe.set_progress_bar_config(**kwargs) + + @torch.no_grad() + @replace_example_docstring(TEXT2IMAGE_EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]]=None, num_inference_steps: int=100, guidance_scale: float=4.0, num_images_per_prompt: int=1, height: int=512, width: int=512, prior_guidance_scale: float=4.0, prior_num_inference_steps: int=25, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, return_dict: bool=True, prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, prior_callback_on_step_end_tensor_inputs: List[str]=['latents'], callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents']): + prior_outputs = self.prior_pipe(prompt=prompt, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, num_inference_steps=prior_num_inference_steps, generator=generator, latents=latents, guidance_scale=prior_guidance_scale, output_type='pt', return_dict=False, callback_on_step_end=prior_callback_on_step_end, callback_on_step_end_tensor_inputs=prior_callback_on_step_end_tensor_inputs) + image_embeds = prior_outputs[0] + negative_image_embeds = prior_outputs[1] + prompt = [prompt] if not isinstance(prompt, (list, tuple)) else prompt + if len(prompt) < image_embeds.shape[0] and image_embeds.shape[0] % len(prompt) == 0: + prompt = image_embeds.shape[0] // len(prompt) * prompt + outputs = self.decoder_pipe(image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=guidance_scale, output_type=output_type, callback=callback, callback_steps=callback_steps, return_dict=return_dict, callback_on_step_end=callback_on_step_end, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs) + self.maybe_free_model_hooks() + return outputs + +class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'prior_text_encoder->prior_image_encoder->unet->movq' + _load_connected_pipes = True + _exclude_from_cpu_offload = ['prior_prior'] + + def __init__(self, unet: UNet2DConditionModel, scheduler: DDPMScheduler, movq: VQModel, prior_prior: PriorTransformer, prior_image_encoder: CLIPVisionModelWithProjection, prior_text_encoder: CLIPTextModelWithProjection, prior_tokenizer: CLIPTokenizer, prior_scheduler: UnCLIPScheduler, prior_image_processor: CLIPImageProcessor): + super().__init__() + self.register_modules(unet=unet, scheduler=scheduler, movq=movq, prior_prior=prior_prior, prior_image_encoder=prior_image_encoder, prior_text_encoder=prior_text_encoder, prior_tokenizer=prior_tokenizer, prior_scheduler=prior_scheduler, prior_image_processor=prior_image_processor) + self.prior_pipe = KandinskyV22PriorPipeline(prior=prior_prior, image_encoder=prior_image_encoder, text_encoder=prior_text_encoder, tokenizer=prior_tokenizer, scheduler=prior_scheduler, image_processor=prior_image_processor) + self.decoder_pipe = KandinskyV22Img2ImgPipeline(unet=unet, scheduler=scheduler, movq=movq) + + def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable]=None): + self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op) + + def enable_model_cpu_offload(self, gpu_id: Optional[int]=None, device: Union[torch.device, str]='cuda'): + self.prior_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device) + self.decoder_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device) + + def enable_sequential_cpu_offload(self, gpu_id: Optional[int]=None, device: Union[torch.device, str]='cuda'): + self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) + self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) + + def progress_bar(self, iterable=None, total=None): + self.prior_pipe.progress_bar(iterable=iterable, total=total) + self.decoder_pipe.progress_bar(iterable=iterable, total=total) + self.decoder_pipe.enable_model_cpu_offload() + + def set_progress_bar_config(self, **kwargs): + self.prior_pipe.set_progress_bar_config(**kwargs) + self.decoder_pipe.set_progress_bar_config(**kwargs) + + @torch.no_grad() + @replace_example_docstring(IMAGE2IMAGE_EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]], image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]], negative_prompt: Optional[Union[str, List[str]]]=None, num_inference_steps: int=100, guidance_scale: float=4.0, strength: float=0.3, num_images_per_prompt: int=1, height: int=512, width: int=512, prior_guidance_scale: float=4.0, prior_num_inference_steps: int=25, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, return_dict: bool=True, prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, prior_callback_on_step_end_tensor_inputs: List[str]=['latents'], callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents']): + prior_outputs = self.prior_pipe(prompt=prompt, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, num_inference_steps=prior_num_inference_steps, generator=generator, latents=latents, guidance_scale=prior_guidance_scale, output_type='pt', return_dict=False, callback_on_step_end=prior_callback_on_step_end, callback_on_step_end_tensor_inputs=prior_callback_on_step_end_tensor_inputs) + image_embeds = prior_outputs[0] + negative_image_embeds = prior_outputs[1] + prompt = [prompt] if not isinstance(prompt, (list, tuple)) else prompt + image = [image] if isinstance(image, PIL.Image.Image) else image + if len(prompt) < image_embeds.shape[0] and image_embeds.shape[0] % len(prompt) == 0: + prompt = image_embeds.shape[0] // len(prompt) * prompt + if isinstance(image, (list, tuple)) and len(image) < image_embeds.shape[0] and (image_embeds.shape[0] % len(image) == 0): + image = image_embeds.shape[0] // len(image) * image + outputs = self.decoder_pipe(image=image, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, width=width, height=height, strength=strength, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=guidance_scale, output_type=output_type, callback=callback, callback_steps=callback_steps, return_dict=return_dict, callback_on_step_end=callback_on_step_end, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs) + self.maybe_free_model_hooks() + return outputs + +class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'prior_text_encoder->prior_image_encoder->unet->movq' + _load_connected_pipes = True + _exclude_from_cpu_offload = ['prior_prior'] + + def __init__(self, unet: UNet2DConditionModel, scheduler: DDPMScheduler, movq: VQModel, prior_prior: PriorTransformer, prior_image_encoder: CLIPVisionModelWithProjection, prior_text_encoder: CLIPTextModelWithProjection, prior_tokenizer: CLIPTokenizer, prior_scheduler: UnCLIPScheduler, prior_image_processor: CLIPImageProcessor): + super().__init__() + self.register_modules(unet=unet, scheduler=scheduler, movq=movq, prior_prior=prior_prior, prior_image_encoder=prior_image_encoder, prior_text_encoder=prior_text_encoder, prior_tokenizer=prior_tokenizer, prior_scheduler=prior_scheduler, prior_image_processor=prior_image_processor) + self.prior_pipe = KandinskyV22PriorPipeline(prior=prior_prior, image_encoder=prior_image_encoder, text_encoder=prior_text_encoder, tokenizer=prior_tokenizer, scheduler=prior_scheduler, image_processor=prior_image_processor) + self.decoder_pipe = KandinskyV22InpaintPipeline(unet=unet, scheduler=scheduler, movq=movq) + + def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable]=None): + self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op) + + def enable_sequential_cpu_offload(self, gpu_id: Optional[int]=None, device: Union[torch.device, str]='cuda'): + self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) + self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) + + def progress_bar(self, iterable=None, total=None): + self.prior_pipe.progress_bar(iterable=iterable, total=total) + self.decoder_pipe.progress_bar(iterable=iterable, total=total) + self.decoder_pipe.enable_model_cpu_offload() + + def set_progress_bar_config(self, **kwargs): + self.prior_pipe.set_progress_bar_config(**kwargs) + self.decoder_pipe.set_progress_bar_config(**kwargs) + + @torch.no_grad() + @replace_example_docstring(INPAINT_EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]], image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]], mask_image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]], negative_prompt: Optional[Union[str, List[str]]]=None, num_inference_steps: int=100, guidance_scale: float=4.0, num_images_per_prompt: int=1, height: int=512, width: int=512, prior_guidance_scale: float=4.0, prior_num_inference_steps: int=25, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, prior_callback_on_step_end_tensor_inputs: List[str]=['latents'], callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + prior_kwargs = {} + if kwargs.get('prior_callback', None) is not None: + prior_kwargs['callback'] = kwargs.pop('prior_callback') + deprecate('prior_callback', '1.0.0', 'Passing `prior_callback` as an input argument to `__call__` is deprecated, consider use `prior_callback_on_step_end`') + if kwargs.get('prior_callback_steps', None) is not None: + deprecate('prior_callback_steps', '1.0.0', 'Passing `prior_callback_steps` as an input argument to `__call__` is deprecated, consider use `prior_callback_on_step_end`') + prior_kwargs['callback_steps'] = kwargs.pop('prior_callback_steps') + prior_outputs = self.prior_pipe(prompt=prompt, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, num_inference_steps=prior_num_inference_steps, generator=generator, latents=latents, guidance_scale=prior_guidance_scale, output_type='pt', return_dict=False, callback_on_step_end=prior_callback_on_step_end, callback_on_step_end_tensor_inputs=prior_callback_on_step_end_tensor_inputs, **prior_kwargs) + image_embeds = prior_outputs[0] + negative_image_embeds = prior_outputs[1] + prompt = [prompt] if not isinstance(prompt, (list, tuple)) else prompt + image = [image] if isinstance(image, PIL.Image.Image) else image + mask_image = [mask_image] if isinstance(mask_image, PIL.Image.Image) else mask_image + if len(prompt) < image_embeds.shape[0] and image_embeds.shape[0] % len(prompt) == 0: + prompt = image_embeds.shape[0] // len(prompt) * prompt + if isinstance(image, (list, tuple)) and len(image) < image_embeds.shape[0] and (image_embeds.shape[0] % len(image) == 0): + image = image_embeds.shape[0] // len(image) * image + if isinstance(mask_image, (list, tuple)) and len(mask_image) < image_embeds.shape[0] and (image_embeds.shape[0] % len(mask_image) == 0): + mask_image = image_embeds.shape[0] // len(mask_image) * mask_image + outputs = self.decoder_pipe(image=image, mask_image=mask_image, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=guidance_scale, output_type=output_type, return_dict=return_dict, callback_on_step_end=callback_on_step_end, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, **kwargs) + self.maybe_free_model_hooks() + return outputs + +# File: diffusers-main/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +from typing import Callable, List, Optional, Union +import torch +from ...models import UNet2DConditionModel, VQModel +from ...schedulers import DDPMScheduler +from ...utils import logging +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' + +def downscale_height_and_width(height, width, scale_factor=8): + new_height = height // scale_factor ** 2 + if height % scale_factor ** 2 != 0: + new_height += 1 + new_width = width // scale_factor ** 2 + if width % scale_factor ** 2 != 0: + new_width += 1 + return (new_height * scale_factor, new_width * scale_factor) + +class KandinskyV22ControlnetPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'unet->movq' + + def __init__(self, unet: UNet2DConditionModel, scheduler: DDPMScheduler, movq: VQModel): + super().__init__() + self.register_modules(unet=unet, scheduler=scheduler, movq=movq) + self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) + + def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + if latents.shape != shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}') + latents = latents.to(device) + latents = latents * scheduler.init_noise_sigma + return latents + + @torch.no_grad() + def __call__(self, image_embeds: Union[torch.Tensor, List[torch.Tensor]], negative_image_embeds: Union[torch.Tensor, List[torch.Tensor]], hint: torch.Tensor, height: int=512, width: int=512, num_inference_steps: int=100, guidance_scale: float=4.0, num_images_per_prompt: int=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, return_dict: bool=True): + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + if isinstance(image_embeds, list): + image_embeds = torch.cat(image_embeds, dim=0) + if isinstance(negative_image_embeds, list): + negative_image_embeds = torch.cat(negative_image_embeds, dim=0) + if isinstance(hint, list): + hint = torch.cat(hint, dim=0) + batch_size = image_embeds.shape[0] * num_images_per_prompt + if do_classifier_free_guidance: + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + hint = hint.repeat_interleave(num_images_per_prompt, dim=0) + image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to(dtype=self.unet.dtype, device=device) + hint = torch.cat([hint, hint], dim=0).to(dtype=self.unet.dtype, device=device) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps_tensor = self.scheduler.timesteps + num_channels_latents = self.movq.config.latent_channels + (height, width) = downscale_height_and_width(height, width, self.movq_scale_factor) + latents = self.prepare_latents((batch_size, num_channels_latents, height, width), image_embeds.dtype, device, generator, latents, self.scheduler) + for (i, t) in enumerate(self.progress_bar(timesteps_tensor)): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + added_cond_kwargs = {'image_embeds': image_embeds, 'hint': hint} + noise_pred = self.unet(sample=latent_model_input, timestep=t, encoder_hidden_states=None, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred, variance_pred) = noise_pred.split(latents.shape[1], dim=1) + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + (_, variance_pred_text) = variance_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) + if not (hasattr(self.scheduler.config, 'variance_type') and self.scheduler.config.variance_type in ['learned', 'learned_range']): + (noise_pred, _) = noise_pred.split(latents.shape[1], dim=1) + latents = self.scheduler.step(noise_pred, t, latents, generator=generator)[0] + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + image = self.movq.decode(latents, force_not_quantize=True)['sample'] + self.maybe_free_model_hooks() + if output_type not in ['pt', 'np', 'pil']: + raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}') + if output_type in ['np', 'pil']: + image = image * 0.5 + 0.5 + image = image.clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + if output_type == 'pil': + image = self.numpy_to_pil(image) + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +from typing import Callable, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from PIL import Image +from ...models import UNet2DConditionModel, VQModel +from ...schedulers import DDPMScheduler +from ...utils import logging +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorEmb2EmbPipeline, KandinskyV22ControlnetImg2ImgPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorEmb2EmbPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetImg2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> img_emb = pipe_prior(prompt=prompt, image=img, strength=0.85, generator=generator)\n >>> negative_emb = pipe_prior(prompt=negative_prior_prompt, image=img, strength=1, generator=generator)\n\n >>> images = pipe(\n ... image=img,\n ... strength=0.5,\n ... image_embeds=img_emb.image_embeds,\n ... negative_image_embeds=negative_emb.image_embeds,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' + +def downscale_height_and_width(height, width, scale_factor=8): + new_height = height // scale_factor ** 2 + if height % scale_factor ** 2 != 0: + new_height += 1 + new_width = width // scale_factor ** 2 + if width % scale_factor ** 2 != 0: + new_width += 1 + return (new_height * scale_factor, new_width * scale_factor) + +def prepare_image(pil_image, w=512, h=512): + pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1) + arr = np.array(pil_image.convert('RGB')) + arr = arr.astype(np.float32) / 127.5 - 1 + arr = np.transpose(arr, [2, 0, 1]) + image = torch.from_numpy(arr).unsqueeze(0) + return image + +class KandinskyV22ControlnetImg2ImgPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'unet->movq' + + def __init__(self, unet: UNet2DConditionModel, scheduler: DDPMScheduler, movq: VQModel): + super().__init__() + self.register_modules(unet=unet, scheduler=scheduler, movq=movq) + self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start:] + return (timesteps, num_inference_steps - t_start) + + def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): + if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}') + image = image.to(device=device, dtype=dtype) + batch_size = batch_size * num_images_per_prompt + if image.shape[1] == 4: + init_latents = image + else: + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + elif isinstance(generator, list): + init_latents = [self.movq.encode(image[i:i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)] + init_latents = torch.cat(init_latents, dim=0) + else: + init_latents = self.movq.encode(image).latent_dist.sample(generator) + init_latents = self.movq.config.scaling_factor * init_latents + init_latents = torch.cat([init_latents], dim=0) + shape = init_latents.shape + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + init_latents = self.scheduler.add_noise(init_latents, noise, timestep) + latents = init_latents + return latents + + @torch.no_grad() + def __call__(self, image_embeds: Union[torch.Tensor, List[torch.Tensor]], image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]], negative_image_embeds: Union[torch.Tensor, List[torch.Tensor]], hint: torch.Tensor, height: int=512, width: int=512, num_inference_steps: int=100, guidance_scale: float=4.0, strength: float=0.3, num_images_per_prompt: int=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, output_type: Optional[str]='pil', callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, return_dict: bool=True): + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + if isinstance(image_embeds, list): + image_embeds = torch.cat(image_embeds, dim=0) + if isinstance(negative_image_embeds, list): + negative_image_embeds = torch.cat(negative_image_embeds, dim=0) + if isinstance(hint, list): + hint = torch.cat(hint, dim=0) + batch_size = image_embeds.shape[0] + if do_classifier_free_guidance: + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + hint = hint.repeat_interleave(num_images_per_prompt, dim=0) + image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to(dtype=self.unet.dtype, device=device) + hint = torch.cat([hint, hint], dim=0).to(dtype=self.unet.dtype, device=device) + if not isinstance(image, list): + image = [image] + if not all((isinstance(i, (PIL.Image.Image, torch.Tensor)) for i in image)): + raise ValueError(f'Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support PIL image and pytorch tensor') + image = torch.cat([prepare_image(i, width, height) for i in image], dim=0) + image = image.to(dtype=image_embeds.dtype, device=device) + latents = self.movq.encode(image)['latents'] + latents = latents.repeat_interleave(num_images_per_prompt, dim=0) + self.scheduler.set_timesteps(num_inference_steps, device=device) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + (height, width) = downscale_height_and_width(height, width, self.movq_scale_factor) + latents = self.prepare_latents(latents, latent_timestep, batch_size, num_images_per_prompt, image_embeds.dtype, device, generator) + for (i, t) in enumerate(self.progress_bar(timesteps)): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + added_cond_kwargs = {'image_embeds': image_embeds, 'hint': hint} + noise_pred = self.unet(sample=latent_model_input, timestep=t, encoder_hidden_states=None, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred, variance_pred) = noise_pred.split(latents.shape[1], dim=1) + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + (_, variance_pred_text) = variance_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) + if not (hasattr(self.scheduler.config, 'variance_type') and self.scheduler.config.variance_type in ['learned', 'learned_range']): + (noise_pred, _) = noise_pred.split(latents.shape[1], dim=1) + latents = self.scheduler.step(noise_pred, t, latents, generator=generator)[0] + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + image = self.movq.decode(latents, force_not_quantize=True)['sample'] + self.maybe_free_model_hooks() + if output_type not in ['pt', 'np', 'pil']: + raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}') + if output_type in ['np', 'pil']: + image = image * 0.5 + 0.5 + image = image.clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + if output_type == 'pil': + image = self.numpy_to_pil(image) + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +from typing import Callable, Dict, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from PIL import Image +from ...models import UNet2DConditionModel, VQModel +from ...schedulers import DDPMScheduler +from ...utils import deprecate, logging +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' + +def downscale_height_and_width(height, width, scale_factor=8): + new_height = height // scale_factor ** 2 + if height % scale_factor ** 2 != 0: + new_height += 1 + new_width = width // scale_factor ** 2 + if width % scale_factor ** 2 != 0: + new_width += 1 + return (new_height * scale_factor, new_width * scale_factor) + +def prepare_image(pil_image, w=512, h=512): + pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1) + arr = np.array(pil_image.convert('RGB')) + arr = arr.astype(np.float32) / 127.5 - 1 + arr = np.transpose(arr, [2, 0, 1]) + image = torch.from_numpy(arr).unsqueeze(0) + return image + +class KandinskyV22Img2ImgPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'unet->movq' + _callback_tensor_inputs = ['latents', 'image_embeds', 'negative_image_embeds'] + + def __init__(self, unet: UNet2DConditionModel, scheduler: DDPMScheduler, movq: VQModel): + super().__init__() + self.register_modules(unet=unet, scheduler=scheduler, movq=movq) + self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start:] + return (timesteps, num_inference_steps - t_start) + + def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): + if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}') + image = image.to(device=device, dtype=dtype) + batch_size = batch_size * num_images_per_prompt + if image.shape[1] == 4: + init_latents = image + else: + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + elif isinstance(generator, list): + init_latents = [self.movq.encode(image[i:i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)] + init_latents = torch.cat(init_latents, dim=0) + else: + init_latents = self.movq.encode(image).latent_dist.sample(generator) + init_latents = self.movq.config.scaling_factor * init_latents + init_latents = torch.cat([init_latents], dim=0) + shape = init_latents.shape + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + init_latents = self.scheduler.add_noise(init_latents, noise, timestep) + latents = init_latents + return latents + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + def __call__(self, image_embeds: Union[torch.Tensor, List[torch.Tensor]], image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]], negative_image_embeds: Union[torch.Tensor, List[torch.Tensor]], height: int=512, width: int=512, num_inference_steps: int=100, guidance_scale: float=4.0, strength: float=0.3, num_images_per_prompt: int=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + device = self._execution_device + self._guidance_scale = guidance_scale + if isinstance(image_embeds, list): + image_embeds = torch.cat(image_embeds, dim=0) + batch_size = image_embeds.shape[0] + if isinstance(negative_image_embeds, list): + negative_image_embeds = torch.cat(negative_image_embeds, dim=0) + if self.do_classifier_free_guidance: + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to(dtype=self.unet.dtype, device=device) + if not isinstance(image, list): + image = [image] + if not all((isinstance(i, (PIL.Image.Image, torch.Tensor)) for i in image)): + raise ValueError(f'Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support PIL image and pytorch tensor') + image = torch.cat([prepare_image(i, width, height) for i in image], dim=0) + image = image.to(dtype=image_embeds.dtype, device=device) + latents = self.movq.encode(image)['latents'] + latents = latents.repeat_interleave(num_images_per_prompt, dim=0) + self.scheduler.set_timesteps(num_inference_steps, device=device) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + (height, width) = downscale_height_and_width(height, width, self.movq_scale_factor) + latents = self.prepare_latents(latents, latent_timestep, batch_size, num_images_per_prompt, image_embeds.dtype, device, generator) + self._num_timesteps = len(timesteps) + for (i, t) in enumerate(self.progress_bar(timesteps)): + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + added_cond_kwargs = {'image_embeds': image_embeds} + noise_pred = self.unet(sample=latent_model_input, timestep=t, encoder_hidden_states=None, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred, variance_pred) = noise_pred.split(latents.shape[1], dim=1) + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + (_, variance_pred_text) = variance_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) + if not (hasattr(self.scheduler.config, 'variance_type') and self.scheduler.config.variance_type in ['learned', 'learned_range']): + (noise_pred, _) = noise_pred.split(latents.shape[1], dim=1) + latents = self.scheduler.step(noise_pred, t, latents, generator=generator)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + image_embeds = callback_outputs.pop('image_embeds', image_embeds) + negative_image_embeds = callback_outputs.pop('negative_image_embeds', negative_image_embeds) + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if output_type not in ['pt', 'np', 'pil', 'latent']: + raise ValueError(f'Only the output types `pt`, `pil` ,`np` and `latent` are supported not output_type={output_type}') + if not output_type == 'latent': + image = self.movq.decode(latents, force_not_quantize=True)['sample'] + if output_type in ['np', 'pil']: + image = image * 0.5 + 0.5 + image = image.clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + if output_type == 'pil': + image = self.numpy_to_pil(image) + else: + image = latents + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +from copy import deepcopy +from typing import Callable, Dict, List, Optional, Union +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from packaging import version +from PIL import Image +from ... import __version__ +from ...models import UNet2DConditionModel, VQModel +from ...schedulers import DDPMScheduler +from ...utils import deprecate, logging +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22InpaintPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n >>> import numpy as np\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "a hat"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22InpaintPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... )\n\n >>> mask = np.zeros((768, 768), dtype=np.float32)\n >>> mask[:250, 250:-250] = 1\n\n >>> out = pipe(\n ... image=init_image,\n ... mask_image=mask,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... )\n\n >>> image = out.images[0]\n >>> image.save("cat_with_hat.png")\n ```\n' + +def downscale_height_and_width(height, width, scale_factor=8): + new_height = height // scale_factor ** 2 + if height % scale_factor ** 2 != 0: + new_height += 1 + new_width = width // scale_factor ** 2 + if width % scale_factor ** 2 != 0: + new_width += 1 + return (new_height * scale_factor, new_width * scale_factor) + +def prepare_mask(masks): + prepared_masks = [] + for mask in masks: + old_mask = deepcopy(mask) + for i in range(mask.shape[1]): + for j in range(mask.shape[2]): + if old_mask[0][i][j] == 1: + continue + if i != 0: + mask[:, i - 1, j] = 0 + if j != 0: + mask[:, i, j - 1] = 0 + if i != 0 and j != 0: + mask[:, i - 1, j - 1] = 0 + if i != mask.shape[1] - 1: + mask[:, i + 1, j] = 0 + if j != mask.shape[2] - 1: + mask[:, i, j + 1] = 0 + if i != mask.shape[1] - 1 and j != mask.shape[2] - 1: + mask[:, i + 1, j + 1] = 0 + prepared_masks.append(mask) + return torch.stack(prepared_masks, dim=0) + +def prepare_mask_and_masked_image(image, mask, height, width): + if image is None: + raise ValueError('`image` input cannot be undefined.') + if mask is None: + raise ValueError('`mask_image` input cannot be undefined.') + if isinstance(image, torch.Tensor): + if not isinstance(mask, torch.Tensor): + raise TypeError(f'`image` is a torch.Tensor but `mask` (type: {type(mask)} is not') + if image.ndim == 3: + assert image.shape[0] == 3, 'Image outside a batch should be of shape (3, H, W)' + image = image.unsqueeze(0) + if mask.ndim == 2: + mask = mask.unsqueeze(0).unsqueeze(0) + if mask.ndim == 3: + if mask.shape[0] == 1: + mask = mask.unsqueeze(0) + else: + mask = mask.unsqueeze(1) + assert image.ndim == 4 and mask.ndim == 4, 'Image and Mask must have 4 dimensions' + assert image.shape[-2:] == mask.shape[-2:], 'Image and Mask must have the same spatial dimensions' + assert image.shape[0] == mask.shape[0], 'Image and Mask must have the same batch size' + if image.min() < -1 or image.max() > 1: + raise ValueError('Image should be in [-1, 1] range') + if mask.min() < 0 or mask.max() > 1: + raise ValueError('Mask should be in [0, 1] range') + mask[mask < 0.5] = 0 + mask[mask >= 0.5] = 1 + image = image.to(dtype=torch.float32) + elif isinstance(mask, torch.Tensor): + raise TypeError(f'`mask` is a torch.Tensor but `image` (type: {type(image)} is not') + else: + if isinstance(image, (PIL.Image.Image, np.ndarray)): + image = [image] + if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): + image = [i.resize((width, height), resample=Image.BICUBIC, reducing_gap=1) for i in image] + image = [np.array(i.convert('RGB'))[None, :] for i in image] + image = np.concatenate(image, axis=0) + elif isinstance(image, list) and isinstance(image[0], np.ndarray): + image = np.concatenate([i[None, :] for i in image], axis=0) + image = image.transpose(0, 3, 1, 2) + image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 + if isinstance(mask, (PIL.Image.Image, np.ndarray)): + mask = [mask] + if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image): + mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask] + mask = np.concatenate([np.array(m.convert('L'))[None, None, :] for m in mask], axis=0) + mask = mask.astype(np.float32) / 255.0 + elif isinstance(mask, list) and isinstance(mask[0], np.ndarray): + mask = np.concatenate([m[None, None, :] for m in mask], axis=0) + mask[mask < 0.5] = 0 + mask[mask >= 0.5] = 1 + mask = torch.from_numpy(mask) + mask = 1 - mask + return (mask, image) + +class KandinskyV22InpaintPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'unet->movq' + _callback_tensor_inputs = ['latents', 'image_embeds', 'negative_image_embeds', 'masked_image', 'mask_image'] + + def __init__(self, unet: UNet2DConditionModel, scheduler: DDPMScheduler, movq: VQModel): + super().__init__() + self.register_modules(unet=unet, scheduler=scheduler, movq=movq) + self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) + self._warn_has_been_called = False + + def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + if latents.shape != shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}') + latents = latents.to(device) + latents = latents * scheduler.init_noise_sigma + return latents + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + def __call__(self, image_embeds: Union[torch.Tensor, List[torch.Tensor]], image: Union[torch.Tensor, PIL.Image.Image], mask_image: Union[torch.Tensor, PIL.Image.Image, np.ndarray], negative_image_embeds: Union[torch.Tensor, List[torch.Tensor]], height: int=512, width: int=512, num_inference_steps: int=100, guidance_scale: float=4.0, num_images_per_prompt: int=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + if not self._warn_has_been_called and version.parse(version.parse(__version__).base_version) < version.parse('0.23.0.dev0'): + logger.warning("Please note that the expected format of `mask_image` has recently been changed. Before diffusers == 0.19.0, Kandinsky Inpainting pipelines repainted black pixels and preserved black pixels. As of diffusers==0.19.0 this behavior has been inverted. Now white pixels are repainted and black pixels are preserved. This way, Kandinsky's masking behavior is aligned with Stable Diffusion. THIS means that you HAVE to invert the input mask to have the same behavior as before as explained in https://github.com/huggingface/diffusers/pull/4207. This warning will be surpressed after the first inference call and will be removed in diffusers>0.23.0") + self._warn_has_been_called = True + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + self._guidance_scale = guidance_scale + device = self._execution_device + if isinstance(image_embeds, list): + image_embeds = torch.cat(image_embeds, dim=0) + batch_size = image_embeds.shape[0] * num_images_per_prompt + if isinstance(negative_image_embeds, list): + negative_image_embeds = torch.cat(negative_image_embeds, dim=0) + if self.do_classifier_free_guidance: + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to(dtype=self.unet.dtype, device=device) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + (mask_image, image) = prepare_mask_and_masked_image(image, mask_image, height, width) + image = image.to(dtype=image_embeds.dtype, device=device) + image = self.movq.encode(image)['latents'] + mask_image = mask_image.to(dtype=image_embeds.dtype, device=device) + image_shape = tuple(image.shape[-2:]) + mask_image = F.interpolate(mask_image, image_shape, mode='nearest') + mask_image = prepare_mask(mask_image) + masked_image = image * mask_image + mask_image = mask_image.repeat_interleave(num_images_per_prompt, dim=0) + masked_image = masked_image.repeat_interleave(num_images_per_prompt, dim=0) + if self.do_classifier_free_guidance: + mask_image = mask_image.repeat(2, 1, 1, 1) + masked_image = masked_image.repeat(2, 1, 1, 1) + num_channels_latents = self.movq.config.latent_channels + (height, width) = downscale_height_and_width(height, width, self.movq_scale_factor) + latents = self.prepare_latents((batch_size, num_channels_latents, height, width), image_embeds.dtype, device, generator, latents, self.scheduler) + noise = torch.clone(latents) + self._num_timesteps = len(timesteps) + for (i, t) in enumerate(self.progress_bar(timesteps)): + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = torch.cat([latent_model_input, masked_image, mask_image], dim=1) + added_cond_kwargs = {'image_embeds': image_embeds} + noise_pred = self.unet(sample=latent_model_input, timestep=t, encoder_hidden_states=None, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred, variance_pred) = noise_pred.split(latents.shape[1], dim=1) + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + (_, variance_pred_text) = variance_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) + if not (hasattr(self.scheduler.config, 'variance_type') and self.scheduler.config.variance_type in ['learned', 'learned_range']): + (noise_pred, _) = noise_pred.split(latents.shape[1], dim=1) + latents = self.scheduler.step(noise_pred, t, latents, generator=generator)[0] + init_latents_proper = image[:1] + init_mask = mask_image[:1] + if i < len(timesteps) - 1: + noise_timestep = timesteps[i + 1] + init_latents_proper = self.scheduler.add_noise(init_latents_proper, noise, torch.tensor([noise_timestep])) + latents = init_mask * init_latents_proper + (1 - init_mask) * latents + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + image_embeds = callback_outputs.pop('image_embeds', image_embeds) + negative_image_embeds = callback_outputs.pop('negative_image_embeds', negative_image_embeds) + masked_image = callback_outputs.pop('masked_image', masked_image) + mask_image = callback_outputs.pop('mask_image', mask_image) + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + latents = mask_image[:1] * image[:1] + (1 - mask_image[:1]) * latents + if output_type not in ['pt', 'np', 'pil', 'latent']: + raise ValueError(f'Only the output types `pt`, `pil`, `np` and `latent` are supported not output_type={output_type}') + if not output_type == 'latent': + image = self.movq.decode(latents, force_not_quantize=True)['sample'] + if output_type in ['np', 'pil']: + image = image * 0.5 + 0.5 + image = image.clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + if output_type == 'pil': + image = self.numpy_to_pil(image) + else: + image = latents + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +from typing import Callable, Dict, List, Optional, Union +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection +from ...models import PriorTransformer +from ...schedulers import UnCLIPScheduler +from ...utils import logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..kandinsky import KandinskyPriorPipelineOutput +from ..pipeline_utils import DiffusionPipeline +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> image_emb, negative_image_emb = pipe_prior(prompt).to_tuple()\n\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' +EXAMPLE_INTERPOLATE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22Pipeline\n >>> from diffusers.utils import load_image\n >>> import PIL\n >>> import torch\n >>> from torchvision import transforms\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n >>> img1 = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... )\n >>> img2 = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/starry_night.jpeg"\n ... )\n >>> images_texts = ["a cat", img1, img2]\n >>> weights = [0.3, 0.3, 0.4]\n >>> out = pipe_prior.interpolate(images_texts, weights)\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=out.image_embeds,\n ... negative_image_embeds=out.negative_image_embeds,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images[0]\n >>> image.save("starry_cat.png")\n ```\n' + +class KandinskyV22PriorPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'text_encoder->image_encoder->prior' + _exclude_from_cpu_offload = ['prior'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'text_encoder_hidden_states', 'text_mask'] + + def __init__(self, prior: PriorTransformer, image_encoder: CLIPVisionModelWithProjection, text_encoder: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, scheduler: UnCLIPScheduler, image_processor: CLIPImageProcessor): + super().__init__() + self.register_modules(prior=prior, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=scheduler, image_encoder=image_encoder, image_processor=image_processor) + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_INTERPOLATE_DOC_STRING) + def interpolate(self, images_and_prompts: List[Union[str, PIL.Image.Image, torch.Tensor]], weights: List[float], num_images_per_prompt: int=1, num_inference_steps: int=25, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, negative_prior_prompt: Optional[str]=None, negative_prompt: str='', guidance_scale: float=4.0, device=None): + device = device or self.device + if len(images_and_prompts) != len(weights): + raise ValueError(f'`images_and_prompts` contains {len(images_and_prompts)} items and `weights` contains {len(weights)} items - they should be lists of same length') + image_embeddings = [] + for (cond, weight) in zip(images_and_prompts, weights): + if isinstance(cond, str): + image_emb = self(cond, num_inference_steps=num_inference_steps, num_images_per_prompt=num_images_per_prompt, generator=generator, latents=latents, negative_prompt=negative_prior_prompt, guidance_scale=guidance_scale).image_embeds.unsqueeze(0) + elif isinstance(cond, (PIL.Image.Image, torch.Tensor)): + if isinstance(cond, PIL.Image.Image): + cond = self.image_processor(cond, return_tensors='pt').pixel_values[0].unsqueeze(0).to(dtype=self.image_encoder.dtype, device=device) + image_emb = self.image_encoder(cond)['image_embeds'].repeat(num_images_per_prompt, 1).unsqueeze(0) + else: + raise ValueError(f'`images_and_prompts` can only contains elements to be of type `str`, `PIL.Image.Image` or `torch.Tensor` but is {type(cond)}') + image_embeddings.append(image_emb * weight) + image_emb = torch.cat(image_embeddings).sum(dim=0) + out_zero = self(negative_prompt, num_inference_steps=num_inference_steps, num_images_per_prompt=num_images_per_prompt, generator=generator, latents=latents, negative_prompt=negative_prior_prompt, guidance_scale=guidance_scale) + zero_image_emb = out_zero.negative_image_embeds if negative_prompt == '' else out_zero.image_embeds + return KandinskyPriorPipelineOutput(image_embeds=image_emb, negative_image_embeds=zero_image_emb) + + def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + if latents.shape != shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}') + latents = latents.to(device) + latents = latents * scheduler.init_noise_sigma + return latents + + def get_zero_embed(self, batch_size=1, device=None): + device = device or self.device + zero_img = torch.zeros(1, 3, self.image_encoder.config.image_size, self.image_encoder.config.image_size).to(device=device, dtype=self.image_encoder.dtype) + zero_image_emb = self.image_encoder(zero_img)['image_embeds'] + zero_image_emb = zero_image_emb.repeat(batch_size, 1) + return zero_image_emb + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None): + batch_size = len(prompt) if isinstance(prompt, list) else 1 + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + text_mask = text_inputs.attention_mask.bool().to(device) + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + text_input_ids = text_input_ids[:, :self.tokenizer.model_max_length] + text_encoder_output = self.text_encoder(text_input_ids.to(device)) + prompt_embeds = text_encoder_output.text_embeds + text_encoder_hidden_states = text_encoder_output.last_hidden_state + prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) + text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + uncond_text_mask = uncond_input.attention_mask.bool().to(device) + negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) + negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds + uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) + seq_len = uncond_text_encoder_hidden_states.shape[1] + uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) + uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(batch_size * num_images_per_prompt, seq_len, -1) + uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) + text_mask = torch.cat([uncond_text_mask, text_mask]) + return (prompt_embeds, text_encoder_hidden_states, text_mask) + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: int=1, num_inference_steps: int=25, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, guidance_scale: float=4.0, output_type: Optional[str]='pt', return_dict: bool=True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents']): + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if isinstance(prompt, str): + prompt = [prompt] + elif not isinstance(prompt, list): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if isinstance(negative_prompt, str): + negative_prompt = [negative_prompt] + elif not isinstance(negative_prompt, list) and negative_prompt is not None: + raise ValueError(f'`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}') + if negative_prompt is not None: + prompt = prompt + negative_prompt + negative_prompt = 2 * negative_prompt + device = self._execution_device + batch_size = len(prompt) + batch_size = batch_size * num_images_per_prompt + self._guidance_scale = guidance_scale + (prompt_embeds, text_encoder_hidden_states, text_mask) = self._encode_prompt(prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + embedding_dim = self.prior.config.embedding_dim + latents = self.prepare_latents((batch_size, embedding_dim), prompt_embeds.dtype, device, generator, latents, self.scheduler) + self._num_timesteps = len(timesteps) + for (i, t) in enumerate(self.progress_bar(timesteps)): + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + predicted_image_embedding = self.prior(latent_model_input, timestep=t, proj_embedding=prompt_embeds, encoder_hidden_states=text_encoder_hidden_states, attention_mask=text_mask).predicted_image_embedding + if self.do_classifier_free_guidance: + (predicted_image_embedding_uncond, predicted_image_embedding_text) = predicted_image_embedding.chunk(2) + predicted_image_embedding = predicted_image_embedding_uncond + self.guidance_scale * (predicted_image_embedding_text - predicted_image_embedding_uncond) + if i + 1 == timesteps.shape[0]: + prev_timestep = None + else: + prev_timestep = timesteps[i + 1] + latents = self.scheduler.step(predicted_image_embedding, timestep=t, sample=latents, generator=generator, prev_timestep=prev_timestep).prev_sample + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + text_encoder_hidden_states = callback_outputs.pop('text_encoder_hidden_states', text_encoder_hidden_states) + text_mask = callback_outputs.pop('text_mask', text_mask) + latents = self.prior.post_process_latents(latents) + image_embeddings = latents + if negative_prompt is None: + zero_embeds = self.get_zero_embed(latents.shape[0], device=latents.device) + else: + (image_embeddings, zero_embeds) = image_embeddings.chunk(2) + self.maybe_free_model_hooks() + if output_type not in ['pt', 'np']: + raise ValueError(f'Only the output types `pt` and `np` are supported not output_type={output_type}') + if output_type == 'np': + image_embeddings = image_embeddings.cpu().numpy() + zero_embeds = zero_embeds.cpu().numpy() + if not return_dict: + return (image_embeddings, zero_embeds) + return KandinskyPriorPipelineOutput(image_embeds=image_embeddings, negative_image_embeds=zero_embeds) + +# File: diffusers-main/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +from typing import List, Optional, Union +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection +from ...models import PriorTransformer +from ...schedulers import UnCLIPScheduler +from ...utils import logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..kandinsky import KandinskyPriorPipelineOutput +from ..pipeline_utils import DiffusionPipeline +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorEmb2EmbPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... )\n >>> image_emb, nagative_image_emb = pipe_prior(prompt, image=img, strength=0.2).to_tuple()\n\n >>> pipe = KandinskyPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder, torch_dtype=torch.float16"\n ... )\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' +EXAMPLE_INTERPOLATE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22PriorEmb2EmbPipeline, KandinskyV22Pipeline\n >>> from diffusers.utils import load_image\n >>> import PIL\n\n >>> import torch\n >>> from torchvision import transforms\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> img1 = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... )\n\n >>> img2 = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/starry_night.jpeg"\n ... )\n\n >>> images_texts = ["a cat", img1, img2]\n >>> weights = [0.3, 0.3, 0.4]\n >>> image_emb, zero_image_emb = pipe_prior.interpolate(images_texts, weights)\n\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=150,\n ... ).images[0]\n\n >>> image.save("starry_cat.png")\n ```\n' + +class KandinskyV22PriorEmb2EmbPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'text_encoder->image_encoder->prior' + _exclude_from_cpu_offload = ['prior'] + + def __init__(self, prior: PriorTransformer, image_encoder: CLIPVisionModelWithProjection, text_encoder: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, scheduler: UnCLIPScheduler, image_processor: CLIPImageProcessor): + super().__init__() + self.register_modules(prior=prior, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=scheduler, image_encoder=image_encoder, image_processor=image_processor) + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start:] + return (timesteps, num_inference_steps - t_start) + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_INTERPOLATE_DOC_STRING) + def interpolate(self, images_and_prompts: List[Union[str, PIL.Image.Image, torch.Tensor]], weights: List[float], num_images_per_prompt: int=1, num_inference_steps: int=25, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, negative_prior_prompt: Optional[str]=None, negative_prompt: str='', guidance_scale: float=4.0, device=None): + device = device or self.device + if len(images_and_prompts) != len(weights): + raise ValueError(f'`images_and_prompts` contains {len(images_and_prompts)} items and `weights` contains {len(weights)} items - they should be lists of same length') + image_embeddings = [] + for (cond, weight) in zip(images_and_prompts, weights): + if isinstance(cond, str): + image_emb = self(cond, num_inference_steps=num_inference_steps, num_images_per_prompt=num_images_per_prompt, generator=generator, latents=latents, negative_prompt=negative_prior_prompt, guidance_scale=guidance_scale).image_embeds.unsqueeze(0) + elif isinstance(cond, (PIL.Image.Image, torch.Tensor)): + image_emb = self._encode_image(cond, device=device, num_images_per_prompt=num_images_per_prompt).unsqueeze(0) + else: + raise ValueError(f'`images_and_prompts` can only contains elements to be of type `str`, `PIL.Image.Image` or `torch.Tensor` but is {type(cond)}') + image_embeddings.append(image_emb * weight) + image_emb = torch.cat(image_embeddings).sum(dim=0) + return KandinskyPriorPipelineOutput(image_embeds=image_emb, negative_image_embeds=torch.randn_like(image_emb)) + + def _encode_image(self, image: Union[torch.Tensor, List[PIL.Image.Image]], device, num_images_per_prompt): + if not isinstance(image, torch.Tensor): + image = self.image_processor(image, return_tensors='pt').pixel_values.to(dtype=self.image_encoder.dtype, device=device) + image_emb = self.image_encoder(image)['image_embeds'] + image_emb = image_emb.repeat_interleave(num_images_per_prompt, dim=0) + image_emb.to(device=device) + return image_emb + + def prepare_latents(self, emb, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): + emb = emb.to(device=device, dtype=dtype) + batch_size = batch_size * num_images_per_prompt + init_latents = emb + if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: + additional_image_per_prompt = batch_size // init_latents.shape[0] + init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) + elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts.') + else: + init_latents = torch.cat([init_latents], dim=0) + shape = init_latents.shape + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + init_latents = self.scheduler.add_noise(init_latents, noise, timestep) + latents = init_latents + return latents + + def get_zero_embed(self, batch_size=1, device=None): + device = device or self.device + zero_img = torch.zeros(1, 3, self.image_encoder.config.image_size, self.image_encoder.config.image_size).to(device=device, dtype=self.image_encoder.dtype) + zero_image_emb = self.image_encoder(zero_img)['image_embeds'] + zero_image_emb = zero_image_emb.repeat(batch_size, 1) + return zero_image_emb + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None): + batch_size = len(prompt) if isinstance(prompt, list) else 1 + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + text_mask = text_inputs.attention_mask.bool().to(device) + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + text_input_ids = text_input_ids[:, :self.tokenizer.model_max_length] + text_encoder_output = self.text_encoder(text_input_ids.to(device)) + prompt_embeds = text_encoder_output.text_embeds + text_encoder_hidden_states = text_encoder_output.last_hidden_state + prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) + text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + uncond_text_mask = uncond_input.attention_mask.bool().to(device) + negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) + negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds + uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) + seq_len = uncond_text_encoder_hidden_states.shape[1] + uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) + uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(batch_size * num_images_per_prompt, seq_len, -1) + uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) + text_mask = torch.cat([uncond_text_mask, text_mask]) + return (prompt_embeds, text_encoder_hidden_states, text_mask) + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]], image: Union[torch.Tensor, List[torch.Tensor], PIL.Image.Image, List[PIL.Image.Image]], strength: float=0.3, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: int=1, num_inference_steps: int=25, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, guidance_scale: float=4.0, output_type: Optional[str]='pt', return_dict: bool=True): + if isinstance(prompt, str): + prompt = [prompt] + elif not isinstance(prompt, list): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if isinstance(negative_prompt, str): + negative_prompt = [negative_prompt] + elif not isinstance(negative_prompt, list) and negative_prompt is not None: + raise ValueError(f'`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}') + if negative_prompt is not None: + prompt = prompt + negative_prompt + negative_prompt = 2 * negative_prompt + device = self._execution_device + batch_size = len(prompt) + batch_size = batch_size * num_images_per_prompt + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, text_encoder_hidden_states, text_mask) = self._encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt) + if not isinstance(image, List): + image = [image] + if isinstance(image[0], torch.Tensor): + image = torch.cat(image, dim=0) + if isinstance(image, torch.Tensor) and image.ndim == 2: + image_embeds = image.repeat_interleave(num_images_per_prompt, dim=0) + elif isinstance(image, torch.Tensor) and image.ndim != 4: + raise ValueError(f' if pass `image` as pytorch tensor, or a list of pytorch tensor, please make sure each tensor has shape [batch_size, channels, height, width], currently {image[0].unsqueeze(0).shape}') + else: + image_embeds = self._encode_image(image, device, num_images_per_prompt) + self.scheduler.set_timesteps(num_inference_steps, device=device) + latents = image_embeds + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device) + latent_timestep = timesteps[:1].repeat(batch_size) + latents = self.prepare_latents(latents, latent_timestep, batch_size // num_images_per_prompt, num_images_per_prompt, prompt_embeds.dtype, device, generator) + for (i, t) in enumerate(self.progress_bar(timesteps)): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + predicted_image_embedding = self.prior(latent_model_input, timestep=t, proj_embedding=prompt_embeds, encoder_hidden_states=text_encoder_hidden_states, attention_mask=text_mask).predicted_image_embedding + if do_classifier_free_guidance: + (predicted_image_embedding_uncond, predicted_image_embedding_text) = predicted_image_embedding.chunk(2) + predicted_image_embedding = predicted_image_embedding_uncond + guidance_scale * (predicted_image_embedding_text - predicted_image_embedding_uncond) + if i + 1 == timesteps.shape[0]: + prev_timestep = None + else: + prev_timestep = timesteps[i + 1] + latents = self.scheduler.step(predicted_image_embedding, timestep=t, sample=latents, generator=generator, prev_timestep=prev_timestep).prev_sample + latents = self.prior.post_process_latents(latents) + image_embeddings = latents + if negative_prompt is None: + zero_embeds = self.get_zero_embed(latents.shape[0], device=latents.device) + else: + (image_embeddings, zero_embeds) = image_embeddings.chunk(2) + self.maybe_free_model_hooks() + if output_type not in ['pt', 'np']: + raise ValueError(f'Only the output types `pt` and `np` are supported not output_type={output_type}') + if output_type == 'np': + image_embeddings = image_embeddings.cpu().numpy() + zero_embeds = zero_embeds.cpu().numpy() + if not return_dict: + return (image_embeddings, zero_embeds) + return KandinskyPriorPipelineOutput(image_embeds=image_embeddings, negative_image_embeds=zero_embeds) + +# File: diffusers-main/src/diffusers/pipelines/kandinsky3/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_kandinsky3'] = ['Kandinsky3Pipeline'] + _import_structure['pipeline_kandinsky3_img2img'] = ['Kandinsky3Img2ImgPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_kandinsky3 import Kandinsky3Pipeline + from .pipeline_kandinsky3_img2img import Kandinsky3Img2ImgPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +import argparse +import fnmatch +from safetensors.torch import load_file +from diffusers import Kandinsky3UNet +MAPPING = {'to_time_embed.1': 'time_embedding.linear_1', 'to_time_embed.3': 'time_embedding.linear_2', 'in_layer': 'conv_in', 'out_layer.0': 'conv_norm_out', 'out_layer.2': 'conv_out', 'down_samples': 'down_blocks', 'up_samples': 'up_blocks', 'projection_lin': 'encoder_hid_proj.projection_linear', 'projection_ln': 'encoder_hid_proj.projection_norm', 'feature_pooling': 'add_time_condition', 'to_query': 'to_q', 'to_key': 'to_k', 'to_value': 'to_v', 'output_layer': 'to_out.0', 'self_attention_block': 'attentions.0'} +DYNAMIC_MAP = {'resnet_attn_blocks.*.0': 'resnets_in.*', 'resnet_attn_blocks.*.1': ('attentions.*', 1), 'resnet_attn_blocks.*.2': 'resnets_out.*'} + +def convert_state_dict(unet_state_dict): + converted_state_dict = {} + for key in unet_state_dict: + new_key = key + for (pattern, new_pattern) in MAPPING.items(): + new_key = new_key.replace(pattern, new_pattern) + for (dyn_pattern, dyn_new_pattern) in DYNAMIC_MAP.items(): + has_matched = False + if fnmatch.fnmatch(new_key, f'*.{dyn_pattern}.*') and (not has_matched): + star = int(new_key.split(dyn_pattern.split('.')[0])[-1].split('.')[1]) + if isinstance(dyn_new_pattern, tuple): + new_star = star + dyn_new_pattern[-1] + dyn_new_pattern = dyn_new_pattern[0] + else: + new_star = star + pattern = dyn_pattern.replace('*', str(star)) + new_pattern = dyn_new_pattern.replace('*', str(new_star)) + new_key = new_key.replace(pattern, new_pattern) + has_matched = True + converted_state_dict[new_key] = unet_state_dict[key] + return converted_state_dict + +def main(model_path, output_path): + unet_state_dict = load_file(model_path) + config = {} + converted_state_dict = convert_state_dict(unet_state_dict) + unet = Kandinsky3UNet(config) + unet.load_state_dict(converted_state_dict) + unet.save_pretrained(output_path) + print(f'Converted model saved to {output_path}') +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Convert U-Net PyTorch model to Kandinsky3UNet format') + parser.add_argument('--model_path', type=str, required=True, help='Path to the original U-Net PyTorch model') + parser.add_argument('--output_path', type=str, required=True, help='Path to save the converted model') + args = parser.parse_args() + main(args.model_path, args.output_path) + +# File: diffusers-main/src/diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +from typing import Callable, Dict, List, Optional, Union +import torch +from transformers import T5EncoderModel, T5Tokenizer +from ...loaders import StableDiffusionLoraLoaderMixin +from ...models import Kandinsky3UNet, VQModel +from ...schedulers import DDPMScheduler +from ...utils import deprecate, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import AutoPipelineForText2Image\n >>> import torch\n\n >>> pipe = AutoPipelineForText2Image.from_pretrained(\n ... "kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16\n ... )\n >>> pipe.enable_model_cpu_offload()\n\n >>> prompt = "A photograph of the inside of a subway train. There are raccoons sitting on the seats. One of them is reading a newspaper. The window shows the city in the background."\n\n >>> generator = torch.Generator(device="cpu").manual_seed(0)\n >>> image = pipe(prompt, num_inference_steps=25, generator=generator).images[0]\n ```\n\n' + +def downscale_height_and_width(height, width, scale_factor=8): + new_height = height // scale_factor ** 2 + if height % scale_factor ** 2 != 0: + new_height += 1 + new_width = width // scale_factor ** 2 + if width % scale_factor ** 2 != 0: + new_width += 1 + return (new_height * scale_factor, new_width * scale_factor) + +class Kandinsky3Pipeline(DiffusionPipeline, StableDiffusionLoraLoaderMixin): + model_cpu_offload_seq = 'text_encoder->unet->movq' + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'negative_attention_mask', 'attention_mask'] + + def __init__(self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, unet: Kandinsky3UNet, scheduler: DDPMScheduler, movq: VQModel): + super().__init__() + self.register_modules(tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, movq=movq) + + def process_embeds(self, embeddings, attention_mask, cut_context): + if cut_context: + embeddings[attention_mask == 0] = torch.zeros_like(embeddings[attention_mask == 0]) + max_seq_length = attention_mask.sum(-1).max() + 1 + embeddings = embeddings[:, :max_seq_length] + attention_mask = attention_mask[:, :max_seq_length] + return (embeddings, attention_mask) + + @torch.no_grad() + def encode_prompt(self, prompt, do_classifier_free_guidance=True, num_images_per_prompt=1, device=None, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, _cut_context=False, attention_mask: Optional[torch.Tensor]=None, negative_attention_mask: Optional[torch.Tensor]=None): + if prompt is not None and negative_prompt is not None: + if type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + if device is None: + device = self._execution_device + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + max_length = 128 + if prompt_embeds is None: + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids.to(device) + attention_mask = text_inputs.attention_mask.to(device) + prompt_embeds = self.text_encoder(text_input_ids, attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + (prompt_embeds, attention_mask) = self.process_embeds(prompt_embeds, attention_mask, _cut_context) + prompt_embeds = prompt_embeds * attention_mask.unsqueeze(2) + if self.text_encoder is not None: + dtype = self.text_encoder.dtype + else: + dtype = None + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + attention_mask = attention_mask.repeat(num_images_per_prompt, 1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if negative_prompt is not None: + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=128, truncation=True, return_attention_mask=True, return_tensors='pt') + text_input_ids = uncond_input.input_ids.to(device) + negative_attention_mask = uncond_input.attention_mask.to(device) + negative_prompt_embeds = self.text_encoder(text_input_ids, attention_mask=negative_attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds[:, :prompt_embeds.shape[1]] + negative_attention_mask = negative_attention_mask[:, :prompt_embeds.shape[1]] + negative_prompt_embeds = negative_prompt_embeds * negative_attention_mask.unsqueeze(2) + else: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_attention_mask = torch.zeros_like(attention_mask) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) + if negative_prompt_embeds.shape != prompt_embeds.shape: + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + negative_attention_mask = negative_attention_mask.repeat(num_images_per_prompt, 1) + else: + negative_prompt_embeds = None + negative_attention_mask = None + return (prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask) + + def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + if latents.shape != shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}') + latents = latents.to(device) + latents = latents * scheduler.init_noise_sigma + return latents + + def check_inputs(self, prompt, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, attention_mask=None, negative_attention_mask=None): + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if negative_prompt_embeds is not None and negative_attention_mask is None: + raise ValueError('Please provide `negative_attention_mask` along with `negative_prompt_embeds`') + if negative_prompt_embeds is not None and negative_attention_mask is not None: + if negative_prompt_embeds.shape[:2] != negative_attention_mask.shape: + raise ValueError(f'`negative_prompt_embeds` and `negative_attention_mask` must have the same batch_size and token length when passed directly, but got: `negative_prompt_embeds` {negative_prompt_embeds.shape[:2]} != `negative_attention_mask` {negative_attention_mask.shape}.') + if prompt_embeds is not None and attention_mask is None: + raise ValueError('Please provide `attention_mask` along with `prompt_embeds`') + if prompt_embeds is not None and attention_mask is not None: + if prompt_embeds.shape[:2] != attention_mask.shape: + raise ValueError(f'`prompt_embeds` and `attention_mask` must have the same batch_size and token length when passed directly, but got: `prompt_embeds` {prompt_embeds.shape[:2]} != `attention_mask` {attention_mask.shape}.') + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, num_inference_steps: int=25, guidance_scale: float=3.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, height: Optional[int]=1024, width: Optional[int]=1024, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, negative_attention_mask: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, latents=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + cut_context = True + device = self._execution_device + self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, callback_on_step_end_tensor_inputs, attention_mask, negative_attention_mask) + self._guidance_scale = guidance_scale + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + (prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask) = self.encode_prompt(prompt, self.do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt, device=device, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, _cut_context=cut_context, attention_mask=attention_mask, negative_attention_mask=negative_attention_mask) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + attention_mask = torch.cat([negative_attention_mask, attention_mask]).bool() + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + (height, width) = downscale_height_and_width(height, width, 8) + latents = self.prepare_latents((batch_size * num_images_per_prompt, 4, height, width), prompt_embeds.dtype, device, generator, latents, self.scheduler) + if hasattr(self, 'text_encoder_offload_hook') and self.text_encoder_offload_hook is not None: + self.text_encoder_offload_hook.offload() + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, encoder_attention_mask=attention_mask, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = (guidance_scale + 1.0) * noise_pred_text - guidance_scale * noise_pred_uncond + latents = self.scheduler.step(noise_pred, t, latents, generator=generator).prev_sample + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + attention_mask = callback_outputs.pop('attention_mask', attention_mask) + negative_attention_mask = callback_outputs.pop('negative_attention_mask', negative_attention_mask) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if output_type not in ['pt', 'np', 'pil', 'latent']: + raise ValueError(f'Only the output types `pt`, `pil`, `np` and `latent` are supported not output_type={output_type}') + if not output_type == 'latent': + image = self.movq.decode(latents, force_not_quantize=True)['sample'] + if output_type in ['np', 'pil']: + image = image * 0.5 + 0.5 + image = image.clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + if output_type == 'pil': + image = self.numpy_to_pil(image) + else: + image = latents + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +import inspect +from typing import Callable, Dict, List, Optional, Union +import numpy as np +import PIL +import PIL.Image +import torch +from transformers import T5EncoderModel, T5Tokenizer +from ...loaders import StableDiffusionLoraLoaderMixin +from ...models import Kandinsky3UNet, VQModel +from ...schedulers import DDPMScheduler +from ...utils import deprecate, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import AutoPipelineForImage2Image\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe = AutoPipelineForImage2Image.from_pretrained(\n ... "kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16\n ... )\n >>> pipe.enable_model_cpu_offload()\n\n >>> prompt = "A painting of the inside of a subway train with tiny raccoons."\n >>> image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky3/t2i.png"\n ... )\n\n >>> generator = torch.Generator(device="cpu").manual_seed(0)\n >>> image = pipe(prompt, image=image, strength=0.75, num_inference_steps=25, generator=generator).images[0]\n ```\n' + +def downscale_height_and_width(height, width, scale_factor=8): + new_height = height // scale_factor ** 2 + if height % scale_factor ** 2 != 0: + new_height += 1 + new_width = width // scale_factor ** 2 + if width % scale_factor ** 2 != 0: + new_width += 1 + return (new_height * scale_factor, new_width * scale_factor) + +def prepare_image(pil_image): + arr = np.array(pil_image.convert('RGB')) + arr = arr.astype(np.float32) / 127.5 - 1 + arr = np.transpose(arr, [2, 0, 1]) + image = torch.from_numpy(arr).unsqueeze(0) + return image + +class Kandinsky3Img2ImgPipeline(DiffusionPipeline, StableDiffusionLoraLoaderMixin): + model_cpu_offload_seq = 'text_encoder->movq->unet->movq' + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'negative_attention_mask', 'attention_mask'] + + def __init__(self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, unet: Kandinsky3UNet, scheduler: DDPMScheduler, movq: VQModel): + super().__init__() + self.register_modules(tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, movq=movq) + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start:] + return (timesteps, num_inference_steps - t_start) + + def _process_embeds(self, embeddings, attention_mask, cut_context): + if cut_context: + embeddings[attention_mask == 0] = torch.zeros_like(embeddings[attention_mask == 0]) + max_seq_length = attention_mask.sum(-1).max() + 1 + embeddings = embeddings[:, :max_seq_length] + attention_mask = attention_mask[:, :max_seq_length] + return (embeddings, attention_mask) + + @torch.no_grad() + def encode_prompt(self, prompt, do_classifier_free_guidance=True, num_images_per_prompt=1, device=None, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, _cut_context=False, attention_mask: Optional[torch.Tensor]=None, negative_attention_mask: Optional[torch.Tensor]=None): + if prompt is not None and negative_prompt is not None: + if type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + if device is None: + device = self._execution_device + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + max_length = 128 + if prompt_embeds is None: + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids.to(device) + attention_mask = text_inputs.attention_mask.to(device) + prompt_embeds = self.text_encoder(text_input_ids, attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + (prompt_embeds, attention_mask) = self._process_embeds(prompt_embeds, attention_mask, _cut_context) + prompt_embeds = prompt_embeds * attention_mask.unsqueeze(2) + if self.text_encoder is not None: + dtype = self.text_encoder.dtype + else: + dtype = None + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + attention_mask = attention_mask.repeat(num_images_per_prompt, 1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if negative_prompt is not None: + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=128, truncation=True, return_attention_mask=True, return_tensors='pt') + text_input_ids = uncond_input.input_ids.to(device) + negative_attention_mask = uncond_input.attention_mask.to(device) + negative_prompt_embeds = self.text_encoder(text_input_ids, attention_mask=negative_attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds[:, :prompt_embeds.shape[1]] + negative_attention_mask = negative_attention_mask[:, :prompt_embeds.shape[1]] + negative_prompt_embeds = negative_prompt_embeds * negative_attention_mask.unsqueeze(2) + else: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_attention_mask = torch.zeros_like(attention_mask) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) + if negative_prompt_embeds.shape != prompt_embeds.shape: + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + negative_attention_mask = negative_attention_mask.repeat(num_images_per_prompt, 1) + else: + negative_prompt_embeds = None + negative_attention_mask = None + return (prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask) + + def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): + if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}') + image = image.to(device=device, dtype=dtype) + batch_size = batch_size * num_images_per_prompt + if image.shape[1] == 4: + init_latents = image + else: + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + elif isinstance(generator, list): + init_latents = [self.movq.encode(image[i:i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)] + init_latents = torch.cat(init_latents, dim=0) + else: + init_latents = self.movq.encode(image).latent_dist.sample(generator) + init_latents = self.movq.config.scaling_factor * init_latents + init_latents = torch.cat([init_latents], dim=0) + shape = init_latents.shape + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + init_latents = self.scheduler.add_noise(init_latents, noise, timestep) + latents = init_latents + return latents + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, attention_mask=None, negative_attention_mask=None): + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if negative_prompt_embeds is not None and negative_attention_mask is None: + raise ValueError('Please provide `negative_attention_mask` along with `negative_prompt_embeds`') + if negative_prompt_embeds is not None and negative_attention_mask is not None: + if negative_prompt_embeds.shape[:2] != negative_attention_mask.shape: + raise ValueError(f'`negative_prompt_embeds` and `negative_attention_mask` must have the same batch_size and token length when passed directly, but got: `negative_prompt_embeds` {negative_prompt_embeds.shape[:2]} != `negative_attention_mask` {negative_attention_mask.shape}.') + if prompt_embeds is not None and attention_mask is None: + raise ValueError('Please provide `attention_mask` along with `prompt_embeds`') + if prompt_embeds is not None and attention_mask is not None: + if prompt_embeds.shape[:2] != attention_mask.shape: + raise ValueError(f'`prompt_embeds` and `attention_mask` must have the same batch_size and token length when passed directly, but got: `prompt_embeds` {prompt_embeds.shape[:2]} != `attention_mask` {attention_mask.shape}.') + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]]=None, strength: float=0.3, num_inference_steps: int=25, guidance_scale: float=3.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, negative_attention_mask: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + cut_context = True + self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, callback_on_step_end_tensor_inputs, attention_mask, negative_attention_mask) + self._guidance_scale = guidance_scale + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + (prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask) = self.encode_prompt(prompt, self.do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt, device=device, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, _cut_context=cut_context, attention_mask=attention_mask, negative_attention_mask=negative_attention_mask) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + attention_mask = torch.cat([negative_attention_mask, attention_mask]).bool() + if not isinstance(image, list): + image = [image] + if not all((isinstance(i, (PIL.Image.Image, torch.Tensor)) for i in image)): + raise ValueError(f'Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support PIL image and pytorch tensor') + image = torch.cat([prepare_image(i) for i in image], dim=0) + image = image.to(dtype=prompt_embeds.dtype, device=device) + self.scheduler.set_timesteps(num_inference_steps, device=device) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device) + latents = self.movq.encode(image)['latents'] + latents = latents.repeat_interleave(num_images_per_prompt, dim=0) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + latents = self.prepare_latents(latents, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator) + if hasattr(self, 'text_encoder_offload_hook') and self.text_encoder_offload_hook is not None: + self.text_encoder_offload_hook.offload() + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, encoder_attention_mask=attention_mask)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = (guidance_scale + 1.0) * noise_pred_text - guidance_scale * noise_pred_uncond + latents = self.scheduler.step(noise_pred, t, latents, generator=generator).prev_sample + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + attention_mask = callback_outputs.pop('attention_mask', attention_mask) + negative_attention_mask = callback_outputs.pop('negative_attention_mask', negative_attention_mask) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if output_type not in ['pt', 'np', 'pil', 'latent']: + raise ValueError(f'Only the output types `pt`, `pil`, `np` and `latent` are supported not output_type={output_type}') + if not output_type == 'latent': + image = self.movq.decode(latents, force_not_quantize=True)['sample'] + if output_type in ['np', 'pil']: + image = image * 0.5 + 0.5 + image = image.clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + if output_type == 'pil': + image = self.numpy_to_pil(image) + else: + image = latents + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/kolors/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_sentencepiece_available, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()) and is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_and_sentencepiece_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_and_sentencepiece_objects)) +else: + _import_structure['pipeline_kolors'] = ['KolorsPipeline'] + _import_structure['pipeline_kolors_img2img'] = ['KolorsImg2ImgPipeline'] + _import_structure['text_encoder'] = ['ChatGLMModel'] + _import_structure['tokenizer'] = ['ChatGLMTokenizer'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()) and is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_and_sentencepiece_objects import * + else: + from .pipeline_kolors import KolorsPipeline + from .pipeline_kolors_img2img import KolorsImg2ImgPipeline + from .text_encoder import ChatGLMModel + from .tokenizer import ChatGLMTokenizer +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/kolors/pipeline_kolors.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import torch +from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import IPAdapterMixin, StableDiffusionXLLoraLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import is_torch_xla_available, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from .pipeline_output import KolorsPipelineOutput +from .text_encoder import ChatGLMModel +from .tokenizer import ChatGLMTokenizer +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import KolorsPipeline\n\n >>> pipe = KolorsPipeline.from_pretrained(\n ... "Kwai-Kolors/Kolors-diffusers", variant="fp16", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n >>> prompt = (\n ... "A photo of a ladybug, macro, zoom, high quality, film, holding a wooden sign with the text \'KOLORS\'"\n ... )\n >>> image = pipe(prompt).images[0]\n ```\n' + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class KolorsPipeline(DiffusionPipeline, StableDiffusionMixin, StableDiffusionXLLoraLoaderMixin, IPAdapterMixin): + model_cpu_offload_seq = 'text_encoder->image_encoder->unet->vae' + _optional_components = ['image_encoder', 'feature_extractor'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'add_text_embeds', 'add_time_ids', 'negative_pooled_prompt_embeds', 'negative_add_time_ids'] + + def __init__(self, vae: AutoencoderKL, text_encoder: ChatGLMModel, tokenizer: ChatGLMTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, image_encoder: CLIPVisionModelWithProjection=None, feature_extractor: CLIPImageProcessor=None, force_zeros_for_empty_prompt: bool=False): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, image_encoder=image_encoder, feature_extractor=feature_extractor) + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, 'vae') and self.vae is not None else 8 + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.default_sample_size = self.unet.config.sample_size + + def encode_prompt(self, prompt, device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt=None, prompt_embeds: Optional[torch.FloatTensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.FloatTensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, max_sequence_length: int=256): + device = device or self._execution_device + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + tokenizers = [self.tokenizer] + text_encoders = [self.text_encoder] + if prompt_embeds is None: + prompt_embeds_list = [] + for (tokenizer, text_encoder) in zip(tokenizers, text_encoders): + text_inputs = tokenizer(prompt, padding='max_length', max_length=max_sequence_length, truncation=True, return_tensors='pt').to(device) + output = text_encoder(input_ids=text_inputs['input_ids'], attention_mask=text_inputs['attention_mask'], position_ids=text_inputs['position_ids'], output_hidden_states=True) + prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone() + pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + prompt_embeds_list.append(prompt_embeds) + prompt_embeds = prompt_embeds_list[0] + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + negative_prompt_embeds_list = [] + for (tokenizer, text_encoder) in zip(tokenizers, text_encoders): + uncond_input = tokenizer(uncond_tokens, padding='max_length', max_length=max_sequence_length, truncation=True, return_tensors='pt').to(device) + output = text_encoder(input_ids=uncond_input['input_ids'], attention_mask=uncond_input['attention_mask'], position_ids=uncond_input['position_ids'], output_hidden_states=True) + negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone() + negative_pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + negative_prompt_embeds_list.append(negative_prompt_embeds) + negative_prompt_embeds = negative_prompt_embeds_list[0] + bs_embed = pooled_prompt_embeds.shape[0] + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, num_inference_steps, height, width, negative_prompt=None, prompt_embeds=None, pooled_prompt_embeds=None, negative_prompt_embeds=None, negative_pooled_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None, max_sequence_length=None): + if not isinstance(num_inference_steps, int) or num_inference_steps <= 0: + raise ValueError(f'`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type {type(num_inference_steps)}.') + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + if max_sequence_length is not None and max_sequence_length > 256: + raise ValueError(f'`max_sequence_length` cannot be greater than 256 but is {max_sequence_length}') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.') + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + return add_time_ids + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor, FusedAttnProcessor2_0)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def denoising_end(self): + return self._denoising_end + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, timesteps: List[int]=None, sigmas: List[float]=None, denoising_end: Optional[float]=None, guidance_scale: float=5.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, original_size: Optional[Tuple[int, int]]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), target_size: Optional[Tuple[int, int]]=None, negative_original_size: Optional[Tuple[int, int]]=None, negative_crops_coords_top_left: Tuple[int, int]=(0, 0), negative_target_size: Optional[Tuple[int, int]]=None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], max_sequence_length: int=256): + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + original_size = original_size or (height, width) + target_size = target_size or (height, width) + self.check_inputs(prompt, num_inference_steps, height, width, negative_prompt, prompt_embeds, pooled_prompt_embeds, negative_prompt_embeds, negative_pooled_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length) + self._guidance_scale = guidance_scale + self._cross_attention_kwargs = cross_attention_kwargs + self._denoising_end = denoising_end + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + add_text_embeds = pooled_prompt_embeds + text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) + add_time_ids = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + if negative_original_size is not None and negative_target_size is not None: + negative_add_time_ids = self._get_add_time_ids(negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + else: + negative_add_time_ids = add_time_ids + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + if self.denoising_end is not None and isinstance(self.denoising_end, float) and (self.denoising_end > 0) and (self.denoising_end < 1): + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - self.denoising_end * self.scheduler.config.num_train_timesteps)) + num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) + timesteps = timesteps[:num_inference_steps] + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + added_cond_kwargs['image_embeds'] = image_embeds + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + latents = latents.to(latents_dtype) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + add_text_embeds = callback_outputs.pop('add_text_embeds', add_text_embeds) + negative_pooled_prompt_embeds = callback_outputs.pop('negative_pooled_prompt_embeds', negative_pooled_prompt_embeds) + add_time_ids = callback_outputs.pop('add_time_ids', add_time_ids) + negative_add_time_ids = callback_outputs.pop('negative_add_time_ids', negative_add_time_ids) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if XLA_AVAILABLE: + xm.mark_step() + if not output_type == 'latent': + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + elif latents.dtype != self.vae.dtype: + if torch.backends.mps.is_available(): + self.vae = self.vae.to(latents.dtype) + latents = latents / self.vae.config.scaling_factor + image = self.vae.decode(latents, return_dict=False)[0] + if needs_upcasting: + self.vae.to(dtype=torch.float16) + else: + image = latents + if not output_type == 'latent': + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return KolorsPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/kolors/pipeline_kolors_img2img.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import IPAdapterMixin, StableDiffusionXLLoraLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import is_torch_xla_available, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from .pipeline_output import KolorsPipelineOutput +from .text_encoder import ChatGLMModel +from .tokenizer import ChatGLMTokenizer +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import KolorsImg2ImgPipeline\n >>> from diffusers.utils import load_image\n\n >>> pipe = KolorsImg2ImgPipeline.from_pretrained(\n ... "Kwai-Kolors/Kolors-diffusers", variant="fp16", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n >>> url = (\n ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/kolors/bunny_source.png"\n ... )\n\n\n >>> init_image = load_image(url)\n >>> prompt = "high quality image of a capybara wearing sunglasses. In the background of the image there are trees, poles, grass and other objects. At the bottom of the object there is the road., 8k, highly detailed."\n >>> image = pipe(prompt, image=init_image).images[0]\n ```\n' + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class KolorsImg2ImgPipeline(DiffusionPipeline, StableDiffusionMixin, StableDiffusionXLLoraLoaderMixin, IPAdapterMixin): + model_cpu_offload_seq = 'text_encoder->image_encoder-unet->vae' + _optional_components = ['image_encoder', 'feature_extractor'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'add_text_embeds', 'add_time_ids', 'negative_pooled_prompt_embeds', 'negative_add_time_ids'] + + def __init__(self, vae: AutoencoderKL, text_encoder: ChatGLMModel, tokenizer: ChatGLMTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, image_encoder: CLIPVisionModelWithProjection=None, feature_extractor: CLIPImageProcessor=None, force_zeros_for_empty_prompt: bool=False): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, image_encoder=image_encoder, feature_extractor=feature_extractor) + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, 'vae') and self.vae is not None else 8 + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.default_sample_size = self.unet.config.sample_size + + def encode_prompt(self, prompt, device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt=None, prompt_embeds: Optional[torch.FloatTensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.FloatTensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, max_sequence_length: int=256): + device = device or self._execution_device + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + tokenizers = [self.tokenizer] + text_encoders = [self.text_encoder] + if prompt_embeds is None: + prompt_embeds_list = [] + for (tokenizer, text_encoder) in zip(tokenizers, text_encoders): + text_inputs = tokenizer(prompt, padding='max_length', max_length=max_sequence_length, truncation=True, return_tensors='pt').to(device) + output = text_encoder(input_ids=text_inputs['input_ids'], attention_mask=text_inputs['attention_mask'], position_ids=text_inputs['position_ids'], output_hidden_states=True) + prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone() + pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + prompt_embeds_list.append(prompt_embeds) + prompt_embeds = prompt_embeds_list[0] + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + negative_prompt_embeds_list = [] + for (tokenizer, text_encoder) in zip(tokenizers, text_encoders): + uncond_input = tokenizer(uncond_tokens, padding='max_length', max_length=max_sequence_length, truncation=True, return_tensors='pt').to(device) + output = text_encoder(input_ids=uncond_input['input_ids'], attention_mask=uncond_input['attention_mask'], position_ids=uncond_input['position_ids'], output_hidden_states=True) + negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone() + negative_pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + negative_prompt_embeds_list.append(negative_prompt_embeds) + negative_prompt_embeds = negative_prompt_embeds_list[0] + bs_embed = pooled_prompt_embeds.shape[0] + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, strength, num_inference_steps, height, width, negative_prompt=None, prompt_embeds=None, pooled_prompt_embeds=None, negative_prompt_embeds=None, negative_pooled_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None, max_sequence_length=None): + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if not isinstance(num_inference_steps, int) or num_inference_steps <= 0: + raise ValueError(f'`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type {type(num_inference_steps)}.') + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + if max_sequence_length is not None and max_sequence_length > 256: + raise ValueError(f'`max_sequence_length` cannot be greater than 256 but is {max_sequence_length}') + + def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None): + if denoising_start is None: + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + else: + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - denoising_start * self.scheduler.config.num_train_timesteps)) + num_inference_steps = (self.scheduler.timesteps < discrete_timestep_cutoff).sum().item() + if self.scheduler.order == 2 and num_inference_steps % 2 == 0: + num_inference_steps = num_inference_steps + 1 + t_start = len(self.scheduler.timesteps) - num_inference_steps + timesteps = self.scheduler.timesteps[t_start:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start) + return (timesteps, num_inference_steps) + + def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True): + if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}') + latents_mean = latents_std = None + if hasattr(self.vae.config, 'latents_mean') and self.vae.config.latents_mean is not None: + latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1) + if hasattr(self.vae.config, 'latents_std') and self.vae.config.latents_std is not None: + latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1) + if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None: + self.text_encoder_2.to('cpu') + torch.cuda.empty_cache() + image = image.to(device=device, dtype=dtype) + batch_size = batch_size * num_images_per_prompt + if image.shape[1] == 4: + init_latents = image + else: + if self.vae.config.force_upcast: + image = image.float() + self.vae.to(dtype=torch.float32) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + elif isinstance(generator, list): + if image.shape[0] < batch_size and batch_size % image.shape[0] == 0: + image = torch.cat([image] * (batch_size // image.shape[0]), dim=0) + elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} ') + init_latents = [retrieve_latents(self.vae.encode(image[i:i + 1]), generator=generator[i]) for i in range(batch_size)] + init_latents = torch.cat(init_latents, dim=0) + else: + init_latents = retrieve_latents(self.vae.encode(image), generator=generator) + if self.vae.config.force_upcast: + self.vae.to(dtype) + init_latents = init_latents.to(dtype) + if latents_mean is not None and latents_std is not None: + latents_mean = latents_mean.to(device=device, dtype=dtype) + latents_std = latents_std.to(device=device, dtype=dtype) + init_latents = (init_latents - latents_mean) * self.vae.config.scaling_factor / latents_std + else: + init_latents = self.vae.config.scaling_factor * init_latents + if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: + additional_image_per_prompt = batch_size // init_latents.shape[0] + init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) + elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts.') + else: + init_latents = torch.cat([init_latents], dim=0) + if add_noise: + shape = init_latents.shape + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + init_latents = self.scheduler.add_noise(init_latents, noise, timestep) + latents = init_latents + return latents + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.') + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + return add_time_ids + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor, FusedAttnProcessor2_0)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def denoising_start(self): + return self._denoising_start + + @property + def denoising_end(self): + return self._denoising_end + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, image: PipelineImageInput=None, strength: float=0.3, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, timesteps: List[int]=None, sigmas: List[float]=None, denoising_start: Optional[float]=None, denoising_end: Optional[float]=None, guidance_scale: float=5.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, original_size: Optional[Tuple[int, int]]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), target_size: Optional[Tuple[int, int]]=None, negative_original_size: Optional[Tuple[int, int]]=None, negative_crops_coords_top_left: Tuple[int, int]=(0, 0), negative_target_size: Optional[Tuple[int, int]]=None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], max_sequence_length: int=256): + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + original_size = original_size or (height, width) + target_size = target_size or (height, width) + self.check_inputs(prompt, strength, num_inference_steps, height, width, negative_prompt, prompt_embeds, pooled_prompt_embeds, negative_prompt_embeds, negative_pooled_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length) + self._guidance_scale = guidance_scale + self._cross_attention_kwargs = cross_attention_kwargs + self._denoising_end = denoising_end + self._denoising_start = denoising_start + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds) + image = self.image_processor.preprocess(image) + + def denoising_value_valid(dnv): + return isinstance(dnv, float) and 0 < dnv < 1 + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device, denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + add_noise = True if self.denoising_start is None else False + if latents is None: + latents = self.prepare_latents(image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator, add_noise) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + (height, width) = latents.shape[-2:] + height = height * self.vae_scale_factor + width = width * self.vae_scale_factor + original_size = original_size or (height, width) + target_size = target_size or (height, width) + add_text_embeds = pooled_prompt_embeds + text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) + add_time_ids = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + if negative_original_size is not None and negative_target_size is not None: + negative_add_time_ids = self._get_add_time_ids(negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + else: + negative_add_time_ids = add_time_ids + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + if self.denoising_end is not None and self.denoising_start is not None and denoising_value_valid(self.denoising_end) and denoising_value_valid(self.denoising_start) and (self.denoising_start >= self.denoising_end): + raise ValueError(f'`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: ' + f' {self.denoising_end} when using type float.') + elif self.denoising_end is not None and denoising_value_valid(self.denoising_end): + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - self.denoising_end * self.scheduler.config.num_train_timesteps)) + num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) + timesteps = timesteps[:num_inference_steps] + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + added_cond_kwargs['image_embeds'] = image_embeds + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + latents = latents.to(latents_dtype) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + add_text_embeds = callback_outputs.pop('add_text_embeds', add_text_embeds) + negative_pooled_prompt_embeds = callback_outputs.pop('negative_pooled_prompt_embeds', negative_pooled_prompt_embeds) + add_time_ids = callback_outputs.pop('add_time_ids', add_time_ids) + negative_add_time_ids = callback_outputs.pop('negative_add_time_ids', negative_add_time_ids) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if XLA_AVAILABLE: + xm.mark_step() + if not output_type == 'latent': + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + elif latents.dtype != self.vae.dtype: + if torch.backends.mps.is_available(): + self.vae = self.vae.to(latents.dtype) + latents = latents / self.vae.config.scaling_factor + image = self.vae.decode(latents, return_dict=False)[0] + if needs_upcasting: + self.vae.to(dtype=torch.float16) + else: + image = latents + if not output_type == 'latent': + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return KolorsPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/kolors/pipeline_output.py +from dataclasses import dataclass +from typing import List, Union +import numpy as np +import PIL.Image +from ...utils import BaseOutput + +@dataclass +class KolorsPipelineOutput(BaseOutput): + images: Union[List[PIL.Image.Image], np.ndarray] + +# File: diffusers-main/src/diffusers/pipelines/kolors/text_encoder.py +import math +from typing import List, Optional, Tuple +import torch +import torch.nn.functional as F +from torch import nn +from torch.nn import LayerNorm +from torch.nn.utils import skip_init +from transformers import PretrainedConfig, PreTrainedModel +from transformers.modeling_outputs import BaseModelOutputWithPast +from ...utils import logging +logger = logging.get_logger(__name__) + +class ChatGLMConfig(PretrainedConfig): + model_type = 'chatglm' + + def __init__(self, num_layers=28, padded_vocab_size=65024, hidden_size=4096, ffn_hidden_size=13696, kv_channels=128, num_attention_heads=32, seq_length=2048, hidden_dropout=0.0, classifier_dropout=None, attention_dropout=0.0, layernorm_epsilon=1e-05, rmsnorm=True, apply_residual_connection_post_layernorm=False, post_layer_norm=True, add_bias_linear=False, add_qkv_bias=False, bias_dropout_fusion=True, multi_query_attention=False, multi_query_group_num=1, apply_query_key_layer_scaling=True, attention_softmax_in_fp32=True, fp32_residual_connection=False, quantization_bit=0, pre_seq_len=None, prefix_projection=False, **kwargs): + self.num_layers = num_layers + self.vocab_size = padded_vocab_size + self.padded_vocab_size = padded_vocab_size + self.hidden_size = hidden_size + self.ffn_hidden_size = ffn_hidden_size + self.kv_channels = kv_channels + self.num_attention_heads = num_attention_heads + self.seq_length = seq_length + self.hidden_dropout = hidden_dropout + self.classifier_dropout = classifier_dropout + self.attention_dropout = attention_dropout + self.layernorm_epsilon = layernorm_epsilon + self.rmsnorm = rmsnorm + self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm + self.post_layer_norm = post_layer_norm + self.add_bias_linear = add_bias_linear + self.add_qkv_bias = add_qkv_bias + self.bias_dropout_fusion = bias_dropout_fusion + self.multi_query_attention = multi_query_attention + self.multi_query_group_num = multi_query_group_num + self.apply_query_key_layer_scaling = apply_query_key_layer_scaling + self.attention_softmax_in_fp32 = attention_softmax_in_fp32 + self.fp32_residual_connection = fp32_residual_connection + self.quantization_bit = quantization_bit + self.pre_seq_len = pre_seq_len + self.prefix_projection = prefix_projection + super().__init__(**kwargs) + +class RMSNorm(torch.nn.Module): + + def __init__(self, normalized_shape, eps=1e-05, device=None, dtype=None, **kwargs): + super().__init__() + self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype)) + self.eps = eps + + def forward(self, hidden_states: torch.Tensor): + input_dtype = hidden_states.dtype + variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.eps) + return (self.weight * hidden_states).to(input_dtype) + +def _config_to_kwargs(args): + common_kwargs = {'dtype': args.torch_dtype} + return common_kwargs + +class CoreAttention(torch.nn.Module): + + def __init__(self, config: ChatGLMConfig, layer_number): + super(CoreAttention, self).__init__() + self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling + self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32 + if self.apply_query_key_layer_scaling: + self.attention_softmax_in_fp32 = True + self.layer_number = max(1, layer_number) + projection_size = config.kv_channels * config.num_attention_heads + self.hidden_size_per_partition = projection_size + self.hidden_size_per_attention_head = projection_size // config.num_attention_heads + self.num_attention_heads_per_partition = config.num_attention_heads + coeff = None + self.norm_factor = math.sqrt(self.hidden_size_per_attention_head) + if self.apply_query_key_layer_scaling: + coeff = self.layer_number + self.norm_factor *= coeff + self.coeff = coeff + self.attention_dropout = torch.nn.Dropout(config.attention_dropout) + + def forward(self, query_layer, key_layer, value_layer, attention_mask): + pytorch_major_version = int(torch.__version__.split('.')[0]) + if pytorch_major_version >= 2: + (query_layer, key_layer, value_layer) = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]] + if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]: + context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer, is_causal=True) + else: + if attention_mask is not None: + attention_mask = ~attention_mask + context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer, attention_mask) + context_layer = context_layer.permute(2, 0, 1, 3) + new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,) + context_layer = context_layer.reshape(*new_context_layer_shape) + else: + output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0)) + query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1) + key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1) + matmul_input_buffer = torch.empty(output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype, device=query_layer.device) + matmul_result = torch.baddbmm(matmul_input_buffer, query_layer.transpose(0, 1), key_layer.transpose(0, 1).transpose(1, 2), beta=0.0, alpha=1.0 / self.norm_factor) + attention_scores = matmul_result.view(*output_size) + if self.attention_softmax_in_fp32: + attention_scores = attention_scores.float() + if self.coeff is not None: + attention_scores = attention_scores * self.coeff + if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]: + attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3], device=attention_scores.device, dtype=torch.bool) + attention_mask.tril_() + attention_mask = ~attention_mask + if attention_mask is not None: + attention_scores = attention_scores.masked_fill(attention_mask, float('-inf')) + attention_probs = F.softmax(attention_scores, dim=-1) + attention_probs = attention_probs.type_as(value_layer) + attention_probs = self.attention_dropout(attention_probs) + output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3)) + value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1) + attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1) + context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1)) + context_layer = context_layer.view(*output_size) + context_layer = context_layer.permute(2, 0, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,) + context_layer = context_layer.view(*new_context_layer_shape) + return context_layer + +def split_tensor_along_last_dim(tensor: torch.Tensor, num_partitions: int, contiguous_split_chunks: bool=False) -> List[torch.Tensor]: + last_dim = tensor.dim() - 1 + last_dim_size = tensor.size()[last_dim] // num_partitions + tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) + if contiguous_split_chunks: + return tuple((chunk.contiguous() for chunk in tensor_list)) + return tensor_list + +@torch.jit.script +def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor: + (sq, _b, np, _hn) = (x.size(0), x.size(1), x.size(2), x.size(3)) + rot_dim = rope_cache.shape[-2] * 2 + (x, x_pass) = (x[..., :rot_dim], x[..., rot_dim:]) + rope_cache = rope_cache[:sq] + xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2) + rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2) + x_out2 = torch.stack([xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1], xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1]], -1) + x_out2 = x_out2.flatten(3) + return torch.cat((x_out2, x_pass), dim=-1) + +class SelfAttention(torch.nn.Module): + + def __init__(self, config: ChatGLMConfig, layer_number, device=None): + super(SelfAttention, self).__init__() + self.layer_number = max(1, layer_number) + self.projection_size = config.kv_channels * config.num_attention_heads + self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads + self.num_attention_heads_per_partition = config.num_attention_heads + self.multi_query_attention = config.multi_query_attention + self.qkv_hidden_size = 3 * self.projection_size + if self.multi_query_attention: + self.num_multi_query_groups_per_partition = config.multi_query_group_num + self.qkv_hidden_size = self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num + self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size, bias=config.add_bias_linear or config.add_qkv_bias, device=device, **_config_to_kwargs(config)) + self.core_attention = CoreAttention(config, self.layer_number) + self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear, device=device, **_config_to_kwargs(config)) + + def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None): + if self.multi_query_attention: + num_attention_heads = self.num_multi_query_groups_per_partition + else: + num_attention_heads = self.num_attention_heads_per_partition + return torch.empty(inference_max_sequence_len, batch_size, num_attention_heads, self.hidden_size_per_attention_head, dtype=dtype, device=device) + + def forward(self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True): + mixed_x_layer = self.query_key_value(hidden_states) + if self.multi_query_attention: + (query_layer, key_layer, value_layer) = mixed_x_layer.split([self.num_attention_heads_per_partition * self.hidden_size_per_attention_head, self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head, self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head], dim=-1) + query_layer = query_layer.view(query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)) + key_layer = key_layer.view(key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)) + value_layer = value_layer.view(value_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)) + else: + new_tensor_shape = mixed_x_layer.size()[:-1] + (self.num_attention_heads_per_partition, 3 * self.hidden_size_per_attention_head) + mixed_x_layer = mixed_x_layer.view(*new_tensor_shape) + (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3) + if rotary_pos_emb is not None: + query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb) + key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb) + if kv_cache is not None: + (cache_k, cache_v) = kv_cache + key_layer = torch.cat((cache_k, key_layer), dim=0) + value_layer = torch.cat((cache_v, value_layer), dim=0) + if use_cache: + kv_cache = (key_layer, value_layer) + else: + kv_cache = None + if self.multi_query_attention: + key_layer = key_layer.unsqueeze(-2) + key_layer = key_layer.expand(-1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1) + key_layer = key_layer.contiguous().view(key_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)) + value_layer = value_layer.unsqueeze(-2) + value_layer = value_layer.expand(-1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1) + value_layer = value_layer.contiguous().view(value_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)) + context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask) + output = self.dense(context_layer) + return (output, kv_cache) + +class MLP(torch.nn.Module): + + def __init__(self, config: ChatGLMConfig, device=None): + super(MLP, self).__init__() + self.add_bias = config.add_bias_linear + self.dense_h_to_4h = nn.Linear(config.hidden_size, config.ffn_hidden_size * 2, bias=self.add_bias, device=device, **_config_to_kwargs(config)) + + def swiglu(x): + x = torch.chunk(x, 2, dim=-1) + return F.silu(x[0]) * x[1] + self.activation_func = swiglu + self.dense_4h_to_h = nn.Linear(config.ffn_hidden_size, config.hidden_size, bias=self.add_bias, device=device, **_config_to_kwargs(config)) + + def forward(self, hidden_states): + intermediate_parallel = self.dense_h_to_4h(hidden_states) + intermediate_parallel = self.activation_func(intermediate_parallel) + output = self.dense_4h_to_h(intermediate_parallel) + return output + +class GLMBlock(torch.nn.Module): + + def __init__(self, config: ChatGLMConfig, layer_number, device=None): + super(GLMBlock, self).__init__() + self.layer_number = layer_number + self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm + self.fp32_residual_connection = config.fp32_residual_connection + LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm + self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device, dtype=config.torch_dtype) + self.self_attention = SelfAttention(config, layer_number, device=device) + self.hidden_dropout = config.hidden_dropout + self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device, dtype=config.torch_dtype) + self.mlp = MLP(config, device=device) + + def forward(self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True): + layernorm_output = self.input_layernorm(hidden_states) + (attention_output, kv_cache) = self.self_attention(layernorm_output, attention_mask, rotary_pos_emb, kv_cache=kv_cache, use_cache=use_cache) + if self.apply_residual_connection_post_layernorm: + residual = layernorm_output + else: + residual = hidden_states + layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training) + layernorm_input = residual + layernorm_input + layernorm_output = self.post_attention_layernorm(layernorm_input) + mlp_output = self.mlp(layernorm_output) + if self.apply_residual_connection_post_layernorm: + residual = layernorm_output + else: + residual = layernorm_input + output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training) + output = residual + output + return (output, kv_cache) + +class GLMTransformer(torch.nn.Module): + + def __init__(self, config: ChatGLMConfig, device=None): + super(GLMTransformer, self).__init__() + self.fp32_residual_connection = config.fp32_residual_connection + self.post_layer_norm = config.post_layer_norm + self.num_layers = config.num_layers + + def build_layer(layer_number): + return GLMBlock(config, layer_number, device=device) + self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)]) + if self.post_layer_norm: + LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm + self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device, dtype=config.torch_dtype) + self.gradient_checkpointing = False + + def _get_layer(self, layer_number): + return self.layers[layer_number] + + def forward(self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None, use_cache: Optional[bool]=True, output_hidden_states: Optional[bool]=False): + if not kv_caches: + kv_caches = [None for _ in range(self.num_layers)] + presents = () if use_cache else None + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once('`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...') + use_cache = False + all_self_attentions = None + all_hidden_states = () if output_hidden_states else None + for index in range(self.num_layers): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + layer = self._get_layer(index) + if self.gradient_checkpointing and self.training: + layer_ret = torch.utils.checkpoint.checkpoint(layer, hidden_states, attention_mask, rotary_pos_emb, kv_caches[index], use_cache) + else: + layer_ret = layer(hidden_states, attention_mask, rotary_pos_emb, kv_cache=kv_caches[index], use_cache=use_cache) + (hidden_states, kv_cache) = layer_ret + if use_cache: + presents = presents + (kv_cache,) + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + if self.post_layer_norm: + hidden_states = self.final_layernorm(hidden_states) + return (hidden_states, presents, all_hidden_states, all_self_attentions) + +class ChatGLMPreTrainedModel(PreTrainedModel): + is_parallelizable = False + supports_gradient_checkpointing = True + config_class = ChatGLMConfig + base_model_prefix = 'transformer' + _no_split_modules = ['GLMBlock'] + + def _init_weights(self, module: nn.Module): + return + + def get_masks(self, input_ids, past_key_values, padding_mask=None): + (batch_size, seq_length) = input_ids.shape + full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device) + full_attention_mask.tril_() + past_length = 0 + if past_key_values: + past_length = past_key_values[0][0].shape[0] + if past_length: + full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length, device=input_ids.device), full_attention_mask), dim=-1) + if padding_mask is not None: + full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1) + if not past_length and padding_mask is not None: + full_attention_mask -= padding_mask.unsqueeze(-1) - 1 + full_attention_mask = (full_attention_mask < 0.5).bool() + full_attention_mask.unsqueeze_(1) + return full_attention_mask + + def get_position_ids(self, input_ids, device): + (batch_size, seq_length) = input_ids.shape + position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1) + return position_ids + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, GLMTransformer): + module.gradient_checkpointing = value + +def default_init(cls, *args, **kwargs): + return cls(*args, **kwargs) + +class Embedding(torch.nn.Module): + + def __init__(self, config: ChatGLMConfig, device=None): + super(Embedding, self).__init__() + self.hidden_size = config.hidden_size + self.word_embeddings = nn.Embedding(config.padded_vocab_size, self.hidden_size, dtype=config.torch_dtype, device=device) + self.fp32_residual_connection = config.fp32_residual_connection + + def forward(self, input_ids): + words_embeddings = self.word_embeddings(input_ids) + embeddings = words_embeddings + embeddings = embeddings.transpose(0, 1).contiguous() + if self.fp32_residual_connection: + embeddings = embeddings.float() + return embeddings + +class RotaryEmbedding(nn.Module): + + def __init__(self, dim, original_impl=False, device=None, dtype=None): + super().__init__() + inv_freq = 1.0 / 10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim) + self.register_buffer('inv_freq', inv_freq) + self.dim = dim + self.original_impl = original_impl + + def forward_impl(self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int=10000): + theta = 1.0 / base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem) + seq_idx = torch.arange(seq_len, dtype=torch.float, device=device) + idx_theta = torch.outer(seq_idx, theta).float() + cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1) + if dtype in (torch.float16, torch.bfloat16, torch.int8): + cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half() + return cache + + def forward(self, max_seq_len, offset=0): + return self.forward_impl(max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device) + +class PrefixEncoder(torch.nn.Module): + + def __init__(self, config: ChatGLMConfig): + super().__init__() + self.prefix_projection = config.prefix_projection + if self.prefix_projection: + kv_size = config.num_layers * config.kv_channels * config.multi_query_group_num * 2 + self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size) + self.trans = torch.nn.Sequential(torch.nn.Linear(kv_size, config.hidden_size), torch.nn.Tanh(), torch.nn.Linear(config.hidden_size, kv_size)) + else: + self.embedding = torch.nn.Embedding(config.pre_seq_len, config.num_layers * config.kv_channels * config.multi_query_group_num * 2) + + def forward(self, prefix: torch.Tensor): + if self.prefix_projection: + prefix_tokens = self.embedding(prefix) + past_key_values = self.trans(prefix_tokens) + else: + past_key_values = self.embedding(prefix) + return past_key_values + +class ChatGLMModel(ChatGLMPreTrainedModel): + + def __init__(self, config: ChatGLMConfig, device=None, empty_init=True): + super().__init__(config) + if empty_init: + init_method = skip_init + else: + init_method = default_init + init_kwargs = {} + if device is not None: + init_kwargs['device'] = device + self.embedding = init_method(Embedding, config, **init_kwargs) + self.num_layers = config.num_layers + self.multi_query_group_num = config.multi_query_group_num + self.kv_channels = config.kv_channels + self.seq_length = config.seq_length + rotary_dim = config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels + self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, original_impl=config.original_rope, device=device, dtype=config.torch_dtype) + self.encoder = init_method(GLMTransformer, config, **init_kwargs) + self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False, dtype=config.torch_dtype, **init_kwargs) + self.pre_seq_len = config.pre_seq_len + self.prefix_projection = config.prefix_projection + if self.pre_seq_len is not None: + for param in self.parameters(): + param.requires_grad = False + self.prefix_tokens = torch.arange(self.pre_seq_len).long() + self.prefix_encoder = PrefixEncoder(config) + self.dropout = torch.nn.Dropout(0.1) + + def get_input_embeddings(self): + return self.embedding.word_embeddings + + def get_prompt(self, batch_size, device, dtype=torch.half): + prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device) + past_key_values = self.prefix_encoder(prefix_tokens).type(dtype) + past_key_values = past_key_values.view(batch_size, self.pre_seq_len, self.num_layers * 2, self.multi_query_group_num, self.kv_channels) + past_key_values = self.dropout(past_key_values) + past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2) + return past_key_values + + def forward(self, input_ids, position_ids: Optional[torch.Tensor]=None, attention_mask: Optional[torch.BoolTensor]=None, full_attention_mask: Optional[torch.BoolTensor]=None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]=None, inputs_embeds: Optional[torch.Tensor]=None, use_cache: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None): + output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + (batch_size, seq_length) = input_ids.shape + if inputs_embeds is None: + inputs_embeds = self.embedding(input_ids) + if self.pre_seq_len is not None: + if past_key_values is None: + past_key_values = self.get_prompt(batch_size=batch_size, device=input_ids.device, dtype=inputs_embeds.dtype) + if attention_mask is not None: + attention_mask = torch.cat([attention_mask.new_ones((batch_size, self.pre_seq_len)), attention_mask], dim=-1) + if full_attention_mask is None: + if attention_mask is not None and (not attention_mask.all()) or (past_key_values and seq_length != 1): + full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask) + rotary_pos_emb = self.rotary_pos_emb(self.seq_length) + if position_ids is not None: + rotary_pos_emb = rotary_pos_emb[position_ids] + else: + rotary_pos_emb = rotary_pos_emb[None, :seq_length] + rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous() + (hidden_states, presents, all_hidden_states, all_self_attentions) = self.encoder(inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb, kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states) + if not return_dict: + return tuple((v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)) + return BaseModelOutputWithPast(last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions) + +# File: diffusers-main/src/diffusers/pipelines/kolors/tokenizer.py +import json +import os +import re +from typing import Dict, List, Optional, Union +from sentencepiece import SentencePieceProcessor +from transformers import PreTrainedTokenizer +from transformers.tokenization_utils_base import BatchEncoding, EncodedInput +from transformers.utils import PaddingStrategy + +class SPTokenizer: + + def __init__(self, model_path: str): + assert os.path.isfile(model_path), model_path + self.sp_model = SentencePieceProcessor(model_file=model_path) + self.n_words: int = self.sp_model.vocab_size() + self.bos_id: int = self.sp_model.bos_id() + self.eos_id: int = self.sp_model.eos_id() + self.pad_id: int = self.sp_model.unk_id() + assert self.sp_model.vocab_size() == self.sp_model.get_piece_size() + role_special_tokens = ['<|system|>', '<|user|>', '<|assistant|>', '<|observation|>'] + special_tokens = ['[MASK]', '[gMASK]', '[sMASK]', 'sop', 'eop'] + role_special_tokens + self.special_tokens = {} + self.index_special_tokens = {} + for token in special_tokens: + self.special_tokens[token] = self.n_words + self.index_special_tokens[self.n_words] = token + self.n_words += 1 + self.role_special_token_expression = '|'.join([re.escape(token) for token in role_special_tokens]) + + def tokenize(self, s: str, encode_special_tokens=False): + if encode_special_tokens: + last_index = 0 + t = [] + for match in re.finditer(self.role_special_token_expression, s): + if last_index < match.start(): + t.extend(self.sp_model.EncodeAsPieces(s[last_index:match.start()])) + t.append(s[match.start():match.end()]) + last_index = match.end() + if last_index < len(s): + t.extend(self.sp_model.EncodeAsPieces(s[last_index:])) + return t + else: + return self.sp_model.EncodeAsPieces(s) + + def encode(self, s: str, bos: bool=False, eos: bool=False) -> List[int]: + assert isinstance(s, str) + t = self.sp_model.encode(s) + if bos: + t = [self.bos_id] + t + if eos: + t = t + [self.eos_id] + return t + + def decode(self, t: List[int]) -> str: + (text, buffer) = ('', []) + for token in t: + if token in self.index_special_tokens: + if buffer: + text += self.sp_model.decode(buffer) + buffer = [] + text += self.index_special_tokens[token] + else: + buffer.append(token) + if buffer: + text += self.sp_model.decode(buffer) + return text + + def decode_tokens(self, tokens: List[str]) -> str: + text = self.sp_model.DecodePieces(tokens) + return text + + def convert_token_to_id(self, token): + if token in self.special_tokens: + return self.special_tokens[token] + return self.sp_model.PieceToId(token) + + def convert_id_to_token(self, index): + if index in self.index_special_tokens: + return self.index_special_tokens[index] + if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0: + return '' + return self.sp_model.IdToPiece(index) + +class ChatGLMTokenizer(PreTrainedTokenizer): + vocab_files_names = {'vocab_file': 'tokenizer.model'} + model_input_names = ['input_ids', 'attention_mask', 'position_ids'] + + def __init__(self, vocab_file, padding_side='left', clean_up_tokenization_spaces=False, encode_special_tokens=False, **kwargs): + self.name = 'GLMTokenizer' + self.vocab_file = vocab_file + self.tokenizer = SPTokenizer(vocab_file) + self.special_tokens = {'': self.tokenizer.bos_id, '': self.tokenizer.eos_id, '': self.tokenizer.pad_id} + self.encode_special_tokens = encode_special_tokens + super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, encode_special_tokens=encode_special_tokens, **kwargs) + + def get_command(self, token): + if token in self.special_tokens: + return self.special_tokens[token] + assert token in self.tokenizer.special_tokens, f'{token} is not a special token for {self.name}' + return self.tokenizer.special_tokens[token] + + @property + def unk_token(self) -> str: + return '' + + @unk_token.setter + def unk_token(self, value: str): + self._unk_token = value + + @property + def pad_token(self) -> str: + return '' + + @pad_token.setter + def pad_token(self, value: str): + self._pad_token = value + + @property + def pad_token_id(self): + return self.get_command('') + + @property + def eos_token(self) -> str: + return '' + + @eos_token.setter + def eos_token(self, value: str): + self._eos_token = value + + @property + def eos_token_id(self): + return self.get_command('') + + @property + def vocab_size(self): + return self.tokenizer.n_words + + def get_vocab(self): + vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + def _tokenize(self, text, **kwargs): + return self.tokenizer.tokenize(text, encode_special_tokens=self.encode_special_tokens) + + def _convert_token_to_id(self, token): + return self.tokenizer.convert_token_to_id(token) + + def _convert_id_to_token(self, index): + return self.tokenizer.convert_id_to_token(index) + + def convert_tokens_to_string(self, tokens: List[str]) -> str: + return self.tokenizer.decode_tokens(tokens) + + def save_vocabulary(self, save_directory, filename_prefix=None): + if os.path.isdir(save_directory): + vocab_file = os.path.join(save_directory, self.vocab_files_names['vocab_file']) + else: + vocab_file = save_directory + with open(self.vocab_file, 'rb') as fin: + proto_str = fin.read() + with open(vocab_file, 'wb') as writer: + writer.write(proto_str) + return (vocab_file,) + + def get_prefix_tokens(self): + prefix_tokens = [self.get_command('[gMASK]'), self.get_command('sop')] + return prefix_tokens + + def build_single_message(self, role, metadata, message): + assert role in ['system', 'user', 'assistant', 'observation'], role + role_tokens = [self.get_command(f'<|{role}|>')] + self.tokenizer.encode(f'{metadata}\n') + message_tokens = self.tokenizer.encode(message) + tokens = role_tokens + message_tokens + return tokens + + def build_chat_input(self, query, history=None, role='user'): + if history is None: + history = [] + input_ids = [] + for item in history: + content = item['content'] + if item['role'] == 'system' and 'tools' in item: + content = content + '\n' + json.dumps(item['tools'], indent=4, ensure_ascii=False) + input_ids.extend(self.build_single_message(item['role'], item.get('metadata', ''), content)) + input_ids.extend(self.build_single_message(role, '', query)) + input_ids.extend([self.get_command('<|assistant|>')]) + return self.batch_encode_plus([input_ids], return_tensors='pt', is_split_into_words=True) + + def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: Optional[List[int]]=None) -> List[int]: + prefix_tokens = self.get_prefix_tokens() + token_ids_0 = prefix_tokens + token_ids_0 + if token_ids_1 is not None: + token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command('')] + return token_ids_0 + + def _pad(self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int]=None, padding_strategy: PaddingStrategy=PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int]=None, return_attention_mask: Optional[bool]=None) -> dict: + assert self.padding_side == 'left' + required_input = encoded_inputs[self.model_input_names[0]] + seq_length = len(required_input) + if padding_strategy == PaddingStrategy.LONGEST: + max_length = len(required_input) + if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): + max_length = (max_length // pad_to_multiple_of + 1) * pad_to_multiple_of + needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length + if 'attention_mask' not in encoded_inputs: + encoded_inputs['attention_mask'] = [1] * seq_length + if 'position_ids' not in encoded_inputs: + encoded_inputs['position_ids'] = list(range(seq_length)) + if needs_to_be_padded: + difference = max_length - len(required_input) + if 'attention_mask' in encoded_inputs: + encoded_inputs['attention_mask'] = [0] * difference + encoded_inputs['attention_mask'] + if 'position_ids' in encoded_inputs: + encoded_inputs['position_ids'] = [0] * difference + encoded_inputs['position_ids'] + encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input + return encoded_inputs + +# File: diffusers-main/src/diffusers/pipelines/latent_consistency_models/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_latent_consistency_img2img'] = ['LatentConsistencyModelImg2ImgPipeline'] + _import_structure['pipeline_latent_consistency_text2img'] = ['LatentConsistencyModelPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_latent_consistency_img2img import LatentConsistencyModelImg2ImgPipeline + from .pipeline_latent_consistency_text2img import LatentConsistencyModelPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import LCMScheduler +from ...utils import USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker +logger = logging.get_logger(__name__) + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import AutoPipelineForImage2Image\n >>> import torch\n >>> import PIL\n\n >>> pipe = AutoPipelineForImage2Image.from_pretrained("SimianLuo/LCM_Dreamshaper_v7")\n >>> # To save GPU memory, torch.float16 can be used, but it may compromise image quality.\n >>> pipe.to(torch_device="cuda", torch_dtype=torch.float32)\n\n >>> prompt = "High altitude snowy mountains"\n >>> image = PIL.Image.open("./snowy_mountains.png")\n\n >>> # Can be set to 1~50 steps. LCM support fast inference even <= 4 steps. Recommend: 1~8 steps.\n >>> num_inference_steps = 4\n >>> images = pipe(\n ... prompt=prompt, image=image, num_inference_steps=num_inference_steps, guidance_scale=8.0\n ... ).images\n\n >>> images[0].save("image.png")\n ```\n\n' + +class LatentConsistencyModelImg2ImgPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor', 'image_encoder'] + _exclude_from_cpu_offload = ['safety_checker'] + _callback_tensor_inputs = ['latents', 'denoised', 'prompt_embeds', 'w_embedding'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: LCMScheduler, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: Optional[CLIPVisionModelWithProjection]=None, requires_safety_checker: bool=True): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder) + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): + if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}') + image = image.to(device=device, dtype=dtype) + batch_size = batch_size * num_images_per_prompt + if image.shape[1] == 4: + init_latents = image + else: + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + elif isinstance(generator, list): + if image.shape[0] < batch_size and batch_size % image.shape[0] == 0: + image = torch.cat([image] * (batch_size // image.shape[0]), dim=0) + elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} ') + init_latents = [retrieve_latents(self.vae.encode(image[i:i + 1]), generator=generator[i]) for i in range(batch_size)] + init_latents = torch.cat(init_latents, dim=0) + else: + init_latents = retrieve_latents(self.vae.encode(image), generator=generator) + init_latents = self.vae.config.scaling_factor * init_latents + if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: + deprecation_message = f'You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial images (`image`). Initial images are now duplicating to match the number of text prompts. Note that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update your script to pass as many initial images as text prompts to suppress this warning.' + deprecate('len(prompt) != len(image)', '1.0.0', deprecation_message, standard_warn=False) + additional_image_per_prompt = batch_size // init_latents.shape[0] + init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) + elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts.') + else: + init_latents = torch.cat([init_latents], dim=0) + shape = init_latents.shape + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + init_latents = self.scheduler.add_noise(init_latents, noise, timestep) + latents = init_latents + return latents + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + + def check_inputs(self, prompt: Union[str, List[str]], strength: float, callback_steps: int, prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None): + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return False + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, image: PipelineImageInput=None, num_inference_steps: int=4, strength: float=0.8, original_inference_steps: int=None, timesteps: List[int]=None, guidance_scale: float=8.5, num_images_per_prompt: Optional[int]=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + self.check_inputs(prompt, strength, callback_steps, prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, _) = self.encode_prompt(prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt=None, prompt_embeds=prompt_embeds, negative_prompt_embeds=None, lora_scale=lora_scale, clip_skip=self.clip_skip) + image = self.image_processor.preprocess(image) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, original_inference_steps=original_inference_steps, strength=strength) + original_inference_steps = original_inference_steps if original_inference_steps is not None else self.scheduler.config.original_inference_steps + latent_timestep = timesteps[:1] + if latents is None: + latents = self.prepare_latents(image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator) + bs = batch_size * num_images_per_prompt + w = torch.tensor(self.guidance_scale - 1).repeat(bs) + w_embedding = self.get_guidance_scale_embedding(w, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, None) + added_cond_kwargs = {'image_embeds': image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latents = latents.to(prompt_embeds.dtype) + model_pred = self.unet(latents, t, timestep_cond=w_embedding, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + (latents, denoised) = self.scheduler.step(model_pred, t, latents, **extra_step_kwargs, return_dict=False) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + w_embedding = callback_outputs.pop('w_embedding', w_embedding) + denoised = callback_outputs.pop('denoised', denoised) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + denoised = denoised.to(prompt_embeds.dtype) + if not output_type == 'latent': + image = self.vae.decode(denoised / self.vae.config.scaling_factor, return_dict=False)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = denoised + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import LCMScheduler +from ...utils import USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import DiffusionPipeline\n >>> import torch\n\n >>> pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7")\n >>> # To save GPU memory, torch.float16 can be used, but it may compromise image quality.\n >>> pipe.to(torch_device="cuda", torch_dtype=torch.float32)\n\n >>> prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"\n\n >>> # Can be set to 1~50 steps. LCM support fast inference even <= 4 steps. Recommend: 1~8 steps.\n >>> num_inference_steps = 4\n >>> images = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=8.0).images\n >>> images[0].save("image.png")\n ```\n' + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class LatentConsistencyModelPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor', 'image_encoder'] + _exclude_from_cpu_offload = ['safety_checker'] + _callback_tensor_inputs = ['latents', 'denoised', 'prompt_embeds', 'w_embedding'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: LCMScheduler, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: Optional[CLIPVisionModelWithProjection]=None, requires_safety_checker: bool=True): + super().__init__() + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt: Union[str, List[str]], height: int, width: int, callback_steps: int, prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return False + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=4, original_inference_steps: int=None, timesteps: List[int]=None, guidance_scale: float=8.5, num_images_per_prompt: Optional[int]=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, height, width, callback_steps, prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, _) = self.encode_prompt(prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt=None, prompt_embeds=prompt_embeds, negative_prompt_embeds=None, lora_scale=lora_scale, clip_skip=self.clip_skip) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, original_inference_steps=original_inference_steps) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + bs = batch_size * num_images_per_prompt + w = torch.tensor(self.guidance_scale - 1).repeat(bs) + w_embedding = self.get_guidance_scale_embedding(w, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, None) + added_cond_kwargs = {'image_embeds': image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latents = latents.to(prompt_embeds.dtype) + model_pred = self.unet(latents, t, timestep_cond=w_embedding, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + (latents, denoised) = self.scheduler.step(model_pred, t, latents, **extra_step_kwargs, return_dict=False) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + w_embedding = callback_outputs.pop('w_embedding', w_embedding) + denoised = callback_outputs.pop('denoised', denoised) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + denoised = denoised.to(prompt_embeds.dtype) + if not output_type == 'latent': + image = self.vae.decode(denoised / self.vae.config.scaling_factor, return_dict=False)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = denoised + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/latent_diffusion/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_latent_diffusion'] = ['LDMBertModel', 'LDMTextToImagePipeline'] + _import_structure['pipeline_latent_diffusion_superresolution'] = ['LDMSuperResolutionPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_latent_diffusion import LDMBertModel, LDMTextToImagePipeline + from .pipeline_latent_diffusion_superresolution import LDMSuperResolutionPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +import inspect +from typing import List, Optional, Tuple, Union +import torch +import torch.nn as nn +import torch.utils.checkpoint +from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer +from transformers.activations import ACT2FN +from transformers.modeling_outputs import BaseModelOutput +from transformers.utils import logging +from ...models import AutoencoderKL, UNet2DConditionModel, UNet2DModel, VQModel +from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput + +class LDMTextToImagePipeline(DiffusionPipeline): + model_cpu_offload_seq = 'bert->unet->vqvae' + + def __init__(self, vqvae: Union[VQModel, AutoencoderKL], bert: PreTrainedModel, tokenizer: PreTrainedTokenizer, unet: Union[UNet2DModel, UNet2DConditionModel], scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler]): + super().__init__() + self.register_modules(vqvae=vqvae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1) + + @torch.no_grad() + def __call__(self, prompt: Union[str, List[str]], height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: Optional[int]=50, guidance_scale: Optional[float]=1.0, eta: Optional[float]=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, **kwargs) -> Union[Tuple, ImagePipelineOutput]: + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + if isinstance(prompt, str): + batch_size = 1 + elif isinstance(prompt, list): + batch_size = len(prompt) + else: + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if guidance_scale != 1.0: + uncond_input = self.tokenizer([''] * batch_size, padding='max_length', max_length=77, truncation=True, return_tensors='pt') + negative_prompt_embeds = self.bert(uncond_input.input_ids.to(self._execution_device))[0] + text_input = self.tokenizer(prompt, padding='max_length', max_length=77, truncation=True, return_tensors='pt') + prompt_embeds = self.bert(text_input.input_ids.to(self._execution_device))[0] + latents_shape = (batch_size, self.unet.config.in_channels, height // 8, width // 8) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(latents_shape, generator=generator, device=self._execution_device, dtype=prompt_embeds.dtype) + elif latents.shape != latents_shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}') + latents = latents.to(self._execution_device) + self.scheduler.set_timesteps(num_inference_steps) + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_kwargs = {} + if accepts_eta: + extra_kwargs['eta'] = eta + for t in self.progress_bar(self.scheduler.timesteps): + if guidance_scale == 1.0: + latents_input = latents + context = prompt_embeds + else: + latents_input = torch.cat([latents] * 2) + context = torch.cat([negative_prompt_embeds, prompt_embeds]) + noise_pred = self.unet(latents_input, t, encoder_hidden_states=context).sample + if guidance_scale != 1.0: + (noise_pred_uncond, noise_prediction_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_kwargs).prev_sample + latents = 1 / self.vqvae.config.scaling_factor * latents + image = self.vqvae.decode(latents).sample + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).numpy() + if output_type == 'pil': + image = self.numpy_to_pil(image) + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) +'' +logger = logging.get_logger(__name__) +LDMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = ['ldm-bert'] +LDMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {'ldm-bert': 'https://huggingface.co/valhalla/ldm-bert/blob/main/config.json'} +'' + +class LDMBertConfig(PretrainedConfig): + model_type = 'ldmbert' + keys_to_ignore_at_inference = ['past_key_values'] + attribute_map = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} + + def __init__(self, vocab_size=30522, max_position_embeddings=77, encoder_layers=32, encoder_ffn_dim=5120, encoder_attention_heads=8, head_dim=64, encoder_layerdrop=0.0, activation_function='gelu', d_model=1280, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, classifier_dropout=0.0, scale_embedding=False, use_cache=True, pad_token_id=0, **kwargs): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.d_model = d_model + self.encoder_ffn_dim = encoder_ffn_dim + self.encoder_layers = encoder_layers + self.encoder_attention_heads = encoder_attention_heads + self.head_dim = head_dim + self.dropout = dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.activation_function = activation_function + self.init_std = init_std + self.encoder_layerdrop = encoder_layerdrop + self.classifier_dropout = classifier_dropout + self.use_cache = use_cache + self.num_hidden_layers = encoder_layers + self.scale_embedding = scale_embedding + super().__init__(pad_token_id=pad_token_id, **kwargs) + +def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int]=None): + (bsz, src_len) = mask.size() + tgt_len = tgt_len if tgt_len is not None else src_len + expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) + inverted_mask = 1.0 - expanded_mask + return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) + +class LDMBertAttention(nn.Module): + + def __init__(self, embed_dim: int, num_heads: int, head_dim: int, dropout: float=0.0, is_decoder: bool=False, bias: bool=False): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = head_dim + self.inner_dim = head_dim * num_heads + self.scaling = self.head_dim ** (-0.5) + self.is_decoder = is_decoder + self.k_proj = nn.Linear(embed_dim, self.inner_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, self.inner_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, self.inner_dim, bias=bias) + self.out_proj = nn.Linear(self.inner_dim, embed_dim) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward(self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor]=None, past_key_value: Optional[Tuple[torch.Tensor]]=None, attention_mask: Optional[torch.Tensor]=None, layer_head_mask: Optional[torch.Tensor]=None, output_attentions: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + is_cross_attention = key_value_states is not None + (bsz, tgt_len, _) = hidden_states.size() + query_states = self.q_proj(hidden_states) * self.scaling + if is_cross_attention and past_key_value is not None: + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + if self.is_decoder: + past_key_value = (key_states, value_states) + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.view(*proj_shape) + value_states = value_states.view(*proj_shape) + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError(f'Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}') + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError(f'Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}') + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError(f'Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}') + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + if output_attentions: + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + attn_output = torch.bmm(attn_probs, value_states) + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError(f'`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}') + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + attn_output = attn_output.reshape(bsz, tgt_len, self.inner_dim) + attn_output = self.out_proj(attn_output) + return (attn_output, attn_weights_reshaped, past_key_value) + +class LDMBertEncoderLayer(nn.Module): + + def __init__(self, config: LDMBertConfig): + super().__init__() + self.embed_dim = config.d_model + self.self_attn = LDMBertAttention(embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, head_dim=config.head_dim, dropout=config.attention_dropout) + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) + self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, layer_head_mask: torch.Tensor, output_attentions: Optional[bool]=False) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + (hidden_states, attn_weights, _) = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + if hidden_states.dtype == torch.float16 and (torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()): + clamp_value = torch.finfo(hidden_states.dtype).max - 1000 + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + outputs = (hidden_states,) + if output_attentions: + outputs += (attn_weights,) + return outputs + +class LDMBertPreTrainedModel(PreTrainedModel): + config_class = LDMBertConfig + base_model_prefix = 'model' + _supports_gradient_checkpointing = True + _keys_to_ignore_on_load_unexpected = ['encoder\\.version', 'decoder\\.version'] + + def _init_weights(self, module): + std = self.config.init_std + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, (LDMBertEncoder,)): + module.gradient_checkpointing = value + + @property + def dummy_inputs(self): + pad_token = self.config.pad_token_id + input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) + dummy_inputs = {'attention_mask': input_ids.ne(pad_token), 'input_ids': input_ids} + return dummy_inputs + +class LDMBertEncoder(LDMBertPreTrainedModel): + + def __init__(self, config: LDMBertConfig): + super().__init__(config) + self.dropout = config.dropout + embed_dim = config.d_model + self.padding_idx = config.pad_token_id + self.max_source_positions = config.max_position_embeddings + self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim) + self.embed_positions = nn.Embedding(config.max_position_embeddings, embed_dim) + self.layers = nn.ModuleList([LDMBertEncoderLayer(config) for _ in range(config.encoder_layers)]) + self.layer_norm = nn.LayerNorm(embed_dim) + self.gradient_checkpointing = False + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + def forward(self, input_ids: torch.LongTensor=None, attention_mask: Optional[torch.Tensor]=None, position_ids: Optional[torch.LongTensor]=None, head_mask: Optional[torch.Tensor]=None, inputs_embeds: Optional[torch.Tensor]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None) -> Union[Tuple, BaseModelOutput]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if input_ids is not None and inputs_embeds is not None: + raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time') + elif input_ids is not None: + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError('You have to specify either input_ids or inputs_embeds') + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + seq_len = input_shape[1] + if position_ids is None: + position_ids = torch.arange(seq_len, dtype=torch.long, device=inputs_embeds.device).expand((1, -1)) + embed_pos = self.embed_positions(position_ids) + hidden_states = inputs_embeds + embed_pos + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + if attention_mask is not None: + attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype) + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + if head_mask is not None: + if head_mask.size()[0] != len(self.layers): + raise ValueError(f'The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}.') + for (idx, encoder_layer) in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + if self.gradient_checkpointing and self.training: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs, output_attentions) + return custom_forward + layer_outputs = torch.utils.checkpoint.checkpoint(create_custom_forward(encoder_layer), hidden_states, attention_mask, head_mask[idx] if head_mask is not None else None) + else: + layer_outputs = encoder_layer(hidden_states, attention_mask, layer_head_mask=head_mask[idx] if head_mask is not None else None, output_attentions=output_attentions) + hidden_states = layer_outputs[0] + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + hidden_states = self.layer_norm(hidden_states) + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + if not return_dict: + return tuple((v for v in [hidden_states, encoder_states, all_attentions] if v is not None)) + return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions) + +class LDMBertModel(LDMBertPreTrainedModel): + _no_split_modules = [] + + def __init__(self, config: LDMBertConfig): + super().__init__(config) + self.model = LDMBertEncoder(config) + self.to_logits = nn.Linear(config.hidden_size, config.vocab_size) + + def forward(self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None): + outputs = self.model(input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) + return outputs + +# File: diffusers-main/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +import inspect +from typing import List, Optional, Tuple, Union +import numpy as np +import PIL.Image +import torch +import torch.utils.checkpoint +from ...models import UNet2DModel, VQModel +from ...schedulers import DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler +from ...utils import PIL_INTERPOLATION +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput + +def preprocess(image): + (w, h) = image.size + (w, h) = (x - x % 32 for x in (w, h)) + image = image.resize((w, h), resample=PIL_INTERPOLATION['lanczos']) + image = np.array(image).astype(np.float32) / 255.0 + image = image[None].transpose(0, 3, 1, 2) + image = torch.from_numpy(image) + return 2.0 * image - 1.0 + +class LDMSuperResolutionPipeline(DiffusionPipeline): + + def __init__(self, vqvae: VQModel, unet: UNet2DModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler]): + super().__init__() + self.register_modules(vqvae=vqvae, unet=unet, scheduler=scheduler) + + @torch.no_grad() + def __call__(self, image: Union[torch.Tensor, PIL.Image.Image]=None, batch_size: Optional[int]=1, num_inference_steps: Optional[int]=100, eta: Optional[float]=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, output_type: Optional[str]='pil', return_dict: bool=True) -> Union[Tuple, ImagePipelineOutput]: + if isinstance(image, PIL.Image.Image): + batch_size = 1 + elif isinstance(image, torch.Tensor): + batch_size = image.shape[0] + else: + raise ValueError(f'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(image)}') + if isinstance(image, PIL.Image.Image): + image = preprocess(image) + (height, width) = image.shape[-2:] + latents_shape = (batch_size, self.unet.config.in_channels // 2, height, width) + latents_dtype = next(self.unet.parameters()).dtype + latents = randn_tensor(latents_shape, generator=generator, device=self.device, dtype=latents_dtype) + image = image.to(device=self.device, dtype=latents_dtype) + self.scheduler.set_timesteps(num_inference_steps, device=self.device) + timesteps_tensor = self.scheduler.timesteps + latents = latents * self.scheduler.init_noise_sigma + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_kwargs = {} + if accepts_eta: + extra_kwargs['eta'] = eta + for t in self.progress_bar(timesteps_tensor): + latents_input = torch.cat([latents, image], dim=1) + latents_input = self.scheduler.scale_model_input(latents_input, t) + noise_pred = self.unet(latents_input, t).sample + latents = self.scheduler.step(noise_pred, t, latents, **extra_kwargs).prev_sample + image = self.vqvae.decode(latents).sample + image = torch.clamp(image, -1.0, 1.0) + image = image / 2 + 0.5 + image = image.cpu().permute(0, 2, 3, 1).numpy() + if output_type == 'pil': + image = self.numpy_to_pil(image) + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/latte/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_latte'] = ['LattePipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_latte import LattePipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/latte/pipeline_latte.py +import html +import inspect +import re +import urllib.parse as ul +from dataclasses import dataclass +from typing import Callable, Dict, List, Optional, Tuple, Union +import torch +from transformers import T5EncoderModel, T5Tokenizer +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...models import AutoencoderKL, LatteTransformer3DModel +from ...pipelines.pipeline_utils import DiffusionPipeline +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import BACKENDS_MAPPING, BaseOutput, is_bs4_available, is_ftfy_available, logging, replace_example_docstring +from ...utils.torch_utils import is_compiled_module, randn_tensor +from ...video_processor import VideoProcessor +logger = logging.get_logger(__name__) +if is_bs4_available(): + from bs4 import BeautifulSoup +if is_ftfy_available(): + import ftfy +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import LattePipeline\n >>> from diffusers.utils import export_to_gif\n\n >>> # You can replace the checkpoint id with "maxin-cn/Latte-1" too.\n >>> pipe = LattePipeline.from_pretrained("maxin-cn/Latte-1", torch_dtype=torch.float16)\n >>> # Enable memory optimizations.\n >>> pipe.enable_model_cpu_offload()\n\n >>> prompt = "A small cactus with a happy face in the Sahara desert."\n >>> videos = pipe(prompt).frames[0]\n >>> export_to_gif(videos, "latte.gif")\n ```\n' + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +@dataclass +class LattePipelineOutput(BaseOutput): + frames: torch.Tensor + +class LattePipeline(DiffusionPipeline): + bad_punct_regex = re.compile('[#®•©™&@·º½¾¿¡§~\\)\\(\\]\\[\\}\\{\\|\\\\/\\\\*]{1,}') + _optional_components = ['tokenizer', 'text_encoder'] + model_cpu_offload_seq = 'text_encoder->transformer->vae' + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + + def __init__(self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, vae: AutoencoderKL, transformer: LatteTransformer3DModel, scheduler: KarrasDiffusionSchedulers): + super().__init__() + self.register_modules(tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor) + + def mask_text_embeddings(self, emb, mask): + if emb.shape[0] == 1: + keep_index = mask.sum().item() + return (emb[:, :, :keep_index, :], keep_index) + else: + masked_feature = emb * mask[:, None, :, None] + return (masked_feature, emb.shape[2]) + + def encode_prompt(self, prompt: Union[str, List[str]], do_classifier_free_guidance: bool=True, negative_prompt: str='', num_images_per_prompt: int=1, device: Optional[torch.device]=None, prompt_embeds: Optional[torch.FloatTensor]=None, negative_prompt_embeds: Optional[torch.FloatTensor]=None, clean_caption: bool=False, mask_feature: bool=True, dtype=None): + embeds_initially_provided = prompt_embeds is not None and negative_prompt_embeds is not None + if device is None: + device = self._execution_device + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + max_length = 120 + if prompt_embeds is None: + prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=max_length, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {max_length} tokens: {removed_text}') + attention_mask = text_inputs.attention_mask.to(device) + prompt_embeds_attention_mask = attention_mask + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds_attention_mask = torch.ones_like(prompt_embeds) + if self.text_encoder is not None: + dtype = self.text_encoder.dtype + elif self.transformer is not None: + dtype = self.transformer.dtype + else: + dtype = None + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + prompt_embeds_attention_mask = prompt_embeds_attention_mask.view(bs_embed, -1) + prompt_embeds_attention_mask = prompt_embeds_attention_mask.repeat(num_images_per_prompt, 1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt + uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors='pt') + attention_mask = uncond_input.attention_mask.to(device) + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + else: + negative_prompt_embeds = None + if mask_feature and (not embeds_initially_provided): + prompt_embeds = prompt_embeds.unsqueeze(1) + (masked_prompt_embeds, keep_indices) = self.mask_text_embeddings(prompt_embeds, prompt_embeds_attention_mask) + masked_prompt_embeds = masked_prompt_embeds.squeeze(1) + masked_negative_prompt_embeds = negative_prompt_embeds[:, :keep_indices, :] if negative_prompt_embeds is not None else None + return (masked_prompt_embeds, masked_negative_prompt_embeds) + return (prompt_embeds, negative_prompt_embeds) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, negative_prompt, callback_on_step_end_tensor_inputs, prompt_embeds=None, negative_prompt_embeds=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def _text_preprocessing(self, text, clean_caption=False): + if clean_caption and (not is_bs4_available()): + logger.warning(BACKENDS_MAPPING['bs4'][-1].format('Setting `clean_caption=True`')) + logger.warning('Setting `clean_caption` to False...') + clean_caption = False + if clean_caption and (not is_ftfy_available()): + logger.warning(BACKENDS_MAPPING['ftfy'][-1].format('Setting `clean_caption=True`')) + logger.warning('Setting `clean_caption` to False...') + clean_caption = False + if not isinstance(text, (tuple, list)): + text = [text] + + def process(text: str): + if clean_caption: + text = self._clean_caption(text) + text = self._clean_caption(text) + else: + text = text.lower().strip() + return text + return [process(t) for t in text] + + def _clean_caption(self, caption): + caption = str(caption) + caption = ul.unquote_plus(caption) + caption = caption.strip().lower() + caption = re.sub('', 'person', caption) + caption = re.sub('\\b((?:https?:(?:\\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\\w/-]*\\b\\/?(?!@)))', '', caption) + caption = re.sub('\\b((?:www:(?:\\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\\w/-]*\\b\\/?(?!@)))', '', caption) + caption = BeautifulSoup(caption, features='html.parser').text + caption = re.sub('@[\\w\\d]+\\b', '', caption) + caption = re.sub('[\\u31c0-\\u31ef]+', '', caption) + caption = re.sub('[\\u31f0-\\u31ff]+', '', caption) + caption = re.sub('[\\u3200-\\u32ff]+', '', caption) + caption = re.sub('[\\u3300-\\u33ff]+', '', caption) + caption = re.sub('[\\u3400-\\u4dbf]+', '', caption) + caption = re.sub('[\\u4dc0-\\u4dff]+', '', caption) + caption = re.sub('[\\u4e00-\\u9fff]+', '', caption) + caption = re.sub('[\\u002D\\u058A\\u05BE\\u1400\\u1806\\u2010-\\u2015\\u2E17\\u2E1A\\u2E3A\\u2E3B\\u2E40\\u301C\\u3030\\u30A0\\uFE31\\uFE32\\uFE58\\uFE63\\uFF0D]+', '-', caption) + caption = re.sub('[`´«»“”¨]', '"', caption) + caption = re.sub('[‘’]', "'", caption) + caption = re.sub('"?', '', caption) + caption = re.sub('&', '', caption) + caption = re.sub('\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}', ' ', caption) + caption = re.sub('\\d:\\d\\d\\s+$', '', caption) + caption = re.sub('\\\\n', ' ', caption) + caption = re.sub('#\\d{1,3}\\b', '', caption) + caption = re.sub('#\\d{5,}\\b', '', caption) + caption = re.sub('\\b\\d{6,}\\b', '', caption) + caption = re.sub('[\\S]+\\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)', '', caption) + caption = re.sub('[\\"\\\']{2,}', '"', caption) + caption = re.sub('[\\.]{2,}', ' ', caption) + caption = re.sub(self.bad_punct_regex, ' ', caption) + caption = re.sub('\\s+\\.\\s+', ' ', caption) + regex2 = re.compile('(?:\\-|\\_)') + if len(re.findall(regex2, caption)) > 3: + caption = re.sub(regex2, ' ', caption) + caption = ftfy.fix_text(caption) + caption = html.unescape(html.unescape(caption)) + caption = re.sub('\\b[a-zA-Z]{1,3}\\d{3,15}\\b', '', caption) + caption = re.sub('\\b[a-zA-Z]+\\d+[a-zA-Z]+\\b', '', caption) + caption = re.sub('\\b\\d+[a-zA-Z]+\\d+\\b', '', caption) + caption = re.sub('(worldwide\\s+)?(free\\s+)?shipping', '', caption) + caption = re.sub('(free\\s)?download(\\sfree)?', '', caption) + caption = re.sub('\\bclick\\b\\s(?:for|on)\\s\\w+', '', caption) + caption = re.sub('\\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\\simage[s]?)?', '', caption) + caption = re.sub('\\bpage\\s+\\d+\\b', '', caption) + caption = re.sub('\\b\\d*[a-zA-Z]+\\d+[a-zA-Z]+\\d+[a-zA-Z\\d]*\\b', ' ', caption) + caption = re.sub('\\b\\d+\\.?\\d*[xх×]\\d+\\.?\\d*\\b', '', caption) + caption = re.sub('\\b\\s+\\:\\s+', ': ', caption) + caption = re.sub('(\\D[,\\./])\\b', '\\1 ', caption) + caption = re.sub('\\s+', ' ', caption) + caption.strip() + caption = re.sub('^[\\"\\\']([\\w\\W]+)[\\"\\\']$', '\\1', caption) + caption = re.sub("^[\\'\\_,\\-\\:;]", '', caption) + caption = re.sub("[\\'\\_,\\-\\:\\-\\+]$", '', caption) + caption = re.sub('^\\.\\S+$', '', caption) + return caption.strip() + + def prepare_latents(self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, negative_prompt: str='', num_inference_steps: int=50, timesteps: Optional[List[int]]=None, guidance_scale: float=7.5, num_images_per_prompt: int=1, video_length: int=16, height: int=512, width: int=512, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.FloatTensor]=None, prompt_embeds: Optional[torch.FloatTensor]=None, negative_prompt_embeds: Optional[torch.FloatTensor]=None, output_type: str='pil', return_dict: bool=True, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], clean_caption: bool=True, mask_feature: bool=True, enable_temporal_attentions: bool=True, decode_chunk_size: Optional[int]=None) -> Union[LattePipelineOutput, Tuple]: + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else video_length + height = height or self.transformer.config.sample_size * self.vae_scale_factor + width = width or self.transformer.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, height, width, negative_prompt, callback_on_step_end_tensor_inputs, prompt_embeds, negative_prompt_embeds) + self._guidance_scale = guidance_scale + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, do_classifier_free_guidance, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, device=device, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clean_caption=clean_caption, mask_feature=mask_feature) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) + self._num_timesteps = len(timesteps) + latent_channels = self.transformer.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, latent_channels, video_length, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + current_timestep = t + if not torch.is_tensor(current_timestep): + is_mps = latent_model_input.device.type == 'mps' + if isinstance(current_timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) + elif len(current_timestep.shape) == 0: + current_timestep = current_timestep[None].to(latent_model_input.device) + current_timestep = current_timestep.expand(latent_model_input.shape[0]) + noise_pred = self.transformer(latent_model_input, encoder_hidden_states=prompt_embeds, timestep=current_timestep, enable_temporal_attentions=enable_temporal_attentions, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + if not (hasattr(self.scheduler.config, 'variance_type') and self.scheduler.config.variance_type in ['learned', 'learned_range']): + noise_pred = noise_pred.chunk(2, dim=1)[0] + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if not output_type == 'latents': + video = self.decode_latents(latents, video_length, decode_chunk_size=14) + video = self.video_processor.postprocess_video(video=video, output_type=output_type) + else: + video = latents + self.maybe_free_model_hooks() + if not return_dict: + return (video,) + return LattePipelineOutput(frames=video) + + def decode_latents(self, latents: torch.Tensor, video_length: int, decode_chunk_size: int=14): + latents = latents.permute(0, 2, 1, 3, 4).flatten(0, 1) + latents = 1 / self.vae.config.scaling_factor * latents + forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward + accepts_num_frames = 'num_frames' in set(inspect.signature(forward_vae_fn).parameters.keys()) + frames = [] + for i in range(0, latents.shape[0], decode_chunk_size): + num_frames_in = latents[i:i + decode_chunk_size].shape[0] + decode_kwargs = {} + if accepts_num_frames: + decode_kwargs['num_frames'] = num_frames_in + frame = self.vae.decode(latents[i:i + decode_chunk_size], **decode_kwargs).sample + frames.append(frame) + frames = torch.cat(frames, dim=0) + frames = frames.reshape(-1, video_length, *frames.shape[1:]).permute(0, 2, 1, 3, 4) + frames = frames.float() + return frames + +# File: diffusers-main/src/diffusers/pipelines/ledits_pp/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_leditspp_stable_diffusion'] = ['LEditsPPPipelineStableDiffusion'] + _import_structure['pipeline_leditspp_stable_diffusion_xl'] = ['LEditsPPPipelineStableDiffusionXL'] + _import_structure['pipeline_output'] = ['LEditsPPDiffusionPipelineOutput', 'LEditsPPDiffusionPipelineOutput'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_leditspp_stable_diffusion import LEditsPPDiffusionPipelineOutput, LEditsPPInversionPipelineOutput, LEditsPPPipelineStableDiffusion + from .pipeline_leditspp_stable_diffusion_xl import LEditsPPPipelineStableDiffusionXL +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +import inspect +import math +from itertools import repeat +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import torch +import torch.nn.functional as F +from packaging import version +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer +from ...configuration_utils import FrozenDict +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, UNet2DConditionModel +from ...models.attention_processor import Attention, AttnProcessor +from ...models.lora import adjust_lora_scale_text_encoder +from ...pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker +from ...schedulers import DDIMScheduler, DPMSolverMultistepScheduler +from ...utils import USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .pipeline_output import LEditsPPDiffusionPipelineOutput, LEditsPPInversionPipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import PIL\n >>> import requests\n >>> import torch\n >>> from io import BytesIO\n\n >>> from diffusers import LEditsPPPipelineStableDiffusion\n >>> from diffusers.utils import load_image\n\n >>> pipe = LEditsPPPipelineStableDiffusion.from_pretrained(\n ... "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n >>> img_url = "https://www.aiml.informatik.tu-darmstadt.de/people/mbrack/cherry_blossom.png"\n >>> image = load_image(img_url).convert("RGB")\n\n >>> _ = pipe.invert(image=image, num_inversion_steps=50, skip=0.1)\n\n >>> edited_image = pipe(\n ... editing_prompt=["cherry blossom"], edit_guidance_scale=10.0, edit_threshold=0.75\n ... ).images[0]\n ```\n' + +class LeditsAttentionStore: + + @staticmethod + def get_empty_store(): + return {'down_cross': [], 'mid_cross': [], 'up_cross': [], 'down_self': [], 'mid_self': [], 'up_self': []} + + def __call__(self, attn, is_cross: bool, place_in_unet: str, editing_prompts, PnP=False): + if attn.shape[1] <= self.max_size: + bs = 1 + int(PnP) + editing_prompts + skip = 2 if PnP else 1 + attn = torch.stack(attn.split(self.batch_size)).permute(1, 0, 2, 3) + source_batch_size = int(attn.shape[1] // bs) + self.forward(attn[:, skip * source_batch_size:], is_cross, place_in_unet) + + def forward(self, attn, is_cross: bool, place_in_unet: str): + key = f"{place_in_unet}_{('cross' if is_cross else 'self')}" + self.step_store[key].append(attn) + + def between_steps(self, store_step=True): + if store_step: + if self.average: + if len(self.attention_store) == 0: + self.attention_store = self.step_store + else: + for key in self.attention_store: + for i in range(len(self.attention_store[key])): + self.attention_store[key][i] += self.step_store[key][i] + elif len(self.attention_store) == 0: + self.attention_store = [self.step_store] + else: + self.attention_store.append(self.step_store) + self.cur_step += 1 + self.step_store = self.get_empty_store() + + def get_attention(self, step: int): + if self.average: + attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store} + else: + assert step is not None + attention = self.attention_store[step] + return attention + + def aggregate_attention(self, attention_maps, prompts, res: Union[int, Tuple[int]], from_where: List[str], is_cross: bool, select: int): + out = [[] for x in range(self.batch_size)] + if isinstance(res, int): + num_pixels = res ** 2 + resolution = (res, res) + else: + num_pixels = res[0] * res[1] + resolution = res[:2] + for location in from_where: + for bs_item in attention_maps[f"{location}_{('cross' if is_cross else 'self')}"]: + for (batch, item) in enumerate(bs_item): + if item.shape[1] == num_pixels: + cross_maps = item.reshape(len(prompts), -1, *resolution, item.shape[-1])[select] + out[batch].append(cross_maps) + out = torch.stack([torch.cat(x, dim=0) for x in out]) + out = out.sum(1) / out.shape[1] + return out + + def __init__(self, average: bool, batch_size=1, max_resolution=16, max_size: int=None): + self.step_store = self.get_empty_store() + self.attention_store = [] + self.cur_step = 0 + self.average = average + self.batch_size = batch_size + if max_size is None: + self.max_size = max_resolution ** 2 + elif max_size is not None and max_resolution is None: + self.max_size = max_size + else: + raise ValueError('Only allowed to set one of max_resolution or max_size') + +class LeditsGaussianSmoothing: + + def __init__(self, device): + kernel_size = [3, 3] + sigma = [0.5, 0.5] + kernel = 1 + meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size]) + for (size, std, mgrid) in zip(kernel_size, sigma, meshgrids): + mean = (size - 1) / 2 + kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-((mgrid - mean) / (2 * std)) ** 2) + kernel = kernel / torch.sum(kernel) + kernel = kernel.view(1, 1, *kernel.size()) + kernel = kernel.repeat(1, *[1] * (kernel.dim() - 1)) + self.weight = kernel.to(device) + + def __call__(self, input): + return F.conv2d(input, weight=self.weight.to(input.dtype)) + +class LEDITSCrossAttnProcessor: + + def __init__(self, attention_store, place_in_unet, pnp, editing_prompts): + self.attnstore = attention_store + self.place_in_unet = place_in_unet + self.editing_prompts = editing_prompts + self.pnp = pnp + + def __call__(self, attn: Attention, hidden_states, encoder_hidden_states, attention_mask=None, temb=None): + (batch_size, sequence_length, _) = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + query = attn.to_q(hidden_states) + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + query = attn.head_to_batch_dim(query) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + attention_probs = attn.get_attention_scores(query, key, attention_mask) + self.attnstore(attention_probs, is_cross=True, place_in_unet=self.place_in_unet, editing_prompts=self.editing_prompts, PnP=self.pnp) + hidden_states = torch.bmm(attention_probs, value) + hidden_states = attn.batch_to_head_dim(hidden_states) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + hidden_states = hidden_states / attn.rescale_output_factor + return hidden_states + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +class LEditsPPPipelineStableDiffusion(DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _exclude_from_cpu_offload = ['safety_checker'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + _optional_components = ['safety_checker', 'feature_extractor', 'image_encoder'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[DDIMScheduler, DPMSolverMultistepScheduler], safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool=True): + super().__init__() + if not isinstance(scheduler, DDIMScheduler) and (not isinstance(scheduler, DPMSolverMultistepScheduler)): + scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config, algorithm_type='sde-dpmsolver++', solver_order=2) + logger.warning('This pipeline only supports DDIMScheduler and DPMSolverMultistepScheduler. The scheduler has been changed to DPMSolverMultistepScheduler.') + if hasattr(scheduler.config, 'steps_offset') and scheduler.config.steps_offset != 1: + deprecation_message = f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset` should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure to update the config accordingly as leaving `steps_offset` might led to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('steps_offset!=1', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['steps_offset'] = 1 + scheduler._internal_dict = FrozenDict(new_config) + if hasattr(scheduler.config, 'clip_sample') and scheduler.config.clip_sample is True: + deprecation_message = f'The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`. `clip_sample` should be set to False in the configuration file. Please make sure to update the config accordingly as not setting `clip_sample` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('clip_sample not set', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['clip_sample'] = False + scheduler._internal_dict = FrozenDict(new_config) + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + is_unet_version_less_0_9_0 = hasattr(unet.config, '_diffusers_version') and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse('0.9.0.dev0') + is_unet_sample_size_less_64 = hasattr(unet.config, 'sample_size') and unet.config.sample_size < 64 + if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: + deprecation_message = "The configuration file of the unet has set the default `sample_size` to smaller than 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n- CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5 \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the configuration file. Please make sure to update the config accordingly as leaving `sample_size=32` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `unet/config.json` file" + deprecate('sample_size<64', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(unet.config) + new_config['sample_size'] = 64 + unet._internal_dict = FrozenDict(new_config) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + self.inversion_steps = None + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, eta, generator=None): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, negative_prompt=None, editing_prompt_embeddings=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None): + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if editing_prompt_embeddings is not None and negative_prompt_embeds is not None: + if editing_prompt_embeddings.shape != negative_prompt_embeds.shape: + raise ValueError(f'`editing_prompt_embeddings` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `editing_prompt_embeddings` {editing_prompt_embeddings.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, latents): + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def prepare_unet(self, attention_store, PnP: bool=False): + attn_procs = {} + for name in self.unet.attn_processors.keys(): + if name.startswith('mid_block'): + place_in_unet = 'mid' + elif name.startswith('up_blocks'): + place_in_unet = 'up' + elif name.startswith('down_blocks'): + place_in_unet = 'down' + else: + continue + if 'attn2' in name and place_in_unet != 'mid': + attn_procs[name] = LEDITSCrossAttnProcessor(attention_store=attention_store, place_in_unet=place_in_unet, pnp=PnP, editing_prompts=self.enabled_editing_prompts) + else: + attn_procs[name] = AttnProcessor() + self.unet.set_attn_processor(attn_procs) + + def encode_prompt(self, device, num_images_per_prompt, enable_edit_guidance, negative_prompt=None, editing_prompt=None, negative_prompt_embeds: Optional[torch.Tensor]=None, editing_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + batch_size = self.batch_size + num_edit_tokens = None + if negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but exoected{batch_size} based on the input images. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = negative_prompt_embeds.dtype + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + if enable_edit_guidance: + if editing_prompt_embeds is None: + if isinstance(editing_prompt, str): + editing_prompt = [editing_prompt] + max_length = negative_prompt_embeds.shape[1] + text_inputs = self.tokenizer([x for item in editing_prompt for x in repeat(item, batch_size)], padding='max_length', max_length=max_length, truncation=True, return_tensors='pt', return_length=True) + num_edit_tokens = text_inputs.length - 2 + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer([x for item in editing_prompt for x in repeat(item, batch_size)], padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + editing_prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + editing_prompt_embeds = editing_prompt_embeds[0] + else: + editing_prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + editing_prompt_embeds = editing_prompt_embeds[-1][-(clip_skip + 1)] + editing_prompt_embeds = self.text_encoder.text_model.final_layer_norm(editing_prompt_embeds) + editing_prompt_embeds = editing_prompt_embeds.to(dtype=negative_prompt_embeds.dtype, device=device) + (bs_embed_edit, seq_len, _) = editing_prompt_embeds.shape + editing_prompt_embeds = editing_prompt_embeds.to(dtype=negative_prompt_embeds.dtype, device=device) + editing_prompt_embeds = editing_prompt_embeds.repeat(1, num_images_per_prompt, 1) + editing_prompt_embeds = editing_prompt_embeds.view(bs_embed_edit * num_images_per_prompt, seq_len, -1) + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (editing_prompt_embeds, negative_prompt_embeds, num_edit_tokens) + + @property + def guidance_rescale(self): + return self._guidance_rescale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, negative_prompt: Optional[Union[str, List[str]]]=None, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, output_type: Optional[str]='pil', return_dict: bool=True, editing_prompt: Optional[Union[str, List[str]]]=None, editing_prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, reverse_editing_direction: Optional[Union[bool, List[bool]]]=False, edit_guidance_scale: Optional[Union[float, List[float]]]=5, edit_warmup_steps: Optional[Union[int, List[int]]]=0, edit_cooldown_steps: Optional[Union[int, List[int]]]=None, edit_threshold: Optional[Union[float, List[float]]]=0.9, user_mask: Optional[torch.Tensor]=None, sem_guidance: Optional[List[torch.Tensor]]=None, use_cross_attn_mask: bool=False, use_intersect_mask: bool=True, attn_store_steps: Optional[List[int]]=[], store_averaged_over_steps: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, guidance_rescale: float=0.0, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + if self.inversion_steps is None: + raise ValueError('You need to invert an input image first before calling the pipeline. The `invert` method has to be called beforehand. Edits will always be performed for the last inverted image(s).') + eta = self.eta + num_images_per_prompt = 1 + latents = self.init_latents + zs = self.zs + self.scheduler.set_timesteps(len(self.scheduler.timesteps)) + if use_intersect_mask: + use_cross_attn_mask = True + if use_cross_attn_mask: + self.smoothing = LeditsGaussianSmoothing(self.device) + if user_mask is not None: + user_mask = user_mask.to(self.device) + org_prompt = '' + self.check_inputs(negative_prompt, editing_prompt_embeds, negative_prompt_embeds, callback_on_step_end_tensor_inputs) + self._guidance_rescale = guidance_rescale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + batch_size = self.batch_size + if editing_prompt: + enable_edit_guidance = True + if isinstance(editing_prompt, str): + editing_prompt = [editing_prompt] + self.enabled_editing_prompts = len(editing_prompt) + elif editing_prompt_embeds is not None: + enable_edit_guidance = True + self.enabled_editing_prompts = editing_prompt_embeds.shape[0] + else: + self.enabled_editing_prompts = 0 + enable_edit_guidance = False + lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (edit_concepts, uncond_embeddings, num_edit_tokens) = self.encode_prompt(editing_prompt=editing_prompt, device=self.device, num_images_per_prompt=num_images_per_prompt, enable_edit_guidance=enable_edit_guidance, negative_prompt=negative_prompt, editing_prompt_embeds=editing_prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, clip_skip=self.clip_skip) + if enable_edit_guidance: + text_embeddings = torch.cat([uncond_embeddings, edit_concepts]) + self.text_cross_attention_maps = [editing_prompt] if isinstance(editing_prompt, str) else editing_prompt + else: + text_embeddings = torch.cat([uncond_embeddings]) + timesteps = self.inversion_steps + t_to_idx = {int(v): k for (k, v) in enumerate(timesteps[-zs.shape[0]:])} + if use_cross_attn_mask: + self.attention_store = LeditsAttentionStore(average=store_averaged_over_steps, batch_size=batch_size, max_size=latents.shape[-2] / 4.0 * (latents.shape[-1] / 4.0), max_resolution=None) + self.prepare_unet(self.attention_store, PnP=False) + resolution = latents.shape[-2:] + att_res = (int(resolution[0] / 4), int(resolution[1] / 4)) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, None, None, text_embeddings.dtype, self.device, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(eta) + self.sem_guidance = None + self.activation_mask = None + num_warmup_steps = 0 + with self.progress_bar(total=len(timesteps)) as progress_bar: + for (i, t) in enumerate(timesteps): + if enable_edit_guidance: + latent_model_input = torch.cat([latents] * (1 + self.enabled_editing_prompts)) + else: + latent_model_input = latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + text_embed_input = text_embeddings + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embed_input).sample + noise_pred_out = noise_pred.chunk(1 + self.enabled_editing_prompts) + noise_pred_uncond = noise_pred_out[0] + noise_pred_edit_concepts = noise_pred_out[1:] + noise_guidance_edit = torch.zeros(noise_pred_uncond.shape, device=self.device, dtype=noise_pred_uncond.dtype) + if sem_guidance is not None and len(sem_guidance) > i: + noise_guidance_edit += sem_guidance[i].to(self.device) + elif enable_edit_guidance: + if self.activation_mask is None: + self.activation_mask = torch.zeros((len(timesteps), len(noise_pred_edit_concepts), *noise_pred_edit_concepts[0].shape)) + if self.sem_guidance is None: + self.sem_guidance = torch.zeros((len(timesteps), *noise_pred_uncond.shape)) + for (c, noise_pred_edit_concept) in enumerate(noise_pred_edit_concepts): + if isinstance(edit_warmup_steps, list): + edit_warmup_steps_c = edit_warmup_steps[c] + else: + edit_warmup_steps_c = edit_warmup_steps + if i < edit_warmup_steps_c: + continue + if isinstance(edit_guidance_scale, list): + edit_guidance_scale_c = edit_guidance_scale[c] + else: + edit_guidance_scale_c = edit_guidance_scale + if isinstance(edit_threshold, list): + edit_threshold_c = edit_threshold[c] + else: + edit_threshold_c = edit_threshold + if isinstance(reverse_editing_direction, list): + reverse_editing_direction_c = reverse_editing_direction[c] + else: + reverse_editing_direction_c = reverse_editing_direction + if isinstance(edit_cooldown_steps, list): + edit_cooldown_steps_c = edit_cooldown_steps[c] + elif edit_cooldown_steps is None: + edit_cooldown_steps_c = i + 1 + else: + edit_cooldown_steps_c = edit_cooldown_steps + if i >= edit_cooldown_steps_c: + continue + noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond + if reverse_editing_direction_c: + noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1 + noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c + if user_mask is not None: + noise_guidance_edit_tmp = noise_guidance_edit_tmp * user_mask + if use_cross_attn_mask: + out = self.attention_store.aggregate_attention(attention_maps=self.attention_store.step_store, prompts=self.text_cross_attention_maps, res=att_res, from_where=['up', 'down'], is_cross=True, select=self.text_cross_attention_maps.index(editing_prompt[c])) + attn_map = out[:, :, :, 1:1 + num_edit_tokens[c]] + if attn_map.shape[3] != num_edit_tokens[c]: + raise ValueError(f'Incorrect shape of attention_map. Expected size {num_edit_tokens[c]}, but found {attn_map.shape[3]}!') + attn_map = torch.sum(attn_map, dim=3) + attn_map = F.pad(attn_map.unsqueeze(1), (1, 1, 1, 1), mode='reflect') + attn_map = self.smoothing(attn_map).squeeze(1) + if attn_map.dtype == torch.float32: + tmp = torch.quantile(attn_map.flatten(start_dim=1), edit_threshold_c, dim=1) + else: + tmp = torch.quantile(attn_map.flatten(start_dim=1).to(torch.float32), edit_threshold_c, dim=1).to(attn_map.dtype) + attn_mask = torch.where(attn_map >= tmp.unsqueeze(1).unsqueeze(1).repeat(1, *att_res), 1.0, 0.0) + attn_mask = F.interpolate(attn_mask.unsqueeze(1), noise_guidance_edit_tmp.shape[-2:]).repeat(1, 4, 1, 1) + self.activation_mask[i, c] = attn_mask.detach().cpu() + if not use_intersect_mask: + noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask + if use_intersect_mask: + if t <= 800: + noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp) + noise_guidance_edit_tmp_quantile = torch.sum(noise_guidance_edit_tmp_quantile, dim=1, keepdim=True) + noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, self.unet.config.in_channels, 1, 1) + if noise_guidance_edit_tmp_quantile.dtype == torch.float32: + tmp = torch.quantile(noise_guidance_edit_tmp_quantile.flatten(start_dim=2), edit_threshold_c, dim=2, keepdim=False) + else: + tmp = torch.quantile(noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32), edit_threshold_c, dim=2, keepdim=False).to(noise_guidance_edit_tmp_quantile.dtype) + intersect_mask = torch.where(noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], torch.ones_like(noise_guidance_edit_tmp), torch.zeros_like(noise_guidance_edit_tmp)) * attn_mask + self.activation_mask[i, c] = intersect_mask.detach().cpu() + noise_guidance_edit_tmp = noise_guidance_edit_tmp * intersect_mask + else: + noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask + elif not use_cross_attn_mask: + noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp) + noise_guidance_edit_tmp_quantile = torch.sum(noise_guidance_edit_tmp_quantile, dim=1, keepdim=True) + noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, 4, 1, 1) + if noise_guidance_edit_tmp_quantile.dtype == torch.float32: + tmp = torch.quantile(noise_guidance_edit_tmp_quantile.flatten(start_dim=2), edit_threshold_c, dim=2, keepdim=False) + else: + tmp = torch.quantile(noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32), edit_threshold_c, dim=2, keepdim=False).to(noise_guidance_edit_tmp_quantile.dtype) + self.activation_mask[i, c] = torch.where(noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], torch.ones_like(noise_guidance_edit_tmp), torch.zeros_like(noise_guidance_edit_tmp)).detach().cpu() + noise_guidance_edit_tmp = torch.where(noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], noise_guidance_edit_tmp, torch.zeros_like(noise_guidance_edit_tmp)) + noise_guidance_edit += noise_guidance_edit_tmp + self.sem_guidance[i] = noise_guidance_edit.detach().cpu() + noise_pred = noise_pred_uncond + noise_guidance_edit + if enable_edit_guidance and self.guidance_rescale > 0.0: + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_edit_concepts.mean(dim=0, keepdim=False), guidance_rescale=self.guidance_rescale) + idx = t_to_idx[int(t)] + latents = self.scheduler.step(noise_pred, t, latents, variance_noise=zs[idx], **extra_step_kwargs).prev_sample + if use_cross_attn_mask: + store_step = i in attn_store_steps + self.attention_store.between_steps(store_step) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, self.device, text_embeddings.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return LEditsPPDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + + @torch.no_grad() + def invert(self, image: PipelineImageInput, source_prompt: str='', source_guidance_scale: float=3.5, num_inversion_steps: int=30, skip: float=0.15, generator: Optional[torch.Generator]=None, cross_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: Optional[int]=None, height: Optional[int]=None, width: Optional[int]=None, resize_mode: Optional[str]='default', crops_coords: Optional[Tuple[int, int, int, int]]=None): + self.unet.set_attn_processor(AttnProcessor()) + self.eta = 1.0 + self.scheduler.config.timestep_spacing = 'leading' + self.scheduler.set_timesteps(int(num_inversion_steps * (1 + skip))) + self.inversion_steps = self.scheduler.timesteps[-num_inversion_steps:] + timesteps = self.inversion_steps + (x0, resized) = self.encode_image(image, dtype=self.text_encoder.dtype, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords) + self.batch_size = x0.shape[0] + image_rec = self.vae.decode(x0 / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] + image_rec = self.image_processor.postprocess(image_rec, output_type='pil') + do_classifier_free_guidance = source_guidance_scale > 1.0 + lora_scale = cross_attention_kwargs.get('scale', None) if cross_attention_kwargs is not None else None + (uncond_embedding, text_embeddings, _) = self.encode_prompt(num_images_per_prompt=1, device=self.device, negative_prompt=None, enable_edit_guidance=do_classifier_free_guidance, editing_prompt=source_prompt, lora_scale=lora_scale, clip_skip=clip_skip) + variance_noise_shape = (num_inversion_steps, *x0.shape) + t_to_idx = {int(v): k for (k, v) in enumerate(timesteps)} + xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=uncond_embedding.dtype) + for t in reversed(timesteps): + idx = num_inversion_steps - t_to_idx[int(t)] - 1 + noise = randn_tensor(shape=x0.shape, generator=generator, device=self.device, dtype=x0.dtype) + xts[idx] = self.scheduler.add_noise(x0, noise, torch.Tensor([t])) + xts = torch.cat([x0.unsqueeze(0), xts], dim=0) + self.scheduler.set_timesteps(len(self.scheduler.timesteps)) + zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=uncond_embedding.dtype) + with self.progress_bar(total=len(timesteps)) as progress_bar: + for t in timesteps: + idx = num_inversion_steps - t_to_idx[int(t)] - 1 + xt = xts[idx + 1] + noise_pred = self.unet(xt, timestep=t, encoder_hidden_states=uncond_embedding).sample + if not source_prompt == '': + noise_pred_cond = self.unet(xt, timestep=t, encoder_hidden_states=text_embeddings).sample + noise_pred = noise_pred + source_guidance_scale * (noise_pred_cond - noise_pred) + xtm1 = xts[idx] + (z, xtm1_corrected) = compute_noise(self.scheduler, xtm1, xt, t, noise_pred, self.eta) + zs[idx] = z + xts[idx] = xtm1_corrected + progress_bar.update() + self.init_latents = xts[-1].expand(self.batch_size, -1, -1, -1) + zs = zs.flip(0) + self.zs = zs + return LEditsPPInversionPipelineOutput(images=resized, vae_reconstruction_images=image_rec) + + @torch.no_grad() + def encode_image(self, image, dtype=None, height=None, width=None, resize_mode='default', crops_coords=None): + image = self.image_processor.preprocess(image=image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords) + resized = self.image_processor.postprocess(image=image, output_type='pil') + if max(image.shape[-2:]) > self.vae.config['sample_size'] * 1.5: + logger.warning('Your input images far exceed the default resolution of the underlying diffusion model. The output images may contain severe artifacts! Consider down-sampling the input using the `height` and `width` parameters') + image = image.to(dtype) + x0 = self.vae.encode(image.to(self.device)).latent_dist.mode() + x0 = x0.to(dtype) + x0 = self.vae.config.scaling_factor * x0 + return (x0, resized) + +def compute_noise_ddim(scheduler, prev_latents, latents, timestep, noise_pred, eta): + prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps + alpha_prod_t = scheduler.alphas_cumprod[timestep] + alpha_prod_t_prev = scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod + beta_prod_t = 1 - alpha_prod_t + pred_original_sample = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 + if scheduler.config.clip_sample: + pred_original_sample = torch.clamp(pred_original_sample, -1, 1) + variance = scheduler._get_variance(timestep, prev_timestep) + std_dev_t = eta * variance ** 0.5 + pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t ** 2) ** 0.5 * noise_pred + mu_xt = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction + if variance > 0.0: + noise = (prev_latents - mu_xt) / (variance ** 0.5 * eta) + else: + noise = torch.tensor([0.0]).to(latents.device) + return (noise, mu_xt + eta * variance ** 0.5 * noise) + +def compute_noise_sde_dpm_pp_2nd(scheduler, prev_latents, latents, timestep, noise_pred, eta): + + def first_order_update(model_output, sample): + (sigma_t, sigma_s) = (scheduler.sigmas[scheduler.step_index + 1], scheduler.sigmas[scheduler.step_index]) + (alpha_t, sigma_t) = scheduler._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s, sigma_s) = scheduler._sigma_to_alpha_sigma_t(sigma_s) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s = torch.log(alpha_s) - torch.log(sigma_s) + h = lambda_t - lambda_s + mu_xt = sigma_t / sigma_s * torch.exp(-h) * sample + alpha_t * (1 - torch.exp(-2.0 * h)) * model_output + mu_xt = scheduler.dpm_solver_first_order_update(model_output=model_output, sample=sample, noise=torch.zeros_like(sample)) + sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) + if sigma > 0.0: + noise = (prev_latents - mu_xt) / sigma + else: + noise = torch.tensor([0.0]).to(sample.device) + prev_sample = mu_xt + sigma * noise + return (noise, prev_sample) + + def second_order_update(model_output_list, sample): + (sigma_t, sigma_s0, sigma_s1) = (scheduler.sigmas[scheduler.step_index + 1], scheduler.sigmas[scheduler.step_index], scheduler.sigmas[scheduler.step_index - 1]) + (alpha_t, sigma_t) = scheduler._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s0, sigma_s0) = scheduler._sigma_to_alpha_sigma_t(sigma_s0) + (alpha_s1, sigma_s1) = scheduler._sigma_to_alpha_sigma_t(sigma_s1) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) + lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) + (m0, m1) = (model_output_list[-1], model_output_list[-2]) + (h, h_0) = (lambda_t - lambda_s0, lambda_s0 - lambda_s1) + r0 = h_0 / h + (D0, D1) = (m0, 1.0 / r0 * (m0 - m1)) + mu_xt = sigma_t / sigma_s0 * torch.exp(-h) * sample + alpha_t * (1 - torch.exp(-2.0 * h)) * D0 + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 + sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) + if sigma > 0.0: + noise = (prev_latents - mu_xt) / sigma + else: + noise = torch.tensor([0.0]).to(sample.device) + prev_sample = mu_xt + sigma * noise + return (noise, prev_sample) + if scheduler.step_index is None: + scheduler._init_step_index(timestep) + model_output = scheduler.convert_model_output(model_output=noise_pred, sample=latents) + for i in range(scheduler.config.solver_order - 1): + scheduler.model_outputs[i] = scheduler.model_outputs[i + 1] + scheduler.model_outputs[-1] = model_output + if scheduler.lower_order_nums < 1: + (noise, prev_sample) = first_order_update(model_output, latents) + else: + (noise, prev_sample) = second_order_update(scheduler.model_outputs, latents) + if scheduler.lower_order_nums < scheduler.config.solver_order: + scheduler.lower_order_nums += 1 + scheduler._step_index += 1 + return (noise, prev_sample) + +def compute_noise(scheduler, *args): + if isinstance(scheduler, DDIMScheduler): + return compute_noise_ddim(scheduler, *args) + elif isinstance(scheduler, DPMSolverMultistepScheduler) and scheduler.config.algorithm_type == 'sde-dpmsolver++' and (scheduler.config.solver_order == 2): + return compute_noise_sde_dpm_pp_2nd(scheduler, *args) + else: + raise NotImplementedError + +# File: diffusers-main/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +import inspect +import math +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, UNet2DConditionModel +from ...models.attention_processor import Attention, AttnProcessor, AttnProcessor2_0, XFormersAttnProcessor +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import DDIMScheduler, DPMSolverMultistepScheduler +from ...utils import USE_PEFT_BACKEND, is_invisible_watermark_available, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .pipeline_output import LEditsPPDiffusionPipelineOutput, LEditsPPInversionPipelineOutput +if is_invisible_watermark_available(): + from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> import PIL\n >>> import requests\n >>> from io import BytesIO\n\n >>> from diffusers import LEditsPPPipelineStableDiffusionXL\n\n >>> pipe = LEditsPPPipelineStableDiffusionXL.from_pretrained(\n ... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> def download_image(url):\n ... response = requests.get(url)\n ... return PIL.Image.open(BytesIO(response.content)).convert("RGB")\n\n\n >>> img_url = "https://www.aiml.informatik.tu-darmstadt.de/people/mbrack/tennis.jpg"\n >>> image = download_image(img_url)\n\n >>> _ = pipe.invert(image=image, num_inversion_steps=50, skip=0.2)\n\n >>> edited_image = pipe(\n ... editing_prompt=["tennis ball", "tomato"],\n ... reverse_editing_direction=[True, False],\n ... edit_guidance_scale=[5.0, 10.0],\n ... edit_threshold=[0.9, 0.85],\n ... ).images[0]\n ```\n' + +class LeditsAttentionStore: + + @staticmethod + def get_empty_store(): + return {'down_cross': [], 'mid_cross': [], 'up_cross': [], 'down_self': [], 'mid_self': [], 'up_self': []} + + def __call__(self, attn, is_cross: bool, place_in_unet: str, editing_prompts, PnP=False): + if attn.shape[1] <= self.max_size: + bs = 1 + int(PnP) + editing_prompts + skip = 2 if PnP else 1 + attn = torch.stack(attn.split(self.batch_size)).permute(1, 0, 2, 3) + source_batch_size = int(attn.shape[1] // bs) + self.forward(attn[:, skip * source_batch_size:], is_cross, place_in_unet) + + def forward(self, attn, is_cross: bool, place_in_unet: str): + key = f"{place_in_unet}_{('cross' if is_cross else 'self')}" + self.step_store[key].append(attn) + + def between_steps(self, store_step=True): + if store_step: + if self.average: + if len(self.attention_store) == 0: + self.attention_store = self.step_store + else: + for key in self.attention_store: + for i in range(len(self.attention_store[key])): + self.attention_store[key][i] += self.step_store[key][i] + elif len(self.attention_store) == 0: + self.attention_store = [self.step_store] + else: + self.attention_store.append(self.step_store) + self.cur_step += 1 + self.step_store = self.get_empty_store() + + def get_attention(self, step: int): + if self.average: + attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store} + else: + assert step is not None + attention = self.attention_store[step] + return attention + + def aggregate_attention(self, attention_maps, prompts, res: Union[int, Tuple[int]], from_where: List[str], is_cross: bool, select: int): + out = [[] for x in range(self.batch_size)] + if isinstance(res, int): + num_pixels = res ** 2 + resolution = (res, res) + else: + num_pixels = res[0] * res[1] + resolution = res[:2] + for location in from_where: + for bs_item in attention_maps[f"{location}_{('cross' if is_cross else 'self')}"]: + for (batch, item) in enumerate(bs_item): + if item.shape[1] == num_pixels: + cross_maps = item.reshape(len(prompts), -1, *resolution, item.shape[-1])[select] + out[batch].append(cross_maps) + out = torch.stack([torch.cat(x, dim=0) for x in out]) + out = out.sum(1) / out.shape[1] + return out + + def __init__(self, average: bool, batch_size=1, max_resolution=16, max_size: int=None): + self.step_store = self.get_empty_store() + self.attention_store = [] + self.cur_step = 0 + self.average = average + self.batch_size = batch_size + if max_size is None: + self.max_size = max_resolution ** 2 + elif max_size is not None and max_resolution is None: + self.max_size = max_size + else: + raise ValueError('Only allowed to set one of max_resolution or max_size') + +class LeditsGaussianSmoothing: + + def __init__(self, device): + kernel_size = [3, 3] + sigma = [0.5, 0.5] + kernel = 1 + meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size]) + for (size, std, mgrid) in zip(kernel_size, sigma, meshgrids): + mean = (size - 1) / 2 + kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-((mgrid - mean) / (2 * std)) ** 2) + kernel = kernel / torch.sum(kernel) + kernel = kernel.view(1, 1, *kernel.size()) + kernel = kernel.repeat(1, *[1] * (kernel.dim() - 1)) + self.weight = kernel.to(device) + + def __call__(self, input): + return F.conv2d(input, weight=self.weight.to(input.dtype)) + +class LEDITSCrossAttnProcessor: + + def __init__(self, attention_store, place_in_unet, pnp, editing_prompts): + self.attnstore = attention_store + self.place_in_unet = place_in_unet + self.editing_prompts = editing_prompts + self.pnp = pnp + + def __call__(self, attn: Attention, hidden_states, encoder_hidden_states, attention_mask=None, temb=None): + (batch_size, sequence_length, _) = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + query = attn.to_q(hidden_states) + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + query = attn.head_to_batch_dim(query) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + attention_probs = attn.get_attention_scores(query, key, attention_mask) + self.attnstore(attention_probs, is_cross=True, place_in_unet=self.place_in_unet, editing_prompts=self.editing_prompts, PnP=self.pnp) + hidden_states = torch.bmm(attention_probs, value) + hidden_states = attn.batch_to_head_dim(hidden_states) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + hidden_states = hidden_states / attn.rescale_output_factor + return hidden_states + +class LEditsPPPipelineStableDiffusionXL(DiffusionPipeline, FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin, IPAdapterMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->unet->vae' + _optional_components = ['tokenizer', 'tokenizer_2', 'text_encoder', 'text_encoder_2', 'image_encoder', 'feature_extractor'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'add_text_embeds', 'add_time_ids', 'negative_pooled_prompt_embeds', 'negative_add_time_ids'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[DPMSolverMultistepScheduler, DDIMScheduler], image_encoder: CLIPVisionModelWithProjection=None, feature_extractor: CLIPImageProcessor=None, force_zeros_for_empty_prompt: bool=True, add_watermarker: Optional[bool]=None): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, scheduler=scheduler, image_encoder=image_encoder, feature_extractor=feature_extractor) + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + if not isinstance(scheduler, DDIMScheduler) and (not isinstance(scheduler, DPMSolverMultistepScheduler)): + self.scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config, algorithm_type='sde-dpmsolver++', solver_order=2) + logger.warning('This pipeline only supports DDIMScheduler and DPMSolverMultistepScheduler. The scheduler has been changed to DPMSolverMultistepScheduler.') + self.default_sample_size = self.unet.config.sample_size + add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() + if add_watermarker: + self.watermark = StableDiffusionXLWatermarker() + else: + self.watermark = None + self.inversion_steps = None + + def encode_prompt(self, device: Optional[torch.device]=None, num_images_per_prompt: int=1, negative_prompt: Optional[str]=None, negative_prompt_2: Optional[str]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None, enable_edit_guidance: bool=True, editing_prompt: Optional[str]=None, editing_prompt_embeds: Optional[torch.Tensor]=None, editing_pooled_prompt_embeds: Optional[torch.Tensor]=None) -> object: + device = device or self._execution_device + if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) + else: + scale_lora_layers(self.text_encoder_2, lora_scale) + batch_size = self.batch_size + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + num_edit_tokens = 0 + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + uncond_tokens: List[str] + if batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but image inversion has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of the input images.') + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + negative_prompt_embeds_list = [] + for (negative_prompt, tokenizer, text_encoder) in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + uncond_input = tokenizer(negative_prompt, padding='max_length', max_length=tokenizer.model_max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True) + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + negative_prompt_embeds_list.append(negative_prompt_embeds) + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + if zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(negative_prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(negative_pooled_prompt_embeds) + if enable_edit_guidance and editing_prompt_embeds is None: + editing_prompt_2 = editing_prompt + editing_prompts = [editing_prompt, editing_prompt_2] + edit_prompt_embeds_list = [] + for (editing_prompt, tokenizer, text_encoder) in zip(editing_prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + editing_prompt = self.maybe_convert_prompt(editing_prompt, tokenizer) + max_length = negative_prompt_embeds.shape[1] + edit_concepts_input = tokenizer(editing_prompt, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt', return_length=True) + num_edit_tokens = edit_concepts_input.length - 2 + edit_concepts_embeds = text_encoder(edit_concepts_input.input_ids.to(device), output_hidden_states=True) + editing_pooled_prompt_embeds = edit_concepts_embeds[0] + if clip_skip is None: + edit_concepts_embeds = edit_concepts_embeds.hidden_states[-2] + else: + edit_concepts_embeds = edit_concepts_embeds.hidden_states[-(clip_skip + 2)] + edit_prompt_embeds_list.append(edit_concepts_embeds) + edit_concepts_embeds = torch.concat(edit_prompt_embeds_list, dim=-1) + elif not enable_edit_guidance: + edit_concepts_embeds = None + editing_pooled_prompt_embeds = None + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + (bs_embed, seq_len, _) = negative_prompt_embeds.shape + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if enable_edit_guidance: + (bs_embed_edit, seq_len, _) = edit_concepts_embeds.shape + edit_concepts_embeds = edit_concepts_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + edit_concepts_embeds = edit_concepts_embeds.repeat(1, num_images_per_prompt, 1) + edit_concepts_embeds = edit_concepts_embeds.view(bs_embed_edit * num_images_per_prompt, seq_len, -1) + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if enable_edit_guidance: + editing_pooled_prompt_embeds = editing_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed_edit * num_images_per_prompt, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (negative_prompt_embeds, edit_concepts_embeds, negative_pooled_prompt_embeds, editing_pooled_prompt_embeds, num_edit_tokens) + + def prepare_extra_step_kwargs(self, eta, generator=None): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, negative_prompt=None, negative_prompt_2=None, negative_prompt_embeds=None, negative_pooled_prompt_embeds=None): + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + + def prepare_latents(self, device, latents): + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.') + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + return add_time_ids + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def guidance_rescale(self): + return self._guidance_rescale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def denoising_end(self): + return self._denoising_end + + @property + def num_timesteps(self): + return self._num_timesteps + + def prepare_unet(self, attention_store, PnP: bool=False): + attn_procs = {} + for name in self.unet.attn_processors.keys(): + if name.startswith('mid_block'): + place_in_unet = 'mid' + elif name.startswith('up_blocks'): + place_in_unet = 'up' + elif name.startswith('down_blocks'): + place_in_unet = 'down' + else: + continue + if 'attn2' in name and place_in_unet != 'mid': + attn_procs[name] = LEDITSCrossAttnProcessor(attention_store=attention_store, place_in_unet=place_in_unet, pnp=PnP, editing_prompts=self.enabled_editing_prompts) + else: + attn_procs[name] = AttnProcessor() + self.unet.set_attn_processor(attn_procs) + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, denoising_end: Optional[float]=None, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, guidance_rescale: float=0.0, crops_coords_top_left: Tuple[int, int]=(0, 0), target_size: Optional[Tuple[int, int]]=None, editing_prompt: Optional[Union[str, List[str]]]=None, editing_prompt_embeddings: Optional[torch.Tensor]=None, editing_pooled_prompt_embeds: Optional[torch.Tensor]=None, reverse_editing_direction: Optional[Union[bool, List[bool]]]=False, edit_guidance_scale: Optional[Union[float, List[float]]]=5, edit_warmup_steps: Optional[Union[int, List[int]]]=0, edit_cooldown_steps: Optional[Union[int, List[int]]]=None, edit_threshold: Optional[Union[float, List[float]]]=0.9, sem_guidance: Optional[List[torch.Tensor]]=None, use_cross_attn_mask: bool=False, use_intersect_mask: bool=False, user_mask: Optional[torch.Tensor]=None, attn_store_steps: Optional[List[int]]=[], store_averaged_over_steps: bool=True, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + if self.inversion_steps is None: + raise ValueError('You need to invert an input image first before calling the pipeline. The `invert` method has to be called beforehand. Edits will always be performed for the last inverted image(s).') + eta = self.eta + num_images_per_prompt = 1 + latents = self.init_latents + zs = self.zs + self.scheduler.set_timesteps(len(self.scheduler.timesteps)) + if use_intersect_mask: + use_cross_attn_mask = True + if use_cross_attn_mask: + self.smoothing = LeditsGaussianSmoothing(self.device) + if user_mask is not None: + user_mask = user_mask.to(self.device) + self._guidance_rescale = guidance_rescale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._denoising_end = denoising_end + batch_size = self.batch_size + device = self._execution_device + if editing_prompt: + enable_edit_guidance = True + if isinstance(editing_prompt, str): + editing_prompt = [editing_prompt] + self.enabled_editing_prompts = len(editing_prompt) + elif editing_prompt_embeddings is not None: + enable_edit_guidance = True + self.enabled_editing_prompts = editing_prompt_embeddings.shape[0] + else: + self.enabled_editing_prompts = 0 + enable_edit_guidance = False + text_encoder_lora_scale = cross_attention_kwargs.get('scale', None) if cross_attention_kwargs is not None else None + (prompt_embeds, edit_prompt_embeds, negative_pooled_prompt_embeds, pooled_edit_embeds, num_edit_tokens) = self.encode_prompt(device=device, num_images_per_prompt=num_images_per_prompt, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_embeds=negative_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip, enable_edit_guidance=enable_edit_guidance, editing_prompt=editing_prompt, editing_prompt_embeds=editing_prompt_embeddings, editing_pooled_prompt_embeds=editing_pooled_prompt_embeds) + timesteps = self.inversion_steps + t_to_idx = {int(v): k for (k, v) in enumerate(timesteps)} + if use_cross_attn_mask: + self.attention_store = LeditsAttentionStore(average=store_averaged_over_steps, batch_size=batch_size, max_size=latents.shape[-2] / 4.0 * (latents.shape[-1] / 4.0), max_resolution=None) + self.prepare_unet(self.attention_store) + resolution = latents.shape[-2:] + att_res = (int(resolution[0] / 4), int(resolution[1] / 4)) + latents = self.prepare_latents(device=device, latents=latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(eta) + if self.text_encoder_2 is None: + text_encoder_projection_dim = int(negative_pooled_prompt_embeds.shape[-1]) + else: + text_encoder_projection_dim = self.text_encoder_2.config.projection_dim + add_text_embeds = negative_pooled_prompt_embeds + add_time_ids = self._get_add_time_ids(self.size, crops_coords_top_left, self.size, dtype=negative_pooled_prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + if enable_edit_guidance: + prompt_embeds = torch.cat([prompt_embeds, edit_prompt_embeds], dim=0) + add_text_embeds = torch.cat([add_text_embeds, pooled_edit_embeds], dim=0) + edit_concepts_time_ids = add_time_ids.repeat(edit_prompt_embeds.shape[0], 1) + add_time_ids = torch.cat([add_time_ids, edit_concepts_time_ids], dim=0) + self.text_cross_attention_maps = [editing_prompt] if isinstance(editing_prompt, str) else editing_prompt + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) + if ip_adapter_image is not None: + (image_embeds, negative_image_embeds) = self.encode_image(ip_adapter_image, device, num_images_per_prompt) + if self.do_classifier_free_guidance: + image_embeds = torch.cat([negative_image_embeds, image_embeds]) + image_embeds = image_embeds.to(device) + self.sem_guidance = None + self.activation_mask = None + if self.denoising_end is not None and isinstance(self.denoising_end, float) and (self.denoising_end > 0) and (self.denoising_end < 1): + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - self.denoising_end * self.scheduler.config.num_train_timesteps)) + num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) + timesteps = timesteps[:num_inference_steps] + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + self._num_timesteps = len(timesteps) + with self.progress_bar(total=self._num_timesteps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * (1 + self.enabled_editing_prompts)) + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + if ip_adapter_image is not None: + added_cond_kwargs['image_embeds'] = image_embeds + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + noise_pred_out = noise_pred.chunk(1 + self.enabled_editing_prompts) + noise_pred_uncond = noise_pred_out[0] + noise_pred_edit_concepts = noise_pred_out[1:] + noise_guidance_edit = torch.zeros(noise_pred_uncond.shape, device=self.device, dtype=noise_pred_uncond.dtype) + if sem_guidance is not None and len(sem_guidance) > i: + noise_guidance_edit += sem_guidance[i].to(self.device) + elif enable_edit_guidance: + if self.activation_mask is None: + self.activation_mask = torch.zeros((len(timesteps), self.enabled_editing_prompts, *noise_pred_edit_concepts[0].shape)) + if self.sem_guidance is None: + self.sem_guidance = torch.zeros((len(timesteps), *noise_pred_uncond.shape)) + for (c, noise_pred_edit_concept) in enumerate(noise_pred_edit_concepts): + if isinstance(edit_warmup_steps, list): + edit_warmup_steps_c = edit_warmup_steps[c] + else: + edit_warmup_steps_c = edit_warmup_steps + if i < edit_warmup_steps_c: + continue + if isinstance(edit_guidance_scale, list): + edit_guidance_scale_c = edit_guidance_scale[c] + else: + edit_guidance_scale_c = edit_guidance_scale + if isinstance(edit_threshold, list): + edit_threshold_c = edit_threshold[c] + else: + edit_threshold_c = edit_threshold + if isinstance(reverse_editing_direction, list): + reverse_editing_direction_c = reverse_editing_direction[c] + else: + reverse_editing_direction_c = reverse_editing_direction + if isinstance(edit_cooldown_steps, list): + edit_cooldown_steps_c = edit_cooldown_steps[c] + elif edit_cooldown_steps is None: + edit_cooldown_steps_c = i + 1 + else: + edit_cooldown_steps_c = edit_cooldown_steps + if i >= edit_cooldown_steps_c: + continue + noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond + if reverse_editing_direction_c: + noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1 + noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c + if user_mask is not None: + noise_guidance_edit_tmp = noise_guidance_edit_tmp * user_mask + if use_cross_attn_mask: + out = self.attention_store.aggregate_attention(attention_maps=self.attention_store.step_store, prompts=self.text_cross_attention_maps, res=att_res, from_where=['up', 'down'], is_cross=True, select=self.text_cross_attention_maps.index(editing_prompt[c])) + attn_map = out[:, :, :, 1:1 + num_edit_tokens[c]] + if attn_map.shape[3] != num_edit_tokens[c]: + raise ValueError(f'Incorrect shape of attention_map. Expected size {num_edit_tokens[c]}, but found {attn_map.shape[3]}!') + attn_map = torch.sum(attn_map, dim=3) + attn_map = F.pad(attn_map.unsqueeze(1), (1, 1, 1, 1), mode='reflect') + attn_map = self.smoothing(attn_map).squeeze(1) + if attn_map.dtype == torch.float32: + tmp = torch.quantile(attn_map.flatten(start_dim=1), edit_threshold_c, dim=1) + else: + tmp = torch.quantile(attn_map.flatten(start_dim=1).to(torch.float32), edit_threshold_c, dim=1).to(attn_map.dtype) + attn_mask = torch.where(attn_map >= tmp.unsqueeze(1).unsqueeze(1).repeat(1, *att_res), 1.0, 0.0) + attn_mask = F.interpolate(attn_mask.unsqueeze(1), noise_guidance_edit_tmp.shape[-2:]).repeat(1, 4, 1, 1) + self.activation_mask[i, c] = attn_mask.detach().cpu() + if not use_intersect_mask: + noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask + if use_intersect_mask: + noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp) + noise_guidance_edit_tmp_quantile = torch.sum(noise_guidance_edit_tmp_quantile, dim=1, keepdim=True) + noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, self.unet.config.in_channels, 1, 1) + if noise_guidance_edit_tmp_quantile.dtype == torch.float32: + tmp = torch.quantile(noise_guidance_edit_tmp_quantile.flatten(start_dim=2), edit_threshold_c, dim=2, keepdim=False) + else: + tmp = torch.quantile(noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32), edit_threshold_c, dim=2, keepdim=False).to(noise_guidance_edit_tmp_quantile.dtype) + intersect_mask = torch.where(noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], torch.ones_like(noise_guidance_edit_tmp), torch.zeros_like(noise_guidance_edit_tmp)) * attn_mask + self.activation_mask[i, c] = intersect_mask.detach().cpu() + noise_guidance_edit_tmp = noise_guidance_edit_tmp * intersect_mask + elif not use_cross_attn_mask: + noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp) + noise_guidance_edit_tmp_quantile = torch.sum(noise_guidance_edit_tmp_quantile, dim=1, keepdim=True) + noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, 4, 1, 1) + if noise_guidance_edit_tmp_quantile.dtype == torch.float32: + tmp = torch.quantile(noise_guidance_edit_tmp_quantile.flatten(start_dim=2), edit_threshold_c, dim=2, keepdim=False) + else: + tmp = torch.quantile(noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32), edit_threshold_c, dim=2, keepdim=False).to(noise_guidance_edit_tmp_quantile.dtype) + self.activation_mask[i, c] = torch.where(noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], torch.ones_like(noise_guidance_edit_tmp), torch.zeros_like(noise_guidance_edit_tmp)).detach().cpu() + noise_guidance_edit_tmp = torch.where(noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], noise_guidance_edit_tmp, torch.zeros_like(noise_guidance_edit_tmp)) + noise_guidance_edit += noise_guidance_edit_tmp + self.sem_guidance[i] = noise_guidance_edit.detach().cpu() + noise_pred = noise_pred_uncond + noise_guidance_edit + if enable_edit_guidance and self.guidance_rescale > 0.0: + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_edit_concepts.mean(dim=0, keepdim=False), guidance_rescale=self.guidance_rescale) + idx = t_to_idx[int(t)] + latents = self.scheduler.step(noise_pred, t, latents, variance_noise=zs[idx], **extra_step_kwargs, return_dict=False)[0] + if use_cross_attn_mask: + store_step = i in attn_store_steps + self.attention_store.between_steps(store_step) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + add_text_embeds = callback_outputs.pop('add_text_embeds', add_text_embeds) + negative_pooled_prompt_embeds = callback_outputs.pop('negative_pooled_prompt_embeds', negative_pooled_prompt_embeds) + add_time_ids = callback_outputs.pop('add_time_ids', add_time_ids) + if i == len(timesteps) - 1 or (i + 1 > 0 and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if XLA_AVAILABLE: + xm.mark_step() + if not output_type == 'latent': + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + if needs_upcasting: + self.vae.to(dtype=torch.float16) + else: + image = latents + if not output_type == 'latent': + if self.watermark is not None: + image = self.watermark.apply_watermark(image) + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return LEditsPPDiffusionPipelineOutput(images=image, nsfw_content_detected=None) + + @torch.no_grad() + def encode_image(self, image, dtype=None, height=None, width=None, resize_mode='default', crops_coords=None): + image = self.image_processor.preprocess(image=image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords) + resized = self.image_processor.postprocess(image=image, output_type='pil') + if max(image.shape[-2:]) > self.vae.config['sample_size'] * 1.5: + logger.warning('Your input images far exceed the default resolution of the underlying diffusion model. The output images may contain severe artifacts! Consider down-sampling the input using the `height` and `width` parameters') + image = image.to(self.device, dtype=dtype) + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + image = image.float() + self.upcast_vae() + x0 = self.vae.encode(image).latent_dist.mode() + x0 = x0.to(dtype) + if needs_upcasting: + self.vae.to(dtype=torch.float16) + x0 = self.vae.config.scaling_factor * x0 + return (x0, resized) + + @torch.no_grad() + def invert(self, image: PipelineImageInput, source_prompt: str='', source_guidance_scale=3.5, negative_prompt: str=None, negative_prompt_2: str=None, num_inversion_steps: int=50, skip: float=0.15, generator: Optional[torch.Generator]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), num_zero_noise_steps: int=3, cross_attention_kwargs: Optional[Dict[str, Any]]=None): + self.unet.set_attn_processor(AttnProcessor()) + self.eta = 1.0 + self.scheduler.config.timestep_spacing = 'leading' + self.scheduler.set_timesteps(int(num_inversion_steps * (1 + skip))) + self.inversion_steps = self.scheduler.timesteps[-num_inversion_steps:] + timesteps = self.inversion_steps + num_images_per_prompt = 1 + device = self._execution_device + if source_prompt == '': + source_guidance_scale = 0.0 + do_classifier_free_guidance = False + else: + do_classifier_free_guidance = source_guidance_scale > 1.0 + (x0, resized) = self.encode_image(image, dtype=self.text_encoder_2.dtype) + width = x0.shape[2] * self.vae_scale_factor + height = x0.shape[3] * self.vae_scale_factor + self.size = (height, width) + self.batch_size = x0.shape[0] + text_encoder_lora_scale = cross_attention_kwargs.get('scale', None) if cross_attention_kwargs is not None else None + if isinstance(source_prompt, str): + source_prompt = [source_prompt] * self.batch_size + (negative_prompt_embeds, prompt_embeds, negative_pooled_prompt_embeds, edit_pooled_prompt_embeds, _) = self.encode_prompt(device=device, num_images_per_prompt=num_images_per_prompt, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, editing_prompt=source_prompt, lora_scale=text_encoder_lora_scale, enable_edit_guidance=do_classifier_free_guidance) + if self.text_encoder_2 is None: + text_encoder_projection_dim = int(negative_pooled_prompt_embeds.shape[-1]) + else: + text_encoder_projection_dim = self.text_encoder_2.config.projection_dim + add_text_embeds = negative_pooled_prompt_embeds + add_time_ids = self._get_add_time_ids(self.size, crops_coords_top_left, self.size, dtype=negative_prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + if do_classifier_free_guidance: + negative_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([add_text_embeds, edit_pooled_prompt_embeds], dim=0) + add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) + negative_prompt_embeds = negative_prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device).repeat(self.batch_size * num_images_per_prompt, 1) + if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: + self.upcast_vae() + x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + image_rec = self.vae.decode(x0_tmp / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] + elif self.vae.config.force_upcast: + x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + image_rec = self.vae.decode(x0_tmp / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] + else: + image_rec = self.vae.decode(x0 / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] + image_rec = self.image_processor.postprocess(image_rec, output_type='pil') + variance_noise_shape = (num_inversion_steps, *x0.shape) + t_to_idx = {int(v): k for (k, v) in enumerate(timesteps)} + xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype) + for t in reversed(timesteps): + idx = num_inversion_steps - t_to_idx[int(t)] - 1 + noise = randn_tensor(shape=x0.shape, generator=generator, device=self.device, dtype=x0.dtype) + xts[idx] = self.scheduler.add_noise(x0, noise, t.unsqueeze(0)) + xts = torch.cat([x0.unsqueeze(0), xts], dim=0) + zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype) + self.scheduler.set_timesteps(len(self.scheduler.timesteps)) + for t in self.progress_bar(timesteps): + idx = num_inversion_steps - t_to_idx[int(t)] - 1 + xt = xts[idx + 1] + latent_model_input = torch.cat([xt] * 2) if do_classifier_free_guidance else xt + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=negative_prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if do_classifier_free_guidance: + noise_pred_out = noise_pred.chunk(2) + (noise_pred_uncond, noise_pred_text) = (noise_pred_out[0], noise_pred_out[1]) + noise_pred = noise_pred_uncond + source_guidance_scale * (noise_pred_text - noise_pred_uncond) + xtm1 = xts[idx] + (z, xtm1_corrected) = compute_noise(self.scheduler, xtm1, xt, t, noise_pred, self.eta) + zs[idx] = z + xts[idx] = xtm1_corrected + self.init_latents = xts[-1] + zs = zs.flip(0) + if num_zero_noise_steps > 0: + zs[-num_zero_noise_steps:] = torch.zeros_like(zs[-num_zero_noise_steps:]) + self.zs = zs + return LEditsPPInversionPipelineOutput(images=resized, vae_reconstruction_images=image_rec) + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +def compute_noise_ddim(scheduler, prev_latents, latents, timestep, noise_pred, eta): + prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps + alpha_prod_t = scheduler.alphas_cumprod[timestep] + alpha_prod_t_prev = scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod + beta_prod_t = 1 - alpha_prod_t + pred_original_sample = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 + if scheduler.config.clip_sample: + pred_original_sample = torch.clamp(pred_original_sample, -1, 1) + variance = scheduler._get_variance(timestep, prev_timestep) + std_dev_t = eta * variance ** 0.5 + pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t ** 2) ** 0.5 * noise_pred + mu_xt = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction + if variance > 0.0: + noise = (prev_latents - mu_xt) / (variance ** 0.5 * eta) + else: + noise = torch.tensor([0.0]).to(latents.device) + return (noise, mu_xt + eta * variance ** 0.5 * noise) + +def compute_noise_sde_dpm_pp_2nd(scheduler, prev_latents, latents, timestep, noise_pred, eta): + + def first_order_update(model_output, sample): + (sigma_t, sigma_s) = (scheduler.sigmas[scheduler.step_index + 1], scheduler.sigmas[scheduler.step_index]) + (alpha_t, sigma_t) = scheduler._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s, sigma_s) = scheduler._sigma_to_alpha_sigma_t(sigma_s) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s = torch.log(alpha_s) - torch.log(sigma_s) + h = lambda_t - lambda_s + mu_xt = sigma_t / sigma_s * torch.exp(-h) * sample + alpha_t * (1 - torch.exp(-2.0 * h)) * model_output + mu_xt = scheduler.dpm_solver_first_order_update(model_output=model_output, sample=sample, noise=torch.zeros_like(sample)) + sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) + if sigma > 0.0: + noise = (prev_latents - mu_xt) / sigma + else: + noise = torch.tensor([0.0]).to(sample.device) + prev_sample = mu_xt + sigma * noise + return (noise, prev_sample) + + def second_order_update(model_output_list, sample): + (sigma_t, sigma_s0, sigma_s1) = (scheduler.sigmas[scheduler.step_index + 1], scheduler.sigmas[scheduler.step_index], scheduler.sigmas[scheduler.step_index - 1]) + (alpha_t, sigma_t) = scheduler._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s0, sigma_s0) = scheduler._sigma_to_alpha_sigma_t(sigma_s0) + (alpha_s1, sigma_s1) = scheduler._sigma_to_alpha_sigma_t(sigma_s1) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) + lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) + (m0, m1) = (model_output_list[-1], model_output_list[-2]) + (h, h_0) = (lambda_t - lambda_s0, lambda_s0 - lambda_s1) + r0 = h_0 / h + (D0, D1) = (m0, 1.0 / r0 * (m0 - m1)) + mu_xt = sigma_t / sigma_s0 * torch.exp(-h) * sample + alpha_t * (1 - torch.exp(-2.0 * h)) * D0 + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 + sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) + if sigma > 0.0: + noise = (prev_latents - mu_xt) / sigma + else: + noise = torch.tensor([0.0]).to(sample.device) + prev_sample = mu_xt + sigma * noise + return (noise, prev_sample) + if scheduler.step_index is None: + scheduler._init_step_index(timestep) + model_output = scheduler.convert_model_output(model_output=noise_pred, sample=latents) + for i in range(scheduler.config.solver_order - 1): + scheduler.model_outputs[i] = scheduler.model_outputs[i + 1] + scheduler.model_outputs[-1] = model_output + if scheduler.lower_order_nums < 1: + (noise, prev_sample) = first_order_update(model_output, latents) + else: + (noise, prev_sample) = second_order_update(scheduler.model_outputs, latents) + if scheduler.lower_order_nums < scheduler.config.solver_order: + scheduler.lower_order_nums += 1 + scheduler._step_index += 1 + return (noise, prev_sample) + +def compute_noise(scheduler, *args): + if isinstance(scheduler, DDIMScheduler): + return compute_noise_ddim(scheduler, *args) + elif isinstance(scheduler, DPMSolverMultistepScheduler) and scheduler.config.algorithm_type == 'sde-dpmsolver++' and (scheduler.config.solver_order == 2): + return compute_noise_sde_dpm_pp_2nd(scheduler, *args) + else: + raise NotImplementedError + +# File: diffusers-main/src/diffusers/pipelines/ledits_pp/pipeline_output.py +from dataclasses import dataclass +from typing import List, Optional, Union +import numpy as np +import PIL.Image +from ...utils import BaseOutput + +@dataclass +class LEditsPPDiffusionPipelineOutput(BaseOutput): + images: Union[List[PIL.Image.Image], np.ndarray] + nsfw_content_detected: Optional[List[bool]] + +@dataclass +class LEditsPPInversionPipelineOutput(BaseOutput): + images: Union[List[PIL.Image.Image], np.ndarray] + vae_reconstruction_images: Union[List[PIL.Image.Image], np.ndarray] + +# File: diffusers-main/src/diffusers/pipelines/lumina/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_lumina'] = ['LuminaText2ImgPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_lumina import LuminaText2ImgPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/lumina/pipeline_lumina.py +import html +import inspect +import math +import re +import urllib.parse as ul +from typing import List, Optional, Tuple, Union +import torch +from transformers import AutoModel, AutoTokenizer +from ...image_processor import VaeImageProcessor +from ...models import AutoencoderKL +from ...models.embeddings import get_2d_rotary_pos_embed_lumina +from ...models.transformers.lumina_nextdit2d import LuminaNextDiT2DModel +from ...schedulers import FlowMatchEulerDiscreteScheduler +from ...utils import BACKENDS_MAPPING, is_bs4_available, is_ftfy_available, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +logger = logging.get_logger(__name__) +if is_bs4_available(): + from bs4 import BeautifulSoup +if is_ftfy_available(): + import ftfy +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import LuminaText2ImgPipeline\n\n >>> pipe = LuminaText2ImgPipeline.from_pretrained(\n ... "Alpha-VLLM/Lumina-Next-SFT-diffusers", torch_dtype=torch.bfloat16\n ... )\n >>> # Enable memory optimizations.\n >>> pipe.enable_model_cpu_offload()\n\n >>> prompt = "Upper body of a young woman in a Victorian-era outfit with brass goggles and leather straps. Background shows an industrial revolution cityscape with smoky skies and tall, metal structures"\n >>> image = pipe(prompt).images[0]\n ```\n' + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class LuminaText2ImgPipeline(DiffusionPipeline): + bad_punct_regex = re.compile('[' + '#®•©™&@·º½¾¿¡§~' + '\\)' + '\\(' + '\\]' + '\\[' + '\\}' + '\\{' + '\\|' + '\\' + '\\/' + '\\*' + ']{1,}') + _optional_components = [] + model_cpu_offload_seq = 'text_encoder->transformer->vae' + + def __init__(self, transformer: LuminaNextDiT2DModel, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: AutoModel, tokenizer: AutoTokenizer): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, transformer=transformer, scheduler=scheduler) + self.vae_scale_factor = 8 + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.max_sequence_length = 256 + self.default_sample_size = self.transformer.config.sample_size if hasattr(self, 'transformer') and self.transformer is not None else 128 + self.default_image_size = self.default_sample_size * self.vae_scale_factor + + def _get_gemma_prompt_embeds(self, prompt: Union[str, List[str]], num_images_per_prompt: int=1, device: Optional[torch.device]=None, clean_caption: Optional[bool]=False, max_length: Optional[int]=None): + device = device or self._execution_device + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) + text_inputs = self.tokenizer(prompt, pad_to_multiple_of=8, max_length=self.max_sequence_length, truncation=True, padding=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids.to(device) + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids.to(device) + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.max_sequence_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because Gemma can only handle sequences up to {self.max_sequence_length} tokens: {removed_text}') + prompt_attention_mask = text_inputs.attention_mask.to(device) + prompt_embeds = self.text_encoder(text_input_ids, attention_mask=prompt_attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds.hidden_states[-2] + if self.text_encoder is not None: + dtype = self.text_encoder.dtype + elif self.transformer is not None: + dtype = self.transformer.dtype + else: + dtype = None + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (_, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) + prompt_attention_mask = prompt_attention_mask.view(batch_size * num_images_per_prompt, -1) + return (prompt_embeds, prompt_attention_mask) + + def encode_prompt(self, prompt: Union[str, List[str]], do_classifier_free_guidance: bool=True, negative_prompt: Union[str, List[str]]=None, num_images_per_prompt: int=1, device: Optional[torch.device]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, prompt_attention_mask: Optional[torch.Tensor]=None, negative_prompt_attention_mask: Optional[torch.Tensor]=None, clean_caption: bool=False, **kwargs): + if device is None: + device = self._execution_device + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + (prompt_embeds, prompt_attention_mask) = self._get_gemma_prompt_embeds(prompt=prompt, num_images_per_prompt=num_images_per_prompt, device=device, clean_caption=clean_caption) + if do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt if negative_prompt is not None else '' + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + negative_prompt = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + prompt_max_length = prompt_embeds.shape[1] + negative_text_inputs = self.tokenizer(negative_prompt, padding='max_length', max_length=prompt_max_length, truncation=True, return_tensors='pt') + negative_text_input_ids = negative_text_inputs.input_ids.to(device) + negative_prompt_attention_mask = negative_text_inputs.attention_mask.to(device) + negative_prompt_embeds = self.text_encoder(negative_text_input_ids, attention_mask=negative_prompt_attention_mask, output_hidden_states=True) + negative_dtype = self.text_encoder.dtype + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + (_, seq_len, _) = negative_prompt_embeds.shape + negative_prompt_embeds = negative_prompt_embeds.to(dtype=negative_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) + negative_prompt_attention_mask = negative_prompt_attention_mask.view(batch_size * num_images_per_prompt, -1) + return (prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, negative_prompt, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and prompt_attention_mask is None: + raise ValueError('Must provide `prompt_attention_mask` when specifying `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: + raise ValueError('Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: + raise ValueError(f'`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask` {negative_prompt_attention_mask.shape}.') + + def _text_preprocessing(self, text, clean_caption=False): + if clean_caption and (not is_bs4_available()): + logger.warning(BACKENDS_MAPPING['bs4'][-1].format('Setting `clean_caption=True`')) + logger.warning('Setting `clean_caption` to False...') + clean_caption = False + if clean_caption and (not is_ftfy_available()): + logger.warning(BACKENDS_MAPPING['ftfy'][-1].format('Setting `clean_caption=True`')) + logger.warning('Setting `clean_caption` to False...') + clean_caption = False + if not isinstance(text, (tuple, list)): + text = [text] + + def process(text: str): + if clean_caption: + text = self._clean_caption(text) + text = self._clean_caption(text) + else: + text = text.lower().strip() + return text + return [process(t) for t in text] + + def _clean_caption(self, caption): + caption = str(caption) + caption = ul.unquote_plus(caption) + caption = caption.strip().lower() + caption = re.sub('', 'person', caption) + caption = re.sub('\\b((?:https?:(?:\\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\\w/-]*\\b\\/?(?!@)))', '', caption) + caption = re.sub('\\b((?:www:(?:\\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\\w/-]*\\b\\/?(?!@)))', '', caption) + caption = BeautifulSoup(caption, features='html.parser').text + caption = re.sub('@[\\w\\d]+\\b', '', caption) + caption = re.sub('[\\u31c0-\\u31ef]+', '', caption) + caption = re.sub('[\\u31f0-\\u31ff]+', '', caption) + caption = re.sub('[\\u3200-\\u32ff]+', '', caption) + caption = re.sub('[\\u3300-\\u33ff]+', '', caption) + caption = re.sub('[\\u3400-\\u4dbf]+', '', caption) + caption = re.sub('[\\u4dc0-\\u4dff]+', '', caption) + caption = re.sub('[\\u4e00-\\u9fff]+', '', caption) + caption = re.sub('[\\u002D\\u058A\\u05BE\\u1400\\u1806\\u2010-\\u2015\\u2E17\\u2E1A\\u2E3A\\u2E3B\\u2E40\\u301C\\u3030\\u30A0\\uFE31\\uFE32\\uFE58\\uFE63\\uFF0D]+', '-', caption) + caption = re.sub('[`´«»“”¨]', '"', caption) + caption = re.sub('[‘’]', "'", caption) + caption = re.sub('"?', '', caption) + caption = re.sub('&', '', caption) + caption = re.sub('\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}', ' ', caption) + caption = re.sub('\\d:\\d\\d\\s+$', '', caption) + caption = re.sub('\\\\n', ' ', caption) + caption = re.sub('#\\d{1,3}\\b', '', caption) + caption = re.sub('#\\d{5,}\\b', '', caption) + caption = re.sub('\\b\\d{6,}\\b', '', caption) + caption = re.sub('[\\S]+\\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)', '', caption) + caption = re.sub('[\\"\\\']{2,}', '"', caption) + caption = re.sub('[\\.]{2,}', ' ', caption) + caption = re.sub(self.bad_punct_regex, ' ', caption) + caption = re.sub('\\s+\\.\\s+', ' ', caption) + regex2 = re.compile('(?:\\-|\\_)') + if len(re.findall(regex2, caption)) > 3: + caption = re.sub(regex2, ' ', caption) + caption = ftfy.fix_text(caption) + caption = html.unescape(html.unescape(caption)) + caption = re.sub('\\b[a-zA-Z]{1,3}\\d{3,15}\\b', '', caption) + caption = re.sub('\\b[a-zA-Z]+\\d+[a-zA-Z]+\\b', '', caption) + caption = re.sub('\\b\\d+[a-zA-Z]+\\d+\\b', '', caption) + caption = re.sub('(worldwide\\s+)?(free\\s+)?shipping', '', caption) + caption = re.sub('(free\\s)?download(\\sfree)?', '', caption) + caption = re.sub('\\bclick\\b\\s(?:for|on)\\s\\w+', '', caption) + caption = re.sub('\\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\\simage[s]?)?', '', caption) + caption = re.sub('\\bpage\\s+\\d+\\b', '', caption) + caption = re.sub('\\b\\d*[a-zA-Z]+\\d+[a-zA-Z]+\\d+[a-zA-Z\\d]*\\b', ' ', caption) + caption = re.sub('\\b\\d+\\.?\\d*[xх×]\\d+\\.?\\d*\\b', '', caption) + caption = re.sub('\\b\\s+\\:\\s+', ': ', caption) + caption = re.sub('(\\D[,\\./])\\b', '\\1 ', caption) + caption = re.sub('\\s+', ' ', caption) + caption.strip() + caption = re.sub('^[\\"\\\']([\\w\\W]+)[\\"\\\']$', '\\1', caption) + caption = re.sub("^[\\'\\_,\\-\\:;]", '', caption) + caption = re.sub("[\\'\\_,\\-\\:\\-\\+]$", '', caption) + caption = re.sub('^\\.\\S+$', '', caption) + return caption.strip() + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + return latents + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, width: Optional[int]=None, height: Optional[int]=None, num_inference_steps: int=30, timesteps: List[int]=None, guidance_scale: float=4.0, negative_prompt: Union[str, List[str]]=None, sigmas: List[float]=None, num_images_per_prompt: Optional[int]=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, prompt_attention_mask: Optional[torch.Tensor]=None, negative_prompt_attention_mask: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, clean_caption: bool=True, max_sequence_length: int=256, scaling_watershed: Optional[float]=1.0, proportional_attn: Optional[bool]=True) -> Union[ImagePipelineOutput, Tuple]: + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + self.check_inputs(prompt, height, width, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask) + cross_attention_kwargs = {} + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if proportional_attn: + cross_attention_kwargs['base_sequence_length'] = (self.default_image_size // 16) ** 2 + scaling_factor = math.sqrt(width * height / self.default_image_size ** 2) + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask) = self.encode_prompt(prompt, do_classifier_free_guidance, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, device=device, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, clean_caption=clean_caption, max_sequence_length=max_sequence_length) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds], dim=0) + prompt_attention_mask = torch.cat([prompt_attention_mask, negative_prompt_attention_mask], dim=0) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + latent_channels = self.transformer.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, latent_channels, height, width, prompt_embeds.dtype, device, generator, latents) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + current_timestep = t + if not torch.is_tensor(current_timestep): + is_mps = latent_model_input.device.type == 'mps' + if isinstance(current_timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) + elif len(current_timestep.shape) == 0: + current_timestep = current_timestep[None].to(latent_model_input.device) + current_timestep = current_timestep.expand(latent_model_input.shape[0]) + current_timestep = 1 - current_timestep / self.scheduler.config.num_train_timesteps + if current_timestep[0] < scaling_watershed: + linear_factor = scaling_factor + ntk_factor = 1.0 + else: + linear_factor = 1.0 + ntk_factor = scaling_factor + image_rotary_emb = get_2d_rotary_pos_embed_lumina(self.transformer.head_dim, 384, 384, linear_factor=linear_factor, ntk_factor=ntk_factor) + noise_pred = self.transformer(hidden_states=latent_model_input, timestep=current_timestep, encoder_hidden_states=prompt_embeds, encoder_mask=prompt_attention_mask, image_rotary_emb=image_rotary_emb, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + noise_pred = noise_pred.chunk(2, dim=1)[0] + if do_classifier_free_guidance: + (noise_pred_eps, noise_pred_rest) = (noise_pred[:, :3], noise_pred[:, 3:]) + (noise_pred_cond_eps, noise_pred_uncond_eps) = torch.split(noise_pred_eps, len(noise_pred_eps) // 2, dim=0) + noise_pred_half = noise_pred_uncond_eps + guidance_scale * (noise_pred_cond_eps - noise_pred_uncond_eps) + noise_pred_eps = torch.cat([noise_pred_half, noise_pred_half], dim=0) + noise_pred = torch.cat([noise_pred_eps, noise_pred_rest], dim=1) + (noise_pred, _) = noise_pred.chunk(2, dim=0) + latents_dtype = latents.dtype + noise_pred = -noise_pred + latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + latents = latents.to(latents_dtype) + progress_bar.update() + if not output_type == 'latent': + latents = latents / self.vae.config.scaling_factor + image = self.vae.decode(latents, return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + else: + image = latents + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/marigold/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['marigold_image_processing'] = ['MarigoldImageProcessor'] + _import_structure['pipeline_marigold_depth'] = ['MarigoldDepthOutput', 'MarigoldDepthPipeline'] + _import_structure['pipeline_marigold_normals'] = ['MarigoldNormalsOutput', 'MarigoldNormalsPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .marigold_image_processing import MarigoldImageProcessor + from .pipeline_marigold_depth import MarigoldDepthOutput, MarigoldDepthPipeline + from .pipeline_marigold_normals import MarigoldNormalsOutput, MarigoldNormalsPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/marigold/marigold_image_processing.py +from typing import List, Optional, Tuple, Union +import numpy as np +import PIL +import torch +import torch.nn.functional as F +from PIL import Image +from ... import ConfigMixin +from ...configuration_utils import register_to_config +from ...image_processor import PipelineImageInput +from ...utils import CONFIG_NAME, logging +from ...utils.import_utils import is_matplotlib_available +logger = logging.get_logger(__name__) + +class MarigoldImageProcessor(ConfigMixin): + config_name = CONFIG_NAME + + @register_to_config + def __init__(self, vae_scale_factor: int=8, do_normalize: bool=True, do_range_check: bool=True): + super().__init__() + + @staticmethod + def expand_tensor_or_array(images: Union[torch.Tensor, np.ndarray]) -> Union[torch.Tensor, np.ndarray]: + if isinstance(images, np.ndarray): + if images.ndim == 2: + images = images[None, ..., None] + if images.ndim == 3: + images = images[None] + elif isinstance(images, torch.Tensor): + if images.ndim == 2: + images = images[None, None] + elif images.ndim == 3: + images = images[None] + else: + raise ValueError(f'Unexpected input type: {type(images)}') + return images + + @staticmethod + def pt_to_numpy(images: torch.Tensor) -> np.ndarray: + images = images.cpu().permute(0, 2, 3, 1).float().numpy() + return images + + @staticmethod + def numpy_to_pt(images: np.ndarray) -> torch.Tensor: + if np.issubdtype(images.dtype, np.integer) and (not np.issubdtype(images.dtype, np.unsignedinteger)): + raise ValueError(f'Input image dtype={images.dtype} cannot be a signed integer.') + if np.issubdtype(images.dtype, np.complexfloating): + raise ValueError(f'Input image dtype={images.dtype} cannot be complex.') + if np.issubdtype(images.dtype, bool): + raise ValueError(f'Input image dtype={images.dtype} cannot be boolean.') + images = torch.from_numpy(images.transpose(0, 3, 1, 2)) + return images + + @staticmethod + def resize_antialias(image: torch.Tensor, size: Tuple[int, int], mode: str, is_aa: Optional[bool]=None) -> torch.Tensor: + if not torch.is_tensor(image): + raise ValueError(f'Invalid input type={type(image)}.') + if not torch.is_floating_point(image): + raise ValueError(f'Invalid input dtype={image.dtype}.') + if image.dim() != 4: + raise ValueError(f'Invalid input dimensions; shape={image.shape}.') + antialias = is_aa and mode in ('bilinear', 'bicubic') + image = F.interpolate(image, size, mode=mode, antialias=antialias) + return image + + @staticmethod + def resize_to_max_edge(image: torch.Tensor, max_edge_sz: int, mode: str) -> torch.Tensor: + if not torch.is_tensor(image): + raise ValueError(f'Invalid input type={type(image)}.') + if not torch.is_floating_point(image): + raise ValueError(f'Invalid input dtype={image.dtype}.') + if image.dim() != 4: + raise ValueError(f'Invalid input dimensions; shape={image.shape}.') + (h, w) = image.shape[-2:] + max_orig = max(h, w) + new_h = h * max_edge_sz // max_orig + new_w = w * max_edge_sz // max_orig + if new_h == 0 or new_w == 0: + raise ValueError(f'Extreme aspect ratio of the input image: [{w} x {h}]') + image = MarigoldImageProcessor.resize_antialias(image, (new_h, new_w), mode, is_aa=True) + return image + + @staticmethod + def pad_image(image: torch.Tensor, align: int) -> Tuple[torch.Tensor, Tuple[int, int]]: + if not torch.is_tensor(image): + raise ValueError(f'Invalid input type={type(image)}.') + if not torch.is_floating_point(image): + raise ValueError(f'Invalid input dtype={image.dtype}.') + if image.dim() != 4: + raise ValueError(f'Invalid input dimensions; shape={image.shape}.') + (h, w) = image.shape[-2:] + (ph, pw) = (-h % align, -w % align) + image = F.pad(image, (0, pw, 0, ph), mode='replicate') + return (image, (ph, pw)) + + @staticmethod + def unpad_image(image: torch.Tensor, padding: Tuple[int, int]) -> torch.Tensor: + if not torch.is_tensor(image): + raise ValueError(f'Invalid input type={type(image)}.') + if not torch.is_floating_point(image): + raise ValueError(f'Invalid input dtype={image.dtype}.') + if image.dim() != 4: + raise ValueError(f'Invalid input dimensions; shape={image.shape}.') + (ph, pw) = padding + uh = None if ph == 0 else -ph + uw = None if pw == 0 else -pw + image = image[:, :, :uh, :uw] + return image + + @staticmethod + def load_image_canonical(image: Union[torch.Tensor, np.ndarray, Image.Image], device: torch.device=torch.device('cpu'), dtype: torch.dtype=torch.float32) -> Tuple[torch.Tensor, int]: + if isinstance(image, Image.Image): + image = np.array(image) + image_dtype_max = None + if isinstance(image, (np.ndarray, torch.Tensor)): + image = MarigoldImageProcessor.expand_tensor_or_array(image) + if image.ndim != 4: + raise ValueError('Input image is not 2-, 3-, or 4-dimensional.') + if isinstance(image, np.ndarray): + if np.issubdtype(image.dtype, np.integer) and (not np.issubdtype(image.dtype, np.unsignedinteger)): + raise ValueError(f'Input image dtype={image.dtype} cannot be a signed integer.') + if np.issubdtype(image.dtype, np.complexfloating): + raise ValueError(f'Input image dtype={image.dtype} cannot be complex.') + if np.issubdtype(image.dtype, bool): + raise ValueError(f'Input image dtype={image.dtype} cannot be boolean.') + if np.issubdtype(image.dtype, np.unsignedinteger): + image_dtype_max = np.iinfo(image.dtype).max + image = image.astype(np.float32) + image = MarigoldImageProcessor.numpy_to_pt(image) + if torch.is_tensor(image) and (not torch.is_floating_point(image)) and (image_dtype_max is None): + if image.dtype != torch.uint8: + raise ValueError(f'Image dtype={image.dtype} is not supported.') + image_dtype_max = 255 + if not torch.is_tensor(image): + raise ValueError(f'Input type unsupported: {type(image)}.') + if image.shape[1] == 1: + image = image.repeat(1, 3, 1, 1) + if image.shape[1] != 3: + raise ValueError(f'Input image is not 1- or 3-channel: {image.shape}.') + image = image.to(device=device, dtype=dtype) + if image_dtype_max is not None: + image = image / image_dtype_max + return image + + @staticmethod + def check_image_values_range(image: torch.Tensor) -> None: + if not torch.is_tensor(image): + raise ValueError(f'Invalid input type={type(image)}.') + if not torch.is_floating_point(image): + raise ValueError(f'Invalid input dtype={image.dtype}.') + if image.min().item() < 0.0 or image.max().item() > 1.0: + raise ValueError('Input image data is partially outside of the [0,1] range.') + + def preprocess(self, image: PipelineImageInput, processing_resolution: Optional[int]=None, resample_method_input: str='bilinear', device: torch.device=torch.device('cpu'), dtype: torch.dtype=torch.float32): + if isinstance(image, list): + images = None + for (i, img) in enumerate(image): + img = self.load_image_canonical(img, device, dtype) + if images is None: + images = img + else: + if images.shape[2:] != img.shape[2:]: + raise ValueError(f'Input image[{i}] has incompatible dimensions {img.shape[2:]} with the previous images {images.shape[2:]}') + images = torch.cat((images, img), dim=0) + image = images + del images + else: + image = self.load_image_canonical(image, device, dtype) + original_resolution = image.shape[2:] + if self.config.do_range_check: + self.check_image_values_range(image) + if self.config.do_normalize: + image = image * 2.0 - 1.0 + if processing_resolution is not None and processing_resolution > 0: + image = self.resize_to_max_edge(image, processing_resolution, resample_method_input) + (image, padding) = self.pad_image(image, self.config.vae_scale_factor) + return (image, padding, original_resolution) + + @staticmethod + def colormap(image: Union[np.ndarray, torch.Tensor], cmap: str='Spectral', bytes: bool=False, _force_method: Optional[str]=None) -> Union[np.ndarray, torch.Tensor]: + if not (torch.is_tensor(image) or isinstance(image, np.ndarray)): + raise ValueError('Argument must be a numpy array or torch tensor.') + if _force_method not in (None, 'matplotlib', 'custom'): + raise ValueError("_force_method must be either `None`, `'matplotlib'` or `'custom'`.") + supported_cmaps = {'binary': [(1.0, 1.0, 1.0), (0.0, 0.0, 0.0)], 'Spectral': [(0.6196078431372549, 0.00392156862745098, 0.25882352941176473), (0.8352941176470589, 0.24313725490196078, 0.30980392156862746), (0.9568627450980393, 0.42745098039215684, 0.2627450980392157), (0.9921568627450981, 0.6823529411764706, 0.3803921568627451), (0.996078431372549, 0.8784313725490196, 0.5450980392156862), (1.0, 1.0, 0.7490196078431373), (0.9019607843137255, 0.9607843137254902, 0.596078431372549), (0.6705882352941176, 0.8666666666666667, 0.6431372549019608), (0.4, 0.7607843137254902, 0.6470588235294118), (0.19607843137254902, 0.5333333333333333, 0.7411764705882353), (0.3686274509803922, 0.30980392156862746, 0.6352941176470588)]} + + def method_matplotlib(image, cmap, bytes=False): + if is_matplotlib_available(): + import matplotlib + else: + return None + (arg_is_pt, device) = (torch.is_tensor(image), None) + if arg_is_pt: + (image, device) = (image.cpu().numpy(), image.device) + if cmap not in matplotlib.colormaps: + raise ValueError(f"Unexpected color map {cmap}; available options are: {', '.join(list(matplotlib.colormaps.keys()))}") + cmap = matplotlib.colormaps[cmap] + out = cmap(image, bytes=bytes) + out = out[..., :3] + if arg_is_pt: + out = torch.tensor(out, device=device) + return out + + def method_custom(image, cmap, bytes=False): + arg_is_np = isinstance(image, np.ndarray) + if arg_is_np: + image = torch.tensor(image) + if image.dtype == torch.uint8: + image = image.float() / 255 + else: + image = image.float() + is_cmap_reversed = cmap.endswith('_r') + if is_cmap_reversed: + cmap = cmap[:-2] + if cmap not in supported_cmaps: + raise ValueError(f'Only {list(supported_cmaps.keys())} color maps are available without installing matplotlib.') + cmap = supported_cmaps[cmap] + if is_cmap_reversed: + cmap = cmap[::-1] + cmap = torch.tensor(cmap, dtype=torch.float, device=image.device) + K = cmap.shape[0] + pos = image.clamp(min=0, max=1) * (K - 1) + left = pos.long() + right = (left + 1).clamp(max=K - 1) + d = (pos - left.float()).unsqueeze(-1) + left_colors = cmap[left] + right_colors = cmap[right] + out = (1 - d) * left_colors + d * right_colors + if bytes: + out = (out * 255).to(torch.uint8) + if arg_is_np: + out = out.numpy() + return out + if _force_method is None and torch.is_tensor(image) and (cmap == 'Spectral'): + return method_custom(image, cmap, bytes) + out = None + if _force_method != 'custom': + out = method_matplotlib(image, cmap, bytes) + if _force_method == 'matplotlib' and out is None: + raise ImportError("Make sure to install matplotlib if you want to use a color map other than 'Spectral'.") + if out is None: + out = method_custom(image, cmap, bytes) + return out + + @staticmethod + def visualize_depth(depth: Union[PIL.Image.Image, np.ndarray, torch.Tensor, List[PIL.Image.Image], List[np.ndarray], List[torch.Tensor]], val_min: float=0.0, val_max: float=1.0, color_map: str='Spectral') -> Union[PIL.Image.Image, List[PIL.Image.Image]]: + if val_max <= val_min: + raise ValueError(f'Invalid values range: [{val_min}, {val_max}].') + + def visualize_depth_one(img, idx=None): + prefix = 'Depth' + (f'[{idx}]' if idx else '') + if isinstance(img, PIL.Image.Image): + if img.mode != 'I;16': + raise ValueError(f'{prefix}: invalid PIL mode={img.mode}.') + img = np.array(img).astype(np.float32) / (2 ** 16 - 1) + if isinstance(img, np.ndarray) or torch.is_tensor(img): + if img.ndim != 2: + raise ValueError(f'{prefix}: unexpected shape={img.shape}.') + if isinstance(img, np.ndarray): + img = torch.from_numpy(img) + if not torch.is_floating_point(img): + raise ValueError(f'{prefix}: unexected dtype={img.dtype}.') + else: + raise ValueError(f'{prefix}: unexpected type={type(img)}.') + if val_min != 0.0 or val_max != 1.0: + img = (img - val_min) / (val_max - val_min) + img = MarigoldImageProcessor.colormap(img, cmap=color_map, bytes=True) + img = PIL.Image.fromarray(img.cpu().numpy()) + return img + if depth is None or (isinstance(depth, list) and any((o is None for o in depth))): + raise ValueError('Input depth is `None`') + if isinstance(depth, (np.ndarray, torch.Tensor)): + depth = MarigoldImageProcessor.expand_tensor_or_array(depth) + if isinstance(depth, np.ndarray): + depth = MarigoldImageProcessor.numpy_to_pt(depth) + if not (depth.ndim == 4 and depth.shape[1] == 1): + raise ValueError(f'Unexpected input shape={depth.shape}, expecting [N,1,H,W].') + return [visualize_depth_one(img[0], idx) for (idx, img) in enumerate(depth)] + elif isinstance(depth, list): + return [visualize_depth_one(img, idx) for (idx, img) in enumerate(depth)] + else: + raise ValueError(f'Unexpected input type: {type(depth)}') + + @staticmethod + def export_depth_to_16bit_png(depth: Union[np.ndarray, torch.Tensor, List[np.ndarray], List[torch.Tensor]], val_min: float=0.0, val_max: float=1.0) -> Union[PIL.Image.Image, List[PIL.Image.Image]]: + + def export_depth_to_16bit_png_one(img, idx=None): + prefix = 'Depth' + (f'[{idx}]' if idx else '') + if not isinstance(img, np.ndarray) and (not torch.is_tensor(img)): + raise ValueError(f'{prefix}: unexpected type={type(img)}.') + if img.ndim != 2: + raise ValueError(f'{prefix}: unexpected shape={img.shape}.') + if torch.is_tensor(img): + img = img.cpu().numpy() + if not np.issubdtype(img.dtype, np.floating): + raise ValueError(f'{prefix}: unexected dtype={img.dtype}.') + if val_min != 0.0 or val_max != 1.0: + img = (img - val_min) / (val_max - val_min) + img = (img * (2 ** 16 - 1)).astype(np.uint16) + img = PIL.Image.fromarray(img, mode='I;16') + return img + if depth is None or (isinstance(depth, list) and any((o is None for o in depth))): + raise ValueError('Input depth is `None`') + if isinstance(depth, (np.ndarray, torch.Tensor)): + depth = MarigoldImageProcessor.expand_tensor_or_array(depth) + if isinstance(depth, np.ndarray): + depth = MarigoldImageProcessor.numpy_to_pt(depth) + if not (depth.ndim == 4 and depth.shape[1] == 1): + raise ValueError(f'Unexpected input shape={depth.shape}, expecting [N,1,H,W].') + return [export_depth_to_16bit_png_one(img[0], idx) for (idx, img) in enumerate(depth)] + elif isinstance(depth, list): + return [export_depth_to_16bit_png_one(img, idx) for (idx, img) in enumerate(depth)] + else: + raise ValueError(f'Unexpected input type: {type(depth)}') + + @staticmethod + def visualize_normals(normals: Union[np.ndarray, torch.Tensor, List[np.ndarray], List[torch.Tensor]], flip_x: bool=False, flip_y: bool=False, flip_z: bool=False) -> Union[PIL.Image.Image, List[PIL.Image.Image]]: + flip_vec = None + if any((flip_x, flip_y, flip_z)): + flip_vec = torch.tensor([(-1) ** flip_x, (-1) ** flip_y, (-1) ** flip_z], dtype=torch.float32) + + def visualize_normals_one(img, idx=None): + img = img.permute(1, 2, 0) + if flip_vec is not None: + img *= flip_vec.to(img.device) + img = (img + 1.0) * 0.5 + img = (img * 255).to(dtype=torch.uint8, device='cpu').numpy() + img = PIL.Image.fromarray(img) + return img + if normals is None or (isinstance(normals, list) and any((o is None for o in normals))): + raise ValueError('Input normals is `None`') + if isinstance(normals, (np.ndarray, torch.Tensor)): + normals = MarigoldImageProcessor.expand_tensor_or_array(normals) + if isinstance(normals, np.ndarray): + normals = MarigoldImageProcessor.numpy_to_pt(normals) + if not (normals.ndim == 4 and normals.shape[1] == 3): + raise ValueError(f'Unexpected input shape={normals.shape}, expecting [N,3,H,W].') + return [visualize_normals_one(img, idx) for (idx, img) in enumerate(normals)] + elif isinstance(normals, list): + return [visualize_normals_one(img, idx) for (idx, img) in enumerate(normals)] + else: + raise ValueError(f'Unexpected input type: {type(normals)}') + + @staticmethod + def visualize_uncertainty(uncertainty: Union[np.ndarray, torch.Tensor, List[np.ndarray], List[torch.Tensor]], saturation_percentile=95) -> Union[PIL.Image.Image, List[PIL.Image.Image]]: + + def visualize_uncertainty_one(img, idx=None): + prefix = 'Uncertainty' + (f'[{idx}]' if idx else '') + if img.min() < 0: + raise ValueError(f'{prefix}: unexected data range, min={img.min()}.') + img = img.squeeze(0).cpu().numpy() + saturation_value = np.percentile(img, saturation_percentile) + img = np.clip(img * 255 / saturation_value, 0, 255) + img = img.astype(np.uint8) + img = PIL.Image.fromarray(img) + return img + if uncertainty is None or (isinstance(uncertainty, list) and any((o is None for o in uncertainty))): + raise ValueError('Input uncertainty is `None`') + if isinstance(uncertainty, (np.ndarray, torch.Tensor)): + uncertainty = MarigoldImageProcessor.expand_tensor_or_array(uncertainty) + if isinstance(uncertainty, np.ndarray): + uncertainty = MarigoldImageProcessor.numpy_to_pt(uncertainty) + if not (uncertainty.ndim == 4 and uncertainty.shape[1] == 1): + raise ValueError(f'Unexpected input shape={uncertainty.shape}, expecting [N,1,H,W].') + return [visualize_uncertainty_one(img, idx) for (idx, img) in enumerate(uncertainty)] + elif isinstance(uncertainty, list): + return [visualize_uncertainty_one(img, idx) for (idx, img) in enumerate(uncertainty)] + else: + raise ValueError(f'Unexpected input type: {type(uncertainty)}') + +# File: diffusers-main/src/diffusers/pipelines/marigold/pipeline_marigold_depth.py +from dataclasses import dataclass +from functools import partial +from typing import Any, Dict, List, Optional, Tuple, Union +import numpy as np +import torch +from PIL import Image +from tqdm.auto import tqdm +from transformers import CLIPTextModel, CLIPTokenizer +from ...image_processor import PipelineImageInput +from ...models import AutoencoderKL, UNet2DConditionModel +from ...schedulers import DDIMScheduler, LCMScheduler +from ...utils import BaseOutput, logging, replace_example_docstring +from ...utils.import_utils import is_scipy_available +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .marigold_image_processing import MarigoldImageProcessor +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\nExamples:\n```py\n>>> import diffusers\n>>> import torch\n\n>>> pipe = diffusers.MarigoldDepthPipeline.from_pretrained(\n... "prs-eth/marigold-depth-lcm-v1-0", variant="fp16", torch_dtype=torch.float16\n... ).to("cuda")\n\n>>> image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")\n>>> depth = pipe(image)\n\n>>> vis = pipe.image_processor.visualize_depth(depth.prediction)\n>>> vis[0].save("einstein_depth.png")\n\n>>> depth_16bit = pipe.image_processor.export_depth_to_16bit_png(depth.prediction)\n>>> depth_16bit[0].save("einstein_depth_16bit.png")\n```\n' + +@dataclass +class MarigoldDepthOutput(BaseOutput): + prediction: Union[np.ndarray, torch.Tensor] + uncertainty: Union[None, np.ndarray, torch.Tensor] + latent: Union[None, torch.Tensor] + +class MarigoldDepthPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'text_encoder->unet->vae' + supported_prediction_types = ('depth', 'disparity') + + def __init__(self, unet: UNet2DConditionModel, vae: AutoencoderKL, scheduler: Union[DDIMScheduler, LCMScheduler], text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, prediction_type: Optional[str]=None, scale_invariant: Optional[bool]=True, shift_invariant: Optional[bool]=True, default_denoising_steps: Optional[int]=None, default_processing_resolution: Optional[int]=None): + super().__init__() + if prediction_type not in self.supported_prediction_types: + logger.warning(f"Potentially unsupported `prediction_type='{prediction_type}'`; values supported by the pipeline: {self.supported_prediction_types}.") + self.register_modules(unet=unet, vae=vae, scheduler=scheduler, text_encoder=text_encoder, tokenizer=tokenizer) + self.register_to_config(prediction_type=prediction_type, scale_invariant=scale_invariant, shift_invariant=shift_invariant, default_denoising_steps=default_denoising_steps, default_processing_resolution=default_processing_resolution) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.scale_invariant = scale_invariant + self.shift_invariant = shift_invariant + self.default_denoising_steps = default_denoising_steps + self.default_processing_resolution = default_processing_resolution + self.empty_text_embedding = None + self.image_processor = MarigoldImageProcessor(vae_scale_factor=self.vae_scale_factor) + + def check_inputs(self, image: PipelineImageInput, num_inference_steps: int, ensemble_size: int, processing_resolution: int, resample_method_input: str, resample_method_output: str, batch_size: int, ensembling_kwargs: Optional[Dict[str, Any]], latents: Optional[torch.Tensor], generator: Optional[Union[torch.Generator, List[torch.Generator]]], output_type: str, output_uncertainty: bool) -> int: + if num_inference_steps is None: + raise ValueError('`num_inference_steps` is not specified and could not be resolved from the model config.') + if num_inference_steps < 1: + raise ValueError('`num_inference_steps` must be positive.') + if ensemble_size < 1: + raise ValueError('`ensemble_size` must be positive.') + if ensemble_size == 2: + logger.warning('`ensemble_size` == 2 results are similar to no ensembling (1); consider increasing the value to at least 3.') + if ensemble_size > 1 and (self.scale_invariant or self.shift_invariant) and (not is_scipy_available()): + raise ImportError('Make sure to install scipy if you want to use ensembling.') + if ensemble_size == 1 and output_uncertainty: + raise ValueError('Computing uncertainty by setting `output_uncertainty=True` also requires setting `ensemble_size` greater than 1.') + if processing_resolution is None: + raise ValueError('`processing_resolution` is not specified and could not be resolved from the model config.') + if processing_resolution < 0: + raise ValueError('`processing_resolution` must be non-negative: 0 for native resolution, or any positive value for downsampled processing.') + if processing_resolution % self.vae_scale_factor != 0: + raise ValueError(f'`processing_resolution` must be a multiple of {self.vae_scale_factor}.') + if resample_method_input not in ('nearest', 'nearest-exact', 'bilinear', 'bicubic', 'area'): + raise ValueError('`resample_method_input` takes string values compatible with PIL library: nearest, nearest-exact, bilinear, bicubic, area.') + if resample_method_output not in ('nearest', 'nearest-exact', 'bilinear', 'bicubic', 'area'): + raise ValueError('`resample_method_output` takes string values compatible with PIL library: nearest, nearest-exact, bilinear, bicubic, area.') + if batch_size < 1: + raise ValueError('`batch_size` must be positive.') + if output_type not in ['pt', 'np']: + raise ValueError('`output_type` must be one of `pt` or `np`.') + if latents is not None and generator is not None: + raise ValueError('`latents` and `generator` cannot be used together.') + if ensembling_kwargs is not None: + if not isinstance(ensembling_kwargs, dict): + raise ValueError('`ensembling_kwargs` must be a dictionary.') + if 'reduction' in ensembling_kwargs and ensembling_kwargs['reduction'] not in ('mean', 'median'): + raise ValueError("`ensembling_kwargs['reduction']` can be either `'mean'` or `'median'`.") + num_images = 0 + (W, H) = (None, None) + if not isinstance(image, list): + image = [image] + for (i, img) in enumerate(image): + if isinstance(img, np.ndarray) or torch.is_tensor(img): + if img.ndim not in (2, 3, 4): + raise ValueError(f'`image[{i}]` has unsupported dimensions or shape: {img.shape}.') + (H_i, W_i) = img.shape[-2:] + N_i = 1 + if img.ndim == 4: + N_i = img.shape[0] + elif isinstance(img, Image.Image): + (W_i, H_i) = img.size + N_i = 1 + else: + raise ValueError(f'Unsupported `image[{i}]` type: {type(img)}.') + if W is None: + (W, H) = (W_i, H_i) + elif (W, H) != (W_i, H_i): + raise ValueError(f'Input `image[{i}]` has incompatible dimensions {(W_i, H_i)} with the previous images {(W, H)}') + num_images += N_i + if latents is not None: + if not torch.is_tensor(latents): + raise ValueError('`latents` must be a torch.Tensor.') + if latents.dim() != 4: + raise ValueError(f'`latents` has unsupported dimensions or shape: {latents.shape}.') + if processing_resolution > 0: + max_orig = max(H, W) + new_H = H * processing_resolution // max_orig + new_W = W * processing_resolution // max_orig + if new_H == 0 or new_W == 0: + raise ValueError(f'Extreme aspect ratio of the input image: [{W} x {H}]') + (W, H) = (new_W, new_H) + w = (W + self.vae_scale_factor - 1) // self.vae_scale_factor + h = (H + self.vae_scale_factor - 1) // self.vae_scale_factor + shape_expected = (num_images * ensemble_size, self.vae.config.latent_channels, h, w) + if latents.shape != shape_expected: + raise ValueError(f'`latents` has unexpected shape={latents.shape} expected={shape_expected}.') + if generator is not None: + if isinstance(generator, list): + if len(generator) != num_images * ensemble_size: + raise ValueError('The number of generators must match the total number of ensemble members for all input images.') + if not all((g.device.type == generator[0].device.type for g in generator)): + raise ValueError('`generator` device placement is not consistent in the list.') + elif not isinstance(generator, torch.Generator): + raise ValueError(f'Unsupported generator type: {type(generator)}.') + return num_images + + def progress_bar(self, iterable=None, total=None, desc=None, leave=True): + if not hasattr(self, '_progress_bar_config'): + self._progress_bar_config = {} + elif not isinstance(self._progress_bar_config, dict): + raise ValueError(f'`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}.') + progress_bar_config = dict(**self._progress_bar_config) + progress_bar_config['desc'] = progress_bar_config.get('desc', desc) + progress_bar_config['leave'] = progress_bar_config.get('leave', leave) + if iterable is not None: + return tqdm(iterable, **progress_bar_config) + elif total is not None: + return tqdm(total=total, **progress_bar_config) + else: + raise ValueError('Either `total` or `iterable` has to be defined.') + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, image: PipelineImageInput, num_inference_steps: Optional[int]=None, ensemble_size: int=1, processing_resolution: Optional[int]=None, match_input_resolution: bool=True, resample_method_input: str='bilinear', resample_method_output: str='bilinear', batch_size: int=1, ensembling_kwargs: Optional[Dict[str, Any]]=None, latents: Optional[Union[torch.Tensor, List[torch.Tensor]]]=None, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, output_type: str='np', output_uncertainty: bool=False, output_latent: bool=False, return_dict: bool=True): + device = self._execution_device + dtype = self.dtype + if num_inference_steps is None: + num_inference_steps = self.default_denoising_steps + if processing_resolution is None: + processing_resolution = self.default_processing_resolution + num_images = self.check_inputs(image, num_inference_steps, ensemble_size, processing_resolution, resample_method_input, resample_method_output, batch_size, ensembling_kwargs, latents, generator, output_type, output_uncertainty) + if self.empty_text_embedding is None: + prompt = '' + text_inputs = self.tokenizer(prompt, padding='do_not_pad', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids.to(device) + self.empty_text_embedding = self.text_encoder(text_input_ids)[0] + (image, padding, original_resolution) = self.image_processor.preprocess(image, processing_resolution, resample_method_input, device, dtype) + (image_latent, pred_latent) = self.prepare_latents(image, latents, generator, ensemble_size, batch_size) + del image + batch_empty_text_embedding = self.empty_text_embedding.to(device=device, dtype=dtype).repeat(batch_size, 1, 1) + pred_latents = [] + for i in self.progress_bar(range(0, num_images * ensemble_size, batch_size), leave=True, desc='Marigold predictions...'): + batch_image_latent = image_latent[i:i + batch_size] + batch_pred_latent = pred_latent[i:i + batch_size] + effective_batch_size = batch_image_latent.shape[0] + text = batch_empty_text_embedding[:effective_batch_size] + self.scheduler.set_timesteps(num_inference_steps, device=device) + for t in self.progress_bar(self.scheduler.timesteps, leave=False, desc='Diffusion steps...'): + batch_latent = torch.cat([batch_image_latent, batch_pred_latent], dim=1) + noise = self.unet(batch_latent, t, encoder_hidden_states=text, return_dict=False)[0] + batch_pred_latent = self.scheduler.step(noise, t, batch_pred_latent, generator=generator).prev_sample + pred_latents.append(batch_pred_latent) + pred_latent = torch.cat(pred_latents, dim=0) + del (pred_latents, image_latent, batch_empty_text_embedding, batch_image_latent, batch_pred_latent, text, batch_latent, noise) + prediction = torch.cat([self.decode_prediction(pred_latent[i:i + batch_size]) for i in range(0, pred_latent.shape[0], batch_size)], dim=0) + if not output_latent: + pred_latent = None + prediction = self.image_processor.unpad_image(prediction, padding) + uncertainty = None + if ensemble_size > 1: + prediction = prediction.reshape(num_images, ensemble_size, *prediction.shape[1:]) + prediction = [self.ensemble_depth(prediction[i], self.scale_invariant, self.shift_invariant, output_uncertainty, **ensembling_kwargs or {}) for i in range(num_images)] + (prediction, uncertainty) = zip(*prediction) + prediction = torch.cat(prediction, dim=0) + if output_uncertainty: + uncertainty = torch.cat(uncertainty, dim=0) + else: + uncertainty = None + if match_input_resolution: + prediction = self.image_processor.resize_antialias(prediction, original_resolution, resample_method_output, is_aa=False) + if uncertainty is not None and output_uncertainty: + uncertainty = self.image_processor.resize_antialias(uncertainty, original_resolution, resample_method_output, is_aa=False) + if output_type == 'np': + prediction = self.image_processor.pt_to_numpy(prediction) + if uncertainty is not None and output_uncertainty: + uncertainty = self.image_processor.pt_to_numpy(uncertainty) + self.maybe_free_model_hooks() + if not return_dict: + return (prediction, uncertainty, pred_latent) + return MarigoldDepthOutput(prediction=prediction, uncertainty=uncertainty, latent=pred_latent) + + def prepare_latents(self, image: torch.Tensor, latents: Optional[torch.Tensor], generator: Optional[torch.Generator], ensemble_size: int, batch_size: int) -> Tuple[torch.Tensor, torch.Tensor]: + + def retrieve_latents(encoder_output): + if hasattr(encoder_output, 'latent_dist'): + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + image_latent = torch.cat([retrieve_latents(self.vae.encode(image[i:i + batch_size])) for i in range(0, image.shape[0], batch_size)], dim=0) + image_latent = image_latent * self.vae.config.scaling_factor + image_latent = image_latent.repeat_interleave(ensemble_size, dim=0) + pred_latent = latents + if pred_latent is None: + pred_latent = randn_tensor(image_latent.shape, generator=generator, device=image_latent.device, dtype=image_latent.dtype) + return (image_latent, pred_latent) + + def decode_prediction(self, pred_latent: torch.Tensor) -> torch.Tensor: + if pred_latent.dim() != 4 or pred_latent.shape[1] != self.vae.config.latent_channels: + raise ValueError(f'Expecting 4D tensor of shape [B,{self.vae.config.latent_channels},H,W]; got {pred_latent.shape}.') + prediction = self.vae.decode(pred_latent / self.vae.config.scaling_factor, return_dict=False)[0] + prediction = prediction.mean(dim=1, keepdim=True) + prediction = torch.clip(prediction, -1.0, 1.0) + prediction = (prediction + 1.0) / 2.0 + return prediction + + @staticmethod + def ensemble_depth(depth: torch.Tensor, scale_invariant: bool=True, shift_invariant: bool=True, output_uncertainty: bool=False, reduction: str='median', regularizer_strength: float=0.02, max_iter: int=2, tol: float=0.001, max_res: int=1024) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + if depth.dim() != 4 or depth.shape[1] != 1: + raise ValueError(f'Expecting 4D tensor of shape [B,1,H,W]; got {depth.shape}.') + if reduction not in ('mean', 'median'): + raise ValueError(f'Unrecognized reduction method: {reduction}.') + if not scale_invariant and shift_invariant: + raise ValueError('Pure shift-invariant ensembling is not supported.') + + def init_param(depth: torch.Tensor): + init_min = depth.reshape(ensemble_size, -1).min(dim=1).values + init_max = depth.reshape(ensemble_size, -1).max(dim=1).values + if scale_invariant and shift_invariant: + init_s = 1.0 / (init_max - init_min).clamp(min=1e-06) + init_t = -init_s * init_min + param = torch.cat((init_s, init_t)).cpu().numpy() + elif scale_invariant: + init_s = 1.0 / init_max.clamp(min=1e-06) + param = init_s.cpu().numpy() + else: + raise ValueError('Unrecognized alignment.') + return param + + def align(depth: torch.Tensor, param: np.ndarray) -> torch.Tensor: + if scale_invariant and shift_invariant: + (s, t) = np.split(param, 2) + s = torch.from_numpy(s).to(depth).view(ensemble_size, 1, 1, 1) + t = torch.from_numpy(t).to(depth).view(ensemble_size, 1, 1, 1) + out = depth * s + t + elif scale_invariant: + s = torch.from_numpy(param).to(depth).view(ensemble_size, 1, 1, 1) + out = depth * s + else: + raise ValueError('Unrecognized alignment.') + return out + + def ensemble(depth_aligned: torch.Tensor, return_uncertainty: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + uncertainty = None + if reduction == 'mean': + prediction = torch.mean(depth_aligned, dim=0, keepdim=True) + if return_uncertainty: + uncertainty = torch.std(depth_aligned, dim=0, keepdim=True) + elif reduction == 'median': + prediction = torch.median(depth_aligned, dim=0, keepdim=True).values + if return_uncertainty: + uncertainty = torch.median(torch.abs(depth_aligned - prediction), dim=0, keepdim=True).values + else: + raise ValueError(f'Unrecognized reduction method: {reduction}.') + return (prediction, uncertainty) + + def cost_fn(param: np.ndarray, depth: torch.Tensor) -> float: + cost = 0.0 + depth_aligned = align(depth, param) + for (i, j) in torch.combinations(torch.arange(ensemble_size)): + diff = depth_aligned[i] - depth_aligned[j] + cost += (diff ** 2).mean().sqrt().item() + if regularizer_strength > 0: + (prediction, _) = ensemble(depth_aligned, return_uncertainty=False) + err_near = (0.0 - prediction.min()).abs().item() + err_far = (1.0 - prediction.max()).abs().item() + cost += (err_near + err_far) * regularizer_strength + return cost + + def compute_param(depth: torch.Tensor): + import scipy + depth_to_align = depth.to(torch.float32) + if max_res is not None and max(depth_to_align.shape[2:]) > max_res: + depth_to_align = MarigoldImageProcessor.resize_to_max_edge(depth_to_align, max_res, 'nearest-exact') + param = init_param(depth_to_align) + res = scipy.optimize.minimize(partial(cost_fn, depth=depth_to_align), param, method='BFGS', tol=tol, options={'maxiter': max_iter, 'disp': False}) + return res.x + requires_aligning = scale_invariant or shift_invariant + ensemble_size = depth.shape[0] + if requires_aligning: + param = compute_param(depth) + depth = align(depth, param) + (depth, uncertainty) = ensemble(depth, return_uncertainty=output_uncertainty) + depth_max = depth.max() + if scale_invariant and shift_invariant: + depth_min = depth.min() + elif scale_invariant: + depth_min = 0 + else: + raise ValueError('Unrecognized alignment.') + depth_range = (depth_max - depth_min).clamp(min=1e-06) + depth = (depth - depth_min) / depth_range + if output_uncertainty: + uncertainty /= depth_range + return (depth, uncertainty) + +# File: diffusers-main/src/diffusers/pipelines/marigold/pipeline_marigold_normals.py +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Tuple, Union +import numpy as np +import torch +from PIL import Image +from tqdm.auto import tqdm +from transformers import CLIPTextModel, CLIPTokenizer +from ...image_processor import PipelineImageInput +from ...models import AutoencoderKL, UNet2DConditionModel +from ...schedulers import DDIMScheduler, LCMScheduler +from ...utils import BaseOutput, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .marigold_image_processing import MarigoldImageProcessor +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\nExamples:\n```py\n>>> import diffusers\n>>> import torch\n\n>>> pipe = diffusers.MarigoldNormalsPipeline.from_pretrained(\n... "prs-eth/marigold-normals-lcm-v0-1", variant="fp16", torch_dtype=torch.float16\n... ).to("cuda")\n\n>>> image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")\n>>> normals = pipe(image)\n\n>>> vis = pipe.image_processor.visualize_normals(normals.prediction)\n>>> vis[0].save("einstein_normals.png")\n```\n' + +@dataclass +class MarigoldNormalsOutput(BaseOutput): + prediction: Union[np.ndarray, torch.Tensor] + uncertainty: Union[None, np.ndarray, torch.Tensor] + latent: Union[None, torch.Tensor] + +class MarigoldNormalsPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'text_encoder->unet->vae' + supported_prediction_types = ('normals',) + + def __init__(self, unet: UNet2DConditionModel, vae: AutoencoderKL, scheduler: Union[DDIMScheduler, LCMScheduler], text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, prediction_type: Optional[str]=None, use_full_z_range: Optional[bool]=True, default_denoising_steps: Optional[int]=None, default_processing_resolution: Optional[int]=None): + super().__init__() + if prediction_type not in self.supported_prediction_types: + logger.warning(f"Potentially unsupported `prediction_type='{prediction_type}'`; values supported by the pipeline: {self.supported_prediction_types}.") + self.register_modules(unet=unet, vae=vae, scheduler=scheduler, text_encoder=text_encoder, tokenizer=tokenizer) + self.register_to_config(use_full_z_range=use_full_z_range, default_denoising_steps=default_denoising_steps, default_processing_resolution=default_processing_resolution) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.use_full_z_range = use_full_z_range + self.default_denoising_steps = default_denoising_steps + self.default_processing_resolution = default_processing_resolution + self.empty_text_embedding = None + self.image_processor = MarigoldImageProcessor(vae_scale_factor=self.vae_scale_factor) + + def check_inputs(self, image: PipelineImageInput, num_inference_steps: int, ensemble_size: int, processing_resolution: int, resample_method_input: str, resample_method_output: str, batch_size: int, ensembling_kwargs: Optional[Dict[str, Any]], latents: Optional[torch.Tensor], generator: Optional[Union[torch.Generator, List[torch.Generator]]], output_type: str, output_uncertainty: bool) -> int: + if num_inference_steps is None: + raise ValueError('`num_inference_steps` is not specified and could not be resolved from the model config.') + if num_inference_steps < 1: + raise ValueError('`num_inference_steps` must be positive.') + if ensemble_size < 1: + raise ValueError('`ensemble_size` must be positive.') + if ensemble_size == 2: + logger.warning('`ensemble_size` == 2 results are similar to no ensembling (1); consider increasing the value to at least 3.') + if ensemble_size == 1 and output_uncertainty: + raise ValueError('Computing uncertainty by setting `output_uncertainty=True` also requires setting `ensemble_size` greater than 1.') + if processing_resolution is None: + raise ValueError('`processing_resolution` is not specified and could not be resolved from the model config.') + if processing_resolution < 0: + raise ValueError('`processing_resolution` must be non-negative: 0 for native resolution, or any positive value for downsampled processing.') + if processing_resolution % self.vae_scale_factor != 0: + raise ValueError(f'`processing_resolution` must be a multiple of {self.vae_scale_factor}.') + if resample_method_input not in ('nearest', 'nearest-exact', 'bilinear', 'bicubic', 'area'): + raise ValueError('`resample_method_input` takes string values compatible with PIL library: nearest, nearest-exact, bilinear, bicubic, area.') + if resample_method_output not in ('nearest', 'nearest-exact', 'bilinear', 'bicubic', 'area'): + raise ValueError('`resample_method_output` takes string values compatible with PIL library: nearest, nearest-exact, bilinear, bicubic, area.') + if batch_size < 1: + raise ValueError('`batch_size` must be positive.') + if output_type not in ['pt', 'np']: + raise ValueError('`output_type` must be one of `pt` or `np`.') + if latents is not None and generator is not None: + raise ValueError('`latents` and `generator` cannot be used together.') + if ensembling_kwargs is not None: + if not isinstance(ensembling_kwargs, dict): + raise ValueError('`ensembling_kwargs` must be a dictionary.') + if 'reduction' in ensembling_kwargs and ensembling_kwargs['reduction'] not in ('closest', 'mean'): + raise ValueError("`ensembling_kwargs['reduction']` can be either `'closest'` or `'mean'`.") + num_images = 0 + (W, H) = (None, None) + if not isinstance(image, list): + image = [image] + for (i, img) in enumerate(image): + if isinstance(img, np.ndarray) or torch.is_tensor(img): + if img.ndim not in (2, 3, 4): + raise ValueError(f'`image[{i}]` has unsupported dimensions or shape: {img.shape}.') + (H_i, W_i) = img.shape[-2:] + N_i = 1 + if img.ndim == 4: + N_i = img.shape[0] + elif isinstance(img, Image.Image): + (W_i, H_i) = img.size + N_i = 1 + else: + raise ValueError(f'Unsupported `image[{i}]` type: {type(img)}.') + if W is None: + (W, H) = (W_i, H_i) + elif (W, H) != (W_i, H_i): + raise ValueError(f'Input `image[{i}]` has incompatible dimensions {(W_i, H_i)} with the previous images {(W, H)}') + num_images += N_i + if latents is not None: + if not torch.is_tensor(latents): + raise ValueError('`latents` must be a torch.Tensor.') + if latents.dim() != 4: + raise ValueError(f'`latents` has unsupported dimensions or shape: {latents.shape}.') + if processing_resolution > 0: + max_orig = max(H, W) + new_H = H * processing_resolution // max_orig + new_W = W * processing_resolution // max_orig + if new_H == 0 or new_W == 0: + raise ValueError(f'Extreme aspect ratio of the input image: [{W} x {H}]') + (W, H) = (new_W, new_H) + w = (W + self.vae_scale_factor - 1) // self.vae_scale_factor + h = (H + self.vae_scale_factor - 1) // self.vae_scale_factor + shape_expected = (num_images * ensemble_size, self.vae.config.latent_channels, h, w) + if latents.shape != shape_expected: + raise ValueError(f'`latents` has unexpected shape={latents.shape} expected={shape_expected}.') + if generator is not None: + if isinstance(generator, list): + if len(generator) != num_images * ensemble_size: + raise ValueError('The number of generators must match the total number of ensemble members for all input images.') + if not all((g.device.type == generator[0].device.type for g in generator)): + raise ValueError('`generator` device placement is not consistent in the list.') + elif not isinstance(generator, torch.Generator): + raise ValueError(f'Unsupported generator type: {type(generator)}.') + return num_images + + def progress_bar(self, iterable=None, total=None, desc=None, leave=True): + if not hasattr(self, '_progress_bar_config'): + self._progress_bar_config = {} + elif not isinstance(self._progress_bar_config, dict): + raise ValueError(f'`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}.') + progress_bar_config = dict(**self._progress_bar_config) + progress_bar_config['desc'] = progress_bar_config.get('desc', desc) + progress_bar_config['leave'] = progress_bar_config.get('leave', leave) + if iterable is not None: + return tqdm(iterable, **progress_bar_config) + elif total is not None: + return tqdm(total=total, **progress_bar_config) + else: + raise ValueError('Either `total` or `iterable` has to be defined.') + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, image: PipelineImageInput, num_inference_steps: Optional[int]=None, ensemble_size: int=1, processing_resolution: Optional[int]=None, match_input_resolution: bool=True, resample_method_input: str='bilinear', resample_method_output: str='bilinear', batch_size: int=1, ensembling_kwargs: Optional[Dict[str, Any]]=None, latents: Optional[Union[torch.Tensor, List[torch.Tensor]]]=None, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, output_type: str='np', output_uncertainty: bool=False, output_latent: bool=False, return_dict: bool=True): + device = self._execution_device + dtype = self.dtype + if num_inference_steps is None: + num_inference_steps = self.default_denoising_steps + if processing_resolution is None: + processing_resolution = self.default_processing_resolution + num_images = self.check_inputs(image, num_inference_steps, ensemble_size, processing_resolution, resample_method_input, resample_method_output, batch_size, ensembling_kwargs, latents, generator, output_type, output_uncertainty) + if self.empty_text_embedding is None: + prompt = '' + text_inputs = self.tokenizer(prompt, padding='do_not_pad', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids.to(device) + self.empty_text_embedding = self.text_encoder(text_input_ids)[0] + (image, padding, original_resolution) = self.image_processor.preprocess(image, processing_resolution, resample_method_input, device, dtype) + (image_latent, pred_latent) = self.prepare_latents(image, latents, generator, ensemble_size, batch_size) + del image + batch_empty_text_embedding = self.empty_text_embedding.to(device=device, dtype=dtype).repeat(batch_size, 1, 1) + pred_latents = [] + for i in self.progress_bar(range(0, num_images * ensemble_size, batch_size), leave=True, desc='Marigold predictions...'): + batch_image_latent = image_latent[i:i + batch_size] + batch_pred_latent = pred_latent[i:i + batch_size] + effective_batch_size = batch_image_latent.shape[0] + text = batch_empty_text_embedding[:effective_batch_size] + self.scheduler.set_timesteps(num_inference_steps, device=device) + for t in self.progress_bar(self.scheduler.timesteps, leave=False, desc='Diffusion steps...'): + batch_latent = torch.cat([batch_image_latent, batch_pred_latent], dim=1) + noise = self.unet(batch_latent, t, encoder_hidden_states=text, return_dict=False)[0] + batch_pred_latent = self.scheduler.step(noise, t, batch_pred_latent, generator=generator).prev_sample + pred_latents.append(batch_pred_latent) + pred_latent = torch.cat(pred_latents, dim=0) + del (pred_latents, image_latent, batch_empty_text_embedding, batch_image_latent, batch_pred_latent, text, batch_latent, noise) + prediction = torch.cat([self.decode_prediction(pred_latent[i:i + batch_size]) for i in range(0, pred_latent.shape[0], batch_size)], dim=0) + if not output_latent: + pred_latent = None + prediction = self.image_processor.unpad_image(prediction, padding) + uncertainty = None + if ensemble_size > 1: + prediction = prediction.reshape(num_images, ensemble_size, *prediction.shape[1:]) + prediction = [self.ensemble_normals(prediction[i], output_uncertainty, **ensembling_kwargs or {}) for i in range(num_images)] + (prediction, uncertainty) = zip(*prediction) + prediction = torch.cat(prediction, dim=0) + if output_uncertainty: + uncertainty = torch.cat(uncertainty, dim=0) + else: + uncertainty = None + if match_input_resolution: + prediction = self.image_processor.resize_antialias(prediction, original_resolution, resample_method_output, is_aa=False) + prediction = self.normalize_normals(prediction) + if uncertainty is not None and output_uncertainty: + uncertainty = self.image_processor.resize_antialias(uncertainty, original_resolution, resample_method_output, is_aa=False) + if output_type == 'np': + prediction = self.image_processor.pt_to_numpy(prediction) + if uncertainty is not None and output_uncertainty: + uncertainty = self.image_processor.pt_to_numpy(uncertainty) + self.maybe_free_model_hooks() + if not return_dict: + return (prediction, uncertainty, pred_latent) + return MarigoldNormalsOutput(prediction=prediction, uncertainty=uncertainty, latent=pred_latent) + + def prepare_latents(self, image: torch.Tensor, latents: Optional[torch.Tensor], generator: Optional[torch.Generator], ensemble_size: int, batch_size: int) -> Tuple[torch.Tensor, torch.Tensor]: + + def retrieve_latents(encoder_output): + if hasattr(encoder_output, 'latent_dist'): + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + image_latent = torch.cat([retrieve_latents(self.vae.encode(image[i:i + batch_size])) for i in range(0, image.shape[0], batch_size)], dim=0) + image_latent = image_latent * self.vae.config.scaling_factor + image_latent = image_latent.repeat_interleave(ensemble_size, dim=0) + pred_latent = latents + if pred_latent is None: + pred_latent = randn_tensor(image_latent.shape, generator=generator, device=image_latent.device, dtype=image_latent.dtype) + return (image_latent, pred_latent) + + def decode_prediction(self, pred_latent: torch.Tensor) -> torch.Tensor: + if pred_latent.dim() != 4 or pred_latent.shape[1] != self.vae.config.latent_channels: + raise ValueError(f'Expecting 4D tensor of shape [B,{self.vae.config.latent_channels},H,W]; got {pred_latent.shape}.') + prediction = self.vae.decode(pred_latent / self.vae.config.scaling_factor, return_dict=False)[0] + prediction = torch.clip(prediction, -1.0, 1.0) + if not self.use_full_z_range: + prediction[:, 2, :, :] *= 0.5 + prediction[:, 2, :, :] += 0.5 + prediction = self.normalize_normals(prediction) + return prediction + + @staticmethod + def normalize_normals(normals: torch.Tensor, eps: float=1e-06) -> torch.Tensor: + if normals.dim() != 4 or normals.shape[1] != 3: + raise ValueError(f'Expecting 4D tensor of shape [B,3,H,W]; got {normals.shape}.') + norm = torch.norm(normals, dim=1, keepdim=True) + normals /= norm.clamp(min=eps) + return normals + + @staticmethod + def ensemble_normals(normals: torch.Tensor, output_uncertainty: bool, reduction: str='closest') -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + if normals.dim() != 4 or normals.shape[1] != 3: + raise ValueError(f'Expecting 4D tensor of shape [B,3,H,W]; got {normals.shape}.') + if reduction not in ('closest', 'mean'): + raise ValueError(f'Unrecognized reduction method: {reduction}.') + mean_normals = normals.mean(dim=0, keepdim=True) + mean_normals = MarigoldNormalsPipeline.normalize_normals(mean_normals) + sim_cos = (mean_normals * normals).sum(dim=1, keepdim=True) + sim_cos = sim_cos.clamp(-1, 1) + uncertainty = None + if output_uncertainty: + uncertainty = sim_cos.arccos() + uncertainty = uncertainty.mean(dim=0, keepdim=True) / np.pi + if reduction == 'mean': + return (mean_normals, uncertainty) + closest_indices = sim_cos.argmax(dim=0, keepdim=True) + closest_indices = closest_indices.repeat(1, 3, 1, 1) + closest_normals = torch.gather(normals, 0, closest_indices) + return (closest_normals, uncertainty) + +# File: diffusers-main/src/diffusers/pipelines/musicldm/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, is_transformers_version +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.27.0')): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_musicldm'] = ['MusicLDMPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.27.0')): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_musicldm import MusicLDMPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/musicldm/pipeline_musicldm.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import torch +from transformers import ClapFeatureExtractor, ClapModel, ClapTextModelWithProjection, RobertaTokenizer, RobertaTokenizerFast, SpeechT5HifiGan +from ...models import AutoencoderKL, UNet2DConditionModel +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import is_accelerate_available, is_accelerate_version, is_librosa_available, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline, StableDiffusionMixin +if is_librosa_available(): + import librosa +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import MusicLDMPipeline\n >>> import torch\n >>> import scipy\n\n >>> repo_id = "ucsd-reach/musicldm"\n >>> pipe = MusicLDMPipeline.from_pretrained(repo_id, torch_dtype=torch.float16)\n >>> pipe = pipe.to("cuda")\n\n >>> prompt = "Techno music with a strong, upbeat tempo and high melodic riffs"\n >>> audio = pipe(prompt, num_inference_steps=10, audio_length_in_s=5.0).audios[0]\n\n >>> # save the audio sample as a .wav file\n >>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio)\n ```\n' + +class MusicLDMPipeline(DiffusionPipeline, StableDiffusionMixin): + + def __init__(self, vae: AutoencoderKL, text_encoder: Union[ClapTextModelWithProjection, ClapModel], tokenizer: Union[RobertaTokenizer, RobertaTokenizerFast], feature_extractor: Optional[ClapFeatureExtractor], unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, vocoder: SpeechT5HifiGan): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, feature_extractor=feature_extractor, unet=unet, scheduler=scheduler, vocoder=vocoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + + def _encode_prompt(self, prompt, device, num_waveforms_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None): + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + attention_mask = text_inputs.attention_mask + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLAP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder.get_text_features(text_input_ids.to(device), attention_mask=attention_mask.to(device)) + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.text_model.dtype, device=device) + (bs_embed, seq_len) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt) + prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + uncond_input_ids = uncond_input.input_ids.to(device) + attention_mask = uncond_input.attention_mask.to(device) + negative_prompt_embeds = self.text_encoder.get_text_features(uncond_input_ids, attention_mask=attention_mask) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.text_model.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len) + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + return prompt_embeds + + def mel_spectrogram_to_waveform(self, mel_spectrogram): + if mel_spectrogram.dim() == 4: + mel_spectrogram = mel_spectrogram.squeeze(1) + waveform = self.vocoder(mel_spectrogram) + waveform = waveform.cpu().float() + return waveform + + def score_waveforms(self, text, audio, num_waveforms_per_prompt, device, dtype): + if not is_librosa_available(): + logger.info('Automatic scoring of the generated audio waveforms against the input prompt text requires the `librosa` package to resample the generated waveforms. Returning the audios in the order they were generated. To enable automatic scoring, install `librosa` with: `pip install librosa`.') + return audio + inputs = self.tokenizer(text, return_tensors='pt', padding=True) + resampled_audio = librosa.resample(audio.numpy(), orig_sr=self.vocoder.config.sampling_rate, target_sr=self.feature_extractor.sampling_rate) + inputs['input_features'] = self.feature_extractor(list(resampled_audio), return_tensors='pt', sampling_rate=self.feature_extractor.sampling_rate).input_features.type(dtype) + inputs = inputs.to(device) + logits_per_text = self.text_encoder(**inputs).logits_per_text + indices = torch.argsort(logits_per_text, dim=1, descending=True)[:, :num_waveforms_per_prompt] + audio = torch.index_select(audio, 0, indices.reshape(-1).cpu()) + return audio + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, audio_length_in_s, vocoder_upsample_factor, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None): + min_audio_length_in_s = vocoder_upsample_factor * self.vae_scale_factor + if audio_length_in_s < min_audio_length_in_s: + raise ValueError(f'`audio_length_in_s` has to be a positive value greater than or equal to {min_audio_length_in_s}, but is {audio_length_in_s}.') + if self.vocoder.config.model_in_dim % self.vae_scale_factor != 0: + raise ValueError(f"The number of frequency bins in the vocoder's log-mel spectrogram has to be divisible by the VAE scale factor, but got {self.vocoder.config.model_in_dim} bins and a scale factor of {self.vae_scale_factor}.") + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(self.vocoder.config.model_in_dim) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def enable_model_cpu_offload(self, gpu_id=0): + if is_accelerate_available() and is_accelerate_version('>=', '0.17.0.dev0'): + from accelerate import cpu_offload_with_hook + else: + raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.') + device = torch.device(f'cuda:{gpu_id}') + if self.device.type != 'cpu': + self.to('cpu', silence_dtype_warnings=True) + torch.cuda.empty_cache() + model_sequence = [self.text_encoder.text_model, self.text_encoder.text_projection, self.unet, self.vae, self.vocoder, self.text_encoder] + hook = None + for cpu_offloaded_model in model_sequence: + (_, hook) = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) + self.final_offload_hook = hook + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, audio_length_in_s: Optional[float]=None, num_inference_steps: int=200, guidance_scale: float=2.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_waveforms_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: Optional[int]=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, output_type: Optional[str]='np'): + vocoder_upsample_factor = np.prod(self.vocoder.config.upsample_rates) / self.vocoder.config.sampling_rate + if audio_length_in_s is None: + audio_length_in_s = self.unet.config.sample_size * self.vae_scale_factor * vocoder_upsample_factor + height = int(audio_length_in_s / vocoder_upsample_factor) + original_waveform_length = int(audio_length_in_s * self.vocoder.config.sampling_rate) + if height % self.vae_scale_factor != 0: + height = int(np.ceil(height / self.vae_scale_factor)) * self.vae_scale_factor + logger.info(f'Audio length in seconds {audio_length_in_s} is increased to {height * vocoder_upsample_factor} so that it can be handled by the model. It will be cut to {audio_length_in_s} after the denoising process.') + self.check_inputs(prompt, audio_length_in_s, vocoder_upsample_factor, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + prompt_embeds = self._encode_prompt(prompt, device, num_waveforms_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_waveforms_per_prompt, num_channels_latents, height, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=None, class_labels=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + self.maybe_free_model_hooks() + if not output_type == 'latent': + latents = 1 / self.vae.config.scaling_factor * latents + mel_spectrogram = self.vae.decode(latents).sample + else: + return AudioPipelineOutput(audios=latents) + audio = self.mel_spectrogram_to_waveform(mel_spectrogram) + audio = audio[:, :original_waveform_length] + if num_waveforms_per_prompt > 1 and prompt is not None: + audio = self.score_waveforms(text=prompt, audio=audio, num_waveforms_per_prompt=num_waveforms_per_prompt, device=device, dtype=prompt_embeds.dtype) + if output_type == 'np': + audio = audio.numpy() + if not return_dict: + return (audio,) + return AudioPipelineOutput(audios=audio) + +# File: diffusers-main/src/diffusers/pipelines/onnx_utils.py +import os +import shutil +from pathlib import Path +from typing import Optional, Union +import numpy as np +from huggingface_hub import hf_hub_download +from huggingface_hub.utils import validate_hf_hub_args +from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging +if is_onnx_available(): + import onnxruntime as ort +logger = logging.get_logger(__name__) +ORT_TO_NP_TYPE = {'tensor(bool)': np.bool_, 'tensor(int8)': np.int8, 'tensor(uint8)': np.uint8, 'tensor(int16)': np.int16, 'tensor(uint16)': np.uint16, 'tensor(int32)': np.int32, 'tensor(uint32)': np.uint32, 'tensor(int64)': np.int64, 'tensor(uint64)': np.uint64, 'tensor(float16)': np.float16, 'tensor(float)': np.float32, 'tensor(double)': np.float64} + +class OnnxRuntimeModel: + + def __init__(self, model=None, **kwargs): + logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.') + self.model = model + self.model_save_dir = kwargs.get('model_save_dir', None) + self.latest_model_name = kwargs.get('latest_model_name', ONNX_WEIGHTS_NAME) + + def __call__(self, **kwargs): + inputs = {k: np.array(v) for (k, v) in kwargs.items()} + return self.model.run(None, inputs) + + @staticmethod + def load_model(path: Union[str, Path], provider=None, sess_options=None): + if provider is None: + logger.info('No onnxruntime provider specified, using CPUExecutionProvider') + provider = 'CPUExecutionProvider' + return ort.InferenceSession(path, providers=[provider], sess_options=sess_options) + + def _save_pretrained(self, save_directory: Union[str, Path], file_name: Optional[str]=None, **kwargs): + model_file_name = file_name if file_name is not None else ONNX_WEIGHTS_NAME + src_path = self.model_save_dir.joinpath(self.latest_model_name) + dst_path = Path(save_directory).joinpath(model_file_name) + try: + shutil.copyfile(src_path, dst_path) + except shutil.SameFileError: + pass + src_path = self.model_save_dir.joinpath(ONNX_EXTERNAL_WEIGHTS_NAME) + if src_path.exists(): + dst_path = Path(save_directory).joinpath(ONNX_EXTERNAL_WEIGHTS_NAME) + try: + shutil.copyfile(src_path, dst_path) + except shutil.SameFileError: + pass + + def save_pretrained(self, save_directory: Union[str, os.PathLike], **kwargs): + if os.path.isfile(save_directory): + logger.error(f'Provided path ({save_directory}) should be a directory, not a file') + return + os.makedirs(save_directory, exist_ok=True) + self._save_pretrained(save_directory, **kwargs) + + @classmethod + @validate_hf_hub_args + def _from_pretrained(cls, model_id: Union[str, Path], token: Optional[Union[bool, str, None]]=None, revision: Optional[Union[str, None]]=None, force_download: bool=False, cache_dir: Optional[str]=None, file_name: Optional[str]=None, provider: Optional[str]=None, sess_options: Optional['ort.SessionOptions']=None, **kwargs): + model_file_name = file_name if file_name is not None else ONNX_WEIGHTS_NAME + if os.path.isdir(model_id): + model = OnnxRuntimeModel.load_model(Path(model_id, model_file_name).as_posix(), provider=provider, sess_options=sess_options) + kwargs['model_save_dir'] = Path(model_id) + else: + model_cache_path = hf_hub_download(repo_id=model_id, filename=model_file_name, token=token, revision=revision, cache_dir=cache_dir, force_download=force_download) + kwargs['model_save_dir'] = Path(model_cache_path).parent + kwargs['latest_model_name'] = Path(model_cache_path).name + model = OnnxRuntimeModel.load_model(model_cache_path, provider=provider, sess_options=sess_options) + return cls(model=model, **kwargs) + + @classmethod + @validate_hf_hub_args + def from_pretrained(cls, model_id: Union[str, Path], force_download: bool=True, token: Optional[str]=None, cache_dir: Optional[str]=None, **model_kwargs): + revision = None + if len(str(model_id).split('@')) == 2: + (model_id, revision) = model_id.split('@') + return cls._from_pretrained(model_id=model_id, revision=revision, cache_dir=cache_dir, force_download=force_download, token=token, **model_kwargs) + +# File: diffusers-main/src/diffusers/pipelines/pag/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_flax_available, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_pag_controlnet_sd'] = ['StableDiffusionControlNetPAGPipeline'] + _import_structure['pipeline_pag_controlnet_sd_xl'] = ['StableDiffusionXLControlNetPAGPipeline'] + _import_structure['pipeline_pag_controlnet_sd_xl_img2img'] = ['StableDiffusionXLControlNetPAGImg2ImgPipeline'] + _import_structure['pipeline_pag_hunyuandit'] = ['HunyuanDiTPAGPipeline'] + _import_structure['pipeline_pag_kolors'] = ['KolorsPAGPipeline'] + _import_structure['pipeline_pag_pixart_sigma'] = ['PixArtSigmaPAGPipeline'] + _import_structure['pipeline_pag_sd'] = ['StableDiffusionPAGPipeline'] + _import_structure['pipeline_pag_sd_3'] = ['StableDiffusion3PAGPipeline'] + _import_structure['pipeline_pag_sd_animatediff'] = ['AnimateDiffPAGPipeline'] + _import_structure['pipeline_pag_sd_xl'] = ['StableDiffusionXLPAGPipeline'] + _import_structure['pipeline_pag_sd_xl_img2img'] = ['StableDiffusionXLPAGImg2ImgPipeline'] + _import_structure['pipeline_pag_sd_xl_inpaint'] = ['StableDiffusionXLPAGInpaintPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_pag_controlnet_sd import StableDiffusionControlNetPAGPipeline + from .pipeline_pag_controlnet_sd_xl import StableDiffusionXLControlNetPAGPipeline + from .pipeline_pag_controlnet_sd_xl_img2img import StableDiffusionXLControlNetPAGImg2ImgPipeline + from .pipeline_pag_hunyuandit import HunyuanDiTPAGPipeline + from .pipeline_pag_kolors import KolorsPAGPipeline + from .pipeline_pag_pixart_sigma import PixArtSigmaPAGPipeline + from .pipeline_pag_sd import StableDiffusionPAGPipeline + from .pipeline_pag_sd_3 import StableDiffusion3PAGPipeline + from .pipeline_pag_sd_animatediff import AnimateDiffPAGPipeline + from .pipeline_pag_sd_xl import StableDiffusionXLPAGPipeline + from .pipeline_pag_sd_xl_img2img import StableDiffusionXLPAGImg2ImgPipeline + from .pipeline_pag_sd_xl_inpaint import StableDiffusionXLPAGInpaintPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/pag/pag_utils.py +import re +from typing import Dict, List, Tuple, Union +import torch +import torch.nn as nn +from ...models.attention_processor import Attention, AttentionProcessor, PAGCFGIdentitySelfAttnProcessor2_0, PAGIdentitySelfAttnProcessor2_0 +from ...utils import logging +logger = logging.get_logger(__name__) + +class PAGMixin: + + def _set_pag_attn_processor(self, pag_applied_layers, do_classifier_free_guidance): + pag_attn_processors = self._pag_attn_processors + if pag_attn_processors is None: + raise ValueError('No PAG attention processors have been set. Set the attention processors by calling `set_pag_applied_layers` and passing the relevant parameters.') + pag_attn_proc = pag_attn_processors[0] if do_classifier_free_guidance else pag_attn_processors[1] + if hasattr(self, 'unet'): + model: nn.Module = self.unet + else: + model: nn.Module = self.transformer + + def is_self_attn(module: nn.Module) -> bool: + return isinstance(module, Attention) and (not module.is_cross_attention) + + def is_fake_integral_match(layer_id, name): + layer_id = layer_id.split('.')[-1] + name = name.split('.')[-1] + return layer_id.isnumeric() and name.isnumeric() and (layer_id == name) + for layer_id in pag_applied_layers: + target_modules = [] + for (name, module) in model.named_modules(): + if is_self_attn(module) and re.search(layer_id, name) is not None and (not is_fake_integral_match(layer_id, name)): + logger.debug(f'Applying PAG to layer: {name}') + target_modules.append(module) + if len(target_modules) == 0: + raise ValueError(f'Cannot find PAG layer to set attention processor for: {layer_id}') + for module in target_modules: + module.processor = pag_attn_proc + + def _get_pag_scale(self, t): + if self.do_pag_adaptive_scaling: + signal_scale = self.pag_scale - self.pag_adaptive_scale * (1000 - t) + if signal_scale < 0: + signal_scale = 0 + return signal_scale + else: + return self.pag_scale + + def _apply_perturbed_attention_guidance(self, noise_pred, do_classifier_free_guidance, guidance_scale, t): + pag_scale = self._get_pag_scale(t) + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text, noise_pred_perturb) = noise_pred.chunk(3) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + pag_scale * (noise_pred_text - noise_pred_perturb) + else: + (noise_pred_text, noise_pred_perturb) = noise_pred.chunk(2) + noise_pred = noise_pred_text + pag_scale * (noise_pred_text - noise_pred_perturb) + return noise_pred + + def _prepare_perturbed_attention_guidance(self, cond, uncond, do_classifier_free_guidance): + cond = torch.cat([cond] * 2, dim=0) + if do_classifier_free_guidance: + cond = torch.cat([uncond, cond], dim=0) + return cond + + def set_pag_applied_layers(self, pag_applied_layers: Union[str, List[str]], pag_attn_processors: Tuple[AttentionProcessor, AttentionProcessor]=(PAGCFGIdentitySelfAttnProcessor2_0(), PAGIdentitySelfAttnProcessor2_0())): + if not hasattr(self, '_pag_attn_processors'): + self._pag_attn_processors = None + if not isinstance(pag_applied_layers, list): + pag_applied_layers = [pag_applied_layers] + if pag_attn_processors is not None: + if not isinstance(pag_attn_processors, tuple) or len(pag_attn_processors) != 2: + raise ValueError('Expected a tuple of two attention processors') + for i in range(len(pag_applied_layers)): + if not isinstance(pag_applied_layers[i], str): + raise ValueError(f'Expected either a string or a list of string but got type {type(pag_applied_layers[i])}') + self.pag_applied_layers = pag_applied_layers + self._pag_attn_processors = pag_attn_processors + + @property + def pag_scale(self) -> float: + return self._pag_scale + + @property + def pag_adaptive_scale(self) -> float: + return self._pag_adaptive_scale + + @property + def do_pag_adaptive_scaling(self) -> bool: + return self._pag_adaptive_scale > 0 and self._pag_scale > 0 and (len(self.pag_applied_layers) > 0) + + @property + def do_perturbed_attention_guidance(self) -> bool: + return self._pag_scale > 0 and len(self.pag_applied_layers) > 0 + + @property + def pag_attn_processors(self) -> Dict[str, AttentionProcessor]: + if self._pag_attn_processors is None: + return {} + valid_attn_processors = {x.__class__ for x in self._pag_attn_processors} + processors = {} + if hasattr(self, 'unet'): + denoiser_module = self.unet + elif hasattr(self, 'transformer'): + denoiser_module = self.transformer + else: + raise ValueError('No denoiser module found.') + for (name, proc) in denoiser_module.attn_processors.items(): + if proc.__class__ in valid_attn_processors: + processors[name] = proc + return processors + +# File: diffusers-main/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor +from ..controlnet.multicontrolnet import MultiControlNetModel +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion.pipeline_output import StableDiffusionPipelineOutput +from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker +from .pag_utils import PAGMixin +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> # !pip install opencv-python transformers accelerate\n >>> from diffusers import AutoPipelineForText2Image, ControlNetModel, UniPCMultistepScheduler\n >>> from diffusers.utils import load_image\n >>> import numpy as np\n >>> import torch\n\n >>> import cv2\n >>> from PIL import Image\n\n >>> # download an image\n >>> image = load_image(\n ... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"\n ... )\n >>> image = np.array(image)\n\n >>> # get canny image\n >>> image = cv2.Canny(image, 100, 200)\n >>> image = image[:, :, None]\n >>> image = np.concatenate([image, image, image], axis=2)\n >>> canny_image = Image.fromarray(image)\n\n >>> # load control net and stable diffusion v1-5\n >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)\n >>> pipe = AutoPipelineForText2Image.from_pretrained(\n ... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16, enable_pag=True\n ... )\n\n >>> # speed up diffusion process with faster scheduler and memory optimization\n >>> # remove following line if xformers is not installed\n >>> pipe.enable_xformers_memory_efficient_attention()\n\n >>> pipe.enable_model_cpu_offload()\n\n >>> # generate image\n >>> generator = torch.manual_seed(0)\n >>> image = pipe(\n ... "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting",\n ... guidance_scale=7.5,\n ... generator=generator,\n ... image=canny_image,\n ... pag_scale=10,\n ... ).images[0]\n ```\n' + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusionControlNetPAGPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin, PAGMixin): + model_cpu_offload_seq = 'text_encoder->image_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor', 'image_encoder'] + _exclude_from_cpu_offload = ['safety_checker'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: CLIPVisionModelWithProjection=None, requires_safety_checker: bool=True, pag_applied_layers: Union[str, List[str]]='mid'): + super().__init__() + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + if isinstance(controlnet, (list, tuple)): + controlnet = MultiControlNetModel(controlnet) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) + self.control_image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False) + self.register_to_config(requires_safety_checker=requires_safety_checker) + self.set_pag_applied_layers(pag_applied_layers) + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, image, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, controlnet_conditioning_scale=1.0, control_guidance_start=0.0, control_guidance_end=1.0, callback_on_step_end_tensor_inputs=None): + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + is_compiled = hasattr(F, 'scaled_dot_product_attention') and isinstance(self.controlnet, torch._dynamo.eval_frame.OptimizedModule) + if isinstance(self.controlnet, ControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel)): + self.check_image(image, prompt, prompt_embeds) + elif isinstance(self.controlnet, MultiControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel)): + if not isinstance(image, list): + raise TypeError('For multiple controlnets: `image` must be type `list`') + elif any((isinstance(i, list) for i in image)): + transposed_image = [list(t) for t in zip(*image)] + if len(transposed_image) != len(self.controlnet.nets): + raise ValueError(f'For multiple controlnets: if you pass`image` as a list of list, each sublist must have the same length as the number of controlnets, but the sublists in `image` got {len(transposed_image)} images and {len(self.controlnet.nets)} ControlNets.') + for image_ in transposed_image: + self.check_image(image_, prompt, prompt_embeds) + elif len(image) != len(self.controlnet.nets): + raise ValueError(f'For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets.') + else: + for image_ in image: + self.check_image(image_, prompt, prompt_embeds) + else: + assert False + if isinstance(self.controlnet, ControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel)): + if not isinstance(controlnet_conditioning_scale, float): + raise TypeError('For single controlnet: `controlnet_conditioning_scale` must be type `float`.') + elif isinstance(self.controlnet, MultiControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel)): + if isinstance(controlnet_conditioning_scale, list): + if any((isinstance(i, list) for i in controlnet_conditioning_scale)): + raise ValueError('A single batch of varying conditioning scale settings (e.g. [[1.0, 0.5], [0.2, 0.8]]) is not supported at the moment. The conditioning scale must be fixed across the batch.') + elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(self.controlnet.nets): + raise ValueError('For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have the same length as the number of controlnets') + else: + assert False + if not isinstance(control_guidance_start, (tuple, list)): + control_guidance_start = [control_guidance_start] + if not isinstance(control_guidance_end, (tuple, list)): + control_guidance_end = [control_guidance_end] + if len(control_guidance_start) != len(control_guidance_end): + raise ValueError(f'`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list.') + if isinstance(self.controlnet, MultiControlNetModel): + if len(control_guidance_start) != len(self.controlnet.nets): + raise ValueError(f'`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}.') + for (start, end) in zip(control_guidance_start, control_guidance_end): + if start >= end: + raise ValueError(f'control guidance start: {start} cannot be larger or equal to control guidance end: {end}.') + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def check_image(self, image, prompt, prompt_embeds): + image_is_pil = isinstance(image, PIL.Image.Image) + image_is_tensor = isinstance(image, torch.Tensor) + image_is_np = isinstance(image, np.ndarray) + image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) + image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) + image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) + if not image_is_pil and (not image_is_tensor) and (not image_is_np) and (not image_is_pil_list) and (not image_is_tensor_list) and (not image_is_np_list): + raise TypeError(f'image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}') + if image_is_pil: + image_batch_size = 1 + else: + image_batch_size = len(image) + if prompt is not None and isinstance(prompt, str): + prompt_batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + prompt_batch_size = len(prompt) + elif prompt_embeds is not None: + prompt_batch_size = prompt_embeds.shape[0] + if image_batch_size != 1 and image_batch_size != prompt_batch_size: + raise ValueError(f'If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}') + + def prepare_image(self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False, guess_mode=False): + image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) + image_batch_size = image.shape[0] + if image_batch_size == 1: + repeat_by = batch_size + else: + repeat_by = num_images_per_prompt + image = image.repeat_interleave(repeat_by, dim=0) + image = image.to(device=device, dtype=dtype) + if do_classifier_free_guidance and (not guess_mode): + image = torch.cat([image] * 2) + return image + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, image: PipelineImageInput=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, timesteps: List[int]=None, sigmas: List[float]=None, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, controlnet_conditioning_scale: Union[float, List[float]]=1.0, guess_mode: bool=False, control_guidance_start: Union[float, List[float]]=0.0, control_guidance_end: Union[float, List[float]]=1.0, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], pag_scale: float=3.0, pag_adaptive_scale: float=0.0): + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and (not isinstance(control_guidance_end, list)): + mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 + (control_guidance_start, control_guidance_end) = (mult * [control_guidance_start], mult * [control_guidance_end]) + self.check_inputs(prompt, image, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, controlnet_conditioning_scale, control_guidance_start, control_guidance_end, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._pag_scale = pag_scale + self._pag_adaptive_scale = pag_adaptive_scale + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): + controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) + global_pool_conditions = controlnet.config.global_pool_conditions if isinstance(controlnet, ControlNetModel) else controlnet.nets[0].config.global_pool_conditions + guess_mode = guess_mode or global_pool_conditions + text_encoder_lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + if self.do_perturbed_attention_guidance: + prompt_embeds = self._prepare_perturbed_attention_guidance(prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance) + elif self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + if isinstance(controlnet, ControlNetModel): + image = self.prepare_image(image=image, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=guess_mode) + (height, width) = image.shape[-2:] + elif isinstance(controlnet, MultiControlNetModel): + images = [] + if isinstance(image[0], list): + image = [list(t) for t in zip(*image)] + for image_ in image: + image_ = self.prepare_image(image=image_, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=guess_mode) + images.append(image_) + image = images + (height, width) = image[0].shape[-2:] + else: + assert False + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + self._num_timesteps = len(timesteps) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + for (i, image_embeds) in enumerate(ip_adapter_image_embeds): + negative_image_embeds = None + if self.do_classifier_free_guidance: + (negative_image_embeds, image_embeds) = image_embeds.chunk(2) + if self.do_perturbed_attention_guidance: + image_embeds = self._prepare_perturbed_attention_guidance(image_embeds, negative_image_embeds, self.do_classifier_free_guidance) + elif self.do_classifier_free_guidance: + image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0) + image_embeds = image_embeds.to(device) + ip_adapter_image_embeds[i] = image_embeds + added_cond_kwargs = {'image_embeds': ip_adapter_image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None + controlnet_prompt_embeds = prompt_embeds + controlnet_keep = [] + for i in range(len(timesteps)): + keeps = [1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) for (s, e) in zip(control_guidance_start, control_guidance_end)] + controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) + images = image if isinstance(image, list) else [image] + for (i, single_image) in enumerate(images): + if self.do_classifier_free_guidance: + single_image = single_image.chunk(2)[0] + if self.do_perturbed_attention_guidance: + single_image = self._prepare_perturbed_attention_guidance(single_image, single_image, self.do_classifier_free_guidance) + elif self.do_classifier_free_guidance: + single_image = torch.cat([single_image] * 2) + single_image = single_image.to(device) + images[i] = single_image + image = images if isinstance(image, list) else images[0] + if self.do_perturbed_attention_guidance: + original_attn_proc = self.unet.attn_processors + self._set_pag_attn_processor(pag_applied_layers=self.pag_applied_layers, do_classifier_free_guidance=self.do_classifier_free_guidance) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + is_unet_compiled = is_compiled_module(self.unet) + is_controlnet_compiled = is_compiled_module(self.controlnet) + is_torch_higher_equal_2_1 = is_torch_version('>=', '2.1') + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1: + torch._inductor.cudagraph_mark_step_begin() + latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0])) + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + control_model_input = latent_model_input + if isinstance(controlnet_keep[i], list): + cond_scale = [c * s for (c, s) in zip(controlnet_conditioning_scale, controlnet_keep[i])] + else: + controlnet_cond_scale = controlnet_conditioning_scale + if isinstance(controlnet_cond_scale, list): + controlnet_cond_scale = controlnet_cond_scale[0] + cond_scale = controlnet_cond_scale * controlnet_keep[i] + (down_block_res_samples, mid_block_res_sample) = self.controlnet(control_model_input, t, encoder_hidden_states=controlnet_prompt_embeds, controlnet_cond=image, conditioning_scale=cond_scale, guess_mode=guess_mode, return_dict=False) + if guess_mode and self.do_classifier_free_guidance: + down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] + mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, down_block_additional_residuals=down_block_res_samples, mid_block_additional_residual=mid_block_res_sample, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_perturbed_attention_guidance: + noise_pred = self._apply_perturbed_attention_guidance(noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t) + elif self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None: + self.unet.to('cpu') + self.controlnet.to('cpu') + torch.cuda.empty_cache() + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if self.do_perturbed_attention_guidance: + self.unet.set_attn_processor(original_attn_proc) + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection +from diffusers.utils.import_utils import is_invisible_watermark_available +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel +from ...models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput +from .pag_utils import PAGMixin +if is_invisible_watermark_available(): + from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker +from ..controlnet.multicontrolnet import MultiControlNetModel +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> # !pip install opencv-python transformers accelerate\n >>> from diffusers import AutoPipelineForText2Image, ControlNetModel, AutoencoderKL\n >>> from diffusers.utils import load_image\n >>> import numpy as np\n >>> import torch\n\n >>> import cv2\n >>> from PIL import Image\n\n >>> prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"\n >>> negative_prompt = "low quality, bad quality, sketches"\n\n >>> # download an image\n >>> image = load_image(\n ... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"\n ... )\n\n >>> # initialize the models and pipeline\n >>> controlnet_conditioning_scale = 0.5 # recommended for good generalization\n >>> controlnet = ControlNetModel.from_pretrained(\n ... "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16\n ... )\n >>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)\n >>> pipe = AutoPipelineForText2Image.from_pretrained(\n ... "stabilityai/stable-diffusion-xl-base-1.0",\n ... controlnet=controlnet,\n ... vae=vae,\n ... torch_dtype=torch.float16,\n ... enable_pag=True,\n ... )\n >>> pipe.enable_model_cpu_offload()\n\n >>> # get canny image\n >>> image = np.array(image)\n >>> image = cv2.Canny(image, 100, 200)\n >>> image = image[:, :, None]\n >>> image = np.concatenate([image, image, image], axis=2)\n >>> canny_image = Image.fromarray(image)\n\n >>> # generate image\n >>> image = pipe(\n ... prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image, pag_scale=0.3\n ... ).images[0]\n ```\n' + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusionXLControlNetPAGPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionXLLoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin, PAGMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->image_encoder->unet->vae' + _optional_components = ['tokenizer', 'tokenizer_2', 'text_encoder', 'text_encoder_2', 'feature_extractor', 'image_encoder'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'add_text_embeds', 'add_time_ids', 'negative_pooled_prompt_embeds', 'negative_add_time_ids'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], scheduler: KarrasDiffusionSchedulers, force_zeros_for_empty_prompt: bool=True, add_watermarker: Optional[bool]=None, feature_extractor: CLIPImageProcessor=None, image_encoder: CLIPVisionModelWithProjection=None, pag_applied_layers: Union[str, List[str]]='mid'): + super().__init__() + if isinstance(controlnet, (list, tuple)): + controlnet = MultiControlNetModel(controlnet) + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, controlnet=controlnet, scheduler=scheduler, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) + self.control_image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False) + add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() + if add_watermarker: + self.watermark = StableDiffusionXLWatermarker() + else: + self.watermark = None + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.set_pag_applied_layers(pag_applied_layers) + + def encode_prompt(self, prompt: str, prompt_2: Optional[str]=None, device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[str]=None, negative_prompt_2: Optional[str]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) + else: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for (prompt, tokenizer, text_encoder) in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + text_inputs = tokenizer(prompt, padding='max_length', max_length=tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + prompt_embeds_list.append(prompt_embeds) + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + negative_prompt_embeds_list = [] + for (negative_prompt, tokenizer, text_encoder) in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer(negative_prompt, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True) + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + negative_prompt_embeds_list.append(negative_prompt_embeds) + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + if self.text_encoder_2 is not None: + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + if self.text_encoder_2 is not None: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, prompt_2, image, callback_steps, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, negative_pooled_prompt_embeds=None, controlnet_conditioning_scale=1.0, control_guidance_start=0.0, control_guidance_end=1.0, callback_on_step_end_tensor_inputs=None): + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + if isinstance(self.controlnet, MultiControlNetModel): + if isinstance(prompt, list): + logger.warning(f'You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)} prompts. The conditionings will be fixed across the prompts.') + is_compiled = hasattr(F, 'scaled_dot_product_attention') and isinstance(self.controlnet, torch._dynamo.eval_frame.OptimizedModule) + if isinstance(self.controlnet, ControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel)): + self.check_image(image, prompt, prompt_embeds) + elif isinstance(self.controlnet, MultiControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel)): + if not isinstance(image, list): + raise TypeError('For multiple controlnets: `image` must be type `list`') + elif any((isinstance(i, list) for i in image)): + raise ValueError('A single batch of multiple conditionings are supported at the moment.') + elif len(image) != len(self.controlnet.nets): + raise ValueError(f'For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets.') + for image_ in image: + self.check_image(image_, prompt, prompt_embeds) + else: + assert False + if isinstance(self.controlnet, ControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel)): + if not isinstance(controlnet_conditioning_scale, float): + raise TypeError('For single controlnet: `controlnet_conditioning_scale` must be type `float`.') + elif isinstance(self.controlnet, MultiControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel)): + if isinstance(controlnet_conditioning_scale, list): + if any((isinstance(i, list) for i in controlnet_conditioning_scale)): + raise ValueError('A single batch of multiple conditionings are supported at the moment.') + elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(self.controlnet.nets): + raise ValueError('For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have the same length as the number of controlnets') + else: + assert False + if not isinstance(control_guidance_start, (tuple, list)): + control_guidance_start = [control_guidance_start] + if not isinstance(control_guidance_end, (tuple, list)): + control_guidance_end = [control_guidance_end] + if len(control_guidance_start) != len(control_guidance_end): + raise ValueError(f'`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list.') + if isinstance(self.controlnet, MultiControlNetModel): + if len(control_guidance_start) != len(self.controlnet.nets): + raise ValueError(f'`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}.') + for (start, end) in zip(control_guidance_start, control_guidance_end): + if start >= end: + raise ValueError(f'control guidance start: {start} cannot be larger or equal to control guidance end: {end}.') + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def check_image(self, image, prompt, prompt_embeds): + image_is_pil = isinstance(image, PIL.Image.Image) + image_is_tensor = isinstance(image, torch.Tensor) + image_is_np = isinstance(image, np.ndarray) + image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) + image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) + image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) + if not image_is_pil and (not image_is_tensor) and (not image_is_np) and (not image_is_pil_list) and (not image_is_tensor_list) and (not image_is_np_list): + raise TypeError(f'image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}') + if image_is_pil: + image_batch_size = 1 + else: + image_batch_size = len(image) + if prompt is not None and isinstance(prompt, str): + prompt_batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + prompt_batch_size = len(prompt) + elif prompt_embeds is not None: + prompt_batch_size = prompt_embeds.shape[0] + if image_batch_size != 1 and image_batch_size != prompt_batch_size: + raise ValueError(f'If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}') + + def prepare_image(self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False, guess_mode=False): + image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) + image_batch_size = image.shape[0] + if image_batch_size == 1: + repeat_by = batch_size + else: + repeat_by = num_images_per_prompt + image = image.repeat_interleave(repeat_by, dim=0) + image = image.to(device=device, dtype=dtype) + if do_classifier_free_guidance and (not guess_mode): + image = torch.cat([image] * 2) + return image + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.') + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + return add_time_ids + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def denoising_end(self): + return self._denoising_end + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, image: PipelineImageInput=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, timesteps: List[int]=None, sigmas: List[float]=None, denoising_end: Optional[float]=None, guidance_scale: float=5.0, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, controlnet_conditioning_scale: Union[float, List[float]]=1.0, control_guidance_start: Union[float, List[float]]=0.0, control_guidance_end: Union[float, List[float]]=1.0, original_size: Tuple[int, int]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), target_size: Tuple[int, int]=None, negative_original_size: Optional[Tuple[int, int]]=None, negative_crops_coords_top_left: Tuple[int, int]=(0, 0), negative_target_size: Optional[Tuple[int, int]]=None, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], pag_scale: float=3.0, pag_adaptive_scale: float=0.0): + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and (not isinstance(control_guidance_end, list)): + mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 + (control_guidance_start, control_guidance_end) = (mult * [control_guidance_start], mult * [control_guidance_end]) + self.check_inputs(prompt, prompt_2, image, None, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, negative_pooled_prompt_embeds, controlnet_conditioning_scale, control_guidance_start, control_guidance_end, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._denoising_end = denoising_end + self._pag_scale = pag_scale + self._pag_adaptive_scale = pag_adaptive_scale + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): + controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) + text_encoder_lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt, prompt_2, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + if isinstance(controlnet, ControlNetModel): + image = self.prepare_image(image=image, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=False) + (height, width) = image.shape[-2:] + elif isinstance(controlnet, MultiControlNetModel): + images = [] + for image_ in image: + image_ = self.prepare_image(image=image_, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=False) + images.append(image_) + image = images + (height, width) = image[0].shape[-2:] + else: + assert False + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + self._num_timesteps = len(timesteps) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + controlnet_keep = [] + for i in range(len(timesteps)): + keeps = [1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) for (s, e) in zip(control_guidance_start, control_guidance_end)] + controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) + if isinstance(image, list): + original_size = original_size or image[0].shape[-2:] + else: + original_size = original_size or image.shape[-2:] + target_size = target_size or (height, width) + add_text_embeds = pooled_prompt_embeds + if self.text_encoder_2 is None: + text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) + else: + text_encoder_projection_dim = self.text_encoder_2.config.projection_dim + add_time_ids = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + if negative_original_size is not None and negative_target_size is not None: + negative_add_time_ids = self._get_add_time_ids(negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + else: + negative_add_time_ids = add_time_ids + images = image if isinstance(image, list) else [image] + for (i, single_image) in enumerate(images): + if self.do_classifier_free_guidance: + single_image = single_image.chunk(2)[0] + if self.do_perturbed_attention_guidance: + single_image = self._prepare_perturbed_attention_guidance(single_image, single_image, self.do_classifier_free_guidance) + elif self.do_classifier_free_guidance: + single_image = torch.cat([single_image] * 2) + single_image = single_image.to(device) + images[i] = single_image + image = images if isinstance(image, list) else images[0] + if ip_adapter_image_embeds is not None: + for (i, image_embeds) in enumerate(ip_adapter_image_embeds): + negative_image_embeds = None + if self.do_classifier_free_guidance: + (negative_image_embeds, image_embeds) = image_embeds.chunk(2) + if self.do_perturbed_attention_guidance: + image_embeds = self._prepare_perturbed_attention_guidance(image_embeds, negative_image_embeds, self.do_classifier_free_guidance) + elif self.do_classifier_free_guidance: + image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0) + image_embeds = image_embeds.to(device) + ip_adapter_image_embeds[i] = image_embeds + if self.do_perturbed_attention_guidance: + prompt_embeds = self._prepare_perturbed_attention_guidance(prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance) + add_text_embeds = self._prepare_perturbed_attention_guidance(add_text_embeds, negative_pooled_prompt_embeds, self.do_classifier_free_guidance) + add_time_ids = self._prepare_perturbed_attention_guidance(add_time_ids, negative_add_time_ids, self.do_classifier_free_guidance) + elif self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + controlnet_prompt_embeds = prompt_embeds + controlnet_added_cond_kwargs = added_cond_kwargs + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + if self.denoising_end is not None and isinstance(self.denoising_end, float) and (self.denoising_end > 0) and (self.denoising_end < 1): + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - self.denoising_end * self.scheduler.config.num_train_timesteps)) + num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) + timesteps = timesteps[:num_inference_steps] + if self.do_perturbed_attention_guidance: + original_attn_proc = self.unet.attn_processors + self._set_pag_attn_processor(pag_applied_layers=self.pag_applied_layers, do_classifier_free_guidance=self.do_classifier_free_guidance) + is_unet_compiled = is_compiled_module(self.unet) + is_controlnet_compiled = is_compiled_module(self.controlnet) + is_torch_higher_equal_2_1 = is_torch_version('>=', '2.1') + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1: + torch._inductor.cudagraph_mark_step_begin() + latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0])) + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + control_model_input = latent_model_input + if isinstance(controlnet_keep[i], list): + cond_scale = [c * s for (c, s) in zip(controlnet_conditioning_scale, controlnet_keep[i])] + else: + controlnet_cond_scale = controlnet_conditioning_scale + if isinstance(controlnet_cond_scale, list): + controlnet_cond_scale = controlnet_cond_scale[0] + cond_scale = controlnet_cond_scale * controlnet_keep[i] + (down_block_res_samples, mid_block_res_sample) = self.controlnet(control_model_input, t, encoder_hidden_states=controlnet_prompt_embeds, controlnet_cond=image, conditioning_scale=cond_scale, guess_mode=False, added_cond_kwargs=controlnet_added_cond_kwargs, return_dict=False) + if ip_adapter_image_embeds is not None: + added_cond_kwargs['image_embeds'] = ip_adapter_image_embeds + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, down_block_additional_residuals=down_block_res_samples, mid_block_additional_residual=mid_block_res_sample, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_perturbed_attention_guidance: + noise_pred = self._apply_perturbed_attention_guidance(noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t) + elif self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + add_text_embeds = callback_outputs.pop('add_text_embeds', add_text_embeds) + negative_pooled_prompt_embeds = callback_outputs.pop('negative_pooled_prompt_embeds', negative_pooled_prompt_embeds) + add_time_ids = callback_outputs.pop('add_time_ids', add_time_ids) + negative_add_time_ids = callback_outputs.pop('negative_add_time_ids', negative_add_time_ids) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if not output_type == 'latent': + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + has_latents_mean = hasattr(self.vae.config, 'latents_mean') and self.vae.config.latents_mean is not None + has_latents_std = hasattr(self.vae.config, 'latents_std') and self.vae.config.latents_std is not None + if has_latents_mean and has_latents_std: + latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) + latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) + latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean + else: + latents = latents / self.vae.config.scaling_factor + image = self.vae.decode(latents, return_dict=False)[0] + if needs_upcasting: + self.vae.to(dtype=torch.float16) + else: + image = latents + if not output_type == 'latent': + if self.watermark is not None: + image = self.watermark.apply_watermark(image) + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if self.do_perturbed_attention_guidance: + self.unet.set_attn_processor(original_attn_proc) + if not return_dict: + return (image,) + return StableDiffusionXLPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection +from diffusers.utils.import_utils import is_invisible_watermark_available +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel +from ...models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import is_compiled_module, randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput +from .pag_utils import PAGMixin +if is_invisible_watermark_available(): + from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker +from ..controlnet.multicontrolnet import MultiControlNetModel +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> # pip install accelerate transformers safetensors diffusers\n\n >>> import torch\n >>> import numpy as np\n >>> from PIL import Image\n\n >>> from transformers import DPTFeatureExtractor, DPTForDepthEstimation\n >>> from diffusers import ControlNetModel, StableDiffusionXLControlNetPAGImg2ImgPipeline, AutoencoderKL\n >>> from diffusers.utils import load_image\n\n\n >>> depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")\n >>> feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")\n >>> controlnet = ControlNetModel.from_pretrained(\n ... "diffusers/controlnet-depth-sdxl-1.0-small",\n ... variant="fp16",\n ... use_safetensors="True",\n ... torch_dtype=torch.float16,\n ... )\n >>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)\n >>> pipe = StableDiffusionXLControlNetPAGImg2ImgPipeline.from_pretrained(\n ... "stabilityai/stable-diffusion-xl-base-1.0",\n ... controlnet=controlnet,\n ... vae=vae,\n ... variant="fp16",\n ... use_safetensors=True,\n ... torch_dtype=torch.float16,\n ... enable_pag=True,\n ... )\n >>> pipe.enable_model_cpu_offload()\n\n\n >>> def get_depth_map(image):\n ... image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")\n ... with torch.no_grad(), torch.autocast("cuda"):\n ... depth_map = depth_estimator(image).predicted_depth\n\n ... depth_map = torch.nn.fuctional.interpolate(\n ... depth_map.unsqueeze(1),\n ... size=(1024, 1024),\n ... mode="bicubic",\n ... align_corners=False,\n ... )\n ... depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)\n ... depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)\n ... depth_map = (depth_map - depth_min) / (depth_max - depth_min)\n ... image = torch.cat([depth_map] * 3, dim=1)\n ... image = image.permute(0, 2, 3, 1).cpu().numpy()[0]\n ... image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))\n ... return image\n\n\n >>> prompt = "A robot, 4k photo"\n >>> image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((1024, 1024))\n >>> controlnet_conditioning_scale = 0.5 # recommended for good generalization\n >>> depth_image = get_depth_map(image)\n\n >>> images = pipe(\n ... prompt,\n ... image=image,\n ... control_image=depth_image,\n ... strength=0.99,\n ... num_inference_steps=50,\n ... controlnet_conditioning_scale=controlnet_conditioning_scale,\n ... ).images\n >>> images[0].save(f"robot_cat.png")\n ```\n' + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +class StableDiffusionXLControlNetPAGImg2ImgPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionXLLoraLoaderMixin, FromSingleFileMixin, IPAdapterMixin, PAGMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->image_encoder->unet->vae' + _optional_components = ['tokenizer', 'tokenizer_2', 'text_encoder', 'text_encoder_2', 'feature_extractor', 'image_encoder'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'add_text_embeds', 'add_time_ids', 'negative_pooled_prompt_embeds', 'add_neg_time_ids'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], scheduler: KarrasDiffusionSchedulers, requires_aesthetics_score: bool=False, force_zeros_for_empty_prompt: bool=True, add_watermarker: Optional[bool]=None, feature_extractor: CLIPImageProcessor=None, image_encoder: CLIPVisionModelWithProjection=None, pag_applied_layers: Union[str, List[str]]='mid'): + super().__init__() + if isinstance(controlnet, (list, tuple)): + controlnet = MultiControlNetModel(controlnet) + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, controlnet=controlnet, scheduler=scheduler, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) + self.control_image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False) + add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() + if add_watermarker: + self.watermark = StableDiffusionXLWatermarker() + else: + self.watermark = None + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.register_to_config(requires_aesthetics_score=requires_aesthetics_score) + self.set_pag_applied_layers(pag_applied_layers) + + def encode_prompt(self, prompt: str, prompt_2: Optional[str]=None, device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[str]=None, negative_prompt_2: Optional[str]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) + else: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for (prompt, tokenizer, text_encoder) in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + text_inputs = tokenizer(prompt, padding='max_length', max_length=tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + prompt_embeds_list.append(prompt_embeds) + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + negative_prompt_embeds_list = [] + for (negative_prompt, tokenizer, text_encoder) in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer(negative_prompt, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True) + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + negative_prompt_embeds_list.append(negative_prompt_embeds) + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + if self.text_encoder_2 is not None: + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + if self.text_encoder_2 is not None: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, prompt_2, image, strength, num_inference_steps, callback_steps, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, controlnet_conditioning_scale=1.0, control_guidance_start=0.0, control_guidance_end=1.0, callback_on_step_end_tensor_inputs=None): + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if num_inference_steps is None: + raise ValueError('`num_inference_steps` cannot be None.') + elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0: + raise ValueError(f'`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type {type(num_inference_steps)}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + if isinstance(self.controlnet, MultiControlNetModel): + if isinstance(prompt, list): + logger.warning(f'You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)} prompts. The conditionings will be fixed across the prompts.') + is_compiled = hasattr(F, 'scaled_dot_product_attention') and isinstance(self.controlnet, torch._dynamo.eval_frame.OptimizedModule) + if isinstance(self.controlnet, ControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel)): + self.check_image(image, prompt, prompt_embeds) + elif isinstance(self.controlnet, MultiControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel)): + if not isinstance(image, list): + raise TypeError('For multiple controlnets: `image` must be type `list`') + elif any((isinstance(i, list) for i in image)): + raise ValueError('A single batch of multiple conditionings are supported at the moment.') + elif len(image) != len(self.controlnet.nets): + raise ValueError(f'For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets.') + for image_ in image: + self.check_image(image_, prompt, prompt_embeds) + else: + assert False + if isinstance(self.controlnet, ControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel)): + if not isinstance(controlnet_conditioning_scale, float): + raise TypeError('For single controlnet: `controlnet_conditioning_scale` must be type `float`.') + elif isinstance(self.controlnet, MultiControlNetModel) or (is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel)): + if isinstance(controlnet_conditioning_scale, list): + if any((isinstance(i, list) for i in controlnet_conditioning_scale)): + raise ValueError('A single batch of multiple conditionings are supported at the moment.') + elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(self.controlnet.nets): + raise ValueError('For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have the same length as the number of controlnets') + else: + assert False + if not isinstance(control_guidance_start, (tuple, list)): + control_guidance_start = [control_guidance_start] + if not isinstance(control_guidance_end, (tuple, list)): + control_guidance_end = [control_guidance_end] + if len(control_guidance_start) != len(control_guidance_end): + raise ValueError(f'`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list.') + if isinstance(self.controlnet, MultiControlNetModel): + if len(control_guidance_start) != len(self.controlnet.nets): + raise ValueError(f'`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}.') + for (start, end) in zip(control_guidance_start, control_guidance_end): + if start >= end: + raise ValueError(f'control guidance start: {start} cannot be larger or equal to control guidance end: {end}.') + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def check_image(self, image, prompt, prompt_embeds): + image_is_pil = isinstance(image, PIL.Image.Image) + image_is_tensor = isinstance(image, torch.Tensor) + image_is_np = isinstance(image, np.ndarray) + image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) + image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) + image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) + if not image_is_pil and (not image_is_tensor) and (not image_is_np) and (not image_is_pil_list) and (not image_is_tensor_list) and (not image_is_np_list): + raise TypeError(f'image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}') + if image_is_pil: + image_batch_size = 1 + else: + image_batch_size = len(image) + if prompt is not None and isinstance(prompt, str): + prompt_batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + prompt_batch_size = len(prompt) + elif prompt_embeds is not None: + prompt_batch_size = prompt_embeds.shape[0] + if image_batch_size != 1 and image_batch_size != prompt_batch_size: + raise ValueError(f'If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}') + + def prepare_control_image(self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False, guess_mode=False): + image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) + image_batch_size = image.shape[0] + if image_batch_size == 1: + repeat_by = batch_size + else: + repeat_by = num_images_per_prompt + image = image.repeat_interleave(repeat_by, dim=0) + image = image.to(device=device, dtype=dtype) + if do_classifier_free_guidance and (not guess_mode): + image = torch.cat([image] * 2) + return image + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + + def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True): + if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}') + latents_mean = latents_std = None + if hasattr(self.vae.config, 'latents_mean') and self.vae.config.latents_mean is not None: + latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1) + if hasattr(self.vae.config, 'latents_std') and self.vae.config.latents_std is not None: + latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1) + if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None: + self.text_encoder_2.to('cpu') + torch.cuda.empty_cache() + image = image.to(device=device, dtype=dtype) + batch_size = batch_size * num_images_per_prompt + if image.shape[1] == 4: + init_latents = image + else: + if self.vae.config.force_upcast: + image = image.float() + self.vae.to(dtype=torch.float32) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + elif isinstance(generator, list): + if image.shape[0] < batch_size and batch_size % image.shape[0] == 0: + image = torch.cat([image] * (batch_size // image.shape[0]), dim=0) + elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} ') + init_latents = [retrieve_latents(self.vae.encode(image[i:i + 1]), generator=generator[i]) for i in range(batch_size)] + init_latents = torch.cat(init_latents, dim=0) + else: + init_latents = retrieve_latents(self.vae.encode(image), generator=generator) + if self.vae.config.force_upcast: + self.vae.to(dtype) + init_latents = init_latents.to(dtype) + if latents_mean is not None and latents_std is not None: + latents_mean = latents_mean.to(device=device, dtype=dtype) + latents_std = latents_std.to(device=device, dtype=dtype) + init_latents = (init_latents - latents_mean) * self.vae.config.scaling_factor / latents_std + else: + init_latents = self.vae.config.scaling_factor * init_latents + if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: + additional_image_per_prompt = batch_size // init_latents.shape[0] + init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) + elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts.') + else: + init_latents = torch.cat([init_latents], dim=0) + if add_noise: + shape = init_latents.shape + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + init_latents = self.scheduler.add_noise(init_latents, noise, timestep) + latents = init_latents + return latents + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, aesthetic_score, negative_aesthetic_score, negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype, text_encoder_projection_dim=None): + if self.config.requires_aesthetics_score: + add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,)) + add_neg_time_ids = list(negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)) + else: + add_time_ids = list(original_size + crops_coords_top_left + target_size) + add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size) + passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + if expected_add_embed_dim > passed_add_embed_dim and expected_add_embed_dim - passed_add_embed_dim == self.unet.config.addition_time_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model.') + elif expected_add_embed_dim < passed_add_embed_dim and passed_add_embed_dim - expected_add_embed_dim == self.unet.config.addition_time_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model.') + elif expected_add_embed_dim != passed_add_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.') + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype) + return (add_time_ids, add_neg_time_ids) + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, image: PipelineImageInput=None, control_image: PipelineImageInput=None, height: Optional[int]=None, width: Optional[int]=None, strength: float=0.8, num_inference_steps: int=50, guidance_scale: float=5.0, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, controlnet_conditioning_scale: Union[float, List[float]]=0.8, guess_mode: bool=False, control_guidance_start: Union[float, List[float]]=0.0, control_guidance_end: Union[float, List[float]]=1.0, original_size: Tuple[int, int]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), target_size: Tuple[int, int]=None, negative_original_size: Optional[Tuple[int, int]]=None, negative_crops_coords_top_left: Tuple[int, int]=(0, 0), negative_target_size: Optional[Tuple[int, int]]=None, aesthetic_score: float=6.0, negative_aesthetic_score: float=2.5, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], pag_scale: float=3.0, pag_adaptive_scale: float=0.0): + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and (not isinstance(control_guidance_end, list)): + mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 + (control_guidance_start, control_guidance_end) = (mult * [control_guidance_start], mult * [control_guidance_end]) + self.check_inputs(prompt, prompt_2, control_image, strength, num_inference_steps, None, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, controlnet_conditioning_scale, control_guidance_start, control_guidance_end, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._pag_scale = pag_scale + self._pag_adaptive_scale = pag_adaptive_scale + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): + controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) + text_encoder_lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt, prompt_2, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) + if isinstance(controlnet, ControlNetModel): + control_image = self.prepare_control_image(image=control_image, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=False) + (height, width) = control_image.shape[-2:] + elif isinstance(controlnet, MultiControlNetModel): + control_images = [] + for control_image_ in control_image: + control_image_ = self.prepare_control_image(image=control_image_, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=False) + control_images.append(control_image_) + control_image = control_images + (height, width) = control_image[0].shape[-2:] + else: + assert False + self.scheduler.set_timesteps(num_inference_steps, device=device) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + self._num_timesteps = len(timesteps) + if latents is None: + latents = self.prepare_latents(image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator, True) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + controlnet_keep = [] + for i in range(len(timesteps)): + keeps = [1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) for (s, e) in zip(control_guidance_start, control_guidance_end)] + controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) + if isinstance(control_image, list): + original_size = original_size or control_image[0].shape[-2:] + else: + original_size = original_size or control_image.shape[-2:] + target_size = target_size or (height, width) + if negative_original_size is None: + negative_original_size = original_size + if negative_target_size is None: + negative_target_size = target_size + add_text_embeds = pooled_prompt_embeds + if self.text_encoder_2 is None: + text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) + else: + text_encoder_projection_dim = self.text_encoder_2.config.projection_dim + (add_time_ids, add_neg_time_ids) = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, aesthetic_score, negative_aesthetic_score, negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1) + add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1) + control_images = control_image if isinstance(control_image, list) else [control_image] + for (i, single_image) in enumerate(control_images): + if self.do_classifier_free_guidance: + single_image = single_image.chunk(2)[0] + if self.do_perturbed_attention_guidance: + single_image = self._prepare_perturbed_attention_guidance(single_image, single_image, self.do_classifier_free_guidance) + elif self.do_classifier_free_guidance: + single_image = torch.cat([single_image] * 2) + single_image = single_image.to(device) + control_images[i] = single_image + control_image = control_images if isinstance(control_image, list) else control_images[0] + if ip_adapter_image_embeds is not None: + for (i, image_embeds) in enumerate(ip_adapter_image_embeds): + negative_image_embeds = None + if self.do_classifier_free_guidance: + (negative_image_embeds, image_embeds) = image_embeds.chunk(2) + if self.do_perturbed_attention_guidance: + image_embeds = self._prepare_perturbed_attention_guidance(image_embeds, negative_image_embeds, self.do_classifier_free_guidance) + elif self.do_classifier_free_guidance: + image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0) + image_embeds = image_embeds.to(device) + ip_adapter_image_embeds[i] = image_embeds + if self.do_perturbed_attention_guidance: + prompt_embeds = self._prepare_perturbed_attention_guidance(prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance) + add_text_embeds = self._prepare_perturbed_attention_guidance(add_text_embeds, negative_pooled_prompt_embeds, self.do_classifier_free_guidance) + add_time_ids = self._prepare_perturbed_attention_guidance(add_time_ids, add_neg_time_ids, self.do_classifier_free_guidance) + elif self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0) + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device) + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + controlnet_prompt_embeds = prompt_embeds + controlnet_added_cond_kwargs = added_cond_kwargs + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + if self.do_perturbed_attention_guidance: + original_attn_proc = self.unet.attn_processors + self._set_pag_attn_processor(pag_applied_layers=self.pag_applied_layers, do_classifier_free_guidance=self.do_classifier_free_guidance) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0])) + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + control_model_input = latent_model_input + if isinstance(controlnet_keep[i], list): + cond_scale = [c * s for (c, s) in zip(controlnet_conditioning_scale, controlnet_keep[i])] + else: + controlnet_cond_scale = controlnet_conditioning_scale + if isinstance(controlnet_cond_scale, list): + controlnet_cond_scale = controlnet_cond_scale[0] + cond_scale = controlnet_cond_scale * controlnet_keep[i] + (down_block_res_samples, mid_block_res_sample) = self.controlnet(control_model_input, t, encoder_hidden_states=controlnet_prompt_embeds, controlnet_cond=control_image, conditioning_scale=cond_scale, guess_mode=False, added_cond_kwargs=controlnet_added_cond_kwargs, return_dict=False) + if ip_adapter_image_embeds is not None: + added_cond_kwargs['image_embeds'] = ip_adapter_image_embeds + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=self.cross_attention_kwargs, down_block_additional_residuals=down_block_res_samples, mid_block_additional_residual=mid_block_res_sample, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_perturbed_attention_guidance: + noise_pred = self._apply_perturbed_attention_guidance(noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t) + elif self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + add_text_embeds = callback_outputs.pop('add_text_embeds', add_text_embeds) + negative_pooled_prompt_embeds = callback_outputs.pop('negative_pooled_prompt_embeds', negative_pooled_prompt_embeds) + add_time_ids = callback_outputs.pop('add_time_ids', add_time_ids) + add_neg_time_ids = callback_outputs.pop('add_neg_time_ids', add_neg_time_ids) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None: + self.unet.to('cpu') + self.controlnet.to('cpu') + torch.cuda.empty_cache() + if not output_type == 'latent': + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + has_latents_mean = hasattr(self.vae.config, 'latents_mean') and self.vae.config.latents_mean is not None + has_latents_std = hasattr(self.vae.config, 'latents_std') and self.vae.config.latents_std is not None + if has_latents_mean and has_latents_std: + latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) + latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) + latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean + else: + latents = latents / self.vae.config.scaling_factor + image = self.vae.decode(latents, return_dict=False)[0] + if needs_upcasting: + self.vae.to(dtype=torch.float16) + else: + image = latents + return StableDiffusionXLPipelineOutput(images=image) + if self.watermark is not None: + image = self.watermark.apply_watermark(image) + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if self.do_perturbed_attention_guidance: + self.unet.set_attn_processor(original_attn_proc) + if not return_dict: + return (image,) + return StableDiffusionXLPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +import inspect +from typing import Callable, Dict, List, Optional, Tuple, Union +import numpy as np +import torch +from transformers import BertModel, BertTokenizer, CLIPImageProcessor, MT5Tokenizer, T5EncoderModel +from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import VaeImageProcessor +from ...models import AutoencoderKL, HunyuanDiT2DModel +from ...models.attention_processor import PAGCFGHunyuanAttnProcessor2_0, PAGHunyuanAttnProcessor2_0 +from ...models.embeddings import get_2d_rotary_pos_embed +from ...pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker +from ...schedulers import DDPMScheduler +from ...utils import is_torch_xla_available, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .pag_utils import PAGMixin +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```python\n >>> import torch\n >>> from diffusers import AutoPipelineForText2Image\n\n >>> pipe = AutoPipelineForText2Image.from_pretrained(\n ... "Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers",\n ... torch_dtype=torch.float16,\n ... enable_pag=True,\n ... pag_applied_layers=[14],\n ... ).to("cuda")\n\n >>> # prompt = "an astronaut riding a horse"\n >>> prompt = "一个宇航员在骑马"\n >>> image = pipe(prompt, guidance_scale=4, pag_scale=3).images[0]\n ```\n' +STANDARD_RATIO = np.array([1.0, 4.0 / 3.0, 3.0 / 4.0, 16.0 / 9.0, 9.0 / 16.0]) +STANDARD_SHAPE = [[(1024, 1024), (1280, 1280)], [(1024, 768), (1152, 864), (1280, 960)], [(768, 1024), (864, 1152), (960, 1280)], [(1280, 768)], [(768, 1280)]] +STANDARD_AREA = [np.array([w * h for (w, h) in shapes]) for shapes in STANDARD_SHAPE] +SUPPORTED_SHAPE = [(1024, 1024), (1280, 1280), (1024, 768), (1152, 864), (1280, 960), (768, 1024), (864, 1152), (960, 1280), (1280, 768), (768, 1280)] + +def map_to_standard_shapes(target_width, target_height): + target_ratio = target_width / target_height + closest_ratio_idx = np.argmin(np.abs(STANDARD_RATIO - target_ratio)) + closest_area_idx = np.argmin(np.abs(STANDARD_AREA[closest_ratio_idx] - target_width * target_height)) + (width, height) = STANDARD_SHAPE[closest_ratio_idx][closest_area_idx] + return (width, height) + +def get_resize_crop_region_for_grid(src, tgt_size): + th = tw = tgt_size + (h, w) = src + r = h / w + if r > 1: + resize_height = th + resize_width = int(round(th / h * w)) + else: + resize_width = tw + resize_height = int(round(tw / w * h)) + crop_top = int(round((th - resize_height) / 2.0)) + crop_left = int(round((tw - resize_width) / 2.0)) + return ((crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)) + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +class HunyuanDiTPAGPipeline(DiffusionPipeline, PAGMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->transformer->vae' + _optional_components = ['safety_checker', 'feature_extractor', 'text_encoder_2', 'tokenizer_2', 'text_encoder', 'tokenizer'] + _exclude_from_cpu_offload = ['safety_checker'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'prompt_embeds_2', 'negative_prompt_embeds_2'] + + def __init__(self, vae: AutoencoderKL, text_encoder: BertModel, tokenizer: BertTokenizer, transformer: HunyuanDiT2DModel, scheduler: DDPMScheduler, safety_checker: Optional[StableDiffusionSafetyChecker]=None, feature_extractor: Optional[CLIPImageProcessor]=None, requires_safety_checker: bool=True, text_encoder_2: Optional[T5EncoderModel]=None, tokenizer_2: Optional[MT5Tokenizer]=None, pag_applied_layers: Union[str, List[str]]='blocks.1'): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, tokenizer_2=tokenizer_2, transformer=transformer, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, text_encoder_2=text_encoder_2) + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, 'vae') and self.vae is not None else 8 + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + self.default_sample_size = self.transformer.config.sample_size if hasattr(self, 'transformer') and self.transformer is not None else 128 + self.set_pag_applied_layers(pag_applied_layers, pag_attn_processors=(PAGCFGHunyuanAttnProcessor2_0(), PAGHunyuanAttnProcessor2_0())) + + def encode_prompt(self, prompt: str, device: torch.device=None, dtype: torch.dtype=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[str]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, prompt_attention_mask: Optional[torch.Tensor]=None, negative_prompt_attention_mask: Optional[torch.Tensor]=None, max_sequence_length: Optional[int]=None, text_encoder_index: int=0): + if dtype is None: + if self.text_encoder_2 is not None: + dtype = self.text_encoder_2.dtype + elif self.transformer is not None: + dtype = self.transformer.dtype + else: + dtype = None + if device is None: + device = self._execution_device + tokenizers = [self.tokenizer, self.tokenizer_2] + text_encoders = [self.text_encoder, self.text_encoder_2] + tokenizer = tokenizers[text_encoder_index] + text_encoder = text_encoders[text_encoder_index] + if max_sequence_length is None: + if text_encoder_index == 0: + max_length = 77 + if text_encoder_index == 1: + max_length = 256 + else: + max_length = max_sequence_length + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + text_inputs = tokenizer(prompt, padding='max_length', max_length=max_length, truncation=True, return_attention_mask=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}') + prompt_attention_mask = text_inputs.attention_mask.to(device) + prompt_embeds = text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask) + prompt_embeds = prompt_embeds[0] + prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + negative_prompt_attention_mask = uncond_input.attention_mask.to(device) + negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + return (prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, prompt_embeds_2=None, negative_prompt_embeds_2=None, prompt_attention_mask_2=None, negative_prompt_attention_mask_2=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is None and prompt_embeds_2 is None: + raise ValueError('Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if prompt_embeds is not None and prompt_attention_mask is None: + raise ValueError('Must provide `prompt_attention_mask` when specifying `prompt_embeds`.') + if prompt_embeds_2 is not None and prompt_attention_mask_2 is None: + raise ValueError('Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: + raise ValueError('Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.') + if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None: + raise ValueError('Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None: + if prompt_embeds_2.shape != negative_prompt_embeds_2.shape: + raise ValueError(f'`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2` {negative_prompt_embeds_2.shape}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def guidance_rescale(self): + return self._guidance_rescale + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: Optional[int]=50, guidance_scale: Optional[float]=5.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: Optional[float]=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, prompt_embeds_2: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds_2: Optional[torch.Tensor]=None, prompt_attention_mask: Optional[torch.Tensor]=None, prompt_attention_mask_2: Optional[torch.Tensor]=None, negative_prompt_attention_mask: Optional[torch.Tensor]=None, negative_prompt_attention_mask_2: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], guidance_rescale: float=0.0, original_size: Optional[Tuple[int, int]]=(1024, 1024), target_size: Optional[Tuple[int, int]]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), use_resolution_binning: bool=True, pag_scale: float=3.0, pag_adaptive_scale: float=0.0): + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + height = int(height // 16 * 16) + width = int(width // 16 * 16) + if use_resolution_binning and (height, width) not in SUPPORTED_SHAPE: + (width, height) = map_to_standard_shapes(width, height) + height = int(height) + width = int(width) + logger.warning(f'Reshaped to (height, width)=({height}, {width}), Supported shapes are {SUPPORTED_SHAPE}') + self.check_inputs(prompt, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask, prompt_embeds_2, negative_prompt_embeds_2, prompt_attention_mask_2, negative_prompt_attention_mask_2, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._guidance_rescale = guidance_rescale + self._interrupt = False + self._pag_scale = pag_scale + self._pag_adaptive_scale = pag_adaptive_scale + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + (prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask) = self.encode_prompt(prompt=prompt, device=device, dtype=self.transformer.dtype, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, max_sequence_length=77, text_encoder_index=0) + (prompt_embeds_2, negative_prompt_embeds_2, prompt_attention_mask_2, negative_prompt_attention_mask_2) = self.encode_prompt(prompt=prompt, device=device, dtype=self.transformer.dtype, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds_2, negative_prompt_embeds=negative_prompt_embeds_2, prompt_attention_mask=prompt_attention_mask_2, negative_prompt_attention_mask=negative_prompt_attention_mask_2, max_sequence_length=256, text_encoder_index=1) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.transformer.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + grid_height = height // 8 // self.transformer.config.patch_size + grid_width = width // 8 // self.transformer.config.patch_size + base_size = 512 // 8 // self.transformer.config.patch_size + grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size) + image_rotary_emb = get_2d_rotary_pos_embed(self.transformer.inner_dim // self.transformer.num_heads, grid_crops_coords, (grid_height, grid_width)) + style = torch.tensor([0], device=device) + target_size = target_size or (height, width) + add_time_ids = list(original_size + target_size + crops_coords_top_left) + add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype) + if self.do_perturbed_attention_guidance: + prompt_embeds = self._prepare_perturbed_attention_guidance(prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance) + prompt_attention_mask = self._prepare_perturbed_attention_guidance(prompt_attention_mask, negative_prompt_attention_mask, self.do_classifier_free_guidance) + prompt_embeds_2 = self._prepare_perturbed_attention_guidance(prompt_embeds_2, negative_prompt_embeds_2, self.do_classifier_free_guidance) + prompt_attention_mask_2 = self._prepare_perturbed_attention_guidance(prompt_attention_mask_2, negative_prompt_attention_mask_2, self.do_classifier_free_guidance) + add_time_ids = torch.cat([add_time_ids] * 3, dim=0) + style = torch.cat([style] * 3, dim=0) + elif self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask]) + prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2]) + prompt_attention_mask_2 = torch.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2]) + add_time_ids = torch.cat([add_time_ids] * 2, dim=0) + style = torch.cat([style] * 2, dim=0) + prompt_embeds = prompt_embeds.to(device=device) + prompt_attention_mask = prompt_attention_mask.to(device=device) + prompt_embeds_2 = prompt_embeds_2.to(device=device) + prompt_attention_mask_2 = prompt_attention_mask_2.to(device=device) + add_time_ids = add_time_ids.to(dtype=prompt_embeds.dtype, device=device).repeat(batch_size * num_images_per_prompt, 1) + style = style.to(device=device).repeat(batch_size * num_images_per_prompt) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + self._num_timesteps = len(timesteps) + if self.do_perturbed_attention_guidance: + original_attn_proc = self.transformer.attn_processors + self._set_pag_attn_processor(pag_applied_layers=self.pag_applied_layers, do_classifier_free_guidance=self.do_classifier_free_guidance) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0])) + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to(dtype=latent_model_input.dtype) + noise_pred = self.transformer(latent_model_input, t_expand, encoder_hidden_states=prompt_embeds, text_embedding_mask=prompt_attention_mask, encoder_hidden_states_t5=prompt_embeds_2, text_embedding_mask_t5=prompt_attention_mask_2, image_meta_size=add_time_ids, style=style, image_rotary_emb=image_rotary_emb, return_dict=False)[0] + (noise_pred, _) = noise_pred.chunk(2, dim=1) + if self.do_perturbed_attention_guidance: + noise_pred = self._apply_perturbed_attention_guidance(noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t) + elif self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + if self.do_classifier_free_guidance and guidance_rescale > 0.0: + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + prompt_embeds_2 = callback_outputs.pop('prompt_embeds_2', prompt_embeds_2) + negative_prompt_embeds_2 = callback_outputs.pop('negative_prompt_embeds_2', negative_prompt_embeds_2) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if XLA_AVAILABLE: + xm.mark_step() + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if self.do_perturbed_attention_guidance: + self.transformer.set_attn_processor(original_attn_proc) + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/pag/pipeline_pag_kolors.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import torch +from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import IPAdapterMixin, StableDiffusionXLLoraLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import is_torch_xla_available, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..kolors.pipeline_output import KolorsPipelineOutput +from ..kolors.text_encoder import ChatGLMModel +from ..kolors.tokenizer import ChatGLMTokenizer +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from .pag_utils import PAGMixin +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import AutoPipelineForText2Image\n\n >>> pipe = AutoPipelineForText2Image.from_pretrained(\n ... "Kwai-Kolors/Kolors-diffusers",\n ... variant="fp16",\n ... torch_dtype=torch.float16,\n ... enable_pag=True,\n ... pag_applied_layers=["down.block_2.attentions_1", "up.block_0.attentions_1"],\n ... )\n >>> pipe = pipe.to("cuda")\n\n >>> prompt = (\n ... "A photo of a ladybug, macro, zoom, high quality, film, holding a wooden sign with the text \'KOLORS\'"\n ... )\n >>> image = pipe(prompt, guidance_scale=5.5, pag_scale=1.5).images[0]\n ```\n' + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class KolorsPAGPipeline(DiffusionPipeline, StableDiffusionMixin, StableDiffusionXLLoraLoaderMixin, IPAdapterMixin, PAGMixin): + model_cpu_offload_seq = 'text_encoder->image_encoder->unet->vae' + _optional_components = ['image_encoder', 'feature_extractor'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'add_text_embeds', 'add_time_ids', 'negative_pooled_prompt_embeds', 'negative_add_time_ids'] + + def __init__(self, vae: AutoencoderKL, text_encoder: ChatGLMModel, tokenizer: ChatGLMTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, image_encoder: CLIPVisionModelWithProjection=None, feature_extractor: CLIPImageProcessor=None, force_zeros_for_empty_prompt: bool=False, pag_applied_layers: Union[str, List[str]]='mid'): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, image_encoder=image_encoder, feature_extractor=feature_extractor) + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, 'vae') and self.vae is not None else 8 + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.default_sample_size = self.unet.config.sample_size + self.set_pag_applied_layers(pag_applied_layers) + + def encode_prompt(self, prompt, device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt=None, prompt_embeds: Optional[torch.FloatTensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.FloatTensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, max_sequence_length: int=256): + device = device or self._execution_device + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + tokenizers = [self.tokenizer] + text_encoders = [self.text_encoder] + if prompt_embeds is None: + prompt_embeds_list = [] + for (tokenizer, text_encoder) in zip(tokenizers, text_encoders): + text_inputs = tokenizer(prompt, padding='max_length', max_length=max_sequence_length, truncation=True, return_tensors='pt').to(device) + output = text_encoder(input_ids=text_inputs['input_ids'], attention_mask=text_inputs['attention_mask'], position_ids=text_inputs['position_ids'], output_hidden_states=True) + prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone() + pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + prompt_embeds_list.append(prompt_embeds) + prompt_embeds = prompt_embeds_list[0] + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + negative_prompt_embeds_list = [] + for (tokenizer, text_encoder) in zip(tokenizers, text_encoders): + uncond_input = tokenizer(uncond_tokens, padding='max_length', max_length=max_sequence_length, truncation=True, return_tensors='pt').to(device) + output = text_encoder(input_ids=uncond_input['input_ids'], attention_mask=uncond_input['attention_mask'], position_ids=uncond_input['position_ids'], output_hidden_states=True) + negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone() + negative_pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + negative_prompt_embeds_list.append(negative_prompt_embeds) + negative_prompt_embeds = negative_prompt_embeds_list[0] + bs_embed = pooled_prompt_embeds.shape[0] + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, num_inference_steps, height, width, negative_prompt=None, prompt_embeds=None, pooled_prompt_embeds=None, negative_prompt_embeds=None, negative_pooled_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None, max_sequence_length=None): + if not isinstance(num_inference_steps, int) or num_inference_steps <= 0: + raise ValueError(f'`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type {type(num_inference_steps)}.') + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + if max_sequence_length is not None and max_sequence_length > 256: + raise ValueError(f'`max_sequence_length` cannot be greater than 256 but is {max_sequence_length}') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.') + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + return add_time_ids + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor, FusedAttnProcessor2_0)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def denoising_end(self): + return self._denoising_end + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, timesteps: List[int]=None, sigmas: List[float]=None, denoising_end: Optional[float]=None, guidance_scale: float=5.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, original_size: Optional[Tuple[int, int]]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), target_size: Optional[Tuple[int, int]]=None, negative_original_size: Optional[Tuple[int, int]]=None, negative_crops_coords_top_left: Tuple[int, int]=(0, 0), negative_target_size: Optional[Tuple[int, int]]=None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], pag_scale: float=3.0, pag_adaptive_scale: float=0.0, max_sequence_length: int=256): + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + original_size = original_size or (height, width) + target_size = target_size or (height, width) + self.check_inputs(prompt, num_inference_steps, height, width, negative_prompt, prompt_embeds, pooled_prompt_embeds, negative_prompt_embeds, negative_pooled_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length) + self._guidance_scale = guidance_scale + self._cross_attention_kwargs = cross_attention_kwargs + self._denoising_end = denoising_end + self._interrupt = False + self._pag_scale = pag_scale + self._pag_adaptive_scale = pag_adaptive_scale + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + add_text_embeds = pooled_prompt_embeds + text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) + add_time_ids = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + if negative_original_size is not None and negative_target_size is not None: + negative_add_time_ids = self._get_add_time_ids(negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + else: + negative_add_time_ids = add_time_ids + if self.do_perturbed_attention_guidance: + prompt_embeds = self._prepare_perturbed_attention_guidance(prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance) + add_text_embeds = self._prepare_perturbed_attention_guidance(add_text_embeds, negative_pooled_prompt_embeds, self.do_classifier_free_guidance) + add_time_ids = self._prepare_perturbed_attention_guidance(add_time_ids, negative_add_time_ids, self.do_classifier_free_guidance) + elif self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + for (i, image_embeds) in enumerate(ip_adapter_image_embeds): + negative_image_embeds = None + if self.do_classifier_free_guidance: + (negative_image_embeds, image_embeds) = image_embeds.chunk(2) + if self.do_perturbed_attention_guidance: + image_embeds = self._prepare_perturbed_attention_guidance(image_embeds, negative_image_embeds, self.do_classifier_free_guidance) + elif self.do_classifier_free_guidance: + image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0) + image_embeds = image_embeds.to(device) + ip_adapter_image_embeds[i] = image_embeds + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + if self.denoising_end is not None and isinstance(self.denoising_end, float) and (self.denoising_end > 0) and (self.denoising_end < 1): + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - self.denoising_end * self.scheduler.config.num_train_timesteps)) + num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) + timesteps = timesteps[:num_inference_steps] + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + if self.do_perturbed_attention_guidance: + original_attn_proc = self.unet.attn_processors + self._set_pag_attn_processor(pag_applied_layers=self.pag_applied_layers, do_classifier_free_guidance=self.do_classifier_free_guidance) + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0])) + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + added_cond_kwargs['image_embeds'] = image_embeds + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_perturbed_attention_guidance: + noise_pred = self._apply_perturbed_attention_guidance(noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t) + elif self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + latents = latents.to(latents_dtype) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + add_text_embeds = callback_outputs.pop('add_text_embeds', add_text_embeds) + negative_pooled_prompt_embeds = callback_outputs.pop('negative_pooled_prompt_embeds', negative_pooled_prompt_embeds) + add_time_ids = callback_outputs.pop('add_time_ids', add_time_ids) + negative_add_time_ids = callback_outputs.pop('negative_add_time_ids', negative_add_time_ids) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if XLA_AVAILABLE: + xm.mark_step() + if not output_type == 'latent': + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + elif latents.dtype != self.vae.dtype: + if torch.backends.mps.is_available(): + self.vae = self.vae.to(latents.dtype) + latents = latents / self.vae.config.scaling_factor + image = self.vae.decode(latents, return_dict=False)[0] + if needs_upcasting: + self.vae.to(dtype=torch.float16) + else: + image = latents + if not output_type == 'latent': + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if self.do_perturbed_attention_guidance: + self.unet.set_attn_processor(original_attn_proc) + if not return_dict: + return (image,) + return KolorsPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +import html +import inspect +import re +import urllib.parse as ul +from typing import Callable, List, Optional, Tuple, Union +import torch +from transformers import T5EncoderModel, T5Tokenizer +from ...image_processor import PixArtImageProcessor +from ...models import AutoencoderKL, PixArtTransformer2DModel +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import BACKENDS_MAPPING, deprecate, is_bs4_available, is_ftfy_available, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +from ..pixart_alpha.pipeline_pixart_alpha import ASPECT_RATIO_256_BIN, ASPECT_RATIO_512_BIN, ASPECT_RATIO_1024_BIN +from ..pixart_alpha.pipeline_pixart_sigma import ASPECT_RATIO_2048_BIN +from .pag_utils import PAGMixin +logger = logging.get_logger(__name__) +if is_bs4_available(): + from bs4 import BeautifulSoup +if is_ftfy_available(): + import ftfy +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import AutoPipelineForText2Image\n\n >>> pipe = AutoPipelineForText2Image.from_pretrained(\n ... "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",\n ... torch_dtype=torch.float16,\n ... pag_applied_layers=["blocks.14"],\n ... enable_pag=True,\n ... )\n >>> pipe = pipe.to("cuda")\n\n >>> prompt = "A small cactus with a happy face in the Sahara desert"\n >>> image = pipe(prompt, pag_scale=4.0, guidance_scale=1.0).images[0]\n ```\n' + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class PixArtSigmaPAGPipeline(DiffusionPipeline, PAGMixin): + bad_punct_regex = re.compile('[' + '#®•©™&@·º½¾¿¡§~' + '\\)' + '\\(' + '\\]' + '\\[' + '\\}' + '\\{' + '\\|' + '\\' + '\\/' + '\\*' + ']{1,}') + _optional_components = ['tokenizer', 'text_encoder'] + model_cpu_offload_seq = 'text_encoder->transformer->vae' + + def __init__(self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, vae: AutoencoderKL, transformer: PixArtTransformer2DModel, scheduler: KarrasDiffusionSchedulers, pag_applied_layers: Union[str, List[str]]='blocks.1'): + super().__init__() + self.register_modules(tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.set_pag_applied_layers(pag_applied_layers) + + def encode_prompt(self, prompt: Union[str, List[str]], do_classifier_free_guidance: bool=True, negative_prompt: str='', num_images_per_prompt: int=1, device: Optional[torch.device]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, prompt_attention_mask: Optional[torch.Tensor]=None, negative_prompt_attention_mask: Optional[torch.Tensor]=None, clean_caption: bool=False, max_sequence_length: int=300, **kwargs): + if 'mask_feature' in kwargs: + deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." + deprecate('mask_feature', '1.0.0', deprecation_message, standard_warn=False) + if device is None: + device = self._execution_device + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + max_length = max_sequence_length + if prompt_embeds is None: + prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=max_length, truncation=True, add_special_tokens=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because T5 can only handle sequences up to {max_length} tokens: {removed_text}') + prompt_attention_mask = text_inputs.attention_mask + prompt_attention_mask = prompt_attention_mask.to(device) + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask) + prompt_embeds = prompt_embeds[0] + if self.text_encoder is not None: + dtype = self.text_encoder.dtype + elif self.transformer is not None: + dtype = self.transformer.dtype + else: + dtype = None + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1) + prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt + uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors='pt') + negative_prompt_attention_mask = uncond_input.attention_mask + negative_prompt_attention_mask = negative_prompt_attention_mask.to(device) + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1) + negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) + else: + negative_prompt_embeds = None + negative_prompt_attention_mask = None + return (prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, negative_prompt, callback_steps, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and prompt_attention_mask is None: + raise ValueError('Must provide `prompt_attention_mask` when specifying `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: + raise ValueError('Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: + raise ValueError(f'`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask` {negative_prompt_attention_mask.shape}.') + + def _text_preprocessing(self, text, clean_caption=False): + if clean_caption and (not is_bs4_available()): + logger.warning(BACKENDS_MAPPING['bs4'][-1].format('Setting `clean_caption=True`')) + logger.warning('Setting `clean_caption` to False...') + clean_caption = False + if clean_caption and (not is_ftfy_available()): + logger.warning(BACKENDS_MAPPING['ftfy'][-1].format('Setting `clean_caption=True`')) + logger.warning('Setting `clean_caption` to False...') + clean_caption = False + if not isinstance(text, (tuple, list)): + text = [text] + + def process(text: str): + if clean_caption: + text = self._clean_caption(text) + text = self._clean_caption(text) + else: + text = text.lower().strip() + return text + return [process(t) for t in text] + + def _clean_caption(self, caption): + caption = str(caption) + caption = ul.unquote_plus(caption) + caption = caption.strip().lower() + caption = re.sub('', 'person', caption) + caption = re.sub('\\b((?:https?:(?:\\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\\w/-]*\\b\\/?(?!@)))', '', caption) + caption = re.sub('\\b((?:www:(?:\\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\\w/-]*\\b\\/?(?!@)))', '', caption) + caption = BeautifulSoup(caption, features='html.parser').text + caption = re.sub('@[\\w\\d]+\\b', '', caption) + caption = re.sub('[\\u31c0-\\u31ef]+', '', caption) + caption = re.sub('[\\u31f0-\\u31ff]+', '', caption) + caption = re.sub('[\\u3200-\\u32ff]+', '', caption) + caption = re.sub('[\\u3300-\\u33ff]+', '', caption) + caption = re.sub('[\\u3400-\\u4dbf]+', '', caption) + caption = re.sub('[\\u4dc0-\\u4dff]+', '', caption) + caption = re.sub('[\\u4e00-\\u9fff]+', '', caption) + caption = re.sub('[\\u002D\\u058A\\u05BE\\u1400\\u1806\\u2010-\\u2015\\u2E17\\u2E1A\\u2E3A\\u2E3B\\u2E40\\u301C\\u3030\\u30A0\\uFE31\\uFE32\\uFE58\\uFE63\\uFF0D]+', '-', caption) + caption = re.sub('[`´«»“”¨]', '"', caption) + caption = re.sub('[‘’]', "'", caption) + caption = re.sub('"?', '', caption) + caption = re.sub('&', '', caption) + caption = re.sub('\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}', ' ', caption) + caption = re.sub('\\d:\\d\\d\\s+$', '', caption) + caption = re.sub('\\\\n', ' ', caption) + caption = re.sub('#\\d{1,3}\\b', '', caption) + caption = re.sub('#\\d{5,}\\b', '', caption) + caption = re.sub('\\b\\d{6,}\\b', '', caption) + caption = re.sub('[\\S]+\\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)', '', caption) + caption = re.sub('[\\"\\\']{2,}', '"', caption) + caption = re.sub('[\\.]{2,}', ' ', caption) + caption = re.sub(self.bad_punct_regex, ' ', caption) + caption = re.sub('\\s+\\.\\s+', ' ', caption) + regex2 = re.compile('(?:\\-|\\_)') + if len(re.findall(regex2, caption)) > 3: + caption = re.sub(regex2, ' ', caption) + caption = ftfy.fix_text(caption) + caption = html.unescape(html.unescape(caption)) + caption = re.sub('\\b[a-zA-Z]{1,3}\\d{3,15}\\b', '', caption) + caption = re.sub('\\b[a-zA-Z]+\\d+[a-zA-Z]+\\b', '', caption) + caption = re.sub('\\b\\d+[a-zA-Z]+\\d+\\b', '', caption) + caption = re.sub('(worldwide\\s+)?(free\\s+)?shipping', '', caption) + caption = re.sub('(free\\s)?download(\\sfree)?', '', caption) + caption = re.sub('\\bclick\\b\\s(?:for|on)\\s\\w+', '', caption) + caption = re.sub('\\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\\simage[s]?)?', '', caption) + caption = re.sub('\\bpage\\s+\\d+\\b', '', caption) + caption = re.sub('\\b\\d*[a-zA-Z]+\\d+[a-zA-Z]+\\d+[a-zA-Z\\d]*\\b', ' ', caption) + caption = re.sub('\\b\\d+\\.?\\d*[xх×]\\d+\\.?\\d*\\b', '', caption) + caption = re.sub('\\b\\s+\\:\\s+', ': ', caption) + caption = re.sub('(\\D[,\\./])\\b', '\\1 ', caption) + caption = re.sub('\\s+', ' ', caption) + caption.strip() + caption = re.sub('^[\\"\\\']([\\w\\W]+)[\\"\\\']$', '\\1', caption) + caption = re.sub("^[\\'\\_,\\-\\:;]", '', caption) + caption = re.sub("[\\'\\_,\\-\\:\\-\\+]$", '', caption) + caption = re.sub('^\\.\\S+$', '', caption) + return caption.strip() + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, negative_prompt: str='', num_inference_steps: int=20, timesteps: List[int]=None, sigmas: List[float]=None, guidance_scale: float=4.5, num_images_per_prompt: Optional[int]=1, height: Optional[int]=None, width: Optional[int]=None, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, prompt_attention_mask: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_attention_mask: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, clean_caption: bool=True, use_resolution_binning: bool=True, max_sequence_length: int=300, pag_scale: float=3.0, pag_adaptive_scale: float=0.0) -> Union[ImagePipelineOutput, Tuple]: + height = height or self.transformer.config.sample_size * self.vae_scale_factor + width = width or self.transformer.config.sample_size * self.vae_scale_factor + if use_resolution_binning: + if self.transformer.config.sample_size == 256: + aspect_ratio_bin = ASPECT_RATIO_2048_BIN + elif self.transformer.config.sample_size == 128: + aspect_ratio_bin = ASPECT_RATIO_1024_BIN + elif self.transformer.config.sample_size == 64: + aspect_ratio_bin = ASPECT_RATIO_512_BIN + elif self.transformer.config.sample_size == 32: + aspect_ratio_bin = ASPECT_RATIO_256_BIN + else: + raise ValueError('Invalid sample size') + (orig_height, orig_width) = (height, width) + (height, width) = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin) + self.check_inputs(prompt, height, width, negative_prompt, callback_steps, prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask) + self._pag_scale = pag_scale + self._pag_adaptive_scale = pag_adaptive_scale + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask) = self.encode_prompt(prompt, do_classifier_free_guidance, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, device=device, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, clean_caption=clean_caption, max_sequence_length=max_sequence_length) + if self.do_perturbed_attention_guidance: + prompt_embeds = self._prepare_perturbed_attention_guidance(prompt_embeds, negative_prompt_embeds, do_classifier_free_guidance) + prompt_attention_mask = self._prepare_perturbed_attention_guidance(prompt_attention_mask, negative_prompt_attention_mask, do_classifier_free_guidance) + elif do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + latent_channels = self.transformer.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, latent_channels, height, width, prompt_embeds.dtype, device, generator, latents) + if self.do_perturbed_attention_guidance: + original_attn_proc = self.transformer.attn_processors + self._set_pag_attn_processor(pag_applied_layers=self.pag_applied_layers, do_classifier_free_guidance=do_classifier_free_guidance) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'resolution': None, 'aspect_ratio': None} + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0])) + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + current_timestep = t + if not torch.is_tensor(current_timestep): + is_mps = latent_model_input.device.type == 'mps' + if isinstance(current_timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) + elif len(current_timestep.shape) == 0: + current_timestep = current_timestep[None].to(latent_model_input.device) + current_timestep = current_timestep.expand(latent_model_input.shape[0]) + noise_pred = self.transformer(latent_model_input, encoder_hidden_states=prompt_embeds, encoder_attention_mask=prompt_attention_mask, timestep=current_timestep, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_perturbed_attention_guidance: + noise_pred = self._apply_perturbed_attention_guidance(noise_pred, do_classifier_free_guidance, guidance_scale, current_timestep) + elif do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + if self.transformer.config.out_channels // 2 == latent_channels: + noise_pred = noise_pred.chunk(2, dim=1)[0] + else: + noise_pred = noise_pred + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + if use_resolution_binning: + image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height) + else: + image = latents + if not output_type == 'latent': + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if self.do_perturbed_attention_guidance: + self.transformer.set_attn_processor(original_attn_proc) + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/pag/pipeline_pag_sd.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import torch +from packaging import version +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...configuration_utils import FrozenDict +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion.pipeline_output import StableDiffusionPipelineOutput +from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker +from .pag_utils import PAGMixin +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import AutoPipelineForText2Image\n\n >>> pipe = AutoPipelineForText2Image.from_pretrained(\n ... "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, enable_pag=True\n ... )\n >>> pipe = pipe.to("cuda")\n\n >>> prompt = "a photo of an astronaut riding a horse on mars"\n >>> image = pipe(prompt, pag_scale=0.3).images[0]\n ```\n' + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusionPAGPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin, PAGMixin): + model_cpu_offload_seq = 'text_encoder->image_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor', 'image_encoder'] + _exclude_from_cpu_offload = ['safety_checker'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: CLIPVisionModelWithProjection=None, requires_safety_checker: bool=True, pag_applied_layers: Union[str, List[str]]='mid'): + super().__init__() + if hasattr(scheduler.config, 'steps_offset') and scheduler.config.steps_offset != 1: + deprecation_message = f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset` should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure to update the config accordingly as leaving `steps_offset` might led to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('steps_offset!=1', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['steps_offset'] = 1 + scheduler._internal_dict = FrozenDict(new_config) + if hasattr(scheduler.config, 'clip_sample') and scheduler.config.clip_sample is True: + deprecation_message = f'The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`. `clip_sample` should be set to False in the configuration file. Please make sure to update the config accordingly as not setting `clip_sample` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('clip_sample not set', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['clip_sample'] = False + scheduler._internal_dict = FrozenDict(new_config) + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + is_unet_version_less_0_9_0 = hasattr(unet.config, '_diffusers_version') and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse('0.9.0.dev0') + is_unet_sample_size_less_64 = hasattr(unet.config, 'sample_size') and unet.config.sample_size < 64 + if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: + deprecation_message = "The configuration file of the unet has set the default `sample_size` to smaller than 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n- CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5 \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the configuration file. Please make sure to update the config accordingly as leaving `sample_size=32` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `unet/config.json` file" + deprecate('sample_size<64', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(unet.config) + new_config['sample_size'] = 64 + unet._internal_dict = FrozenDict(new_config) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + self.set_pag_applied_layers(pag_applied_layers) + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def guidance_rescale(self): + return self._guidance_rescale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, timesteps: List[int]=None, sigmas: List[float]=None, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, guidance_rescale: float=0.0, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], pag_scale: float=3.0, pag_adaptive_scale: float=0.0): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, height, width, None, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._guidance_rescale = guidance_rescale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._interrupt = False + self._pag_scale = pag_scale + self._pag_adaptive_scale = pag_adaptive_scale + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, clip_skip=self.clip_skip) + if self.do_perturbed_attention_guidance: + prompt_embeds = self._prepare_perturbed_attention_guidance(prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance) + elif self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + for (i, image_embeds) in enumerate(ip_adapter_image_embeds): + negative_image_embeds = None + if self.do_classifier_free_guidance: + (negative_image_embeds, image_embeds) = image_embeds.chunk(2) + if self.do_perturbed_attention_guidance: + image_embeds = self._prepare_perturbed_attention_guidance(image_embeds, negative_image_embeds, self.do_classifier_free_guidance) + elif self.do_classifier_free_guidance: + image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0) + image_embeds = image_embeds.to(device) + ip_adapter_image_embeds[i] = image_embeds + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'image_embeds': ip_adapter_image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + if self.do_perturbed_attention_guidance: + original_attn_proc = self.unet.attn_processors + self._set_pag_attn_processor(pag_applied_layers=self.pag_applied_layers, do_classifier_free_guidance=self.do_classifier_free_guidance) + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0])) + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_perturbed_attention_guidance: + noise_pred = self._apply_perturbed_attention_guidance(noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t) + elif self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if self.do_perturbed_attention_guidance: + self.unet.set_attn_processor(original_attn_proc) + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/pag/pipeline_pag_sd_3.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import torch +from transformers import CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel, T5TokenizerFast +from ...image_processor import VaeImageProcessor +from ...loaders import FromSingleFileMixin, SD3LoraLoaderMixin +from ...models.attention_processor import PAGCFGJointAttnProcessor2_0, PAGJointAttnProcessor2_0 +from ...models.autoencoders import AutoencoderKL +from ...models.transformers import SD3Transformer2DModel +from ...schedulers import FlowMatchEulerDiscreteScheduler +from ...utils import USE_PEFT_BACKEND, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from ..stable_diffusion_3.pipeline_output import StableDiffusion3PipelineOutput +from .pag_utils import PAGMixin +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import AutoPipelineForText2Image\n\n >>> pipe = AutoPipelineForText2Image.from_pretrained(\n ... "stabilityai/stable-diffusion-3-medium-diffusers",\n ... torch_dtype=torch.float16,\n ... enable_pag=True,\n ... pag_applied_layers=["blocks.13"],\n ... )\n >>> pipe.to("cuda")\n >>> prompt = "A cat holding a sign that says hello world"\n >>> image = pipe(prompt, guidance_scale=5.0, pag_scale=0.7).images[0]\n >>> image.save("sd3_pag.png")\n ```\n' + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusion3PAGPipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin, PAGMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->text_encoder_3->transformer->vae' + _optional_components = [] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'negative_pooled_prompt_embeds'] + + def __init__(self, transformer: SD3Transformer2DModel, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, text_encoder_2: CLIPTextModelWithProjection, tokenizer_2: CLIPTokenizer, text_encoder_3: T5EncoderModel, tokenizer_3: T5TokenizerFast, pag_applied_layers: Union[str, List[str]]='blocks.1'): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, text_encoder_3=text_encoder_3, tokenizer=tokenizer, tokenizer_2=tokenizer_2, tokenizer_3=tokenizer_3, transformer=transformer, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, 'vae') and self.vae is not None else 8 + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.tokenizer_max_length = self.tokenizer.model_max_length if hasattr(self, 'tokenizer') and self.tokenizer is not None else 77 + self.default_sample_size = self.transformer.config.sample_size if hasattr(self, 'transformer') and self.transformer is not None else 128 + self.set_pag_applied_layers(pag_applied_layers, pag_attn_processors=(PAGCFGJointAttnProcessor2_0(), PAGJointAttnProcessor2_0())) + + def _get_t5_prompt_embeds(self, prompt: Union[str, List[str]]=None, num_images_per_prompt: int=1, max_sequence_length: int=256, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None): + device = device or self._execution_device + dtype = dtype or self.text_encoder.dtype + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + if self.text_encoder_3 is None: + return torch.zeros((batch_size * num_images_per_prompt, self.tokenizer_max_length, self.transformer.config.joint_attention_dim), device=device, dtype=dtype) + text_inputs = self.tokenizer_3(prompt, padding='max_length', max_length=max_sequence_length, truncation=True, add_special_tokens=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer_3(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because `max_sequence_length` is set to {max_sequence_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0] + dtype = self.text_encoder_3.dtype + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (_, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + return prompt_embeds + + def _get_clip_prompt_embeds(self, prompt: Union[str, List[str]], num_images_per_prompt: int=1, device: Optional[torch.device]=None, clip_skip: Optional[int]=None, clip_model_index: int=0): + device = device or self._execution_device + clip_tokenizers = [self.tokenizer, self.tokenizer_2] + clip_text_encoders = [self.text_encoder, self.text_encoder_2] + tokenizer = clip_tokenizers[clip_model_index] + text_encoder = clip_text_encoders[clip_model_index] + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + text_inputs = tokenizer(prompt, padding='max_length', max_length=self.tokenizer_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + (_, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1) + pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1) + return (prompt_embeds, pooled_prompt_embeds) + + def encode_prompt(self, prompt: Union[str, List[str]], prompt_2: Union[str, List[str]], prompt_3: Union[str, List[str]], device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, negative_prompt_3: Optional[Union[str, List[str]]]=None, prompt_embeds: Optional[torch.FloatTensor]=None, negative_prompt_embeds: Optional[torch.FloatTensor]=None, pooled_prompt_embeds: Optional[torch.FloatTensor]=None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor]=None, clip_skip: Optional[int]=None, max_sequence_length: int=256, lora_scale: Optional[float]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + prompt_3 = prompt_3 or prompt + prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3 + (prompt_embed, pooled_prompt_embed) = self._get_clip_prompt_embeds(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=clip_skip, clip_model_index=0) + (prompt_2_embed, pooled_prompt_2_embed) = self._get_clip_prompt_embeds(prompt=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=clip_skip, clip_model_index=1) + clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1) + t5_prompt_embed = self._get_t5_prompt_embeds(prompt=prompt_3, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device) + clip_prompt_embeds = torch.nn.functional.pad(clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])) + prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2) + pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt_3 = negative_prompt_3 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + negative_prompt_3 = batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3 + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + (negative_prompt_embed, negative_pooled_prompt_embed) = self._get_clip_prompt_embeds(negative_prompt, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=None, clip_model_index=0) + (negative_prompt_2_embed, negative_pooled_prompt_2_embed) = self._get_clip_prompt_embeds(negative_prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=None, clip_model_index=1) + negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1) + t5_negative_prompt_embed = self._get_t5_prompt_embeds(prompt=negative_prompt_3, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device) + negative_clip_prompt_embeds = torch.nn.functional.pad(negative_clip_prompt_embeds, (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1])) + negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2) + negative_pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1) + if self.text_encoder is not None: + if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def check_inputs(self, prompt, prompt_2, prompt_3, height, width, negative_prompt=None, negative_prompt_2=None, negative_prompt_3=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, max_sequence_length=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_3 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + elif prompt_3 is not None and (not isinstance(prompt_3, str) and (not isinstance(prompt_3, list))): + raise ValueError(f'`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_3 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + if max_sequence_length is not None and max_sequence_length > 512: + raise ValueError(f'`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + if latents is not None: + return latents.to(device=device, dtype=dtype) + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + return latents + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def joint_attention_kwargs(self): + return self._joint_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, prompt_3: Optional[Union[str, List[str]]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=28, timesteps: List[int]=None, guidance_scale: float=7.0, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, negative_prompt_3: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.FloatTensor]=None, prompt_embeds: Optional[torch.FloatTensor]=None, negative_prompt_embeds: Optional[torch.FloatTensor]=None, pooled_prompt_embeds: Optional[torch.FloatTensor]=None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, joint_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], max_sequence_length: int=256, pag_scale: float=3.0, pag_adaptive_scale: float=0.0): + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + self.check_inputs(prompt, prompt_2, prompt_3, height, width, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_3=negative_prompt_3, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._joint_attention_kwargs = joint_attention_kwargs + self._interrupt = False + self._pag_scale = pag_scale + self._pag_adaptive_scale = pag_adaptive_scale + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + lora_scale = self.joint_attention_kwargs.get('scale', None) if self.joint_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt=prompt, prompt_2=prompt_2, prompt_3=prompt_3, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_3=negative_prompt_3, do_classifier_free_guidance=self.do_classifier_free_guidance, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, device=device, clip_skip=self.clip_skip, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, lora_scale=lora_scale) + if self.do_perturbed_attention_guidance: + prompt_embeds = self._prepare_perturbed_attention_guidance(prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance) + pooled_prompt_embeds = self._prepare_perturbed_attention_guidance(pooled_prompt_embeds, negative_pooled_prompt_embeds, self.do_classifier_free_guidance) + elif self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + self._num_timesteps = len(timesteps) + num_channels_latents = self.transformer.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + if self.do_perturbed_attention_guidance: + original_attn_proc = self.transformer.attn_processors + self._set_pag_attn_processor(pag_applied_layers=self.pag_applied_layers, do_classifier_free_guidance=self.do_classifier_free_guidance) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0])) + timestep = t.expand(latent_model_input.shape[0]) + noise_pred = self.transformer(hidden_states=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds, pooled_projections=pooled_prompt_embeds, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False)[0] + if self.do_perturbed_attention_guidance: + noise_pred = self._apply_perturbed_attention_guidance(noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t) + elif self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + latents = latents.to(latents_dtype) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + negative_pooled_prompt_embeds = callback_outputs.pop('negative_pooled_prompt_embeds', negative_pooled_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if XLA_AVAILABLE: + xm.mark_step() + if output_type == 'latent': + image = latents + else: + latents = latents / self.vae.config.scaling_factor + self.vae.config.shift_factor + image = self.vae.decode(latents, return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if self.do_perturbed_attention_guidance: + self.transformer.set_attn_processor(original_attn_proc) + if not return_dict: + return (image,) + return StableDiffusion3PipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...image_processor import PipelineImageInput +from ...loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...models.unets.unet_motion_model import MotionAdapter +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ...video_processor import VideoProcessor +from ..animatediff.pipeline_output import AnimateDiffPipelineOutput +from ..free_init_utils import FreeInitMixin +from ..free_noise_utils import AnimateDiffFreeNoiseMixin +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from .pag_utils import PAGMixin +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import AnimateDiffPAGPipeline, MotionAdapter, DDIMScheduler\n >>> from diffusers.utils import export_to_gif\n\n >>> model_id = "SG161222/Realistic_Vision_V5.1_noVAE"\n >>> motion_adapter_id = "guoyww/animatediff-motion-adapter-v1-5-2"\n >>> motion_adapter = MotionAdapter.from_pretrained(motion_adapter_id)\n >>> scheduler = DDIMScheduler.from_pretrained(\n ... model_id, subfolder="scheduler", beta_schedule="linear", steps_offset=1, clip_sample=False\n ... )\n >>> pipe = AnimateDiffPAGPipeline.from_pretrained(\n ... model_id,\n ... motion_adapter=motion_adapter,\n ... scheduler=scheduler,\n ... pag_applied_layers=["mid"],\n ... torch_dtype=torch.float16,\n ... ).to("cuda")\n\n >>> video = pipe(\n ... prompt="car, futuristic cityscape with neon lights, street, no human",\n ... negative_prompt="low quality, bad quality",\n ... num_inference_steps=25,\n ... guidance_scale=6.0,\n ... pag_scale=3.0,\n ... generator=torch.Generator().manual_seed(42),\n ... ).frames[0]\n\n >>> export_to_gif(video, "animatediff_pag.gif")\n ```\n' + +class AnimateDiffPAGPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, FreeInitMixin, AnimateDiffFreeNoiseMixin, PAGMixin): + model_cpu_offload_seq = 'text_encoder->image_encoder->unet->vae' + _optional_components = ['feature_extractor', 'image_encoder', 'motion_adapter'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: Union[UNet2DConditionModel, UNetMotionModel], motion_adapter: MotionAdapter, scheduler: KarrasDiffusionSchedulers, feature_extractor: CLIPImageProcessor=None, image_encoder: CLIPVisionModelWithProjection=None, pag_applied_layers: Union[str, List[str]]='mid_block.*attn1'): + super().__init__() + if isinstance(unet, UNet2DConditionModel): + unet = UNetMotionModel.from_unet2d(unet, motion_adapter) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, motion_adapter=motion_adapter, scheduler=scheduler, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.video_processor = VideoProcessor(do_resize=False, vae_scale_factor=self.vae_scale_factor) + self.set_pag_applied_layers(pag_applied_layers) + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def decode_latents(self, latents, decode_chunk_size: int=16): + latents = 1 / self.vae.config.scaling_factor * latents + (batch_size, channels, num_frames, height, width) = latents.shape + latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) + video = [] + for i in range(0, latents.shape[0], decode_chunk_size): + batch_latents = latents[i:i + decode_chunk_size] + batch_latents = self.vae.decode(batch_latents).sample + video.append(batch_latents) + video = torch.cat(video) + video = video[None, :].reshape((batch_size, num_frames, -1) + video.shape[2:]).permute(0, 2, 1, 3, 4) + video = video.float() + return video + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def prepare_latents(self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None): + if self.free_noise_enabled: + latents = self._prepare_latents_free_noise(batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + shape = (batch_size, num_channels_latents, num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor) + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Optional[Union[str, List[str]]]=None, num_frames: Optional[int]=16, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_videos_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], decode_chunk_size: int=16, pag_scale: float=3.0, pag_adaptive_scale: float=0.0): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + num_videos_per_prompt = 1 + self.check_inputs(prompt, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._pag_scale = pag_scale + self._pag_adaptive_scale = pag_adaptive_scale + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + text_encoder_lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_videos_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + if self.do_perturbed_attention_guidance: + prompt_embeds = self._prepare_perturbed_attention_guidance(prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance) + elif self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_videos_per_prompt, self.do_classifier_free_guidance) + for (i, image_embeds) in enumerate(ip_adapter_image_embeds): + negative_image_embeds = None + if self.do_classifier_free_guidance: + (negative_image_embeds, image_embeds) = image_embeds.chunk(2) + if self.do_perturbed_attention_guidance: + image_embeds = self._prepare_perturbed_attention_guidance(image_embeds, negative_image_embeds, self.do_classifier_free_guidance) + elif self.do_classifier_free_guidance: + image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0) + image_embeds = image_embeds.to(device) + ip_adapter_image_embeds[i] = image_embeds + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_videos_per_prompt, num_channels_latents, num_frames, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'image_embeds': ip_adapter_image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None + if self.do_perturbed_attention_guidance: + original_attn_proc = self.unet.attn_processors + self._set_pag_attn_processor(pag_applied_layers=self.pag_applied_layers, do_classifier_free_guidance=self.do_classifier_free_guidance) + num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1 + for free_init_iter in range(num_free_init_iters): + if self.free_init_enabled: + (latents, timesteps) = self._apply_free_init(latents, free_init_iter, num_inference_steps, device, latents.dtype, generator) + self._num_timesteps = len(timesteps) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=self._num_timesteps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // num_frames // latents.shape[0])) + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs).sample + if self.do_perturbed_attention_guidance: + noise_pred = self._apply_perturbed_attention_guidance(noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t) + elif self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if output_type == 'latent': + video = latents + else: + video_tensor = self.decode_latents(latents, decode_chunk_size) + video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type) + self.maybe_free_model_hooks() + if self.do_perturbed_attention_guidance: + self.unet.set_attn_processor(original_attn_proc) + if not return_dict: + return (video,) + return AnimateDiffPipelineOutput(frames=video) + +# File: diffusers-main/src/diffusers/pipelines/pag/pipeline_pag_sd_xl.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, is_invisible_watermark_available, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput +from .pag_utils import PAGMixin +if is_invisible_watermark_available(): + from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import AutoPipelineForText2Image\n\n >>> pipe = AutoPipelineForText2Image.from_pretrained(\n ... "stabilityai/stable-diffusion-xl-base-1.0",\n ... torch_dtype=torch.float16,\n ... enable_pag=True,\n ... )\n >>> pipe = pipe.to("cuda")\n\n >>> prompt = "a photo of an astronaut riding a horse on mars"\n >>> image = pipe(prompt, pag_scale=0.3).images[0]\n ```\n' + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusionXLPAGPipeline(DiffusionPipeline, StableDiffusionMixin, FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin, IPAdapterMixin, PAGMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->image_encoder->unet->vae' + _optional_components = ['tokenizer', 'tokenizer_2', 'text_encoder', 'text_encoder_2', 'image_encoder', 'feature_extractor'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'add_text_embeds', 'add_time_ids', 'negative_pooled_prompt_embeds', 'negative_add_time_ids'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, image_encoder: CLIPVisionModelWithProjection=None, feature_extractor: CLIPImageProcessor=None, force_zeros_for_empty_prompt: bool=True, add_watermarker: Optional[bool]=None, pag_applied_layers: Union[str, List[str]]='mid'): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, scheduler=scheduler, image_encoder=image_encoder, feature_extractor=feature_extractor) + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.default_sample_size = self.unet.config.sample_size + add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() + if add_watermarker: + self.watermark = StableDiffusionXLWatermarker() + else: + self.watermark = None + self.set_pag_applied_layers(pag_applied_layers) + + def encode_prompt(self, prompt: str, prompt_2: Optional[str]=None, device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[str]=None, negative_prompt_2: Optional[str]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) + else: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for (prompt, tokenizer, text_encoder) in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + text_inputs = tokenizer(prompt, padding='max_length', max_length=tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + prompt_embeds_list.append(prompt_embeds) + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + negative_prompt_embeds_list = [] + for (negative_prompt, tokenizer, text_encoder) in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer(negative_prompt, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True) + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + negative_prompt_embeds_list.append(negative_prompt_embeds) + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + if self.text_encoder_2 is not None: + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + if self.text_encoder_2 is not None: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, prompt_2, height, width, callback_steps, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.') + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + return add_time_ids + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor, FusedAttnProcessor2_0)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def guidance_rescale(self): + return self._guidance_rescale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def denoising_end(self): + return self._denoising_end + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, timesteps: List[int]=None, sigmas: List[float]=None, denoising_end: Optional[float]=None, guidance_scale: float=5.0, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, guidance_rescale: float=0.0, original_size: Optional[Tuple[int, int]]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), target_size: Optional[Tuple[int, int]]=None, negative_original_size: Optional[Tuple[int, int]]=None, negative_crops_coords_top_left: Tuple[int, int]=(0, 0), negative_target_size: Optional[Tuple[int, int]]=None, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], pag_scale: float=3.0, pag_adaptive_scale: float=0.0): + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + original_size = original_size or (height, width) + target_size = target_size or (height, width) + self.check_inputs(prompt, prompt_2, height, width, None, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._guidance_rescale = guidance_rescale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._denoising_end = denoising_end + self._interrupt = False + self._pag_scale = pag_scale + self._pag_adaptive_scale = pag_adaptive_scale + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt=prompt, prompt_2=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=lora_scale, clip_skip=self.clip_skip) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + add_text_embeds = pooled_prompt_embeds + if self.text_encoder_2 is None: + text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) + else: + text_encoder_projection_dim = self.text_encoder_2.config.projection_dim + add_time_ids = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + if negative_original_size is not None and negative_target_size is not None: + negative_add_time_ids = self._get_add_time_ids(negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + else: + negative_add_time_ids = add_time_ids + if self.do_perturbed_attention_guidance: + prompt_embeds = self._prepare_perturbed_attention_guidance(prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance) + add_text_embeds = self._prepare_perturbed_attention_guidance(add_text_embeds, negative_pooled_prompt_embeds, self.do_classifier_free_guidance) + add_time_ids = self._prepare_perturbed_attention_guidance(add_time_ids, negative_add_time_ids, self.do_classifier_free_guidance) + elif self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + for (i, image_embeds) in enumerate(ip_adapter_image_embeds): + negative_image_embeds = None + if self.do_classifier_free_guidance: + (negative_image_embeds, image_embeds) = image_embeds.chunk(2) + if self.do_perturbed_attention_guidance: + image_embeds = self._prepare_perturbed_attention_guidance(image_embeds, negative_image_embeds, self.do_classifier_free_guidance) + elif self.do_classifier_free_guidance: + image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0) + image_embeds = image_embeds.to(device) + ip_adapter_image_embeds[i] = image_embeds + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + if self.denoising_end is not None and isinstance(self.denoising_end, float) and (self.denoising_end > 0) and (self.denoising_end < 1): + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - self.denoising_end * self.scheduler.config.num_train_timesteps)) + num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) + timesteps = timesteps[:num_inference_steps] + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + if self.do_perturbed_attention_guidance: + original_attn_proc = self.unet.attn_processors + self._set_pag_attn_processor(pag_applied_layers=self.pag_applied_layers, do_classifier_free_guidance=self.do_classifier_free_guidance) + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0])) + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + if ip_adapter_image_embeds is not None: + added_cond_kwargs['image_embeds'] = ip_adapter_image_embeds + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_perturbed_attention_guidance: + noise_pred = self._apply_perturbed_attention_guidance(noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t) + elif self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + latents = latents.to(latents_dtype) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + add_text_embeds = callback_outputs.pop('add_text_embeds', add_text_embeds) + negative_pooled_prompt_embeds = callback_outputs.pop('negative_pooled_prompt_embeds', negative_pooled_prompt_embeds) + add_time_ids = callback_outputs.pop('add_time_ids', add_time_ids) + negative_add_time_ids = callback_outputs.pop('negative_add_time_ids', negative_add_time_ids) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if XLA_AVAILABLE: + xm.mark_step() + if not output_type == 'latent': + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + elif latents.dtype != self.vae.dtype: + if torch.backends.mps.is_available(): + self.vae = self.vae.to(latents.dtype) + has_latents_mean = hasattr(self.vae.config, 'latents_mean') and self.vae.config.latents_mean is not None + has_latents_std = hasattr(self.vae.config, 'latents_std') and self.vae.config.latents_std is not None + if has_latents_mean and has_latents_std: + latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) + latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) + latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean + else: + latents = latents / self.vae.config.scaling_factor + image = self.vae.decode(latents, return_dict=False)[0] + if needs_upcasting: + self.vae.to(dtype=torch.float16) + else: + image = latents + if not output_type == 'latent': + if self.watermark is not None: + image = self.watermark.apply_watermark(image) + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if self.do_perturbed_attention_guidance: + self.unet.set_attn_processor(original_attn_proc) + if not return_dict: + return (image,) + return StableDiffusionXLPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, is_invisible_watermark_available, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput +from .pag_utils import PAGMixin +if is_invisible_watermark_available(): + from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import AutoPipelineForImage2Image\n >>> from diffusers.utils import load_image\n\n >>> pipe = AutoPipelineForImage2Image.from_pretrained(\n ... "stabilityai/stable-diffusion-xl-refiner-1.0",\n ... torch_dtype=torch.float16,\n ... enable_pag=True,\n ... )\n >>> pipe = pipe.to("cuda")\n >>> url = "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"\n\n >>> init_image = load_image(url).convert("RGB")\n >>> prompt = "a photo of an astronaut riding a horse on mars"\n >>> image = pipe(prompt, image=init_image, pag_scale=0.3).images[0]\n ```\n' + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusionXLPAGImg2ImgPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, IPAdapterMixin, PAGMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->image_encoder->unet->vae' + _optional_components = ['tokenizer', 'tokenizer_2', 'text_encoder', 'text_encoder_2', 'image_encoder', 'feature_extractor'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'add_text_embeds', 'add_time_ids', 'negative_pooled_prompt_embeds', 'add_neg_time_ids'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, image_encoder: CLIPVisionModelWithProjection=None, feature_extractor: CLIPImageProcessor=None, requires_aesthetics_score: bool=False, force_zeros_for_empty_prompt: bool=True, add_watermarker: Optional[bool]=None, pag_applied_layers: Union[str, List[str]]='mid'): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, image_encoder=image_encoder, feature_extractor=feature_extractor, scheduler=scheduler) + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.register_to_config(requires_aesthetics_score=requires_aesthetics_score) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() + if add_watermarker: + self.watermark = StableDiffusionXLWatermarker() + else: + self.watermark = None + self.set_pag_applied_layers(pag_applied_layers) + + def encode_prompt(self, prompt: str, prompt_2: Optional[str]=None, device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[str]=None, negative_prompt_2: Optional[str]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) + else: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for (prompt, tokenizer, text_encoder) in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + text_inputs = tokenizer(prompt, padding='max_length', max_length=tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + prompt_embeds_list.append(prompt_embeds) + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + negative_prompt_embeds_list = [] + for (negative_prompt, tokenizer, text_encoder) in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer(negative_prompt, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True) + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + negative_prompt_embeds_list.append(negative_prompt_embeds) + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + if self.text_encoder_2 is not None: + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + if self.text_encoder_2 is not None: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, prompt_2, strength, num_inference_steps, callback_steps, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None): + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if num_inference_steps is None: + raise ValueError('`num_inference_steps` cannot be None.') + elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0: + raise ValueError(f'`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type {type(num_inference_steps)}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None): + if denoising_start is None: + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + else: + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - denoising_start * self.scheduler.config.num_train_timesteps)) + num_inference_steps = (self.scheduler.timesteps < discrete_timestep_cutoff).sum().item() + if self.scheduler.order == 2 and num_inference_steps % 2 == 0: + num_inference_steps = num_inference_steps + 1 + t_start = len(self.scheduler.timesteps) - num_inference_steps + timesteps = self.scheduler.timesteps[t_start:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start) + return (timesteps, num_inference_steps) + + def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True): + if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}') + latents_mean = latents_std = None + if hasattr(self.vae.config, 'latents_mean') and self.vae.config.latents_mean is not None: + latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1) + if hasattr(self.vae.config, 'latents_std') and self.vae.config.latents_std is not None: + latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1) + if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None: + self.text_encoder_2.to('cpu') + torch.cuda.empty_cache() + image = image.to(device=device, dtype=dtype) + batch_size = batch_size * num_images_per_prompt + if image.shape[1] == 4: + init_latents = image + else: + if self.vae.config.force_upcast: + image = image.float() + self.vae.to(dtype=torch.float32) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + elif isinstance(generator, list): + if image.shape[0] < batch_size and batch_size % image.shape[0] == 0: + image = torch.cat([image] * (batch_size // image.shape[0]), dim=0) + elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} ') + init_latents = [retrieve_latents(self.vae.encode(image[i:i + 1]), generator=generator[i]) for i in range(batch_size)] + init_latents = torch.cat(init_latents, dim=0) + else: + init_latents = retrieve_latents(self.vae.encode(image), generator=generator) + if self.vae.config.force_upcast: + self.vae.to(dtype) + init_latents = init_latents.to(dtype) + if latents_mean is not None and latents_std is not None: + latents_mean = latents_mean.to(device=device, dtype=dtype) + latents_std = latents_std.to(device=device, dtype=dtype) + init_latents = (init_latents - latents_mean) * self.vae.config.scaling_factor / latents_std + else: + init_latents = self.vae.config.scaling_factor * init_latents + if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: + additional_image_per_prompt = batch_size // init_latents.shape[0] + init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) + elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts.') + else: + init_latents = torch.cat([init_latents], dim=0) + if add_noise: + shape = init_latents.shape + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + init_latents = self.scheduler.add_noise(init_latents, noise, timestep) + latents = init_latents + return latents + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, aesthetic_score, negative_aesthetic_score, negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype, text_encoder_projection_dim=None): + if self.config.requires_aesthetics_score: + add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,)) + add_neg_time_ids = list(negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)) + else: + add_time_ids = list(original_size + crops_coords_top_left + target_size) + add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size) + passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + if expected_add_embed_dim > passed_add_embed_dim and expected_add_embed_dim - passed_add_embed_dim == self.unet.config.addition_time_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model.') + elif expected_add_embed_dim < passed_add_embed_dim and passed_add_embed_dim - expected_add_embed_dim == self.unet.config.addition_time_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model.') + elif expected_add_embed_dim != passed_add_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.') + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype) + return (add_time_ids, add_neg_time_ids) + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def guidance_rescale(self): + return self._guidance_rescale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def denoising_end(self): + return self._denoising_end + + @property + def denoising_start(self): + return self._denoising_start + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, image: PipelineImageInput=None, strength: float=0.3, num_inference_steps: int=50, timesteps: List[int]=None, sigmas: List[float]=None, denoising_start: Optional[float]=None, denoising_end: Optional[float]=None, guidance_scale: float=5.0, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, guidance_rescale: float=0.0, original_size: Tuple[int, int]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), target_size: Tuple[int, int]=None, negative_original_size: Optional[Tuple[int, int]]=None, negative_crops_coords_top_left: Tuple[int, int]=(0, 0), negative_target_size: Optional[Tuple[int, int]]=None, aesthetic_score: float=6.0, negative_aesthetic_score: float=2.5, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], pag_scale: float=3.0, pag_adaptive_scale: float=0.0): + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + self.check_inputs(prompt, prompt_2, strength, num_inference_steps, None, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._guidance_rescale = guidance_rescale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._denoising_end = denoising_end + self._denoising_start = denoising_start + self._interrupt = False + self._pag_scale = pag_scale + self._pag_adaptive_scale = pag_adaptive_scale + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + text_encoder_lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt=prompt, prompt_2=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + image = self.image_processor.preprocess(image) + + def denoising_value_valid(dnv): + return isinstance(dnv, float) and 0 < dnv < 1 + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device, denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + add_noise = True if self.denoising_start is None else False + if latents is None: + latents = self.prepare_latents(image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator, add_noise) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + (height, width) = latents.shape[-2:] + height = height * self.vae_scale_factor + width = width * self.vae_scale_factor + original_size = original_size or (height, width) + target_size = target_size or (height, width) + if negative_original_size is None: + negative_original_size = original_size + if negative_target_size is None: + negative_target_size = target_size + add_text_embeds = pooled_prompt_embeds + if self.text_encoder_2 is None: + text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) + else: + text_encoder_projection_dim = self.text_encoder_2.config.projection_dim + (add_time_ids, add_neg_time_ids) = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, aesthetic_score, negative_aesthetic_score, negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1) + add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1) + if self.do_perturbed_attention_guidance: + prompt_embeds = self._prepare_perturbed_attention_guidance(prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance) + add_text_embeds = self._prepare_perturbed_attention_guidance(add_text_embeds, negative_pooled_prompt_embeds, self.do_classifier_free_guidance) + add_time_ids = self._prepare_perturbed_attention_guidance(add_time_ids, add_neg_time_ids, self.do_classifier_free_guidance) + elif self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0) + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + for (i, image_embeds) in enumerate(ip_adapter_image_embeds): + negative_image_embeds = None + if self.do_classifier_free_guidance: + (negative_image_embeds, image_embeds) = image_embeds.chunk(2) + if self.do_perturbed_attention_guidance: + image_embeds = self._prepare_perturbed_attention_guidance(image_embeds, negative_image_embeds, self.do_classifier_free_guidance) + elif self.do_classifier_free_guidance: + image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0) + image_embeds = image_embeds.to(device) + ip_adapter_image_embeds[i] = image_embeds + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + if self.denoising_end is not None and self.denoising_start is not None and denoising_value_valid(self.denoising_end) and denoising_value_valid(self.denoising_start) and (self.denoising_start >= self.denoising_end): + raise ValueError(f'`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: ' + f' {self.denoising_end} when using type float.') + elif self.denoising_end is not None and denoising_value_valid(self.denoising_end): + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - self.denoising_end * self.scheduler.config.num_train_timesteps)) + num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) + timesteps = timesteps[:num_inference_steps] + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + if self.do_perturbed_attention_guidance: + original_attn_proc = self.unet.attn_processors + self._set_pag_attn_processor(pag_applied_layers=self.pag_applied_layers, do_classifier_free_guidance=self.do_classifier_free_guidance) + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0])) + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + if ip_adapter_image_embeds is not None: + added_cond_kwargs['image_embeds'] = ip_adapter_image_embeds + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_perturbed_attention_guidance: + noise_pred = self._apply_perturbed_attention_guidance(noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t) + elif self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + latents = latents.to(latents_dtype) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + add_text_embeds = callback_outputs.pop('add_text_embeds', add_text_embeds) + negative_pooled_prompt_embeds = callback_outputs.pop('negative_pooled_prompt_embeds', negative_pooled_prompt_embeds) + add_time_ids = callback_outputs.pop('add_time_ids', add_time_ids) + add_neg_time_ids = callback_outputs.pop('add_neg_time_ids', add_neg_time_ids) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if XLA_AVAILABLE: + xm.mark_step() + if not output_type == 'latent': + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + elif latents.dtype != self.vae.dtype: + if torch.backends.mps.is_available(): + self.vae = self.vae.to(latents.dtype) + has_latents_mean = hasattr(self.vae.config, 'latents_mean') and self.vae.config.latents_mean is not None + has_latents_std = hasattr(self.vae.config, 'latents_std') and self.vae.config.latents_std is not None + if has_latents_mean and has_latents_std: + latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) + latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) + latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean + else: + latents = latents / self.vae.config.scaling_factor + image = self.vae.decode(latents, return_dict=False)[0] + if needs_upcasting: + self.vae.to(dtype=torch.float16) + else: + image = latents + if self.watermark is not None: + image = self.watermark.apply_watermark(image) + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if self.do_perturbed_attention_guidance: + self.unet.set_attn_processor(original_attn_proc) + if not return_dict: + return (image,) + return StableDiffusionXLPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, is_invisible_watermark_available, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput +from .pag_utils import PAGMixin +if is_invisible_watermark_available(): + from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import AutoPipelineForInpainting\n >>> from diffusers.utils import load_image\n\n >>> pipe = AutoPipelineForInpainting.from_pretrained(\n ... "stabilityai/stable-diffusion-xl-base-1.0",\n ... torch_dtype=torch.float16,\n ... variant="fp16",\n ... enable_pag=True,\n ... )\n >>> pipe.to("cuda")\n\n >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"\n >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"\n\n >>> init_image = load_image(img_url).convert("RGB")\n >>> mask_image = load_image(mask_url).convert("RGB")\n\n >>> prompt = "A majestic tiger sitting on a bench"\n >>> image = pipe(\n ... prompt=prompt,\n ... image=init_image,\n ... mask_image=mask_image,\n ... num_inference_steps=50,\n ... strength=0.80,\n ... pag_scale=0.3,\n ... ).images[0]\n ```\n' + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusionXLPAGInpaintPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionXLLoraLoaderMixin, FromSingleFileMixin, IPAdapterMixin, PAGMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->image_encoder->unet->vae' + _optional_components = ['tokenizer', 'tokenizer_2', 'text_encoder', 'text_encoder_2', 'image_encoder', 'feature_extractor'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'add_text_embeds', 'add_time_ids', 'negative_pooled_prompt_embeds', 'add_neg_time_ids', 'mask', 'masked_image_latents'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, image_encoder: CLIPVisionModelWithProjection=None, feature_extractor: CLIPImageProcessor=None, requires_aesthetics_score: bool=False, force_zeros_for_empty_prompt: bool=True, add_watermarker: Optional[bool]=None, pag_applied_layers: Union[str, List[str]]='mid'): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, image_encoder=image_encoder, feature_extractor=feature_extractor, scheduler=scheduler) + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.register_to_config(requires_aesthetics_score=requires_aesthetics_score) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.mask_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True) + add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() + if add_watermarker: + self.watermark = StableDiffusionXLWatermarker() + else: + self.watermark = None + self.set_pag_applied_layers(pag_applied_layers) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def encode_prompt(self, prompt: str, prompt_2: Optional[str]=None, device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[str]=None, negative_prompt_2: Optional[str]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) + else: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for (prompt, tokenizer, text_encoder) in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + text_inputs = tokenizer(prompt, padding='max_length', max_length=tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + prompt_embeds_list.append(prompt_embeds) + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + negative_prompt_embeds_list = [] + for (negative_prompt, tokenizer, text_encoder) in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer(negative_prompt, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True) + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + negative_prompt_embeds_list.append(negative_prompt_embeds) + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + if self.text_encoder_2 is not None: + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + if self.text_encoder_2 is not None: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, prompt_2, image, mask_image, height, width, strength, callback_steps, output_type, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None, padding_mask_crop=None): + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if padding_mask_crop is not None: + if not isinstance(image, PIL.Image.Image): + raise ValueError(f'The image should be a PIL image when inpainting mask crop, but is of type {type(image)}.') + if not isinstance(mask_image, PIL.Image.Image): + raise ValueError(f'The mask image should be a PIL image when inpainting mask crop, but is of type {type(mask_image)}.') + if output_type != 'pil': + raise ValueError(f'The output type should be PIL when inpainting mask crop, but is {output_type}.') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, image=None, timestep=None, is_strength_max=True, add_noise=True, return_noise=False, return_image_latents=False): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if (image is None or timestep is None) and (not is_strength_max): + raise ValueError('Since strength < 1. initial latents are to be initialised as a combination of Image + Noise.However, either the image or the noise timestep has not been provided.') + if image.shape[1] == 4: + image_latents = image.to(device=device, dtype=dtype) + image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) + elif return_image_latents or (latents is None and (not is_strength_max)): + image = image.to(device=device, dtype=dtype) + image_latents = self._encode_vae_image(image=image, generator=generator) + image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) + if latents is None and add_noise: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep) + latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents + elif add_noise: + noise = latents.to(device) + latents = noise * self.scheduler.init_noise_sigma + else: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = image_latents.to(device) + outputs = (latents,) + if return_noise: + outputs += (noise,) + if return_image_latents: + outputs += (image_latents,) + return outputs + + def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): + dtype = image.dtype + if self.vae.config.force_upcast: + image = image.float() + self.vae.to(dtype=torch.float32) + if isinstance(generator, list): + image_latents = [retrieve_latents(self.vae.encode(image[i:i + 1]), generator=generator[i]) for i in range(image.shape[0])] + image_latents = torch.cat(image_latents, dim=0) + else: + image_latents = retrieve_latents(self.vae.encode(image), generator=generator) + if self.vae.config.force_upcast: + self.vae.to(dtype) + image_latents = image_latents.to(dtype) + image_latents = self.vae.config.scaling_factor * image_latents + return image_latents + + def prepare_mask_latents(self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance): + mask = torch.nn.functional.interpolate(mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)) + mask = mask.to(device=device, dtype=dtype) + if mask.shape[0] < batch_size: + if not batch_size % mask.shape[0] == 0: + raise ValueError(f"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number of masks that you pass is divisible by the total requested batch size.") + mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) + mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask + if masked_image is not None and masked_image.shape[1] == 4: + masked_image_latents = masked_image + else: + masked_image_latents = None + if masked_image is not None: + if masked_image_latents is None: + masked_image = masked_image.to(device=device, dtype=dtype) + masked_image_latents = self._encode_vae_image(masked_image, generator=generator) + if masked_image_latents.shape[0] < batch_size: + if not batch_size % masked_image_latents.shape[0] == 0: + raise ValueError(f"The passed images and the required batch size don't match. Images are supposed to be duplicated to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed. Make sure the number of images that you pass is divisible by the total requested batch size.") + masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) + masked_image_latents = torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents + masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) + return (mask, masked_image_latents) + + def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None): + if denoising_start is None: + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + else: + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - denoising_start * self.scheduler.config.num_train_timesteps)) + num_inference_steps = (self.scheduler.timesteps < discrete_timestep_cutoff).sum().item() + if self.scheduler.order == 2 and num_inference_steps % 2 == 0: + num_inference_steps = num_inference_steps + 1 + t_start = len(self.scheduler.timesteps) - num_inference_steps + timesteps = self.scheduler.timesteps[t_start:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start) + return (timesteps, num_inference_steps) + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, aesthetic_score, negative_aesthetic_score, negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype, text_encoder_projection_dim=None): + if self.config.requires_aesthetics_score: + add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,)) + add_neg_time_ids = list(negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)) + else: + add_time_ids = list(original_size + crops_coords_top_left + target_size) + add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size) + passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + if expected_add_embed_dim > passed_add_embed_dim and expected_add_embed_dim - passed_add_embed_dim == self.unet.config.addition_time_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model.') + elif expected_add_embed_dim < passed_add_embed_dim and passed_add_embed_dim - expected_add_embed_dim == self.unet.config.addition_time_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model.') + elif expected_add_embed_dim != passed_add_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.') + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype) + return (add_time_ids, add_neg_time_ids) + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def guidance_rescale(self): + return self._guidance_rescale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def denoising_end(self): + return self._denoising_end + + @property + def denoising_start(self): + return self._denoising_start + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, image: PipelineImageInput=None, mask_image: PipelineImageInput=None, masked_image_latents: torch.Tensor=None, height: Optional[int]=None, width: Optional[int]=None, padding_mask_crop: Optional[int]=None, strength: float=0.9999, num_inference_steps: int=50, timesteps: List[int]=None, sigmas: List[float]=None, denoising_start: Optional[float]=None, denoising_end: Optional[float]=None, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, guidance_rescale: float=0.0, original_size: Tuple[int, int]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), target_size: Tuple[int, int]=None, negative_original_size: Optional[Tuple[int, int]]=None, negative_crops_coords_top_left: Tuple[int, int]=(0, 0), negative_target_size: Optional[Tuple[int, int]]=None, aesthetic_score: float=6.0, negative_aesthetic_score: float=2.5, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], pag_scale: float=3.0, pag_adaptive_scale: float=0.0): + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, prompt_2, image, mask_image, height, width, strength, None, output_type, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs, padding_mask_crop) + self._guidance_scale = guidance_scale + self._guidance_rescale = guidance_rescale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._denoising_end = denoising_end + self._denoising_start = denoising_start + self._interrupt = False + self._pag_scale = pag_scale + self._pag_adaptive_scale = pag_adaptive_scale + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + text_encoder_lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt=prompt, prompt_2=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + + def denoising_value_valid(dnv): + return isinstance(dnv, float) and 0 < dnv < 1 + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device, denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None) + if num_inference_steps < 1: + raise ValueError(f'After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipelinesteps is {num_inference_steps} which is < 1 and not appropriate for this pipeline.') + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + is_strength_max = strength == 1.0 + if padding_mask_crop is not None: + crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop) + resize_mode = 'fill' + else: + crops_coords = None + resize_mode = 'default' + original_image = image + init_image = self.image_processor.preprocess(image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode) + init_image = init_image.to(dtype=torch.float32) + mask = self.mask_processor.preprocess(mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords) + if masked_image_latents is not None: + masked_image = masked_image_latents + elif init_image.shape[1] == 4: + masked_image = None + else: + masked_image = init_image * (mask < 0.5) + num_channels_latents = self.vae.config.latent_channels + num_channels_unet = self.unet.config.in_channels + return_image_latents = num_channels_unet == 4 + add_noise = True if self.denoising_start is None else False + latents_outputs = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, image=init_image, timestep=latent_timestep, is_strength_max=is_strength_max, add_noise=add_noise, return_noise=True, return_image_latents=return_image_latents) + if return_image_latents: + (latents, noise, image_latents) = latents_outputs + else: + (latents, noise) = latents_outputs + (mask, masked_image_latents) = self.prepare_mask_latents(mask, masked_image, batch_size * num_images_per_prompt, height, width, prompt_embeds.dtype, device, generator, self.do_classifier_free_guidance) + if self.do_perturbed_attention_guidance: + if self.do_classifier_free_guidance: + (mask, _) = mask.chunk(2) + (masked_image_latents, _) = masked_image_latents.chunk(2) + mask = self._prepare_perturbed_attention_guidance(mask, mask, self.do_classifier_free_guidance) + masked_image_latents = self._prepare_perturbed_attention_guidance(masked_image_latents, masked_image_latents, self.do_classifier_free_guidance) + if num_channels_unet == 9: + num_channels_mask = mask.shape[1] + num_channels_masked_image = masked_image_latents.shape[1] + if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: + raise ValueError(f'Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} + `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image} = {num_channels_latents + num_channels_masked_image + num_channels_mask}. Please verify the config of `pipeline.unet` or your `mask_image` or `image` input.') + elif num_channels_unet != 4: + raise ValueError(f'The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}.') + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + (height, width) = latents.shape[-2:] + height = height * self.vae_scale_factor + width = width * self.vae_scale_factor + original_size = original_size or (height, width) + target_size = target_size or (height, width) + if negative_original_size is None: + negative_original_size = original_size + if negative_target_size is None: + negative_target_size = target_size + add_text_embeds = pooled_prompt_embeds + if self.text_encoder_2 is None: + text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) + else: + text_encoder_projection_dim = self.text_encoder_2.config.projection_dim + (add_time_ids, add_neg_time_ids) = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, aesthetic_score, negative_aesthetic_score, negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1) + add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1) + if self.do_perturbed_attention_guidance: + prompt_embeds = self._prepare_perturbed_attention_guidance(prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance) + add_text_embeds = self._prepare_perturbed_attention_guidance(add_text_embeds, negative_pooled_prompt_embeds, self.do_classifier_free_guidance) + add_time_ids = self._prepare_perturbed_attention_guidance(add_time_ids, add_neg_time_ids, self.do_classifier_free_guidance) + elif self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0) + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + for (i, image_embeds) in enumerate(ip_adapter_image_embeds): + negative_image_embeds = None + if self.do_classifier_free_guidance: + (negative_image_embeds, image_embeds) = image_embeds.chunk(2) + if self.do_perturbed_attention_guidance: + image_embeds = self._prepare_perturbed_attention_guidance(image_embeds, negative_image_embeds, self.do_classifier_free_guidance) + elif self.do_classifier_free_guidance: + image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0) + image_embeds = image_embeds.to(device) + ip_adapter_image_embeds[i] = image_embeds + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + if self.denoising_end is not None and self.denoising_start is not None and denoising_value_valid(self.denoising_end) and denoising_value_valid(self.denoising_start) and (self.denoising_start >= self.denoising_end): + raise ValueError(f'`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: ' + f' {self.denoising_end} when using type float.') + elif self.denoising_end is not None and denoising_value_valid(self.denoising_end): + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - self.denoising_end * self.scheduler.config.num_train_timesteps)) + num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) + timesteps = timesteps[:num_inference_steps] + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + if self.do_perturbed_attention_guidance: + original_attn_proc = self.unet.attn_processors + self._set_pag_attn_processor(pag_applied_layers=self.pag_applied_layers, do_classifier_free_guidance=self.do_classifier_free_guidance) + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0])) + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + if num_channels_unet == 9: + latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + added_cond_kwargs['image_embeds'] = ip_adapter_image_embeds + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_perturbed_attention_guidance: + noise_pred = self._apply_perturbed_attention_guidance(noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t) + elif self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + latents = latents.to(latents_dtype) + if num_channels_unet == 4: + init_latents_proper = image_latents + if self.do_perturbed_attention_guidance: + (init_mask, *_) = mask.chunk(3) if self.do_classifier_free_guidance else mask.chunk(2) + else: + (init_mask, *_) = mask.chunk(2) if self.do_classifier_free_guidance else mask + if i < len(timesteps) - 1: + noise_timestep = timesteps[i + 1] + init_latents_proper = self.scheduler.add_noise(init_latents_proper, noise, torch.tensor([noise_timestep])) + latents = (1 - init_mask) * init_latents_proper + init_mask * latents + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + add_text_embeds = callback_outputs.pop('add_text_embeds', add_text_embeds) + negative_pooled_prompt_embeds = callback_outputs.pop('negative_pooled_prompt_embeds', negative_pooled_prompt_embeds) + add_time_ids = callback_outputs.pop('add_time_ids', add_time_ids) + add_neg_time_ids = callback_outputs.pop('add_neg_time_ids', add_neg_time_ids) + mask = callback_outputs.pop('mask', mask) + masked_image_latents = callback_outputs.pop('masked_image_latents', masked_image_latents) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if XLA_AVAILABLE: + xm.mark_step() + if not output_type == 'latent': + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + elif latents.dtype != self.vae.dtype: + if torch.backends.mps.is_available(): + self.vae = self.vae.to(latents.dtype) + has_latents_mean = hasattr(self.vae.config, 'latents_mean') and self.vae.config.latents_mean is not None + has_latents_std = hasattr(self.vae.config, 'latents_std') and self.vae.config.latents_std is not None + if has_latents_mean and has_latents_std: + latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) + latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) + latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean + else: + latents = latents / self.vae.config.scaling_factor + image = self.vae.decode(latents, return_dict=False)[0] + if needs_upcasting: + self.vae.to(dtype=torch.float16) + else: + return StableDiffusionXLPipelineOutput(images=latents) + if self.watermark is not None: + image = self.watermark.apply_watermark(image) + image = self.image_processor.postprocess(image, output_type=output_type) + if padding_mask_crop is not None: + image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image] + self.maybe_free_model_hooks() + if self.do_perturbed_attention_guidance: + self.unet.set_attn_processor(original_attn_proc) + if not return_dict: + return (image,) + return StableDiffusionXLPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/paint_by_example/__init__.py +from dataclasses import dataclass +from typing import TYPE_CHECKING, List, Optional, Union +import numpy as np +import PIL +from PIL import Image +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['image_encoder'] = ['PaintByExampleImageEncoder'] + _import_structure['pipeline_paint_by_example'] = ['PaintByExamplePipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .image_encoder import PaintByExampleImageEncoder + from .pipeline_paint_by_example import PaintByExamplePipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/paint_by_example/image_encoder.py +import torch +from torch import nn +from transformers import CLIPPreTrainedModel, CLIPVisionModel +from ...models.attention import BasicTransformerBlock +from ...utils import logging +logger = logging.get_logger(__name__) + +class PaintByExampleImageEncoder(CLIPPreTrainedModel): + + def __init__(self, config, proj_size=None): + super().__init__(config) + self.proj_size = proj_size or getattr(config, 'projection_dim', 768) + self.model = CLIPVisionModel(config) + self.mapper = PaintByExampleMapper(config) + self.final_layer_norm = nn.LayerNorm(config.hidden_size) + self.proj_out = nn.Linear(config.hidden_size, self.proj_size) + self.uncond_vector = nn.Parameter(torch.randn((1, 1, self.proj_size))) + + def forward(self, pixel_values, return_uncond_vector=False): + clip_output = self.model(pixel_values=pixel_values) + latent_states = clip_output.pooler_output + latent_states = self.mapper(latent_states[:, None]) + latent_states = self.final_layer_norm(latent_states) + latent_states = self.proj_out(latent_states) + if return_uncond_vector: + return (latent_states, self.uncond_vector) + return latent_states + +class PaintByExampleMapper(nn.Module): + + def __init__(self, config): + super().__init__() + num_layers = (config.num_hidden_layers + 1) // 5 + hid_size = config.hidden_size + num_heads = 1 + self.blocks = nn.ModuleList([BasicTransformerBlock(hid_size, num_heads, hid_size, activation_fn='gelu', attention_bias=True) for _ in range(num_layers)]) + + def forward(self, hidden_states): + for block in self.blocks: + hidden_states = block(hidden_states) + return hidden_states + +# File: diffusers-main/src/diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +import inspect +from typing import Callable, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from transformers import CLIPImageProcessor +from ...image_processor import VaeImageProcessor +from ...models import AutoencoderKL, UNet2DConditionModel +from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler +from ...utils import deprecate, logging +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion import StableDiffusionPipelineOutput +from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker +from .image_encoder import PaintByExampleImageEncoder +logger = logging.get_logger(__name__) + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +def prepare_mask_and_masked_image(image, mask): + if isinstance(image, torch.Tensor): + if not isinstance(mask, torch.Tensor): + raise TypeError(f'`image` is a torch.Tensor but `mask` (type: {type(mask)} is not') + if image.ndim == 3: + assert image.shape[0] == 3, 'Image outside a batch should be of shape (3, H, W)' + image = image.unsqueeze(0) + if mask.ndim == 2: + mask = mask.unsqueeze(0).unsqueeze(0) + if mask.ndim == 3: + if mask.shape[0] == image.shape[0]: + mask = mask.unsqueeze(1) + else: + mask = mask.unsqueeze(0) + assert image.ndim == 4 and mask.ndim == 4, 'Image and Mask must have 4 dimensions' + assert image.shape[-2:] == mask.shape[-2:], 'Image and Mask must have the same spatial dimensions' + assert image.shape[0] == mask.shape[0], 'Image and Mask must have the same batch size' + assert mask.shape[1] == 1, 'Mask image must have a single channel' + if image.min() < -1 or image.max() > 1: + raise ValueError('Image should be in [-1, 1] range') + if mask.min() < 0 or mask.max() > 1: + raise ValueError('Mask should be in [0, 1] range') + mask = 1 - mask + mask[mask < 0.5] = 0 + mask[mask >= 0.5] = 1 + image = image.to(dtype=torch.float32) + elif isinstance(mask, torch.Tensor): + raise TypeError(f'`mask` is a torch.Tensor but `image` (type: {type(image)} is not') + else: + if isinstance(image, PIL.Image.Image): + image = [image] + image = np.concatenate([np.array(i.convert('RGB'))[None, :] for i in image], axis=0) + image = image.transpose(0, 3, 1, 2) + image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 + if isinstance(mask, PIL.Image.Image): + mask = [mask] + mask = np.concatenate([np.array(m.convert('L'))[None, None, :] for m in mask], axis=0) + mask = mask.astype(np.float32) / 255.0 + mask = 1 - mask + mask[mask < 0.5] = 0 + mask[mask >= 0.5] = 1 + mask = torch.from_numpy(mask) + masked_image = image * mask + return (mask, masked_image) + +class PaintByExamplePipeline(DiffusionPipeline, StableDiffusionMixin): + model_cpu_offload_seq = 'unet->vae' + _exclude_from_cpu_offload = ['image_encoder'] + _optional_components = ['safety_checker'] + + def __init__(self, vae: AutoencoderKL, image_encoder: PaintByExampleImageEncoder, unet: UNet2DConditionModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool=False): + super().__init__() + self.register_modules(vae=vae, image_encoder=image_encoder, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def check_inputs(self, image, height, width, callback_steps): + if not isinstance(image, torch.Tensor) and (not isinstance(image, PIL.Image.Image)) and (not isinstance(image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is {type(image)}') + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def prepare_mask_latents(self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance): + mask = torch.nn.functional.interpolate(mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)) + mask = mask.to(device=device, dtype=dtype) + masked_image = masked_image.to(device=device, dtype=dtype) + if masked_image.shape[1] == 4: + masked_image_latents = masked_image + else: + masked_image_latents = self._encode_vae_image(masked_image, generator=generator) + if mask.shape[0] < batch_size: + if not batch_size % mask.shape[0] == 0: + raise ValueError(f"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number of masks that you pass is divisible by the total requested batch size.") + mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) + if masked_image_latents.shape[0] < batch_size: + if not batch_size % masked_image_latents.shape[0] == 0: + raise ValueError(f"The passed images and the required batch size don't match. Images are supposed to be duplicated to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed. Make sure the number of images that you pass is divisible by the total requested batch size.") + masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) + mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask + masked_image_latents = torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents + masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) + return (mask, masked_image_latents) + + def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): + if isinstance(generator, list): + image_latents = [retrieve_latents(self.vae.encode(image[i:i + 1]), generator=generator[i]) for i in range(image.shape[0])] + image_latents = torch.cat(image_latents, dim=0) + else: + image_latents = retrieve_latents(self.vae.encode(image), generator=generator) + image_latents = self.vae.config.scaling_factor * image_latents + return image_latents + + def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(images=image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + (image_embeddings, negative_prompt_embeds) = self.image_encoder(image, return_uncond_vector=True) + (bs_embed, seq_len, _) = image_embeddings.shape + image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) + image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + negative_prompt_embeds = negative_prompt_embeds.repeat(1, image_embeddings.shape[0], 1) + negative_prompt_embeds = negative_prompt_embeds.view(bs_embed * num_images_per_prompt, 1, -1) + image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) + return image_embeddings + + @torch.no_grad() + def __call__(self, example_image: Union[torch.Tensor, PIL.Image.Image], image: Union[torch.Tensor, PIL.Image.Image], mask_image: Union[torch.Tensor, PIL.Image.Image], height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=5.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1): + if isinstance(image, PIL.Image.Image): + batch_size = 1 + elif isinstance(image, list): + batch_size = len(image) + else: + batch_size = image.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + (mask, masked_image) = prepare_mask_and_masked_image(image, mask_image) + (height, width) = masked_image.shape[-2:] + self.check_inputs(example_image, height, width, callback_steps) + image_embeddings = self._encode_image(example_image, device, num_images_per_prompt, do_classifier_free_guidance) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.vae.config.latent_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, image_embeddings.dtype, device, generator, latents) + (mask, masked_image_latents) = self.prepare_mask_latents(mask, masked_image, batch_size * num_images_per_prompt, height, width, image_embeddings.dtype, device, generator, do_classifier_free_guidance) + num_channels_mask = mask.shape[1] + num_channels_masked_image = masked_image_latents.shape[1] + if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: + raise ValueError(f'Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} + `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image} = {num_channels_latents + num_channels_masked_image + num_channels_mask}. Please verify the config of `pipeline.unet` or your `mask_image` or `image` input.') + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + latent_model_input = torch.cat([latent_model_input, masked_image_latents, mask], dim=1) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=image_embeddings).sample + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + self.maybe_free_model_hooks() + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, image_embeddings.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/pia/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_pia'] = ['PIAPipeline', 'PIAPipelineOutput'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_pia import PIAPipeline, PIAPipelineOutput +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/pia/pipeline_pia.py +import inspect +from dataclasses import dataclass +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import PIL +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...image_processor import PipelineImageInput +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...models.unets.unet_motion_model import MotionAdapter +from ...schedulers import DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler +from ...utils import USE_PEFT_BACKEND, BaseOutput, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ...video_processor import VideoProcessor +from ..free_init_utils import FreeInitMixin +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import EulerDiscreteScheduler, MotionAdapter, PIAPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> adapter = MotionAdapter.from_pretrained("openmmlab/PIA-condition-adapter")\n >>> pipe = PIAPipeline.from_pretrained(\n ... "SG161222/Realistic_Vision_V6.0_B1_noVAE", motion_adapter=adapter, torch_dtype=torch.float16\n ... )\n\n >>> pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)\n >>> image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png?download=true"\n ... )\n >>> image = image.resize((512, 512))\n >>> prompt = "cat in a hat"\n >>> negative_prompt = "wrong white balance, dark, sketches, worst quality, low quality, deformed, distorted"\n >>> generator = torch.Generator("cpu").manual_seed(0)\n >>> output = pipe(image=image, prompt=prompt, negative_prompt=negative_prompt, generator=generator)\n >>> frames = output.frames[0]\n >>> export_to_gif(frames, "pia-animation.gif")\n ```\n' +RANGE_LIST = [[1.0, 0.9, 0.85, 0.85, 0.85, 0.8], [1.0, 0.8, 0.8, 0.8, 0.79, 0.78, 0.75], [1.0, 0.8, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.6, 0.5, 0.5], [1.0, 0.9, 0.85, 0.85, 0.85, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.85, 0.85, 0.9, 1.0], [1.0, 0.8, 0.8, 0.8, 0.79, 0.78, 0.75, 0.75, 0.75, 0.75, 0.75, 0.78, 0.79, 0.8, 0.8, 1.0], [1.0, 0.8, 0.7, 0.7, 0.7, 0.7, 0.6, 0.5, 0.5, 0.6, 0.7, 0.7, 0.7, 0.7, 0.8, 1.0], [0.5, 0.4, 0.4, 0.4, 0.35, 0.3], [0.5, 0.4, 0.4, 0.4, 0.35, 0.35, 0.3, 0.25, 0.2], [0.5, 0.2]] + +def prepare_mask_coef_by_statistics(num_frames: int, cond_frame: int, motion_scale: int): + assert num_frames > 0, 'video_length should be greater than 0' + assert num_frames > cond_frame, 'video_length should be greater than cond_frame' + range_list = RANGE_LIST + assert motion_scale < len(range_list), f'motion_scale type{motion_scale} not implemented' + coef = range_list[motion_scale] + coef = coef + [coef[-1]] * (num_frames - len(coef)) + order = [abs(i - cond_frame) for i in range(num_frames)] + coef = [coef[order[i]] for i in range(num_frames)] + return coef + +@dataclass +class PIAPipelineOutput(BaseOutput): + frames: Union[torch.Tensor, np.ndarray, List[List[PIL.Image.Image]]] + +class PIAPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, FromSingleFileMixin, FreeInitMixin): + model_cpu_offload_seq = 'text_encoder->image_encoder->unet->vae' + _optional_components = ['feature_extractor', 'image_encoder', 'motion_adapter'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: Union[UNet2DConditionModel, UNetMotionModel], scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler], motion_adapter: Optional[MotionAdapter]=None, feature_extractor: CLIPImageProcessor=None, image_encoder: CLIPVisionModelWithProjection=None): + super().__init__() + if isinstance(unet, UNet2DConditionModel): + unet = UNetMotionModel.from_unet2d(unet, motion_adapter) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, motion_adapter=motion_adapter, scheduler=scheduler, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.video_processor = VideoProcessor(do_resize=False, vae_scale_factor=self.vae_scale_factor) + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def decode_latents(self, latents): + latents = 1 / self.vae.config.scaling_factor * latents + (batch_size, channels, num_frames, height, width) = latents.shape + latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) + image = self.vae.decode(latents).sample + video = image[None, :].reshape((batch_size, num_frames, -1) + image.shape[2:]).permute(0, 2, 1, 3, 4) + video = video.float() + return video + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def prepare_latents(self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def prepare_masked_condition(self, image, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, motion_scale=0): + shape = (batch_size, num_channels_latents, num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor) + (_, _, _, scaled_height, scaled_width) = shape + image = self.video_processor.preprocess(image) + image = image.to(device, dtype) + if isinstance(generator, list): + image_latent = [self.vae.encode(image[k:k + 1]).latent_dist.sample(generator[k]) for k in range(batch_size)] + image_latent = torch.cat(image_latent, dim=0) + else: + image_latent = self.vae.encode(image).latent_dist.sample(generator) + image_latent = image_latent.to(device=device, dtype=dtype) + image_latent = torch.nn.functional.interpolate(image_latent, size=[scaled_height, scaled_width]) + image_latent_padding = image_latent.clone() * self.vae.config.scaling_factor + mask = torch.zeros((batch_size, 1, num_frames, scaled_height, scaled_width)).to(device=device, dtype=dtype) + mask_coef = prepare_mask_coef_by_statistics(num_frames, 0, motion_scale) + masked_image = torch.zeros(batch_size, 4, num_frames, scaled_height, scaled_width).to(device=device, dtype=self.unet.dtype) + for f in range(num_frames): + mask[:, :, f, :, :] = mask_coef[f] + masked_image[:, :, f, :, :] = image_latent_padding.clone() + mask = torch.cat([mask] * 2) if self.do_classifier_free_guidance else mask + masked_image = torch.cat([masked_image] * 2) if self.do_classifier_free_guidance else masked_image + return (mask, masked_image) + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, image: PipelineImageInput, prompt: Union[str, List[str]]=None, strength: float=1.0, num_frames: Optional[int]=16, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_videos_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, motion_scale: int=0, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents']): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + num_videos_per_prompt = 1 + self.check_inputs(prompt, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + text_encoder_lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_videos_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_videos_per_prompt, self.do_classifier_free_guidance) + self.scheduler.set_timesteps(num_inference_steps, device=device) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device) + latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt) + self._num_timesteps = len(timesteps) + latents = self.prepare_latents(batch_size * num_videos_per_prompt, 4, num_frames, height, width, prompt_embeds.dtype, device, generator, latents=latents) + (mask, masked_image) = self.prepare_masked_condition(image, batch_size * num_videos_per_prompt, 4, num_frames=num_frames, height=height, width=width, dtype=self.unet.dtype, device=device, generator=generator, motion_scale=motion_scale) + if strength < 1.0: + noise = randn_tensor(latents.shape, generator=generator, device=device, dtype=latents.dtype) + latents = self.scheduler.add_noise(masked_image[0], noise, latent_timestep) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'image_embeds': image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None + num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1 + for free_init_iter in range(num_free_init_iters): + if self.free_init_enabled: + (latents, timesteps) = self._apply_free_init(latents, free_init_iter, num_inference_steps, device, latents.dtype, generator) + self._num_timesteps = len(timesteps) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=self._num_timesteps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + latent_model_input = torch.cat([latent_model_input, mask, masked_image], dim=1) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs).sample + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if output_type == 'latent': + video = latents + else: + video_tensor = self.decode_latents(latents) + video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (video,) + return PIAPipelineOutput(frames=video) + +# File: diffusers-main/src/diffusers/pipelines/pipeline_flax_utils.py +import importlib +import inspect +import os +from typing import Any, Dict, List, Optional, Union +import flax +import numpy as np +import PIL.Image +from flax.core.frozen_dict import FrozenDict +from huggingface_hub import create_repo, snapshot_download +from huggingface_hub.utils import validate_hf_hub_args +from PIL import Image +from tqdm.auto import tqdm +from ..configuration_utils import ConfigMixin +from ..models.modeling_flax_utils import FLAX_WEIGHTS_NAME, FlaxModelMixin +from ..schedulers.scheduling_utils_flax import SCHEDULER_CONFIG_NAME, FlaxSchedulerMixin +from ..utils import CONFIG_NAME, BaseOutput, PushToHubMixin, http_user_agent, is_transformers_available, logging +if is_transformers_available(): + from transformers import FlaxPreTrainedModel +INDEX_FILE = 'diffusion_flax_model.bin' +logger = logging.get_logger(__name__) +LOADABLE_CLASSES = {'diffusers': {'FlaxModelMixin': ['save_pretrained', 'from_pretrained'], 'FlaxSchedulerMixin': ['save_pretrained', 'from_pretrained'], 'FlaxDiffusionPipeline': ['save_pretrained', 'from_pretrained']}, 'transformers': {'PreTrainedTokenizer': ['save_pretrained', 'from_pretrained'], 'PreTrainedTokenizerFast': ['save_pretrained', 'from_pretrained'], 'FlaxPreTrainedModel': ['save_pretrained', 'from_pretrained'], 'FeatureExtractionMixin': ['save_pretrained', 'from_pretrained'], 'ProcessorMixin': ['save_pretrained', 'from_pretrained'], 'ImageProcessingMixin': ['save_pretrained', 'from_pretrained']}} +ALL_IMPORTABLE_CLASSES = {} +for library in LOADABLE_CLASSES: + ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library]) + +def import_flax_or_no_model(module, class_name): + try: + class_obj = getattr(module, 'Flax' + class_name) + except AttributeError: + class_obj = getattr(module, class_name) + except AttributeError: + raise ValueError(f'Neither Flax{class_name} nor {class_name} exist in {module}') + return class_obj + +@flax.struct.dataclass +class FlaxImagePipelineOutput(BaseOutput): + images: Union[List[PIL.Image.Image], np.ndarray] + +class FlaxDiffusionPipeline(ConfigMixin, PushToHubMixin): + config_name = 'model_index.json' + + def register_modules(self, **kwargs): + from diffusers import pipelines + for (name, module) in kwargs.items(): + if module is None: + register_dict = {name: (None, None)} + else: + library = module.__module__.split('.')[0] + pipeline_dir = module.__module__.split('.')[-2] + path = module.__module__.split('.') + is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir) + if library not in LOADABLE_CLASSES or is_pipeline_module: + library = pipeline_dir + class_name = module.__class__.__name__ + register_dict = {name: (library, class_name)} + self.register_to_config(**register_dict) + setattr(self, name, module) + + def save_pretrained(self, save_directory: Union[str, os.PathLike], params: Union[Dict, FrozenDict], push_to_hub: bool=False, **kwargs): + self.save_config(save_directory) + model_index_dict = dict(self.config) + model_index_dict.pop('_class_name') + model_index_dict.pop('_diffusers_version') + model_index_dict.pop('_module', None) + if push_to_hub: + commit_message = kwargs.pop('commit_message', None) + private = kwargs.pop('private', False) + create_pr = kwargs.pop('create_pr', False) + token = kwargs.pop('token', None) + repo_id = kwargs.pop('repo_id', save_directory.split(os.path.sep)[-1]) + repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id + for pipeline_component_name in model_index_dict.keys(): + sub_model = getattr(self, pipeline_component_name) + if sub_model is None: + continue + model_cls = sub_model.__class__ + save_method_name = None + for (library_name, library_classes) in LOADABLE_CLASSES.items(): + library = importlib.import_module(library_name) + for (base_class, save_load_methods) in library_classes.items(): + class_candidate = getattr(library, base_class, None) + if class_candidate is not None and issubclass(model_cls, class_candidate): + save_method_name = save_load_methods[0] + break + if save_method_name is not None: + break + save_method = getattr(sub_model, save_method_name) + expects_params = 'params' in set(inspect.signature(save_method).parameters.keys()) + if expects_params: + save_method(os.path.join(save_directory, pipeline_component_name), params=params[pipeline_component_name]) + else: + save_method(os.path.join(save_directory, pipeline_component_name)) + if push_to_hub: + self._upload_folder(save_directory, repo_id, token=token, commit_message=commit_message, create_pr=create_pr) + + @classmethod + @validate_hf_hub_args + def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): + cache_dir = kwargs.pop('cache_dir', None) + proxies = kwargs.pop('proxies', None) + local_files_only = kwargs.pop('local_files_only', False) + token = kwargs.pop('token', None) + revision = kwargs.pop('revision', None) + from_pt = kwargs.pop('from_pt', False) + use_memory_efficient_attention = kwargs.pop('use_memory_efficient_attention', False) + split_head_dim = kwargs.pop('split_head_dim', False) + dtype = kwargs.pop('dtype', None) + if not os.path.isdir(pretrained_model_name_or_path): + config_dict = cls.load_config(pretrained_model_name_or_path, cache_dir=cache_dir, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision) + folder_names = [k for k in config_dict.keys() if not k.startswith('_')] + allow_patterns = [os.path.join(k, '*') for k in folder_names] + allow_patterns += [FLAX_WEIGHTS_NAME, SCHEDULER_CONFIG_NAME, CONFIG_NAME, cls.config_name] + ignore_patterns = ['*.bin', '*.safetensors'] if not from_pt else [] + ignore_patterns += ['*.onnx', '*.onnx_data', '*.xml', '*.pb'] + if cls != FlaxDiffusionPipeline: + requested_pipeline_class = cls.__name__ + else: + requested_pipeline_class = config_dict.get('_class_name', cls.__name__) + requested_pipeline_class = requested_pipeline_class if requested_pipeline_class.startswith('Flax') else 'Flax' + requested_pipeline_class + user_agent = {'pipeline_class': requested_pipeline_class} + user_agent = http_user_agent(user_agent) + cached_folder = snapshot_download(pretrained_model_name_or_path, cache_dir=cache_dir, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, allow_patterns=allow_patterns, ignore_patterns=ignore_patterns, user_agent=user_agent) + else: + cached_folder = pretrained_model_name_or_path + config_dict = cls.load_config(cached_folder) + if cls != FlaxDiffusionPipeline: + pipeline_class = cls + else: + diffusers_module = importlib.import_module(cls.__module__.split('.')[0]) + class_name = config_dict['_class_name'] if config_dict['_class_name'].startswith('Flax') else 'Flax' + config_dict['_class_name'] + pipeline_class = getattr(diffusers_module, class_name) + (expected_modules, optional_kwargs) = cls._get_signature_keys(pipeline_class) + passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} + passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} + (init_dict, unused_kwargs, _) = pipeline_class.extract_init_dict(config_dict, **kwargs) + init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict} + init_kwargs = {**init_kwargs, **passed_pipe_kwargs} + + def load_module(name, value): + if value[0] is None: + return False + if name in passed_class_obj and passed_class_obj[name] is None: + return False + return True + init_dict = {k: v for (k, v) in init_dict.items() if load_module(k, v)} + if len(unused_kwargs) > 0: + logger.warning(f'Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored.') + params = {} + from diffusers import pipelines + for (name, (library_name, class_name)) in init_dict.items(): + if class_name is None: + init_kwargs[name] = None + continue + is_pipeline_module = hasattr(pipelines, library_name) + loaded_sub_model = None + sub_model_should_be_defined = True + if name in passed_class_obj: + if not is_pipeline_module: + library = importlib.import_module(library_name) + class_obj = getattr(library, class_name) + importable_classes = LOADABLE_CLASSES[library_name] + class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()} + expected_class_obj = None + for (class_name, class_candidate) in class_candidates.items(): + if class_candidate is not None and issubclass(class_obj, class_candidate): + expected_class_obj = class_candidate + if not issubclass(passed_class_obj[name].__class__, expected_class_obj): + raise ValueError(f'{passed_class_obj[name]} is of type: {type(passed_class_obj[name])}, but should be {expected_class_obj}') + elif passed_class_obj[name] is None: + logger.warning(f'You have passed `None` for {name} to disable its functionality in {pipeline_class}. Note that this might lead to problems when using {pipeline_class} and is not recommended.') + sub_model_should_be_defined = False + else: + logger.warning(f'You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it has the correct type') + loaded_sub_model = passed_class_obj[name] + elif is_pipeline_module: + pipeline_module = getattr(pipelines, library_name) + class_obj = import_flax_or_no_model(pipeline_module, class_name) + importable_classes = ALL_IMPORTABLE_CLASSES + class_candidates = {c: class_obj for c in importable_classes.keys()} + else: + library = importlib.import_module(library_name) + class_obj = import_flax_or_no_model(library, class_name) + importable_classes = LOADABLE_CLASSES[library_name] + class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()} + if loaded_sub_model is None and sub_model_should_be_defined: + load_method_name = None + for (class_name, class_candidate) in class_candidates.items(): + if class_candidate is not None and issubclass(class_obj, class_candidate): + load_method_name = importable_classes[class_name][1] + load_method = getattr(class_obj, load_method_name) + if os.path.isdir(os.path.join(cached_folder, name)): + loadable_folder = os.path.join(cached_folder, name) + else: + loaded_sub_model = cached_folder + if issubclass(class_obj, FlaxModelMixin): + (loaded_sub_model, loaded_params) = load_method(loadable_folder, from_pt=from_pt, use_memory_efficient_attention=use_memory_efficient_attention, split_head_dim=split_head_dim, dtype=dtype) + params[name] = loaded_params + elif is_transformers_available() and issubclass(class_obj, FlaxPreTrainedModel): + if from_pt: + loaded_sub_model = load_method(loadable_folder, from_pt=from_pt) + loaded_params = loaded_sub_model.params + del loaded_sub_model._params + else: + (loaded_sub_model, loaded_params) = load_method(loadable_folder, _do_init=False) + params[name] = loaded_params + elif issubclass(class_obj, FlaxSchedulerMixin): + (loaded_sub_model, scheduler_state) = load_method(loadable_folder) + params[name] = scheduler_state + else: + loaded_sub_model = load_method(loadable_folder) + init_kwargs[name] = loaded_sub_model + missing_modules = set(expected_modules) - set(init_kwargs.keys()) + passed_modules = list(passed_class_obj.keys()) + if len(missing_modules) > 0 and missing_modules <= set(passed_modules): + for module in missing_modules: + init_kwargs[module] = passed_class_obj.get(module, None) + elif len(missing_modules) > 0: + passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs + raise ValueError(f'Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed.') + model = pipeline_class(**init_kwargs, dtype=dtype) + return (model, params) + + @classmethod + def _get_signature_keys(cls, obj): + parameters = inspect.signature(obj.__init__).parameters + required_parameters = {k: v for (k, v) in parameters.items() if v.default == inspect._empty} + optional_parameters = set({k for (k, v) in parameters.items() if v.default != inspect._empty}) + expected_modules = set(required_parameters.keys()) - {'self'} + return (expected_modules, optional_parameters) + + @property + def components(self) -> Dict[str, Any]: + (expected_modules, optional_parameters) = self._get_signature_keys(self) + components = {k: getattr(self, k) for k in self.config.keys() if not k.startswith('_') and k not in optional_parameters} + if set(components.keys()) != expected_modules: + raise ValueError(f'{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected {expected_modules} to be defined, but {components} are defined.') + return components + + @staticmethod + def numpy_to_pil(images): + if images.ndim == 3: + images = images[None, ...] + images = (images * 255).round().astype('uint8') + if images.shape[-1] == 1: + pil_images = [Image.fromarray(image.squeeze(), mode='L') for image in images] + else: + pil_images = [Image.fromarray(image) for image in images] + return pil_images + + def progress_bar(self, iterable): + if not hasattr(self, '_progress_bar_config'): + self._progress_bar_config = {} + elif not isinstance(self._progress_bar_config, dict): + raise ValueError(f'`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}.') + return tqdm(iterable, **self._progress_bar_config) + + def set_progress_bar_config(self, **kwargs): + self._progress_bar_config = kwargs + +# File: diffusers-main/src/diffusers/pipelines/pipeline_loading_utils.py +import importlib +import os +import re +import warnings +from pathlib import Path +from typing import Any, Dict, List, Optional, Union +import torch +from huggingface_hub import ModelCard, model_info +from huggingface_hub.utils import validate_hf_hub_args +from packaging import version +from .. import __version__ +from ..utils import FLAX_WEIGHTS_NAME, ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, deprecate, get_class_from_dynamic_module, is_accelerate_available, is_peft_available, is_transformers_available, logging +from ..utils.torch_utils import is_compiled_module +if is_transformers_available(): + import transformers + from transformers import PreTrainedModel + from transformers.utils import FLAX_WEIGHTS_NAME as TRANSFORMERS_FLAX_WEIGHTS_NAME + from transformers.utils import SAFE_WEIGHTS_NAME as TRANSFORMERS_SAFE_WEIGHTS_NAME + from transformers.utils import WEIGHTS_NAME as TRANSFORMERS_WEIGHTS_NAME +if is_accelerate_available(): + import accelerate + from accelerate import dispatch_model + from accelerate.hooks import remove_hook_from_module + from accelerate.utils import compute_module_sizes, get_max_memory +INDEX_FILE = 'diffusion_pytorch_model.bin' +CUSTOM_PIPELINE_FILE_NAME = 'pipeline.py' +DUMMY_MODULES_FOLDER = 'diffusers.utils' +TRANSFORMERS_DUMMY_MODULES_FOLDER = 'transformers.utils' +CONNECTED_PIPES_KEYS = ['prior'] +logger = logging.get_logger(__name__) +LOADABLE_CLASSES = {'diffusers': {'ModelMixin': ['save_pretrained', 'from_pretrained'], 'SchedulerMixin': ['save_pretrained', 'from_pretrained'], 'DiffusionPipeline': ['save_pretrained', 'from_pretrained'], 'OnnxRuntimeModel': ['save_pretrained', 'from_pretrained']}, 'transformers': {'PreTrainedTokenizer': ['save_pretrained', 'from_pretrained'], 'PreTrainedTokenizerFast': ['save_pretrained', 'from_pretrained'], 'PreTrainedModel': ['save_pretrained', 'from_pretrained'], 'FeatureExtractionMixin': ['save_pretrained', 'from_pretrained'], 'ProcessorMixin': ['save_pretrained', 'from_pretrained'], 'ImageProcessingMixin': ['save_pretrained', 'from_pretrained']}, 'onnxruntime.training': {'ORTModule': ['save_pretrained', 'from_pretrained']}} +ALL_IMPORTABLE_CLASSES = {} +for library in LOADABLE_CLASSES: + ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library]) + +def is_safetensors_compatible(filenames, passed_components=None, folder_names=None) -> bool: + passed_components = passed_components or [] + if folder_names is not None: + filenames = {f for f in filenames if os.path.split(f)[0] in folder_names} + components = {} + for filename in filenames: + if not len(filename.split('/')) == 2: + continue + (component, component_filename) = filename.split('/') + if component in passed_components: + continue + components.setdefault(component, []) + components[component].append(component_filename) + for (component, component_filenames) in components.items(): + matches = [] + for component_filename in component_filenames: + (filename, extension) = os.path.splitext(component_filename) + match_exists = extension == '.safetensors' + matches.append(match_exists) + if not any(matches): + return False + return True + +def variant_compatible_siblings(filenames, variant=None) -> Union[List[os.PathLike], str]: + weight_names = [WEIGHTS_NAME, SAFETENSORS_WEIGHTS_NAME, FLAX_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, ONNX_EXTERNAL_WEIGHTS_NAME] + if is_transformers_available(): + weight_names += [TRANSFORMERS_WEIGHTS_NAME, TRANSFORMERS_SAFE_WEIGHTS_NAME, TRANSFORMERS_FLAX_WEIGHTS_NAME] + weight_prefixes = [w.split('.')[0] for w in weight_names] + weight_suffixs = [w.split('.')[-1] for w in weight_names] + transformers_index_format = '\\d{5}-of-\\d{5}' + if variant is not None: + variant_file_re = re.compile(f"({'|'.join(weight_prefixes)})\\.({variant}|{variant}-{transformers_index_format})\\.({'|'.join(weight_suffixs)})$") + variant_index_re = re.compile(f"({'|'.join(weight_prefixes)})\\.({'|'.join(weight_suffixs)})\\.index\\.{variant}\\.json$") + non_variant_file_re = re.compile(f"({'|'.join(weight_prefixes)})(-{transformers_index_format})?\\.({'|'.join(weight_suffixs)})$") + non_variant_index_re = re.compile(f"({'|'.join(weight_prefixes)})\\.({'|'.join(weight_suffixs)})\\.index\\.json") + if variant is not None: + variant_weights = {f for f in filenames if variant_file_re.match(f.split('/')[-1]) is not None} + variant_indexes = {f for f in filenames if variant_index_re.match(f.split('/')[-1]) is not None} + variant_filenames = variant_weights | variant_indexes + else: + variant_filenames = set() + non_variant_weights = {f for f in filenames if non_variant_file_re.match(f.split('/')[-1]) is not None} + non_variant_indexes = {f for f in filenames if non_variant_index_re.match(f.split('/')[-1]) is not None} + non_variant_filenames = non_variant_weights | non_variant_indexes + usable_filenames = set(variant_filenames) + + def convert_to_variant(filename): + if 'index' in filename: + variant_filename = filename.replace('index', f'index.{variant}') + elif re.compile(f'^(.*?){transformers_index_format}').match(filename) is not None: + variant_filename = f"{filename.split('-')[0]}.{variant}-{'-'.join(filename.split('-')[1:])}" + else: + variant_filename = f"{filename.split('.')[0]}.{variant}.{filename.split('.')[1]}" + return variant_filename + for f in non_variant_filenames: + variant_filename = convert_to_variant(f) + if variant_filename not in usable_filenames: + usable_filenames.add(f) + return (usable_filenames, variant_filenames) + +@validate_hf_hub_args +def warn_deprecated_model_variant(pretrained_model_name_or_path, token, variant, revision, model_filenames): + info = model_info(pretrained_model_name_or_path, token=token, revision=None) + filenames = {sibling.rfilename for sibling in info.siblings} + (comp_model_filenames, _) = variant_compatible_siblings(filenames, variant=revision) + comp_model_filenames = ['.'.join(f.split('.')[:1] + f.split('.')[2:]) for f in comp_model_filenames] + if set(model_filenames).issubset(set(comp_model_filenames)): + warnings.warn(f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` even though you can load it via `variant=`{revision}`. Loading model variants via `revision='{revision}'` is deprecated and will be removed in diffusers v1. Please use `variant='{revision}'` instead.", FutureWarning) + else: + warnings.warn(f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have the required variant filenames in the 'main' branch. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {revision} files' so that the correct variant file can be added.", FutureWarning) + +def _unwrap_model(model): + if is_compiled_module(model): + model = model._orig_mod + if is_peft_available(): + from peft import PeftModel + if isinstance(model, PeftModel): + model = model.base_model.model + return model + +def maybe_raise_or_warn(library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module): + if not is_pipeline_module: + library = importlib.import_module(library_name) + class_obj = getattr(library, class_name) + class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()} + expected_class_obj = None + for (class_name, class_candidate) in class_candidates.items(): + if class_candidate is not None and issubclass(class_obj, class_candidate): + expected_class_obj = class_candidate + sub_model = passed_class_obj[name] + unwrapped_sub_model = _unwrap_model(sub_model) + model_cls = unwrapped_sub_model.__class__ + if not issubclass(model_cls, expected_class_obj): + raise ValueError(f'{passed_class_obj[name]} is of type: {model_cls}, but should be {expected_class_obj}') + else: + logger.warning(f'You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it has the correct type') + +def get_class_obj_and_candidates(library_name, class_name, importable_classes, pipelines, is_pipeline_module, component_name=None, cache_dir=None): + component_folder = os.path.join(cache_dir, component_name) + if is_pipeline_module: + pipeline_module = getattr(pipelines, library_name) + class_obj = getattr(pipeline_module, class_name) + class_candidates = {c: class_obj for c in importable_classes.keys()} + elif os.path.isfile(os.path.join(component_folder, library_name + '.py')): + class_obj = get_class_from_dynamic_module(component_folder, module_file=library_name + '.py', class_name=class_name) + class_candidates = {c: class_obj for c in importable_classes.keys()} + else: + library = importlib.import_module(library_name) + class_obj = getattr(library, class_name) + class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()} + return (class_obj, class_candidates) + +def _get_custom_pipeline_class(custom_pipeline, repo_id=None, hub_revision=None, class_name=None, cache_dir=None, revision=None): + if custom_pipeline.endswith('.py'): + path = Path(custom_pipeline) + file_name = path.name + custom_pipeline = path.parent.absolute() + elif repo_id is not None: + file_name = f'{custom_pipeline}.py' + custom_pipeline = repo_id + else: + file_name = CUSTOM_PIPELINE_FILE_NAME + if repo_id is not None and hub_revision is not None: + revision = hub_revision + return get_class_from_dynamic_module(custom_pipeline, module_file=file_name, class_name=class_name, cache_dir=cache_dir, revision=revision) + +def _get_pipeline_class(class_obj, config=None, load_connected_pipeline=False, custom_pipeline=None, repo_id=None, hub_revision=None, class_name=None, cache_dir=None, revision=None): + if custom_pipeline is not None: + return _get_custom_pipeline_class(custom_pipeline, repo_id=repo_id, hub_revision=hub_revision, class_name=class_name, cache_dir=cache_dir, revision=revision) + if class_obj.__name__ != 'DiffusionPipeline': + return class_obj + diffusers_module = importlib.import_module(class_obj.__module__.split('.')[0]) + class_name = class_name or config['_class_name'] + if not class_name: + raise ValueError('The class name could not be found in the configuration file. Please make sure to pass the correct `class_name`.') + class_name = class_name[4:] if class_name.startswith('Flax') else class_name + pipeline_cls = getattr(diffusers_module, class_name) + if load_connected_pipeline: + from .auto_pipeline import _get_connected_pipeline + connected_pipeline_cls = _get_connected_pipeline(pipeline_cls) + if connected_pipeline_cls is not None: + logger.info(f'Loading connected pipeline {connected_pipeline_cls.__name__} instead of {pipeline_cls.__name__} as specified via `load_connected_pipeline=True`') + else: + logger.info(f'{pipeline_cls.__name__} has no connected pipeline class. Loading {pipeline_cls.__name__}.') + pipeline_cls = connected_pipeline_cls or pipeline_cls + return pipeline_cls + +def _load_empty_model(library_name: str, class_name: str, importable_classes: List[Any], pipelines: Any, is_pipeline_module: bool, name: str, torch_dtype: Union[str, torch.dtype], cached_folder: Union[str, os.PathLike], **kwargs): + (class_obj, _) = get_class_obj_and_candidates(library_name, class_name, importable_classes, pipelines, is_pipeline_module, component_name=name, cache_dir=cached_folder) + if is_transformers_available(): + transformers_version = version.parse(version.parse(transformers.__version__).base_version) + else: + transformers_version = 'N/A' + is_transformers_model = is_transformers_available() and issubclass(class_obj, PreTrainedModel) and (transformers_version >= version.parse('4.20.0')) + diffusers_module = importlib.import_module(__name__.split('.')[0]) + is_diffusers_model = issubclass(class_obj, diffusers_module.ModelMixin) + model = None + config_path = cached_folder + user_agent = {'diffusers': __version__, 'file_type': 'model', 'framework': 'pytorch'} + if is_diffusers_model: + (config, unused_kwargs, commit_hash) = class_obj.load_config(os.path.join(config_path, name), cache_dir=cached_folder, return_unused_kwargs=True, return_commit_hash=True, force_download=kwargs.pop('force_download', False), proxies=kwargs.pop('proxies', None), local_files_only=kwargs.pop('local_files_only', False), token=kwargs.pop('token', None), revision=kwargs.pop('revision', None), subfolder=kwargs.pop('subfolder', None), user_agent=user_agent) + with accelerate.init_empty_weights(): + model = class_obj.from_config(config, **unused_kwargs) + elif is_transformers_model: + config_class = getattr(class_obj, 'config_class', None) + if config_class is None: + raise ValueError('`config_class` cannot be None. Please double-check the model.') + config = config_class.from_pretrained(cached_folder, subfolder=name, force_download=kwargs.pop('force_download', False), proxies=kwargs.pop('proxies', None), local_files_only=kwargs.pop('local_files_only', False), token=kwargs.pop('token', None), revision=kwargs.pop('revision', None), user_agent=user_agent) + with accelerate.init_empty_weights(): + model = class_obj(config) + if model is not None: + model = model.to(dtype=torch_dtype) + return model + +def _assign_components_to_devices(module_sizes: Dict[str, float], device_memory: Dict[str, float], device_mapping_strategy: str='balanced'): + device_ids = list(device_memory.keys()) + device_cycle = device_ids + device_ids[::-1] + device_memory = device_memory.copy() + device_id_component_mapping = {} + current_device_index = 0 + for component in module_sizes: + device_id = device_cycle[current_device_index % len(device_cycle)] + component_memory = module_sizes[component] + curr_device_memory = device_memory[device_id] + if component_memory > curr_device_memory: + device_id_component_mapping['cpu'] = [component] + else: + if device_id not in device_id_component_mapping: + device_id_component_mapping[device_id] = [component] + else: + device_id_component_mapping[device_id].append(component) + device_memory[device_id] -= component_memory + current_device_index += 1 + return device_id_component_mapping + +def _get_final_device_map(device_map, pipeline_class, passed_class_obj, init_dict, library, max_memory, **kwargs): + from diffusers import pipelines + torch_dtype = kwargs.get('torch_dtype', torch.float32) + init_empty_modules = {} + for (name, (library_name, class_name)) in init_dict.items(): + if class_name.startswith('Flax'): + raise ValueError('Flax pipelines are not supported with `device_map`.') + is_pipeline_module = hasattr(pipelines, library_name) + importable_classes = ALL_IMPORTABLE_CLASSES + loaded_sub_model = None + if name in passed_class_obj: + maybe_raise_or_warn(library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module) + with accelerate.init_empty_weights(): + loaded_sub_model = passed_class_obj[name] + else: + loaded_sub_model = _load_empty_model(library_name=library_name, class_name=class_name, importable_classes=importable_classes, pipelines=pipelines, is_pipeline_module=is_pipeline_module, pipeline_class=pipeline_class, name=name, torch_dtype=torch_dtype, cached_folder=kwargs.get('cached_folder', None), force_download=kwargs.get('force_download', None), proxies=kwargs.get('proxies', None), local_files_only=kwargs.get('local_files_only', None), token=kwargs.get('token', None), revision=kwargs.get('revision', None)) + if loaded_sub_model is not None: + init_empty_modules[name] = loaded_sub_model + module_sizes = {module_name: compute_module_sizes(module, dtype=torch_dtype)[''] for (module_name, module) in init_empty_modules.items() if isinstance(module, torch.nn.Module)} + module_sizes = dict(sorted(module_sizes.items(), key=lambda item: item[1], reverse=True)) + max_memory = get_max_memory(max_memory) + max_memory = dict(sorted(max_memory.items(), key=lambda item: item[1], reverse=True)) + max_memory = {k: v for (k, v) in max_memory.items() if k != 'cpu'} + final_device_map = None + if len(max_memory) > 0: + device_id_component_mapping = _assign_components_to_devices(module_sizes, max_memory, device_mapping_strategy=device_map) + final_device_map = {} + for (device_id, components) in device_id_component_mapping.items(): + for component in components: + final_device_map[component] = device_id + return final_device_map + +def load_sub_model(library_name: str, class_name: str, importable_classes: List[Any], pipelines: Any, is_pipeline_module: bool, pipeline_class: Any, torch_dtype: torch.dtype, provider: Any, sess_options: Any, device_map: Optional[Union[Dict[str, torch.device], str]], max_memory: Optional[Dict[Union[int, str], Union[int, str]]], offload_folder: Optional[Union[str, os.PathLike]], offload_state_dict: bool, model_variants: Dict[str, str], name: str, from_flax: bool, variant: str, low_cpu_mem_usage: bool, cached_folder: Union[str, os.PathLike]): + (class_obj, class_candidates) = get_class_obj_and_candidates(library_name, class_name, importable_classes, pipelines, is_pipeline_module, component_name=name, cache_dir=cached_folder) + load_method_name = None + for (class_name, class_candidate) in class_candidates.items(): + if class_candidate is not None and issubclass(class_obj, class_candidate): + load_method_name = importable_classes[class_name][1] + if load_method_name is None: + none_module = class_obj.__module__ + is_dummy_path = none_module.startswith(DUMMY_MODULES_FOLDER) or none_module.startswith(TRANSFORMERS_DUMMY_MODULES_FOLDER) + if is_dummy_path and 'dummy' in none_module: + class_obj() + raise ValueError(f'The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}.') + load_method = getattr(class_obj, load_method_name) + diffusers_module = importlib.import_module(__name__.split('.')[0]) + loading_kwargs = {} + if issubclass(class_obj, torch.nn.Module): + loading_kwargs['torch_dtype'] = torch_dtype + if issubclass(class_obj, diffusers_module.OnnxRuntimeModel): + loading_kwargs['provider'] = provider + loading_kwargs['sess_options'] = sess_options + is_diffusers_model = issubclass(class_obj, diffusers_module.ModelMixin) + if is_transformers_available(): + transformers_version = version.parse(version.parse(transformers.__version__).base_version) + else: + transformers_version = 'N/A' + is_transformers_model = is_transformers_available() and issubclass(class_obj, PreTrainedModel) and (transformers_version >= version.parse('4.20.0')) + if is_diffusers_model or is_transformers_model: + loading_kwargs['device_map'] = device_map + loading_kwargs['max_memory'] = max_memory + loading_kwargs['offload_folder'] = offload_folder + loading_kwargs['offload_state_dict'] = offload_state_dict + loading_kwargs['variant'] = model_variants.pop(name, None) + if from_flax: + loading_kwargs['from_flax'] = True + if is_transformers_model and loading_kwargs['variant'] is not None and (transformers_version < version.parse('4.27.0')): + raise ImportError(f"When passing `variant='{variant}'`, please make sure to upgrade your `transformers` version to at least 4.27.0.dev0") + elif is_transformers_model and loading_kwargs['variant'] is None: + loading_kwargs.pop('variant') + if not (from_flax and is_transformers_model): + loading_kwargs['low_cpu_mem_usage'] = low_cpu_mem_usage + else: + loading_kwargs['low_cpu_mem_usage'] = False + if os.path.isdir(os.path.join(cached_folder, name)): + loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs) + else: + loaded_sub_model = load_method(cached_folder, **loading_kwargs) + if isinstance(loaded_sub_model, torch.nn.Module) and isinstance(device_map, dict): + remove_hook_from_module(loaded_sub_model, recurse=True) + needs_offloading_to_cpu = device_map[''] == 'cpu' + if needs_offloading_to_cpu: + dispatch_model(loaded_sub_model, state_dict=loaded_sub_model.state_dict(), device_map=device_map, force_hooks=True, main_device=0) + else: + dispatch_model(loaded_sub_model, device_map=device_map, force_hooks=True) + return loaded_sub_model + +def _fetch_class_library_tuple(module): + diffusers_module = importlib.import_module(__name__.split('.')[0]) + pipelines = getattr(diffusers_module, 'pipelines') + not_compiled_module = _unwrap_model(module) + library = not_compiled_module.__module__.split('.')[0] + module_path_items = not_compiled_module.__module__.split('.') + pipeline_dir = module_path_items[-2] if len(module_path_items) > 2 else None + path = not_compiled_module.__module__.split('.') + is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir) + if is_pipeline_module: + library = pipeline_dir + elif library not in LOADABLE_CLASSES: + library = not_compiled_module.__module__ + class_name = not_compiled_module.__class__.__name__ + return (library, class_name) + +def _identify_model_variants(folder: str, variant: str, config: dict) -> dict: + model_variants = {} + if variant is not None: + for sub_folder in os.listdir(folder): + folder_path = os.path.join(folder, sub_folder) + is_folder = os.path.isdir(folder_path) and sub_folder in config + variant_exists = is_folder and any((p.split('.')[1].startswith(variant) for p in os.listdir(folder_path))) + if variant_exists: + model_variants[sub_folder] = variant + return model_variants + +def _resolve_custom_pipeline_and_cls(folder, config, custom_pipeline): + custom_class_name = None + if os.path.isfile(os.path.join(folder, f'{custom_pipeline}.py')): + custom_pipeline = os.path.join(folder, f'{custom_pipeline}.py') + elif isinstance(config['_class_name'], (list, tuple)) and os.path.isfile(os.path.join(folder, f"{config['_class_name'][0]}.py")): + custom_pipeline = os.path.join(folder, f"{config['_class_name'][0]}.py") + custom_class_name = config['_class_name'][1] + return (custom_pipeline, custom_class_name) + +def _maybe_raise_warning_for_inpainting(pipeline_class, pretrained_model_name_or_path: str, config: dict): + if pipeline_class.__name__ == 'StableDiffusionInpaintPipeline' and version.parse(version.parse(config['_diffusers_version']).base_version) <= version.parse('0.5.1'): + from diffusers import StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy + pipeline_class = StableDiffusionInpaintPipelineLegacy + deprecation_message = f"You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For better inpainting results, we strongly suggest using Stable Diffusion's official inpainting checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your checkpoint {pretrained_model_name_or_path} to the format of https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain the {{StableDiffusionInpaintPipelineLegacy}} class and will likely remove it in version 1.0.0." + deprecate('StableDiffusionInpaintPipelineLegacy', '1.0.0', deprecation_message, standard_warn=False) + +def _update_init_kwargs_with_connected_pipeline(init_kwargs: dict, passed_pipe_kwargs: dict, passed_class_objs: dict, folder: str, **pipeline_loading_kwargs) -> dict: + from .pipeline_utils import DiffusionPipeline + modelcard = ModelCard.load(os.path.join(folder, 'README.md')) + connected_pipes = {prefix: getattr(modelcard.data, prefix, [None])[0] for prefix in CONNECTED_PIPES_KEYS} + pipeline_loading_kwargs_cp = pipeline_loading_kwargs.copy() + if pipeline_loading_kwargs_cp is not None and len(pipeline_loading_kwargs_cp) >= 1: + for k in pipeline_loading_kwargs: + if 'scheduler' in k: + _ = pipeline_loading_kwargs_cp.pop(k) + + def get_connected_passed_kwargs(prefix): + connected_passed_class_obj = {k.replace(f'{prefix}_', ''): w for (k, w) in passed_class_objs.items() if k.split('_')[0] == prefix} + connected_passed_pipe_kwargs = {k.replace(f'{prefix}_', ''): w for (k, w) in passed_pipe_kwargs.items() if k.split('_')[0] == prefix} + connected_passed_kwargs = {**connected_passed_class_obj, **connected_passed_pipe_kwargs} + return connected_passed_kwargs + connected_pipes = {prefix: DiffusionPipeline.from_pretrained(repo_id, **pipeline_loading_kwargs_cp, **get_connected_passed_kwargs(prefix)) for (prefix, repo_id) in connected_pipes.items() if repo_id is not None} + for (prefix, connected_pipe) in connected_pipes.items(): + init_kwargs.update({'_'.join([prefix, name]): component for (name, component) in connected_pipe.components.items()}) + return init_kwargs + +# File: diffusers-main/src/diffusers/pipelines/pipeline_utils.py +import fnmatch +import importlib +import inspect +import os +import re +import sys +from dataclasses import dataclass +from pathlib import Path +from typing import Any, Callable, Dict, List, Optional, Union, get_args, get_origin +import numpy as np +import PIL.Image +import requests +import torch +from huggingface_hub import ModelCard, create_repo, hf_hub_download, model_info, snapshot_download +from huggingface_hub.utils import OfflineModeIsEnabled, validate_hf_hub_args +from packaging import version +from requests.exceptions import HTTPError +from tqdm.auto import tqdm +from .. import __version__ +from ..configuration_utils import ConfigMixin +from ..models import AutoencoderKL +from ..models.attention_processor import FusedAttnProcessor2_0 +from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, ModelMixin +from ..schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME +from ..utils import CONFIG_NAME, DEPRECATED_REVISION_ARGS, BaseOutput, PushToHubMixin, deprecate, is_accelerate_available, is_accelerate_version, is_torch_npu_available, is_torch_version, logging, numpy_to_pil +from ..utils.hub_utils import load_or_create_model_card, populate_model_card +from ..utils.torch_utils import is_compiled_module +if is_torch_npu_available(): + import torch_npu +from .pipeline_loading_utils import ALL_IMPORTABLE_CLASSES, CONNECTED_PIPES_KEYS, CUSTOM_PIPELINE_FILE_NAME, LOADABLE_CLASSES, _fetch_class_library_tuple, _get_custom_pipeline_class, _get_final_device_map, _get_pipeline_class, _identify_model_variants, _maybe_raise_warning_for_inpainting, _resolve_custom_pipeline_and_cls, _unwrap_model, _update_init_kwargs_with_connected_pipeline, is_safetensors_compatible, load_sub_model, maybe_raise_or_warn, variant_compatible_siblings, warn_deprecated_model_variant +if is_accelerate_available(): + import accelerate +LIBRARIES = [] +for library in LOADABLE_CLASSES: + LIBRARIES.append(library) +SUPPORTED_DEVICE_MAP = ['balanced'] +logger = logging.get_logger(__name__) + +@dataclass +class ImagePipelineOutput(BaseOutput): + images: Union[List[PIL.Image.Image], np.ndarray] + +@dataclass +class AudioPipelineOutput(BaseOutput): + audios: np.ndarray + +class DiffusionPipeline(ConfigMixin, PushToHubMixin): + config_name = 'model_index.json' + model_cpu_offload_seq = None + hf_device_map = None + _optional_components = [] + _exclude_from_cpu_offload = [] + _load_connected_pipes = False + _is_onnx = False + + def register_modules(self, **kwargs): + for (name, module) in kwargs.items(): + if module is None or (isinstance(module, (tuple, list)) and module[0] is None): + register_dict = {name: (None, None)} + else: + (library, class_name) = _fetch_class_library_tuple(module) + register_dict = {name: (library, class_name)} + self.register_to_config(**register_dict) + setattr(self, name, module) + + def __setattr__(self, name: str, value: Any): + if name in self.__dict__ and hasattr(self.config, name): + if isinstance(getattr(self.config, name), (tuple, list)): + if value is not None and self.config[name][0] is not None: + class_library_tuple = _fetch_class_library_tuple(value) + else: + class_library_tuple = (None, None) + self.register_to_config(**{name: class_library_tuple}) + else: + self.register_to_config(**{name: value}) + super().__setattr__(name, value) + + def save_pretrained(self, save_directory: Union[str, os.PathLike], safe_serialization: bool=True, variant: Optional[str]=None, push_to_hub: bool=False, **kwargs): + model_index_dict = dict(self.config) + model_index_dict.pop('_class_name', None) + model_index_dict.pop('_diffusers_version', None) + model_index_dict.pop('_module', None) + model_index_dict.pop('_name_or_path', None) + if push_to_hub: + commit_message = kwargs.pop('commit_message', None) + private = kwargs.pop('private', False) + create_pr = kwargs.pop('create_pr', False) + token = kwargs.pop('token', None) + repo_id = kwargs.pop('repo_id', save_directory.split(os.path.sep)[-1]) + repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id + (expected_modules, optional_kwargs) = self._get_signature_keys(self) + + def is_saveable_module(name, value): + if name not in expected_modules: + return False + if name in self._optional_components and value[0] is None: + return False + return True + model_index_dict = {k: v for (k, v) in model_index_dict.items() if is_saveable_module(k, v)} + for pipeline_component_name in model_index_dict.keys(): + sub_model = getattr(self, pipeline_component_name) + model_cls = sub_model.__class__ + if is_compiled_module(sub_model): + sub_model = _unwrap_model(sub_model) + model_cls = sub_model.__class__ + save_method_name = None + for (library_name, library_classes) in LOADABLE_CLASSES.items(): + if library_name in sys.modules: + library = importlib.import_module(library_name) + else: + logger.info(f'{library_name} is not installed. Cannot save {pipeline_component_name} as {library_classes} from {library_name}') + for (base_class, save_load_methods) in library_classes.items(): + class_candidate = getattr(library, base_class, None) + if class_candidate is not None and issubclass(model_cls, class_candidate): + save_method_name = save_load_methods[0] + break + if save_method_name is not None: + break + if save_method_name is None: + logger.warning(f'self.{pipeline_component_name}={sub_model} of type {type(sub_model)} cannot be saved.') + self.register_to_config(**{pipeline_component_name: (None, None)}) + continue + save_method = getattr(sub_model, save_method_name) + save_method_signature = inspect.signature(save_method) + save_method_accept_safe = 'safe_serialization' in save_method_signature.parameters + save_method_accept_variant = 'variant' in save_method_signature.parameters + save_kwargs = {} + if save_method_accept_safe: + save_kwargs['safe_serialization'] = safe_serialization + if save_method_accept_variant: + save_kwargs['variant'] = variant + save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs) + self.save_config(save_directory) + if push_to_hub: + model_card = load_or_create_model_card(repo_id, token=token, is_pipeline=True) + model_card = populate_model_card(model_card) + model_card.save(os.path.join(save_directory, 'README.md')) + self._upload_folder(save_directory, repo_id, token=token, commit_message=commit_message, create_pr=create_pr) + + def to(self, *args, **kwargs): + dtype = kwargs.pop('dtype', None) + device = kwargs.pop('device', None) + silence_dtype_warnings = kwargs.pop('silence_dtype_warnings', False) + dtype_arg = None + device_arg = None + if len(args) == 1: + if isinstance(args[0], torch.dtype): + dtype_arg = args[0] + else: + device_arg = torch.device(args[0]) if args[0] is not None else None + elif len(args) == 2: + if isinstance(args[0], torch.dtype): + raise ValueError('When passing two arguments, make sure the first corresponds to `device` and the second to `dtype`.') + device_arg = torch.device(args[0]) if args[0] is not None else None + dtype_arg = args[1] + elif len(args) > 2: + raise ValueError('Please make sure to pass at most two arguments (`device` and `dtype`) `.to(...)`') + if dtype is not None and dtype_arg is not None: + raise ValueError('You have passed `dtype` both as an argument and as a keyword argument. Please only pass one of the two.') + dtype = dtype or dtype_arg + if device is not None and device_arg is not None: + raise ValueError('You have passed `device` both as an argument and as a keyword argument. Please only pass one of the two.') + device = device or device_arg + + def module_is_sequentially_offloaded(module): + if not is_accelerate_available() or is_accelerate_version('<', '0.14.0'): + return False + return hasattr(module, '_hf_hook') and (isinstance(module._hf_hook, accelerate.hooks.AlignDevicesHook) or (hasattr(module._hf_hook, 'hooks') and isinstance(module._hf_hook.hooks[0], accelerate.hooks.AlignDevicesHook))) + + def module_is_offloaded(module): + if not is_accelerate_available() or is_accelerate_version('<', '0.17.0.dev0'): + return False + return hasattr(module, '_hf_hook') and isinstance(module._hf_hook, accelerate.hooks.CpuOffload) + pipeline_is_sequentially_offloaded = any((module_is_sequentially_offloaded(module) for (_, module) in self.components.items())) + if pipeline_is_sequentially_offloaded and device and (torch.device(device).type == 'cuda'): + raise ValueError("It seems like you have activated sequential model offloading by calling `enable_sequential_cpu_offload`, but are now attempting to move the pipeline to GPU. This is not compatible with offloading. Please, move your pipeline `.to('cpu')` or consider removing the move altogether if you use sequential offloading.") + is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1 + if is_pipeline_device_mapped: + raise ValueError("It seems like you have activated a device mapping strategy on the pipeline which doesn't allow explicit device placement using `to()`. You can call `reset_device_map()` first and then call `to()`.") + pipeline_is_offloaded = any((module_is_offloaded(module) for (_, module) in self.components.items())) + if pipeline_is_offloaded and device and (torch.device(device).type == 'cuda'): + logger.warning(f"It seems like you have activated model offloading by calling `enable_model_cpu_offload`, but are now manually moving the pipeline to GPU. It is strongly recommended against doing so as memory gains from offloading are likely to be lost. Offloading automatically takes care of moving the individual components {', '.join(self.components.keys())} to GPU when needed. To make sure offloading works as expected, you should consider moving the pipeline back to CPU: `pipeline.to('cpu')` or removing the move altogether if you use offloading.") + (module_names, _) = self._get_signature_keys(self) + modules = [getattr(self, n, None) for n in module_names] + modules = [m for m in modules if isinstance(m, torch.nn.Module)] + is_offloaded = pipeline_is_offloaded or pipeline_is_sequentially_offloaded + for module in modules: + is_loaded_in_8bit = hasattr(module, 'is_loaded_in_8bit') and module.is_loaded_in_8bit + if is_loaded_in_8bit and dtype is not None: + logger.warning(f"The module '{module.__class__.__name__}' has been loaded in 8bit and conversion to {dtype} is not yet supported. Module is still in 8bit precision.") + if is_loaded_in_8bit and device is not None: + logger.warning(f"The module '{module.__class__.__name__}' has been loaded in 8bit and moving it to {dtype} via `.to()` is not yet supported. Module is still on {module.device}.") + else: + module.to(device, dtype) + if module.dtype == torch.float16 and str(device) in ['cpu'] and (not silence_dtype_warnings) and (not is_offloaded): + logger.warning('Pipelines loaded with `dtype=torch.float16` cannot run with `cpu` device. It is not recommended to move them to `cpu` as running them will fail. Please make sure to use an accelerator to run the pipeline in inference, due to the lack of support for`float16` operations on this device in PyTorch. Please, remove the `torch_dtype=torch.float16` argument, or use another device for inference.') + return self + + @property + def device(self) -> torch.device: + (module_names, _) = self._get_signature_keys(self) + modules = [getattr(self, n, None) for n in module_names] + modules = [m for m in modules if isinstance(m, torch.nn.Module)] + for module in modules: + return module.device + return torch.device('cpu') + + @property + def dtype(self) -> torch.dtype: + (module_names, _) = self._get_signature_keys(self) + modules = [getattr(self, n, None) for n in module_names] + modules = [m for m in modules if isinstance(m, torch.nn.Module)] + for module in modules: + return module.dtype + return torch.float32 + + @classmethod + @validate_hf_hub_args + def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): + kwargs_copied = kwargs.copy() + cache_dir = kwargs.pop('cache_dir', None) + force_download = kwargs.pop('force_download', False) + proxies = kwargs.pop('proxies', None) + local_files_only = kwargs.pop('local_files_only', None) + token = kwargs.pop('token', None) + revision = kwargs.pop('revision', None) + from_flax = kwargs.pop('from_flax', False) + torch_dtype = kwargs.pop('torch_dtype', None) + custom_pipeline = kwargs.pop('custom_pipeline', None) + custom_revision = kwargs.pop('custom_revision', None) + provider = kwargs.pop('provider', None) + sess_options = kwargs.pop('sess_options', None) + device_map = kwargs.pop('device_map', None) + max_memory = kwargs.pop('max_memory', None) + offload_folder = kwargs.pop('offload_folder', None) + offload_state_dict = kwargs.pop('offload_state_dict', False) + low_cpu_mem_usage = kwargs.pop('low_cpu_mem_usage', _LOW_CPU_MEM_USAGE_DEFAULT) + variant = kwargs.pop('variant', None) + use_safetensors = kwargs.pop('use_safetensors', None) + use_onnx = kwargs.pop('use_onnx', None) + load_connected_pipeline = kwargs.pop('load_connected_pipeline', False) + if low_cpu_mem_usage and (not is_accelerate_available()): + low_cpu_mem_usage = False + logger.warning('Cannot initialize model with low cpu memory usage because `accelerate` was not found in the environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip install accelerate\n```\n.') + if low_cpu_mem_usage is True and (not is_torch_version('>=', '1.9.0')): + raise NotImplementedError('Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set `low_cpu_mem_usage=False`.') + if device_map is not None and (not is_torch_version('>=', '1.9.0')): + raise NotImplementedError('Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set `device_map=None`.') + if device_map is not None and (not is_accelerate_available()): + raise NotImplementedError('Using `device_map` requires the `accelerate` library. Please install it using: `pip install accelerate`.') + if device_map is not None and (not isinstance(device_map, str)): + raise ValueError('`device_map` must be a string.') + if device_map is not None and device_map not in SUPPORTED_DEVICE_MAP: + raise NotImplementedError(f"{device_map} not supported. Supported strategies are: {', '.join(SUPPORTED_DEVICE_MAP)}") + if device_map is not None and device_map in SUPPORTED_DEVICE_MAP: + if is_accelerate_version('<', '0.28.0'): + raise NotImplementedError('Device placement requires `accelerate` version `0.28.0` or later.') + if low_cpu_mem_usage is False and device_map is not None: + raise ValueError(f'You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and dispatching. Please make sure to set `low_cpu_mem_usage=True`.') + if not os.path.isdir(pretrained_model_name_or_path): + if pretrained_model_name_or_path.count('/') > 1: + raise ValueError(f'The provided pretrained_model_name_or_path "{pretrained_model_name_or_path}" is neither a valid local path nor a valid repo id. Please check the parameter.') + cached_folder = cls.download(pretrained_model_name_or_path, cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, from_flax=from_flax, use_safetensors=use_safetensors, use_onnx=use_onnx, custom_pipeline=custom_pipeline, custom_revision=custom_revision, variant=variant, load_connected_pipeline=load_connected_pipeline, **kwargs) + else: + cached_folder = pretrained_model_name_or_path + config_dict = cls.load_config(cached_folder) + config_dict.pop('_ignore_files', None) + model_variants = _identify_model_variants(folder=cached_folder, variant=variant, config=config_dict) + (custom_pipeline, custom_class_name) = _resolve_custom_pipeline_and_cls(folder=cached_folder, config=config_dict, custom_pipeline=custom_pipeline) + pipeline_class = _get_pipeline_class(cls, config=config_dict, load_connected_pipeline=load_connected_pipeline, custom_pipeline=custom_pipeline, class_name=custom_class_name, cache_dir=cache_dir, revision=custom_revision) + if device_map is not None and pipeline_class._load_connected_pipes: + raise NotImplementedError('`device_map` is not yet supported for connected pipelines.') + _maybe_raise_warning_for_inpainting(pipeline_class=pipeline_class, pretrained_model_name_or_path=pretrained_model_name_or_path, config=config_dict) + (expected_modules, optional_kwargs) = cls._get_signature_keys(pipeline_class) + passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} + passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} + (init_dict, unused_kwargs, _) = pipeline_class.extract_init_dict(config_dict, **kwargs) + init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict and k not in pipeline_class._optional_components} + init_kwargs = {**init_kwargs, **passed_pipe_kwargs} + + def load_module(name, value): + if value[0] is None: + return False + if name in passed_class_obj and passed_class_obj[name] is None: + return False + return True + init_dict = {k: v for (k, v) in init_dict.items() if load_module(k, v)} + if from_flax and 'safety_checker' in init_dict and ('safety_checker' not in passed_class_obj): + raise NotImplementedError('The safety checker cannot be automatically loaded when loading weights `from_flax`. Please, pass `safety_checker=None` to `from_pretrained`, and load the safety checker separately if you need it.') + if len(unused_kwargs) > 0: + logger.warning(f'Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored.') + from diffusers import pipelines + final_device_map = None + if device_map is not None: + final_device_map = _get_final_device_map(device_map=device_map, pipeline_class=pipeline_class, passed_class_obj=passed_class_obj, init_dict=init_dict, library=library, max_memory=max_memory, torch_dtype=torch_dtype, cached_folder=cached_folder, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision) + current_device_map = None + for (name, (library_name, class_name)) in logging.tqdm(init_dict.items(), desc='Loading pipeline components...'): + if final_device_map is not None and len(final_device_map) > 0: + component_device = final_device_map.get(name, None) + if component_device is not None: + current_device_map = {'': component_device} + else: + current_device_map = None + class_name = class_name[4:] if class_name.startswith('Flax') else class_name + is_pipeline_module = hasattr(pipelines, library_name) + importable_classes = ALL_IMPORTABLE_CLASSES + loaded_sub_model = None + if name in passed_class_obj: + maybe_raise_or_warn(library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module) + loaded_sub_model = passed_class_obj[name] + else: + loaded_sub_model = load_sub_model(library_name=library_name, class_name=class_name, importable_classes=importable_classes, pipelines=pipelines, is_pipeline_module=is_pipeline_module, pipeline_class=pipeline_class, torch_dtype=torch_dtype, provider=provider, sess_options=sess_options, device_map=current_device_map, max_memory=max_memory, offload_folder=offload_folder, offload_state_dict=offload_state_dict, model_variants=model_variants, name=name, from_flax=from_flax, variant=variant, low_cpu_mem_usage=low_cpu_mem_usage, cached_folder=cached_folder) + logger.info(f'Loaded {name} as {class_name} from `{name}` subfolder of {pretrained_model_name_or_path}.') + init_kwargs[name] = loaded_sub_model + if pipeline_class._load_connected_pipes and os.path.isfile(os.path.join(cached_folder, 'README.md')): + init_kwargs = _update_init_kwargs_with_connected_pipeline(init_kwargs=init_kwargs, passed_pipe_kwargs=passed_pipe_kwargs, passed_class_objs=passed_class_obj, folder=cached_folder, **kwargs_copied) + missing_modules = set(expected_modules) - set(init_kwargs.keys()) + passed_modules = list(passed_class_obj.keys()) + optional_modules = pipeline_class._optional_components + if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules): + for module in missing_modules: + init_kwargs[module] = passed_class_obj.get(module, None) + elif len(missing_modules) > 0: + passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs + raise ValueError(f'Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed.') + model = pipeline_class(**init_kwargs) + model.register_to_config(_name_or_path=pretrained_model_name_or_path) + if device_map is not None: + setattr(model, 'hf_device_map', final_device_map) + return model + + @property + def name_or_path(self) -> str: + return getattr(self.config, '_name_or_path', None) + + @property + def _execution_device(self): + for (name, model) in self.components.items(): + if not isinstance(model, torch.nn.Module) or name in self._exclude_from_cpu_offload: + continue + if not hasattr(model, '_hf_hook'): + return self.device + for module in model.modules(): + if hasattr(module, '_hf_hook') and hasattr(module._hf_hook, 'execution_device') and (module._hf_hook.execution_device is not None): + return torch.device(module._hf_hook.execution_device) + return self.device + + def remove_all_hooks(self): + for (_, model) in self.components.items(): + if isinstance(model, torch.nn.Module) and hasattr(model, '_hf_hook'): + accelerate.hooks.remove_hook_from_module(model, recurse=True) + self._all_hooks = [] + + def enable_model_cpu_offload(self, gpu_id: Optional[int]=None, device: Union[torch.device, str]='cuda'): + is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1 + if is_pipeline_device_mapped: + raise ValueError("It seems like you have activated a device mapping strategy on the pipeline so calling `enable_model_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_model_cpu_offload()`.") + if self.model_cpu_offload_seq is None: + raise ValueError('Model CPU offload cannot be enabled because no `model_cpu_offload_seq` class attribute is set.') + if is_accelerate_available() and is_accelerate_version('>=', '0.17.0.dev0'): + from accelerate import cpu_offload_with_hook + else: + raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.') + self.remove_all_hooks() + torch_device = torch.device(device) + device_index = torch_device.index + if gpu_id is not None and device_index is not None: + raise ValueError(f'You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}') + self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, '_offload_gpu_id', 0) + device_type = torch_device.type + device = torch.device(f'{device_type}:{self._offload_gpu_id}') + self._offload_device = device + self.to('cpu', silence_dtype_warnings=True) + device_mod = getattr(torch, device.type, None) + if hasattr(device_mod, 'empty_cache') and device_mod.is_available(): + device_mod.empty_cache() + all_model_components = {k: v for (k, v) in self.components.items() if isinstance(v, torch.nn.Module)} + self._all_hooks = [] + hook = None + for model_str in self.model_cpu_offload_seq.split('->'): + model = all_model_components.pop(model_str, None) + if not isinstance(model, torch.nn.Module): + continue + (_, hook) = cpu_offload_with_hook(model, device, prev_module_hook=hook) + self._all_hooks.append(hook) + for (name, model) in all_model_components.items(): + if not isinstance(model, torch.nn.Module): + continue + if name in self._exclude_from_cpu_offload: + model.to(device) + else: + (_, hook) = cpu_offload_with_hook(model, device) + self._all_hooks.append(hook) + + def maybe_free_model_hooks(self): + if not hasattr(self, '_all_hooks') or len(self._all_hooks) == 0: + return + self.enable_model_cpu_offload(device=getattr(self, '_offload_device', 'cuda')) + + def enable_sequential_cpu_offload(self, gpu_id: Optional[int]=None, device: Union[torch.device, str]='cuda'): + if is_accelerate_available() and is_accelerate_version('>=', '0.14.0'): + from accelerate import cpu_offload + else: + raise ImportError('`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher') + self.remove_all_hooks() + is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1 + if is_pipeline_device_mapped: + raise ValueError("It seems like you have activated a device mapping strategy on the pipeline so calling `enable_sequential_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_sequential_cpu_offload()`.") + torch_device = torch.device(device) + device_index = torch_device.index + if gpu_id is not None and device_index is not None: + raise ValueError(f'You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}') + self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, '_offload_gpu_id', 0) + device_type = torch_device.type + device = torch.device(f'{device_type}:{self._offload_gpu_id}') + self._offload_device = device + if self.device.type != 'cpu': + self.to('cpu', silence_dtype_warnings=True) + device_mod = getattr(torch, self.device.type, None) + if hasattr(device_mod, 'empty_cache') and device_mod.is_available(): + device_mod.empty_cache() + for (name, model) in self.components.items(): + if not isinstance(model, torch.nn.Module): + continue + if name in self._exclude_from_cpu_offload: + model.to(device) + else: + offload_buffers = len(model._parameters) > 0 + cpu_offload(model, device, offload_buffers=offload_buffers) + + def reset_device_map(self): + if self.hf_device_map is None: + return + else: + self.remove_all_hooks() + for (name, component) in self.components.items(): + if isinstance(component, torch.nn.Module): + component.to('cpu') + self.hf_device_map = None + + @classmethod + @validate_hf_hub_args + def download(cls, pretrained_model_name, **kwargs) -> Union[str, os.PathLike]: + cache_dir = kwargs.pop('cache_dir', None) + force_download = kwargs.pop('force_download', False) + proxies = kwargs.pop('proxies', None) + local_files_only = kwargs.pop('local_files_only', None) + token = kwargs.pop('token', None) + revision = kwargs.pop('revision', None) + from_flax = kwargs.pop('from_flax', False) + custom_pipeline = kwargs.pop('custom_pipeline', None) + custom_revision = kwargs.pop('custom_revision', None) + variant = kwargs.pop('variant', None) + use_safetensors = kwargs.pop('use_safetensors', None) + use_onnx = kwargs.pop('use_onnx', None) + load_connected_pipeline = kwargs.pop('load_connected_pipeline', False) + trust_remote_code = kwargs.pop('trust_remote_code', False) + allow_pickle = False + if use_safetensors is None: + use_safetensors = True + allow_pickle = True + allow_patterns = None + ignore_patterns = None + model_info_call_error: Optional[Exception] = None + if not local_files_only: + try: + info = model_info(pretrained_model_name, token=token, revision=revision) + except (HTTPError, OfflineModeIsEnabled, requests.ConnectionError) as e: + logger.warning(f"Couldn't connect to the Hub: {e}.\nWill try to load from local cache.") + local_files_only = True + model_info_call_error = e + if not local_files_only: + config_file = hf_hub_download(pretrained_model_name, cls.config_name, cache_dir=cache_dir, revision=revision, proxies=proxies, force_download=force_download, token=token) + config_dict = cls._dict_from_json_file(config_file) + ignore_filenames = config_dict.pop('_ignore_files', []) + folder_names = [k for (k, v) in config_dict.items() if isinstance(v, list) and k != '_class_name'] + filenames = {sibling.rfilename for sibling in info.siblings} + (model_filenames, variant_filenames) = variant_compatible_siblings(filenames, variant=variant) + diffusers_module = importlib.import_module(__name__.split('.')[0]) + pipelines = getattr(diffusers_module, 'pipelines') + custom_components = {} + for component in folder_names: + module_candidate = config_dict[component][0] + if module_candidate is None or not isinstance(module_candidate, str): + continue + candidate_file = f'{component}/{module_candidate}.py' + if candidate_file in filenames: + custom_components[component] = module_candidate + elif module_candidate not in LOADABLE_CLASSES and (not hasattr(pipelines, module_candidate)): + raise ValueError(f"{candidate_file} as defined in `model_index.json` does not exist in {pretrained_model_name} and is not a module in 'diffusers/pipelines'.") + if len(variant_filenames) == 0 and variant is not None: + deprecation_message = f'You are trying to load the model files of the `variant={variant}`, but no such modeling files are available.The default model files: {model_filenames} will be loaded instead. Make sure to not load from `variant={variant}`if such variant modeling files are not available. Doing so will lead to an error in v0.24.0 as defaulting to non-variantmodeling files is deprecated.' + deprecate('no variant default', '0.24.0', deprecation_message, standard_warn=False) + model_filenames = set(model_filenames) - set(ignore_filenames) + variant_filenames = set(variant_filenames) - set(ignore_filenames) + if revision in DEPRECATED_REVISION_ARGS and version.parse(version.parse(__version__).base_version) >= version.parse('0.22.0'): + warn_deprecated_model_variant(pretrained_model_name, token, variant, revision, model_filenames) + model_folder_names = {os.path.split(f)[0] for f in model_filenames if os.path.split(f)[0] in folder_names} + custom_class_name = None + if custom_pipeline is None and isinstance(config_dict['_class_name'], (list, tuple)): + custom_pipeline = config_dict['_class_name'][0] + custom_class_name = config_dict['_class_name'][1] + allow_patterns = list(model_filenames) + allow_patterns += [f'{k}/*' for k in folder_names if k not in model_folder_names] + allow_patterns += [f'{k}/{f}.py' for (k, f) in custom_components.items()] + allow_patterns += [f'{custom_pipeline}.py'] if f'{custom_pipeline}.py' in filenames else [] + allow_patterns += [os.path.join(k, 'config.json') for k in model_folder_names] + allow_patterns += [SCHEDULER_CONFIG_NAME, CONFIG_NAME, cls.config_name, CUSTOM_PIPELINE_FILE_NAME] + load_pipe_from_hub = custom_pipeline is not None and f'{custom_pipeline}.py' in filenames + load_components_from_hub = len(custom_components) > 0 + if load_pipe_from_hub and (not trust_remote_code): + raise ValueError(f'The repository for {pretrained_model_name} contains custom code in {custom_pipeline}.py which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/{pretrained_model_name}/blob/main/{custom_pipeline}.py.\nPlease pass the argument `trust_remote_code=True` to allow custom code to be run.') + if load_components_from_hub and (not trust_remote_code): + raise ValueError(f"The repository for {pretrained_model_name} contains custom code in {'.py, '.join([os.path.join(k, v) for (k, v) in custom_components.items()])} which must be executed to correctly load the model. You can inspect the repository content at {', '.join([f'https://hf.co/{pretrained_model_name}/{k}/{v}.py' for (k, v) in custom_components.items()])}.\nPlease pass the argument `trust_remote_code=True` to allow custom code to be run.") + pipeline_class = _get_pipeline_class(cls, config_dict, load_connected_pipeline=load_connected_pipeline, custom_pipeline=custom_pipeline, repo_id=pretrained_model_name if load_pipe_from_hub else None, hub_revision=revision, class_name=custom_class_name, cache_dir=cache_dir, revision=custom_revision) + (expected_components, _) = cls._get_signature_keys(pipeline_class) + passed_components = [k for k in expected_components if k in kwargs] + if use_safetensors and (not allow_pickle) and (not is_safetensors_compatible(model_filenames, passed_components=passed_components, folder_names=model_folder_names)): + raise EnvironmentError(f'Could not find the necessary `safetensors` weights in {model_filenames} (variant={variant})') + if from_flax: + ignore_patterns = ['*.bin', '*.safetensors', '*.onnx', '*.pb'] + elif use_safetensors and is_safetensors_compatible(model_filenames, passed_components=passed_components, folder_names=model_folder_names): + ignore_patterns = ['*.bin', '*.msgpack'] + use_onnx = use_onnx if use_onnx is not None else pipeline_class._is_onnx + if not use_onnx: + ignore_patterns += ['*.onnx', '*.pb'] + safetensors_variant_filenames = {f for f in variant_filenames if f.endswith('.safetensors')} + safetensors_model_filenames = {f for f in model_filenames if f.endswith('.safetensors')} + if len(safetensors_variant_filenames) > 0 and safetensors_model_filenames != safetensors_variant_filenames: + logger.warning(f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(safetensors_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(safetensors_model_filenames - safetensors_variant_filenames)}\nIf this behavior is not expected, please check your folder structure.") + else: + ignore_patterns = ['*.safetensors', '*.msgpack'] + use_onnx = use_onnx if use_onnx is not None else pipeline_class._is_onnx + if not use_onnx: + ignore_patterns += ['*.onnx', '*.pb'] + bin_variant_filenames = {f for f in variant_filenames if f.endswith('.bin')} + bin_model_filenames = {f for f in model_filenames if f.endswith('.bin')} + if len(bin_variant_filenames) > 0 and bin_model_filenames != bin_variant_filenames: + logger.warning(f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(bin_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(bin_model_filenames - bin_variant_filenames)}\nIf this behavior is not expected, please check your folder structure.") + allow_patterns = [p for p in allow_patterns if not (len(p.split('/')) == 2 and p.split('/')[0] in passed_components)] + if pipeline_class._load_connected_pipes: + allow_patterns.append('README.md') + ignore_patterns = ignore_patterns + [f'{i}.index.*json' for i in ignore_patterns] + re_ignore_pattern = [re.compile(fnmatch.translate(p)) for p in ignore_patterns] + re_allow_pattern = [re.compile(fnmatch.translate(p)) for p in allow_patterns] + expected_files = [f for f in filenames if not any((p.match(f) for p in re_ignore_pattern))] + expected_files = [f for f in expected_files if any((p.match(f) for p in re_allow_pattern))] + snapshot_folder = Path(config_file).parent + pipeline_is_cached = all(((snapshot_folder / f).is_file() for f in expected_files)) + if pipeline_is_cached and (not force_download): + return snapshot_folder + user_agent = {'pipeline_class': cls.__name__} + if custom_pipeline is not None and (not custom_pipeline.endswith('.py')): + user_agent['custom_pipeline'] = custom_pipeline + try: + cached_folder = snapshot_download(pretrained_model_name, cache_dir=cache_dir, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, allow_patterns=allow_patterns, ignore_patterns=ignore_patterns, user_agent=user_agent) + cls_name = cls.load_config(os.path.join(cached_folder, 'model_index.json')).get('_class_name', None) + cls_name = cls_name[4:] if isinstance(cls_name, str) and cls_name.startswith('Flax') else cls_name + diffusers_module = importlib.import_module(__name__.split('.')[0]) + pipeline_class = getattr(diffusers_module, cls_name, None) if isinstance(cls_name, str) else None + if pipeline_class is not None and pipeline_class._load_connected_pipes: + modelcard = ModelCard.load(os.path.join(cached_folder, 'README.md')) + connected_pipes = sum([getattr(modelcard.data, k, []) for k in CONNECTED_PIPES_KEYS], []) + for connected_pipe_repo_id in connected_pipes: + download_kwargs = {'cache_dir': cache_dir, 'force_download': force_download, 'proxies': proxies, 'local_files_only': local_files_only, 'token': token, 'variant': variant, 'use_safetensors': use_safetensors} + DiffusionPipeline.download(connected_pipe_repo_id, **download_kwargs) + return cached_folder + except FileNotFoundError: + if model_info_call_error is None: + raise + else: + raise EnvironmentError(f'Cannot load model {pretrained_model_name}: model is not cached locally and an error occurred while trying to fetch metadata from the Hub. Please check out the root cause in the stacktrace above.') from model_info_call_error + + @classmethod + def _get_signature_keys(cls, obj): + parameters = inspect.signature(obj.__init__).parameters + required_parameters = {k: v for (k, v) in parameters.items() if v.default == inspect._empty} + optional_parameters = set({k for (k, v) in parameters.items() if v.default != inspect._empty}) + expected_modules = set(required_parameters.keys()) - {'self'} + optional_names = list(optional_parameters) + for name in optional_names: + if name in cls._optional_components: + expected_modules.add(name) + optional_parameters.remove(name) + return (expected_modules, optional_parameters) + + @classmethod + def _get_signature_types(cls): + signature_types = {} + for (k, v) in inspect.signature(cls.__init__).parameters.items(): + if inspect.isclass(v.annotation): + signature_types[k] = (v.annotation,) + elif get_origin(v.annotation) == Union: + signature_types[k] = get_args(v.annotation) + else: + logger.warning(f'cannot get type annotation for Parameter {k} of {cls}.') + return signature_types + + @property + def components(self) -> Dict[str, Any]: + (expected_modules, optional_parameters) = self._get_signature_keys(self) + components = {k: getattr(self, k) for k in self.config.keys() if not k.startswith('_') and k not in optional_parameters} + if set(components.keys()) != expected_modules: + raise ValueError(f'{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected {expected_modules} to be defined, but {components.keys()} are defined.') + return components + + @staticmethod + def numpy_to_pil(images): + return numpy_to_pil(images) + + def progress_bar(self, iterable=None, total=None): + if not hasattr(self, '_progress_bar_config'): + self._progress_bar_config = {} + elif not isinstance(self._progress_bar_config, dict): + raise ValueError(f'`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}.') + if iterable is not None: + return tqdm(iterable, **self._progress_bar_config) + elif total is not None: + return tqdm(total=total, **self._progress_bar_config) + else: + raise ValueError('Either `total` or `iterable` has to be defined.') + + def set_progress_bar_config(self, **kwargs): + self._progress_bar_config = kwargs + + def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable]=None): + self.set_use_memory_efficient_attention_xformers(True, attention_op) + + def disable_xformers_memory_efficient_attention(self): + self.set_use_memory_efficient_attention_xformers(False) + + def set_use_memory_efficient_attention_xformers(self, valid: bool, attention_op: Optional[Callable]=None) -> None: + + def fn_recursive_set_mem_eff(module: torch.nn.Module): + if hasattr(module, 'set_use_memory_efficient_attention_xformers'): + module.set_use_memory_efficient_attention_xformers(valid, attention_op) + for child in module.children(): + fn_recursive_set_mem_eff(child) + (module_names, _) = self._get_signature_keys(self) + modules = [getattr(self, n, None) for n in module_names] + modules = [m for m in modules if isinstance(m, torch.nn.Module)] + for module in modules: + fn_recursive_set_mem_eff(module) + + def enable_attention_slicing(self, slice_size: Optional[Union[str, int]]='auto'): + self.set_attention_slice(slice_size) + + def disable_attention_slicing(self): + self.enable_attention_slicing(None) + + def set_attention_slice(self, slice_size: Optional[int]): + (module_names, _) = self._get_signature_keys(self) + modules = [getattr(self, n, None) for n in module_names] + modules = [m for m in modules if isinstance(m, torch.nn.Module) and hasattr(m, 'set_attention_slice')] + for module in modules: + module.set_attention_slice(slice_size) + + @classmethod + def from_pipe(cls, pipeline, **kwargs): + original_config = dict(pipeline.config) + torch_dtype = kwargs.pop('torch_dtype', None) + custom_pipeline = kwargs.pop('custom_pipeline', None) + custom_revision = kwargs.pop('custom_revision', None) + if custom_pipeline is not None: + pipeline_class = _get_custom_pipeline_class(custom_pipeline, revision=custom_revision) + else: + pipeline_class = cls + (expected_modules, optional_kwargs) = cls._get_signature_keys(pipeline_class) + parameters = inspect.signature(cls.__init__).parameters + true_optional_modules = set({k for (k, v) in parameters.items() if v.default != inspect._empty and k in expected_modules}) + component_types = pipeline_class._get_signature_types() + pretrained_model_name_or_path = original_config.pop('_name_or_path', None) + passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} + original_class_obj = {} + for (name, component) in pipeline.components.items(): + if name in expected_modules and name not in passed_class_obj: + if not isinstance(component, ModelMixin) or type(component) in component_types[name] or (component is None and name in cls._optional_components): + original_class_obj[name] = component + else: + logger.warning(f'component {name} is not switched over to new pipeline because type does not match the expected. {name} is {type(component)} while the new pipeline expect {component_types[name]}. please pass the component of the correct type to the new pipeline. `from_pipe(..., {name}={name})`') + passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} + original_pipe_kwargs = {k: original_config[k] for k in original_config.keys() if k in optional_kwargs and k not in passed_pipe_kwargs} + additional_pipe_kwargs = [k[1:] for k in original_config.keys() if k.startswith('_') and k[1:] in optional_kwargs and (k[1:] not in passed_pipe_kwargs)] + for k in additional_pipe_kwargs: + original_pipe_kwargs[k] = original_config.pop(f'_{k}') + pipeline_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs, **kwargs} + unused_original_config = {f"{('' if k.startswith('_') else '_')}{k}": v for (k, v) in original_config.items() if k not in pipeline_kwargs} + missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(pipeline_kwargs.keys()) - set(true_optional_modules) + if len(missing_modules) > 0: + raise ValueError(f'Pipeline {pipeline_class} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed') + new_pipeline = pipeline_class(**pipeline_kwargs) + if pretrained_model_name_or_path is not None: + new_pipeline.register_to_config(_name_or_path=pretrained_model_name_or_path) + new_pipeline.register_to_config(**unused_original_config) + if torch_dtype is not None: + new_pipeline.to(dtype=torch_dtype) + return new_pipeline + +class StableDiffusionMixin: + + def enable_vae_slicing(self): + self.vae.enable_slicing() + + def disable_vae_slicing(self): + self.vae.disable_slicing() + + def enable_vae_tiling(self): + self.vae.enable_tiling() + + def disable_vae_tiling(self): + self.vae.disable_tiling() + + def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): + if not hasattr(self, 'unet'): + raise ValueError('The pipeline must have `unet` for using FreeU.') + self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2) + + def disable_freeu(self): + self.unet.disable_freeu() + + def fuse_qkv_projections(self, unet: bool=True, vae: bool=True): + self.fusing_unet = False + self.fusing_vae = False + if unet: + self.fusing_unet = True + self.unet.fuse_qkv_projections() + self.unet.set_attn_processor(FusedAttnProcessor2_0()) + if vae: + if not isinstance(self.vae, AutoencoderKL): + raise ValueError('`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.') + self.fusing_vae = True + self.vae.fuse_qkv_projections() + self.vae.set_attn_processor(FusedAttnProcessor2_0()) + + def unfuse_qkv_projections(self, unet: bool=True, vae: bool=True): + if unet: + if not self.fusing_unet: + logger.warning('The UNet was not initially fused for QKV projections. Doing nothing.') + else: + self.unet.unfuse_qkv_projections() + self.fusing_unet = False + if vae: + if not self.fusing_vae: + logger.warning('The VAE was not initially fused for QKV projections. Doing nothing.') + else: + self.vae.unfuse_qkv_projections() + self.fusing_vae = False + +# File: diffusers-main/src/diffusers/pipelines/pixart_alpha/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_pixart_alpha'] = ['PixArtAlphaPipeline'] + _import_structure['pipeline_pixart_sigma'] = ['PixArtSigmaPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_pixart_alpha import ASPECT_RATIO_256_BIN, ASPECT_RATIO_512_BIN, ASPECT_RATIO_1024_BIN, PixArtAlphaPipeline + from .pipeline_pixart_sigma import ASPECT_RATIO_2048_BIN, PixArtSigmaPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +import html +import inspect +import re +import urllib.parse as ul +from typing import Callable, List, Optional, Tuple, Union +import torch +from transformers import T5EncoderModel, T5Tokenizer +from ...image_processor import PixArtImageProcessor +from ...models import AutoencoderKL, PixArtTransformer2DModel +from ...schedulers import DPMSolverMultistepScheduler +from ...utils import BACKENDS_MAPPING, deprecate, is_bs4_available, is_ftfy_available, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +logger = logging.get_logger(__name__) +if is_bs4_available(): + from bs4 import BeautifulSoup +if is_ftfy_available(): + import ftfy +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import PixArtAlphaPipeline\n\n >>> # You can replace the checkpoint id with "PixArt-alpha/PixArt-XL-2-512x512" too.\n >>> pipe = PixArtAlphaPipeline.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", torch_dtype=torch.float16)\n >>> # Enable memory optimizations.\n >>> pipe.enable_model_cpu_offload()\n\n >>> prompt = "A small cactus with a happy face in the Sahara desert."\n >>> image = pipe(prompt).images[0]\n ```\n' +ASPECT_RATIO_1024_BIN = {'0.25': [512.0, 2048.0], '0.28': [512.0, 1856.0], '0.32': [576.0, 1792.0], '0.33': [576.0, 1728.0], '0.35': [576.0, 1664.0], '0.4': [640.0, 1600.0], '0.42': [640.0, 1536.0], '0.48': [704.0, 1472.0], '0.5': [704.0, 1408.0], '0.52': [704.0, 1344.0], '0.57': [768.0, 1344.0], '0.6': [768.0, 1280.0], '0.68': [832.0, 1216.0], '0.72': [832.0, 1152.0], '0.78': [896.0, 1152.0], '0.82': [896.0, 1088.0], '0.88': [960.0, 1088.0], '0.94': [960.0, 1024.0], '1.0': [1024.0, 1024.0], '1.07': [1024.0, 960.0], '1.13': [1088.0, 960.0], '1.21': [1088.0, 896.0], '1.29': [1152.0, 896.0], '1.38': [1152.0, 832.0], '1.46': [1216.0, 832.0], '1.67': [1280.0, 768.0], '1.75': [1344.0, 768.0], '2.0': [1408.0, 704.0], '2.09': [1472.0, 704.0], '2.4': [1536.0, 640.0], '2.5': [1600.0, 640.0], '3.0': [1728.0, 576.0], '4.0': [2048.0, 512.0]} +ASPECT_RATIO_512_BIN = {'0.25': [256.0, 1024.0], '0.28': [256.0, 928.0], '0.32': [288.0, 896.0], '0.33': [288.0, 864.0], '0.35': [288.0, 832.0], '0.4': [320.0, 800.0], '0.42': [320.0, 768.0], '0.48': [352.0, 736.0], '0.5': [352.0, 704.0], '0.52': [352.0, 672.0], '0.57': [384.0, 672.0], '0.6': [384.0, 640.0], '0.68': [416.0, 608.0], '0.72': [416.0, 576.0], '0.78': [448.0, 576.0], '0.82': [448.0, 544.0], '0.88': [480.0, 544.0], '0.94': [480.0, 512.0], '1.0': [512.0, 512.0], '1.07': [512.0, 480.0], '1.13': [544.0, 480.0], '1.21': [544.0, 448.0], '1.29': [576.0, 448.0], '1.38': [576.0, 416.0], '1.46': [608.0, 416.0], '1.67': [640.0, 384.0], '1.75': [672.0, 384.0], '2.0': [704.0, 352.0], '2.09': [736.0, 352.0], '2.4': [768.0, 320.0], '2.5': [800.0, 320.0], '3.0': [864.0, 288.0], '4.0': [1024.0, 256.0]} +ASPECT_RATIO_256_BIN = {'0.25': [128.0, 512.0], '0.28': [128.0, 464.0], '0.32': [144.0, 448.0], '0.33': [144.0, 432.0], '0.35': [144.0, 416.0], '0.4': [160.0, 400.0], '0.42': [160.0, 384.0], '0.48': [176.0, 368.0], '0.5': [176.0, 352.0], '0.52': [176.0, 336.0], '0.57': [192.0, 336.0], '0.6': [192.0, 320.0], '0.68': [208.0, 304.0], '0.72': [208.0, 288.0], '0.78': [224.0, 288.0], '0.82': [224.0, 272.0], '0.88': [240.0, 272.0], '0.94': [240.0, 256.0], '1.0': [256.0, 256.0], '1.07': [256.0, 240.0], '1.13': [272.0, 240.0], '1.21': [272.0, 224.0], '1.29': [288.0, 224.0], '1.38': [288.0, 208.0], '1.46': [304.0, 208.0], '1.67': [320.0, 192.0], '1.75': [336.0, 192.0], '2.0': [352.0, 176.0], '2.09': [368.0, 176.0], '2.4': [384.0, 160.0], '2.5': [400.0, 160.0], '3.0': [432.0, 144.0], '4.0': [512.0, 128.0]} + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class PixArtAlphaPipeline(DiffusionPipeline): + bad_punct_regex = re.compile('[' + '#®•©™&@·º½¾¿¡§~' + '\\)' + '\\(' + '\\]' + '\\[' + '\\}' + '\\{' + '\\|' + '\\' + '\\/' + '\\*' + ']{1,}') + _optional_components = ['tokenizer', 'text_encoder'] + model_cpu_offload_seq = 'text_encoder->transformer->vae' + + def __init__(self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, vae: AutoencoderKL, transformer: PixArtTransformer2DModel, scheduler: DPMSolverMultistepScheduler): + super().__init__() + self.register_modules(tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor) + + def encode_prompt(self, prompt: Union[str, List[str]], do_classifier_free_guidance: bool=True, negative_prompt: str='', num_images_per_prompt: int=1, device: Optional[torch.device]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, prompt_attention_mask: Optional[torch.Tensor]=None, negative_prompt_attention_mask: Optional[torch.Tensor]=None, clean_caption: bool=False, max_sequence_length: int=120, **kwargs): + if 'mask_feature' in kwargs: + deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." + deprecate('mask_feature', '1.0.0', deprecation_message, standard_warn=False) + if device is None: + device = self._execution_device + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + max_length = max_sequence_length + if prompt_embeds is None: + prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=max_length, truncation=True, add_special_tokens=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because T5 can only handle sequences up to {max_length} tokens: {removed_text}') + prompt_attention_mask = text_inputs.attention_mask + prompt_attention_mask = prompt_attention_mask.to(device) + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask) + prompt_embeds = prompt_embeds[0] + if self.text_encoder is not None: + dtype = self.text_encoder.dtype + elif self.transformer is not None: + dtype = self.transformer.dtype + else: + dtype = None + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1) + prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt + uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors='pt') + negative_prompt_attention_mask = uncond_input.attention_mask + negative_prompt_attention_mask = negative_prompt_attention_mask.to(device) + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1) + negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) + else: + negative_prompt_embeds = None + negative_prompt_attention_mask = None + return (prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, negative_prompt, callback_steps, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and prompt_attention_mask is None: + raise ValueError('Must provide `prompt_attention_mask` when specifying `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: + raise ValueError('Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: + raise ValueError(f'`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask` {negative_prompt_attention_mask.shape}.') + + def _text_preprocessing(self, text, clean_caption=False): + if clean_caption and (not is_bs4_available()): + logger.warning(BACKENDS_MAPPING['bs4'][-1].format('Setting `clean_caption=True`')) + logger.warning('Setting `clean_caption` to False...') + clean_caption = False + if clean_caption and (not is_ftfy_available()): + logger.warning(BACKENDS_MAPPING['ftfy'][-1].format('Setting `clean_caption=True`')) + logger.warning('Setting `clean_caption` to False...') + clean_caption = False + if not isinstance(text, (tuple, list)): + text = [text] + + def process(text: str): + if clean_caption: + text = self._clean_caption(text) + text = self._clean_caption(text) + else: + text = text.lower().strip() + return text + return [process(t) for t in text] + + def _clean_caption(self, caption): + caption = str(caption) + caption = ul.unquote_plus(caption) + caption = caption.strip().lower() + caption = re.sub('', 'person', caption) + caption = re.sub('\\b((?:https?:(?:\\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\\w/-]*\\b\\/?(?!@)))', '', caption) + caption = re.sub('\\b((?:www:(?:\\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\\w/-]*\\b\\/?(?!@)))', '', caption) + caption = BeautifulSoup(caption, features='html.parser').text + caption = re.sub('@[\\w\\d]+\\b', '', caption) + caption = re.sub('[\\u31c0-\\u31ef]+', '', caption) + caption = re.sub('[\\u31f0-\\u31ff]+', '', caption) + caption = re.sub('[\\u3200-\\u32ff]+', '', caption) + caption = re.sub('[\\u3300-\\u33ff]+', '', caption) + caption = re.sub('[\\u3400-\\u4dbf]+', '', caption) + caption = re.sub('[\\u4dc0-\\u4dff]+', '', caption) + caption = re.sub('[\\u4e00-\\u9fff]+', '', caption) + caption = re.sub('[\\u002D\\u058A\\u05BE\\u1400\\u1806\\u2010-\\u2015\\u2E17\\u2E1A\\u2E3A\\u2E3B\\u2E40\\u301C\\u3030\\u30A0\\uFE31\\uFE32\\uFE58\\uFE63\\uFF0D]+', '-', caption) + caption = re.sub('[`´«»“”¨]', '"', caption) + caption = re.sub('[‘’]', "'", caption) + caption = re.sub('"?', '', caption) + caption = re.sub('&', '', caption) + caption = re.sub('\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}', ' ', caption) + caption = re.sub('\\d:\\d\\d\\s+$', '', caption) + caption = re.sub('\\\\n', ' ', caption) + caption = re.sub('#\\d{1,3}\\b', '', caption) + caption = re.sub('#\\d{5,}\\b', '', caption) + caption = re.sub('\\b\\d{6,}\\b', '', caption) + caption = re.sub('[\\S]+\\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)', '', caption) + caption = re.sub('[\\"\\\']{2,}', '"', caption) + caption = re.sub('[\\.]{2,}', ' ', caption) + caption = re.sub(self.bad_punct_regex, ' ', caption) + caption = re.sub('\\s+\\.\\s+', ' ', caption) + regex2 = re.compile('(?:\\-|\\_)') + if len(re.findall(regex2, caption)) > 3: + caption = re.sub(regex2, ' ', caption) + caption = ftfy.fix_text(caption) + caption = html.unescape(html.unescape(caption)) + caption = re.sub('\\b[a-zA-Z]{1,3}\\d{3,15}\\b', '', caption) + caption = re.sub('\\b[a-zA-Z]+\\d+[a-zA-Z]+\\b', '', caption) + caption = re.sub('\\b\\d+[a-zA-Z]+\\d+\\b', '', caption) + caption = re.sub('(worldwide\\s+)?(free\\s+)?shipping', '', caption) + caption = re.sub('(free\\s)?download(\\sfree)?', '', caption) + caption = re.sub('\\bclick\\b\\s(?:for|on)\\s\\w+', '', caption) + caption = re.sub('\\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\\simage[s]?)?', '', caption) + caption = re.sub('\\bpage\\s+\\d+\\b', '', caption) + caption = re.sub('\\b\\d*[a-zA-Z]+\\d+[a-zA-Z]+\\d+[a-zA-Z\\d]*\\b', ' ', caption) + caption = re.sub('\\b\\d+\\.?\\d*[xх×]\\d+\\.?\\d*\\b', '', caption) + caption = re.sub('\\b\\s+\\:\\s+', ': ', caption) + caption = re.sub('(\\D[,\\./])\\b', '\\1 ', caption) + caption = re.sub('\\s+', ' ', caption) + caption.strip() + caption = re.sub('^[\\"\\\']([\\w\\W]+)[\\"\\\']$', '\\1', caption) + caption = re.sub("^[\\'\\_,\\-\\:;]", '', caption) + caption = re.sub("[\\'\\_,\\-\\:\\-\\+]$", '', caption) + caption = re.sub('^\\.\\S+$', '', caption) + return caption.strip() + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, negative_prompt: str='', num_inference_steps: int=20, timesteps: List[int]=None, sigmas: List[float]=None, guidance_scale: float=4.5, num_images_per_prompt: Optional[int]=1, height: Optional[int]=None, width: Optional[int]=None, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, prompt_attention_mask: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_attention_mask: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, clean_caption: bool=True, use_resolution_binning: bool=True, max_sequence_length: int=120, **kwargs) -> Union[ImagePipelineOutput, Tuple]: + if 'mask_feature' in kwargs: + deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." + deprecate('mask_feature', '1.0.0', deprecation_message, standard_warn=False) + height = height or self.transformer.config.sample_size * self.vae_scale_factor + width = width or self.transformer.config.sample_size * self.vae_scale_factor + if use_resolution_binning: + if self.transformer.config.sample_size == 128: + aspect_ratio_bin = ASPECT_RATIO_1024_BIN + elif self.transformer.config.sample_size == 64: + aspect_ratio_bin = ASPECT_RATIO_512_BIN + elif self.transformer.config.sample_size == 32: + aspect_ratio_bin = ASPECT_RATIO_256_BIN + else: + raise ValueError('Invalid sample size') + (orig_height, orig_width) = (height, width) + (height, width) = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin) + self.check_inputs(prompt, height, width, negative_prompt, callback_steps, prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask) = self.encode_prompt(prompt, do_classifier_free_guidance, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, device=device, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, clean_caption=clean_caption, max_sequence_length=max_sequence_length) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + latent_channels = self.transformer.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, latent_channels, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'resolution': None, 'aspect_ratio': None} + if self.transformer.config.sample_size == 128: + resolution = torch.tensor([height, width]).repeat(batch_size * num_images_per_prompt, 1) + aspect_ratio = torch.tensor([float(height / width)]).repeat(batch_size * num_images_per_prompt, 1) + resolution = resolution.to(dtype=prompt_embeds.dtype, device=device) + aspect_ratio = aspect_ratio.to(dtype=prompt_embeds.dtype, device=device) + if do_classifier_free_guidance: + resolution = torch.cat([resolution, resolution], dim=0) + aspect_ratio = torch.cat([aspect_ratio, aspect_ratio], dim=0) + added_cond_kwargs = {'resolution': resolution, 'aspect_ratio': aspect_ratio} + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + current_timestep = t + if not torch.is_tensor(current_timestep): + is_mps = latent_model_input.device.type == 'mps' + if isinstance(current_timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) + elif len(current_timestep.shape) == 0: + current_timestep = current_timestep[None].to(latent_model_input.device) + current_timestep = current_timestep.expand(latent_model_input.shape[0]) + noise_pred = self.transformer(latent_model_input, encoder_hidden_states=prompt_embeds, encoder_attention_mask=prompt_attention_mask, timestep=current_timestep, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + if self.transformer.config.out_channels // 2 == latent_channels: + noise_pred = noise_pred.chunk(2, dim=1)[0] + else: + noise_pred = noise_pred + if num_inference_steps == 1: + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).pred_original_sample + else: + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + if use_resolution_binning: + image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height) + else: + image = latents + if not output_type == 'latent': + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +import html +import inspect +import re +import urllib.parse as ul +from typing import Callable, List, Optional, Tuple, Union +import torch +from transformers import T5EncoderModel, T5Tokenizer +from ...image_processor import PixArtImageProcessor +from ...models import AutoencoderKL, PixArtTransformer2DModel +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import BACKENDS_MAPPING, deprecate, is_bs4_available, is_ftfy_available, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +from .pipeline_pixart_alpha import ASPECT_RATIO_256_BIN, ASPECT_RATIO_512_BIN, ASPECT_RATIO_1024_BIN +logger = logging.get_logger(__name__) +if is_bs4_available(): + from bs4 import BeautifulSoup +if is_ftfy_available(): + import ftfy +ASPECT_RATIO_2048_BIN = {'0.25': [1024.0, 4096.0], '0.26': [1024.0, 3968.0], '0.27': [1024.0, 3840.0], '0.28': [1024.0, 3712.0], '0.32': [1152.0, 3584.0], '0.33': [1152.0, 3456.0], '0.35': [1152.0, 3328.0], '0.4': [1280.0, 3200.0], '0.42': [1280.0, 3072.0], '0.48': [1408.0, 2944.0], '0.5': [1408.0, 2816.0], '0.52': [1408.0, 2688.0], '0.57': [1536.0, 2688.0], '0.6': [1536.0, 2560.0], '0.68': [1664.0, 2432.0], '0.72': [1664.0, 2304.0], '0.78': [1792.0, 2304.0], '0.82': [1792.0, 2176.0], '0.88': [1920.0, 2176.0], '0.94': [1920.0, 2048.0], '1.0': [2048.0, 2048.0], '1.07': [2048.0, 1920.0], '1.13': [2176.0, 1920.0], '1.21': [2176.0, 1792.0], '1.29': [2304.0, 1792.0], '1.38': [2304.0, 1664.0], '1.46': [2432.0, 1664.0], '1.67': [2560.0, 1536.0], '1.75': [2688.0, 1536.0], '2.0': [2816.0, 1408.0], '2.09': [2944.0, 1408.0], '2.4': [3072.0, 1280.0], '2.5': [3200.0, 1280.0], '2.89': [3328.0, 1152.0], '3.0': [3456.0, 1152.0], '3.11': [3584.0, 1152.0], '3.62': [3712.0, 1024.0], '3.75': [3840.0, 1024.0], '3.88': [3968.0, 1024.0], '4.0': [4096.0, 1024.0]} +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import PixArtSigmaPipeline\n\n >>> # You can replace the checkpoint id with "PixArt-alpha/PixArt-Sigma-XL-2-512-MS" too.\n >>> pipe = PixArtSigmaPipeline.from_pretrained(\n ... "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", torch_dtype=torch.float16\n ... )\n >>> # Enable memory optimizations.\n >>> # pipe.enable_model_cpu_offload()\n\n >>> prompt = "A small cactus with a happy face in the Sahara desert."\n >>> image = pipe(prompt).images[0]\n ```\n' + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class PixArtSigmaPipeline(DiffusionPipeline): + bad_punct_regex = re.compile('[' + '#®•©™&@·º½¾¿¡§~' + '\\)' + '\\(' + '\\]' + '\\[' + '\\}' + '\\{' + '\\|' + '\\' + '\\/' + '\\*' + ']{1,}') + _optional_components = ['tokenizer', 'text_encoder'] + model_cpu_offload_seq = 'text_encoder->transformer->vae' + + def __init__(self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, vae: AutoencoderKL, transformer: PixArtTransformer2DModel, scheduler: KarrasDiffusionSchedulers): + super().__init__() + self.register_modules(tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor) + + def encode_prompt(self, prompt: Union[str, List[str]], do_classifier_free_guidance: bool=True, negative_prompt: str='', num_images_per_prompt: int=1, device: Optional[torch.device]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, prompt_attention_mask: Optional[torch.Tensor]=None, negative_prompt_attention_mask: Optional[torch.Tensor]=None, clean_caption: bool=False, max_sequence_length: int=300, **kwargs): + if 'mask_feature' in kwargs: + deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." + deprecate('mask_feature', '1.0.0', deprecation_message, standard_warn=False) + if device is None: + device = self._execution_device + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + max_length = max_sequence_length + if prompt_embeds is None: + prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=max_length, truncation=True, add_special_tokens=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because T5 can only handle sequences up to {max_length} tokens: {removed_text}') + prompt_attention_mask = text_inputs.attention_mask + prompt_attention_mask = prompt_attention_mask.to(device) + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask) + prompt_embeds = prompt_embeds[0] + if self.text_encoder is not None: + dtype = self.text_encoder.dtype + elif self.transformer is not None: + dtype = self.transformer.dtype + else: + dtype = None + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1) + prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt + uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors='pt') + negative_prompt_attention_mask = uncond_input.attention_mask + negative_prompt_attention_mask = negative_prompt_attention_mask.to(device) + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1) + negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) + else: + negative_prompt_embeds = None + negative_prompt_attention_mask = None + return (prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, negative_prompt, callback_steps, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and prompt_attention_mask is None: + raise ValueError('Must provide `prompt_attention_mask` when specifying `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: + raise ValueError('Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: + raise ValueError(f'`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask` {negative_prompt_attention_mask.shape}.') + + def _text_preprocessing(self, text, clean_caption=False): + if clean_caption and (not is_bs4_available()): + logger.warning(BACKENDS_MAPPING['bs4'][-1].format('Setting `clean_caption=True`')) + logger.warning('Setting `clean_caption` to False...') + clean_caption = False + if clean_caption and (not is_ftfy_available()): + logger.warning(BACKENDS_MAPPING['ftfy'][-1].format('Setting `clean_caption=True`')) + logger.warning('Setting `clean_caption` to False...') + clean_caption = False + if not isinstance(text, (tuple, list)): + text = [text] + + def process(text: str): + if clean_caption: + text = self._clean_caption(text) + text = self._clean_caption(text) + else: + text = text.lower().strip() + return text + return [process(t) for t in text] + + def _clean_caption(self, caption): + caption = str(caption) + caption = ul.unquote_plus(caption) + caption = caption.strip().lower() + caption = re.sub('', 'person', caption) + caption = re.sub('\\b((?:https?:(?:\\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\\w/-]*\\b\\/?(?!@)))', '', caption) + caption = re.sub('\\b((?:www:(?:\\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\\w/-]*\\b\\/?(?!@)))', '', caption) + caption = BeautifulSoup(caption, features='html.parser').text + caption = re.sub('@[\\w\\d]+\\b', '', caption) + caption = re.sub('[\\u31c0-\\u31ef]+', '', caption) + caption = re.sub('[\\u31f0-\\u31ff]+', '', caption) + caption = re.sub('[\\u3200-\\u32ff]+', '', caption) + caption = re.sub('[\\u3300-\\u33ff]+', '', caption) + caption = re.sub('[\\u3400-\\u4dbf]+', '', caption) + caption = re.sub('[\\u4dc0-\\u4dff]+', '', caption) + caption = re.sub('[\\u4e00-\\u9fff]+', '', caption) + caption = re.sub('[\\u002D\\u058A\\u05BE\\u1400\\u1806\\u2010-\\u2015\\u2E17\\u2E1A\\u2E3A\\u2E3B\\u2E40\\u301C\\u3030\\u30A0\\uFE31\\uFE32\\uFE58\\uFE63\\uFF0D]+', '-', caption) + caption = re.sub('[`´«»“”¨]', '"', caption) + caption = re.sub('[‘’]', "'", caption) + caption = re.sub('"?', '', caption) + caption = re.sub('&', '', caption) + caption = re.sub('\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}', ' ', caption) + caption = re.sub('\\d:\\d\\d\\s+$', '', caption) + caption = re.sub('\\\\n', ' ', caption) + caption = re.sub('#\\d{1,3}\\b', '', caption) + caption = re.sub('#\\d{5,}\\b', '', caption) + caption = re.sub('\\b\\d{6,}\\b', '', caption) + caption = re.sub('[\\S]+\\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)', '', caption) + caption = re.sub('[\\"\\\']{2,}', '"', caption) + caption = re.sub('[\\.]{2,}', ' ', caption) + caption = re.sub(self.bad_punct_regex, ' ', caption) + caption = re.sub('\\s+\\.\\s+', ' ', caption) + regex2 = re.compile('(?:\\-|\\_)') + if len(re.findall(regex2, caption)) > 3: + caption = re.sub(regex2, ' ', caption) + caption = ftfy.fix_text(caption) + caption = html.unescape(html.unescape(caption)) + caption = re.sub('\\b[a-zA-Z]{1,3}\\d{3,15}\\b', '', caption) + caption = re.sub('\\b[a-zA-Z]+\\d+[a-zA-Z]+\\b', '', caption) + caption = re.sub('\\b\\d+[a-zA-Z]+\\d+\\b', '', caption) + caption = re.sub('(worldwide\\s+)?(free\\s+)?shipping', '', caption) + caption = re.sub('(free\\s)?download(\\sfree)?', '', caption) + caption = re.sub('\\bclick\\b\\s(?:for|on)\\s\\w+', '', caption) + caption = re.sub('\\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\\simage[s]?)?', '', caption) + caption = re.sub('\\bpage\\s+\\d+\\b', '', caption) + caption = re.sub('\\b\\d*[a-zA-Z]+\\d+[a-zA-Z]+\\d+[a-zA-Z\\d]*\\b', ' ', caption) + caption = re.sub('\\b\\d+\\.?\\d*[xх×]\\d+\\.?\\d*\\b', '', caption) + caption = re.sub('\\b\\s+\\:\\s+', ': ', caption) + caption = re.sub('(\\D[,\\./])\\b', '\\1 ', caption) + caption = re.sub('\\s+', ' ', caption) + caption.strip() + caption = re.sub('^[\\"\\\']([\\w\\W]+)[\\"\\\']$', '\\1', caption) + caption = re.sub("^[\\'\\_,\\-\\:;]", '', caption) + caption = re.sub("[\\'\\_,\\-\\:\\-\\+]$", '', caption) + caption = re.sub('^\\.\\S+$', '', caption) + return caption.strip() + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, negative_prompt: str='', num_inference_steps: int=20, timesteps: List[int]=None, sigmas: List[float]=None, guidance_scale: float=4.5, num_images_per_prompt: Optional[int]=1, height: Optional[int]=None, width: Optional[int]=None, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, prompt_attention_mask: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_attention_mask: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, clean_caption: bool=True, use_resolution_binning: bool=True, max_sequence_length: int=300, **kwargs) -> Union[ImagePipelineOutput, Tuple]: + height = height or self.transformer.config.sample_size * self.vae_scale_factor + width = width or self.transformer.config.sample_size * self.vae_scale_factor + if use_resolution_binning: + if self.transformer.config.sample_size == 256: + aspect_ratio_bin = ASPECT_RATIO_2048_BIN + elif self.transformer.config.sample_size == 128: + aspect_ratio_bin = ASPECT_RATIO_1024_BIN + elif self.transformer.config.sample_size == 64: + aspect_ratio_bin = ASPECT_RATIO_512_BIN + elif self.transformer.config.sample_size == 32: + aspect_ratio_bin = ASPECT_RATIO_256_BIN + else: + raise ValueError('Invalid sample size') + (orig_height, orig_width) = (height, width) + (height, width) = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin) + self.check_inputs(prompt, height, width, negative_prompt, callback_steps, prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask) = self.encode_prompt(prompt, do_classifier_free_guidance, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, device=device, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, clean_caption=clean_caption, max_sequence_length=max_sequence_length) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + latent_channels = self.transformer.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, latent_channels, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'resolution': None, 'aspect_ratio': None} + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + current_timestep = t + if not torch.is_tensor(current_timestep): + is_mps = latent_model_input.device.type == 'mps' + if isinstance(current_timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) + elif len(current_timestep.shape) == 0: + current_timestep = current_timestep[None].to(latent_model_input.device) + current_timestep = current_timestep.expand(latent_model_input.shape[0]) + noise_pred = self.transformer(latent_model_input, encoder_hidden_states=prompt_embeds, encoder_attention_mask=prompt_attention_mask, timestep=current_timestep, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + if self.transformer.config.out_channels // 2 == latent_channels: + noise_pred = noise_pred.chunk(2, dim=1)[0] + else: + noise_pred = noise_pred + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + if use_resolution_binning: + image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height) + else: + image = latents + if not output_type == 'latent': + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/semantic_stable_diffusion/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_output'] = ['SemanticStableDiffusionPipelineOutput'] + _import_structure['pipeline_semantic_stable_diffusion'] = ['SemanticStableDiffusionPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/semantic_stable_diffusion/pipeline_output.py +from dataclasses import dataclass +from typing import List, Optional, Union +import numpy as np +import PIL.Image +from ...utils import BaseOutput + +@dataclass +class SemanticStableDiffusionPipelineOutput(BaseOutput): + images: Union[List[PIL.Image.Image], np.ndarray] + nsfw_content_detected: Optional[List[bool]] + +# File: diffusers-main/src/diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +import inspect +from itertools import repeat +from typing import Callable, List, Optional, Union +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer +from ...image_processor import VaeImageProcessor +from ...models import AutoencoderKL, UNet2DConditionModel +from ...pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import deprecate, logging +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from .pipeline_output import SemanticStableDiffusionPipelineOutput +logger = logging.get_logger(__name__) + +class SemanticStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool=True): + super().__init__() + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @torch.no_grad() + def __call__(self, prompt: Union[str, List[str]], height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: int=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, editing_prompt: Optional[Union[str, List[str]]]=None, editing_prompt_embeddings: Optional[torch.Tensor]=None, reverse_editing_direction: Optional[Union[bool, List[bool]]]=False, edit_guidance_scale: Optional[Union[float, List[float]]]=5, edit_warmup_steps: Optional[Union[int, List[int]]]=10, edit_cooldown_steps: Optional[Union[int, List[int]]]=None, edit_threshold: Optional[Union[float, List[float]]]=0.9, edit_momentum_scale: Optional[float]=0.1, edit_mom_beta: Optional[float]=0.4, edit_weights: Optional[List[float]]=None, sem_guidance: Optional[List[torch.Tensor]]=None): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, height, width, callback_steps) + batch_size = 1 if isinstance(prompt, str) else len(prompt) + device = self._execution_device + if editing_prompt: + enable_edit_guidance = True + if isinstance(editing_prompt, str): + editing_prompt = [editing_prompt] + enabled_editing_prompts = len(editing_prompt) + elif editing_prompt_embeddings is not None: + enable_edit_guidance = True + enabled_editing_prompts = editing_prompt_embeddings.shape[0] + else: + enabled_editing_prompts = 0 + enable_edit_guidance = False + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, return_tensors='pt') + text_input_ids = text_inputs.input_ids + if text_input_ids.shape[-1] > self.tokenizer.model_max_length: + removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length:]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + text_input_ids = text_input_ids[:, :self.tokenizer.model_max_length] + text_embeddings = self.text_encoder(text_input_ids.to(device))[0] + (bs_embed, seq_len, _) = text_embeddings.shape + text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1) + text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) + if enable_edit_guidance: + if editing_prompt_embeddings is None: + edit_concepts_input = self.tokenizer([x for item in editing_prompt for x in repeat(item, batch_size)], padding='max_length', max_length=self.tokenizer.model_max_length, return_tensors='pt') + edit_concepts_input_ids = edit_concepts_input.input_ids + if edit_concepts_input_ids.shape[-1] > self.tokenizer.model_max_length: + removed_text = self.tokenizer.batch_decode(edit_concepts_input_ids[:, self.tokenizer.model_max_length:]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + edit_concepts_input_ids = edit_concepts_input_ids[:, :self.tokenizer.model_max_length] + edit_concepts = self.text_encoder(edit_concepts_input_ids.to(device))[0] + else: + edit_concepts = editing_prompt_embeddings.to(device).repeat(batch_size, 1, 1) + (bs_embed_edit, seq_len_edit, _) = edit_concepts.shape + edit_concepts = edit_concepts.repeat(1, num_images_per_prompt, 1) + edit_concepts = edit_concepts.view(bs_embed_edit * num_images_per_prompt, seq_len_edit, -1) + do_classifier_free_guidance = guidance_scale > 1.0 + if do_classifier_free_guidance: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + max_length = text_input_ids.shape[-1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(device))[0] + seq_len = uncond_embeddings.shape[1] + uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1) + uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1) + if enable_edit_guidance: + text_embeddings = torch.cat([uncond_embeddings, text_embeddings, edit_concepts]) + else: + text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, text_embeddings.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + edit_momentum = None + self.uncond_estimates = None + self.text_estimates = None + self.edit_estimates = None + self.sem_guidance = None + for (i, t) in enumerate(self.progress_bar(timesteps)): + latent_model_input = torch.cat([latents] * (2 + enabled_editing_prompts)) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample + if do_classifier_free_guidance: + noise_pred_out = noise_pred.chunk(2 + enabled_editing_prompts) + (noise_pred_uncond, noise_pred_text) = (noise_pred_out[0], noise_pred_out[1]) + noise_pred_edit_concepts = noise_pred_out[2:] + noise_guidance = guidance_scale * (noise_pred_text - noise_pred_uncond) + if self.uncond_estimates is None: + self.uncond_estimates = torch.zeros((num_inference_steps + 1, *noise_pred_uncond.shape)) + self.uncond_estimates[i] = noise_pred_uncond.detach().cpu() + if self.text_estimates is None: + self.text_estimates = torch.zeros((num_inference_steps + 1, *noise_pred_text.shape)) + self.text_estimates[i] = noise_pred_text.detach().cpu() + if self.edit_estimates is None and enable_edit_guidance: + self.edit_estimates = torch.zeros((num_inference_steps + 1, len(noise_pred_edit_concepts), *noise_pred_edit_concepts[0].shape)) + if self.sem_guidance is None: + self.sem_guidance = torch.zeros((num_inference_steps + 1, *noise_pred_text.shape)) + if edit_momentum is None: + edit_momentum = torch.zeros_like(noise_guidance) + if enable_edit_guidance: + concept_weights = torch.zeros((len(noise_pred_edit_concepts), noise_guidance.shape[0]), device=device, dtype=noise_guidance.dtype) + noise_guidance_edit = torch.zeros((len(noise_pred_edit_concepts), *noise_guidance.shape), device=device, dtype=noise_guidance.dtype) + warmup_inds = [] + for (c, noise_pred_edit_concept) in enumerate(noise_pred_edit_concepts): + self.edit_estimates[i, c] = noise_pred_edit_concept + if isinstance(edit_guidance_scale, list): + edit_guidance_scale_c = edit_guidance_scale[c] + else: + edit_guidance_scale_c = edit_guidance_scale + if isinstance(edit_threshold, list): + edit_threshold_c = edit_threshold[c] + else: + edit_threshold_c = edit_threshold + if isinstance(reverse_editing_direction, list): + reverse_editing_direction_c = reverse_editing_direction[c] + else: + reverse_editing_direction_c = reverse_editing_direction + if edit_weights: + edit_weight_c = edit_weights[c] + else: + edit_weight_c = 1.0 + if isinstance(edit_warmup_steps, list): + edit_warmup_steps_c = edit_warmup_steps[c] + else: + edit_warmup_steps_c = edit_warmup_steps + if isinstance(edit_cooldown_steps, list): + edit_cooldown_steps_c = edit_cooldown_steps[c] + elif edit_cooldown_steps is None: + edit_cooldown_steps_c = i + 1 + else: + edit_cooldown_steps_c = edit_cooldown_steps + if i >= edit_warmup_steps_c: + warmup_inds.append(c) + if i >= edit_cooldown_steps_c: + noise_guidance_edit[c, :, :, :, :] = torch.zeros_like(noise_pred_edit_concept) + continue + noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond + tmp_weights = (noise_guidance - noise_pred_edit_concept).sum(dim=(1, 2, 3)) + tmp_weights = torch.full_like(tmp_weights, edit_weight_c) + if reverse_editing_direction_c: + noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1 + concept_weights[c, :] = tmp_weights + noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c + if noise_guidance_edit_tmp.dtype == torch.float32: + tmp = torch.quantile(torch.abs(noise_guidance_edit_tmp).flatten(start_dim=2), edit_threshold_c, dim=2, keepdim=False) + else: + tmp = torch.quantile(torch.abs(noise_guidance_edit_tmp).flatten(start_dim=2).to(torch.float32), edit_threshold_c, dim=2, keepdim=False).to(noise_guidance_edit_tmp.dtype) + noise_guidance_edit_tmp = torch.where(torch.abs(noise_guidance_edit_tmp) >= tmp[:, :, None, None], noise_guidance_edit_tmp, torch.zeros_like(noise_guidance_edit_tmp)) + noise_guidance_edit[c, :, :, :, :] = noise_guidance_edit_tmp + warmup_inds = torch.tensor(warmup_inds).to(device) + if len(noise_pred_edit_concepts) > warmup_inds.shape[0] > 0: + concept_weights = concept_weights.to('cpu') + noise_guidance_edit = noise_guidance_edit.to('cpu') + concept_weights_tmp = torch.index_select(concept_weights.to(device), 0, warmup_inds) + concept_weights_tmp = torch.where(concept_weights_tmp < 0, torch.zeros_like(concept_weights_tmp), concept_weights_tmp) + concept_weights_tmp = concept_weights_tmp / concept_weights_tmp.sum(dim=0) + noise_guidance_edit_tmp = torch.index_select(noise_guidance_edit.to(device), 0, warmup_inds) + noise_guidance_edit_tmp = torch.einsum('cb,cbijk->bijk', concept_weights_tmp, noise_guidance_edit_tmp) + noise_guidance = noise_guidance + noise_guidance_edit_tmp + self.sem_guidance[i] = noise_guidance_edit_tmp.detach().cpu() + del noise_guidance_edit_tmp + del concept_weights_tmp + concept_weights = concept_weights.to(device) + noise_guidance_edit = noise_guidance_edit.to(device) + concept_weights = torch.where(concept_weights < 0, torch.zeros_like(concept_weights), concept_weights) + concept_weights = torch.nan_to_num(concept_weights) + noise_guidance_edit = torch.einsum('cb,cbijk->bijk', concept_weights, noise_guidance_edit) + noise_guidance_edit = noise_guidance_edit.to(edit_momentum.device) + noise_guidance_edit = noise_guidance_edit + edit_momentum_scale * edit_momentum + edit_momentum = edit_mom_beta * edit_momentum + (1 - edit_mom_beta) * noise_guidance_edit + if warmup_inds.shape[0] == len(noise_pred_edit_concepts): + noise_guidance = noise_guidance + noise_guidance_edit + self.sem_guidance[i] = noise_guidance_edit.detach().cpu() + if sem_guidance is not None: + edit_guidance = sem_guidance[i].to(device) + noise_guidance = noise_guidance + edit_guidance + noise_pred = noise_pred_uncond + noise_guidance + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, text_embeddings.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + if not return_dict: + return (image, has_nsfw_concept) + return SemanticStableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/shap_e/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['camera'] = ['create_pan_cameras'] + _import_structure['pipeline_shap_e'] = ['ShapEPipeline'] + _import_structure['pipeline_shap_e_img2img'] = ['ShapEImg2ImgPipeline'] + _import_structure['renderer'] = ['BoundingBoxVolume', 'ImportanceRaySampler', 'MLPNeRFModelOutput', 'MLPNeRSTFModel', 'ShapEParamsProjModel', 'ShapERenderer', 'StratifiedRaySampler', 'VoidNeRFModel'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .camera import create_pan_cameras + from .pipeline_shap_e import ShapEPipeline + from .pipeline_shap_e_img2img import ShapEImg2ImgPipeline + from .renderer import BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/shap_e/camera.py +from dataclasses import dataclass +from typing import Tuple +import numpy as np +import torch + +@dataclass +class DifferentiableProjectiveCamera: + origin: torch.Tensor + x: torch.Tensor + y: torch.Tensor + z: torch.Tensor + width: int + height: int + x_fov: float + y_fov: float + shape: Tuple[int] + + def __post_init__(self): + assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] + assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 + assert len(self.x.shape) == len(self.y.shape) == len(self.z.shape) == len(self.origin.shape) == 2 + + def resolution(self): + return torch.from_numpy(np.array([self.width, self.height], dtype=np.float32)) + + def fov(self): + return torch.from_numpy(np.array([self.x_fov, self.y_fov], dtype=np.float32)) + + def get_image_coords(self) -> torch.Tensor: + pixel_indices = torch.arange(self.height * self.width) + coords = torch.stack([pixel_indices % self.width, torch.div(pixel_indices, self.width, rounding_mode='trunc')], axis=1) + return coords + + @property + def camera_rays(self): + (batch_size, *inner_shape) = self.shape + inner_batch_size = int(np.prod(inner_shape)) + coords = self.get_image_coords() + coords = torch.broadcast_to(coords.unsqueeze(0), [batch_size * inner_batch_size, *coords.shape]) + rays = self.get_camera_rays(coords) + rays = rays.view(batch_size, inner_batch_size * self.height * self.width, 2, 3) + return rays + + def get_camera_rays(self, coords: torch.Tensor) -> torch.Tensor: + (batch_size, *shape, n_coords) = coords.shape + assert n_coords == 2 + assert batch_size == self.origin.shape[0] + flat = coords.view(batch_size, -1, 2) + res = self.resolution() + fov = self.fov() + fracs = flat.float() / (res - 1) * 2 - 1 + fracs = fracs * torch.tan(fov / 2) + fracs = fracs.view(batch_size, -1, 2) + directions = self.z.view(batch_size, 1, 3) + self.x.view(batch_size, 1, 3) * fracs[:, :, :1] + self.y.view(batch_size, 1, 3) * fracs[:, :, 1:] + directions = directions / directions.norm(dim=-1, keepdim=True) + rays = torch.stack([torch.broadcast_to(self.origin.view(batch_size, 1, 3), [batch_size, directions.shape[1], 3]), directions], dim=2) + return rays.view(batch_size, *shape, 2, 3) + + def resize_image(self, width: int, height: int) -> 'DifferentiableProjectiveCamera': + assert width * self.height == height * self.width, 'The aspect ratio should not change.' + return DifferentiableProjectiveCamera(origin=self.origin, x=self.x, y=self.y, z=self.z, width=width, height=height, x_fov=self.x_fov, y_fov=self.y_fov) + +def create_pan_cameras(size: int) -> DifferentiableProjectiveCamera: + origins = [] + xs = [] + ys = [] + zs = [] + for theta in np.linspace(0, 2 * np.pi, num=20): + z = np.array([np.sin(theta), np.cos(theta), -0.5]) + z /= np.sqrt(np.sum(z ** 2)) + origin = -z * 4 + x = np.array([np.cos(theta), -np.sin(theta), 0.0]) + y = np.cross(z, x) + origins.append(origin) + xs.append(x) + ys.append(y) + zs.append(z) + return DifferentiableProjectiveCamera(origin=torch.from_numpy(np.stack(origins, axis=0)).float(), x=torch.from_numpy(np.stack(xs, axis=0)).float(), y=torch.from_numpy(np.stack(ys, axis=0)).float(), z=torch.from_numpy(np.stack(zs, axis=0)).float(), width=size, height=size, x_fov=0.7, y_fov=0.7, shape=(1, len(xs))) + +# File: diffusers-main/src/diffusers/pipelines/shap_e/pipeline_shap_e.py +import math +from dataclasses import dataclass +from typing import List, Optional, Union +import numpy as np +import PIL.Image +import torch +from transformers import CLIPTextModelWithProjection, CLIPTokenizer +from ...models import PriorTransformer +from ...schedulers import HeunDiscreteScheduler +from ...utils import BaseOutput, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .renderer import ShapERenderer +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 15.0\n >>> prompt = "a shark"\n\n >>> images = pipe(\n ... prompt,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "shark_3d.gif")\n ```\n' + +@dataclass +class ShapEPipelineOutput(BaseOutput): + images: Union[List[List[PIL.Image.Image]], List[List[np.ndarray]]] + +class ShapEPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'text_encoder->prior' + _exclude_from_cpu_offload = ['shap_e_renderer'] + + def __init__(self, prior: PriorTransformer, text_encoder: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, scheduler: HeunDiscreteScheduler, shap_e_renderer: ShapERenderer): + super().__init__() + self.register_modules(prior=prior, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=scheduler, shap_e_renderer=shap_e_renderer) + + def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + if latents.shape != shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}') + latents = latents.to(device) + latents = latents * scheduler.init_noise_sigma + return latents + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance): + len(prompt) if isinstance(prompt, list) else 1 + self.tokenizer.pad_token_id = 0 + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + text_encoder_output = self.text_encoder(text_input_ids.to(device)) + prompt_embeds = text_encoder_output.text_embeds + prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) + prompt_embeds = prompt_embeds / torch.linalg.norm(prompt_embeds, dim=-1, keepdim=True) + if do_classifier_free_guidance: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + prompt_embeds = math.sqrt(prompt_embeds.shape[1]) * prompt_embeds + return prompt_embeds + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: str, num_images_per_prompt: int=1, num_inference_steps: int=25, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, guidance_scale: float=4.0, frame_size: int=64, output_type: Optional[str]='pil', return_dict: bool=True): + if isinstance(prompt, str): + batch_size = 1 + elif isinstance(prompt, list): + batch_size = len(prompt) + else: + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + device = self._execution_device + batch_size = batch_size * num_images_per_prompt + do_classifier_free_guidance = guidance_scale > 1.0 + prompt_embeds = self._encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_embeddings = self.prior.config.num_embeddings + embedding_dim = self.prior.config.embedding_dim + latents = self.prepare_latents((batch_size, num_embeddings * embedding_dim), prompt_embeds.dtype, device, generator, latents, self.scheduler) + latents = latents.reshape(latents.shape[0], num_embeddings, embedding_dim) + for (i, t) in enumerate(self.progress_bar(timesteps)): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + scaled_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.prior(scaled_model_input, timestep=t, proj_embedding=prompt_embeds).predicted_image_embedding + (noise_pred, _) = noise_pred.split(scaled_model_input.shape[2], dim=2) + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, timestep=t, sample=latents).prev_sample + self.maybe_free_model_hooks() + if output_type not in ['np', 'pil', 'latent', 'mesh']: + raise ValueError(f'Only the output types `pil`, `np`, `latent` and `mesh` are supported not output_type={output_type}') + if output_type == 'latent': + return ShapEPipelineOutput(images=latents) + images = [] + if output_type == 'mesh': + for (i, latent) in enumerate(latents): + mesh = self.shap_e_renderer.decode_to_mesh(latent[None, :], device) + images.append(mesh) + else: + for (i, latent) in enumerate(latents): + image = self.shap_e_renderer.decode_to_image(latent[None, :], device, size=frame_size) + images.append(image) + images = torch.stack(images) + images = images.cpu().numpy() + if output_type == 'pil': + images = [self.numpy_to_pil(image) for image in images] + if not return_dict: + return (images,) + return ShapEPipelineOutput(images=images) + +# File: diffusers-main/src/diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +from dataclasses import dataclass +from typing import List, Optional, Union +import numpy as np +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPVisionModel +from ...models import PriorTransformer +from ...schedulers import HeunDiscreteScheduler +from ...utils import BaseOutput, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .renderer import ShapERenderer +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' + +@dataclass +class ShapEPipelineOutput(BaseOutput): + images: Union[PIL.Image.Image, np.ndarray] + +class ShapEImg2ImgPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'image_encoder->prior' + _exclude_from_cpu_offload = ['shap_e_renderer'] + + def __init__(self, prior: PriorTransformer, image_encoder: CLIPVisionModel, image_processor: CLIPImageProcessor, scheduler: HeunDiscreteScheduler, shap_e_renderer: ShapERenderer): + super().__init__() + self.register_modules(prior=prior, image_encoder=image_encoder, image_processor=image_processor, scheduler=scheduler, shap_e_renderer=shap_e_renderer) + + def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + if latents.shape != shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}') + latents = latents.to(device) + latents = latents * scheduler.init_noise_sigma + return latents + + def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance): + if isinstance(image, List) and isinstance(image[0], torch.Tensor): + image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0) + if not isinstance(image, torch.Tensor): + image = self.image_processor(image, return_tensors='pt').pixel_values[0].unsqueeze(0) + image = image.to(dtype=self.image_encoder.dtype, device=device) + image_embeds = self.image_encoder(image)['last_hidden_state'] + image_embeds = image_embeds[:, 1:, :].contiguous() + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + negative_image_embeds = torch.zeros_like(image_embeds) + image_embeds = torch.cat([negative_image_embeds, image_embeds]) + return image_embeds + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, image: Union[PIL.Image.Image, List[PIL.Image.Image]], num_images_per_prompt: int=1, num_inference_steps: int=25, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, guidance_scale: float=4.0, frame_size: int=64, output_type: Optional[str]='pil', return_dict: bool=True): + if isinstance(image, PIL.Image.Image): + batch_size = 1 + elif isinstance(image, torch.Tensor): + batch_size = image.shape[0] + elif isinstance(image, list) and isinstance(image[0], (torch.Tensor, PIL.Image.Image)): + batch_size = len(image) + else: + raise ValueError(f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(image)}') + device = self._execution_device + batch_size = batch_size * num_images_per_prompt + do_classifier_free_guidance = guidance_scale > 1.0 + image_embeds = self._encode_image(image, device, num_images_per_prompt, do_classifier_free_guidance) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_embeddings = self.prior.config.num_embeddings + embedding_dim = self.prior.config.embedding_dim + if latents is None: + latents = self.prepare_latents((batch_size, num_embeddings * embedding_dim), image_embeds.dtype, device, generator, latents, self.scheduler) + latents = latents.reshape(latents.shape[0], num_embeddings, embedding_dim) + for (i, t) in enumerate(self.progress_bar(timesteps)): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + scaled_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.prior(scaled_model_input, timestep=t, proj_embedding=image_embeds).predicted_image_embedding + (noise_pred, _) = noise_pred.split(scaled_model_input.shape[2], dim=2) + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, timestep=t, sample=latents).prev_sample + if output_type not in ['np', 'pil', 'latent', 'mesh']: + raise ValueError(f'Only the output types `pil`, `np`, `latent` and `mesh` are supported not output_type={output_type}') + self.maybe_free_model_hooks() + if output_type == 'latent': + return ShapEPipelineOutput(images=latents) + images = [] + if output_type == 'mesh': + for (i, latent) in enumerate(latents): + mesh = self.shap_e_renderer.decode_to_mesh(latent[None, :], device) + images.append(mesh) + else: + for (i, latent) in enumerate(latents): + image = self.shap_e_renderer.decode_to_image(latent[None, :], device, size=frame_size) + images.append(image) + images = torch.stack(images) + images = images.cpu().numpy() + if output_type == 'pil': + images = [self.numpy_to_pil(image) for image in images] + if not return_dict: + return (images,) + return ShapEPipelineOutput(images=images) + +# File: diffusers-main/src/diffusers/pipelines/shap_e/renderer.py +import math +from dataclasses import dataclass +from typing import Dict, Optional, Tuple +import numpy as np +import torch +import torch.nn.functional as F +from torch import nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...models import ModelMixin +from ...utils import BaseOutput +from .camera import create_pan_cameras + +def sample_pmf(pmf: torch.Tensor, n_samples: int) -> torch.Tensor: + (*shape, support_size, last_dim) = pmf.shape + assert last_dim == 1 + cdf = torch.cumsum(pmf.view(-1, support_size), dim=1) + inds = torch.searchsorted(cdf, torch.rand(cdf.shape[0], n_samples, device=cdf.device)) + return inds.view(*shape, n_samples, 1).clamp(0, support_size - 1) + +def posenc_nerf(x: torch.Tensor, min_deg: int=0, max_deg: int=15) -> torch.Tensor: + if min_deg == max_deg: + return x + scales = 2.0 ** torch.arange(min_deg, max_deg, dtype=x.dtype, device=x.device) + (*shape, dim) = x.shape + xb = (x.reshape(-1, 1, dim) * scales.view(1, -1, 1)).reshape(*shape, -1) + assert xb.shape[-1] == dim * (max_deg - min_deg) + emb = torch.cat([xb, xb + math.pi / 2.0], axis=-1).sin() + return torch.cat([x, emb], dim=-1) + +def encode_position(position): + return posenc_nerf(position, min_deg=0, max_deg=15) + +def encode_direction(position, direction=None): + if direction is None: + return torch.zeros_like(posenc_nerf(position, min_deg=0, max_deg=8)) + else: + return posenc_nerf(direction, min_deg=0, max_deg=8) + +def _sanitize_name(x: str) -> str: + return x.replace('.', '__') + +def integrate_samples(volume_range, ts, density, channels): + (_, _, dt) = volume_range.partition(ts) + ddensity = density * dt + mass = torch.cumsum(ddensity, dim=-2) + transmittance = torch.exp(-mass[..., -1, :]) + alphas = 1.0 - torch.exp(-ddensity) + Ts = torch.exp(torch.cat([torch.zeros_like(mass[..., :1, :]), -mass[..., :-1, :]], dim=-2)) + weights = alphas * Ts + channels = torch.sum(channels * weights, dim=-2) + return (channels, weights, transmittance) + +def volume_query_points(volume, grid_size): + indices = torch.arange(grid_size ** 3, device=volume.bbox_min.device) + zs = indices % grid_size + ys = torch.div(indices, grid_size, rounding_mode='trunc') % grid_size + xs = torch.div(indices, grid_size ** 2, rounding_mode='trunc') % grid_size + combined = torch.stack([xs, ys, zs], dim=1) + return combined.float() / (grid_size - 1) * (volume.bbox_max - volume.bbox_min) + volume.bbox_min + +def _convert_srgb_to_linear(u: torch.Tensor): + return torch.where(u <= 0.04045, u / 12.92, ((u + 0.055) / 1.055) ** 2.4) + +def _create_flat_edge_indices(flat_cube_indices: torch.Tensor, grid_size: Tuple[int, int, int]): + num_xs = (grid_size[0] - 1) * grid_size[1] * grid_size[2] + y_offset = num_xs + num_ys = grid_size[0] * (grid_size[1] - 1) * grid_size[2] + z_offset = num_xs + num_ys + return torch.stack([flat_cube_indices[:, 0] * grid_size[1] * grid_size[2] + flat_cube_indices[:, 1] * grid_size[2] + flat_cube_indices[:, 2], flat_cube_indices[:, 0] * grid_size[1] * grid_size[2] + (flat_cube_indices[:, 1] + 1) * grid_size[2] + flat_cube_indices[:, 2], flat_cube_indices[:, 0] * grid_size[1] * grid_size[2] + flat_cube_indices[:, 1] * grid_size[2] + flat_cube_indices[:, 2] + 1, flat_cube_indices[:, 0] * grid_size[1] * grid_size[2] + (flat_cube_indices[:, 1] + 1) * grid_size[2] + flat_cube_indices[:, 2] + 1, y_offset + flat_cube_indices[:, 0] * (grid_size[1] - 1) * grid_size[2] + flat_cube_indices[:, 1] * grid_size[2] + flat_cube_indices[:, 2], y_offset + (flat_cube_indices[:, 0] + 1) * (grid_size[1] - 1) * grid_size[2] + flat_cube_indices[:, 1] * grid_size[2] + flat_cube_indices[:, 2], y_offset + flat_cube_indices[:, 0] * (grid_size[1] - 1) * grid_size[2] + flat_cube_indices[:, 1] * grid_size[2] + flat_cube_indices[:, 2] + 1, y_offset + (flat_cube_indices[:, 0] + 1) * (grid_size[1] - 1) * grid_size[2] + flat_cube_indices[:, 1] * grid_size[2] + flat_cube_indices[:, 2] + 1, z_offset + flat_cube_indices[:, 0] * grid_size[1] * (grid_size[2] - 1) + flat_cube_indices[:, 1] * (grid_size[2] - 1) + flat_cube_indices[:, 2], z_offset + (flat_cube_indices[:, 0] + 1) * grid_size[1] * (grid_size[2] - 1) + flat_cube_indices[:, 1] * (grid_size[2] - 1) + flat_cube_indices[:, 2], z_offset + flat_cube_indices[:, 0] * grid_size[1] * (grid_size[2] - 1) + (flat_cube_indices[:, 1] + 1) * (grid_size[2] - 1) + flat_cube_indices[:, 2], z_offset + (flat_cube_indices[:, 0] + 1) * grid_size[1] * (grid_size[2] - 1) + (flat_cube_indices[:, 1] + 1) * (grid_size[2] - 1) + flat_cube_indices[:, 2]], dim=-1) + +class VoidNeRFModel(nn.Module): + + def __init__(self, background, channel_scale=255.0): + super().__init__() + background = nn.Parameter(torch.from_numpy(np.array(background)).to(dtype=torch.float32) / channel_scale) + self.register_buffer('background', background) + + def forward(self, position): + background = self.background[None].to(position.device) + shape = position.shape[:-1] + ones = [1] * (len(shape) - 1) + n_channels = background.shape[-1] + background = torch.broadcast_to(background.view(background.shape[0], *ones, n_channels), [*shape, n_channels]) + return background + +@dataclass +class VolumeRange: + t0: torch.Tensor + t1: torch.Tensor + intersected: torch.Tensor + + def __post_init__(self): + assert self.t0.shape == self.t1.shape == self.intersected.shape + + def partition(self, ts): + mids = (ts[..., 1:, :] + ts[..., :-1, :]) * 0.5 + lower = torch.cat([self.t0[..., None, :], mids], dim=-2) + upper = torch.cat([mids, self.t1[..., None, :]], dim=-2) + delta = upper - lower + assert lower.shape == upper.shape == delta.shape == ts.shape + return (lower, upper, delta) + +class BoundingBoxVolume(nn.Module): + + def __init__(self, *, bbox_min, bbox_max, min_dist: float=0.0, min_t_range: float=0.001): + super().__init__() + self.min_dist = min_dist + self.min_t_range = min_t_range + self.bbox_min = torch.tensor(bbox_min) + self.bbox_max = torch.tensor(bbox_max) + self.bbox = torch.stack([self.bbox_min, self.bbox_max]) + assert self.bbox.shape == (2, 3) + assert min_dist >= 0.0 + assert min_t_range > 0.0 + + def intersect(self, origin: torch.Tensor, direction: torch.Tensor, t0_lower: Optional[torch.Tensor]=None, epsilon=1e-06): + (batch_size, *shape, _) = origin.shape + ones = [1] * len(shape) + bbox = self.bbox.view(1, *ones, 2, 3).to(origin.device) + + def _safe_divide(a, b, epsilon=1e-06): + return a / torch.where(b < 0, b - epsilon, b + epsilon) + ts = _safe_divide(bbox - origin[..., None, :], direction[..., None, :], epsilon=epsilon) + t0 = ts.min(dim=-2).values.max(dim=-1, keepdim=True).values.clamp(self.min_dist) + t1 = ts.max(dim=-2).values.min(dim=-1, keepdim=True).values + assert t0.shape == t1.shape == (batch_size, *shape, 1) + if t0_lower is not None: + assert t0.shape == t0_lower.shape + t0 = torch.maximum(t0, t0_lower) + intersected = t0 + self.min_t_range < t1 + t0 = torch.where(intersected, t0, torch.zeros_like(t0)) + t1 = torch.where(intersected, t1, torch.ones_like(t1)) + return VolumeRange(t0=t0, t1=t1, intersected=intersected) + +class StratifiedRaySampler(nn.Module): + + def __init__(self, depth_mode: str='linear'): + self.depth_mode = depth_mode + assert self.depth_mode in ('linear', 'geometric', 'harmonic') + + def sample(self, t0: torch.Tensor, t1: torch.Tensor, n_samples: int, epsilon: float=0.001) -> torch.Tensor: + ones = [1] * (len(t0.shape) - 1) + ts = torch.linspace(0, 1, n_samples).view(*ones, n_samples).to(t0.dtype).to(t0.device) + if self.depth_mode == 'linear': + ts = t0 * (1.0 - ts) + t1 * ts + elif self.depth_mode == 'geometric': + ts = (t0.clamp(epsilon).log() * (1.0 - ts) + t1.clamp(epsilon).log() * ts).exp() + elif self.depth_mode == 'harmonic': + ts = 1.0 / (1.0 / t0.clamp(epsilon) * (1.0 - ts) + 1.0 / t1.clamp(epsilon) * ts) + mids = 0.5 * (ts[..., 1:] + ts[..., :-1]) + upper = torch.cat([mids, t1], dim=-1) + lower = torch.cat([t0, mids], dim=-1) + torch.manual_seed(0) + t_rand = torch.rand_like(ts) + ts = lower + (upper - lower) * t_rand + return ts.unsqueeze(-1) + +class ImportanceRaySampler(nn.Module): + + def __init__(self, volume_range: VolumeRange, ts: torch.Tensor, weights: torch.Tensor, blur_pool: bool=False, alpha: float=1e-05): + self.volume_range = volume_range + self.ts = ts.clone().detach() + self.weights = weights.clone().detach() + self.blur_pool = blur_pool + self.alpha = alpha + + @torch.no_grad() + def sample(self, t0: torch.Tensor, t1: torch.Tensor, n_samples: int) -> torch.Tensor: + (lower, upper, _) = self.volume_range.partition(self.ts) + (batch_size, *shape, n_coarse_samples, _) = self.ts.shape + weights = self.weights + if self.blur_pool: + padded = torch.cat([weights[..., :1, :], weights, weights[..., -1:, :]], dim=-2) + maxes = torch.maximum(padded[..., :-1, :], padded[..., 1:, :]) + weights = 0.5 * (maxes[..., :-1, :] + maxes[..., 1:, :]) + weights = weights + self.alpha + pmf = weights / weights.sum(dim=-2, keepdim=True) + inds = sample_pmf(pmf, n_samples) + assert inds.shape == (batch_size, *shape, n_samples, 1) + assert (inds >= 0).all() and (inds < n_coarse_samples).all() + t_rand = torch.rand(inds.shape, device=inds.device) + lower_ = torch.gather(lower, -2, inds) + upper_ = torch.gather(upper, -2, inds) + ts = lower_ + (upper_ - lower_) * t_rand + ts = torch.sort(ts, dim=-2).values + return ts + +@dataclass +class MeshDecoderOutput(BaseOutput): + verts: torch.Tensor + faces: torch.Tensor + vertex_channels: Dict[str, torch.Tensor] + +class MeshDecoder(nn.Module): + + def __init__(self): + super().__init__() + cases = torch.zeros(256, 5, 3, dtype=torch.long) + masks = torch.zeros(256, 5, dtype=torch.bool) + self.register_buffer('cases', cases) + self.register_buffer('masks', masks) + + def forward(self, field: torch.Tensor, min_point: torch.Tensor, size: torch.Tensor): + assert len(field.shape) == 3, 'input must be a 3D scalar field' + dev = field.device + cases = self.cases.to(dev) + masks = self.masks.to(dev) + min_point = min_point.to(dev) + size = size.to(dev) + grid_size = field.shape + grid_size_tensor = torch.tensor(grid_size).to(size) + bitmasks = (field > 0).to(torch.uint8) + bitmasks = bitmasks[:-1, :, :] | bitmasks[1:, :, :] << 1 + bitmasks = bitmasks[:, :-1, :] | bitmasks[:, 1:, :] << 2 + bitmasks = bitmasks[:, :, :-1] | bitmasks[:, :, 1:] << 4 + corner_coords = torch.empty(*grid_size, 3, device=dev, dtype=field.dtype) + corner_coords[range(grid_size[0]), :, :, 0] = torch.arange(grid_size[0], device=dev, dtype=field.dtype)[:, None, None] + corner_coords[:, range(grid_size[1]), :, 1] = torch.arange(grid_size[1], device=dev, dtype=field.dtype)[:, None] + corner_coords[:, :, range(grid_size[2]), 2] = torch.arange(grid_size[2], device=dev, dtype=field.dtype) + edge_midpoints = torch.cat([((corner_coords[:-1] + corner_coords[1:]) / 2).reshape(-1, 3), ((corner_coords[:, :-1] + corner_coords[:, 1:]) / 2).reshape(-1, 3), ((corner_coords[:, :, :-1] + corner_coords[:, :, 1:]) / 2).reshape(-1, 3)], dim=0) + cube_indices = torch.zeros(grid_size[0] - 1, grid_size[1] - 1, grid_size[2] - 1, 3, device=dev, dtype=torch.long) + cube_indices[range(grid_size[0] - 1), :, :, 0] = torch.arange(grid_size[0] - 1, device=dev)[:, None, None] + cube_indices[:, range(grid_size[1] - 1), :, 1] = torch.arange(grid_size[1] - 1, device=dev)[:, None] + cube_indices[:, :, range(grid_size[2] - 1), 2] = torch.arange(grid_size[2] - 1, device=dev) + flat_cube_indices = cube_indices.reshape(-1, 3) + edge_indices = _create_flat_edge_indices(flat_cube_indices, grid_size) + flat_bitmasks = bitmasks.reshape(-1).long() + local_tris = cases[flat_bitmasks] + local_masks = masks[flat_bitmasks] + global_tris = torch.gather(edge_indices, 1, local_tris.reshape(local_tris.shape[0], -1)).reshape(local_tris.shape) + selected_tris = global_tris.reshape(-1, 3)[local_masks.reshape(-1)] + used_vertex_indices = torch.unique(selected_tris.view(-1)) + used_edge_midpoints = edge_midpoints[used_vertex_indices] + old_index_to_new_index = torch.zeros(len(edge_midpoints), device=dev, dtype=torch.long) + old_index_to_new_index[used_vertex_indices] = torch.arange(len(used_vertex_indices), device=dev, dtype=torch.long) + faces = torch.gather(old_index_to_new_index, 0, selected_tris.view(-1)).reshape(selected_tris.shape) + v1 = torch.floor(used_edge_midpoints).to(torch.long) + v2 = torch.ceil(used_edge_midpoints).to(torch.long) + s1 = field[v1[:, 0], v1[:, 1], v1[:, 2]] + s2 = field[v2[:, 0], v2[:, 1], v2[:, 2]] + p1 = v1.float() / (grid_size_tensor - 1) * size + min_point + p2 = v2.float() / (grid_size_tensor - 1) * size + min_point + t = (s1 / (s1 - s2))[:, None] + verts = t * p2 + (1 - t) * p1 + return MeshDecoderOutput(verts=verts, faces=faces, vertex_channels=None) + +@dataclass +class MLPNeRFModelOutput(BaseOutput): + density: torch.Tensor + signed_distance: torch.Tensor + channels: torch.Tensor + ts: torch.Tensor + +class MLPNeRSTFModel(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, d_hidden: int=256, n_output: int=12, n_hidden_layers: int=6, act_fn: str='swish', insert_direction_at: int=4): + super().__init__() + dummy = torch.eye(1, 3) + d_posenc_pos = encode_position(position=dummy).shape[-1] + d_posenc_dir = encode_direction(position=dummy).shape[-1] + mlp_widths = [d_hidden] * n_hidden_layers + input_widths = [d_posenc_pos] + mlp_widths + output_widths = mlp_widths + [n_output] + if insert_direction_at is not None: + input_widths[insert_direction_at] += d_posenc_dir + self.mlp = nn.ModuleList([nn.Linear(d_in, d_out) for (d_in, d_out) in zip(input_widths, output_widths)]) + if act_fn == 'swish': + self.activation = lambda x: F.silu(x) + else: + raise ValueError(f'Unsupported activation function {act_fn}') + self.sdf_activation = torch.tanh + self.density_activation = torch.nn.functional.relu + self.channel_activation = torch.sigmoid + + def map_indices_to_keys(self, output): + h_map = {'sdf': (0, 1), 'density_coarse': (1, 2), 'density_fine': (2, 3), 'stf': (3, 6), 'nerf_coarse': (6, 9), 'nerf_fine': (9, 12)} + mapped_output = {k: output[..., start:end] for (k, (start, end)) in h_map.items()} + return mapped_output + + def forward(self, *, position, direction, ts, nerf_level='coarse', rendering_mode='nerf'): + h = encode_position(position) + h_preact = h + h_directionless = None + for (i, layer) in enumerate(self.mlp): + if i == self.config.insert_direction_at: + h_directionless = h_preact + h_direction = encode_direction(position, direction=direction) + h = torch.cat([h, h_direction], dim=-1) + h = layer(h) + h_preact = h + if i < len(self.mlp) - 1: + h = self.activation(h) + h_final = h + if h_directionless is None: + h_directionless = h_preact + activation = self.map_indices_to_keys(h_final) + if nerf_level == 'coarse': + h_density = activation['density_coarse'] + else: + h_density = activation['density_fine'] + if rendering_mode == 'nerf': + if nerf_level == 'coarse': + h_channels = activation['nerf_coarse'] + else: + h_channels = activation['nerf_fine'] + elif rendering_mode == 'stf': + h_channels = activation['stf'] + density = self.density_activation(h_density) + signed_distance = self.sdf_activation(activation['sdf']) + channels = self.channel_activation(h_channels) + return MLPNeRFModelOutput(density=density, signed_distance=signed_distance, channels=channels, ts=ts) + +class ChannelsProj(nn.Module): + + def __init__(self, *, vectors: int, channels: int, d_latent: int): + super().__init__() + self.proj = nn.Linear(d_latent, vectors * channels) + self.norm = nn.LayerNorm(channels) + self.d_latent = d_latent + self.vectors = vectors + self.channels = channels + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x_bvd = x + w_vcd = self.proj.weight.view(self.vectors, self.channels, self.d_latent) + b_vc = self.proj.bias.view(1, self.vectors, self.channels) + h = torch.einsum('bvd,vcd->bvc', x_bvd, w_vcd) + h = self.norm(h) + h = h + b_vc + return h + +class ShapEParamsProjModel(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, *, param_names: Tuple[str]=('nerstf.mlp.0.weight', 'nerstf.mlp.1.weight', 'nerstf.mlp.2.weight', 'nerstf.mlp.3.weight'), param_shapes: Tuple[Tuple[int]]=((256, 93), (256, 256), (256, 256), (256, 256)), d_latent: int=1024): + super().__init__() + if len(param_names) != len(param_shapes): + raise ValueError('Must provide same number of `param_names` as `param_shapes`') + self.projections = nn.ModuleDict({}) + for (k, (vectors, channels)) in zip(param_names, param_shapes): + self.projections[_sanitize_name(k)] = ChannelsProj(vectors=vectors, channels=channels, d_latent=d_latent) + + def forward(self, x: torch.Tensor): + out = {} + start = 0 + for (k, shape) in zip(self.config.param_names, self.config.param_shapes): + (vectors, _) = shape + end = start + vectors + x_bvd = x[:, start:end] + out[k] = self.projections[_sanitize_name(k)](x_bvd).reshape(len(x), *shape) + start = end + return out + +class ShapERenderer(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, *, param_names: Tuple[str]=('nerstf.mlp.0.weight', 'nerstf.mlp.1.weight', 'nerstf.mlp.2.weight', 'nerstf.mlp.3.weight'), param_shapes: Tuple[Tuple[int]]=((256, 93), (256, 256), (256, 256), (256, 256)), d_latent: int=1024, d_hidden: int=256, n_output: int=12, n_hidden_layers: int=6, act_fn: str='swish', insert_direction_at: int=4, background: Tuple[float]=(255.0, 255.0, 255.0)): + super().__init__() + self.params_proj = ShapEParamsProjModel(param_names=param_names, param_shapes=param_shapes, d_latent=d_latent) + self.mlp = MLPNeRSTFModel(d_hidden, n_output, n_hidden_layers, act_fn, insert_direction_at) + self.void = VoidNeRFModel(background=background, channel_scale=255.0) + self.volume = BoundingBoxVolume(bbox_max=[1.0, 1.0, 1.0], bbox_min=[-1.0, -1.0, -1.0]) + self.mesh_decoder = MeshDecoder() + + @torch.no_grad() + def render_rays(self, rays, sampler, n_samples, prev_model_out=None, render_with_direction=False): + (origin, direction) = (rays[..., 0, :], rays[..., 1, :]) + vrange = self.volume.intersect(origin, direction, t0_lower=None) + ts = sampler.sample(vrange.t0, vrange.t1, n_samples) + ts = ts.to(rays.dtype) + if prev_model_out is not None: + ts = torch.sort(torch.cat([ts, prev_model_out.ts], dim=-2), dim=-2).values + (batch_size, *_shape, _t0_dim) = vrange.t0.shape + (_, *ts_shape, _ts_dim) = ts.shape + directions = torch.broadcast_to(direction.unsqueeze(-2), [batch_size, *ts_shape, 3]) + positions = origin.unsqueeze(-2) + ts * directions + directions = directions.to(self.mlp.dtype) + positions = positions.to(self.mlp.dtype) + optional_directions = directions if render_with_direction else None + model_out = self.mlp(position=positions, direction=optional_directions, ts=ts, nerf_level='coarse' if prev_model_out is None else 'fine') + (channels, weights, transmittance) = integrate_samples(vrange, model_out.ts, model_out.density, model_out.channels) + transmittance = torch.where(vrange.intersected, transmittance, torch.ones_like(transmittance)) + channels = torch.where(vrange.intersected, channels, torch.zeros_like(channels)) + channels = channels + transmittance * self.void(origin) + weighted_sampler = ImportanceRaySampler(vrange, ts=model_out.ts, weights=weights) + return (channels, weighted_sampler, model_out) + + @torch.no_grad() + def decode_to_image(self, latents, device, size: int=64, ray_batch_size: int=4096, n_coarse_samples=64, n_fine_samples=128): + projected_params = self.params_proj(latents) + for (name, param) in self.mlp.state_dict().items(): + if f'nerstf.{name}' in projected_params.keys(): + param.copy_(projected_params[f'nerstf.{name}'].squeeze(0)) + camera = create_pan_cameras(size) + rays = camera.camera_rays + rays = rays.to(device) + n_batches = rays.shape[1] // ray_batch_size + coarse_sampler = StratifiedRaySampler() + images = [] + for idx in range(n_batches): + rays_batch = rays[:, idx * ray_batch_size:(idx + 1) * ray_batch_size] + (_, fine_sampler, coarse_model_out) = self.render_rays(rays_batch, coarse_sampler, n_coarse_samples) + (channels, _, _) = self.render_rays(rays_batch, fine_sampler, n_fine_samples, prev_model_out=coarse_model_out) + images.append(channels) + images = torch.cat(images, dim=1) + images = images.view(*camera.shape, camera.height, camera.width, -1).squeeze(0) + return images + + @torch.no_grad() + def decode_to_mesh(self, latents, device, grid_size: int=128, query_batch_size: int=4096, texture_channels: Tuple=('R', 'G', 'B')): + projected_params = self.params_proj(latents) + for (name, param) in self.mlp.state_dict().items(): + if f'nerstf.{name}' in projected_params.keys(): + param.copy_(projected_params[f'nerstf.{name}'].squeeze(0)) + query_points = volume_query_points(self.volume, grid_size) + query_positions = query_points[None].repeat(1, 1, 1).to(device=device, dtype=self.mlp.dtype) + fields = [] + for idx in range(0, query_positions.shape[1], query_batch_size): + query_batch = query_positions[:, idx:idx + query_batch_size] + model_out = self.mlp(position=query_batch, direction=None, ts=None, nerf_level='fine', rendering_mode='stf') + fields.append(model_out.signed_distance) + fields = torch.cat(fields, dim=1) + fields = fields.float() + assert len(fields.shape) == 3 and fields.shape[-1] == 1, f'expected [meta_batch x inner_batch] SDF results, but got {fields.shape}' + fields = fields.reshape(1, *[grid_size] * 3) + full_grid = torch.zeros(1, grid_size + 2, grid_size + 2, grid_size + 2, device=fields.device, dtype=fields.dtype) + full_grid.fill_(-1.0) + full_grid[:, 1:-1, 1:-1, 1:-1] = fields + fields = full_grid + raw_meshes = [] + mesh_mask = [] + for field in fields: + raw_mesh = self.mesh_decoder(field, self.volume.bbox_min, self.volume.bbox_max - self.volume.bbox_min) + mesh_mask.append(True) + raw_meshes.append(raw_mesh) + mesh_mask = torch.tensor(mesh_mask, device=fields.device) + max_vertices = max((len(m.verts) for m in raw_meshes)) + texture_query_positions = torch.stack([m.verts[torch.arange(0, max_vertices) % len(m.verts)] for m in raw_meshes], dim=0) + texture_query_positions = texture_query_positions.to(device=device, dtype=self.mlp.dtype) + textures = [] + for idx in range(0, texture_query_positions.shape[1], query_batch_size): + query_batch = texture_query_positions[:, idx:idx + query_batch_size] + texture_model_out = self.mlp(position=query_batch, direction=None, ts=None, nerf_level='fine', rendering_mode='stf') + textures.append(texture_model_out.channels) + textures = torch.cat(textures, dim=1) + textures = _convert_srgb_to_linear(textures) + textures = textures.float() + assert len(textures.shape) == 3 and textures.shape[-1] == len(texture_channels), f'expected [meta_batch x inner_batch x texture_channels] field results, but got {textures.shape}' + for (m, texture) in zip(raw_meshes, textures): + texture = texture[:len(m.verts)] + m.vertex_channels = dict(zip(texture_channels, texture.unbind(-1))) + return raw_meshes[0] + +# File: diffusers-main/src/diffusers/pipelines/stable_audio/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, is_transformers_version +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.27.0')): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['modeling_stable_audio'] = ['StableAudioProjectionModel'] + _import_structure['pipeline_stable_audio'] = ['StableAudioPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.27.0')): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .modeling_stable_audio import StableAudioProjectionModel + from .pipeline_stable_audio import StableAudioPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/stable_audio/modeling_stable_audio.py +from dataclasses import dataclass +from math import pi +from typing import Optional +import torch +import torch.nn as nn +import torch.utils.checkpoint +from ...configuration_utils import ConfigMixin, register_to_config +from ...models.modeling_utils import ModelMixin +from ...utils import BaseOutput, logging +logger = logging.get_logger(__name__) + +class StableAudioPositionalEmbedding(nn.Module): + + def __init__(self, dim: int): + super().__init__() + assert dim % 2 == 0 + half_dim = dim // 2 + self.weights = nn.Parameter(torch.randn(half_dim)) + + def forward(self, times: torch.Tensor) -> torch.Tensor: + times = times[..., None] + freqs = times * self.weights[None] * 2 * pi + fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1) + fouriered = torch.cat((times, fouriered), dim=-1) + return fouriered + +@dataclass +class StableAudioProjectionModelOutput(BaseOutput): + text_hidden_states: Optional[torch.Tensor] = None + seconds_start_hidden_states: Optional[torch.Tensor] = None + seconds_end_hidden_states: Optional[torch.Tensor] = None + +class StableAudioNumberConditioner(nn.Module): + + def __init__(self, number_embedding_dim, min_value, max_value, internal_dim: Optional[int]=256): + super().__init__() + self.time_positional_embedding = nn.Sequential(StableAudioPositionalEmbedding(internal_dim), nn.Linear(in_features=internal_dim + 1, out_features=number_embedding_dim)) + self.number_embedding_dim = number_embedding_dim + self.min_value = min_value + self.max_value = max_value + + def forward(self, floats: torch.Tensor): + floats = floats.clamp(self.min_value, self.max_value) + normalized_floats = (floats - self.min_value) / (self.max_value - self.min_value) + embedder_dtype = next(self.time_positional_embedding.parameters()).dtype + normalized_floats = normalized_floats.to(embedder_dtype) + embedding = self.time_positional_embedding(normalized_floats) + float_embeds = embedding.view(-1, 1, self.number_embedding_dim) + return float_embeds + +class StableAudioProjectionModel(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, text_encoder_dim, conditioning_dim, min_value, max_value): + super().__init__() + self.text_projection = nn.Identity() if conditioning_dim == text_encoder_dim else nn.Linear(text_encoder_dim, conditioning_dim) + self.start_number_conditioner = StableAudioNumberConditioner(conditioning_dim, min_value, max_value) + self.end_number_conditioner = StableAudioNumberConditioner(conditioning_dim, min_value, max_value) + + def forward(self, text_hidden_states: Optional[torch.Tensor]=None, start_seconds: Optional[torch.Tensor]=None, end_seconds: Optional[torch.Tensor]=None): + text_hidden_states = text_hidden_states if text_hidden_states is None else self.text_projection(text_hidden_states) + seconds_start_hidden_states = start_seconds if start_seconds is None else self.start_number_conditioner(start_seconds) + seconds_end_hidden_states = end_seconds if end_seconds is None else self.end_number_conditioner(end_seconds) + return StableAudioProjectionModelOutput(text_hidden_states=text_hidden_states, seconds_start_hidden_states=seconds_start_hidden_states, seconds_end_hidden_states=seconds_end_hidden_states) + +# File: diffusers-main/src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py +import inspect +from typing import Callable, List, Optional, Union +import torch +from transformers import T5EncoderModel, T5Tokenizer, T5TokenizerFast +from ...models import AutoencoderOobleck, StableAudioDiTModel +from ...models.embeddings import get_1d_rotary_pos_embed +from ...schedulers import EDMDPMSolverMultistepScheduler +from ...utils import logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline +from .modeling_stable_audio import StableAudioProjectionModel +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import scipy\n >>> import torch\n >>> import soundfile as sf\n >>> from diffusers import StableAudioPipeline\n\n >>> repo_id = "stabilityai/stable-audio-open-1.0"\n >>> pipe = StableAudioPipeline.from_pretrained(repo_id, torch_dtype=torch.float16)\n >>> pipe = pipe.to("cuda")\n\n >>> # define the prompts\n >>> prompt = "The sound of a hammer hitting a wooden surface."\n >>> negative_prompt = "Low quality."\n\n >>> # set the seed for generator\n >>> generator = torch.Generator("cuda").manual_seed(0)\n\n >>> # run the generation\n >>> audio = pipe(\n ... prompt,\n ... negative_prompt=negative_prompt,\n ... num_inference_steps=200,\n ... audio_end_in_s=10.0,\n ... num_waveforms_per_prompt=3,\n ... generator=generator,\n ... ).audios\n\n >>> output = audio[0].T.float().cpu().numpy()\n >>> sf.write("hammer.wav", output, pipe.vae.sampling_rate)\n ```\n' + +class StableAudioPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'text_encoder->projection_model->transformer->vae' + + def __init__(self, vae: AutoencoderOobleck, text_encoder: T5EncoderModel, projection_model: StableAudioProjectionModel, tokenizer: Union[T5Tokenizer, T5TokenizerFast], transformer: StableAudioDiTModel, scheduler: EDMDPMSolverMultistepScheduler): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, projection_model=projection_model, tokenizer=tokenizer, transformer=transformer, scheduler=scheduler) + self.rotary_embed_dim = self.transformer.config.attention_head_dim // 2 + + def enable_vae_slicing(self): + self.vae.enable_slicing() + + def disable_vae_slicing(self): + self.vae.disable_slicing() + + def encode_prompt(self, prompt, device, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, attention_mask: Optional[torch.LongTensor]=None, negative_attention_mask: Optional[torch.LongTensor]=None): + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + attention_mask = text_inputs.attention_mask + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because {self.text_encoder.config.model_type} can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + text_input_ids = text_input_ids.to(device) + attention_mask = attention_mask.to(device) + self.text_encoder.eval() + prompt_embeds = self.text_encoder(text_input_ids, attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + if do_classifier_free_guidance and negative_prompt is not None: + uncond_tokens: List[str] + if type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + uncond_input_ids = uncond_input.input_ids.to(device) + negative_attention_mask = uncond_input.attention_mask.to(device) + self.text_encoder.eval() + negative_prompt_embeds = self.text_encoder(uncond_input_ids, attention_mask=negative_attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if negative_attention_mask is not None: + negative_prompt_embeds = torch.where(negative_attention_mask.to(torch.bool).unsqueeze(2), negative_prompt_embeds, 0.0) + if do_classifier_free_guidance and negative_prompt_embeds is not None: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + if attention_mask is not None and negative_attention_mask is None: + negative_attention_mask = torch.ones_like(attention_mask) + elif attention_mask is None and negative_attention_mask is not None: + attention_mask = torch.ones_like(negative_attention_mask) + if attention_mask is not None: + attention_mask = torch.cat([negative_attention_mask, attention_mask]) + prompt_embeds = self.projection_model(text_hidden_states=prompt_embeds).text_hidden_states + if attention_mask is not None: + prompt_embeds = prompt_embeds * attention_mask.unsqueeze(-1).to(prompt_embeds.dtype) + prompt_embeds = prompt_embeds * attention_mask.unsqueeze(-1).to(prompt_embeds.dtype) + return prompt_embeds + + def encode_duration(self, audio_start_in_s, audio_end_in_s, device, do_classifier_free_guidance, batch_size): + audio_start_in_s = audio_start_in_s if isinstance(audio_start_in_s, list) else [audio_start_in_s] + audio_end_in_s = audio_end_in_s if isinstance(audio_end_in_s, list) else [audio_end_in_s] + if len(audio_start_in_s) == 1: + audio_start_in_s = audio_start_in_s * batch_size + if len(audio_end_in_s) == 1: + audio_end_in_s = audio_end_in_s * batch_size + audio_start_in_s = [float(x) for x in audio_start_in_s] + audio_start_in_s = torch.tensor(audio_start_in_s).to(device) + audio_end_in_s = [float(x) for x in audio_end_in_s] + audio_end_in_s = torch.tensor(audio_end_in_s).to(device) + projection_output = self.projection_model(start_seconds=audio_start_in_s, end_seconds=audio_end_in_s) + seconds_start_hidden_states = projection_output.seconds_start_hidden_states + seconds_end_hidden_states = projection_output.seconds_end_hidden_states + if do_classifier_free_guidance: + seconds_start_hidden_states = torch.cat([seconds_start_hidden_states, seconds_start_hidden_states], dim=0) + seconds_end_hidden_states = torch.cat([seconds_end_hidden_states, seconds_end_hidden_states], dim=0) + return (seconds_start_hidden_states, seconds_end_hidden_states) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, audio_start_in_s, audio_end_in_s, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, attention_mask=None, negative_attention_mask=None, initial_audio_waveforms=None, initial_audio_sampling_rate=None): + if audio_end_in_s < audio_start_in_s: + raise ValueError(f"`audio_end_in_s={audio_end_in_s}' must be higher than 'audio_start_in_s={audio_start_in_s}` but ") + if audio_start_in_s < self.projection_model.config.min_value or audio_start_in_s > self.projection_model.config.max_value: + raise ValueError(f'`audio_start_in_s` must be greater than or equal to {self.projection_model.config.min_value}, and lower than or equal to {self.projection_model.config.max_value} but is {audio_start_in_s}.') + if audio_end_in_s < self.projection_model.config.min_value or audio_end_in_s > self.projection_model.config.max_value: + raise ValueError(f'`audio_end_in_s` must be greater than or equal to {self.projection_model.config.min_value}, and lower than or equal to {self.projection_model.config.max_value} but is {audio_end_in_s}.') + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt`, or `prompt_embeds`. Cannot leave`prompt` undefined without specifying `prompt_embeds`.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if attention_mask is not None and attention_mask.shape != prompt_embeds.shape[:2]: + raise ValueError(f'`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:`attention_mask: {attention_mask.shape} != `prompt_embeds` {prompt_embeds.shape}') + if initial_audio_sampling_rate is None and initial_audio_waveforms is not None: + raise ValueError("`initial_audio_waveforms' is provided but the sampling rate is not. Make sure to pass `initial_audio_sampling_rate`.") + if initial_audio_sampling_rate is not None and initial_audio_sampling_rate != self.vae.sampling_rate: + raise ValueError(f"`initial_audio_sampling_rate` must be {self.vae.hop_length}' but is `{initial_audio_sampling_rate}`.Make sure to resample the `initial_audio_waveforms` and to correct the sampling rate. ") + + def prepare_latents(self, batch_size, num_channels_vae, sample_size, dtype, device, generator, latents=None, initial_audio_waveforms=None, num_waveforms_per_prompt=None, audio_channels=None): + shape = (batch_size, num_channels_vae, sample_size) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + if initial_audio_waveforms is not None: + if initial_audio_waveforms.ndim == 2: + initial_audio_waveforms = initial_audio_waveforms.unsqueeze(1) + elif initial_audio_waveforms.ndim != 3: + raise ValueError(f'`initial_audio_waveforms` must be of shape `(batch_size, num_channels, audio_length)` or `(batch_size, audio_length)` but has `{initial_audio_waveforms.ndim}` dimensions') + audio_vae_length = self.transformer.config.sample_size * self.vae.hop_length + audio_shape = (batch_size // num_waveforms_per_prompt, audio_channels, audio_vae_length) + if initial_audio_waveforms.shape[1] == 1 and audio_channels == 2: + initial_audio_waveforms = initial_audio_waveforms.repeat(1, 2, 1) + elif initial_audio_waveforms.shape[1] == 2 and audio_channels == 1: + initial_audio_waveforms = initial_audio_waveforms.mean(1, keepdim=True) + if initial_audio_waveforms.shape[:2] != audio_shape[:2]: + raise ValueError(f'`initial_audio_waveforms` must be of shape `(batch_size, num_channels, audio_length)` or `(batch_size, audio_length)` but is of shape `{initial_audio_waveforms.shape}`') + audio_length = initial_audio_waveforms.shape[-1] + if audio_length < audio_vae_length: + logger.warning(f'The provided input waveform is shorter ({audio_length}) than the required audio length ({audio_vae_length}) of the model and will thus be padded.') + elif audio_length > audio_vae_length: + logger.warning(f'The provided input waveform is longer ({audio_length}) than the required audio length ({audio_vae_length}) of the model and will thus be cropped.') + audio = initial_audio_waveforms.new_zeros(audio_shape) + audio[:, :, :min(audio_length, audio_vae_length)] = initial_audio_waveforms[:, :, :audio_vae_length] + encoded_audio = self.vae.encode(audio).latent_dist.sample(generator) + encoded_audio = encoded_audio.repeat((num_waveforms_per_prompt, 1, 1)) + latents = encoded_audio + latents + return latents + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, audio_end_in_s: Optional[float]=None, audio_start_in_s: Optional[float]=0.0, num_inference_steps: int=100, guidance_scale: float=7.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_waveforms_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, initial_audio_waveforms: Optional[torch.Tensor]=None, initial_audio_sampling_rate: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, attention_mask: Optional[torch.LongTensor]=None, negative_attention_mask: Optional[torch.LongTensor]=None, return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: Optional[int]=1, output_type: Optional[str]='pt'): + downsample_ratio = self.vae.hop_length + max_audio_length_in_s = self.transformer.config.sample_size * downsample_ratio / self.vae.config.sampling_rate + if audio_end_in_s is None: + audio_end_in_s = max_audio_length_in_s + if audio_end_in_s - audio_start_in_s > max_audio_length_in_s: + raise ValueError(f"The total audio length requested ({audio_end_in_s - audio_start_in_s}s) is longer than the model maximum possible length ({max_audio_length_in_s}). Make sure that 'audio_end_in_s-audio_start_in_s<={max_audio_length_in_s}'.") + waveform_start = int(audio_start_in_s * self.vae.config.sampling_rate) + waveform_end = int(audio_end_in_s * self.vae.config.sampling_rate) + waveform_length = int(self.transformer.config.sample_size) + self.check_inputs(prompt, audio_start_in_s, audio_end_in_s, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask, initial_audio_waveforms, initial_audio_sampling_rate) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + prompt_embeds = self.encode_prompt(prompt, device, do_classifier_free_guidance, negative_prompt, prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask) + (seconds_start_hidden_states, seconds_end_hidden_states) = self.encode_duration(audio_start_in_s, audio_end_in_s, device, do_classifier_free_guidance and (negative_prompt is not None or negative_prompt_embeds is not None), batch_size) + text_audio_duration_embeds = torch.cat([prompt_embeds, seconds_start_hidden_states, seconds_end_hidden_states], dim=1) + audio_duration_embeds = torch.cat([seconds_start_hidden_states, seconds_end_hidden_states], dim=2) + if do_classifier_free_guidance and negative_prompt_embeds is None and (negative_prompt is None): + negative_text_audio_duration_embeds = torch.zeros_like(text_audio_duration_embeds, device=text_audio_duration_embeds.device) + text_audio_duration_embeds = torch.cat([negative_text_audio_duration_embeds, text_audio_duration_embeds], dim=0) + audio_duration_embeds = torch.cat([audio_duration_embeds, audio_duration_embeds], dim=0) + (bs_embed, seq_len, hidden_size) = text_audio_duration_embeds.shape + text_audio_duration_embeds = text_audio_duration_embeds.repeat(1, num_waveforms_per_prompt, 1) + text_audio_duration_embeds = text_audio_duration_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len, hidden_size) + audio_duration_embeds = audio_duration_embeds.repeat(1, num_waveforms_per_prompt, 1) + audio_duration_embeds = audio_duration_embeds.view(bs_embed * num_waveforms_per_prompt, -1, audio_duration_embeds.shape[-1]) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_vae = self.transformer.config.in_channels + latents = self.prepare_latents(batch_size * num_waveforms_per_prompt, num_channels_vae, waveform_length, text_audio_duration_embeds.dtype, device, generator, latents, initial_audio_waveforms, num_waveforms_per_prompt, audio_channels=self.vae.config.audio_channels) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + rotary_embedding = get_1d_rotary_pos_embed(self.rotary_embed_dim, latents.shape[2] + audio_duration_embeds.shape[1], use_real=True, repeat_interleave_real=False) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.transformer(latent_model_input, t.unsqueeze(0), encoder_hidden_states=text_audio_duration_embeds, global_hidden_states=audio_duration_embeds, rotary_embedding=rotary_embedding, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + audio = self.vae.decode(latents).sample + else: + return AudioPipelineOutput(audios=latents) + audio = audio[:, :, waveform_start:waveform_end] + if output_type == 'np': + audio = audio.cpu().float().numpy() + self.maybe_free_model_hooks() + if not return_dict: + return (audio,) + return AudioPipelineOutput(audios=audio) + +# File: diffusers-main/src/diffusers/pipelines/stable_cascade/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_stable_cascade'] = ['StableCascadeDecoderPipeline'] + _import_structure['pipeline_stable_cascade_combined'] = ['StableCascadeCombinedPipeline'] + _import_structure['pipeline_stable_cascade_prior'] = ['StableCascadePriorPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_stable_cascade import StableCascadeDecoderPipeline + from .pipeline_stable_cascade_combined import StableCascadeCombinedPipeline + from .pipeline_stable_cascade_prior import StableCascadePriorPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +from typing import Callable, Dict, List, Optional, Union +import torch +from transformers import CLIPTextModel, CLIPTokenizer +from ...models import StableCascadeUNet +from ...schedulers import DDPMWuerstchenScheduler +from ...utils import is_torch_version, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +from ..wuerstchen.modeling_paella_vq_model import PaellaVQModel +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import StableCascadePriorPipeline, StableCascadeDecoderPipeline\n\n >>> prior_pipe = StableCascadePriorPipeline.from_pretrained(\n ... "stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16\n ... ).to("cuda")\n >>> gen_pipe = StableCascadeDecoderPipeline.from_pretrain(\n ... "stabilityai/stable-cascade", torch_dtype=torch.float16\n ... ).to("cuda")\n\n >>> prompt = "an image of a shiba inu, donning a spacesuit and helmet"\n >>> prior_output = pipe(prompt)\n >>> images = gen_pipe(prior_output.image_embeddings, prompt=prompt)\n ```\n' + +class StableCascadeDecoderPipeline(DiffusionPipeline): + unet_name = 'decoder' + text_encoder_name = 'text_encoder' + model_cpu_offload_seq = 'text_encoder->decoder->vqgan' + _callback_tensor_inputs = ['latents', 'prompt_embeds_pooled', 'negative_prompt_embeds', 'image_embeddings'] + + def __init__(self, decoder: StableCascadeUNet, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModel, scheduler: DDPMWuerstchenScheduler, vqgan: PaellaVQModel, latent_dim_scale: float=10.67) -> None: + super().__init__() + self.register_modules(decoder=decoder, tokenizer=tokenizer, text_encoder=text_encoder, scheduler=scheduler, vqgan=vqgan) + self.register_to_config(latent_dim_scale=latent_dim_scale) + + def prepare_latents(self, batch_size, image_embeddings, num_images_per_prompt, dtype, device, generator, latents, scheduler): + (_, channels, height, width) = image_embeddings.shape + latents_shape = (batch_size * num_images_per_prompt, 4, int(height * self.config.latent_dim_scale), int(width * self.config.latent_dim_scale)) + if latents is None: + latents = randn_tensor(latents_shape, generator=generator, device=device, dtype=dtype) + else: + if latents.shape != latents_shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}') + latents = latents.to(device) + latents = latents * scheduler.init_noise_sigma + return latents + + def encode_prompt(self, device, batch_size, num_images_per_prompt, do_classifier_free_guidance, prompt=None, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, prompt_embeds_pooled: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds_pooled: Optional[torch.Tensor]=None): + if prompt_embeds is None: + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + attention_mask = text_inputs.attention_mask + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + text_input_ids = text_input_ids[:, :self.tokenizer.model_max_length] + attention_mask = attention_mask[:, :self.tokenizer.model_max_length] + text_encoder_output = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask.to(device), output_hidden_states=True) + prompt_embeds = text_encoder_output.hidden_states[-1] + if prompt_embeds_pooled is None: + prompt_embeds_pooled = text_encoder_output.text_embeds.unsqueeze(1) + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + prompt_embeds_pooled = prompt_embeds_pooled.to(dtype=self.text_encoder.dtype, device=device) + prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) + prompt_embeds_pooled = prompt_embeds_pooled.repeat_interleave(num_images_per_prompt, dim=0) + if negative_prompt_embeds is None and do_classifier_free_guidance: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=uncond_input.attention_mask.to(device), output_hidden_states=True) + negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.hidden_states[-1] + negative_prompt_embeds_pooled = negative_prompt_embeds_text_encoder_output.text_embeds.unsqueeze(1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + seq_len = negative_prompt_embeds_pooled.shape[1] + negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.to(dtype=self.text_encoder.dtype, device=device) + negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.view(batch_size * num_images_per_prompt, seq_len, -1) + return (prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled) + + def check_inputs(self, prompt, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None): + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def num_timesteps(self): + return self._num_timesteps + + def get_timestep_ratio_conditioning(self, t, alphas_cumprod): + s = torch.tensor([0.008]) + clamp_range = [0, 1] + min_var = torch.cos(s / (1 + s) * torch.pi * 0.5) ** 2 + var = alphas_cumprod[t] + var = var.clamp(*clamp_range) + (s, min_var) = (s.to(var.device), min_var.to(var.device)) + ratio = ((var * min_var) ** 0.5).acos() / (torch.pi * 0.5) * (1 + s) - s + return ratio + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, image_embeddings: Union[torch.Tensor, List[torch.Tensor]], prompt: Union[str, List[str]]=None, num_inference_steps: int=10, guidance_scale: float=0.0, negative_prompt: Optional[Union[str, List[str]]]=None, prompt_embeds: Optional[torch.Tensor]=None, prompt_embeds_pooled: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds_pooled: Optional[torch.Tensor]=None, num_images_per_prompt: int=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents']): + device = self._execution_device + dtype = self.decoder.dtype + self._guidance_scale = guidance_scale + if is_torch_version('<', '2.2.0') and dtype == torch.bfloat16: + raise ValueError('`StableCascadeDecoderPipeline` requires torch>=2.2.0 when using `torch.bfloat16` dtype.') + self.check_inputs(prompt, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs) + if isinstance(image_embeddings, list): + image_embeddings = torch.cat(image_embeddings, dim=0) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + num_images_per_prompt = num_images_per_prompt * (image_embeddings.shape[0] // batch_size) + if prompt_embeds is None and negative_prompt_embeds is None: + (_, prompt_embeds_pooled, _, negative_prompt_embeds_pooled) = self.encode_prompt(prompt=prompt, device=device, batch_size=batch_size, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled) + prompt_embeds_pooled = torch.cat([prompt_embeds_pooled, negative_prompt_embeds_pooled]) if self.do_classifier_free_guidance else prompt_embeds_pooled + effnet = torch.cat([image_embeddings, torch.zeros_like(image_embeddings)]) if self.do_classifier_free_guidance else image_embeddings + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + latents = self.prepare_latents(batch_size, image_embeddings, num_images_per_prompt, dtype, device, generator, latents, self.scheduler) + if isinstance(self.scheduler, DDPMWuerstchenScheduler): + timesteps = timesteps[:-1] + elif hasattr(self.scheduler.config, 'clip_sample') and self.scheduler.config.clip_sample: + self.scheduler.config.clip_sample = False + logger.warning(' set `clip_sample` to be False') + if hasattr(self.scheduler, 'betas'): + alphas = 1.0 - self.scheduler.betas + alphas_cumprod = torch.cumprod(alphas, dim=0) + else: + alphas_cumprod = [] + self._num_timesteps = len(timesteps) + for (i, t) in enumerate(self.progress_bar(timesteps)): + if not isinstance(self.scheduler, DDPMWuerstchenScheduler): + if len(alphas_cumprod) > 0: + timestep_ratio = self.get_timestep_ratio_conditioning(t.long().cpu(), alphas_cumprod) + timestep_ratio = timestep_ratio.expand(latents.size(0)).to(dtype).to(device) + else: + timestep_ratio = t.float().div(self.scheduler.timesteps[-1]).expand(latents.size(0)).to(dtype) + else: + timestep_ratio = t.expand(latents.size(0)).to(dtype) + predicted_latents = self.decoder(sample=torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents, timestep_ratio=torch.cat([timestep_ratio] * 2) if self.do_classifier_free_guidance else timestep_ratio, clip_text_pooled=prompt_embeds_pooled, effnet=effnet, return_dict=False)[0] + if self.do_classifier_free_guidance: + (predicted_latents_text, predicted_latents_uncond) = predicted_latents.chunk(2) + predicted_latents = torch.lerp(predicted_latents_uncond, predicted_latents_text, self.guidance_scale) + if not isinstance(self.scheduler, DDPMWuerstchenScheduler): + timestep_ratio = t + latents = self.scheduler.step(model_output=predicted_latents, timestep=timestep_ratio, sample=latents, generator=generator).prev_sample + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if output_type not in ['pt', 'np', 'pil', 'latent']: + raise ValueError(f'Only the output types `pt`, `np`, `pil` and `latent` are supported not output_type={output_type}') + if not output_type == 'latent': + latents = self.vqgan.config.scale_factor * latents + images = self.vqgan.decode(latents).sample.clamp(0, 1) + if output_type == 'np': + images = images.permute(0, 2, 3, 1).cpu().float().numpy() + elif output_type == 'pil': + images = images.permute(0, 2, 3, 1).cpu().float().numpy() + images = self.numpy_to_pil(images) + else: + images = latents + self.maybe_free_model_hooks() + if not return_dict: + return images + return ImagePipelineOutput(images) + +# File: diffusers-main/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +from typing import Callable, Dict, List, Optional, Union +import PIL +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...models import StableCascadeUNet +from ...schedulers import DDPMWuerstchenScheduler +from ...utils import is_torch_version, replace_example_docstring +from ..pipeline_utils import DiffusionPipeline +from ..wuerstchen.modeling_paella_vq_model import PaellaVQModel +from .pipeline_stable_cascade import StableCascadeDecoderPipeline +from .pipeline_stable_cascade_prior import StableCascadePriorPipeline +TEXT2IMAGE_EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import StableCascadeCombinedPipeline\n\n >>> pipe = StableCascadeCombinedPipeline.from_pretrained(\n ... "stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.bfloat16\n ... )\n >>> pipe.enable_model_cpu_offload()\n >>> prompt = "an image of a shiba inu, donning a spacesuit and helmet"\n >>> images = pipe(prompt=prompt)\n ```\n' + +class StableCascadeCombinedPipeline(DiffusionPipeline): + _load_connected_pipes = True + _optional_components = ['prior_feature_extractor', 'prior_image_encoder'] + + def __init__(self, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModel, decoder: StableCascadeUNet, scheduler: DDPMWuerstchenScheduler, vqgan: PaellaVQModel, prior_prior: StableCascadeUNet, prior_text_encoder: CLIPTextModel, prior_tokenizer: CLIPTokenizer, prior_scheduler: DDPMWuerstchenScheduler, prior_feature_extractor: Optional[CLIPImageProcessor]=None, prior_image_encoder: Optional[CLIPVisionModelWithProjection]=None): + super().__init__() + self.register_modules(text_encoder=text_encoder, tokenizer=tokenizer, decoder=decoder, scheduler=scheduler, vqgan=vqgan, prior_text_encoder=prior_text_encoder, prior_tokenizer=prior_tokenizer, prior_prior=prior_prior, prior_scheduler=prior_scheduler, prior_feature_extractor=prior_feature_extractor, prior_image_encoder=prior_image_encoder) + self.prior_pipe = StableCascadePriorPipeline(prior=prior_prior, text_encoder=prior_text_encoder, tokenizer=prior_tokenizer, scheduler=prior_scheduler, image_encoder=prior_image_encoder, feature_extractor=prior_feature_extractor) + self.decoder_pipe = StableCascadeDecoderPipeline(text_encoder=text_encoder, tokenizer=tokenizer, decoder=decoder, scheduler=scheduler, vqgan=vqgan) + + def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable]=None): + self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op) + + def enable_model_cpu_offload(self, gpu_id: Optional[int]=None, device: Union[torch.device, str]='cuda'): + self.prior_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device) + self.decoder_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device) + + def enable_sequential_cpu_offload(self, gpu_id: Optional[int]=None, device: Union[torch.device, str]='cuda'): + self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) + self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) + + def progress_bar(self, iterable=None, total=None): + self.prior_pipe.progress_bar(iterable=iterable, total=total) + self.decoder_pipe.progress_bar(iterable=iterable, total=total) + + def set_progress_bar_config(self, **kwargs): + self.prior_pipe.set_progress_bar_config(**kwargs) + self.decoder_pipe.set_progress_bar_config(**kwargs) + + @torch.no_grad() + @replace_example_docstring(TEXT2IMAGE_EXAMPLE_DOC_STRING) + def __call__(self, prompt: Optional[Union[str, List[str]]]=None, images: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]]=None, height: int=512, width: int=512, prior_num_inference_steps: int=60, prior_guidance_scale: float=4.0, num_inference_steps: int=12, decoder_guidance_scale: float=0.0, negative_prompt: Optional[Union[str, List[str]]]=None, prompt_embeds: Optional[torch.Tensor]=None, prompt_embeds_pooled: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds_pooled: Optional[torch.Tensor]=None, num_images_per_prompt: int=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, prior_callback_on_step_end_tensor_inputs: List[str]=['latents'], callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents']): + dtype = self.decoder_pipe.decoder.dtype + if is_torch_version('<', '2.2.0') and dtype == torch.bfloat16: + raise ValueError('`StableCascadeCombinedPipeline` requires torch>=2.2.0 when using `torch.bfloat16` dtype.') + prior_outputs = self.prior_pipe(prompt=prompt if prompt_embeds is None else None, images=images, height=height, width=width, num_inference_steps=prior_num_inference_steps, guidance_scale=prior_guidance_scale, negative_prompt=negative_prompt if negative_prompt_embeds is None else None, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, num_images_per_prompt=num_images_per_prompt, generator=generator, latents=latents, output_type='pt', return_dict=True, callback_on_step_end=prior_callback_on_step_end, callback_on_step_end_tensor_inputs=prior_callback_on_step_end_tensor_inputs) + image_embeddings = prior_outputs.image_embeddings + prompt_embeds = prior_outputs.get('prompt_embeds', None) + prompt_embeds_pooled = prior_outputs.get('prompt_embeds_pooled', None) + negative_prompt_embeds = prior_outputs.get('negative_prompt_embeds', None) + negative_prompt_embeds_pooled = prior_outputs.get('negative_prompt_embeds_pooled', None) + outputs = self.decoder_pipe(image_embeddings=image_embeddings, prompt=prompt if prompt_embeds is None else None, num_inference_steps=num_inference_steps, guidance_scale=decoder_guidance_scale, negative_prompt=negative_prompt if negative_prompt_embeds is None else None, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, generator=generator, output_type=output_type, return_dict=return_dict, callback_on_step_end=callback_on_step_end, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs) + return outputs + +# File: diffusers-main/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +from dataclasses import dataclass +from math import ceil +from typing import Callable, Dict, List, Optional, Union +import numpy as np +import PIL +import torch +from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection +from ...models import StableCascadeUNet +from ...schedulers import DDPMWuerstchenScheduler +from ...utils import BaseOutput, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +logger = logging.get_logger(__name__) +DEFAULT_STAGE_C_TIMESTEPS = list(np.linspace(1.0, 2 / 3, 20)) + list(np.linspace(2 / 3, 0.0, 11))[1:] +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import StableCascadePriorPipeline\n\n >>> prior_pipe = StableCascadePriorPipeline.from_pretrained(\n ... "stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16\n ... ).to("cuda")\n\n >>> prompt = "an image of a shiba inu, donning a spacesuit and helmet"\n >>> prior_output = pipe(prompt)\n ```\n' + +@dataclass +class StableCascadePriorPipelineOutput(BaseOutput): + image_embeddings: Union[torch.Tensor, np.ndarray] + prompt_embeds: Union[torch.Tensor, np.ndarray] + prompt_embeds_pooled: Union[torch.Tensor, np.ndarray] + negative_prompt_embeds: Union[torch.Tensor, np.ndarray] + negative_prompt_embeds_pooled: Union[torch.Tensor, np.ndarray] + +class StableCascadePriorPipeline(DiffusionPipeline): + unet_name = 'prior' + text_encoder_name = 'text_encoder' + model_cpu_offload_seq = 'image_encoder->text_encoder->prior' + _optional_components = ['image_encoder', 'feature_extractor'] + _callback_tensor_inputs = ['latents', 'text_encoder_hidden_states', 'negative_prompt_embeds'] + + def __init__(self, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModelWithProjection, prior: StableCascadeUNet, scheduler: DDPMWuerstchenScheduler, resolution_multiple: float=42.67, feature_extractor: Optional[CLIPImageProcessor]=None, image_encoder: Optional[CLIPVisionModelWithProjection]=None) -> None: + super().__init__() + self.register_modules(tokenizer=tokenizer, text_encoder=text_encoder, image_encoder=image_encoder, feature_extractor=feature_extractor, prior=prior, scheduler=scheduler) + self.register_to_config(resolution_multiple=resolution_multiple) + + def prepare_latents(self, batch_size, height, width, num_images_per_prompt, dtype, device, generator, latents, scheduler): + latent_shape = (num_images_per_prompt * batch_size, self.prior.config.in_channels, ceil(height / self.config.resolution_multiple), ceil(width / self.config.resolution_multiple)) + if latents is None: + latents = randn_tensor(latent_shape, generator=generator, device=device, dtype=dtype) + else: + if latents.shape != latent_shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latent_shape}') + latents = latents.to(device) + latents = latents * scheduler.init_noise_sigma + return latents + + def encode_prompt(self, device, batch_size, num_images_per_prompt, do_classifier_free_guidance, prompt=None, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, prompt_embeds_pooled: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds_pooled: Optional[torch.Tensor]=None): + if prompt_embeds is None: + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + attention_mask = text_inputs.attention_mask + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + text_input_ids = text_input_ids[:, :self.tokenizer.model_max_length] + attention_mask = attention_mask[:, :self.tokenizer.model_max_length] + text_encoder_output = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask.to(device), output_hidden_states=True) + prompt_embeds = text_encoder_output.hidden_states[-1] + if prompt_embeds_pooled is None: + prompt_embeds_pooled = text_encoder_output.text_embeds.unsqueeze(1) + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + prompt_embeds_pooled = prompt_embeds_pooled.to(dtype=self.text_encoder.dtype, device=device) + prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) + prompt_embeds_pooled = prompt_embeds_pooled.repeat_interleave(num_images_per_prompt, dim=0) + if negative_prompt_embeds is None and do_classifier_free_guidance: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=uncond_input.attention_mask.to(device), output_hidden_states=True) + negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.hidden_states[-1] + negative_prompt_embeds_pooled = negative_prompt_embeds_text_encoder_output.text_embeds.unsqueeze(1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + seq_len = negative_prompt_embeds_pooled.shape[1] + negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.to(dtype=self.text_encoder.dtype, device=device) + negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.view(batch_size * num_images_per_prompt, seq_len, -1) + return (prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled) + + def encode_image(self, images, device, dtype, batch_size, num_images_per_prompt): + image_embeds = [] + for image in images: + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + image_embed = self.image_encoder(image).image_embeds.unsqueeze(1) + image_embeds.append(image_embed) + image_embeds = torch.cat(image_embeds, dim=1) + image_embeds = image_embeds.repeat(batch_size * num_images_per_prompt, 1, 1) + negative_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, negative_image_embeds) + + def check_inputs(self, prompt, images=None, image_embeds=None, negative_prompt=None, prompt_embeds=None, prompt_embeds_pooled=None, negative_prompt_embeds=None, negative_prompt_embeds_pooled=None, callback_on_step_end_tensor_inputs=None): + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds is not None and prompt_embeds_pooled is None: + raise ValueError('If `prompt_embeds` are provided, `prompt_embeds_pooled` must also be provided. Make sure to generate `prompt_embeds_pooled` from the same text encoder that was used to generate `prompt_embeds`') + if negative_prompt_embeds is not None and negative_prompt_embeds_pooled is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_prompt_embeds_pooled` must also be provided. Make sure to generate `prompt_embeds_pooled` from the same text encoder that was used to generate `prompt_embeds`') + if prompt_embeds_pooled is not None and negative_prompt_embeds_pooled is not None: + if prompt_embeds_pooled.shape != negative_prompt_embeds_pooled.shape: + raise ValueError(f'`prompt_embeds_pooled` and `negative_prompt_embeds_pooled` must have the same shape when passeddirectly, but got: `prompt_embeds_pooled` {prompt_embeds_pooled.shape} !=`negative_prompt_embeds_pooled` {negative_prompt_embeds_pooled.shape}.') + if image_embeds is not None and images is not None: + raise ValueError(f'Cannot forward both `images`: {images} and `image_embeds`: {image_embeds}. Please make sure to only forward one of the two.') + if images: + for (i, image) in enumerate(images): + if not isinstance(image, torch.Tensor) and (not isinstance(image, PIL.Image.Image)): + raise TypeError(f"'images' must contain images of type 'torch.Tensor' or 'PIL.Image.Image, but got{type(image)} for image number {i}.") + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def num_timesteps(self): + return self._num_timesteps + + def get_timestep_ratio_conditioning(self, t, alphas_cumprod): + s = torch.tensor([0.008]) + clamp_range = [0, 1] + min_var = torch.cos(s / (1 + s) * torch.pi * 0.5) ** 2 + var = alphas_cumprod[t] + var = var.clamp(*clamp_range) + (s, min_var) = (s.to(var.device), min_var.to(var.device)) + ratio = ((var * min_var) ** 0.5).acos() / (torch.pi * 0.5) * (1 + s) - s + return ratio + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Optional[Union[str, List[str]]]=None, images: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]]=None, height: int=1024, width: int=1024, num_inference_steps: int=20, timesteps: List[float]=None, guidance_scale: float=4.0, negative_prompt: Optional[Union[str, List[str]]]=None, prompt_embeds: Optional[torch.Tensor]=None, prompt_embeds_pooled: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds_pooled: Optional[torch.Tensor]=None, image_embeds: Optional[torch.Tensor]=None, num_images_per_prompt: Optional[int]=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pt', return_dict: bool=True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents']): + device = self._execution_device + dtype = next(self.prior.parameters()).dtype + self._guidance_scale = guidance_scale + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + self.check_inputs(prompt, images=images, image_embeds=image_embeds, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs) + (prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled) = self.encode_prompt(prompt=prompt, device=device, batch_size=batch_size, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled) + if images is not None: + (image_embeds_pooled, uncond_image_embeds_pooled) = self.encode_image(images=images, device=device, dtype=dtype, batch_size=batch_size, num_images_per_prompt=num_images_per_prompt) + elif image_embeds is not None: + image_embeds_pooled = image_embeds.repeat(batch_size * num_images_per_prompt, 1, 1) + uncond_image_embeds_pooled = torch.zeros_like(image_embeds_pooled) + else: + image_embeds_pooled = torch.zeros(batch_size * num_images_per_prompt, 1, self.prior.config.clip_image_in_channels, device=device, dtype=dtype) + uncond_image_embeds_pooled = torch.zeros(batch_size * num_images_per_prompt, 1, self.prior.config.clip_image_in_channels, device=device, dtype=dtype) + if self.do_classifier_free_guidance: + image_embeds = torch.cat([image_embeds_pooled, uncond_image_embeds_pooled], dim=0) + else: + image_embeds = image_embeds_pooled + text_encoder_hidden_states = torch.cat([prompt_embeds, negative_prompt_embeds]) if negative_prompt_embeds is not None else prompt_embeds + text_encoder_pooled = torch.cat([prompt_embeds_pooled, negative_prompt_embeds_pooled]) if negative_prompt_embeds is not None else prompt_embeds_pooled + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + latents = self.prepare_latents(batch_size, height, width, num_images_per_prompt, dtype, device, generator, latents, self.scheduler) + if isinstance(self.scheduler, DDPMWuerstchenScheduler): + timesteps = timesteps[:-1] + elif hasattr(self.scheduler.config, 'clip_sample') and self.scheduler.config.clip_sample: + self.scheduler.config.clip_sample = False + logger.warning(' set `clip_sample` to be False') + if hasattr(self.scheduler, 'betas'): + alphas = 1.0 - self.scheduler.betas + alphas_cumprod = torch.cumprod(alphas, dim=0) + else: + alphas_cumprod = [] + self._num_timesteps = len(timesteps) + for (i, t) in enumerate(self.progress_bar(timesteps)): + if not isinstance(self.scheduler, DDPMWuerstchenScheduler): + if len(alphas_cumprod) > 0: + timestep_ratio = self.get_timestep_ratio_conditioning(t.long().cpu(), alphas_cumprod) + timestep_ratio = timestep_ratio.expand(latents.size(0)).to(dtype).to(device) + else: + timestep_ratio = t.float().div(self.scheduler.timesteps[-1]).expand(latents.size(0)).to(dtype) + else: + timestep_ratio = t.expand(latents.size(0)).to(dtype) + predicted_image_embedding = self.prior(sample=torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents, timestep_ratio=torch.cat([timestep_ratio] * 2) if self.do_classifier_free_guidance else timestep_ratio, clip_text_pooled=text_encoder_pooled, clip_text=text_encoder_hidden_states, clip_img=image_embeds, return_dict=False)[0] + if self.do_classifier_free_guidance: + (predicted_image_embedding_text, predicted_image_embedding_uncond) = predicted_image_embedding.chunk(2) + predicted_image_embedding = torch.lerp(predicted_image_embedding_uncond, predicted_image_embedding_text, self.guidance_scale) + if not isinstance(self.scheduler, DDPMWuerstchenScheduler): + timestep_ratio = t + latents = self.scheduler.step(model_output=predicted_image_embedding, timestep=timestep_ratio, sample=latents, generator=generator).prev_sample + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + self.maybe_free_model_hooks() + if output_type == 'np': + latents = latents.cpu().float().numpy() + prompt_embeds = prompt_embeds.cpu().float().numpy() + negative_prompt_embeds = negative_prompt_embeds.cpu().float().numpy() if negative_prompt_embeds is not None else None + if not return_dict: + return (latents, prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled) + return StableCascadePriorPipelineOutput(image_embeddings=latents, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version +_dummy_objects = {} +_additional_imports = {} +_import_structure = {'pipeline_output': ['StableDiffusionPipelineOutput']} +if is_transformers_available() and is_flax_available(): + _import_structure['pipeline_output'].extend(['FlaxStableDiffusionPipelineOutput']) +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['clip_image_project_model'] = ['CLIPImageProjection'] + _import_structure['pipeline_cycle_diffusion'] = ['CycleDiffusionPipeline'] + _import_structure['pipeline_stable_diffusion'] = ['StableDiffusionPipeline'] + _import_structure['pipeline_stable_diffusion_attend_and_excite'] = ['StableDiffusionAttendAndExcitePipeline'] + _import_structure['pipeline_stable_diffusion_gligen'] = ['StableDiffusionGLIGENPipeline'] + _import_structure['pipeline_stable_diffusion_gligen_text_image'] = ['StableDiffusionGLIGENTextImagePipeline'] + _import_structure['pipeline_stable_diffusion_img2img'] = ['StableDiffusionImg2ImgPipeline'] + _import_structure['pipeline_stable_diffusion_inpaint'] = ['StableDiffusionInpaintPipeline'] + _import_structure['pipeline_stable_diffusion_inpaint_legacy'] = ['StableDiffusionInpaintPipelineLegacy'] + _import_structure['pipeline_stable_diffusion_instruct_pix2pix'] = ['StableDiffusionInstructPix2PixPipeline'] + _import_structure['pipeline_stable_diffusion_latent_upscale'] = ['StableDiffusionLatentUpscalePipeline'] + _import_structure['pipeline_stable_diffusion_model_editing'] = ['StableDiffusionModelEditingPipeline'] + _import_structure['pipeline_stable_diffusion_paradigms'] = ['StableDiffusionParadigmsPipeline'] + _import_structure['pipeline_stable_diffusion_upscale'] = ['StableDiffusionUpscalePipeline'] + _import_structure['pipeline_stable_unclip'] = ['StableUnCLIPPipeline'] + _import_structure['pipeline_stable_unclip_img2img'] = ['StableUnCLIPImg2ImgPipeline'] + _import_structure['safety_checker'] = ['StableDiffusionSafetyChecker'] + _import_structure['stable_unclip_image_normalizer'] = ['StableUnCLIPImageNormalizer'] +try: + if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline + _dummy_objects.update({'StableDiffusionImageVariationPipeline': StableDiffusionImageVariationPipeline}) +else: + _import_structure['pipeline_stable_diffusion_image_variation'] = ['StableDiffusionImageVariationPipeline'] +try: + if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.26.0')): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import StableDiffusionDepth2ImgPipeline + _dummy_objects.update({'StableDiffusionDepth2ImgPipeline': StableDiffusionDepth2ImgPipeline}) +else: + _import_structure['pipeline_stable_diffusion_depth2img'] = ['StableDiffusionDepth2ImgPipeline'] +try: + if not (is_transformers_available() and is_onnx_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_onnx_objects + _dummy_objects.update(get_objects_from_module(dummy_onnx_objects)) +else: + _import_structure['pipeline_onnx_stable_diffusion'] = ['OnnxStableDiffusionPipeline', 'StableDiffusionOnnxPipeline'] + _import_structure['pipeline_onnx_stable_diffusion_img2img'] = ['OnnxStableDiffusionImg2ImgPipeline'] + _import_structure['pipeline_onnx_stable_diffusion_inpaint'] = ['OnnxStableDiffusionInpaintPipeline'] + _import_structure['pipeline_onnx_stable_diffusion_inpaint_legacy'] = ['OnnxStableDiffusionInpaintPipelineLegacy'] + _import_structure['pipeline_onnx_stable_diffusion_upscale'] = ['OnnxStableDiffusionUpscalePipeline'] +if is_transformers_available() and is_flax_available(): + from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState + _additional_imports.update({'PNDMSchedulerState': PNDMSchedulerState}) + _import_structure['pipeline_flax_stable_diffusion'] = ['FlaxStableDiffusionPipeline'] + _import_structure['pipeline_flax_stable_diffusion_img2img'] = ['FlaxStableDiffusionImg2ImgPipeline'] + _import_structure['pipeline_flax_stable_diffusion_inpaint'] = ['FlaxStableDiffusionInpaintPipeline'] + _import_structure['safety_checker_flax'] = ['FlaxStableDiffusionSafetyChecker'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .clip_image_project_model import CLIPImageProjection + from .pipeline_stable_diffusion import StableDiffusionPipeline, StableDiffusionPipelineOutput + from .pipeline_stable_diffusion_img2img import StableDiffusionImg2ImgPipeline + from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline + from .pipeline_stable_diffusion_instruct_pix2pix import StableDiffusionInstructPix2PixPipeline + from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline + from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline + from .pipeline_stable_unclip import StableUnCLIPPipeline + from .pipeline_stable_unclip_img2img import StableUnCLIPImg2ImgPipeline + from .safety_checker import StableDiffusionSafetyChecker + from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer + try: + if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline + else: + from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline + try: + if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.26.0')): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import StableDiffusionDepth2ImgPipeline + else: + from .pipeline_stable_diffusion_depth2img import StableDiffusionDepth2ImgPipeline + try: + if not (is_transformers_available() and is_onnx_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_onnx_objects import * + else: + from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline + from .pipeline_onnx_stable_diffusion_img2img import OnnxStableDiffusionImg2ImgPipeline + from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline + from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline + try: + if not (is_transformers_available() and is_flax_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_flax_objects import * + else: + from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline + from .pipeline_flax_stable_diffusion_img2img import FlaxStableDiffusionImg2ImgPipeline + from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline + from .pipeline_output import FlaxStableDiffusionPipelineOutput + from .safety_checker_flax import FlaxStableDiffusionSafetyChecker +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + for (name, value) in _additional_imports.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/clip_image_project_model.py +from torch import nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...models.modeling_utils import ModelMixin + +class CLIPImageProjection(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, hidden_size: int=768): + super().__init__() + self.hidden_size = hidden_size + self.project = nn.Linear(self.hidden_size, self.hidden_size, bias=False) + + def forward(self, x): + return self.project(x) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +"""""" +import re +from contextlib import nullcontext +from io import BytesIO +from typing import Dict, Optional, Union +import requests +import torch +import yaml +from transformers import AutoFeatureExtractor, BertTokenizerFast, CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection +from ...models import AutoencoderKL, ControlNetModel, PriorTransformer, UNet2DConditionModel +from ...schedulers import DDIMScheduler, DDPMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, UnCLIPScheduler +from ...utils import is_accelerate_available, logging +from ..latent_diffusion.pipeline_latent_diffusion import LDMBertConfig, LDMBertModel +from ..paint_by_example import PaintByExampleImageEncoder +from ..pipeline_utils import DiffusionPipeline +from .safety_checker import StableDiffusionSafetyChecker +from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer +if is_accelerate_available(): + from accelerate import init_empty_weights + from accelerate.utils import set_module_tensor_to_device +logger = logging.get_logger(__name__) + +def shave_segments(path, n_shave_prefix_segments=1): + if n_shave_prefix_segments >= 0: + return '.'.join(path.split('.')[n_shave_prefix_segments:]) + else: + return '.'.join(path.split('.')[:n_shave_prefix_segments]) + +def renew_resnet_paths(old_list, n_shave_prefix_segments=0): + mapping = [] + for old_item in old_list: + new_item = old_item.replace('in_layers.0', 'norm1') + new_item = new_item.replace('in_layers.2', 'conv1') + new_item = new_item.replace('out_layers.0', 'norm2') + new_item = new_item.replace('out_layers.3', 'conv2') + new_item = new_item.replace('emb_layers.1', 'time_emb_proj') + new_item = new_item.replace('skip_connection', 'conv_shortcut') + new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + mapping.append({'old': old_item, 'new': new_item}) + return mapping + +def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): + mapping = [] + for old_item in old_list: + new_item = old_item + new_item = new_item.replace('nin_shortcut', 'conv_shortcut') + new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + mapping.append({'old': old_item, 'new': new_item}) + return mapping + +def renew_attention_paths(old_list, n_shave_prefix_segments=0): + mapping = [] + for old_item in old_list: + new_item = old_item + mapping.append({'old': old_item, 'new': new_item}) + return mapping + +def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): + mapping = [] + for old_item in old_list: + new_item = old_item + new_item = new_item.replace('norm.weight', 'group_norm.weight') + new_item = new_item.replace('norm.bias', 'group_norm.bias') + new_item = new_item.replace('q.weight', 'to_q.weight') + new_item = new_item.replace('q.bias', 'to_q.bias') + new_item = new_item.replace('k.weight', 'to_k.weight') + new_item = new_item.replace('k.bias', 'to_k.bias') + new_item = new_item.replace('v.weight', 'to_v.weight') + new_item = new_item.replace('v.bias', 'to_v.bias') + new_item = new_item.replace('proj_out.weight', 'to_out.0.weight') + new_item = new_item.replace('proj_out.bias', 'to_out.0.bias') + new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + mapping.append({'old': old_item, 'new': new_item}) + return mapping + +def assign_to_checkpoint(paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None): + assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." + if attention_paths_to_split is not None: + for (path, path_map) in attention_paths_to_split.items(): + old_tensor = old_checkpoint[path] + channels = old_tensor.shape[0] // 3 + target_shape = (-1, channels) if len(old_tensor.shape) == 3 else -1 + num_heads = old_tensor.shape[0] // config['num_head_channels'] // 3 + old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) + (query, key, value) = old_tensor.split(channels // num_heads, dim=1) + checkpoint[path_map['query']] = query.reshape(target_shape) + checkpoint[path_map['key']] = key.reshape(target_shape) + checkpoint[path_map['value']] = value.reshape(target_shape) + for path in paths: + new_path = path['new'] + if attention_paths_to_split is not None and new_path in attention_paths_to_split: + continue + new_path = new_path.replace('middle_block.0', 'mid_block.resnets.0') + new_path = new_path.replace('middle_block.1', 'mid_block.attentions.0') + new_path = new_path.replace('middle_block.2', 'mid_block.resnets.1') + if additional_replacements is not None: + for replacement in additional_replacements: + new_path = new_path.replace(replacement['old'], replacement['new']) + is_attn_weight = 'proj_attn.weight' in new_path or ('attentions' in new_path and 'to_' in new_path) + shape = old_checkpoint[path['old']].shape + if is_attn_weight and len(shape) == 3: + checkpoint[new_path] = old_checkpoint[path['old']][:, :, 0] + elif is_attn_weight and len(shape) == 4: + checkpoint[new_path] = old_checkpoint[path['old']][:, :, 0, 0] + else: + checkpoint[new_path] = old_checkpoint[path['old']] + +def conv_attn_to_linear(checkpoint): + keys = list(checkpoint.keys()) + attn_keys = ['query.weight', 'key.weight', 'value.weight'] + for key in keys: + if '.'.join(key.split('.')[-2:]) in attn_keys: + if checkpoint[key].ndim > 2: + checkpoint[key] = checkpoint[key][:, :, 0, 0] + elif 'proj_attn.weight' in key: + if checkpoint[key].ndim > 2: + checkpoint[key] = checkpoint[key][:, :, 0] + +def create_unet_diffusers_config(original_config, image_size: int, controlnet=False): + if controlnet: + unet_params = original_config['model']['params']['control_stage_config']['params'] + elif 'unet_config' in original_config['model']['params'] and original_config['model']['params']['unet_config'] is not None: + unet_params = original_config['model']['params']['unet_config']['params'] + else: + unet_params = original_config['model']['params']['network_config']['params'] + vae_params = original_config['model']['params']['first_stage_config']['params']['ddconfig'] + block_out_channels = [unet_params['model_channels'] * mult for mult in unet_params['channel_mult']] + down_block_types = [] + resolution = 1 + for i in range(len(block_out_channels)): + block_type = 'CrossAttnDownBlock2D' if resolution in unet_params['attention_resolutions'] else 'DownBlock2D' + down_block_types.append(block_type) + if i != len(block_out_channels) - 1: + resolution *= 2 + up_block_types = [] + for i in range(len(block_out_channels)): + block_type = 'CrossAttnUpBlock2D' if resolution in unet_params['attention_resolutions'] else 'UpBlock2D' + up_block_types.append(block_type) + resolution //= 2 + if unet_params['transformer_depth'] is not None: + transformer_layers_per_block = unet_params['transformer_depth'] if isinstance(unet_params['transformer_depth'], int) else list(unet_params['transformer_depth']) + else: + transformer_layers_per_block = 1 + vae_scale_factor = 2 ** (len(vae_params['ch_mult']) - 1) + head_dim = unet_params['num_heads'] if 'num_heads' in unet_params else None + use_linear_projection = unet_params['use_linear_in_transformer'] if 'use_linear_in_transformer' in unet_params else False + if use_linear_projection: + if head_dim is None: + head_dim_mult = unet_params['model_channels'] // unet_params['num_head_channels'] + head_dim = [head_dim_mult * c for c in list(unet_params['channel_mult'])] + class_embed_type = None + addition_embed_type = None + addition_time_embed_dim = None + projection_class_embeddings_input_dim = None + context_dim = None + if unet_params['context_dim'] is not None: + context_dim = unet_params['context_dim'] if isinstance(unet_params['context_dim'], int) else unet_params['context_dim'][0] + if 'num_classes' in unet_params: + if unet_params['num_classes'] == 'sequential': + if context_dim in [2048, 1280]: + addition_embed_type = 'text_time' + addition_time_embed_dim = 256 + else: + class_embed_type = 'projection' + assert 'adm_in_channels' in unet_params + projection_class_embeddings_input_dim = unet_params['adm_in_channels'] + config = {'sample_size': image_size // vae_scale_factor, 'in_channels': unet_params['in_channels'], 'down_block_types': tuple(down_block_types), 'block_out_channels': tuple(block_out_channels), 'layers_per_block': unet_params['num_res_blocks'], 'cross_attention_dim': context_dim, 'attention_head_dim': head_dim, 'use_linear_projection': use_linear_projection, 'class_embed_type': class_embed_type, 'addition_embed_type': addition_embed_type, 'addition_time_embed_dim': addition_time_embed_dim, 'projection_class_embeddings_input_dim': projection_class_embeddings_input_dim, 'transformer_layers_per_block': transformer_layers_per_block} + if 'disable_self_attentions' in unet_params: + config['only_cross_attention'] = unet_params['disable_self_attentions'] + if 'num_classes' in unet_params and isinstance(unet_params['num_classes'], int): + config['num_class_embeds'] = unet_params['num_classes'] + if controlnet: + config['conditioning_channels'] = unet_params['hint_channels'] + else: + config['out_channels'] = unet_params['out_channels'] + config['up_block_types'] = tuple(up_block_types) + return config + +def create_vae_diffusers_config(original_config, image_size: int): + vae_params = original_config['model']['params']['first_stage_config']['params']['ddconfig'] + _ = original_config['model']['params']['first_stage_config']['params']['embed_dim'] + block_out_channels = [vae_params['ch'] * mult for mult in vae_params['ch_mult']] + down_block_types = ['DownEncoderBlock2D'] * len(block_out_channels) + up_block_types = ['UpDecoderBlock2D'] * len(block_out_channels) + config = {'sample_size': image_size, 'in_channels': vae_params['in_channels'], 'out_channels': vae_params['out_ch'], 'down_block_types': tuple(down_block_types), 'up_block_types': tuple(up_block_types), 'block_out_channels': tuple(block_out_channels), 'latent_channels': vae_params['z_channels'], 'layers_per_block': vae_params['num_res_blocks']} + return config + +def create_diffusers_schedular(original_config): + schedular = DDIMScheduler(num_train_timesteps=original_config['model']['params']['timesteps'], beta_start=original_config['model']['params']['linear_start'], beta_end=original_config['model']['params']['linear_end'], beta_schedule='scaled_linear') + return schedular + +def create_ldm_bert_config(original_config): + bert_params = original_config['model']['params']['cond_stage_config']['params'] + config = LDMBertConfig(d_model=bert_params.n_embed, encoder_layers=bert_params.n_layer, encoder_ffn_dim=bert_params.n_embed * 4) + return config + +def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False, controlnet=False, skip_extract_state_dict=False): + if skip_extract_state_dict: + unet_state_dict = checkpoint + else: + unet_state_dict = {} + keys = list(checkpoint.keys()) + if controlnet: + unet_key = 'control_model.' + else: + unet_key = 'model.diffusion_model.' + if sum((k.startswith('model_ema') for k in keys)) > 100 and extract_ema: + logger.warning(f'Checkpoint {path} has both EMA and non-EMA weights.') + logger.warning('In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag.') + for key in keys: + if key.startswith('model.diffusion_model'): + flat_ema_key = 'model_ema.' + ''.join(key.split('.')[1:]) + unet_state_dict[key.replace(unet_key, '')] = checkpoint.pop(flat_ema_key) + else: + if sum((k.startswith('model_ema') for k in keys)) > 100: + logger.warning('In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA weights (usually better for inference), please make sure to add the `--extract_ema` flag.') + for key in keys: + if key.startswith(unet_key): + unet_state_dict[key.replace(unet_key, '')] = checkpoint.pop(key) + new_checkpoint = {} + new_checkpoint['time_embedding.linear_1.weight'] = unet_state_dict['time_embed.0.weight'] + new_checkpoint['time_embedding.linear_1.bias'] = unet_state_dict['time_embed.0.bias'] + new_checkpoint['time_embedding.linear_2.weight'] = unet_state_dict['time_embed.2.weight'] + new_checkpoint['time_embedding.linear_2.bias'] = unet_state_dict['time_embed.2.bias'] + if config['class_embed_type'] is None: + ... + elif config['class_embed_type'] == 'timestep' or config['class_embed_type'] == 'projection': + new_checkpoint['class_embedding.linear_1.weight'] = unet_state_dict['label_emb.0.0.weight'] + new_checkpoint['class_embedding.linear_1.bias'] = unet_state_dict['label_emb.0.0.bias'] + new_checkpoint['class_embedding.linear_2.weight'] = unet_state_dict['label_emb.0.2.weight'] + new_checkpoint['class_embedding.linear_2.bias'] = unet_state_dict['label_emb.0.2.bias'] + else: + raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}") + if config['addition_embed_type'] == 'text_time': + new_checkpoint['add_embedding.linear_1.weight'] = unet_state_dict['label_emb.0.0.weight'] + new_checkpoint['add_embedding.linear_1.bias'] = unet_state_dict['label_emb.0.0.bias'] + new_checkpoint['add_embedding.linear_2.weight'] = unet_state_dict['label_emb.0.2.weight'] + new_checkpoint['add_embedding.linear_2.bias'] = unet_state_dict['label_emb.0.2.bias'] + if 'num_class_embeds' in config: + if config['num_class_embeds'] is not None and 'label_emb.weight' in unet_state_dict: + new_checkpoint['class_embedding.weight'] = unet_state_dict['label_emb.weight'] + new_checkpoint['conv_in.weight'] = unet_state_dict['input_blocks.0.0.weight'] + new_checkpoint['conv_in.bias'] = unet_state_dict['input_blocks.0.0.bias'] + if not controlnet: + new_checkpoint['conv_norm_out.weight'] = unet_state_dict['out.0.weight'] + new_checkpoint['conv_norm_out.bias'] = unet_state_dict['out.0.bias'] + new_checkpoint['conv_out.weight'] = unet_state_dict['out.2.weight'] + new_checkpoint['conv_out.bias'] = unet_state_dict['out.2.bias'] + num_input_blocks = len({'.'.join(layer.split('.')[:2]) for layer in unet_state_dict if 'input_blocks' in layer}) + input_blocks = {layer_id: [key for key in unet_state_dict if f'input_blocks.{layer_id}' in key] for layer_id in range(num_input_blocks)} + num_middle_blocks = len({'.'.join(layer.split('.')[:2]) for layer in unet_state_dict if 'middle_block' in layer}) + middle_blocks = {layer_id: [key for key in unet_state_dict if f'middle_block.{layer_id}' in key] for layer_id in range(num_middle_blocks)} + num_output_blocks = len({'.'.join(layer.split('.')[:2]) for layer in unet_state_dict if 'output_blocks' in layer}) + output_blocks = {layer_id: [key for key in unet_state_dict if f'output_blocks.{layer_id}' in key] for layer_id in range(num_output_blocks)} + for i in range(1, num_input_blocks): + block_id = (i - 1) // (config['layers_per_block'] + 1) + layer_in_block_id = (i - 1) % (config['layers_per_block'] + 1) + resnets = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key and f'input_blocks.{i}.0.op' not in key] + attentions = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key] + if f'input_blocks.{i}.0.op.weight' in unet_state_dict: + new_checkpoint[f'down_blocks.{block_id}.downsamplers.0.conv.weight'] = unet_state_dict.pop(f'input_blocks.{i}.0.op.weight') + new_checkpoint[f'down_blocks.{block_id}.downsamplers.0.conv.bias'] = unet_state_dict.pop(f'input_blocks.{i}.0.op.bias') + paths = renew_resnet_paths(resnets) + meta_path = {'old': f'input_blocks.{i}.0', 'new': f'down_blocks.{block_id}.resnets.{layer_in_block_id}'} + assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config) + if len(attentions): + paths = renew_attention_paths(attentions) + meta_path = {'old': f'input_blocks.{i}.1', 'new': f'down_blocks.{block_id}.attentions.{layer_in_block_id}'} + assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config) + resnet_0 = middle_blocks[0] + attentions = middle_blocks[1] + resnet_1 = middle_blocks[2] + resnet_0_paths = renew_resnet_paths(resnet_0) + assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) + resnet_1_paths = renew_resnet_paths(resnet_1) + assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) + attentions_paths = renew_attention_paths(attentions) + meta_path = {'old': 'middle_block.1', 'new': 'mid_block.attentions.0'} + assign_to_checkpoint(attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config) + for i in range(num_output_blocks): + block_id = i // (config['layers_per_block'] + 1) + layer_in_block_id = i % (config['layers_per_block'] + 1) + output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] + output_block_list = {} + for layer in output_block_layers: + (layer_id, layer_name) = (layer.split('.')[0], shave_segments(layer, 1)) + if layer_id in output_block_list: + output_block_list[layer_id].append(layer_name) + else: + output_block_list[layer_id] = [layer_name] + if len(output_block_list) > 1: + resnets = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key] + attentions = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key] + resnet_0_paths = renew_resnet_paths(resnets) + paths = renew_resnet_paths(resnets) + meta_path = {'old': f'output_blocks.{i}.0', 'new': f'up_blocks.{block_id}.resnets.{layer_in_block_id}'} + assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config) + output_block_list = {k: sorted(v) for (k, v) in sorted(output_block_list.items())} + if ['conv.bias', 'conv.weight'] in output_block_list.values(): + index = list(output_block_list.values()).index(['conv.bias', 'conv.weight']) + new_checkpoint[f'up_blocks.{block_id}.upsamplers.0.conv.weight'] = unet_state_dict[f'output_blocks.{i}.{index}.conv.weight'] + new_checkpoint[f'up_blocks.{block_id}.upsamplers.0.conv.bias'] = unet_state_dict[f'output_blocks.{i}.{index}.conv.bias'] + if len(attentions) == 2: + attentions = [] + if len(attentions): + paths = renew_attention_paths(attentions) + meta_path = {'old': f'output_blocks.{i}.1', 'new': f'up_blocks.{block_id}.attentions.{layer_in_block_id}'} + assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config) + else: + resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) + for path in resnet_0_paths: + old_path = '.'.join(['output_blocks', str(i), path['old']]) + new_path = '.'.join(['up_blocks', str(block_id), 'resnets', str(layer_in_block_id), path['new']]) + new_checkpoint[new_path] = unet_state_dict[old_path] + if controlnet: + orig_index = 0 + new_checkpoint['controlnet_cond_embedding.conv_in.weight'] = unet_state_dict.pop(f'input_hint_block.{orig_index}.weight') + new_checkpoint['controlnet_cond_embedding.conv_in.bias'] = unet_state_dict.pop(f'input_hint_block.{orig_index}.bias') + orig_index += 2 + diffusers_index = 0 + while diffusers_index < 6: + new_checkpoint[f'controlnet_cond_embedding.blocks.{diffusers_index}.weight'] = unet_state_dict.pop(f'input_hint_block.{orig_index}.weight') + new_checkpoint[f'controlnet_cond_embedding.blocks.{diffusers_index}.bias'] = unet_state_dict.pop(f'input_hint_block.{orig_index}.bias') + diffusers_index += 1 + orig_index += 2 + new_checkpoint['controlnet_cond_embedding.conv_out.weight'] = unet_state_dict.pop(f'input_hint_block.{orig_index}.weight') + new_checkpoint['controlnet_cond_embedding.conv_out.bias'] = unet_state_dict.pop(f'input_hint_block.{orig_index}.bias') + for i in range(num_input_blocks): + new_checkpoint[f'controlnet_down_blocks.{i}.weight'] = unet_state_dict.pop(f'zero_convs.{i}.0.weight') + new_checkpoint[f'controlnet_down_blocks.{i}.bias'] = unet_state_dict.pop(f'zero_convs.{i}.0.bias') + new_checkpoint['controlnet_mid_block.weight'] = unet_state_dict.pop('middle_block_out.0.weight') + new_checkpoint['controlnet_mid_block.bias'] = unet_state_dict.pop('middle_block_out.0.bias') + return new_checkpoint + +def convert_ldm_vae_checkpoint(checkpoint, config): + vae_state_dict = {} + keys = list(checkpoint.keys()) + vae_key = 'first_stage_model.' if any((k.startswith('first_stage_model.') for k in keys)) else '' + for key in keys: + if key.startswith(vae_key): + vae_state_dict[key.replace(vae_key, '')] = checkpoint.get(key) + new_checkpoint = {} + new_checkpoint['encoder.conv_in.weight'] = vae_state_dict['encoder.conv_in.weight'] + new_checkpoint['encoder.conv_in.bias'] = vae_state_dict['encoder.conv_in.bias'] + new_checkpoint['encoder.conv_out.weight'] = vae_state_dict['encoder.conv_out.weight'] + new_checkpoint['encoder.conv_out.bias'] = vae_state_dict['encoder.conv_out.bias'] + new_checkpoint['encoder.conv_norm_out.weight'] = vae_state_dict['encoder.norm_out.weight'] + new_checkpoint['encoder.conv_norm_out.bias'] = vae_state_dict['encoder.norm_out.bias'] + new_checkpoint['decoder.conv_in.weight'] = vae_state_dict['decoder.conv_in.weight'] + new_checkpoint['decoder.conv_in.bias'] = vae_state_dict['decoder.conv_in.bias'] + new_checkpoint['decoder.conv_out.weight'] = vae_state_dict['decoder.conv_out.weight'] + new_checkpoint['decoder.conv_out.bias'] = vae_state_dict['decoder.conv_out.bias'] + new_checkpoint['decoder.conv_norm_out.weight'] = vae_state_dict['decoder.norm_out.weight'] + new_checkpoint['decoder.conv_norm_out.bias'] = vae_state_dict['decoder.norm_out.bias'] + new_checkpoint['quant_conv.weight'] = vae_state_dict['quant_conv.weight'] + new_checkpoint['quant_conv.bias'] = vae_state_dict['quant_conv.bias'] + new_checkpoint['post_quant_conv.weight'] = vae_state_dict['post_quant_conv.weight'] + new_checkpoint['post_quant_conv.bias'] = vae_state_dict['post_quant_conv.bias'] + num_down_blocks = len({'.'.join(layer.split('.')[:3]) for layer in vae_state_dict if 'encoder.down' in layer}) + down_blocks = {layer_id: [key for key in vae_state_dict if f'down.{layer_id}' in key] for layer_id in range(num_down_blocks)} + num_up_blocks = len({'.'.join(layer.split('.')[:3]) for layer in vae_state_dict if 'decoder.up' in layer}) + up_blocks = {layer_id: [key for key in vae_state_dict if f'up.{layer_id}' in key] for layer_id in range(num_up_blocks)} + for i in range(num_down_blocks): + resnets = [key for key in down_blocks[i] if f'down.{i}' in key and f'down.{i}.downsample' not in key] + if f'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: + new_checkpoint[f'encoder.down_blocks.{i}.downsamplers.0.conv.weight'] = vae_state_dict.pop(f'encoder.down.{i}.downsample.conv.weight') + new_checkpoint[f'encoder.down_blocks.{i}.downsamplers.0.conv.bias'] = vae_state_dict.pop(f'encoder.down.{i}.downsample.conv.bias') + paths = renew_vae_resnet_paths(resnets) + meta_path = {'old': f'down.{i}.block', 'new': f'down_blocks.{i}.resnets'} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + mid_resnets = [key for key in vae_state_dict if 'encoder.mid.block' in key] + num_mid_res_blocks = 2 + for i in range(1, num_mid_res_blocks + 1): + resnets = [key for key in mid_resnets if f'encoder.mid.block_{i}' in key] + paths = renew_vae_resnet_paths(resnets) + meta_path = {'old': f'mid.block_{i}', 'new': f'mid_block.resnets.{i - 1}'} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + mid_attentions = [key for key in vae_state_dict if 'encoder.mid.attn' in key] + paths = renew_vae_attention_paths(mid_attentions) + meta_path = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + conv_attn_to_linear(new_checkpoint) + for i in range(num_up_blocks): + block_id = num_up_blocks - 1 - i + resnets = [key for key in up_blocks[block_id] if f'up.{block_id}' in key and f'up.{block_id}.upsample' not in key] + if f'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: + new_checkpoint[f'decoder.up_blocks.{i}.upsamplers.0.conv.weight'] = vae_state_dict[f'decoder.up.{block_id}.upsample.conv.weight'] + new_checkpoint[f'decoder.up_blocks.{i}.upsamplers.0.conv.bias'] = vae_state_dict[f'decoder.up.{block_id}.upsample.conv.bias'] + paths = renew_vae_resnet_paths(resnets) + meta_path = {'old': f'up.{block_id}.block', 'new': f'up_blocks.{i}.resnets'} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + mid_resnets = [key for key in vae_state_dict if 'decoder.mid.block' in key] + num_mid_res_blocks = 2 + for i in range(1, num_mid_res_blocks + 1): + resnets = [key for key in mid_resnets if f'decoder.mid.block_{i}' in key] + paths = renew_vae_resnet_paths(resnets) + meta_path = {'old': f'mid.block_{i}', 'new': f'mid_block.resnets.{i - 1}'} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + mid_attentions = [key for key in vae_state_dict if 'decoder.mid.attn' in key] + paths = renew_vae_attention_paths(mid_attentions) + meta_path = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} + assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) + conv_attn_to_linear(new_checkpoint) + return new_checkpoint + +def convert_ldm_bert_checkpoint(checkpoint, config): + + def _copy_attn_layer(hf_attn_layer, pt_attn_layer): + hf_attn_layer.q_proj.weight.data = pt_attn_layer.to_q.weight + hf_attn_layer.k_proj.weight.data = pt_attn_layer.to_k.weight + hf_attn_layer.v_proj.weight.data = pt_attn_layer.to_v.weight + hf_attn_layer.out_proj.weight = pt_attn_layer.to_out.weight + hf_attn_layer.out_proj.bias = pt_attn_layer.to_out.bias + + def _copy_linear(hf_linear, pt_linear): + hf_linear.weight = pt_linear.weight + hf_linear.bias = pt_linear.bias + + def _copy_layer(hf_layer, pt_layer): + _copy_linear(hf_layer.self_attn_layer_norm, pt_layer[0][0]) + _copy_linear(hf_layer.final_layer_norm, pt_layer[1][0]) + _copy_attn_layer(hf_layer.self_attn, pt_layer[0][1]) + pt_mlp = pt_layer[1][1] + _copy_linear(hf_layer.fc1, pt_mlp.net[0][0]) + _copy_linear(hf_layer.fc2, pt_mlp.net[2]) + + def _copy_layers(hf_layers, pt_layers): + for (i, hf_layer) in enumerate(hf_layers): + if i != 0: + i += i + pt_layer = pt_layers[i:i + 2] + _copy_layer(hf_layer, pt_layer) + hf_model = LDMBertModel(config).eval() + hf_model.model.embed_tokens.weight = checkpoint.transformer.token_emb.weight + hf_model.model.embed_positions.weight.data = checkpoint.transformer.pos_emb.emb.weight + _copy_linear(hf_model.model.layer_norm, checkpoint.transformer.norm) + _copy_layers(hf_model.model.layers, checkpoint.transformer.attn_layers.layers) + _copy_linear(hf_model.to_logits, checkpoint.transformer.to_logits) + return hf_model + +def convert_ldm_clip_checkpoint(checkpoint, local_files_only=False, text_encoder=None): + if text_encoder is None: + config_name = 'openai/clip-vit-large-patch14' + try: + config = CLIPTextConfig.from_pretrained(config_name, local_files_only=local_files_only) + except Exception: + raise ValueError(f"With local_files_only set to {local_files_only}, you must first locally save the configuration in the following path: 'openai/clip-vit-large-patch14'.") + ctx = init_empty_weights if is_accelerate_available() else nullcontext + with ctx(): + text_model = CLIPTextModel(config) + else: + text_model = text_encoder + keys = list(checkpoint.keys()) + text_model_dict = {} + remove_prefixes = ['cond_stage_model.transformer', 'conditioner.embedders.0.transformer'] + for key in keys: + for prefix in remove_prefixes: + if key.startswith(prefix): + text_model_dict[key[len(prefix + '.'):]] = checkpoint[key] + if is_accelerate_available(): + for (param_name, param) in text_model_dict.items(): + set_module_tensor_to_device(text_model, param_name, 'cpu', value=param) + else: + if not (hasattr(text_model, 'embeddings') and hasattr(text_model.embeddings.position_ids)): + text_model_dict.pop('text_model.embeddings.position_ids', None) + text_model.load_state_dict(text_model_dict) + return text_model +textenc_conversion_lst = [('positional_embedding', 'text_model.embeddings.position_embedding.weight'), ('token_embedding.weight', 'text_model.embeddings.token_embedding.weight'), ('ln_final.weight', 'text_model.final_layer_norm.weight'), ('ln_final.bias', 'text_model.final_layer_norm.bias'), ('text_projection', 'text_projection.weight')] +textenc_conversion_map = {x[0]: x[1] for x in textenc_conversion_lst} +textenc_transformer_conversion_lst = [('resblocks.', 'text_model.encoder.layers.'), ('ln_1', 'layer_norm1'), ('ln_2', 'layer_norm2'), ('.c_fc.', '.fc1.'), ('.c_proj.', '.fc2.'), ('.attn', '.self_attn'), ('ln_final.', 'transformer.text_model.final_layer_norm.'), ('token_embedding.weight', 'transformer.text_model.embeddings.token_embedding.weight'), ('positional_embedding', 'transformer.text_model.embeddings.position_embedding.weight')] +protected = {re.escape(x[0]): x[1] for x in textenc_transformer_conversion_lst} +textenc_pattern = re.compile('|'.join(protected.keys())) + +def convert_paint_by_example_checkpoint(checkpoint, local_files_only=False): + config = CLIPVisionConfig.from_pretrained('openai/clip-vit-large-patch14', local_files_only=local_files_only) + model = PaintByExampleImageEncoder(config) + keys = list(checkpoint.keys()) + text_model_dict = {} + for key in keys: + if key.startswith('cond_stage_model.transformer'): + text_model_dict[key[len('cond_stage_model.transformer.'):]] = checkpoint[key] + model.model.load_state_dict(text_model_dict) + keys_mapper = {k[len('cond_stage_model.mapper.res'):]: v for (k, v) in checkpoint.items() if k.startswith('cond_stage_model.mapper')} + MAPPING = {'attn.c_qkv': ['attn1.to_q', 'attn1.to_k', 'attn1.to_v'], 'attn.c_proj': ['attn1.to_out.0'], 'ln_1': ['norm1'], 'ln_2': ['norm3'], 'mlp.c_fc': ['ff.net.0.proj'], 'mlp.c_proj': ['ff.net.2']} + mapped_weights = {} + for (key, value) in keys_mapper.items(): + prefix = key[:len('blocks.i')] + suffix = key.split(prefix)[-1].split('.')[-1] + name = key.split(prefix)[-1].split(suffix)[0][1:-1] + mapped_names = MAPPING[name] + num_splits = len(mapped_names) + for (i, mapped_name) in enumerate(mapped_names): + new_name = '.'.join([prefix, mapped_name, suffix]) + shape = value.shape[0] // num_splits + mapped_weights[new_name] = value[i * shape:(i + 1) * shape] + model.mapper.load_state_dict(mapped_weights) + model.final_layer_norm.load_state_dict({'bias': checkpoint['cond_stage_model.final_ln.bias'], 'weight': checkpoint['cond_stage_model.final_ln.weight']}) + model.proj_out.load_state_dict({'bias': checkpoint['proj_out.bias'], 'weight': checkpoint['proj_out.weight']}) + model.uncond_vector.data = torch.nn.Parameter(checkpoint['learnable_vector']) + return model + +def convert_open_clip_checkpoint(checkpoint, config_name, prefix='cond_stage_model.model.', has_projection=False, local_files_only=False, **config_kwargs): + try: + config = CLIPTextConfig.from_pretrained(config_name, **config_kwargs, local_files_only=local_files_only) + except Exception: + raise ValueError(f"With local_files_only set to {local_files_only}, you must first locally save the configuration in the following path: '{config_name}'.") + ctx = init_empty_weights if is_accelerate_available() else nullcontext + with ctx(): + text_model = CLIPTextModelWithProjection(config) if has_projection else CLIPTextModel(config) + keys = list(checkpoint.keys()) + keys_to_ignore = [] + if config_name == 'stabilityai/stable-diffusion-2' and config.num_hidden_layers == 23: + keys_to_ignore += [k for k in keys if k.startswith('cond_stage_model.model.transformer.resblocks.23')] + keys_to_ignore += ['cond_stage_model.model.text_projection'] + text_model_dict = {} + if prefix + 'text_projection' in checkpoint: + d_model = int(checkpoint[prefix + 'text_projection'].shape[0]) + else: + d_model = 1024 + text_model_dict['text_model.embeddings.position_ids'] = text_model.text_model.embeddings.get_buffer('position_ids') + for key in keys: + if key in keys_to_ignore: + continue + if key[len(prefix):] in textenc_conversion_map: + if key.endswith('text_projection'): + value = checkpoint[key].T.contiguous() + else: + value = checkpoint[key] + text_model_dict[textenc_conversion_map[key[len(prefix):]]] = value + if key.startswith(prefix + 'transformer.'): + new_key = key[len(prefix + 'transformer.'):] + if new_key.endswith('.in_proj_weight'): + new_key = new_key[:-len('.in_proj_weight')] + new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) + text_model_dict[new_key + '.q_proj.weight'] = checkpoint[key][:d_model, :] + text_model_dict[new_key + '.k_proj.weight'] = checkpoint[key][d_model:d_model * 2, :] + text_model_dict[new_key + '.v_proj.weight'] = checkpoint[key][d_model * 2:, :] + elif new_key.endswith('.in_proj_bias'): + new_key = new_key[:-len('.in_proj_bias')] + new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) + text_model_dict[new_key + '.q_proj.bias'] = checkpoint[key][:d_model] + text_model_dict[new_key + '.k_proj.bias'] = checkpoint[key][d_model:d_model * 2] + text_model_dict[new_key + '.v_proj.bias'] = checkpoint[key][d_model * 2:] + else: + new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) + text_model_dict[new_key] = checkpoint[key] + if is_accelerate_available(): + for (param_name, param) in text_model_dict.items(): + set_module_tensor_to_device(text_model, param_name, 'cpu', value=param) + else: + if not (hasattr(text_model, 'embeddings') and hasattr(text_model.embeddings.position_ids)): + text_model_dict.pop('text_model.embeddings.position_ids', None) + text_model.load_state_dict(text_model_dict) + return text_model + +def stable_unclip_image_encoder(original_config, local_files_only=False): + image_embedder_config = original_config['model']['params']['embedder_config'] + sd_clip_image_embedder_class = image_embedder_config['target'] + sd_clip_image_embedder_class = sd_clip_image_embedder_class.split('.')[-1] + if sd_clip_image_embedder_class == 'ClipImageEmbedder': + clip_model_name = image_embedder_config.params.model + if clip_model_name == 'ViT-L/14': + feature_extractor = CLIPImageProcessor() + image_encoder = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14', local_files_only=local_files_only) + else: + raise NotImplementedError(f'Unknown CLIP checkpoint name in stable diffusion checkpoint {clip_model_name}') + elif sd_clip_image_embedder_class == 'FrozenOpenCLIPImageEmbedder': + feature_extractor = CLIPImageProcessor() + image_encoder = CLIPVisionModelWithProjection.from_pretrained('laion/CLIP-ViT-H-14-laion2B-s32B-b79K', local_files_only=local_files_only) + else: + raise NotImplementedError(f'Unknown CLIP image embedder class in stable diffusion checkpoint {sd_clip_image_embedder_class}') + return (feature_extractor, image_encoder) + +def stable_unclip_image_noising_components(original_config, clip_stats_path: Optional[str]=None, device: Optional[str]=None): + noise_aug_config = original_config['model']['params']['noise_aug_config'] + noise_aug_class = noise_aug_config['target'] + noise_aug_class = noise_aug_class.split('.')[-1] + if noise_aug_class == 'CLIPEmbeddingNoiseAugmentation': + noise_aug_config = noise_aug_config.params + embedding_dim = noise_aug_config.timestep_dim + max_noise_level = noise_aug_config.noise_schedule_config.timesteps + beta_schedule = noise_aug_config.noise_schedule_config.beta_schedule + image_normalizer = StableUnCLIPImageNormalizer(embedding_dim=embedding_dim) + image_noising_scheduler = DDPMScheduler(num_train_timesteps=max_noise_level, beta_schedule=beta_schedule) + if 'clip_stats_path' in noise_aug_config: + if clip_stats_path is None: + raise ValueError('This stable unclip config requires a `clip_stats_path`') + (clip_mean, clip_std) = torch.load(clip_stats_path, map_location=device) + clip_mean = clip_mean[None, :] + clip_std = clip_std[None, :] + clip_stats_state_dict = {'mean': clip_mean, 'std': clip_std} + image_normalizer.load_state_dict(clip_stats_state_dict) + else: + raise NotImplementedError(f'Unknown noise augmentor class: {noise_aug_class}') + return (image_normalizer, image_noising_scheduler) + +def convert_controlnet_checkpoint(checkpoint, original_config, checkpoint_path, image_size, upcast_attention, extract_ema, use_linear_projection=None, cross_attention_dim=None): + ctrlnet_config = create_unet_diffusers_config(original_config, image_size=image_size, controlnet=True) + ctrlnet_config['upcast_attention'] = upcast_attention + ctrlnet_config.pop('sample_size') + if use_linear_projection is not None: + ctrlnet_config['use_linear_projection'] = use_linear_projection + if cross_attention_dim is not None: + ctrlnet_config['cross_attention_dim'] = cross_attention_dim + ctx = init_empty_weights if is_accelerate_available() else nullcontext + with ctx(): + controlnet = ControlNetModel(**ctrlnet_config) + if 'time_embed.0.weight' in checkpoint: + skip_extract_state_dict = True + else: + skip_extract_state_dict = False + converted_ctrl_checkpoint = convert_ldm_unet_checkpoint(checkpoint, ctrlnet_config, path=checkpoint_path, extract_ema=extract_ema, controlnet=True, skip_extract_state_dict=skip_extract_state_dict) + if is_accelerate_available(): + for (param_name, param) in converted_ctrl_checkpoint.items(): + set_module_tensor_to_device(controlnet, param_name, 'cpu', value=param) + else: + controlnet.load_state_dict(converted_ctrl_checkpoint) + return controlnet + +def download_from_original_stable_diffusion_ckpt(checkpoint_path_or_dict: Union[str, Dict[str, torch.Tensor]], original_config_file: str=None, image_size: Optional[int]=None, prediction_type: str=None, model_type: str=None, extract_ema: bool=False, scheduler_type: str='pndm', num_in_channels: Optional[int]=None, upcast_attention: Optional[bool]=None, device: str=None, from_safetensors: bool=False, stable_unclip: Optional[str]=None, stable_unclip_prior: Optional[str]=None, clip_stats_path: Optional[str]=None, controlnet: Optional[bool]=None, adapter: Optional[bool]=None, load_safety_checker: bool=True, safety_checker: Optional[StableDiffusionSafetyChecker]=None, feature_extractor: Optional[AutoFeatureExtractor]=None, pipeline_class: DiffusionPipeline=None, local_files_only=False, vae_path=None, vae=None, text_encoder=None, text_encoder_2=None, tokenizer=None, tokenizer_2=None, config_files=None) -> DiffusionPipeline: + from diffusers import LDMTextToImagePipeline, PaintByExamplePipeline, StableDiffusionControlNetPipeline, StableDiffusionInpaintPipeline, StableDiffusionPipeline, StableDiffusionUpscalePipeline, StableDiffusionXLControlNetInpaintPipeline, StableDiffusionXLImg2ImgPipeline, StableDiffusionXLInpaintPipeline, StableDiffusionXLPipeline, StableUnCLIPImg2ImgPipeline, StableUnCLIPPipeline + if prediction_type == 'v-prediction': + prediction_type = 'v_prediction' + if isinstance(checkpoint_path_or_dict, str): + if from_safetensors: + from safetensors.torch import load_file as safe_load + checkpoint = safe_load(checkpoint_path_or_dict, device='cpu') + elif device is None: + device = 'cuda' if torch.cuda.is_available() else 'cpu' + checkpoint = torch.load(checkpoint_path_or_dict, map_location=device) + else: + checkpoint = torch.load(checkpoint_path_or_dict, map_location=device) + elif isinstance(checkpoint_path_or_dict, dict): + checkpoint = checkpoint_path_or_dict + if 'global_step' in checkpoint: + global_step = checkpoint['global_step'] + else: + logger.debug('global_step key not found in model') + global_step = None + while 'state_dict' in checkpoint: + checkpoint = checkpoint['state_dict'] + if original_config_file is None: + key_name_v2_1 = 'model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight' + key_name_sd_xl_base = 'conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.bias' + key_name_sd_xl_refiner = 'conditioner.embedders.0.model.transformer.resblocks.9.mlp.c_proj.bias' + is_upscale = pipeline_class == StableDiffusionUpscalePipeline + config_url = None + if config_files is not None and 'v1' in config_files: + original_config_file = config_files['v1'] + else: + config_url = 'https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' + if key_name_v2_1 in checkpoint and checkpoint[key_name_v2_1].shape[-1] == 1024: + if config_files is not None and 'v2' in config_files: + original_config_file = config_files['v2'] + else: + config_url = 'https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml' + if global_step == 110000: + upcast_attention = True + elif key_name_sd_xl_base in checkpoint: + if config_files is not None and 'xl' in config_files: + original_config_file = config_files['xl'] + else: + config_url = 'https://raw.githubusercontent.com/Stability-AI/generative-models/main/configs/inference/sd_xl_base.yaml' + elif key_name_sd_xl_refiner in checkpoint: + if config_files is not None and 'xl_refiner' in config_files: + original_config_file = config_files['xl_refiner'] + else: + config_url = 'https://raw.githubusercontent.com/Stability-AI/generative-models/main/configs/inference/sd_xl_refiner.yaml' + if is_upscale: + config_url = 'https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/x4-upscaling.yaml' + if config_url is not None: + original_config_file = BytesIO(requests.get(config_url).content) + else: + with open(original_config_file, 'r') as f: + original_config_file = f.read() + else: + with open(original_config_file, 'r') as f: + original_config_file = f.read() + original_config = yaml.safe_load(original_config_file) + if model_type is None and 'cond_stage_config' in original_config['model']['params'] and (original_config['model']['params']['cond_stage_config'] is not None): + model_type = original_config['model']['params']['cond_stage_config']['target'].split('.')[-1] + logger.debug(f'no `model_type` given, `model_type` inferred as: {model_type}') + elif model_type is None and original_config['model']['params']['network_config'] is not None: + if original_config['model']['params']['network_config']['params']['context_dim'] == 2048: + model_type = 'SDXL' + else: + model_type = 'SDXL-Refiner' + if image_size is None: + image_size = 1024 + if pipeline_class is None: + if model_type not in ['SDXL', 'SDXL-Refiner']: + pipeline_class = StableDiffusionPipeline if not controlnet else StableDiffusionControlNetPipeline + else: + pipeline_class = StableDiffusionXLPipeline if model_type == 'SDXL' else StableDiffusionXLImg2ImgPipeline + if num_in_channels is None and pipeline_class in [StableDiffusionInpaintPipeline, StableDiffusionXLInpaintPipeline, StableDiffusionXLControlNetInpaintPipeline]: + num_in_channels = 9 + if num_in_channels is None and pipeline_class == StableDiffusionUpscalePipeline: + num_in_channels = 7 + elif num_in_channels is None: + num_in_channels = 4 + if 'unet_config' in original_config['model']['params']: + original_config['model']['params']['unet_config']['params']['in_channels'] = num_in_channels + elif 'network_config' in original_config['model']['params']: + original_config['model']['params']['network_config']['params']['in_channels'] = num_in_channels + if 'parameterization' in original_config['model']['params'] and original_config['model']['params']['parameterization'] == 'v': + if prediction_type is None: + prediction_type = 'epsilon' if global_step == 875000 else 'v_prediction' + if image_size is None: + image_size = 512 if global_step == 875000 else 768 + else: + if prediction_type is None: + prediction_type = 'epsilon' + if image_size is None: + image_size = 512 + if controlnet is None and 'control_stage_config' in original_config['model']['params']: + path = checkpoint_path_or_dict if isinstance(checkpoint_path_or_dict, str) else '' + controlnet = convert_controlnet_checkpoint(checkpoint, original_config, path, image_size, upcast_attention, extract_ema) + if 'timesteps' in original_config['model']['params']: + num_train_timesteps = original_config['model']['params']['timesteps'] + else: + num_train_timesteps = 1000 + if model_type in ['SDXL', 'SDXL-Refiner']: + scheduler_dict = {'beta_schedule': 'scaled_linear', 'beta_start': 0.00085, 'beta_end': 0.012, 'interpolation_type': 'linear', 'num_train_timesteps': num_train_timesteps, 'prediction_type': 'epsilon', 'sample_max_value': 1.0, 'set_alpha_to_one': False, 'skip_prk_steps': True, 'steps_offset': 1, 'timestep_spacing': 'leading'} + scheduler = EulerDiscreteScheduler.from_config(scheduler_dict) + scheduler_type = 'euler' + else: + if 'linear_start' in original_config['model']['params']: + beta_start = original_config['model']['params']['linear_start'] + else: + beta_start = 0.02 + if 'linear_end' in original_config['model']['params']: + beta_end = original_config['model']['params']['linear_end'] + else: + beta_end = 0.085 + scheduler = DDIMScheduler(beta_end=beta_end, beta_schedule='scaled_linear', beta_start=beta_start, num_train_timesteps=num_train_timesteps, steps_offset=1, clip_sample=False, set_alpha_to_one=False, prediction_type=prediction_type) + scheduler.register_to_config(clip_sample=False) + if scheduler_type == 'pndm': + config = dict(scheduler.config) + config['skip_prk_steps'] = True + scheduler = PNDMScheduler.from_config(config) + elif scheduler_type == 'lms': + scheduler = LMSDiscreteScheduler.from_config(scheduler.config) + elif scheduler_type == 'heun': + scheduler = HeunDiscreteScheduler.from_config(scheduler.config) + elif scheduler_type == 'euler': + scheduler = EulerDiscreteScheduler.from_config(scheduler.config) + elif scheduler_type == 'euler-ancestral': + scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config) + elif scheduler_type == 'dpm': + scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config) + elif scheduler_type == 'ddim': + scheduler = scheduler + else: + raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!") + if pipeline_class == StableDiffusionUpscalePipeline: + image_size = original_config['model']['params']['unet_config']['params']['image_size'] + unet_config = create_unet_diffusers_config(original_config, image_size=image_size) + unet_config['upcast_attention'] = upcast_attention + path = checkpoint_path_or_dict if isinstance(checkpoint_path_or_dict, str) else '' + converted_unet_checkpoint = convert_ldm_unet_checkpoint(checkpoint, unet_config, path=path, extract_ema=extract_ema) + ctx = init_empty_weights if is_accelerate_available() else nullcontext + with ctx(): + unet = UNet2DConditionModel(**unet_config) + if is_accelerate_available(): + if model_type not in ['SDXL', 'SDXL-Refiner']: + for (param_name, param) in converted_unet_checkpoint.items(): + set_module_tensor_to_device(unet, param_name, 'cpu', value=param) + else: + unet.load_state_dict(converted_unet_checkpoint) + if vae_path is None and vae is None: + vae_config = create_vae_diffusers_config(original_config, image_size=image_size) + converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config) + if 'model' in original_config and 'params' in original_config['model'] and ('scale_factor' in original_config['model']['params']): + vae_scaling_factor = original_config['model']['params']['scale_factor'] + else: + vae_scaling_factor = 0.18215 + vae_config['scaling_factor'] = vae_scaling_factor + ctx = init_empty_weights if is_accelerate_available() else nullcontext + with ctx(): + vae = AutoencoderKL(**vae_config) + if is_accelerate_available(): + for (param_name, param) in converted_vae_checkpoint.items(): + set_module_tensor_to_device(vae, param_name, 'cpu', value=param) + else: + vae.load_state_dict(converted_vae_checkpoint) + elif vae is None: + vae = AutoencoderKL.from_pretrained(vae_path, local_files_only=local_files_only) + if model_type == 'FrozenOpenCLIPEmbedder': + config_name = 'stabilityai/stable-diffusion-2' + config_kwargs = {'subfolder': 'text_encoder'} + if text_encoder is None: + text_model = convert_open_clip_checkpoint(checkpoint, config_name, local_files_only=local_files_only, **config_kwargs) + else: + text_model = text_encoder + try: + tokenizer = CLIPTokenizer.from_pretrained('stabilityai/stable-diffusion-2', subfolder='tokenizer', local_files_only=local_files_only) + except Exception: + raise ValueError(f"With local_files_only set to {local_files_only}, you must first locally save the tokenizer in the following path: 'stabilityai/stable-diffusion-2'.") + if stable_unclip is None: + if controlnet: + pipe = pipeline_class(vae=vae, text_encoder=text_model, tokenizer=tokenizer, unet=unet, scheduler=scheduler, controlnet=controlnet, safety_checker=safety_checker, feature_extractor=feature_extractor) + if hasattr(pipe, 'requires_safety_checker'): + pipe.requires_safety_checker = False + elif pipeline_class == StableDiffusionUpscalePipeline: + scheduler = DDIMScheduler.from_pretrained('stabilityai/stable-diffusion-x4-upscaler', subfolder='scheduler') + low_res_scheduler = DDPMScheduler.from_pretrained('stabilityai/stable-diffusion-x4-upscaler', subfolder='low_res_scheduler') + pipe = pipeline_class(vae=vae, text_encoder=text_model, tokenizer=tokenizer, unet=unet, scheduler=scheduler, low_res_scheduler=low_res_scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + else: + pipe = pipeline_class(vae=vae, text_encoder=text_model, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + if hasattr(pipe, 'requires_safety_checker'): + pipe.requires_safety_checker = False + else: + (image_normalizer, image_noising_scheduler) = stable_unclip_image_noising_components(original_config, clip_stats_path=clip_stats_path, device=device) + if stable_unclip == 'img2img': + (feature_extractor, image_encoder) = stable_unclip_image_encoder(original_config) + pipe = StableUnCLIPImg2ImgPipeline(feature_extractor=feature_extractor, image_encoder=image_encoder, image_normalizer=image_normalizer, image_noising_scheduler=image_noising_scheduler, tokenizer=tokenizer, text_encoder=text_model, unet=unet, scheduler=scheduler, vae=vae) + elif stable_unclip == 'txt2img': + if stable_unclip_prior is None or stable_unclip_prior == 'karlo': + karlo_model = 'kakaobrain/karlo-v1-alpha' + prior = PriorTransformer.from_pretrained(karlo_model, subfolder='prior', local_files_only=local_files_only) + try: + prior_tokenizer = CLIPTokenizer.from_pretrained('openai/clip-vit-large-patch14', local_files_only=local_files_only) + except Exception: + raise ValueError(f"With local_files_only set to {local_files_only}, you must first locally save the tokenizer in the following path: 'openai/clip-vit-large-patch14'.") + prior_text_model = CLIPTextModelWithProjection.from_pretrained('openai/clip-vit-large-patch14', local_files_only=local_files_only) + prior_scheduler = UnCLIPScheduler.from_pretrained(karlo_model, subfolder='prior_scheduler', local_files_only=local_files_only) + prior_scheduler = DDPMScheduler.from_config(prior_scheduler.config) + else: + raise NotImplementedError(f'unknown prior for stable unclip model: {stable_unclip_prior}') + pipe = StableUnCLIPPipeline(prior_tokenizer=prior_tokenizer, prior_text_encoder=prior_text_model, prior=prior, prior_scheduler=prior_scheduler, image_normalizer=image_normalizer, image_noising_scheduler=image_noising_scheduler, tokenizer=tokenizer, text_encoder=text_model, unet=unet, scheduler=scheduler, vae=vae) + else: + raise NotImplementedError(f'unknown `stable_unclip` type: {stable_unclip}') + elif model_type == 'PaintByExample': + vision_model = convert_paint_by_example_checkpoint(checkpoint) + try: + tokenizer = CLIPTokenizer.from_pretrained('openai/clip-vit-large-patch14', local_files_only=local_files_only) + except Exception: + raise ValueError(f"With local_files_only set to {local_files_only}, you must first locally save the tokenizer in the following path: 'openai/clip-vit-large-patch14'.") + try: + feature_extractor = AutoFeatureExtractor.from_pretrained('CompVis/stable-diffusion-safety-checker', local_files_only=local_files_only) + except Exception: + raise ValueError(f"With local_files_only set to {local_files_only}, you must first locally save the feature_extractor in the following path: 'CompVis/stable-diffusion-safety-checker'.") + pipe = PaintByExamplePipeline(vae=vae, image_encoder=vision_model, unet=unet, scheduler=scheduler, safety_checker=None, feature_extractor=feature_extractor) + elif model_type == 'FrozenCLIPEmbedder': + text_model = convert_ldm_clip_checkpoint(checkpoint, local_files_only=local_files_only, text_encoder=text_encoder) + try: + tokenizer = CLIPTokenizer.from_pretrained('openai/clip-vit-large-patch14', local_files_only=local_files_only) if tokenizer is None else tokenizer + except Exception: + raise ValueError(f"With local_files_only set to {local_files_only}, you must first locally save the tokenizer in the following path: 'openai/clip-vit-large-patch14'.") + if load_safety_checker: + safety_checker = StableDiffusionSafetyChecker.from_pretrained('CompVis/stable-diffusion-safety-checker', local_files_only=local_files_only) + feature_extractor = AutoFeatureExtractor.from_pretrained('CompVis/stable-diffusion-safety-checker', local_files_only=local_files_only) + if controlnet: + pipe = pipeline_class(vae=vae, text_encoder=text_model, tokenizer=tokenizer, unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + else: + pipe = pipeline_class(vae=vae, text_encoder=text_model, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + elif model_type in ['SDXL', 'SDXL-Refiner']: + is_refiner = model_type == 'SDXL-Refiner' + if is_refiner is False and tokenizer is None: + try: + tokenizer = CLIPTokenizer.from_pretrained('openai/clip-vit-large-patch14', local_files_only=local_files_only) + except Exception: + raise ValueError(f"With local_files_only set to {local_files_only}, you must first locally save the tokenizer in the following path: 'openai/clip-vit-large-patch14'.") + if is_refiner is False and text_encoder is None: + text_encoder = convert_ldm_clip_checkpoint(checkpoint, local_files_only=local_files_only) + if tokenizer_2 is None: + try: + tokenizer_2 = CLIPTokenizer.from_pretrained('laion/CLIP-ViT-bigG-14-laion2B-39B-b160k', pad_token='!', local_files_only=local_files_only) + except Exception: + raise ValueError(f"With local_files_only set to {local_files_only}, you must first locally save the tokenizer in the following path: 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k' with `pad_token` set to '!'.") + if text_encoder_2 is None: + config_name = 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k' + config_kwargs = {'projection_dim': 1280} + prefix = 'conditioner.embedders.0.model.' if is_refiner else 'conditioner.embedders.1.model.' + text_encoder_2 = convert_open_clip_checkpoint(checkpoint, config_name, prefix=prefix, has_projection=True, local_files_only=local_files_only, **config_kwargs) + if is_accelerate_available(): + for (param_name, param) in converted_unet_checkpoint.items(): + set_module_tensor_to_device(unet, param_name, 'cpu', value=param) + if controlnet: + pipe = pipeline_class(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, text_encoder_2=text_encoder_2, tokenizer_2=tokenizer_2, unet=unet, controlnet=controlnet, scheduler=scheduler, force_zeros_for_empty_prompt=True) + elif adapter: + pipe = pipeline_class(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, text_encoder_2=text_encoder_2, tokenizer_2=tokenizer_2, unet=unet, adapter=adapter, scheduler=scheduler, force_zeros_for_empty_prompt=True) + else: + pipeline_kwargs = {'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_2, 'tokenizer_2': tokenizer_2, 'unet': unet, 'scheduler': scheduler} + if pipeline_class == StableDiffusionXLImg2ImgPipeline or pipeline_class == StableDiffusionXLInpaintPipeline: + pipeline_kwargs.update({'requires_aesthetics_score': is_refiner}) + if is_refiner: + pipeline_kwargs.update({'force_zeros_for_empty_prompt': False}) + pipe = pipeline_class(**pipeline_kwargs) + else: + text_config = create_ldm_bert_config(original_config) + text_model = convert_ldm_bert_checkpoint(checkpoint, text_config) + tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased', local_files_only=local_files_only) + pipe = LDMTextToImagePipeline(vqvae=vae, bert=text_model, tokenizer=tokenizer, unet=unet, scheduler=scheduler) + return pipe + +def download_controlnet_from_original_ckpt(checkpoint_path: str, original_config_file: str, image_size: int=512, extract_ema: bool=False, num_in_channels: Optional[int]=None, upcast_attention: Optional[bool]=None, device: str=None, from_safetensors: bool=False, use_linear_projection: Optional[bool]=None, cross_attention_dim: Optional[bool]=None) -> DiffusionPipeline: + if from_safetensors: + from safetensors import safe_open + checkpoint = {} + with safe_open(checkpoint_path, framework='pt', device='cpu') as f: + for key in f.keys(): + checkpoint[key] = f.get_tensor(key) + elif device is None: + device = 'cuda' if torch.cuda.is_available() else 'cpu' + checkpoint = torch.load(checkpoint_path, map_location=device) + else: + checkpoint = torch.load(checkpoint_path, map_location=device) + while 'state_dict' in checkpoint: + checkpoint = checkpoint['state_dict'] + with open(original_config_file, 'r') as f: + original_config_file = f.read() + original_config = yaml.safe_load(original_config_file) + if num_in_channels is not None: + original_config['model']['params']['unet_config']['params']['in_channels'] = num_in_channels + if 'control_stage_config' not in original_config['model']['params']: + raise ValueError('`control_stage_config` not present in original config') + controlnet = convert_controlnet_checkpoint(checkpoint, original_config, checkpoint_path, image_size, upcast_attention, extract_ema, use_linear_projection=use_linear_projection, cross_attention_dim=cross_attention_dim) + return controlnet + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +import warnings +from functools import partial +from typing import Dict, List, Optional, Union +import jax +import jax.numpy as jnp +import numpy as np +from flax.core.frozen_dict import FrozenDict +from flax.jax_utils import unreplicate +from flax.training.common_utils import shard +from packaging import version +from PIL import Image +from transformers import CLIPImageProcessor, CLIPTokenizer, FlaxCLIPTextModel +from ...models import FlaxAutoencoderKL, FlaxUNet2DConditionModel +from ...schedulers import FlaxDDIMScheduler, FlaxDPMSolverMultistepScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler +from ...utils import deprecate, logging, replace_example_docstring +from ..pipeline_flax_utils import FlaxDiffusionPipeline +from .pipeline_output import FlaxStableDiffusionPipelineOutput +from .safety_checker_flax import FlaxStableDiffusionSafetyChecker +logger = logging.get_logger(__name__) +DEBUG = False +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import jax\n >>> import numpy as np\n >>> from flax.jax_utils import replicate\n >>> from flax.training.common_utils import shard\n\n >>> from diffusers import FlaxStableDiffusionPipeline\n\n >>> pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(\n ... "runwayml/stable-diffusion-v1-5", variant="bf16", dtype=jax.numpy.bfloat16\n ... )\n\n >>> prompt = "a photo of an astronaut riding a horse on mars"\n\n >>> prng_seed = jax.random.PRNGKey(0)\n >>> num_inference_steps = 50\n\n >>> num_samples = jax.device_count()\n >>> prompt = num_samples * [prompt]\n >>> prompt_ids = pipeline.prepare_inputs(prompt)\n # shard inputs and rng\n\n >>> params = replicate(params)\n >>> prng_seed = jax.random.split(prng_seed, jax.device_count())\n >>> prompt_ids = shard(prompt_ids)\n\n >>> images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images\n >>> images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))\n ```\n' + +class FlaxStableDiffusionPipeline(FlaxDiffusionPipeline): + + def __init__(self, vae: FlaxAutoencoderKL, text_encoder: FlaxCLIPTextModel, tokenizer: CLIPTokenizer, unet: FlaxUNet2DConditionModel, scheduler: Union[FlaxDDIMScheduler, FlaxPNDMScheduler, FlaxLMSDiscreteScheduler, FlaxDPMSolverMultistepScheduler], safety_checker: FlaxStableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, dtype: jnp.dtype=jnp.float32): + super().__init__() + self.dtype = dtype + if safety_checker is None: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + is_unet_version_less_0_9_0 = hasattr(unet.config, '_diffusers_version') and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse('0.9.0.dev0') + is_unet_sample_size_less_64 = hasattr(unet.config, 'sample_size') and unet.config.sample_size < 64 + if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: + deprecation_message = "The configuration file of the unet has set the default `sample_size` to smaller than 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n- CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5 \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the configuration file. Please make sure to update the config accordingly as leaving `sample_size=32` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `unet/config.json` file" + deprecate('sample_size<64', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(unet.config) + new_config['sample_size'] = 64 + unet._internal_dict = FrozenDict(new_config) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + + def prepare_inputs(self, prompt: Union[str, List[str]]): + if not isinstance(prompt, (str, list)): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='np') + return text_input.input_ids + + def _get_has_nsfw_concepts(self, features, params): + has_nsfw_concepts = self.safety_checker(features, params) + return has_nsfw_concepts + + def _run_safety_checker(self, images, safety_model_params, jit=False): + pil_images = [Image.fromarray(image) for image in images] + features = self.feature_extractor(pil_images, return_tensors='np').pixel_values + if jit: + features = shard(features) + has_nsfw_concepts = _p_get_has_nsfw_concepts(self, features, safety_model_params) + has_nsfw_concepts = unshard(has_nsfw_concepts) + safety_model_params = unreplicate(safety_model_params) + else: + has_nsfw_concepts = self._get_has_nsfw_concepts(features, safety_model_params) + images_was_copied = False + for (idx, has_nsfw_concept) in enumerate(has_nsfw_concepts): + if has_nsfw_concept: + if not images_was_copied: + images_was_copied = True + images = images.copy() + images[idx] = np.zeros(images[idx].shape, dtype=np.uint8) + if any(has_nsfw_concepts): + warnings.warn('Potential NSFW content was detected in one or more images. A black image will be returned instead. Try again with a different prompt and/or seed.') + return (images, has_nsfw_concepts) + + def _generate(self, prompt_ids: jnp.array, params: Union[Dict, FrozenDict], prng_seed: jax.Array, num_inference_steps: int, height: int, width: int, guidance_scale: float, latents: Optional[jnp.ndarray]=None, neg_prompt_ids: Optional[jnp.ndarray]=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + prompt_embeds = self.text_encoder(prompt_ids, params=params['text_encoder'])[0] + batch_size = prompt_ids.shape[0] + max_length = prompt_ids.shape[-1] + if neg_prompt_ids is None: + uncond_input = self.tokenizer([''] * batch_size, padding='max_length', max_length=max_length, return_tensors='np').input_ids + else: + uncond_input = neg_prompt_ids + negative_prompt_embeds = self.text_encoder(uncond_input, params=params['text_encoder'])[0] + context = jnp.concatenate([negative_prompt_embeds, prompt_embeds]) + guidance_scale = jnp.array([guidance_scale], dtype=jnp.float32) + latents_shape = (batch_size, self.unet.config.in_channels, height // self.vae_scale_factor, width // self.vae_scale_factor) + if latents is None: + latents = jax.random.normal(prng_seed, shape=latents_shape, dtype=jnp.float32) + elif latents.shape != latents_shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}') + + def loop_body(step, args): + (latents, scheduler_state) = args + latents_input = jnp.concatenate([latents] * 2) + t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step] + timestep = jnp.broadcast_to(t, latents_input.shape[0]) + latents_input = self.scheduler.scale_model_input(scheduler_state, latents_input, t) + noise_pred = self.unet.apply({'params': params['unet']}, jnp.array(latents_input), jnp.array(timestep, dtype=jnp.int32), encoder_hidden_states=context).sample + (noise_pred_uncond, noise_prediction_text) = jnp.split(noise_pred, 2, axis=0) + noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond) + (latents, scheduler_state) = self.scheduler.step(scheduler_state, noise_pred, t, latents).to_tuple() + return (latents, scheduler_state) + scheduler_state = self.scheduler.set_timesteps(params['scheduler'], num_inference_steps=num_inference_steps, shape=latents.shape) + latents = latents * params['scheduler'].init_noise_sigma + if DEBUG: + for i in range(num_inference_steps): + (latents, scheduler_state) = loop_body(i, (latents, scheduler_state)) + else: + (latents, _) = jax.lax.fori_loop(0, num_inference_steps, loop_body, (latents, scheduler_state)) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.apply({'params': params['vae']}, latents, method=self.vae.decode).sample + image = (image / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1) + return image + + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt_ids: jnp.array, params: Union[Dict, FrozenDict], prng_seed: jax.Array, num_inference_steps: int=50, height: Optional[int]=None, width: Optional[int]=None, guidance_scale: Union[float, jnp.ndarray]=7.5, latents: jnp.ndarray=None, neg_prompt_ids: jnp.ndarray=None, return_dict: bool=True, jit: bool=False): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + if isinstance(guidance_scale, float): + guidance_scale = jnp.array([guidance_scale] * prompt_ids.shape[0]) + if len(prompt_ids.shape) > 2: + guidance_scale = guidance_scale[:, None] + if jit: + images = _p_generate(self, prompt_ids, params, prng_seed, num_inference_steps, height, width, guidance_scale, latents, neg_prompt_ids) + else: + images = self._generate(prompt_ids, params, prng_seed, num_inference_steps, height, width, guidance_scale, latents, neg_prompt_ids) + if self.safety_checker is not None: + safety_params = params['safety_checker'] + images_uint8_casted = (images * 255).round().astype('uint8') + (num_devices, batch_size) = images.shape[:2] + images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3) + (images_uint8_casted, has_nsfw_concept) = self._run_safety_checker(images_uint8_casted, safety_params, jit) + images = np.asarray(images).copy() + if any(has_nsfw_concept): + for (i, is_nsfw) in enumerate(has_nsfw_concept): + if is_nsfw: + images[i, 0] = np.asarray(images_uint8_casted[i]) + images = images.reshape(num_devices, batch_size, height, width, 3) + else: + images = np.asarray(images) + has_nsfw_concept = False + if not return_dict: + return (images, has_nsfw_concept) + return FlaxStableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept) + +@partial(jax.pmap, in_axes=(None, 0, 0, 0, None, None, None, 0, 0, 0), static_broadcasted_argnums=(0, 4, 5, 6)) +def _p_generate(pipe, prompt_ids, params, prng_seed, num_inference_steps, height, width, guidance_scale, latents, neg_prompt_ids): + return pipe._generate(prompt_ids, params, prng_seed, num_inference_steps, height, width, guidance_scale, latents, neg_prompt_ids) + +@partial(jax.pmap, static_broadcasted_argnums=(0,)) +def _p_get_has_nsfw_concepts(pipe, features, params): + return pipe._get_has_nsfw_concepts(features, params) + +def unshard(x: jnp.ndarray): + (num_devices, batch_size) = x.shape[:2] + rest = x.shape[2:] + return x.reshape(num_devices * batch_size, *rest) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +import warnings +from functools import partial +from typing import Dict, List, Optional, Union +import jax +import jax.numpy as jnp +import numpy as np +from flax.core.frozen_dict import FrozenDict +from flax.jax_utils import unreplicate +from flax.training.common_utils import shard +from PIL import Image +from transformers import CLIPImageProcessor, CLIPTokenizer, FlaxCLIPTextModel +from ...models import FlaxAutoencoderKL, FlaxUNet2DConditionModel +from ...schedulers import FlaxDDIMScheduler, FlaxDPMSolverMultistepScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler +from ...utils import PIL_INTERPOLATION, logging, replace_example_docstring +from ..pipeline_flax_utils import FlaxDiffusionPipeline +from .pipeline_output import FlaxStableDiffusionPipelineOutput +from .safety_checker_flax import FlaxStableDiffusionSafetyChecker +logger = logging.get_logger(__name__) +DEBUG = False +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import jax\n >>> import numpy as np\n >>> import jax.numpy as jnp\n >>> from flax.jax_utils import replicate\n >>> from flax.training.common_utils import shard\n >>> import requests\n >>> from io import BytesIO\n >>> from PIL import Image\n >>> from diffusers import FlaxStableDiffusionImg2ImgPipeline\n\n\n >>> def create_key(seed=0):\n ... return jax.random.PRNGKey(seed)\n\n\n >>> rng = create_key(0)\n\n >>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"\n >>> response = requests.get(url)\n >>> init_img = Image.open(BytesIO(response.content)).convert("RGB")\n >>> init_img = init_img.resize((768, 512))\n\n >>> prompts = "A fantasy landscape, trending on artstation"\n\n >>> pipeline, params = FlaxStableDiffusionImg2ImgPipeline.from_pretrained(\n ... "CompVis/stable-diffusion-v1-4",\n ... revision="flax",\n ... dtype=jnp.bfloat16,\n ... )\n\n >>> num_samples = jax.device_count()\n >>> rng = jax.random.split(rng, jax.device_count())\n >>> prompt_ids, processed_image = pipeline.prepare_inputs(\n ... prompt=[prompts] * num_samples, image=[init_img] * num_samples\n ... )\n >>> p_params = replicate(params)\n >>> prompt_ids = shard(prompt_ids)\n >>> processed_image = shard(processed_image)\n\n >>> output = pipeline(\n ... prompt_ids=prompt_ids,\n ... image=processed_image,\n ... params=p_params,\n ... prng_seed=rng,\n ... strength=0.75,\n ... num_inference_steps=50,\n ... jit=True,\n ... height=512,\n ... width=768,\n ... ).images\n\n >>> output_images = pipeline.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))\n ```\n' + +class FlaxStableDiffusionImg2ImgPipeline(FlaxDiffusionPipeline): + + def __init__(self, vae: FlaxAutoencoderKL, text_encoder: FlaxCLIPTextModel, tokenizer: CLIPTokenizer, unet: FlaxUNet2DConditionModel, scheduler: Union[FlaxDDIMScheduler, FlaxPNDMScheduler, FlaxLMSDiscreteScheduler, FlaxDPMSolverMultistepScheduler], safety_checker: FlaxStableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, dtype: jnp.dtype=jnp.float32): + super().__init__() + self.dtype = dtype + if safety_checker is None: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + + def prepare_inputs(self, prompt: Union[str, List[str]], image: Union[Image.Image, List[Image.Image]]): + if not isinstance(prompt, (str, list)): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if not isinstance(image, (Image.Image, list)): + raise ValueError(f'image has to be of type `PIL.Image.Image` or list but is {type(image)}') + if isinstance(image, Image.Image): + image = [image] + processed_images = jnp.concatenate([preprocess(img, jnp.float32) for img in image]) + text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='np') + return (text_input.input_ids, processed_images) + + def _get_has_nsfw_concepts(self, features, params): + has_nsfw_concepts = self.safety_checker(features, params) + return has_nsfw_concepts + + def _run_safety_checker(self, images, safety_model_params, jit=False): + pil_images = [Image.fromarray(image) for image in images] + features = self.feature_extractor(pil_images, return_tensors='np').pixel_values + if jit: + features = shard(features) + has_nsfw_concepts = _p_get_has_nsfw_concepts(self, features, safety_model_params) + has_nsfw_concepts = unshard(has_nsfw_concepts) + safety_model_params = unreplicate(safety_model_params) + else: + has_nsfw_concepts = self._get_has_nsfw_concepts(features, safety_model_params) + images_was_copied = False + for (idx, has_nsfw_concept) in enumerate(has_nsfw_concepts): + if has_nsfw_concept: + if not images_was_copied: + images_was_copied = True + images = images.copy() + images[idx] = np.zeros(images[idx].shape, dtype=np.uint8) + if any(has_nsfw_concepts): + warnings.warn('Potential NSFW content was detected in one or more images. A black image will be returned instead. Try again with a different prompt and/or seed.') + return (images, has_nsfw_concepts) + + def get_timestep_start(self, num_inference_steps, strength): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + return t_start + + def _generate(self, prompt_ids: jnp.ndarray, image: jnp.ndarray, params: Union[Dict, FrozenDict], prng_seed: jax.Array, start_timestep: int, num_inference_steps: int, height: int, width: int, guidance_scale: float, noise: Optional[jnp.ndarray]=None, neg_prompt_ids: Optional[jnp.ndarray]=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + prompt_embeds = self.text_encoder(prompt_ids, params=params['text_encoder'])[0] + batch_size = prompt_ids.shape[0] + max_length = prompt_ids.shape[-1] + if neg_prompt_ids is None: + uncond_input = self.tokenizer([''] * batch_size, padding='max_length', max_length=max_length, return_tensors='np').input_ids + else: + uncond_input = neg_prompt_ids + negative_prompt_embeds = self.text_encoder(uncond_input, params=params['text_encoder'])[0] + context = jnp.concatenate([negative_prompt_embeds, prompt_embeds]) + latents_shape = (batch_size, self.unet.config.in_channels, height // self.vae_scale_factor, width // self.vae_scale_factor) + if noise is None: + noise = jax.random.normal(prng_seed, shape=latents_shape, dtype=jnp.float32) + elif noise.shape != latents_shape: + raise ValueError(f'Unexpected latents shape, got {noise.shape}, expected {latents_shape}') + init_latent_dist = self.vae.apply({'params': params['vae']}, image, method=self.vae.encode).latent_dist + init_latents = init_latent_dist.sample(key=prng_seed).transpose((0, 3, 1, 2)) + init_latents = self.vae.config.scaling_factor * init_latents + + def loop_body(step, args): + (latents, scheduler_state) = args + latents_input = jnp.concatenate([latents] * 2) + t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step] + timestep = jnp.broadcast_to(t, latents_input.shape[0]) + latents_input = self.scheduler.scale_model_input(scheduler_state, latents_input, t) + noise_pred = self.unet.apply({'params': params['unet']}, jnp.array(latents_input), jnp.array(timestep, dtype=jnp.int32), encoder_hidden_states=context).sample + (noise_pred_uncond, noise_prediction_text) = jnp.split(noise_pred, 2, axis=0) + noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond) + (latents, scheduler_state) = self.scheduler.step(scheduler_state, noise_pred, t, latents).to_tuple() + return (latents, scheduler_state) + scheduler_state = self.scheduler.set_timesteps(params['scheduler'], num_inference_steps=num_inference_steps, shape=latents_shape) + latent_timestep = scheduler_state.timesteps[start_timestep:start_timestep + 1].repeat(batch_size) + latents = self.scheduler.add_noise(params['scheduler'], init_latents, noise, latent_timestep) + latents = latents * params['scheduler'].init_noise_sigma + if DEBUG: + for i in range(start_timestep, num_inference_steps): + (latents, scheduler_state) = loop_body(i, (latents, scheduler_state)) + else: + (latents, _) = jax.lax.fori_loop(start_timestep, num_inference_steps, loop_body, (latents, scheduler_state)) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.apply({'params': params['vae']}, latents, method=self.vae.decode).sample + image = (image / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1) + return image + + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt_ids: jnp.ndarray, image: jnp.ndarray, params: Union[Dict, FrozenDict], prng_seed: jax.Array, strength: float=0.8, num_inference_steps: int=50, height: Optional[int]=None, width: Optional[int]=None, guidance_scale: Union[float, jnp.ndarray]=7.5, noise: jnp.ndarray=None, neg_prompt_ids: jnp.ndarray=None, return_dict: bool=True, jit: bool=False): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + if isinstance(guidance_scale, float): + guidance_scale = jnp.array([guidance_scale] * prompt_ids.shape[0]) + if len(prompt_ids.shape) > 2: + guidance_scale = guidance_scale[:, None] + start_timestep = self.get_timestep_start(num_inference_steps, strength) + if jit: + images = _p_generate(self, prompt_ids, image, params, prng_seed, start_timestep, num_inference_steps, height, width, guidance_scale, noise, neg_prompt_ids) + else: + images = self._generate(prompt_ids, image, params, prng_seed, start_timestep, num_inference_steps, height, width, guidance_scale, noise, neg_prompt_ids) + if self.safety_checker is not None: + safety_params = params['safety_checker'] + images_uint8_casted = (images * 255).round().astype('uint8') + (num_devices, batch_size) = images.shape[:2] + images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3) + (images_uint8_casted, has_nsfw_concept) = self._run_safety_checker(images_uint8_casted, safety_params, jit) + images = np.asarray(images) + if any(has_nsfw_concept): + for (i, is_nsfw) in enumerate(has_nsfw_concept): + if is_nsfw: + images[i] = np.asarray(images_uint8_casted[i]) + images = images.reshape(num_devices, batch_size, height, width, 3) + else: + images = np.asarray(images) + has_nsfw_concept = False + if not return_dict: + return (images, has_nsfw_concept) + return FlaxStableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept) + +@partial(jax.pmap, in_axes=(None, 0, 0, 0, 0, None, None, None, None, 0, 0, 0), static_broadcasted_argnums=(0, 5, 6, 7, 8)) +def _p_generate(pipe, prompt_ids, image, params, prng_seed, start_timestep, num_inference_steps, height, width, guidance_scale, noise, neg_prompt_ids): + return pipe._generate(prompt_ids, image, params, prng_seed, start_timestep, num_inference_steps, height, width, guidance_scale, noise, neg_prompt_ids) + +@partial(jax.pmap, static_broadcasted_argnums=(0,)) +def _p_get_has_nsfw_concepts(pipe, features, params): + return pipe._get_has_nsfw_concepts(features, params) + +def unshard(x: jnp.ndarray): + (num_devices, batch_size) = x.shape[:2] + rest = x.shape[2:] + return x.reshape(num_devices * batch_size, *rest) + +def preprocess(image, dtype): + (w, h) = image.size + (w, h) = (x - x % 32 for x in (w, h)) + image = image.resize((w, h), resample=PIL_INTERPOLATION['lanczos']) + image = jnp.array(image).astype(dtype) / 255.0 + image = image[None].transpose(0, 3, 1, 2) + return 2.0 * image - 1.0 + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +import warnings +from functools import partial +from typing import Dict, List, Optional, Union +import jax +import jax.numpy as jnp +import numpy as np +from flax.core.frozen_dict import FrozenDict +from flax.jax_utils import unreplicate +from flax.training.common_utils import shard +from packaging import version +from PIL import Image +from transformers import CLIPImageProcessor, CLIPTokenizer, FlaxCLIPTextModel +from ...models import FlaxAutoencoderKL, FlaxUNet2DConditionModel +from ...schedulers import FlaxDDIMScheduler, FlaxDPMSolverMultistepScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler +from ...utils import PIL_INTERPOLATION, deprecate, logging, replace_example_docstring +from ..pipeline_flax_utils import FlaxDiffusionPipeline +from .pipeline_output import FlaxStableDiffusionPipelineOutput +from .safety_checker_flax import FlaxStableDiffusionSafetyChecker +logger = logging.get_logger(__name__) +DEBUG = False +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import jax\n >>> import numpy as np\n >>> from flax.jax_utils import replicate\n >>> from flax.training.common_utils import shard\n >>> import PIL\n >>> import requests\n >>> from io import BytesIO\n >>> from diffusers import FlaxStableDiffusionInpaintPipeline\n\n\n >>> def download_image(url):\n ... response = requests.get(url)\n ... return PIL.Image.open(BytesIO(response.content)).convert("RGB")\n\n\n >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"\n >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"\n\n >>> init_image = download_image(img_url).resize((512, 512))\n >>> mask_image = download_image(mask_url).resize((512, 512))\n\n >>> pipeline, params = FlaxStableDiffusionInpaintPipeline.from_pretrained(\n ... "xvjiarui/stable-diffusion-2-inpainting"\n ... )\n\n >>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"\n >>> prng_seed = jax.random.PRNGKey(0)\n >>> num_inference_steps = 50\n\n >>> num_samples = jax.device_count()\n >>> prompt = num_samples * [prompt]\n >>> init_image = num_samples * [init_image]\n >>> mask_image = num_samples * [mask_image]\n >>> prompt_ids, processed_masked_images, processed_masks = pipeline.prepare_inputs(\n ... prompt, init_image, mask_image\n ... )\n # shard inputs and rng\n\n >>> params = replicate(params)\n >>> prng_seed = jax.random.split(prng_seed, jax.device_count())\n >>> prompt_ids = shard(prompt_ids)\n >>> processed_masked_images = shard(processed_masked_images)\n >>> processed_masks = shard(processed_masks)\n\n >>> images = pipeline(\n ... prompt_ids, processed_masks, processed_masked_images, params, prng_seed, num_inference_steps, jit=True\n ... ).images\n >>> images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))\n ```\n' + +class FlaxStableDiffusionInpaintPipeline(FlaxDiffusionPipeline): + + def __init__(self, vae: FlaxAutoencoderKL, text_encoder: FlaxCLIPTextModel, tokenizer: CLIPTokenizer, unet: FlaxUNet2DConditionModel, scheduler: Union[FlaxDDIMScheduler, FlaxPNDMScheduler, FlaxLMSDiscreteScheduler, FlaxDPMSolverMultistepScheduler], safety_checker: FlaxStableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, dtype: jnp.dtype=jnp.float32): + super().__init__() + self.dtype = dtype + if safety_checker is None: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + is_unet_version_less_0_9_0 = hasattr(unet.config, '_diffusers_version') and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse('0.9.0.dev0') + is_unet_sample_size_less_64 = hasattr(unet.config, 'sample_size') and unet.config.sample_size < 64 + if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: + deprecation_message = "The configuration file of the unet has set the default `sample_size` to smaller than 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n- CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5 \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the configuration file. Please make sure to update the config accordingly as leaving `sample_size=32` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `unet/config.json` file" + deprecate('sample_size<64', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(unet.config) + new_config['sample_size'] = 64 + unet._internal_dict = FrozenDict(new_config) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + + def prepare_inputs(self, prompt: Union[str, List[str]], image: Union[Image.Image, List[Image.Image]], mask: Union[Image.Image, List[Image.Image]]): + if not isinstance(prompt, (str, list)): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if not isinstance(image, (Image.Image, list)): + raise ValueError(f'image has to be of type `PIL.Image.Image` or list but is {type(image)}') + if isinstance(image, Image.Image): + image = [image] + if not isinstance(mask, (Image.Image, list)): + raise ValueError(f'image has to be of type `PIL.Image.Image` or list but is {type(image)}') + if isinstance(mask, Image.Image): + mask = [mask] + processed_images = jnp.concatenate([preprocess_image(img, jnp.float32) for img in image]) + processed_masks = jnp.concatenate([preprocess_mask(m, jnp.float32) for m in mask]) + processed_masks = processed_masks.at[processed_masks < 0.5].set(0) + processed_masks = processed_masks.at[processed_masks >= 0.5].set(1) + processed_masked_images = processed_images * (processed_masks < 0.5) + text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='np') + return (text_input.input_ids, processed_masked_images, processed_masks) + + def _get_has_nsfw_concepts(self, features, params): + has_nsfw_concepts = self.safety_checker(features, params) + return has_nsfw_concepts + + def _run_safety_checker(self, images, safety_model_params, jit=False): + pil_images = [Image.fromarray(image) for image in images] + features = self.feature_extractor(pil_images, return_tensors='np').pixel_values + if jit: + features = shard(features) + has_nsfw_concepts = _p_get_has_nsfw_concepts(self, features, safety_model_params) + has_nsfw_concepts = unshard(has_nsfw_concepts) + safety_model_params = unreplicate(safety_model_params) + else: + has_nsfw_concepts = self._get_has_nsfw_concepts(features, safety_model_params) + images_was_copied = False + for (idx, has_nsfw_concept) in enumerate(has_nsfw_concepts): + if has_nsfw_concept: + if not images_was_copied: + images_was_copied = True + images = images.copy() + images[idx] = np.zeros(images[idx].shape, dtype=np.uint8) + if any(has_nsfw_concepts): + warnings.warn('Potential NSFW content was detected in one or more images. A black image will be returned instead. Try again with a different prompt and/or seed.') + return (images, has_nsfw_concepts) + + def _generate(self, prompt_ids: jnp.ndarray, mask: jnp.ndarray, masked_image: jnp.ndarray, params: Union[Dict, FrozenDict], prng_seed: jax.Array, num_inference_steps: int, height: int, width: int, guidance_scale: float, latents: Optional[jnp.ndarray]=None, neg_prompt_ids: Optional[jnp.ndarray]=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + prompt_embeds = self.text_encoder(prompt_ids, params=params['text_encoder'])[0] + batch_size = prompt_ids.shape[0] + max_length = prompt_ids.shape[-1] + if neg_prompt_ids is None: + uncond_input = self.tokenizer([''] * batch_size, padding='max_length', max_length=max_length, return_tensors='np').input_ids + else: + uncond_input = neg_prompt_ids + negative_prompt_embeds = self.text_encoder(uncond_input, params=params['text_encoder'])[0] + context = jnp.concatenate([negative_prompt_embeds, prompt_embeds]) + latents_shape = (batch_size, self.vae.config.latent_channels, height // self.vae_scale_factor, width // self.vae_scale_factor) + if latents is None: + latents = jax.random.normal(prng_seed, shape=latents_shape, dtype=self.dtype) + elif latents.shape != latents_shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}') + (prng_seed, mask_prng_seed) = jax.random.split(prng_seed) + masked_image_latent_dist = self.vae.apply({'params': params['vae']}, masked_image, method=self.vae.encode).latent_dist + masked_image_latents = masked_image_latent_dist.sample(key=mask_prng_seed).transpose((0, 3, 1, 2)) + masked_image_latents = self.vae.config.scaling_factor * masked_image_latents + del mask_prng_seed + mask = jax.image.resize(mask, (*mask.shape[:-2], *masked_image_latents.shape[-2:]), method='nearest') + num_channels_latents = self.vae.config.latent_channels + num_channels_mask = mask.shape[1] + num_channels_masked_image = masked_image_latents.shape[1] + if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: + raise ValueError(f'Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} + `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image} = {num_channels_latents + num_channels_masked_image + num_channels_mask}. Please verify the config of `pipeline.unet` or your `mask_image` or `image` input.') + + def loop_body(step, args): + (latents, mask, masked_image_latents, scheduler_state) = args + latents_input = jnp.concatenate([latents] * 2) + mask_input = jnp.concatenate([mask] * 2) + masked_image_latents_input = jnp.concatenate([masked_image_latents] * 2) + t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step] + timestep = jnp.broadcast_to(t, latents_input.shape[0]) + latents_input = self.scheduler.scale_model_input(scheduler_state, latents_input, t) + latents_input = jnp.concatenate([latents_input, mask_input, masked_image_latents_input], axis=1) + noise_pred = self.unet.apply({'params': params['unet']}, jnp.array(latents_input), jnp.array(timestep, dtype=jnp.int32), encoder_hidden_states=context).sample + (noise_pred_uncond, noise_prediction_text) = jnp.split(noise_pred, 2, axis=0) + noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond) + (latents, scheduler_state) = self.scheduler.step(scheduler_state, noise_pred, t, latents).to_tuple() + return (latents, mask, masked_image_latents, scheduler_state) + scheduler_state = self.scheduler.set_timesteps(params['scheduler'], num_inference_steps=num_inference_steps, shape=latents.shape) + latents = latents * params['scheduler'].init_noise_sigma + if DEBUG: + for i in range(num_inference_steps): + (latents, mask, masked_image_latents, scheduler_state) = loop_body(i, (latents, mask, masked_image_latents, scheduler_state)) + else: + (latents, _, _, _) = jax.lax.fori_loop(0, num_inference_steps, loop_body, (latents, mask, masked_image_latents, scheduler_state)) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.apply({'params': params['vae']}, latents, method=self.vae.decode).sample + image = (image / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1) + return image + + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt_ids: jnp.ndarray, mask: jnp.ndarray, masked_image: jnp.ndarray, params: Union[Dict, FrozenDict], prng_seed: jax.Array, num_inference_steps: int=50, height: Optional[int]=None, width: Optional[int]=None, guidance_scale: Union[float, jnp.ndarray]=7.5, latents: jnp.ndarray=None, neg_prompt_ids: jnp.ndarray=None, return_dict: bool=True, jit: bool=False): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + masked_image = jax.image.resize(masked_image, (*masked_image.shape[:-2], height, width), method='bicubic') + mask = jax.image.resize(mask, (*mask.shape[:-2], height, width), method='nearest') + if isinstance(guidance_scale, float): + guidance_scale = jnp.array([guidance_scale] * prompt_ids.shape[0]) + if len(prompt_ids.shape) > 2: + guidance_scale = guidance_scale[:, None] + if jit: + images = _p_generate(self, prompt_ids, mask, masked_image, params, prng_seed, num_inference_steps, height, width, guidance_scale, latents, neg_prompt_ids) + else: + images = self._generate(prompt_ids, mask, masked_image, params, prng_seed, num_inference_steps, height, width, guidance_scale, latents, neg_prompt_ids) + if self.safety_checker is not None: + safety_params = params['safety_checker'] + images_uint8_casted = (images * 255).round().astype('uint8') + (num_devices, batch_size) = images.shape[:2] + images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3) + (images_uint8_casted, has_nsfw_concept) = self._run_safety_checker(images_uint8_casted, safety_params, jit) + images = np.asarray(images) + if any(has_nsfw_concept): + for (i, is_nsfw) in enumerate(has_nsfw_concept): + if is_nsfw: + images[i] = np.asarray(images_uint8_casted[i]) + images = images.reshape(num_devices, batch_size, height, width, 3) + else: + images = np.asarray(images) + has_nsfw_concept = False + if not return_dict: + return (images, has_nsfw_concept) + return FlaxStableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept) + +@partial(jax.pmap, in_axes=(None, 0, 0, 0, 0, 0, None, None, None, 0, 0, 0), static_broadcasted_argnums=(0, 6, 7, 8)) +def _p_generate(pipe, prompt_ids, mask, masked_image, params, prng_seed, num_inference_steps, height, width, guidance_scale, latents, neg_prompt_ids): + return pipe._generate(prompt_ids, mask, masked_image, params, prng_seed, num_inference_steps, height, width, guidance_scale, latents, neg_prompt_ids) + +@partial(jax.pmap, static_broadcasted_argnums=(0,)) +def _p_get_has_nsfw_concepts(pipe, features, params): + return pipe._get_has_nsfw_concepts(features, params) + +def unshard(x: jnp.ndarray): + (num_devices, batch_size) = x.shape[:2] + rest = x.shape[2:] + return x.reshape(num_devices * batch_size, *rest) + +def preprocess_image(image, dtype): + (w, h) = image.size + (w, h) = (x - x % 32 for x in (w, h)) + image = image.resize((w, h), resample=PIL_INTERPOLATION['lanczos']) + image = jnp.array(image).astype(dtype) / 255.0 + image = image[None].transpose(0, 3, 1, 2) + return 2.0 * image - 1.0 + +def preprocess_mask(mask, dtype): + (w, h) = mask.size + (w, h) = (x - x % 32 for x in (w, h)) + mask = mask.resize((w, h)) + mask = jnp.array(mask.convert('L')).astype(dtype) / 255.0 + mask = jnp.expand_dims(mask, axis=(0, 1)) + return mask + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +import inspect +from typing import Callable, List, Optional, Union +import numpy as np +import torch +from transformers import CLIPImageProcessor, CLIPTokenizer +from ...configuration_utils import FrozenDict +from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler +from ...utils import deprecate, logging +from ..onnx_utils import ORT_TO_NP_TYPE, OnnxRuntimeModel +from ..pipeline_utils import DiffusionPipeline +from . import StableDiffusionPipelineOutput +logger = logging.get_logger(__name__) + +class OnnxStableDiffusionPipeline(DiffusionPipeline): + vae_encoder: OnnxRuntimeModel + vae_decoder: OnnxRuntimeModel + text_encoder: OnnxRuntimeModel + tokenizer: CLIPTokenizer + unet: OnnxRuntimeModel + scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] + safety_checker: OnnxRuntimeModel + feature_extractor: CLIPImageProcessor + _optional_components = ['safety_checker', 'feature_extractor'] + _is_onnx = True + + def __init__(self, vae_encoder: OnnxRuntimeModel, vae_decoder: OnnxRuntimeModel, text_encoder: OnnxRuntimeModel, tokenizer: CLIPTokenizer, unet: OnnxRuntimeModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: OnnxRuntimeModel, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool=True): + super().__init__() + if hasattr(scheduler.config, 'steps_offset') and scheduler.config.steps_offset != 1: + deprecation_message = f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset` should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure to update the config accordingly as leaving `steps_offset` might led to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('steps_offset!=1', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['steps_offset'] = 1 + scheduler._internal_dict = FrozenDict(new_config) + if hasattr(scheduler.config, 'clip_sample') and scheduler.config.clip_sample is True: + deprecation_message = f'The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`. `clip_sample` should be set to False in the configuration file. Please make sure to update the config accordingly as not setting `clip_sample` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('clip_sample not set', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['clip_sample'] = False + scheduler._internal_dict = FrozenDict(new_config) + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.register_modules(vae_encoder=vae_encoder, vae_decoder=vae_decoder, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt: Union[str, List[str]], num_images_per_prompt: Optional[int], do_classifier_free_guidance: bool, negative_prompt: Optional[str], prompt_embeds: Optional[np.ndarray]=None, negative_prompt_embeds: Optional[np.ndarray]=None): + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='np') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='max_length', return_tensors='np').input_ids + if not np.array_equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0] + prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] * batch_size + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='np') + negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0] + if do_classifier_free_guidance: + negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0) + prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds]) + return prompt_embeds + + def check_inputs(self, prompt: Union[str, List[str]], height: Optional[int], width: Optional[int], callback_steps: int, negative_prompt: Optional[str]=None, prompt_embeds: Optional[np.ndarray]=None, negative_prompt_embeds: Optional[np.ndarray]=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def __call__(self, prompt: Union[str, List[str]]=None, height: Optional[int]=512, width: Optional[int]=512, num_inference_steps: Optional[int]=50, guidance_scale: Optional[float]=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: Optional[float]=0.0, generator: Optional[np.random.RandomState]=None, latents: Optional[np.ndarray]=None, prompt_embeds: Optional[np.ndarray]=None, negative_prompt_embeds: Optional[np.ndarray]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, np.ndarray], None]]=None, callback_steps: int=1): + self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if generator is None: + generator = np.random + do_classifier_free_guidance = guidance_scale > 1.0 + prompt_embeds = self._encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds) + latents_dtype = prompt_embeds.dtype + latents_shape = (batch_size * num_images_per_prompt, 4, height // 8, width // 8) + if latents is None: + latents = generator.randn(*latents_shape).astype(latents_dtype) + elif latents.shape != latents_shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}') + self.scheduler.set_timesteps(num_inference_steps) + latents = latents * np.float64(self.scheduler.init_noise_sigma) + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + timestep_dtype = next((input.type for input in self.unet.model.get_inputs() if input.name == 'timestep'), 'tensor(float)') + timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] + for (i, t) in enumerate(self.progress_bar(self.scheduler.timesteps)): + latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t) + latent_model_input = latent_model_input.cpu().numpy() + timestep = np.array([t], dtype=timestep_dtype) + noise_pred = self.unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds) + noise_pred = noise_pred[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = np.split(noise_pred, 2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + scheduler_output = self.scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs) + latents = scheduler_output.prev_sample.numpy() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + latents = 1 / 0.18215 * latents + image = np.concatenate([self.vae_decoder(latent_sample=latents[i:i + 1])[0] for i in range(latents.shape[0])]) + image = np.clip(image / 2 + 0.5, 0, 1) + image = image.transpose((0, 2, 3, 1)) + if self.safety_checker is not None: + safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors='np').pixel_values.astype(image.dtype) + (images, has_nsfw_concept) = ([], []) + for i in range(image.shape[0]): + (image_i, has_nsfw_concept_i) = self.safety_checker(clip_input=safety_checker_input[i:i + 1], images=image[i:i + 1]) + images.append(image_i) + has_nsfw_concept.append(has_nsfw_concept_i[0]) + image = np.concatenate(images) + else: + has_nsfw_concept = None + if output_type == 'pil': + image = self.numpy_to_pil(image) + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +class StableDiffusionOnnxPipeline(OnnxStableDiffusionPipeline): + + def __init__(self, vae_encoder: OnnxRuntimeModel, vae_decoder: OnnxRuntimeModel, text_encoder: OnnxRuntimeModel, tokenizer: CLIPTokenizer, unet: OnnxRuntimeModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: OnnxRuntimeModel, feature_extractor: CLIPImageProcessor): + deprecation_message = 'Please use `OnnxStableDiffusionPipeline` instead of `StableDiffusionOnnxPipeline`.' + deprecate('StableDiffusionOnnxPipeline', '1.0.0', deprecation_message) + super().__init__(vae_encoder=vae_encoder, vae_decoder=vae_decoder, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +import inspect +from typing import Callable, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTokenizer +from ...configuration_utils import FrozenDict +from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler +from ...utils import PIL_INTERPOLATION, deprecate, logging +from ..onnx_utils import ORT_TO_NP_TYPE, OnnxRuntimeModel +from ..pipeline_utils import DiffusionPipeline +from . import StableDiffusionPipelineOutput +logger = logging.get_logger(__name__) + +def preprocess(image): + deprecation_message = 'The preprocess method is deprecated and will be removed in diffusers 1.0.0. Please use VaeImageProcessor.preprocess(...) instead' + deprecate('preprocess', '1.0.0', deprecation_message, standard_warn=False) + if isinstance(image, torch.Tensor): + return image + elif isinstance(image, PIL.Image.Image): + image = [image] + if isinstance(image[0], PIL.Image.Image): + (w, h) = image[0].size + (w, h) = (x - x % 64 for x in (w, h)) + image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['lanczos']))[None, :] for i in image] + image = np.concatenate(image, axis=0) + image = np.array(image).astype(np.float32) / 255.0 + image = image.transpose(0, 3, 1, 2) + image = 2.0 * image - 1.0 + image = torch.from_numpy(image) + elif isinstance(image[0], torch.Tensor): + image = torch.cat(image, dim=0) + return image + +class OnnxStableDiffusionImg2ImgPipeline(DiffusionPipeline): + vae_encoder: OnnxRuntimeModel + vae_decoder: OnnxRuntimeModel + text_encoder: OnnxRuntimeModel + tokenizer: CLIPTokenizer + unet: OnnxRuntimeModel + scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] + safety_checker: OnnxRuntimeModel + feature_extractor: CLIPImageProcessor + _optional_components = ['safety_checker', 'feature_extractor'] + _is_onnx = True + + def __init__(self, vae_encoder: OnnxRuntimeModel, vae_decoder: OnnxRuntimeModel, text_encoder: OnnxRuntimeModel, tokenizer: CLIPTokenizer, unet: OnnxRuntimeModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: OnnxRuntimeModel, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool=True): + super().__init__() + if hasattr(scheduler.config, 'steps_offset') and scheduler.config.steps_offset != 1: + deprecation_message = f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset` should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure to update the config accordingly as leaving `steps_offset` might led to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('steps_offset!=1', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['steps_offset'] = 1 + scheduler._internal_dict = FrozenDict(new_config) + if hasattr(scheduler.config, 'clip_sample') and scheduler.config.clip_sample is True: + deprecation_message = f'The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`. `clip_sample` should be set to False in the configuration file. Please make sure to update the config accordingly as not setting `clip_sample` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('clip_sample not set', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['clip_sample'] = False + scheduler._internal_dict = FrozenDict(new_config) + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.register_modules(vae_encoder=vae_encoder, vae_decoder=vae_decoder, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt: Union[str, List[str]], num_images_per_prompt: Optional[int], do_classifier_free_guidance: bool, negative_prompt: Optional[str], prompt_embeds: Optional[np.ndarray]=None, negative_prompt_embeds: Optional[np.ndarray]=None): + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='np') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='max_length', return_tensors='np').input_ids + if not np.array_equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0] + prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] * batch_size + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='np') + negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0] + if do_classifier_free_guidance: + negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0) + prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds]) + return prompt_embeds + + def check_inputs(self, prompt: Union[str, List[str]], callback_steps: int, negative_prompt: Optional[Union[str, List[str]]]=None, prompt_embeds: Optional[np.ndarray]=None, negative_prompt_embeds: Optional[np.ndarray]=None): + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def __call__(self, prompt: Union[str, List[str]], image: Union[np.ndarray, PIL.Image.Image]=None, strength: float=0.8, num_inference_steps: Optional[int]=50, guidance_scale: Optional[float]=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: Optional[float]=0.0, generator: Optional[np.random.RandomState]=None, prompt_embeds: Optional[np.ndarray]=None, negative_prompt_embeds: Optional[np.ndarray]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, np.ndarray], None]]=None, callback_steps: int=1): + self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if generator is None: + generator = np.random + self.scheduler.set_timesteps(num_inference_steps) + image = preprocess(image).cpu().numpy() + do_classifier_free_guidance = guidance_scale > 1.0 + prompt_embeds = self._encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds) + latents_dtype = prompt_embeds.dtype + image = image.astype(latents_dtype) + init_latents = self.vae_encoder(sample=image)[0] + init_latents = 0.18215 * init_latents + if isinstance(prompt, str): + prompt = [prompt] + if len(prompt) > init_latents.shape[0] and len(prompt) % init_latents.shape[0] == 0: + deprecation_message = f'You have passed {len(prompt)} text prompts (`prompt`), but only {init_latents.shape[0]} initial images (`image`). Initial images are now duplicating to match the number of text prompts. Note that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update your script to pass as many initial images as text prompts to suppress this warning.' + deprecate('len(prompt) != len(image)', '1.0.0', deprecation_message, standard_warn=False) + additional_image_per_prompt = len(prompt) // init_latents.shape[0] + init_latents = np.concatenate([init_latents] * additional_image_per_prompt * num_images_per_prompt, axis=0) + elif len(prompt) > init_latents.shape[0] and len(prompt) % init_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {init_latents.shape[0]} to {len(prompt)} text prompts.') + else: + init_latents = np.concatenate([init_latents] * num_images_per_prompt, axis=0) + offset = self.scheduler.config.get('steps_offset', 0) + init_timestep = int(num_inference_steps * strength) + offset + init_timestep = min(init_timestep, num_inference_steps) + timesteps = self.scheduler.timesteps.numpy()[-init_timestep] + timesteps = np.array([timesteps] * batch_size * num_images_per_prompt) + noise = generator.randn(*init_latents.shape).astype(latents_dtype) + init_latents = self.scheduler.add_noise(torch.from_numpy(init_latents), torch.from_numpy(noise), torch.from_numpy(timesteps)) + init_latents = init_latents.numpy() + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + latents = init_latents + t_start = max(num_inference_steps - init_timestep + offset, 0) + timesteps = self.scheduler.timesteps[t_start:].numpy() + timestep_dtype = next((input.type for input in self.unet.model.get_inputs() if input.name == 'timestep'), 'tensor(float)') + timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] + for (i, t) in enumerate(self.progress_bar(timesteps)): + latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t) + latent_model_input = latent_model_input.cpu().numpy() + timestep = np.array([t], dtype=timestep_dtype) + noise_pred = self.unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = np.split(noise_pred, 2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + scheduler_output = self.scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs) + latents = scheduler_output.prev_sample.numpy() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + latents = 1 / 0.18215 * latents + image = np.concatenate([self.vae_decoder(latent_sample=latents[i:i + 1])[0] for i in range(latents.shape[0])]) + image = np.clip(image / 2 + 0.5, 0, 1) + image = image.transpose((0, 2, 3, 1)) + if self.safety_checker is not None: + safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors='np').pixel_values.astype(image.dtype) + (images, has_nsfw_concept) = ([], []) + for i in range(image.shape[0]): + (image_i, has_nsfw_concept_i) = self.safety_checker(clip_input=safety_checker_input[i:i + 1], images=image[i:i + 1]) + images.append(image_i) + has_nsfw_concept.append(has_nsfw_concept_i[0]) + image = np.concatenate(images) + else: + has_nsfw_concept = None + if output_type == 'pil': + image = self.numpy_to_pil(image) + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +import inspect +from typing import Callable, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTokenizer +from ...configuration_utils import FrozenDict +from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler +from ...utils import PIL_INTERPOLATION, deprecate, logging +from ..onnx_utils import ORT_TO_NP_TYPE, OnnxRuntimeModel +from ..pipeline_utils import DiffusionPipeline +from . import StableDiffusionPipelineOutput +logger = logging.get_logger(__name__) +NUM_UNET_INPUT_CHANNELS = 9 +NUM_LATENT_CHANNELS = 4 + +def prepare_mask_and_masked_image(image, mask, latents_shape): + image = np.array(image.convert('RGB').resize((latents_shape[1] * 8, latents_shape[0] * 8))) + image = image[None].transpose(0, 3, 1, 2) + image = image.astype(np.float32) / 127.5 - 1.0 + image_mask = np.array(mask.convert('L').resize((latents_shape[1] * 8, latents_shape[0] * 8))) + masked_image = image * (image_mask < 127.5) + mask = mask.resize((latents_shape[1], latents_shape[0]), PIL_INTERPOLATION['nearest']) + mask = np.array(mask.convert('L')) + mask = mask.astype(np.float32) / 255.0 + mask = mask[None, None] + mask[mask < 0.5] = 0 + mask[mask >= 0.5] = 1 + return (mask, masked_image) + +class OnnxStableDiffusionInpaintPipeline(DiffusionPipeline): + vae_encoder: OnnxRuntimeModel + vae_decoder: OnnxRuntimeModel + text_encoder: OnnxRuntimeModel + tokenizer: CLIPTokenizer + unet: OnnxRuntimeModel + scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] + safety_checker: OnnxRuntimeModel + feature_extractor: CLIPImageProcessor + _optional_components = ['safety_checker', 'feature_extractor'] + _is_onnx = True + + def __init__(self, vae_encoder: OnnxRuntimeModel, vae_decoder: OnnxRuntimeModel, text_encoder: OnnxRuntimeModel, tokenizer: CLIPTokenizer, unet: OnnxRuntimeModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: OnnxRuntimeModel, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool=True): + super().__init__() + logger.info('`OnnxStableDiffusionInpaintPipeline` is experimental and will very likely change in the future.') + if hasattr(scheduler.config, 'steps_offset') and scheduler.config.steps_offset != 1: + deprecation_message = f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset` should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure to update the config accordingly as leaving `steps_offset` might led to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('steps_offset!=1', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['steps_offset'] = 1 + scheduler._internal_dict = FrozenDict(new_config) + if hasattr(scheduler.config, 'clip_sample') and scheduler.config.clip_sample is True: + deprecation_message = f'The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`. `clip_sample` should be set to False in the configuration file. Please make sure to update the config accordingly as not setting `clip_sample` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('clip_sample not set', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['clip_sample'] = False + scheduler._internal_dict = FrozenDict(new_config) + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.register_modules(vae_encoder=vae_encoder, vae_decoder=vae_decoder, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt: Union[str, List[str]], num_images_per_prompt: Optional[int], do_classifier_free_guidance: bool, negative_prompt: Optional[str], prompt_embeds: Optional[np.ndarray]=None, negative_prompt_embeds: Optional[np.ndarray]=None): + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='np') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='max_length', return_tensors='np').input_ids + if not np.array_equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0] + prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] * batch_size + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='np') + negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0] + if do_classifier_free_guidance: + negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0) + prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds]) + return prompt_embeds + + def check_inputs(self, prompt: Union[str, List[str]], height: Optional[int], width: Optional[int], callback_steps: int, negative_prompt: Optional[str]=None, prompt_embeds: Optional[np.ndarray]=None, negative_prompt_embeds: Optional[np.ndarray]=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + @torch.no_grad() + def __call__(self, prompt: Union[str, List[str]], image: PIL.Image.Image, mask_image: PIL.Image.Image, height: Optional[int]=512, width: Optional[int]=512, num_inference_steps: int=50, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[np.random.RandomState]=None, latents: Optional[np.ndarray]=None, prompt_embeds: Optional[np.ndarray]=None, negative_prompt_embeds: Optional[np.ndarray]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, np.ndarray], None]]=None, callback_steps: int=1): + self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if generator is None: + generator = np.random + self.scheduler.set_timesteps(num_inference_steps) + do_classifier_free_guidance = guidance_scale > 1.0 + prompt_embeds = self._encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds) + num_channels_latents = NUM_LATENT_CHANNELS + latents_shape = (batch_size * num_images_per_prompt, num_channels_latents, height // 8, width // 8) + latents_dtype = prompt_embeds.dtype + if latents is None: + latents = generator.randn(*latents_shape).astype(latents_dtype) + elif latents.shape != latents_shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}') + (mask, masked_image) = prepare_mask_and_masked_image(image, mask_image, latents_shape[-2:]) + mask = mask.astype(latents.dtype) + masked_image = masked_image.astype(latents.dtype) + masked_image_latents = self.vae_encoder(sample=masked_image)[0] + masked_image_latents = 0.18215 * masked_image_latents + mask = mask.repeat(batch_size * num_images_per_prompt, 0) + masked_image_latents = masked_image_latents.repeat(batch_size * num_images_per_prompt, 0) + mask = np.concatenate([mask] * 2) if do_classifier_free_guidance else mask + masked_image_latents = np.concatenate([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents + num_channels_mask = mask.shape[1] + num_channels_masked_image = masked_image_latents.shape[1] + unet_input_channels = NUM_UNET_INPUT_CHANNELS + if num_channels_latents + num_channels_mask + num_channels_masked_image != unet_input_channels: + raise ValueError(f'Incorrect configuration settings! The config of `pipeline.unet` expects {unet_input_channels} but received `num_channels_latents`: {num_channels_latents} + `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image} = {num_channels_latents + num_channels_masked_image + num_channels_mask}. Please verify the config of `pipeline.unet` or your `mask_image` or `image` input.') + self.scheduler.set_timesteps(num_inference_steps) + latents = latents * np.float64(self.scheduler.init_noise_sigma) + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + timestep_dtype = next((input.type for input in self.unet.model.get_inputs() if input.name == 'timestep'), 'tensor(float)') + timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] + for (i, t) in enumerate(self.progress_bar(self.scheduler.timesteps)): + latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t) + latent_model_input = latent_model_input.cpu().numpy() + latent_model_input = np.concatenate([latent_model_input, mask, masked_image_latents], axis=1) + timestep = np.array([t], dtype=timestep_dtype) + noise_pred = self.unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = np.split(noise_pred, 2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + scheduler_output = self.scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs) + latents = scheduler_output.prev_sample.numpy() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + latents = 1 / 0.18215 * latents + image = np.concatenate([self.vae_decoder(latent_sample=latents[i:i + 1])[0] for i in range(latents.shape[0])]) + image = np.clip(image / 2 + 0.5, 0, 1) + image = image.transpose((0, 2, 3, 1)) + if self.safety_checker is not None: + safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors='np').pixel_values.astype(image.dtype) + (images, has_nsfw_concept) = ([], []) + for i in range(image.shape[0]): + (image_i, has_nsfw_concept_i) = self.safety_checker(clip_input=safety_checker_input[i:i + 1], images=image[i:i + 1]) + images.append(image_i) + has_nsfw_concept.append(has_nsfw_concept_i[0]) + image = np.concatenate(images) + else: + has_nsfw_concept = None + if output_type == 'pil': + image = self.numpy_to_pil(image) + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +import inspect +from typing import Any, Callable, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTokenizer +from ...configuration_utils import FrozenDict +from ...schedulers import DDPMScheduler, KarrasDiffusionSchedulers +from ...utils import deprecate, logging +from ..onnx_utils import ORT_TO_NP_TYPE, OnnxRuntimeModel +from ..pipeline_utils import DiffusionPipeline +from . import StableDiffusionPipelineOutput +logger = logging.get_logger(__name__) + +def preprocess(image): + if isinstance(image, torch.Tensor): + return image + elif isinstance(image, PIL.Image.Image): + image = [image] + if isinstance(image[0], PIL.Image.Image): + (w, h) = image[0].size + (w, h) = (x - x % 64 for x in (w, h)) + image = [np.array(i.resize((w, h)))[None, :] for i in image] + image = np.concatenate(image, axis=0) + image = np.array(image).astype(np.float32) / 255.0 + image = image.transpose(0, 3, 1, 2) + image = 2.0 * image - 1.0 + image = torch.from_numpy(image) + elif isinstance(image[0], torch.Tensor): + image = torch.cat(image, dim=0) + return image + +class OnnxStableDiffusionUpscalePipeline(DiffusionPipeline): + vae: OnnxRuntimeModel + text_encoder: OnnxRuntimeModel + tokenizer: CLIPTokenizer + unet: OnnxRuntimeModel + low_res_scheduler: DDPMScheduler + scheduler: KarrasDiffusionSchedulers + safety_checker: OnnxRuntimeModel + feature_extractor: CLIPImageProcessor + _optional_components = ['safety_checker', 'feature_extractor'] + _is_onnx = True + + def __init__(self, vae: OnnxRuntimeModel, text_encoder: OnnxRuntimeModel, tokenizer: Any, unet: OnnxRuntimeModel, low_res_scheduler: DDPMScheduler, scheduler: KarrasDiffusionSchedulers, safety_checker: Optional[OnnxRuntimeModel]=None, feature_extractor: Optional[CLIPImageProcessor]=None, max_noise_level: int=350, num_latent_channels=4, num_unet_input_channels=7, requires_safety_checker: bool=True): + super().__init__() + if hasattr(scheduler.config, 'steps_offset') and scheduler.config.steps_offset != 1: + deprecation_message = f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset` should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure to update the config accordingly as leaving `steps_offset` might led to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('steps_offset!=1', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['steps_offset'] = 1 + scheduler._internal_dict = FrozenDict(new_config) + if hasattr(scheduler.config, 'clip_sample') and scheduler.config.clip_sample is True: + deprecation_message = f'The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`. `clip_sample` should be set to False in the configuration file. Please make sure to update the config accordingly as not setting `clip_sample` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('clip_sample not set', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['clip_sample'] = False + scheduler._internal_dict = FrozenDict(new_config) + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, low_res_scheduler=low_res_scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.register_to_config(max_noise_level=max_noise_level, num_latent_channels=num_latent_channels, num_unet_input_channels=num_unet_input_channels) + + def check_inputs(self, prompt: Union[str, List[str]], image, noise_level, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None): + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if not isinstance(image, torch.Tensor) and (not isinstance(image, PIL.Image.Image)) and (not isinstance(image, np.ndarray)) and (not isinstance(image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `np.ndarray`, `PIL.Image.Image` or `list` but is {type(image)}') + if isinstance(image, (list, np.ndarray)): + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if isinstance(image, list): + image_batch_size = len(image) + else: + image_batch_size = image.shape[0] + if batch_size != image_batch_size: + raise ValueError(f'`prompt` has batch size {batch_size} and `image` has batch size {image_batch_size}. Please make sure that passed `prompt` matches the batch size of `image`.') + if noise_level > self.config.max_noise_level: + raise ValueError(f'`noise_level` has to be <= {self.config.max_noise_level} but is {noise_level}') + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None): + shape = (batch_size, num_channels_latents, height, width) + if latents is None: + latents = generator.randn(*shape).astype(dtype) + elif latents.shape != shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}') + return latents + + def decode_latents(self, latents): + latents = 1 / 0.08333 * latents + image = self.vae(latent_sample=latents)[0] + image = np.clip(image / 2 + 0.5, 0, 1) + image = image.transpose((0, 2, 3, 1)) + return image + + def _encode_prompt(self, prompt: Union[str, List[str]], num_images_per_prompt: Optional[int], do_classifier_free_guidance: bool, negative_prompt: Optional[str], prompt_embeds: Optional[np.ndarray]=None, negative_prompt_embeds: Optional[np.ndarray]=None): + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='np') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='max_length', return_tensors='np').input_ids + if not np.array_equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0] + prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] * batch_size + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='np') + negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0] + if do_classifier_free_guidance: + negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0) + prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds]) + return prompt_embeds + + def __call__(self, prompt: Union[str, List[str]], image: Union[np.ndarray, PIL.Image.Image, List[PIL.Image.Image]], num_inference_steps: int=75, guidance_scale: float=9.0, noise_level: int=20, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[np.random.RandomState, List[np.random.RandomState]]]=None, latents: Optional[np.ndarray]=None, prompt_embeds: Optional[np.ndarray]=None, negative_prompt_embeds: Optional[np.ndarray]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, np.ndarray], None]]=None, callback_steps: Optional[int]=1): + self.check_inputs(prompt, image, noise_level, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if generator is None: + generator = np.random + do_classifier_free_guidance = guidance_scale > 1.0 + prompt_embeds = self._encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds) + latents_dtype = prompt_embeds.dtype + image = preprocess(image).cpu().numpy() + (height, width) = image.shape[2:] + latents = self.prepare_latents(batch_size * num_images_per_prompt, self.config.num_latent_channels, height, width, latents_dtype, generator) + image = image.astype(latents_dtype) + self.scheduler.set_timesteps(num_inference_steps) + timesteps = self.scheduler.timesteps + latents = latents * np.float64(self.scheduler.init_noise_sigma) + noise_level = np.array([noise_level]).astype(np.int64) + noise = generator.randn(*image.shape).astype(latents_dtype) + image = self.low_res_scheduler.add_noise(torch.from_numpy(image), torch.from_numpy(noise), torch.from_numpy(noise_level)) + image = image.numpy() + batch_multiplier = 2 if do_classifier_free_guidance else 1 + image = np.concatenate([image] * batch_multiplier * num_images_per_prompt) + noise_level = np.concatenate([noise_level] * image.shape[0]) + num_channels_image = image.shape[1] + if self.config.num_latent_channels + num_channels_image != self.config.num_unet_input_channels: + raise ValueError(f'Incorrect configuration settings! The config of `pipeline.unet` expects {self.config.num_unet_input_channels} but received `num_channels_latents`: {self.config.num_latent_channels} + `num_channels_image`: {num_channels_image} = {self.config.num_latent_channels + num_channels_image}. Please verify the config of `pipeline.unet` or your `image` input.') + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + timestep_dtype = next((input.type for input in self.unet.model.get_inputs() if input.name == 'timestep'), 'tensor(float)') + timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + latent_model_input = np.concatenate([latent_model_input, image], axis=1) + timestep = np.array([t], dtype=timestep_dtype) + noise_pred = self.unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds, class_labels=noise_level)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = np.split(noise_pred, 2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs).prev_sample + latents = latents.numpy() + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + image = self.decode_latents(latents) + if self.safety_checker is not None: + safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors='np').pixel_values.astype(image.dtype) + (images, has_nsfw_concept) = ([], []) + for i in range(image.shape[0]): + (image_i, has_nsfw_concept_i) = self.safety_checker(clip_input=safety_checker_input[i:i + 1], images=image[i:i + 1]) + images.append(image_i) + has_nsfw_concept.append(has_nsfw_concept_i[0]) + image = np.concatenate(images) + else: + has_nsfw_concept = None + if output_type == 'pil': + image = self.numpy_to_pil(image) + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/pipeline_output.py +from dataclasses import dataclass +from typing import List, Optional, Union +import numpy as np +import PIL.Image +from ...utils import BaseOutput, is_flax_available + +@dataclass +class StableDiffusionPipelineOutput(BaseOutput): + images: Union[List[PIL.Image.Image], np.ndarray] + nsfw_content_detected: Optional[List[bool]] +if is_flax_available(): + import flax + + @flax.struct.dataclass + class FlaxStableDiffusionPipelineOutput(BaseOutput): + images: np.ndarray + nsfw_content_detected: List[bool] + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import torch +from packaging import version +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...configuration_utils import FrozenDict +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from .pipeline_output import StableDiffusionPipelineOutput +from .safety_checker import StableDiffusionSafetyChecker +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import StableDiffusionPipeline\n\n >>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)\n >>> pipe = pipe.to("cuda")\n\n >>> prompt = "a photo of an astronaut riding a horse on mars"\n >>> image = pipe(prompt).images[0]\n ```\n' + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->image_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor', 'image_encoder'] + _exclude_from_cpu_offload = ['safety_checker'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: CLIPVisionModelWithProjection=None, requires_safety_checker: bool=True): + super().__init__() + if hasattr(scheduler.config, 'steps_offset') and scheduler.config.steps_offset != 1: + deprecation_message = f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset` should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure to update the config accordingly as leaving `steps_offset` might led to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('steps_offset!=1', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['steps_offset'] = 1 + scheduler._internal_dict = FrozenDict(new_config) + if hasattr(scheduler.config, 'clip_sample') and scheduler.config.clip_sample is True: + deprecation_message = f'The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`. `clip_sample` should be set to False in the configuration file. Please make sure to update the config accordingly as not setting `clip_sample` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('clip_sample not set', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['clip_sample'] = False + scheduler._internal_dict = FrozenDict(new_config) + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + is_unet_version_less_0_9_0 = hasattr(unet.config, '_diffusers_version') and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse('0.9.0.dev0') + is_unet_sample_size_less_64 = hasattr(unet.config, 'sample_size') and unet.config.sample_size < 64 + if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: + deprecation_message = "The configuration file of the unet has set the default `sample_size` to smaller than 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n- CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5 \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the configuration file. Please make sure to update the config accordingly as leaving `sample_size=32` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `unet/config.json` file" + deprecate('sample_size<64', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(unet.config) + new_config['sample_size'] = 64 + unet._internal_dict = FrozenDict(new_config) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def guidance_rescale(self): + return self._guidance_rescale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, timesteps: List[int]=None, sigmas: List[float]=None, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, guidance_rescale: float=0.0, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`') + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._guidance_rescale = guidance_rescale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, clip_skip=self.clip_skip) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'image_embeds': image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if XLA_AVAILABLE: + xm.mark_step() + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +import contextlib +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from packaging import version +from transformers import CLIPTextModel, CLIPTokenizer, DPTForDepthEstimation, DPTImageProcessor +from ...configuration_utils import FrozenDict +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, UNet2DConditionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import PIL_INTERPOLATION, USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +logger = logging.get_logger(__name__) + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +def preprocess(image): + deprecation_message = 'The preprocess method is deprecated and will be removed in diffusers 1.0.0. Please use VaeImageProcessor.preprocess(...) instead' + deprecate('preprocess', '1.0.0', deprecation_message, standard_warn=False) + if isinstance(image, torch.Tensor): + return image + elif isinstance(image, PIL.Image.Image): + image = [image] + if isinstance(image[0], PIL.Image.Image): + (w, h) = image[0].size + (w, h) = (x - x % 8 for x in (w, h)) + image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['lanczos']))[None, :] for i in image] + image = np.concatenate(image, axis=0) + image = np.array(image).astype(np.float32) / 255.0 + image = image.transpose(0, 3, 1, 2) + image = 2.0 * image - 1.0 + image = torch.from_numpy(image) + elif isinstance(image[0], torch.Tensor): + image = torch.cat(image, dim=0) + return image + +class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'depth_mask'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, depth_estimator: DPTForDepthEstimation, feature_extractor: DPTImageProcessor): + super().__init__() + is_unet_version_less_0_9_0 = hasattr(unet.config, '_diffusers_version') and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse('0.9.0.dev0') + is_unet_sample_size_less_64 = hasattr(unet.config, 'sample_size') and unet.config.sample_size < 64 + if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: + deprecation_message = "The configuration file of the unet has set the default `sample_size` to smaller than 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n- CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5 \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the configuration file. Please make sure to update the config accordingly as leaving `sample_size=32` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `unet/config.json` file" + deprecate('sample_size<64', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(unet.config) + new_config['sample_size'] = 64 + unet._internal_dict = FrozenDict(new_config) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, depth_estimator=depth_estimator, feature_extractor=feature_extractor) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, strength, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None): + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + + def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): + if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}') + image = image.to(device=device, dtype=dtype) + batch_size = batch_size * num_images_per_prompt + if image.shape[1] == 4: + init_latents = image + else: + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + elif isinstance(generator, list): + if image.shape[0] < batch_size and batch_size % image.shape[0] == 0: + image = torch.cat([image] * (batch_size // image.shape[0]), dim=0) + elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} ') + init_latents = [retrieve_latents(self.vae.encode(image[i:i + 1]), generator=generator[i]) for i in range(batch_size)] + init_latents = torch.cat(init_latents, dim=0) + else: + init_latents = retrieve_latents(self.vae.encode(image), generator=generator) + init_latents = self.vae.config.scaling_factor * init_latents + if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: + deprecation_message = f'You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial images (`image`). Initial images are now duplicating to match the number of text prompts. Note that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update your script to pass as many initial images as text prompts to suppress this warning.' + deprecate('len(prompt) != len(image)', '1.0.0', deprecation_message, standard_warn=False) + additional_image_per_prompt = batch_size // init_latents.shape[0] + init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) + elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts.') + else: + init_latents = torch.cat([init_latents], dim=0) + shape = init_latents.shape + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + init_latents = self.scheduler.add_noise(init_latents, noise, timestep) + latents = init_latents + return latents + + def prepare_depth_map(self, image, depth_map, batch_size, do_classifier_free_guidance, dtype, device): + if isinstance(image, PIL.Image.Image): + image = [image] + else: + image = list(image) + if isinstance(image[0], PIL.Image.Image): + (width, height) = image[0].size + elif isinstance(image[0], np.ndarray): + (width, height) = image[0].shape[:-1] + else: + (height, width) = image[0].shape[-2:] + if depth_map is None: + pixel_values = self.feature_extractor(images=image, return_tensors='pt').pixel_values + pixel_values = pixel_values.to(device=device, dtype=dtype) + if torch.backends.mps.is_available(): + autocast_ctx = contextlib.nullcontext() + logger.warning('The DPT-Hybrid model uses batch-norm layers which are not compatible with fp16, but autocast is not yet supported on MPS.') + else: + autocast_ctx = torch.autocast(device.type, dtype=dtype) + with autocast_ctx: + depth_map = self.depth_estimator(pixel_values).predicted_depth + else: + depth_map = depth_map.to(device=device, dtype=dtype) + depth_map = torch.nn.functional.interpolate(depth_map.unsqueeze(1), size=(height // self.vae_scale_factor, width // self.vae_scale_factor), mode='bicubic', align_corners=False) + depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) + depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) + depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0 + depth_map = depth_map.to(dtype) + if depth_map.shape[0] < batch_size: + repeat_by = batch_size // depth_map.shape[0] + depth_map = depth_map.repeat(repeat_by, 1, 1, 1) + depth_map = torch.cat([depth_map] * 2) if do_classifier_free_guidance else depth_map + return depth_map + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + def __call__(self, prompt: Union[str, List[str]]=None, image: PipelineImageInput=None, depth_map: Optional[torch.Tensor]=None, strength: float=0.8, num_inference_steps: Optional[int]=50, guidance_scale: Optional[float]=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: Optional[float]=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + self.check_inputs(prompt, strength, callback_steps, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + if image is None: + raise ValueError('`image` input cannot be undefined.') + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + text_encoder_lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + depth_mask = self.prepare_depth_map(image, depth_map, batch_size * num_images_per_prompt, self.do_classifier_free_guidance, prompt_embeds.dtype, device) + image = self.image_processor.preprocess(image) + self.scheduler.set_timesteps(num_inference_steps, device=device) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + latents = self.prepare_latents(image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + latent_model_input = torch.cat([latent_model_input, depth_mask], dim=1) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=self.cross_attention_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + depth_mask = callback_outputs.pop('depth_mask', depth_mask) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + else: + image = latents + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +import inspect +from typing import Callable, List, Optional, Union +import PIL.Image +import torch +from packaging import version +from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection +from ...configuration_utils import FrozenDict +from ...image_processor import VaeImageProcessor +from ...models import AutoencoderKL, UNet2DConditionModel +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import deprecate, logging +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from . import StableDiffusionPipelineOutput +from .safety_checker import StableDiffusionSafetyChecker +logger = logging.get_logger(__name__) + +class StableDiffusionImageVariationPipeline(DiffusionPipeline, StableDiffusionMixin): + _optional_components = ['safety_checker'] + model_cpu_offload_seq = 'image_encoder->unet->vae' + _exclude_from_cpu_offload = ['safety_checker'] + + def __init__(self, vae: AutoencoderKL, image_encoder: CLIPVisionModelWithProjection, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool=True): + super().__init__() + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + is_unet_version_less_0_9_0 = hasattr(unet.config, '_diffusers_version') and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse('0.9.0.dev0') + is_unet_sample_size_less_64 = hasattr(unet.config, 'sample_size') and unet.config.sample_size < 64 + if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: + deprecation_message = "The configuration file of the unet has set the default `sample_size` to smaller than 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n- CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5 \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the configuration file. Please make sure to update the config accordingly as leaving `sample_size=32` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `unet/config.json` file" + deprecate('sample_size<64', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(unet.config) + new_config['sample_size'] = 64 + unet._internal_dict = FrozenDict(new_config) + self.register_modules(vae=vae, image_encoder=image_encoder, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(images=image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + image_embeddings = self.image_encoder(image).image_embeds + image_embeddings = image_embeddings.unsqueeze(1) + (bs_embed, seq_len, _) = image_embeddings.shape + image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) + image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + negative_prompt_embeds = torch.zeros_like(image_embeddings) + image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) + return image_embeddings + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, image, height, width, callback_steps): + if not isinstance(image, torch.Tensor) and (not isinstance(image, PIL.Image.Image)) and (not isinstance(image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is {type(image)}') + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @torch.no_grad() + def __call__(self, image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor], height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=7.5, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(image, height, width, callback_steps) + if isinstance(image, PIL.Image.Image): + batch_size = 1 + elif isinstance(image, list): + batch_size = len(image) + else: + batch_size = image.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + image_embeddings = self._encode_image(image, device, num_images_per_prompt, do_classifier_free_guidance) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, image_embeddings.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=image_embeddings).sample + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + self.maybe_free_model_hooks() + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, image_embeddings.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from packaging import version +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...configuration_utils import FrozenDict +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import PIL_INTERPOLATION, USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from . import StableDiffusionPipelineOutput +from .safety_checker import StableDiffusionSafetyChecker +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import requests\n >>> import torch\n >>> from PIL import Image\n >>> from io import BytesIO\n\n >>> from diffusers import StableDiffusionImg2ImgPipeline\n\n >>> device = "cuda"\n >>> model_id_or_path = "runwayml/stable-diffusion-v1-5"\n >>> pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"\n\n >>> response = requests.get(url)\n >>> init_image = Image.open(BytesIO(response.content)).convert("RGB")\n >>> init_image = init_image.resize((768, 512))\n\n >>> prompt = "A fantasy landscape, trending on artstation"\n\n >>> images = pipe(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5).images\n >>> images[0].save("fantasy_landscape.png")\n ```\n' + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +def preprocess(image): + deprecation_message = 'The preprocess method is deprecated and will be removed in diffusers 1.0.0. Please use VaeImageProcessor.preprocess(...) instead' + deprecate('preprocess', '1.0.0', deprecation_message, standard_warn=False) + if isinstance(image, torch.Tensor): + return image + elif isinstance(image, PIL.Image.Image): + image = [image] + if isinstance(image[0], PIL.Image.Image): + (w, h) = image[0].size + (w, h) = (x - x % 8 for x in (w, h)) + image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['lanczos']))[None, :] for i in image] + image = np.concatenate(image, axis=0) + image = np.array(image).astype(np.float32) / 255.0 + image = image.transpose(0, 3, 1, 2) + image = 2.0 * image - 1.0 + image = torch.from_numpy(image) + elif isinstance(image[0], torch.Tensor): + image = torch.cat(image, dim=0) + return image + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusionImg2ImgPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->image_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor', 'image_encoder'] + _exclude_from_cpu_offload = ['safety_checker'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: CLIPVisionModelWithProjection=None, requires_safety_checker: bool=True): + super().__init__() + if hasattr(scheduler.config, 'steps_offset') and scheduler.config.steps_offset != 1: + deprecation_message = f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset` should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure to update the config accordingly as leaving `steps_offset` might led to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('steps_offset!=1', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['steps_offset'] = 1 + scheduler._internal_dict = FrozenDict(new_config) + if hasattr(scheduler.config, 'clip_sample') and scheduler.config.clip_sample is True: + deprecation_message = f'The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`. `clip_sample` should be set to False in the configuration file. Please make sure to update the config accordingly as not setting `clip_sample` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('clip_sample not set', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['clip_sample'] = False + scheduler._internal_dict = FrozenDict(new_config) + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + is_unet_version_less_0_9_0 = hasattr(unet.config, '_diffusers_version') and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse('0.9.0.dev0') + is_unet_sample_size_less_64 = hasattr(unet.config, 'sample_size') and unet.config.sample_size < 64 + if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: + deprecation_message = "The configuration file of the unet has set the default `sample_size` to smaller than 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n- CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5 \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the configuration file. Please make sure to update the config accordingly as leaving `sample_size=32` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `unet/config.json` file" + deprecate('sample_size<64', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(unet.config) + new_config['sample_size'] = 64 + unet._internal_dict = FrozenDict(new_config) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, strength, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None): + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + + def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): + if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}') + image = image.to(device=device, dtype=dtype) + batch_size = batch_size * num_images_per_prompt + if image.shape[1] == 4: + init_latents = image + else: + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + elif isinstance(generator, list): + if image.shape[0] < batch_size and batch_size % image.shape[0] == 0: + image = torch.cat([image] * (batch_size // image.shape[0]), dim=0) + elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} ') + init_latents = [retrieve_latents(self.vae.encode(image[i:i + 1]), generator=generator[i]) for i in range(batch_size)] + init_latents = torch.cat(init_latents, dim=0) + else: + init_latents = retrieve_latents(self.vae.encode(image), generator=generator) + init_latents = self.vae.config.scaling_factor * init_latents + if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: + deprecation_message = f'You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial images (`image`). Initial images are now duplicating to match the number of text prompts. Note that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update your script to pass as many initial images as text prompts to suppress this warning.' + deprecate('len(prompt) != len(image)', '1.0.0', deprecation_message, standard_warn=False) + additional_image_per_prompt = batch_size // init_latents.shape[0] + init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) + elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts.') + else: + init_latents = torch.cat([init_latents], dim=0) + shape = init_latents.shape + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + init_latents = self.scheduler.add_noise(init_latents, noise, timestep) + latents = init_latents + return latents + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, image: PipelineImageInput=None, strength: float=0.8, num_inference_steps: Optional[int]=50, timesteps: List[int]=None, sigmas: List[float]=None, guidance_scale: Optional[float]=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: Optional[float]=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: int=None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + self.check_inputs(prompt, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + text_encoder_lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + image = self.image_processor.preprocess(image) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + latents = self.prepare_latents(image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'image_embeds': image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import PIL.Image +import torch +from packaging import version +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...configuration_utils import FrozenDict +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AsymmetricAutoencoderKL, AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from . import StableDiffusionPipelineOutput +from .safety_checker import StableDiffusionSafetyChecker +logger = logging.get_logger(__name__) + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusionInpaintPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->image_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor', 'image_encoder'] + _exclude_from_cpu_offload = ['safety_checker'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'mask', 'masked_image_latents'] + + def __init__(self, vae: Union[AutoencoderKL, AsymmetricAutoencoderKL], text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: CLIPVisionModelWithProjection=None, requires_safety_checker: bool=True): + super().__init__() + if hasattr(scheduler.config, 'steps_offset') and scheduler.config.steps_offset != 1: + deprecation_message = f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset` should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure to update the config accordingly as leaving `steps_offset` might led to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('steps_offset!=1', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['steps_offset'] = 1 + scheduler._internal_dict = FrozenDict(new_config) + if hasattr(scheduler.config, 'skip_prk_steps') and scheduler.config.skip_prk_steps is False: + deprecation_message = f'The configuration file of this scheduler: {scheduler} has not set the configuration `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('skip_prk_steps not set', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['skip_prk_steps'] = True + scheduler._internal_dict = FrozenDict(new_config) + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + is_unet_version_less_0_9_0 = hasattr(unet.config, '_diffusers_version') and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse('0.9.0.dev0') + is_unet_sample_size_less_64 = hasattr(unet.config, 'sample_size') and unet.config.sample_size < 64 + if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: + deprecation_message = "The configuration file of the unet has set the default `sample_size` to smaller than 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n- CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5 \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the configuration file. Please make sure to update the config accordingly as leaving `sample_size=32` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `unet/config.json` file" + deprecate('sample_size<64', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(unet.config) + new_config['sample_size'] = 64 + unet._internal_dict = FrozenDict(new_config) + if unet.config.in_channels != 9: + logger.info(f'You have loaded a UNet with {unet.config.in_channels} input channels which.') + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.mask_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, image, mask_image, height, width, strength, callback_steps, output_type, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None, padding_mask_crop=None): + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if height % self.vae_scale_factor != 0 or width % self.vae_scale_factor != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if padding_mask_crop is not None: + if not isinstance(image, PIL.Image.Image): + raise ValueError(f'The image should be a PIL image when inpainting mask crop, but is of type {type(image)}.') + if not isinstance(mask_image, PIL.Image.Image): + raise ValueError(f'The mask image should be a PIL image when inpainting mask crop, but is of type {type(mask_image)}.') + if output_type != 'pil': + raise ValueError(f'The output type should be PIL when inpainting mask crop, but is {output_type}.') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, image=None, timestep=None, is_strength_max=True, return_noise=False, return_image_latents=False): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if (image is None or timestep is None) and (not is_strength_max): + raise ValueError('Since strength < 1. initial latents are to be initialised as a combination of Image + Noise.However, either the image or the noise timestep has not been provided.') + if return_image_latents or (latents is None and (not is_strength_max)): + image = image.to(device=device, dtype=dtype) + if image.shape[1] == 4: + image_latents = image + else: + image_latents = self._encode_vae_image(image=image, generator=generator) + image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) + if latents is None: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep) + latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents + else: + noise = latents.to(device) + latents = noise * self.scheduler.init_noise_sigma + outputs = (latents,) + if return_noise: + outputs += (noise,) + if return_image_latents: + outputs += (image_latents,) + return outputs + + def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): + if isinstance(generator, list): + image_latents = [retrieve_latents(self.vae.encode(image[i:i + 1]), generator=generator[i]) for i in range(image.shape[0])] + image_latents = torch.cat(image_latents, dim=0) + else: + image_latents = retrieve_latents(self.vae.encode(image), generator=generator) + image_latents = self.vae.config.scaling_factor * image_latents + return image_latents + + def prepare_mask_latents(self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance): + mask = torch.nn.functional.interpolate(mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)) + mask = mask.to(device=device, dtype=dtype) + masked_image = masked_image.to(device=device, dtype=dtype) + if masked_image.shape[1] == 4: + masked_image_latents = masked_image + else: + masked_image_latents = self._encode_vae_image(masked_image, generator=generator) + if mask.shape[0] < batch_size: + if not batch_size % mask.shape[0] == 0: + raise ValueError(f"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number of masks that you pass is divisible by the total requested batch size.") + mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) + if masked_image_latents.shape[0] < batch_size: + if not batch_size % masked_image_latents.shape[0] == 0: + raise ValueError(f"The passed images and the required batch size don't match. Images are supposed to be duplicated to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed. Make sure the number of images that you pass is divisible by the total requested batch size.") + masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) + mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask + masked_image_latents = torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents + masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) + return (mask, masked_image_latents) + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + def __call__(self, prompt: Union[str, List[str]]=None, image: PipelineImageInput=None, mask_image: PipelineImageInput=None, masked_image_latents: torch.Tensor=None, height: Optional[int]=None, width: Optional[int]=None, padding_mask_crop: Optional[int]=None, strength: float=1.0, num_inference_steps: int=50, timesteps: List[int]=None, sigmas: List[float]=None, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: int=None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, image, mask_image, height, width, strength, callback_steps, output_type, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs, padding_mask_crop) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + text_encoder_lora_scale = cross_attention_kwargs.get('scale', None) if cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps=num_inference_steps, strength=strength, device=device) + if num_inference_steps < 1: + raise ValueError(f'After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipelinesteps is {num_inference_steps} which is < 1 and not appropriate for this pipeline.') + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + is_strength_max = strength == 1.0 + if padding_mask_crop is not None: + crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop) + resize_mode = 'fill' + else: + crops_coords = None + resize_mode = 'default' + original_image = image + init_image = self.image_processor.preprocess(image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode) + init_image = init_image.to(dtype=torch.float32) + num_channels_latents = self.vae.config.latent_channels + num_channels_unet = self.unet.config.in_channels + return_image_latents = num_channels_unet == 4 + latents_outputs = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, image=init_image, timestep=latent_timestep, is_strength_max=is_strength_max, return_noise=True, return_image_latents=return_image_latents) + if return_image_latents: + (latents, noise, image_latents) = latents_outputs + else: + (latents, noise) = latents_outputs + mask_condition = self.mask_processor.preprocess(mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords) + if masked_image_latents is None: + masked_image = init_image * (mask_condition < 0.5) + else: + masked_image = masked_image_latents + (mask, masked_image_latents) = self.prepare_mask_latents(mask_condition, masked_image, batch_size * num_images_per_prompt, height, width, prompt_embeds.dtype, device, generator, self.do_classifier_free_guidance) + if num_channels_unet == 9: + num_channels_mask = mask.shape[1] + num_channels_masked_image = masked_image_latents.shape[1] + if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: + raise ValueError(f'Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} + `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image} = {num_channels_latents + num_channels_masked_image + num_channels_mask}. Please verify the config of `pipeline.unet` or your `mask_image` or `image` input.') + elif num_channels_unet != 4: + raise ValueError(f'The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}.') + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'image_embeds': image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + if num_channels_unet == 9: + latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if num_channels_unet == 4: + init_latents_proper = image_latents + if self.do_classifier_free_guidance: + (init_mask, _) = mask.chunk(2) + else: + init_mask = mask + if i < len(timesteps) - 1: + noise_timestep = timesteps[i + 1] + init_latents_proper = self.scheduler.add_noise(init_latents_proper, noise, torch.tensor([noise_timestep])) + latents = (1 - init_mask) * init_latents_proper + init_mask * latents + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + mask = callback_outputs.pop('mask', mask) + masked_image_latents = callback_outputs.pop('masked_image_latents', masked_image_latents) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + condition_kwargs = {} + if isinstance(self.vae, AsymmetricAutoencoderKL): + init_image = init_image.to(device=device, dtype=masked_image_latents.dtype) + init_image_condition = init_image.clone() + init_image = self._encode_vae_image(init_image, generator=generator) + mask_condition = mask_condition.to(device=device, dtype=masked_image_latents.dtype) + condition_kwargs = {'image': init_image_condition, 'mask': mask_condition} + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator, **condition_kwargs)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + if padding_mask_crop is not None: + image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image] + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import PIL_INTERPOLATION, deprecate, logging +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from . import StableDiffusionPipelineOutput +from .safety_checker import StableDiffusionSafetyChecker +logger = logging.get_logger(__name__) + +def preprocess(image): + deprecation_message = 'The preprocess method is deprecated and will be removed in diffusers 1.0.0. Please use VaeImageProcessor.preprocess(...) instead' + deprecate('preprocess', '1.0.0', deprecation_message, standard_warn=False) + if isinstance(image, torch.Tensor): + return image + elif isinstance(image, PIL.Image.Image): + image = [image] + if isinstance(image[0], PIL.Image.Image): + (w, h) = image[0].size + (w, h) = (x - x % 8 for x in (w, h)) + image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['lanczos']))[None, :] for i in image] + image = np.concatenate(image, axis=0) + image = np.array(image).astype(np.float32) / 255.0 + image = image.transpose(0, 3, 1, 2) + image = 2.0 * image - 1.0 + image = torch.from_numpy(image) + elif isinstance(image[0], torch.Tensor): + image = torch.cat(image, dim=0) + return image + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +class StableDiffusionInstructPix2PixPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, IPAdapterMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor', 'image_encoder'] + _exclude_from_cpu_offload = ['safety_checker'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'image_latents'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: Optional[CLIPVisionModelWithProjection]=None, requires_safety_checker: bool=True): + super().__init__() + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + @torch.no_grad() + def __call__(self, prompt: Union[str, List[str]]=None, image: PipelineImageInput=None, num_inference_steps: int=100, guidance_scale: float=7.5, image_guidance_scale: float=1.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], cross_attention_kwargs: Optional[Dict[str, Any]]=None, **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._image_guidance_scale = image_guidance_scale + device = self._execution_device + if image is None: + raise ValueError('`image` input cannot be undefined.') + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + prompt_embeds = self._encode_prompt(prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + image = self.image_processor.preprocess(image) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + image_latents = self.prepare_image_latents(image, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, self.do_classifier_free_guidance) + (height, width) = image_latents.shape[-2:] + height = height * self.vae_scale_factor + width = width * self.vae_scale_factor + num_channels_latents = self.vae.config.latent_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + num_channels_image = image_latents.shape[1] + if num_channels_latents + num_channels_image != self.unet.config.in_channels: + raise ValueError(f'Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} + `num_channels_image`: {num_channels_image} = {num_channels_latents + num_channels_image}. Please verify the config of `pipeline.unet` or your `image` input.') + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'image_embeds': image_embeds} if ip_adapter_image is not None else None + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 3) if self.do_classifier_free_guidance else latents + scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + scaled_latent_model_input = torch.cat([scaled_latent_model_input, image_latents], dim=1) + noise_pred = self.unet(scaled_latent_model_input, t, encoder_hidden_states=prompt_embeds, added_cond_kwargs=added_cond_kwargs, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_text, noise_pred_image, noise_pred_uncond) = noise_pred.chunk(3) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_image) + self.image_guidance_scale * (noise_pred_image - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + image_latents = callback_outputs.pop('image_latents', image_latents) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None): + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + else: + prompt_embeds_dtype = self.unet.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds, negative_prompt_embeds]) + return prompt_embeds + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + image_embeds = [] + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) + single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_image_embeds = torch.cat([single_image_embeds, single_negative_image_embeds, single_negative_image_embeds]) + single_image_embeds = single_image_embeds.to(device) + image_embeds.append(single_image_embeds) + else: + repeat_dims = [1] + image_embeds = [] + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_image_embeds, single_negative_image_embeds, single_negative_image_embeds) = single_image_embeds.chunk(3) + single_image_embeds = single_image_embeds.repeat(num_images_per_prompt, *repeat_dims * len(single_image_embeds.shape[1:])) + single_negative_image_embeds = single_negative_image_embeds.repeat(num_images_per_prompt, *repeat_dims * len(single_negative_image_embeds.shape[1:])) + single_image_embeds = torch.cat([single_image_embeds, single_negative_image_embeds, single_negative_image_embeds]) + else: + single_image_embeds = single_image_embeds.repeat(num_images_per_prompt, *repeat_dims * len(single_image_embeds.shape[1:])) + image_embeds.append(single_image_embeds) + return image_embeds + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def check_inputs(self, prompt, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None): + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def prepare_image_latents(self, image, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None): + if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}') + image = image.to(device=device, dtype=dtype) + batch_size = batch_size * num_images_per_prompt + if image.shape[1] == 4: + image_latents = image + else: + image_latents = retrieve_latents(self.vae.encode(image), sample_mode='argmax') + if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: + deprecation_message = f'You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial images (`image`). Initial images are now duplicating to match the number of text prompts. Note that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update your script to pass as many initial images as text prompts to suppress this warning.' + deprecate('len(prompt) != len(image)', '1.0.0', deprecation_message, standard_warn=False) + additional_image_per_prompt = batch_size // image_latents.shape[0] + image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) + elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts.') + else: + image_latents = torch.cat([image_latents], dim=0) + if do_classifier_free_guidance: + uncond_image_latents = torch.zeros_like(image_latents) + image_latents = torch.cat([image_latents, image_latents, uncond_image_latents], dim=0) + return image_latents + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def image_guidance_scale(self): + return self._image_guidance_scale + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def do_classifier_free_guidance(self): + return self.guidance_scale > 1.0 and self.image_guidance_scale >= 1.0 + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +import warnings +from typing import Callable, List, Optional, Union +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import CLIPTextModel, CLIPTokenizer +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin +from ...models import AutoencoderKL, UNet2DConditionModel +from ...schedulers import EulerDiscreteScheduler +from ...utils import deprecate, logging +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput, StableDiffusionMixin +logger = logging.get_logger(__name__) + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +def preprocess(image): + warnings.warn('The preprocess method is deprecated and will be removed in a future version. Please use VaeImageProcessor.preprocess instead', FutureWarning) + if isinstance(image, torch.Tensor): + return image + elif isinstance(image, PIL.Image.Image): + image = [image] + if isinstance(image[0], PIL.Image.Image): + (w, h) = image[0].size + (w, h) = (x - x % 64 for x in (w, h)) + image = [np.array(i.resize((w, h)))[None, :] for i in image] + image = np.concatenate(image, axis=0) + image = np.array(image).astype(np.float32) / 255.0 + image = image.transpose(0, 3, 1, 2) + image = 2.0 * image - 1.0 + image = torch.from_numpy(image) + elif isinstance(image[0], torch.Tensor): + image = torch.cat(image, dim=0) + return image + +class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: EulerDiscreteScheduler): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, resample='bicubic') + + def _encode_prompt(self, prompt, device, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt=prompt, device=device, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, **kwargs) + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds]) + return (prompt_embeds, pooled_prompt_embeds) + + def encode_prompt(self, prompt, device, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None): + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None or pooled_prompt_embeds is None: + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_length=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + text_encoder_out = self.text_encoder(text_input_ids.to(device), output_hidden_states=True) + prompt_embeds = text_encoder_out.hidden_states[-1] + pooled_prompt_embeds = text_encoder_out.pooler_output + if do_classifier_free_guidance: + if negative_prompt_embeds is None or negative_pooled_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + max_length = text_input_ids.shape[-1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_length=True, return_tensors='pt') + uncond_encoder_out = self.text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True) + negative_prompt_embeds = uncond_encoder_out.hidden_states[-1] + negative_pooled_prompt_embeds = uncond_encoder_out.pooler_output + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def check_inputs(self, prompt, image, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None): + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str)) and (not isinstance(prompt, list)): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + if not isinstance(image, torch.Tensor) and (not isinstance(image, np.ndarray)) and (not isinstance(image, PIL.Image.Image)) and (not isinstance(image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or `list` but is {type(image)}') + if isinstance(image, (list, torch.Tensor)): + if prompt is not None: + if isinstance(prompt, str): + batch_size = 1 + else: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if isinstance(image, list): + image_batch_size = len(image) + else: + image_batch_size = image.shape[0] if image.ndim == 4 else 1 + if batch_size != image_batch_size: + raise ValueError(f'`prompt` has batch size {batch_size} and `image` has batch size {image_batch_size}. Please make sure that passed `prompt` matches the batch size of `image`.') + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, height, width) + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + if latents.shape != shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}') + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @torch.no_grad() + def __call__(self, prompt: Union[str, List[str]]=None, image: PipelineImageInput=None, num_inference_steps: int=75, guidance_scale: float=9.0, negative_prompt: Optional[Union[str, List[str]]]=None, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1): + self.check_inputs(prompt, image, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + if prompt is not None: + batch_size = 1 if isinstance(prompt, str) else len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + if guidance_scale == 0: + prompt = [''] * batch_size + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt, device, do_classifier_free_guidance, negative_prompt, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds]) + image = self.image_processor.preprocess(image) + image = image.to(dtype=prompt_embeds.dtype, device=device) + if image.shape[1] == 3: + image = retrieve_latents(self.vae.encode(image), generator=generator) * self.vae.config.scaling_factor + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + batch_multiplier = 2 if do_classifier_free_guidance else 1 + image = image[None, :] if image.ndim == 3 else image + image = torch.cat([image] * batch_multiplier) + noise_level = torch.tensor([0.0], dtype=torch.float32, device=device) + noise_level = torch.cat([noise_level] * image.shape[0]) + inv_noise_level = (noise_level ** 2 + 1) ** (-0.5) + image_cond = F.interpolate(image, scale_factor=2, mode='nearest') * inv_noise_level[:, None, None, None] + image_cond = image_cond.to(prompt_embeds.dtype) + noise_level_embed = torch.cat([torch.ones(pooled_prompt_embeds.shape[0], 64, dtype=pooled_prompt_embeds.dtype, device=device), torch.zeros(pooled_prompt_embeds.shape[0], 64, dtype=pooled_prompt_embeds.dtype, device=device)], dim=1) + timestep_condition = torch.cat([noise_level_embed, pooled_prompt_embeds], dim=1) + (height, width) = image.shape[2:] + num_channels_latents = self.vae.config.latent_channels + latents = self.prepare_latents(batch_size, num_channels_latents, height * 2, width * 2, prompt_embeds.dtype, device, generator, latents) + num_channels_image = image.shape[1] + if num_channels_latents + num_channels_image != self.unet.config.in_channels: + raise ValueError(f'Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} + `num_channels_image`: {num_channels_image} = {num_channels_latents + num_channels_image}. Please verify the config of `pipeline.unet` or your `image` input.') + num_warmup_steps = 0 + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + sigma = self.scheduler.sigmas[i] + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + scaled_model_input = self.scheduler.scale_model_input(latent_model_input, t) + scaled_model_input = torch.cat([scaled_model_input, image_cond], dim=1) + timestep = torch.log(sigma) * 0.25 + noise_pred = self.unet(scaled_model_input, timestep, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_condition).sample + noise_pred = noise_pred[:, :-1] + inv_sigma = 1 / (sigma ** 2 + 1) + noise_pred = inv_sigma * latent_model_input + self.scheduler.scale_model_input(sigma, t) * noise_pred + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents).prev_sample + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + else: + image = latents + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +import inspect +import warnings +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, UNet2DConditionModel +from ...models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import DDPMScheduler, KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from . import StableDiffusionPipelineOutput +logger = logging.get_logger(__name__) + +def preprocess(image): + warnings.warn('The preprocess method is deprecated and will be removed in a future version. Please use VaeImageProcessor.preprocess instead', FutureWarning) + if isinstance(image, torch.Tensor): + return image + elif isinstance(image, PIL.Image.Image): + image = [image] + if isinstance(image[0], PIL.Image.Image): + (w, h) = image[0].size + (w, h) = (x - x % 64 for x in (w, h)) + image = [np.array(i.resize((w, h)))[None, :] for i in image] + image = np.concatenate(image, axis=0) + image = np.array(image).astype(np.float32) / 255.0 + image = image.transpose(0, 3, 1, 2) + image = 2.0 * image - 1.0 + image = torch.from_numpy(image) + elif isinstance(image[0], torch.Tensor): + image = torch.cat(image, dim=0) + return image + +class StableDiffusionUpscalePipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _optional_components = ['watermarker', 'safety_checker', 'feature_extractor'] + _exclude_from_cpu_offload = ['safety_checker'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, low_res_scheduler: DDPMScheduler, scheduler: KarrasDiffusionSchedulers, safety_checker: Optional[Any]=None, feature_extractor: Optional[CLIPImageProcessor]=None, watermarker: Optional[Any]=None, max_noise_level: int=350): + super().__init__() + if hasattr(vae, 'config'): + is_vae_scaling_factor_set_to_0_08333 = hasattr(vae.config, 'scaling_factor') and vae.config.scaling_factor == 0.08333 + if not is_vae_scaling_factor_set_to_0_08333: + deprecation_message = f"The configuration file of the vae does not contain `scaling_factor` or it is set to {vae.config.scaling_factor}, which seems highly unlikely. If your checkpoint is a fine-tuned version of `stabilityai/stable-diffusion-x4-upscaler` you should change 'scaling_factor' to 0.08333 Please make sure to update the config accordingly, as not doing so might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull Request for the `vae/config.json` file" + deprecate('wrong scaling_factor', '1.0.0', deprecation_message, standard_warn=False) + vae.register_to_config(scaling_factor=0.08333) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, low_res_scheduler=low_res_scheduler, scheduler=scheduler, safety_checker=safety_checker, watermarker=watermarker, feature_extractor=feature_extractor) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, resample='bicubic') + self.register_to_config(max_noise_level=max_noise_level) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is not None: + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, nsfw_detected, watermark_detected) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype=dtype)) + else: + nsfw_detected = None + watermark_detected = None + if hasattr(self, 'unet_offload_hook') and self.unet_offload_hook is not None: + self.unet_offload_hook.offload() + return (image, nsfw_detected, watermark_detected) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def check_inputs(self, prompt, image, noise_level, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None): + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if not isinstance(image, torch.Tensor) and (not isinstance(image, PIL.Image.Image)) and (not isinstance(image, np.ndarray)) and (not isinstance(image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `np.ndarray`, `PIL.Image.Image` or `list` but is {type(image)}') + if isinstance(image, (list, np.ndarray, torch.Tensor)): + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if isinstance(image, list): + image_batch_size = len(image) + else: + image_batch_size = image.shape[0] + if batch_size != image_batch_size: + raise ValueError(f'`prompt` has batch size {batch_size} and `image` has batch size {image_batch_size}. Please make sure that passed `prompt` matches the batch size of `image`.') + if noise_level > self.config.max_noise_level: + raise ValueError(f'`noise_level` has to be <= {self.config.max_noise_level} but is {noise_level}') + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, height, width) + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + if latents.shape != shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}') + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + @torch.no_grad() + def __call__(self, prompt: Union[str, List[str]]=None, image: PipelineImageInput=None, num_inference_steps: int=75, guidance_scale: float=9.0, noise_level: int=20, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: int=None): + self.check_inputs(prompt, image, noise_level, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + if image is None: + raise ValueError('`image` input cannot be undefined.') + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + text_encoder_lora_scale = cross_attention_kwargs.get('scale', None) if cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + image = self.image_processor.preprocess(image) + image = image.to(dtype=prompt_embeds.dtype, device=device) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + noise_level = torch.tensor([noise_level], dtype=torch.long, device=device) + noise = randn_tensor(image.shape, generator=generator, device=device, dtype=prompt_embeds.dtype) + image = self.low_res_scheduler.add_noise(image, noise, noise_level) + batch_multiplier = 2 if do_classifier_free_guidance else 1 + image = torch.cat([image] * batch_multiplier * num_images_per_prompt) + noise_level = torch.cat([noise_level] * image.shape[0]) + (height, width) = image.shape[2:] + num_channels_latents = self.vae.config.latent_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + num_channels_image = image.shape[1] + if num_channels_latents + num_channels_image != self.unet.config.in_channels: + raise ValueError(f'Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} + `num_channels_image`: {num_channels_image} = {num_channels_latents + num_channels_image}. Please verify the config of `pipeline.unet` or your `image` input.') + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + latent_model_input = torch.cat([latent_model_input, image], dim=1) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, class_labels=noise_level, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + if needs_upcasting: + self.vae.to(dtype=torch.float16) + (image, has_nsfw_concept, _) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + if output_type == 'pil' and self.watermarker is not None: + image = self.watermarker.apply_watermark(image) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import torch +from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer +from transformers.models.clip.modeling_clip import CLIPTextModelOutput +from ...image_processor import VaeImageProcessor +from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, PriorTransformer, UNet2DConditionModel +from ...models.embeddings import get_timestep_embedding +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput, StableDiffusionMixin +from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import StableUnCLIPPipeline\n\n >>> pipe = StableUnCLIPPipeline.from_pretrained(\n ... "fusing/stable-unclip-2-1-l", torch_dtype=torch.float16\n ... ) # TODO update model path\n >>> pipe = pipe.to("cuda")\n\n >>> prompt = "a photo of an astronaut riding a horse on mars"\n >>> images = pipe(prompt).images\n >>> images[0].save("astronaut_horse.png")\n ```\n' + +class StableUnCLIPPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin): + _exclude_from_cpu_offload = ['prior', 'image_normalizer'] + model_cpu_offload_seq = 'text_encoder->prior_text_encoder->unet->vae' + prior_tokenizer: CLIPTokenizer + prior_text_encoder: CLIPTextModelWithProjection + prior: PriorTransformer + prior_scheduler: KarrasDiffusionSchedulers + image_normalizer: StableUnCLIPImageNormalizer + image_noising_scheduler: KarrasDiffusionSchedulers + tokenizer: CLIPTokenizer + text_encoder: CLIPTextModel + unet: UNet2DConditionModel + scheduler: KarrasDiffusionSchedulers + vae: AutoencoderKL + + def __init__(self, prior_tokenizer: CLIPTokenizer, prior_text_encoder: CLIPTextModelWithProjection, prior: PriorTransformer, prior_scheduler: KarrasDiffusionSchedulers, image_normalizer: StableUnCLIPImageNormalizer, image_noising_scheduler: KarrasDiffusionSchedulers, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModelWithProjection, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, vae: AutoencoderKL): + super().__init__() + self.register_modules(prior_tokenizer=prior_tokenizer, prior_text_encoder=prior_text_encoder, prior=prior, prior_scheduler=prior_scheduler, image_normalizer=image_normalizer, image_noising_scheduler=image_noising_scheduler, tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, vae=vae) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + + def _encode_prior_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]]=None, text_attention_mask: Optional[torch.Tensor]=None): + if text_model_output is None: + batch_size = len(prompt) if isinstance(prompt, list) else 1 + text_inputs = self.prior_tokenizer(prompt, padding='max_length', max_length=self.prior_tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + text_mask = text_inputs.attention_mask.bool().to(device) + untruncated_ids = self.prior_tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.prior_tokenizer.batch_decode(untruncated_ids[:, self.prior_tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.prior_tokenizer.model_max_length} tokens: {removed_text}') + text_input_ids = text_input_ids[:, :self.prior_tokenizer.model_max_length] + prior_text_encoder_output = self.prior_text_encoder(text_input_ids.to(device)) + prompt_embeds = prior_text_encoder_output.text_embeds + text_enc_hid_states = prior_text_encoder_output.last_hidden_state + else: + batch_size = text_model_output[0].shape[0] + (prompt_embeds, text_enc_hid_states) = (text_model_output[0], text_model_output[1]) + text_mask = text_attention_mask + prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) + text_enc_hid_states = text_enc_hid_states.repeat_interleave(num_images_per_prompt, dim=0) + text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + uncond_tokens = [''] * batch_size + uncond_input = self.prior_tokenizer(uncond_tokens, padding='max_length', max_length=self.prior_tokenizer.model_max_length, truncation=True, return_tensors='pt') + uncond_text_mask = uncond_input.attention_mask.bool().to(device) + negative_prompt_embeds_prior_text_encoder_output = self.prior_text_encoder(uncond_input.input_ids.to(device)) + negative_prompt_embeds = negative_prompt_embeds_prior_text_encoder_output.text_embeds + uncond_text_enc_hid_states = negative_prompt_embeds_prior_text_encoder_output.last_hidden_state + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) + seq_len = uncond_text_enc_hid_states.shape[1] + uncond_text_enc_hid_states = uncond_text_enc_hid_states.repeat(1, num_images_per_prompt, 1) + uncond_text_enc_hid_states = uncond_text_enc_hid_states.view(batch_size * num_images_per_prompt, seq_len, -1) + uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + text_enc_hid_states = torch.cat([uncond_text_enc_hid_states, text_enc_hid_states]) + text_mask = torch.cat([uncond_text_mask, text_mask]) + return (prompt_embeds, text_enc_hid_states, text_mask) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_prior_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.prior_scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.prior_scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, callback_steps, noise_level, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Please make sure to define only one of the two.') + if prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + if prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError('Provide either `negative_prompt` or `negative_prompt_embeds`. Cannot leave both `negative_prompt` and `negative_prompt_embeds` undefined.') + if prompt is not None and negative_prompt is not None: + if type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if noise_level < 0 or noise_level >= self.image_noising_scheduler.config.num_train_timesteps: + raise ValueError(f'`noise_level` must be between 0 and {self.image_noising_scheduler.config.num_train_timesteps - 1}, inclusive.') + + def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + if latents.shape != shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}') + latents = latents.to(device) + latents = latents * scheduler.init_noise_sigma + return latents + + def noise_image_embeddings(self, image_embeds: torch.Tensor, noise_level: int, noise: Optional[torch.Tensor]=None, generator: Optional[torch.Generator]=None): + if noise is None: + noise = randn_tensor(image_embeds.shape, generator=generator, device=image_embeds.device, dtype=image_embeds.dtype) + noise_level = torch.tensor([noise_level] * image_embeds.shape[0], device=image_embeds.device) + self.image_normalizer.to(image_embeds.device) + image_embeds = self.image_normalizer.scale(image_embeds) + image_embeds = self.image_noising_scheduler.add_noise(image_embeds, timesteps=noise_level, noise=noise) + image_embeds = self.image_normalizer.unscale(image_embeds) + noise_level = get_timestep_embedding(timesteps=noise_level, embedding_dim=image_embeds.shape[-1], flip_sin_to_cos=True, downscale_freq_shift=0) + noise_level = noise_level.to(image_embeds.dtype) + image_embeds = torch.cat((image_embeds, noise_level), 1) + return image_embeds + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Optional[Union[str, List[str]]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=20, guidance_scale: float=10.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[torch.Generator]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, noise_level: int=0, prior_num_inference_steps: int=25, prior_guidance_scale: float=4.0, prior_latents: Optional[torch.Tensor]=None, clip_skip: Optional[int]=None): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt=prompt, height=height, width=width, callback_steps=callback_steps, noise_level=noise_level, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + batch_size = batch_size * num_images_per_prompt + device = self._execution_device + prior_do_classifier_free_guidance = prior_guidance_scale > 1.0 + (prior_prompt_embeds, prior_text_encoder_hidden_states, prior_text_mask) = self._encode_prior_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=prior_do_classifier_free_guidance) + self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device) + prior_timesteps_tensor = self.prior_scheduler.timesteps + embedding_dim = self.prior.config.embedding_dim + prior_latents = self.prepare_latents((batch_size, embedding_dim), prior_prompt_embeds.dtype, device, generator, prior_latents, self.prior_scheduler) + prior_extra_step_kwargs = self.prepare_prior_extra_step_kwargs(generator, eta) + for (i, t) in enumerate(self.progress_bar(prior_timesteps_tensor)): + latent_model_input = torch.cat([prior_latents] * 2) if prior_do_classifier_free_guidance else prior_latents + latent_model_input = self.prior_scheduler.scale_model_input(latent_model_input, t) + predicted_image_embedding = self.prior(latent_model_input, timestep=t, proj_embedding=prior_prompt_embeds, encoder_hidden_states=prior_text_encoder_hidden_states, attention_mask=prior_text_mask).predicted_image_embedding + if prior_do_classifier_free_guidance: + (predicted_image_embedding_uncond, predicted_image_embedding_text) = predicted_image_embedding.chunk(2) + predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * (predicted_image_embedding_text - predicted_image_embedding_uncond) + prior_latents = self.prior_scheduler.step(predicted_image_embedding, timestep=t, sample=prior_latents, **prior_extra_step_kwargs, return_dict=False)[0] + if callback is not None and i % callback_steps == 0: + callback(i, t, prior_latents) + prior_latents = self.prior.post_process_latents(prior_latents) + image_embeds = prior_latents + do_classifier_free_guidance = guidance_scale > 1.0 + text_encoder_lora_scale = cross_attention_kwargs.get('scale', None) if cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + image_embeds = self.noise_image_embeddings(image_embeds=image_embeds, noise_level=noise_level, generator=generator) + if do_classifier_free_guidance: + negative_prompt_embeds = torch.zeros_like(image_embeds) + image_embeds = torch.cat([negative_prompt_embeds, image_embeds]) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + latents = self.prepare_latents(shape=shape, dtype=prompt_embeds.dtype, device=device, generator=generator, latents=latents, scheduler=self.scheduler) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + for (i, t) in enumerate(self.progress_bar(timesteps)): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, class_labels=image_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + else: + image = latents + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...image_processor import VaeImageProcessor +from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, UNet2DConditionModel +from ...models.embeddings import get_timestep_embedding +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput, StableDiffusionMixin +from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import requests\n >>> import torch\n >>> from PIL import Image\n >>> from io import BytesIO\n\n >>> from diffusers import StableUnCLIPImg2ImgPipeline\n\n >>> pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(\n ... "stabilityai/stable-diffusion-2-1-unclip-small", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n >>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"\n\n >>> response = requests.get(url)\n >>> init_image = Image.open(BytesIO(response.content)).convert("RGB")\n >>> init_image = init_image.resize((768, 512))\n\n >>> prompt = "A fantasy landscape, trending on artstation"\n\n >>> images = pipe(init_image, prompt).images\n >>> images[0].save("fantasy_landscape.png")\n ```\n' + +class StableUnCLIPImg2ImgPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin): + model_cpu_offload_seq = 'text_encoder->image_encoder->unet->vae' + _exclude_from_cpu_offload = ['image_normalizer'] + feature_extractor: CLIPImageProcessor + image_encoder: CLIPVisionModelWithProjection + image_normalizer: StableUnCLIPImageNormalizer + image_noising_scheduler: KarrasDiffusionSchedulers + tokenizer: CLIPTokenizer + text_encoder: CLIPTextModel + unet: UNet2DConditionModel + scheduler: KarrasDiffusionSchedulers + vae: AutoencoderKL + + def __init__(self, feature_extractor: CLIPImageProcessor, image_encoder: CLIPVisionModelWithProjection, image_normalizer: StableUnCLIPImageNormalizer, image_noising_scheduler: KarrasDiffusionSchedulers, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModel, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, vae: AutoencoderKL): + super().__init__() + self.register_modules(feature_extractor=feature_extractor, image_encoder=image_encoder, image_normalizer=image_normalizer, image_noising_scheduler=image_noising_scheduler, tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, vae=vae) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def _encode_image(self, image, device, batch_size, num_images_per_prompt, do_classifier_free_guidance, noise_level, generator, image_embeds): + dtype = next(self.image_encoder.parameters()).dtype + if isinstance(image, PIL.Image.Image): + repeat_by = batch_size + else: + repeat_by = num_images_per_prompt + if image_embeds is None: + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(images=image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + image_embeds = self.image_encoder(image).image_embeds + image_embeds = self.noise_image_embeddings(image_embeds=image_embeds, noise_level=noise_level, generator=generator) + image_embeds = image_embeds.unsqueeze(1) + (bs_embed, seq_len, _) = image_embeds.shape + image_embeds = image_embeds.repeat(1, repeat_by, 1) + image_embeds = image_embeds.view(bs_embed * repeat_by, seq_len, -1) + image_embeds = image_embeds.squeeze(1) + if do_classifier_free_guidance: + negative_prompt_embeds = torch.zeros_like(image_embeds) + image_embeds = torch.cat([negative_prompt_embeds, image_embeds]) + return image_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, image, height, width, callback_steps, noise_level, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, image_embeds=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Please make sure to define only one of the two.') + if prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + if prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError('Provide either `negative_prompt` or `negative_prompt_embeds`. Cannot leave both `negative_prompt` and `negative_prompt_embeds` undefined.') + if prompt is not None and negative_prompt is not None: + if type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if noise_level < 0 or noise_level >= self.image_noising_scheduler.config.num_train_timesteps: + raise ValueError(f'`noise_level` must be between 0 and {self.image_noising_scheduler.config.num_train_timesteps - 1}, inclusive.') + if image is not None and image_embeds is not None: + raise ValueError('Provide either `image` or `image_embeds`. Please make sure to define only one of the two.') + if image is None and image_embeds is None: + raise ValueError('Provide either `image` or `image_embeds`. Cannot leave both `image` and `image_embeds` undefined.') + if image is not None: + if not isinstance(image, torch.Tensor) and (not isinstance(image, PIL.Image.Image)) and (not isinstance(image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is {type(image)}') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def noise_image_embeddings(self, image_embeds: torch.Tensor, noise_level: int, noise: Optional[torch.Tensor]=None, generator: Optional[torch.Generator]=None): + if noise is None: + noise = randn_tensor(image_embeds.shape, generator=generator, device=image_embeds.device, dtype=image_embeds.dtype) + noise_level = torch.tensor([noise_level] * image_embeds.shape[0], device=image_embeds.device) + self.image_normalizer.to(image_embeds.device) + image_embeds = self.image_normalizer.scale(image_embeds) + image_embeds = self.image_noising_scheduler.add_noise(image_embeds, timesteps=noise_level, noise=noise) + image_embeds = self.image_normalizer.unscale(image_embeds) + noise_level = get_timestep_embedding(timesteps=noise_level, embedding_dim=image_embeds.shape[-1], flip_sin_to_cos=True, downscale_freq_shift=0) + noise_level = noise_level.to(image_embeds.dtype) + image_embeds = torch.cat((image_embeds, noise_level), 1) + return image_embeds + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, image: Union[torch.Tensor, PIL.Image.Image]=None, prompt: Union[str, List[str]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=20, guidance_scale: float=10, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[torch.Generator]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, noise_level: int=0, image_embeds: Optional[torch.Tensor]=None, clip_skip: Optional[int]=None): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + if prompt is None and prompt_embeds is None: + prompt = len(image) * [''] if isinstance(image, list) else '' + self.check_inputs(prompt=prompt, image=image, height=height, width=width, callback_steps=callback_steps, noise_level=noise_level, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, image_embeds=image_embeds) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + batch_size = batch_size * num_images_per_prompt + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + text_encoder_lora_scale = cross_attention_kwargs.get('scale', None) if cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + noise_level = torch.tensor([noise_level], device=device) + image_embeds = self._encode_image(image=image, device=device, batch_size=batch_size, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, noise_level=noise_level, generator=generator, image_embeds=image_embeds) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + if latents is None: + latents = self.prepare_latents(batch_size=batch_size, num_channels_latents=num_channels_latents, height=height, width=width, dtype=prompt_embeds.dtype, device=device, generator=generator, latents=latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + for (i, t) in enumerate(self.progress_bar(timesteps)): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, class_labels=image_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + else: + image = latents + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/safety_checker.py +import numpy as np +import torch +import torch.nn as nn +from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel +from ...utils import logging +logger = logging.get_logger(__name__) + +def cosine_distance(image_embeds, text_embeds): + normalized_image_embeds = nn.functional.normalize(image_embeds) + normalized_text_embeds = nn.functional.normalize(text_embeds) + return torch.mm(normalized_image_embeds, normalized_text_embeds.t()) + +class StableDiffusionSafetyChecker(PreTrainedModel): + config_class = CLIPConfig + main_input_name = 'clip_input' + _no_split_modules = ['CLIPEncoderLayer'] + + def __init__(self, config: CLIPConfig): + super().__init__(config) + self.vision_model = CLIPVisionModel(config.vision_config) + self.visual_projection = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=False) + self.concept_embeds = nn.Parameter(torch.ones(17, config.projection_dim), requires_grad=False) + self.special_care_embeds = nn.Parameter(torch.ones(3, config.projection_dim), requires_grad=False) + self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False) + self.special_care_embeds_weights = nn.Parameter(torch.ones(3), requires_grad=False) + + @torch.no_grad() + def forward(self, clip_input, images): + pooled_output = self.vision_model(clip_input)[1] + image_embeds = self.visual_projection(pooled_output) + special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).cpu().float().numpy() + cos_dist = cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy() + result = [] + batch_size = image_embeds.shape[0] + for i in range(batch_size): + result_img = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} + adjustment = 0.0 + for concept_idx in range(len(special_cos_dist[0])): + concept_cos = special_cos_dist[i][concept_idx] + concept_threshold = self.special_care_embeds_weights[concept_idx].item() + result_img['special_scores'][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3) + if result_img['special_scores'][concept_idx] > 0: + result_img['special_care'].append({concept_idx, result_img['special_scores'][concept_idx]}) + adjustment = 0.01 + for concept_idx in range(len(cos_dist[0])): + concept_cos = cos_dist[i][concept_idx] + concept_threshold = self.concept_embeds_weights[concept_idx].item() + result_img['concept_scores'][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3) + if result_img['concept_scores'][concept_idx] > 0: + result_img['bad_concepts'].append(concept_idx) + result.append(result_img) + has_nsfw_concepts = [len(res['bad_concepts']) > 0 for res in result] + for (idx, has_nsfw_concept) in enumerate(has_nsfw_concepts): + if has_nsfw_concept: + if torch.is_tensor(images) or torch.is_tensor(images[0]): + images[idx] = torch.zeros_like(images[idx]) + else: + images[idx] = np.zeros(images[idx].shape) + if any(has_nsfw_concepts): + logger.warning('Potential NSFW content was detected in one or more images. A black image will be returned instead. Try again with a different prompt and/or seed.') + return (images, has_nsfw_concepts) + + @torch.no_grad() + def forward_onnx(self, clip_input: torch.Tensor, images: torch.Tensor): + pooled_output = self.vision_model(clip_input)[1] + image_embeds = self.visual_projection(pooled_output) + special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds) + cos_dist = cosine_distance(image_embeds, self.concept_embeds) + adjustment = 0.0 + special_scores = special_cos_dist - self.special_care_embeds_weights + adjustment + special_care = torch.any(special_scores > 0, dim=1) + special_adjustment = special_care * 0.01 + special_adjustment = special_adjustment.unsqueeze(1).expand(-1, cos_dist.shape[1]) + concept_scores = cos_dist - self.concept_embeds_weights + special_adjustment + has_nsfw_concepts = torch.any(concept_scores > 0, dim=1) + images[has_nsfw_concepts] = 0.0 + return (images, has_nsfw_concepts) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/safety_checker_flax.py +from typing import Optional, Tuple +import jax +import jax.numpy as jnp +from flax import linen as nn +from flax.core.frozen_dict import FrozenDict +from transformers import CLIPConfig, FlaxPreTrainedModel +from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule + +def jax_cosine_distance(emb_1, emb_2, eps=1e-12): + norm_emb_1 = jnp.divide(emb_1.T, jnp.clip(jnp.linalg.norm(emb_1, axis=1), a_min=eps)).T + norm_emb_2 = jnp.divide(emb_2.T, jnp.clip(jnp.linalg.norm(emb_2, axis=1), a_min=eps)).T + return jnp.matmul(norm_emb_1, norm_emb_2.T) + +class FlaxStableDiffusionSafetyCheckerModule(nn.Module): + config: CLIPConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.vision_model = FlaxCLIPVisionModule(self.config.vision_config) + self.visual_projection = nn.Dense(self.config.projection_dim, use_bias=False, dtype=self.dtype) + self.concept_embeds = self.param('concept_embeds', jax.nn.initializers.ones, (17, self.config.projection_dim)) + self.special_care_embeds = self.param('special_care_embeds', jax.nn.initializers.ones, (3, self.config.projection_dim)) + self.concept_embeds_weights = self.param('concept_embeds_weights', jax.nn.initializers.ones, (17,)) + self.special_care_embeds_weights = self.param('special_care_embeds_weights', jax.nn.initializers.ones, (3,)) + + def __call__(self, clip_input): + pooled_output = self.vision_model(clip_input)[1] + image_embeds = self.visual_projection(pooled_output) + special_cos_dist = jax_cosine_distance(image_embeds, self.special_care_embeds) + cos_dist = jax_cosine_distance(image_embeds, self.concept_embeds) + adjustment = 0.0 + special_scores = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment + special_scores = jnp.round(special_scores, 3) + is_special_care = jnp.any(special_scores > 0, axis=1, keepdims=True) + special_adjustment = is_special_care * 0.01 + concept_scores = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment + concept_scores = jnp.round(concept_scores, 3) + has_nsfw_concepts = jnp.any(concept_scores > 0, axis=1) + return has_nsfw_concepts + +class FlaxStableDiffusionSafetyChecker(FlaxPreTrainedModel): + config_class = CLIPConfig + main_input_name = 'clip_input' + module_class = FlaxStableDiffusionSafetyCheckerModule + + def __init__(self, config: CLIPConfig, input_shape: Optional[Tuple]=None, seed: int=0, dtype: jnp.dtype=jnp.float32, _do_init: bool=True, **kwargs): + if input_shape is None: + input_shape = (1, 224, 224, 3) + module = self.module_class(config=config, dtype=dtype, **kwargs) + super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) + + def init_weights(self, rng: jax.Array, input_shape: Tuple, params: FrozenDict=None) -> FrozenDict: + clip_input = jax.random.normal(rng, input_shape) + (params_rng, dropout_rng) = jax.random.split(rng) + rngs = {'params': params_rng, 'dropout': dropout_rng} + random_params = self.module.init(rngs, clip_input)['params'] + return random_params + + def __call__(self, clip_input, params: dict=None): + clip_input = jnp.transpose(clip_input, (0, 2, 3, 1)) + return self.module.apply({'params': params or self.params}, jnp.array(clip_input, dtype=jnp.float32), rngs={}) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +from typing import Optional, Union +import torch +from torch import nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...models.modeling_utils import ModelMixin + +class StableUnCLIPImageNormalizer(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, embedding_dim: int=768): + super().__init__() + self.mean = nn.Parameter(torch.zeros(1, embedding_dim)) + self.std = nn.Parameter(torch.ones(1, embedding_dim)) + + def to(self, torch_device: Optional[Union[str, torch.device]]=None, torch_dtype: Optional[torch.dtype]=None): + self.mean = nn.Parameter(self.mean.to(torch_device).to(torch_dtype)) + self.std = nn.Parameter(self.std.to(torch_device).to(torch_dtype)) + return self + + def scale(self, embeds): + embeds = (embeds - self.mean) * 1.0 / self.std + return embeds + + def unscale(self, embeds): + embeds = embeds * self.std + self.mean + return embeds + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_3/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_flax_available, is_torch_available, is_transformers_available +_dummy_objects = {} +_additional_imports = {} +_import_structure = {'pipeline_output': ['StableDiffusion3PipelineOutput']} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_stable_diffusion_3'] = ['StableDiffusion3Pipeline'] + _import_structure['pipeline_stable_diffusion_3_img2img'] = ['StableDiffusion3Img2ImgPipeline'] + _import_structure['pipeline_stable_diffusion_3_inpaint'] = ['StableDiffusion3InpaintPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_stable_diffusion_3 import StableDiffusion3Pipeline + from .pipeline_stable_diffusion_3_img2img import StableDiffusion3Img2ImgPipeline + from .pipeline_stable_diffusion_3_inpaint import StableDiffusion3InpaintPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + for (name, value) in _additional_imports.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_3/pipeline_output.py +from dataclasses import dataclass +from typing import List, Union +import numpy as np +import PIL.Image +from ...utils import BaseOutput + +@dataclass +class StableDiffusion3PipelineOutput(BaseOutput): + images: Union[List[PIL.Image.Image], np.ndarray] + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import torch +from transformers import CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel, T5TokenizerFast +from ...image_processor import VaeImageProcessor +from ...loaders import FromSingleFileMixin, SD3LoraLoaderMixin +from ...models.autoencoders import AutoencoderKL +from ...models.transformers import SD3Transformer2DModel +from ...schedulers import FlowMatchEulerDiscreteScheduler +from ...utils import USE_PEFT_BACKEND, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .pipeline_output import StableDiffusion3PipelineOutput +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import StableDiffusion3Pipeline\n\n >>> pipe = StableDiffusion3Pipeline.from_pretrained(\n ... "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n >>> prompt = "A cat holding a sign that says hello world"\n >>> image = pipe(prompt).images[0]\n >>> image.save("sd3.png")\n ```\n' + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->text_encoder_3->transformer->vae' + _optional_components = [] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'negative_pooled_prompt_embeds'] + + def __init__(self, transformer: SD3Transformer2DModel, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, text_encoder_2: CLIPTextModelWithProjection, tokenizer_2: CLIPTokenizer, text_encoder_3: T5EncoderModel, tokenizer_3: T5TokenizerFast): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, text_encoder_3=text_encoder_3, tokenizer=tokenizer, tokenizer_2=tokenizer_2, tokenizer_3=tokenizer_3, transformer=transformer, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, 'vae') and self.vae is not None else 8 + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.tokenizer_max_length = self.tokenizer.model_max_length if hasattr(self, 'tokenizer') and self.tokenizer is not None else 77 + self.default_sample_size = self.transformer.config.sample_size if hasattr(self, 'transformer') and self.transformer is not None else 128 + + def _get_t5_prompt_embeds(self, prompt: Union[str, List[str]]=None, num_images_per_prompt: int=1, max_sequence_length: int=256, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None): + device = device or self._execution_device + dtype = dtype or self.text_encoder.dtype + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + if self.text_encoder_3 is None: + return torch.zeros((batch_size * num_images_per_prompt, self.tokenizer_max_length, self.transformer.config.joint_attention_dim), device=device, dtype=dtype) + text_inputs = self.tokenizer_3(prompt, padding='max_length', max_length=max_sequence_length, truncation=True, add_special_tokens=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer_3(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because `max_sequence_length` is set to {max_sequence_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0] + dtype = self.text_encoder_3.dtype + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (_, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + return prompt_embeds + + def _get_clip_prompt_embeds(self, prompt: Union[str, List[str]], num_images_per_prompt: int=1, device: Optional[torch.device]=None, clip_skip: Optional[int]=None, clip_model_index: int=0): + device = device or self._execution_device + clip_tokenizers = [self.tokenizer, self.tokenizer_2] + clip_text_encoders = [self.text_encoder, self.text_encoder_2] + tokenizer = clip_tokenizers[clip_model_index] + text_encoder = clip_text_encoders[clip_model_index] + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + text_inputs = tokenizer(prompt, padding='max_length', max_length=self.tokenizer_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + (_, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1) + pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1) + return (prompt_embeds, pooled_prompt_embeds) + + def encode_prompt(self, prompt: Union[str, List[str]], prompt_2: Union[str, List[str]], prompt_3: Union[str, List[str]], device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, negative_prompt_3: Optional[Union[str, List[str]]]=None, prompt_embeds: Optional[torch.FloatTensor]=None, negative_prompt_embeds: Optional[torch.FloatTensor]=None, pooled_prompt_embeds: Optional[torch.FloatTensor]=None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor]=None, clip_skip: Optional[int]=None, max_sequence_length: int=256, lora_scale: Optional[float]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + prompt_3 = prompt_3 or prompt + prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3 + (prompt_embed, pooled_prompt_embed) = self._get_clip_prompt_embeds(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=clip_skip, clip_model_index=0) + (prompt_2_embed, pooled_prompt_2_embed) = self._get_clip_prompt_embeds(prompt=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=clip_skip, clip_model_index=1) + clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1) + t5_prompt_embed = self._get_t5_prompt_embeds(prompt=prompt_3, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device) + clip_prompt_embeds = torch.nn.functional.pad(clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])) + prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2) + pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt_3 = negative_prompt_3 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + negative_prompt_3 = batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3 + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + (negative_prompt_embed, negative_pooled_prompt_embed) = self._get_clip_prompt_embeds(negative_prompt, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=None, clip_model_index=0) + (negative_prompt_2_embed, negative_pooled_prompt_2_embed) = self._get_clip_prompt_embeds(negative_prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=None, clip_model_index=1) + negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1) + t5_negative_prompt_embed = self._get_t5_prompt_embeds(prompt=negative_prompt_3, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device) + negative_clip_prompt_embeds = torch.nn.functional.pad(negative_clip_prompt_embeds, (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1])) + negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2) + negative_pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1) + if self.text_encoder is not None: + if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def check_inputs(self, prompt, prompt_2, prompt_3, height, width, negative_prompt=None, negative_prompt_2=None, negative_prompt_3=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, max_sequence_length=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_3 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + elif prompt_3 is not None and (not isinstance(prompt_3, str) and (not isinstance(prompt_3, list))): + raise ValueError(f'`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_3 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + if max_sequence_length is not None and max_sequence_length > 512: + raise ValueError(f'`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + if latents is not None: + return latents.to(device=device, dtype=dtype) + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + return latents + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def joint_attention_kwargs(self): + return self._joint_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, prompt_3: Optional[Union[str, List[str]]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=28, timesteps: List[int]=None, guidance_scale: float=7.0, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, negative_prompt_3: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.FloatTensor]=None, prompt_embeds: Optional[torch.FloatTensor]=None, negative_prompt_embeds: Optional[torch.FloatTensor]=None, pooled_prompt_embeds: Optional[torch.FloatTensor]=None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, joint_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], max_sequence_length: int=256): + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + self.check_inputs(prompt, prompt_2, prompt_3, height, width, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_3=negative_prompt_3, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._joint_attention_kwargs = joint_attention_kwargs + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + lora_scale = self.joint_attention_kwargs.get('scale', None) if self.joint_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt=prompt, prompt_2=prompt_2, prompt_3=prompt_3, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_3=negative_prompt_3, do_classifier_free_guidance=self.do_classifier_free_guidance, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, device=device, clip_skip=self.clip_skip, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, lora_scale=lora_scale) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + self._num_timesteps = len(timesteps) + num_channels_latents = self.transformer.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + timestep = t.expand(latent_model_input.shape[0]) + noise_pred = self.transformer(hidden_states=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds, pooled_projections=pooled_prompt_embeds, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + latents = latents.to(latents_dtype) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + negative_pooled_prompt_embeds = callback_outputs.pop('negative_pooled_prompt_embeds', negative_pooled_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if XLA_AVAILABLE: + xm.mark_step() + if output_type == 'latent': + image = latents + else: + latents = latents / self.vae.config.scaling_factor + self.vae.config.shift_factor + image = self.vae.decode(latents, return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return StableDiffusion3PipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +import inspect +from typing import Callable, Dict, List, Optional, Union +import PIL.Image +import torch +from transformers import CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel, T5TokenizerFast +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import SD3LoraLoaderMixin +from ...models.autoencoders import AutoencoderKL +from ...models.transformers import SD3Transformer2DModel +from ...schedulers import FlowMatchEulerDiscreteScheduler +from ...utils import USE_PEFT_BACKEND, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .pipeline_output import StableDiffusion3PipelineOutput +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n\n >>> from diffusers import AutoPipelineForImage2Image\n >>> from diffusers.utils import load_image\n\n >>> device = "cuda"\n >>> model_id_or_path = "stabilityai/stable-diffusion-3-medium-diffusers"\n >>> pipe = AutoPipelineForImage2Image.from_pretrained(model_id_or_path, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"\n >>> init_image = load_image(url).resize((1024, 1024))\n\n >>> prompt = "cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney, 8k"\n\n >>> images = pipe(prompt=prompt, image=init_image, strength=0.95, guidance_scale=7.5).images[0]\n ```\n' + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusion3Img2ImgPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->text_encoder_3->transformer->vae' + _optional_components = [] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'negative_pooled_prompt_embeds'] + + def __init__(self, transformer: SD3Transformer2DModel, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, text_encoder_2: CLIPTextModelWithProjection, tokenizer_2: CLIPTokenizer, text_encoder_3: T5EncoderModel, tokenizer_3: T5TokenizerFast): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, text_encoder_3=text_encoder_3, tokenizer=tokenizer, tokenizer_2=tokenizer_2, tokenizer_3=tokenizer_3, transformer=transformer, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, vae_latent_channels=self.vae.config.latent_channels) + self.tokenizer_max_length = self.tokenizer.model_max_length + self.default_sample_size = self.transformer.config.sample_size + + def _get_t5_prompt_embeds(self, prompt: Union[str, List[str]]=None, num_images_per_prompt: int=1, max_sequence_length: int=256, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None): + device = device or self._execution_device + dtype = dtype or self.text_encoder.dtype + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + if self.text_encoder_3 is None: + return torch.zeros((batch_size * num_images_per_prompt, self.tokenizer_max_length, self.transformer.config.joint_attention_dim), device=device, dtype=dtype) + text_inputs = self.tokenizer_3(prompt, padding='max_length', max_length=max_sequence_length, truncation=True, add_special_tokens=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer_3(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because `max_sequence_length` is set to {max_sequence_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0] + dtype = self.text_encoder_3.dtype + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (_, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + return prompt_embeds + + def _get_clip_prompt_embeds(self, prompt: Union[str, List[str]], num_images_per_prompt: int=1, device: Optional[torch.device]=None, clip_skip: Optional[int]=None, clip_model_index: int=0): + device = device or self._execution_device + clip_tokenizers = [self.tokenizer, self.tokenizer_2] + clip_text_encoders = [self.text_encoder, self.text_encoder_2] + tokenizer = clip_tokenizers[clip_model_index] + text_encoder = clip_text_encoders[clip_model_index] + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + text_inputs = tokenizer(prompt, padding='max_length', max_length=self.tokenizer_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + (_, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1) + pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1) + return (prompt_embeds, pooled_prompt_embeds) + + def encode_prompt(self, prompt: Union[str, List[str]], prompt_2: Union[str, List[str]], prompt_3: Union[str, List[str]], device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, negative_prompt_3: Optional[Union[str, List[str]]]=None, prompt_embeds: Optional[torch.FloatTensor]=None, negative_prompt_embeds: Optional[torch.FloatTensor]=None, pooled_prompt_embeds: Optional[torch.FloatTensor]=None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor]=None, clip_skip: Optional[int]=None, max_sequence_length: int=256, lora_scale: Optional[float]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + prompt_3 = prompt_3 or prompt + prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3 + (prompt_embed, pooled_prompt_embed) = self._get_clip_prompt_embeds(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=clip_skip, clip_model_index=0) + (prompt_2_embed, pooled_prompt_2_embed) = self._get_clip_prompt_embeds(prompt=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=clip_skip, clip_model_index=1) + clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1) + t5_prompt_embed = self._get_t5_prompt_embeds(prompt=prompt_3, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device) + clip_prompt_embeds = torch.nn.functional.pad(clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])) + prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2) + pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt_3 = negative_prompt_3 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + negative_prompt_3 = batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3 + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + (negative_prompt_embed, negative_pooled_prompt_embed) = self._get_clip_prompt_embeds(negative_prompt, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=None, clip_model_index=0) + (negative_prompt_2_embed, negative_pooled_prompt_2_embed) = self._get_clip_prompt_embeds(negative_prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=None, clip_model_index=1) + negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1) + t5_negative_prompt_embed = self._get_t5_prompt_embeds(prompt=negative_prompt_3, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device) + negative_clip_prompt_embeds = torch.nn.functional.pad(negative_clip_prompt_embeds, (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1])) + negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2) + negative_pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1) + if self.text_encoder is not None: + if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def check_inputs(self, prompt, prompt_2, prompt_3, strength, negative_prompt=None, negative_prompt_2=None, negative_prompt_3=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, max_sequence_length=None): + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_3 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + elif prompt_3 is not None and (not isinstance(prompt_3, str) and (not isinstance(prompt_3, list))): + raise ValueError(f'`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_3 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + if max_sequence_length is not None and max_sequence_length > 512: + raise ValueError(f'`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}') + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(num_inference_steps * strength, num_inference_steps) + t_start = int(max(num_inference_steps - init_timestep, 0)) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + + def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): + if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}') + image = image.to(device=device, dtype=dtype) + batch_size = batch_size * num_images_per_prompt + if image.shape[1] == self.vae.config.latent_channels: + init_latents = image + else: + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + elif isinstance(generator, list): + init_latents = [retrieve_latents(self.vae.encode(image[i:i + 1]), generator=generator[i]) for i in range(batch_size)] + init_latents = torch.cat(init_latents, dim=0) + else: + init_latents = retrieve_latents(self.vae.encode(image), generator=generator) + init_latents = (init_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor + if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: + additional_image_per_prompt = batch_size // init_latents.shape[0] + init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) + elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts.') + else: + init_latents = torch.cat([init_latents], dim=0) + shape = init_latents.shape + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + init_latents = self.scheduler.scale_noise(init_latents, timestep, noise) + latents = init_latents.to(device=device, dtype=dtype) + return latents + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, prompt_3: Optional[Union[str, List[str]]]=None, image: PipelineImageInput=None, strength: float=0.6, num_inference_steps: int=50, timesteps: List[int]=None, guidance_scale: float=7.0, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, negative_prompt_3: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.FloatTensor]=None, prompt_embeds: Optional[torch.FloatTensor]=None, negative_prompt_embeds: Optional[torch.FloatTensor]=None, pooled_prompt_embeds: Optional[torch.FloatTensor]=None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], max_sequence_length: int=256): + self.check_inputs(prompt, prompt_2, prompt_3, strength, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_3=negative_prompt_3, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt=prompt, prompt_2=prompt_2, prompt_3=prompt_3, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_3=negative_prompt_3, do_classifier_free_guidance=self.do_classifier_free_guidance, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, device=device, clip_skip=self.clip_skip, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) + image = self.image_processor.preprocess(image) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + if latents is None: + latents = self.prepare_latents(image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + timestep = t.expand(latent_model_input.shape[0]) + noise_pred = self.transformer(hidden_states=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds, pooled_projections=pooled_prompt_embeds, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + latents = latents.to(latents_dtype) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + negative_pooled_prompt_embeds = callback_outputs.pop('negative_pooled_prompt_embeds', negative_pooled_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if XLA_AVAILABLE: + xm.mark_step() + if output_type == 'latent': + image = latents + else: + latents = latents / self.vae.config.scaling_factor + self.vae.config.shift_factor + image = self.vae.decode(latents, return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return StableDiffusion3PipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +import inspect +from typing import Callable, Dict, List, Optional, Union +import torch +from transformers import CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel, T5TokenizerFast +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, SD3LoraLoaderMixin +from ...models.autoencoders import AutoencoderKL +from ...models.transformers import SD3Transformer2DModel +from ...schedulers import FlowMatchEulerDiscreteScheduler +from ...utils import USE_PEFT_BACKEND, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .pipeline_output import StableDiffusion3PipelineOutput +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import StableDiffusion3InpaintPipeline\n >>> from diffusers.utils import load_image\n\n >>> pipe = StableDiffusion3InpaintPipeline.from_pretrained(\n ... "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n >>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"\n >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"\n >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"\n >>> source = load_image(img_url)\n >>> mask = load_image(mask_url)\n >>> image = pipe(prompt=prompt, image=source, mask_image=mask).images[0]\n >>> image.save("sd3_inpainting.png")\n ```\n' + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusion3InpaintPipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->text_encoder_3->transformer->vae' + _optional_components = [] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'negative_pooled_prompt_embeds'] + + def __init__(self, transformer: SD3Transformer2DModel, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, text_encoder_2: CLIPTextModelWithProjection, tokenizer_2: CLIPTokenizer, text_encoder_3: T5EncoderModel, tokenizer_3: T5TokenizerFast): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, text_encoder_3=text_encoder_3, tokenizer=tokenizer, tokenizer_2=tokenizer_2, tokenizer_3=tokenizer_3, transformer=transformer, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, vae_latent_channels=self.vae.config.latent_channels) + self.mask_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, vae_latent_channels=self.vae.config.latent_channels, do_normalize=False, do_binarize=True, do_convert_grayscale=True) + self.tokenizer_max_length = self.tokenizer.model_max_length + self.default_sample_size = self.transformer.config.sample_size + + def _get_t5_prompt_embeds(self, prompt: Union[str, List[str]]=None, num_images_per_prompt: int=1, max_sequence_length: int=256, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None): + device = device or self._execution_device + dtype = dtype or self.text_encoder.dtype + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + if self.text_encoder_3 is None: + return torch.zeros((batch_size * num_images_per_prompt, self.tokenizer_max_length, self.transformer.config.joint_attention_dim), device=device, dtype=dtype) + text_inputs = self.tokenizer_3(prompt, padding='max_length', max_length=max_sequence_length, truncation=True, add_special_tokens=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer_3(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because `max_sequence_length` is set to {max_sequence_length} tokens: {removed_text}') + prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0] + dtype = self.text_encoder_3.dtype + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + (_, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + return prompt_embeds + + def _get_clip_prompt_embeds(self, prompt: Union[str, List[str]], num_images_per_prompt: int=1, device: Optional[torch.device]=None, clip_skip: Optional[int]=None, clip_model_index: int=0): + device = device or self._execution_device + clip_tokenizers = [self.tokenizer, self.tokenizer_2] + clip_text_encoders = [self.text_encoder, self.text_encoder_2] + tokenizer = clip_tokenizers[clip_model_index] + text_encoder = clip_text_encoders[clip_model_index] + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + text_inputs = tokenizer(prompt, padding='max_length', max_length=self.tokenizer_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + (_, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1) + pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1) + return (prompt_embeds, pooled_prompt_embeds) + + def encode_prompt(self, prompt: Union[str, List[str]], prompt_2: Union[str, List[str]], prompt_3: Union[str, List[str]], device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, negative_prompt_3: Optional[Union[str, List[str]]]=None, prompt_embeds: Optional[torch.FloatTensor]=None, negative_prompt_embeds: Optional[torch.FloatTensor]=None, pooled_prompt_embeds: Optional[torch.FloatTensor]=None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor]=None, clip_skip: Optional[int]=None, max_sequence_length: int=256, lora_scale: Optional[float]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + prompt_3 = prompt_3 or prompt + prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3 + (prompt_embed, pooled_prompt_embed) = self._get_clip_prompt_embeds(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=clip_skip, clip_model_index=0) + (prompt_2_embed, pooled_prompt_2_embed) = self._get_clip_prompt_embeds(prompt=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=clip_skip, clip_model_index=1) + clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1) + t5_prompt_embed = self._get_t5_prompt_embeds(prompt=prompt_3, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device) + clip_prompt_embeds = torch.nn.functional.pad(clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])) + prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2) + pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt_3 = negative_prompt_3 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + negative_prompt_3 = batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3 + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + (negative_prompt_embed, negative_pooled_prompt_embed) = self._get_clip_prompt_embeds(negative_prompt, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=None, clip_model_index=0) + (negative_prompt_2_embed, negative_pooled_prompt_2_embed) = self._get_clip_prompt_embeds(negative_prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=None, clip_model_index=1) + negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1) + t5_negative_prompt_embed = self._get_t5_prompt_embeds(prompt=negative_prompt_3, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device) + negative_clip_prompt_embeds = torch.nn.functional.pad(negative_clip_prompt_embeds, (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1])) + negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2) + negative_pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1) + if self.text_encoder is not None: + if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def check_inputs(self, prompt, prompt_2, prompt_3, strength, negative_prompt=None, negative_prompt_2=None, negative_prompt_3=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, max_sequence_length=None): + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_3 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + elif prompt_3 is not None and (not isinstance(prompt_3, str) and (not isinstance(prompt_3, list))): + raise ValueError(f'`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_3 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + if max_sequence_length is not None and max_sequence_length > 512: + raise ValueError(f'`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}') + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(num_inference_steps * strength, num_inference_steps) + t_start = int(max(num_inference_steps - init_timestep, 0)) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, image=None, timestep=None, is_strength_max=True, return_noise=False, return_image_latents=False): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if (image is None or timestep is None) and (not is_strength_max): + raise ValueError('Since strength < 1. initial latents are to be initialised as a combination of Image + Noise.However, either the image or the noise timestep has not been provided.') + if return_image_latents or (latents is None and (not is_strength_max)): + image = image.to(device=device, dtype=dtype) + if image.shape[1] == 16: + image_latents = image + else: + image_latents = self._encode_vae_image(image=image, generator=generator) + image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) + if latents is None: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = noise if is_strength_max else self.scheduler.scale_noise(image_latents, timestep, noise) + else: + noise = latents.to(device) + latents = noise + outputs = (latents,) + if return_noise: + outputs += (noise,) + if return_image_latents: + outputs += (image_latents,) + return outputs + + def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): + if isinstance(generator, list): + image_latents = [retrieve_latents(self.vae.encode(image[i:i + 1]), generator=generator[i]) for i in range(image.shape[0])] + image_latents = torch.cat(image_latents, dim=0) + else: + image_latents = retrieve_latents(self.vae.encode(image), generator=generator) + image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor + return image_latents + + def prepare_mask_latents(self, mask, masked_image, batch_size, num_images_per_prompt, height, width, dtype, device, generator, do_classifier_free_guidance): + mask = torch.nn.functional.interpolate(mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)) + mask = mask.to(device=device, dtype=dtype) + batch_size = batch_size * num_images_per_prompt + masked_image = masked_image.to(device=device, dtype=dtype) + if masked_image.shape[1] == 16: + masked_image_latents = masked_image + else: + masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator) + masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor + if mask.shape[0] < batch_size: + if not batch_size % mask.shape[0] == 0: + raise ValueError(f"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number of masks that you pass is divisible by the total requested batch size.") + mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) + if masked_image_latents.shape[0] < batch_size: + if not batch_size % masked_image_latents.shape[0] == 0: + raise ValueError(f"The passed images and the required batch size don't match. Images are supposed to be duplicated to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed. Make sure the number of images that you pass is divisible by the total requested batch size.") + masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) + mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask + masked_image_latents = torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents + masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) + return (mask, masked_image_latents) + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, prompt_3: Optional[Union[str, List[str]]]=None, image: PipelineImageInput=None, mask_image: PipelineImageInput=None, masked_image_latents: PipelineImageInput=None, height: int=None, width: int=None, padding_mask_crop: Optional[int]=None, strength: float=0.6, num_inference_steps: int=50, timesteps: List[int]=None, guidance_scale: float=7.0, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, negative_prompt_3: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], max_sequence_length: int=256): + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + height = height or self.transformer.config.sample_size * self.vae_scale_factor + width = width or self.transformer.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, prompt_2, prompt_3, strength, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_3=negative_prompt_3, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length) + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt=prompt, prompt_2=prompt_2, prompt_3=prompt_3, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_3=negative_prompt_3, do_classifier_free_guidance=self.do_classifier_free_guidance, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, device=device, clip_skip=self.clip_skip, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device) + if num_inference_steps < 1: + raise ValueError(f'After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipelinesteps is {num_inference_steps} which is < 1 and not appropriate for this pipeline.') + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + is_strength_max = strength == 1.0 + if padding_mask_crop is not None: + crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop) + resize_mode = 'fill' + else: + crops_coords = None + resize_mode = 'default' + original_image = image + init_image = self.image_processor.preprocess(image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode) + init_image = init_image.to(dtype=torch.float32) + num_channels_latents = self.vae.config.latent_channels + num_channels_transformer = self.transformer.config.in_channels + return_image_latents = num_channels_transformer == 16 + latents_outputs = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, image=init_image, timestep=latent_timestep, is_strength_max=is_strength_max, return_noise=True, return_image_latents=return_image_latents) + if return_image_latents: + (latents, noise, image_latents) = latents_outputs + else: + (latents, noise) = latents_outputs + mask_condition = self.mask_processor.preprocess(mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords) + if masked_image_latents is None: + masked_image = init_image * (mask_condition < 0.5) + else: + masked_image = masked_image_latents + (mask, masked_image_latents) = self.prepare_mask_latents(mask_condition, masked_image, batch_size, num_images_per_prompt, height, width, prompt_embeds.dtype, device, generator, self.do_classifier_free_guidance) + if num_channels_transformer == 33: + num_channels_mask = mask.shape[1] + num_channels_masked_image = masked_image_latents.shape[1] + if num_channels_latents + num_channels_mask + num_channels_masked_image != self.transformer.config.in_channels: + raise ValueError(f'Incorrect configuration settings! The config of `pipeline.transformer`: {self.transformer.config} expects {self.transformer.config.in_channels} but received `num_channels_latents`: {num_channels_latents} + `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image} = {num_channels_latents + num_channels_masked_image + num_channels_mask}. Please verify the config of `pipeline.transformer` or your `mask_image` or `image` input.') + elif num_channels_transformer != 16: + raise ValueError(f'The transformer {self.transformer.__class__} should have 16 input channels or 33 input channels, not {self.transformer.config.in_channels}.') + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + timestep = t.expand(latent_model_input.shape[0]) + if num_channels_transformer == 33: + latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) + noise_pred = self.transformer(hidden_states=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds, pooled_projections=pooled_prompt_embeds, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + if num_channels_transformer == 16: + init_latents_proper = image_latents + if self.do_classifier_free_guidance: + (init_mask, _) = mask.chunk(2) + else: + init_mask = mask + if i < len(timesteps) - 1: + noise_timestep = timesteps[i + 1] + init_latents_proper = self.scheduler.scale_noise(init_latents_proper, torch.tensor([noise_timestep]), noise) + latents = (1 - init_mask) * init_latents_proper + init_mask * latents + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + latents = latents.to(latents_dtype) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + negative_pooled_prompt_embeds = callback_outputs.pop('negative_pooled_prompt_embeds', negative_pooled_prompt_embeds) + mask = callback_outputs.pop('mask', mask) + masked_image_latents = callback_outputs.pop('masked_image_latents', masked_image_latents) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if XLA_AVAILABLE: + xm.mark_step() + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] + else: + image = latents + do_denormalize = [True] * image.shape[0] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + if padding_mask_crop is not None: + image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image] + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return StableDiffusion3PipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_stable_diffusion_attend_and_excite'] = ['StableDiffusionAttendAndExcitePipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +import inspect +import math +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import numpy as np +import torch +from torch.nn import functional as F +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer +from ...image_processor import VaeImageProcessor +from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, UNet2DConditionModel +from ...models.attention_processor import Attention +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion import StableDiffusionPipelineOutput +from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import StableDiffusionAttendAndExcitePipeline\n\n >>> pipe = StableDiffusionAttendAndExcitePipeline.from_pretrained(\n ... "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16\n ... ).to("cuda")\n\n\n >>> prompt = "a cat and a frog"\n\n >>> # use get_indices function to find out indices of the tokens you want to alter\n >>> pipe.get_indices(prompt)\n {0: \'<|startoftext|>\', 1: \'a\', 2: \'cat\', 3: \'and\', 4: \'a\', 5: \'frog\', 6: \'<|endoftext|>\'}\n\n >>> token_indices = [2, 5]\n >>> seed = 6141\n >>> generator = torch.Generator("cuda").manual_seed(seed)\n\n >>> images = pipe(\n ... prompt=prompt,\n ... token_indices=token_indices,\n ... guidance_scale=7.5,\n ... generator=generator,\n ... num_inference_steps=50,\n ... max_iter_to_alter=25,\n ... ).images\n\n >>> image = images[0]\n >>> image.save(f"../images/{prompt}_{seed}.png")\n ```\n' + +class AttentionStore: + + @staticmethod + def get_empty_store(): + return {'down': [], 'mid': [], 'up': []} + + def __call__(self, attn, is_cross: bool, place_in_unet: str): + if self.cur_att_layer >= 0 and is_cross: + if attn.shape[1] == np.prod(self.attn_res): + self.step_store[place_in_unet].append(attn) + self.cur_att_layer += 1 + if self.cur_att_layer == self.num_att_layers: + self.cur_att_layer = 0 + self.between_steps() + + def between_steps(self): + self.attention_store = self.step_store + self.step_store = self.get_empty_store() + + def get_average_attention(self): + average_attention = self.attention_store + return average_attention + + def aggregate_attention(self, from_where: List[str]) -> torch.Tensor: + out = [] + attention_maps = self.get_average_attention() + for location in from_where: + for item in attention_maps[location]: + cross_maps = item.reshape(-1, self.attn_res[0], self.attn_res[1], item.shape[-1]) + out.append(cross_maps) + out = torch.cat(out, dim=0) + out = out.sum(0) / out.shape[0] + return out + + def reset(self): + self.cur_att_layer = 0 + self.step_store = self.get_empty_store() + self.attention_store = {} + + def __init__(self, attn_res): + self.num_att_layers = -1 + self.cur_att_layer = 0 + self.step_store = self.get_empty_store() + self.attention_store = {} + self.curr_step_index = 0 + self.attn_res = attn_res + +class AttendExciteAttnProcessor: + + def __init__(self, attnstore, place_in_unet): + super().__init__() + self.attnstore = attnstore + self.place_in_unet = place_in_unet + + def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None): + (batch_size, sequence_length, _) = hidden_states.shape + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + query = attn.to_q(hidden_states) + is_cross = encoder_hidden_states is not None + encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + query = attn.head_to_batch_dim(query) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + attention_probs = attn.get_attention_scores(query, key, attention_mask) + if attention_probs.requires_grad: + self.attnstore(attention_probs, is_cross, self.place_in_unet) + hidden_states = torch.bmm(attention_probs, value) + hidden_states = attn.batch_to_head_dim(hidden_states) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + return hidden_states + +class StableDiffusionAttendAndExcitePipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor'] + _exclude_from_cpu_offload = ['safety_checker'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool=True): + super().__init__() + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, indices, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + indices_is_list_ints = isinstance(indices, list) and isinstance(indices[0], int) + indices_is_list_list_ints = isinstance(indices, list) and isinstance(indices[0], list) and isinstance(indices[0][0], int) + if not indices_is_list_ints and (not indices_is_list_list_ints): + raise TypeError('`indices` must be a list of ints or a list of a list of ints') + if indices_is_list_ints: + indices_batch_size = 1 + elif indices_is_list_list_ints: + indices_batch_size = len(indices) + if prompt is not None and isinstance(prompt, str): + prompt_batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + prompt_batch_size = len(prompt) + elif prompt_embeds is not None: + prompt_batch_size = prompt_embeds.shape[0] + if indices_batch_size != prompt_batch_size: + raise ValueError(f'indices batch size must be same as prompt batch size. indices batch size: {indices_batch_size}, prompt batch size: {prompt_batch_size}') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @staticmethod + def _compute_max_attention_per_index(attention_maps: torch.Tensor, indices: List[int]) -> List[torch.Tensor]: + attention_for_text = attention_maps[:, :, 1:-1] + attention_for_text *= 100 + attention_for_text = torch.nn.functional.softmax(attention_for_text, dim=-1) + indices = [index - 1 for index in indices] + max_indices_list = [] + for i in indices: + image = attention_for_text[:, :, i] + smoothing = GaussianSmoothing().to(attention_maps.device) + input = F.pad(image.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode='reflect') + image = smoothing(input).squeeze(0).squeeze(0) + max_indices_list.append(image.max()) + return max_indices_list + + def _aggregate_and_get_max_attention_per_token(self, indices: List[int]): + attention_maps = self.attention_store.aggregate_attention(from_where=('up', 'down', 'mid')) + max_attention_per_index = self._compute_max_attention_per_index(attention_maps=attention_maps, indices=indices) + return max_attention_per_index + + @staticmethod + def _compute_loss(max_attention_per_index: List[torch.Tensor]) -> torch.Tensor: + losses = [max(0, 1.0 - curr_max) for curr_max in max_attention_per_index] + loss = max(losses) + return loss + + @staticmethod + def _update_latent(latents: torch.Tensor, loss: torch.Tensor, step_size: float) -> torch.Tensor: + grad_cond = torch.autograd.grad(loss.requires_grad_(True), [latents], retain_graph=True)[0] + latents = latents - step_size * grad_cond + return latents + + def _perform_iterative_refinement_step(self, latents: torch.Tensor, indices: List[int], loss: torch.Tensor, threshold: float, text_embeddings: torch.Tensor, step_size: float, t: int, max_refinement_steps: int=20): + iteration = 0 + target_loss = max(0, 1.0 - threshold) + while loss > target_loss: + iteration += 1 + latents = latents.clone().detach().requires_grad_(True) + self.unet(latents, t, encoder_hidden_states=text_embeddings).sample + self.unet.zero_grad() + max_attention_per_index = self._aggregate_and_get_max_attention_per_token(indices=indices) + loss = self._compute_loss(max_attention_per_index) + if loss != 0: + latents = self._update_latent(latents, loss, step_size) + logger.info(f'\t Try {iteration}. loss: {loss}') + if iteration >= max_refinement_steps: + logger.info(f'\t Exceeded max number of iterations ({max_refinement_steps})! ') + break + latents = latents.clone().detach().requires_grad_(True) + _ = self.unet(latents, t, encoder_hidden_states=text_embeddings).sample + self.unet.zero_grad() + max_attention_per_index = self._aggregate_and_get_max_attention_per_token(indices=indices) + loss = self._compute_loss(max_attention_per_index) + logger.info(f'\t Finished with loss of: {loss}') + return (loss, latents, max_attention_per_index) + + def register_attention_control(self): + attn_procs = {} + cross_att_count = 0 + for name in self.unet.attn_processors.keys(): + if name.startswith('mid_block'): + place_in_unet = 'mid' + elif name.startswith('up_blocks'): + place_in_unet = 'up' + elif name.startswith('down_blocks'): + place_in_unet = 'down' + else: + continue + cross_att_count += 1 + attn_procs[name] = AttendExciteAttnProcessor(attnstore=self.attention_store, place_in_unet=place_in_unet) + self.unet.set_attn_processor(attn_procs) + self.attention_store.num_att_layers = cross_att_count + + def get_indices(self, prompt: str) -> Dict[str, int]: + ids = self.tokenizer(prompt).input_ids + indices = {i: tok for (tok, i) in zip(self.tokenizer.convert_ids_to_tokens(ids), range(len(ids)))} + return indices + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]], token_indices: Union[List[int], List[List[int]]], height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: int=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, max_iter_to_alter: int=25, thresholds: dict={0: 0.05, 10: 0.5, 20: 0.8}, scale_factor: int=20, attn_res: Optional[Tuple[int]]=(16, 16), clip_skip: Optional[int]=None): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, token_indices, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clip_skip=clip_skip) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + if attn_res is None: + attn_res = (int(np.ceil(width / 32)), int(np.ceil(height / 32))) + self.attention_store = AttentionStore(attn_res) + original_attn_proc = self.unet.attn_processors + self.register_attention_control() + scale_range = np.linspace(1.0, 0.5, len(self.scheduler.timesteps)) + step_size = scale_factor * np.sqrt(scale_range) + text_embeddings = prompt_embeds[batch_size * num_images_per_prompt:] if do_classifier_free_guidance else prompt_embeds + if isinstance(token_indices[0], int): + token_indices = [token_indices] + indices = [] + for ind in token_indices: + indices = indices + [ind] * num_images_per_prompt + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + with torch.enable_grad(): + latents = latents.clone().detach().requires_grad_(True) + updated_latents = [] + for (latent, index, text_embedding) in zip(latents, indices, text_embeddings): + latent = latent.unsqueeze(0) + text_embedding = text_embedding.unsqueeze(0) + self.unet(latent, t, encoder_hidden_states=text_embedding, cross_attention_kwargs=cross_attention_kwargs).sample + self.unet.zero_grad() + max_attention_per_index = self._aggregate_and_get_max_attention_per_token(indices=index) + loss = self._compute_loss(max_attention_per_index=max_attention_per_index) + if i in thresholds.keys() and loss > 1.0 - thresholds[i]: + (loss, latent, max_attention_per_index) = self._perform_iterative_refinement_step(latents=latent, indices=index, loss=loss, threshold=thresholds[i], text_embeddings=text_embedding, step_size=step_size[i], t=t) + if i < max_iter_to_alter: + if loss != 0: + latent = self._update_latent(latents=latent, loss=loss, step_size=step_size[i]) + logger.info(f'Iteration {i} | Loss: {loss:0.4f}') + updated_latents.append(latent) + latents = torch.cat(updated_latents, dim=0) + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs).sample + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + self.unet.set_attn_processor(original_attn_proc) + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +class GaussianSmoothing(torch.nn.Module): + + def __init__(self, channels: int=1, kernel_size: int=3, sigma: float=0.5, dim: int=2): + super().__init__() + if isinstance(kernel_size, int): + kernel_size = [kernel_size] * dim + if isinstance(sigma, float): + sigma = [sigma] * dim + kernel = 1 + meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size]) + for (size, std, mgrid) in zip(kernel_size, sigma, meshgrids): + mean = (size - 1) / 2 + kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-((mgrid - mean) / (2 * std)) ** 2) + kernel = kernel / torch.sum(kernel) + kernel = kernel.view(1, 1, *kernel.size()) + kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1)) + self.register_buffer('weight', kernel) + self.groups = channels + if dim == 1: + self.conv = F.conv1d + elif dim == 2: + self.conv = F.conv2d + elif dim == 3: + self.conv = F.conv3d + else: + raise RuntimeError('Only 1, 2 and 3 dimensions are supported. Received {}.'.format(dim)) + + def forward(self, input): + return self.conv(input, weight=self.weight.to(input.dtype), groups=self.groups) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_diffedit/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_stable_diffusion_diffedit'] = ['StableDiffusionDiffEditPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +import inspect +from dataclasses import dataclass +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from packaging import version +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer +from ...configuration_utils import FrozenDict +from ...image_processor import VaeImageProcessor +from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, UNet2DConditionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import DDIMInverseScheduler, KarrasDiffusionSchedulers +from ...utils import PIL_INTERPOLATION, USE_PEFT_BACKEND, BaseOutput, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion import StableDiffusionPipelineOutput +from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker +logger = logging.get_logger(__name__) + +@dataclass +class DiffEditInversionPipelineOutput(BaseOutput): + latents: torch.Tensor + images: Union[List[PIL.Image.Image], np.ndarray] +EXAMPLE_DOC_STRING = '\n\n ```py\n >>> import PIL\n >>> import requests\n >>> import torch\n >>> from io import BytesIO\n\n >>> from diffusers import StableDiffusionDiffEditPipeline\n\n\n >>> def download_image(url):\n ... response = requests.get(url)\n ... return PIL.Image.open(BytesIO(response.content)).convert("RGB")\n\n\n >>> img_url = "https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png"\n\n >>> init_image = download_image(img_url).resize((768, 768))\n\n >>> pipeline = StableDiffusionDiffEditPipeline.from_pretrained(\n ... "stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16\n ... )\n\n >>> pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)\n >>> pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config)\n >>> pipeline.enable_model_cpu_offload()\n\n >>> mask_prompt = "A bowl of fruits"\n >>> prompt = "A bowl of pears"\n\n >>> mask_image = pipeline.generate_mask(image=init_image, source_prompt=prompt, target_prompt=mask_prompt)\n >>> image_latents = pipeline.invert(image=init_image, prompt=mask_prompt).latents\n >>> image = pipeline(prompt=prompt, mask_image=mask_image, image_latents=image_latents).images[0]\n ```\n' +EXAMPLE_INVERT_DOC_STRING = '\n ```py\n >>> import PIL\n >>> import requests\n >>> import torch\n >>> from io import BytesIO\n\n >>> from diffusers import StableDiffusionDiffEditPipeline\n\n\n >>> def download_image(url):\n ... response = requests.get(url)\n ... return PIL.Image.open(BytesIO(response.content)).convert("RGB")\n\n\n >>> img_url = "https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png"\n\n >>> init_image = download_image(img_url).resize((768, 768))\n\n >>> pipeline = StableDiffusionDiffEditPipeline.from_pretrained(\n ... "stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16\n ... )\n\n >>> pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)\n >>> pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config)\n >>> pipeline.enable_model_cpu_offload()\n\n >>> prompt = "A bowl of fruits"\n\n >>> inverted_latents = pipeline.invert(image=init_image, prompt=prompt).latents\n ```\n' + +def auto_corr_loss(hidden_states, generator=None): + reg_loss = 0.0 + for i in range(hidden_states.shape[0]): + for j in range(hidden_states.shape[1]): + noise = hidden_states[i:i + 1, j:j + 1, :, :] + while True: + roll_amount = torch.randint(noise.shape[2] // 2, (1,), generator=generator).item() + reg_loss += (noise * torch.roll(noise, shifts=roll_amount, dims=2)).mean() ** 2 + reg_loss += (noise * torch.roll(noise, shifts=roll_amount, dims=3)).mean() ** 2 + if noise.shape[2] <= 8: + break + noise = torch.nn.functional.avg_pool2d(noise, kernel_size=2) + return reg_loss + +def kl_divergence(hidden_states): + return hidden_states.var() + hidden_states.mean() ** 2 - 1 - torch.log(hidden_states.var() + 1e-07) + +def preprocess(image): + deprecation_message = 'The preprocess method is deprecated and will be removed in diffusers 1.0.0. Please use VaeImageProcessor.preprocess(...) instead' + deprecate('preprocess', '1.0.0', deprecation_message, standard_warn=False) + if isinstance(image, torch.Tensor): + return image + elif isinstance(image, PIL.Image.Image): + image = [image] + if isinstance(image[0], PIL.Image.Image): + (w, h) = image[0].size + (w, h) = (x - x % 8 for x in (w, h)) + image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['lanczos']))[None, :] for i in image] + image = np.concatenate(image, axis=0) + image = np.array(image).astype(np.float32) / 255.0 + image = image.transpose(0, 3, 1, 2) + image = 2.0 * image - 1.0 + image = torch.from_numpy(image) + elif isinstance(image[0], torch.Tensor): + image = torch.cat(image, dim=0) + return image + +def preprocess_mask(mask, batch_size: int=1): + if not isinstance(mask, torch.Tensor): + if isinstance(mask, (PIL.Image.Image, np.ndarray)): + mask = [mask] + if isinstance(mask, list): + if isinstance(mask[0], PIL.Image.Image): + mask = [np.array(m.convert('L')).astype(np.float32) / 255.0 for m in mask] + if isinstance(mask[0], np.ndarray): + mask = np.stack(mask, axis=0) if mask[0].ndim < 3 else np.concatenate(mask, axis=0) + mask = torch.from_numpy(mask) + elif isinstance(mask[0], torch.Tensor): + mask = torch.stack(mask, dim=0) if mask[0].ndim < 3 else torch.cat(mask, dim=0) + if mask.ndim == 2: + mask = mask.unsqueeze(0).unsqueeze(0) + if mask.ndim == 3: + if mask.shape[0] == 1: + mask = mask.unsqueeze(0) + else: + mask = mask.unsqueeze(1) + if batch_size > 1: + if mask.shape[0] == 1: + mask = torch.cat([mask] * batch_size) + elif mask.shape[0] > 1 and mask.shape[0] != batch_size: + raise ValueError(f'`mask_image` with batch size {mask.shape[0]} cannot be broadcasted to batch size {batch_size} inferred by prompt inputs') + if mask.shape[1] != 1: + raise ValueError(f'`mask_image` must have 1 channel, but has {mask.shape[1]} channels') + if mask.min() < 0 or mask.max() > 1: + raise ValueError('`mask_image` should be in [0, 1] range') + mask[mask < 0.5] = 0 + mask[mask >= 0.5] = 1 + return mask + +class StableDiffusionDiffEditPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor', 'inverse_scheduler'] + _exclude_from_cpu_offload = ['safety_checker'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, inverse_scheduler: DDIMInverseScheduler, requires_safety_checker: bool=True): + super().__init__() + if hasattr(scheduler.config, 'steps_offset') and scheduler.config.steps_offset != 1: + deprecation_message = f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset` should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure to update the config accordingly as leaving `steps_offset` might led to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('steps_offset!=1', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['steps_offset'] = 1 + scheduler._internal_dict = FrozenDict(new_config) + if hasattr(scheduler.config, 'skip_prk_steps') and scheduler.config.skip_prk_steps is False: + deprecation_message = f'The configuration file of this scheduler: {scheduler} has not set the configuration `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('skip_prk_steps not set', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['skip_prk_steps'] = True + scheduler._internal_dict = FrozenDict(new_config) + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + is_unet_version_less_0_9_0 = hasattr(unet.config, '_diffusers_version') and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse('0.9.0.dev0') + is_unet_sample_size_less_64 = hasattr(unet.config, 'sample_size') and unet.config.sample_size < 64 + if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: + deprecation_message = "The configuration file of the unet has set the default `sample_size` to smaller than 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n- CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5 \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the configuration file. Please make sure to update the config accordingly as leaving `sample_size=32` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `unet/config.json` file" + deprecate('sample_size<64', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(unet.config) + new_config['sample_size'] = 64 + unet._internal_dict = FrozenDict(new_config) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, inverse_scheduler=inverse_scheduler) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def check_inputs(self, prompt, strength, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None): + if strength is None or (strength is not None and (strength < 0 or strength > 1)): + raise ValueError(f'The value of `strength` should in [0.0, 1.0] but is, but is {strength} of type {type(strength)}.') + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def check_source_inputs(self, source_prompt=None, source_negative_prompt=None, source_prompt_embeds=None, source_negative_prompt_embeds=None): + if source_prompt is not None and source_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `source_prompt`: {source_prompt} and `source_prompt_embeds`: {source_prompt_embeds}. Please make sure to only forward one of the two.') + elif source_prompt is None and source_prompt_embeds is None: + raise ValueError('Provide either `source_image` or `source_prompt_embeds`. Cannot leave all both of the arguments undefined.') + elif source_prompt is not None and (not isinstance(source_prompt, str) and (not isinstance(source_prompt, list))): + raise ValueError(f'`source_prompt` has to be of type `str` or `list` but is {type(source_prompt)}') + if source_negative_prompt is not None and source_negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `source_negative_prompt`: {source_negative_prompt} and `source_negative_prompt_embeds`: {source_negative_prompt_embeds}. Please make sure to only forward one of the two.') + if source_prompt_embeds is not None and source_negative_prompt_embeds is not None: + if source_prompt_embeds.shape != source_negative_prompt_embeds.shape: + raise ValueError(f'`source_prompt_embeds` and `source_negative_prompt_embeds` must have the same shape when passed directly, but got: `source_prompt_embeds` {source_prompt_embeds.shape} != `source_negative_prompt_embeds` {source_negative_prompt_embeds.shape}.') + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + return (timesteps, num_inference_steps - t_start) + + def get_inverse_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + if t_start == 0: + return (self.inverse_scheduler.timesteps, num_inference_steps) + timesteps = self.inverse_scheduler.timesteps[:-t_start] + return (timesteps, num_inference_steps - t_start) + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def prepare_image_latents(self, image, batch_size, dtype, device, generator=None): + if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}') + image = image.to(device=device, dtype=dtype) + if image.shape[1] == 4: + latents = image + else: + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if isinstance(generator, list): + latents = [self.vae.encode(image[i:i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)] + latents = torch.cat(latents, dim=0) + else: + latents = self.vae.encode(image).latent_dist.sample(generator) + latents = self.vae.config.scaling_factor * latents + if batch_size != latents.shape[0]: + if batch_size % latents.shape[0] == 0: + deprecation_message = f'You have passed {batch_size} text prompts (`prompt`), but only {latents.shape[0]} initial images (`image`). Initial images are now duplicating to match the number of text prompts. Note that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update your script to pass as many initial images as text prompts to suppress this warning.' + deprecate('len(prompt) != len(image)', '1.0.0', deprecation_message, standard_warn=False) + additional_latents_per_image = batch_size // latents.shape[0] + latents = torch.cat([latents] * additional_latents_per_image, dim=0) + else: + raise ValueError(f'Cannot duplicate `image` of batch size {latents.shape[0]} to {batch_size} text prompts.') + else: + latents = torch.cat([latents], dim=0) + return latents + + def get_epsilon(self, model_output: torch.Tensor, sample: torch.Tensor, timestep: int): + pred_type = self.inverse_scheduler.config.prediction_type + alpha_prod_t = self.inverse_scheduler.alphas_cumprod[timestep] + beta_prod_t = 1 - alpha_prod_t + if pred_type == 'epsilon': + return model_output + elif pred_type == 'sample': + return (sample - alpha_prod_t ** 0.5 * model_output) / beta_prod_t ** 0.5 + elif pred_type == 'v_prediction': + return alpha_prod_t ** 0.5 * model_output + beta_prod_t ** 0.5 * sample + else: + raise ValueError(f'prediction_type given as {pred_type} must be one of `epsilon`, `sample`, or `v_prediction`') + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def generate_mask(self, image: Union[torch.Tensor, PIL.Image.Image]=None, target_prompt: Optional[Union[str, List[str]]]=None, target_negative_prompt: Optional[Union[str, List[str]]]=None, target_prompt_embeds: Optional[torch.Tensor]=None, target_negative_prompt_embeds: Optional[torch.Tensor]=None, source_prompt: Optional[Union[str, List[str]]]=None, source_negative_prompt: Optional[Union[str, List[str]]]=None, source_prompt_embeds: Optional[torch.Tensor]=None, source_negative_prompt_embeds: Optional[torch.Tensor]=None, num_maps_per_mask: Optional[int]=10, mask_encode_strength: Optional[float]=0.5, mask_thresholding_ratio: Optional[float]=3.0, num_inference_steps: int=50, guidance_scale: float=7.5, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, output_type: Optional[str]='np', cross_attention_kwargs: Optional[Dict[str, Any]]=None): + self.check_inputs(target_prompt, mask_encode_strength, 1, target_negative_prompt, target_prompt_embeds, target_negative_prompt_embeds) + self.check_source_inputs(source_prompt, source_negative_prompt, source_prompt_embeds, source_negative_prompt_embeds) + if num_maps_per_mask is None or (num_maps_per_mask is not None and (not isinstance(num_maps_per_mask, int) or num_maps_per_mask <= 0)): + raise ValueError(f'`num_maps_per_mask` has to be a positive integer but is {num_maps_per_mask} of type {type(num_maps_per_mask)}.') + if mask_thresholding_ratio is None or mask_thresholding_ratio <= 0: + raise ValueError(f'`mask_thresholding_ratio` has to be positive but is {mask_thresholding_ratio} of type {type(mask_thresholding_ratio)}.') + if target_prompt is not None and isinstance(target_prompt, str): + batch_size = 1 + elif target_prompt is not None and isinstance(target_prompt, list): + batch_size = len(target_prompt) + else: + batch_size = target_prompt_embeds.shape[0] + if cross_attention_kwargs is None: + cross_attention_kwargs = {} + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + cross_attention_kwargs.get('scale', None) if cross_attention_kwargs is not None else None + (target_negative_prompt_embeds, target_prompt_embeds) = self.encode_prompt(target_prompt, device, num_maps_per_mask, do_classifier_free_guidance, target_negative_prompt, prompt_embeds=target_prompt_embeds, negative_prompt_embeds=target_negative_prompt_embeds) + if do_classifier_free_guidance: + target_prompt_embeds = torch.cat([target_negative_prompt_embeds, target_prompt_embeds]) + (source_negative_prompt_embeds, source_prompt_embeds) = self.encode_prompt(source_prompt, device, num_maps_per_mask, do_classifier_free_guidance, source_negative_prompt, prompt_embeds=source_prompt_embeds, negative_prompt_embeds=source_negative_prompt_embeds) + if do_classifier_free_guidance: + source_prompt_embeds = torch.cat([source_negative_prompt_embeds, source_prompt_embeds]) + image = self.image_processor.preprocess(image).repeat_interleave(num_maps_per_mask, dim=0) + self.scheduler.set_timesteps(num_inference_steps, device=device) + (timesteps, _) = self.get_timesteps(num_inference_steps, mask_encode_strength, device) + encode_timestep = timesteps[0] + image_latents = self.prepare_image_latents(image, batch_size * num_maps_per_mask, self.vae.dtype, device, generator) + noise = randn_tensor(image_latents.shape, generator=generator, device=device, dtype=self.vae.dtype) + image_latents = self.scheduler.add_noise(image_latents, noise, encode_timestep) + latent_model_input = torch.cat([image_latents] * (4 if do_classifier_free_guidance else 2)) + latent_model_input = self.scheduler.scale_model_input(latent_model_input, encode_timestep) + prompt_embeds = torch.cat([source_prompt_embeds, target_prompt_embeds]) + noise_pred = self.unet(latent_model_input, encode_timestep, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs).sample + if do_classifier_free_guidance: + (noise_pred_neg_src, noise_pred_source, noise_pred_uncond, noise_pred_target) = noise_pred.chunk(4) + noise_pred_source = noise_pred_neg_src + guidance_scale * (noise_pred_source - noise_pred_neg_src) + noise_pred_target = noise_pred_uncond + guidance_scale * (noise_pred_target - noise_pred_uncond) + else: + (noise_pred_source, noise_pred_target) = noise_pred.chunk(2) + mask_guidance_map = torch.abs(noise_pred_target - noise_pred_source).reshape(batch_size, num_maps_per_mask, *noise_pred_target.shape[-3:]).mean([1, 2]) + clamp_magnitude = mask_guidance_map.mean() * mask_thresholding_ratio + semantic_mask_image = mask_guidance_map.clamp(0, clamp_magnitude) / clamp_magnitude + semantic_mask_image = torch.where(semantic_mask_image <= 0.5, 0, 1) + mask_image = semantic_mask_image.cpu().numpy() + if output_type == 'pil': + mask_image = self.image_processor.numpy_to_pil(mask_image) + self.maybe_free_model_hooks() + return mask_image + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_INVERT_DOC_STRING) + def invert(self, prompt: Optional[Union[str, List[str]]]=None, image: Union[torch.Tensor, PIL.Image.Image]=None, num_inference_steps: int=50, inpaint_strength: float=0.8, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, decode_latents: bool=False, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: Optional[int]=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, lambda_auto_corr: float=20.0, lambda_kl: float=20.0, num_reg_steps: int=0, num_auto_corr_rolls: int=5): + self.check_inputs(prompt, inpaint_strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + if image is None: + raise ValueError('`image` input cannot be undefined.') + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if cross_attention_kwargs is None: + cross_attention_kwargs = {} + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + image = self.image_processor.preprocess(image) + num_images_per_prompt = 1 + latents = self.prepare_image_latents(image, batch_size * num_images_per_prompt, self.vae.dtype, device, generator) + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + self.inverse_scheduler.set_timesteps(num_inference_steps, device=device) + (timesteps, num_inference_steps) = self.get_inverse_timesteps(num_inference_steps, inpaint_strength, device) + num_warmup_steps = len(timesteps) - num_inference_steps * self.inverse_scheduler.order + inverted_latents = [] + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.inverse_scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs).sample + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + if num_reg_steps > 0: + with torch.enable_grad(): + for _ in range(num_reg_steps): + if lambda_auto_corr > 0: + for _ in range(num_auto_corr_rolls): + var = torch.autograd.Variable(noise_pred.detach().clone(), requires_grad=True) + var_epsilon = self.get_epsilon(var, latent_model_input.detach(), t) + l_ac = auto_corr_loss(var_epsilon, generator=generator) + l_ac.backward() + grad = var.grad.detach() / num_auto_corr_rolls + noise_pred = noise_pred - lambda_auto_corr * grad + if lambda_kl > 0: + var = torch.autograd.Variable(noise_pred.detach().clone(), requires_grad=True) + var_epsilon = self.get_epsilon(var, latent_model_input.detach(), t) + l_kld = kl_divergence(var_epsilon) + l_kld.backward() + grad = var.grad.detach() + noise_pred = noise_pred - lambda_kl * grad + noise_pred = noise_pred.detach() + latents = self.inverse_scheduler.step(noise_pred, t, latents).prev_sample + inverted_latents.append(latents.detach().clone()) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.inverse_scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + assert len(inverted_latents) == len(timesteps) + latents = torch.stack(list(reversed(inverted_latents)), 1) + image = None + if decode_latents: + image = self.decode_latents(latents.flatten(0, 1)) + if decode_latents and output_type == 'pil': + image = self.image_processor.numpy_to_pil(image) + self.maybe_free_model_hooks() + if not return_dict: + return (latents, image) + return DiffEditInversionPipelineOutput(latents=latents, images=image) + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Optional[Union[str, List[str]]]=None, mask_image: Union[torch.Tensor, PIL.Image.Image]=None, image_latents: Union[torch.Tensor, PIL.Image.Image]=None, inpaint_strength: Optional[float]=0.8, num_inference_steps: int=50, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: int=None): + self.check_inputs(prompt, inpaint_strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + if mask_image is None: + raise ValueError('`mask_image` input cannot be undefined. Use `generate_mask()` to compute `mask_image` from text prompts.') + if image_latents is None: + raise ValueError('`image_latents` input cannot be undefined. Use `invert()` to compute `image_latents` from input images.') + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if cross_attention_kwargs is None: + cross_attention_kwargs = {} + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + text_encoder_lora_scale = cross_attention_kwargs.get('scale', None) if cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + mask_image = preprocess_mask(mask_image, batch_size) + (latent_height, latent_width) = mask_image.shape[-2:] + mask_image = torch.cat([mask_image] * num_images_per_prompt) + mask_image = mask_image.to(device=device, dtype=prompt_embeds.dtype) + self.scheduler.set_timesteps(num_inference_steps, device=device) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, inpaint_strength, device) + if isinstance(image_latents, list) and any((isinstance(l, torch.Tensor) and l.ndim == 5 for l in image_latents)): + image_latents = torch.cat(image_latents).detach() + elif isinstance(image_latents, torch.Tensor) and image_latents.ndim == 5: + image_latents = image_latents.detach() + else: + image_latents = self.image_processor.preprocess(image_latents).detach() + latent_shape = (self.vae.config.latent_channels, latent_height, latent_width) + if image_latents.shape[-3:] != latent_shape: + raise ValueError(f'Each latent image in `image_latents` must have shape {latent_shape}, but has shape {image_latents.shape[-3:]}') + if image_latents.ndim == 4: + image_latents = image_latents.reshape(batch_size, len(timesteps), *latent_shape) + if image_latents.shape[:2] != (batch_size, len(timesteps)): + raise ValueError(f'`image_latents` must have batch size {batch_size} with latent images from {len(timesteps)} timesteps, but has batch size {image_latents.shape[0]} with latent images from {image_latents.shape[1]} timesteps.') + image_latents = image_latents.transpose(0, 1).repeat_interleave(num_images_per_prompt, dim=1) + image_latents = image_latents.to(device=device, dtype=prompt_embeds.dtype) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + latents = image_latents[0].clone() + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs).sample + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + latents = latents * mask_image + image_latents[i] * (1 - mask_image) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_gligen/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_stable_diffusion_gligen'] = ['StableDiffusionGLIGENPipeline'] + _import_structure['pipeline_stable_diffusion_gligen_text_image'] = ['StableDiffusionGLIGENTextImagePipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_stable_diffusion_gligen import StableDiffusionGLIGENPipeline + from .pipeline_stable_diffusion_gligen_text_image import StableDiffusionGLIGENTextImagePipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +import inspect +import warnings +from typing import Any, Callable, Dict, List, Optional, Union +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer +from ...image_processor import VaeImageProcessor +from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, UNet2DConditionModel +from ...models.attention import GatedSelfAttentionDense +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion import StableDiffusionPipelineOutput +from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import StableDiffusionGLIGENPipeline\n >>> from diffusers.utils import load_image\n\n >>> # Insert objects described by text at the region defined by bounding boxes\n >>> pipe = StableDiffusionGLIGENPipeline.from_pretrained(\n ... "masterful/gligen-1-4-inpainting-text-box", variant="fp16", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n >>> input_image = load_image(\n ... "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/gligen/livingroom_modern.png"\n ... )\n >>> prompt = "a birthday cake"\n >>> boxes = [[0.2676, 0.6088, 0.4773, 0.7183]]\n >>> phrases = ["a birthday cake"]\n\n >>> images = pipe(\n ... prompt=prompt,\n ... gligen_phrases=phrases,\n ... gligen_inpaint_image=input_image,\n ... gligen_boxes=boxes,\n ... gligen_scheduled_sampling_beta=1,\n ... output_type="pil",\n ... num_inference_steps=50,\n ... ).images\n\n >>> images[0].save("./gligen-1-4-inpainting-text-box.jpg")\n\n >>> # Generate an image described by the prompt and\n >>> # insert objects described by text at the region defined by bounding boxes\n >>> pipe = StableDiffusionGLIGENPipeline.from_pretrained(\n ... "masterful/gligen-1-4-generation-text-box", variant="fp16", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n >>> prompt = "a waterfall and a modern high speed train running through the tunnel in a beautiful forest with fall foliage"\n >>> boxes = [[0.1387, 0.2051, 0.4277, 0.7090], [0.4980, 0.4355, 0.8516, 0.7266]]\n >>> phrases = ["a waterfall", "a modern high speed train running through the tunnel"]\n\n >>> images = pipe(\n ... prompt=prompt,\n ... gligen_phrases=phrases,\n ... gligen_boxes=boxes,\n ... gligen_scheduled_sampling_beta=1,\n ... output_type="pil",\n ... num_inference_steps=50,\n ... ).images\n\n >>> images[0].save("./gligen-1-4-generation-text-box.jpg")\n ```\n' + +class StableDiffusionGLIGENPipeline(DiffusionPipeline, StableDiffusionMixin): + _optional_components = ['safety_checker', 'feature_extractor'] + model_cpu_offload_seq = 'text_encoder->unet->vae' + _exclude_from_cpu_offload = ['safety_checker'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool=True): + super().__init__() + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, callback_steps, gligen_phrases, gligen_boxes, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if len(gligen_phrases) != len(gligen_boxes): + raise ValueError(f'length of `gligen_phrases` and `gligen_boxes` has to be same, but got: `gligen_phrases` {len(gligen_phrases)} != `gligen_boxes` {len(gligen_boxes)}') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def enable_fuser(self, enabled=True): + for module in self.unet.modules(): + if type(module) is GatedSelfAttentionDense: + module.enabled = enabled + + def draw_inpaint_mask_from_boxes(self, boxes, size): + inpaint_mask = torch.ones(size[0], size[1]) + for box in boxes: + (x0, x1) = (box[0] * size[0], box[2] * size[0]) + (y0, y1) = (box[1] * size[1], box[3] * size[1]) + inpaint_mask[int(y0):int(y1), int(x0):int(x1)] = 0 + return inpaint_mask + + def crop(self, im, new_width, new_height): + (width, height) = im.size + left = (width - new_width) / 2 + top = (height - new_height) / 2 + right = (width + new_width) / 2 + bottom = (height + new_height) / 2 + return im.crop((left, top, right, bottom)) + + def target_size_center_crop(self, im, new_hw): + (width, height) = im.size + if width != height: + im = self.crop(im, min(height, width), min(height, width)) + return im.resize((new_hw, new_hw), PIL.Image.LANCZOS) + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=7.5, gligen_scheduled_sampling_beta: float=0.3, gligen_phrases: List[str]=None, gligen_boxes: List[List[float]]=None, gligen_inpaint_image: Optional[PIL.Image.Image]=None, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: Optional[int]=None): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, height, width, callback_steps, gligen_phrases, gligen_boxes, negative_prompt, prompt_embeds, negative_prompt_embeds) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clip_skip=clip_skip) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + max_objs = 30 + if len(gligen_boxes) > max_objs: + warnings.warn(f'More that {max_objs} objects found. Only first {max_objs} objects will be processed.', FutureWarning) + gligen_phrases = gligen_phrases[:max_objs] + gligen_boxes = gligen_boxes[:max_objs] + tokenizer_inputs = self.tokenizer(gligen_phrases, padding=True, return_tensors='pt').to(device) + _text_embeddings = self.text_encoder(**tokenizer_inputs).pooler_output + n_objs = len(gligen_boxes) + boxes = torch.zeros(max_objs, 4, device=device, dtype=self.text_encoder.dtype) + boxes[:n_objs] = torch.tensor(gligen_boxes) + text_embeddings = torch.zeros(max_objs, self.unet.config.cross_attention_dim, device=device, dtype=self.text_encoder.dtype) + text_embeddings[:n_objs] = _text_embeddings + masks = torch.zeros(max_objs, device=device, dtype=self.text_encoder.dtype) + masks[:n_objs] = 1 + repeat_batch = batch_size * num_images_per_prompt + boxes = boxes.unsqueeze(0).expand(repeat_batch, -1, -1).clone() + text_embeddings = text_embeddings.unsqueeze(0).expand(repeat_batch, -1, -1).clone() + masks = masks.unsqueeze(0).expand(repeat_batch, -1).clone() + if do_classifier_free_guidance: + repeat_batch = repeat_batch * 2 + boxes = torch.cat([boxes] * 2) + text_embeddings = torch.cat([text_embeddings] * 2) + masks = torch.cat([masks] * 2) + masks[:repeat_batch // 2] = 0 + if cross_attention_kwargs is None: + cross_attention_kwargs = {} + cross_attention_kwargs['gligen'] = {'boxes': boxes, 'positive_embeddings': text_embeddings, 'masks': masks} + if gligen_inpaint_image is not None: + if gligen_inpaint_image.size != (self.vae.sample_size, self.vae.sample_size): + gligen_inpaint_image = self.target_size_center_crop(gligen_inpaint_image, self.vae.sample_size) + gligen_inpaint_image = self.image_processor.preprocess(gligen_inpaint_image) + gligen_inpaint_image = gligen_inpaint_image.to(dtype=self.vae.dtype, device=self.vae.device) + gligen_inpaint_latent = self.vae.encode(gligen_inpaint_image).latent_dist.sample() + gligen_inpaint_latent = self.vae.config.scaling_factor * gligen_inpaint_latent + gligen_inpaint_mask = self.draw_inpaint_mask_from_boxes(gligen_boxes, gligen_inpaint_latent.shape[2:]) + gligen_inpaint_mask = gligen_inpaint_mask.to(dtype=gligen_inpaint_latent.dtype, device=gligen_inpaint_latent.device) + gligen_inpaint_mask = gligen_inpaint_mask[None, None] + gligen_inpaint_mask_addition = torch.cat((gligen_inpaint_latent * gligen_inpaint_mask, gligen_inpaint_mask), dim=1) + gligen_inpaint_mask_addition = gligen_inpaint_mask_addition.expand(repeat_batch, -1, -1, -1).clone() + num_grounding_steps = int(gligen_scheduled_sampling_beta * len(timesteps)) + self.enable_fuser(True) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if i == num_grounding_steps: + self.enable_fuser(False) + if latents.shape[1] != 4: + latents = torch.randn_like(latents[:, :4]) + if gligen_inpaint_image is not None: + gligen_inpaint_latent_with_noise = self.scheduler.add_noise(gligen_inpaint_latent, torch.randn_like(gligen_inpaint_latent), torch.tensor([t])).expand(latents.shape[0], -1, -1, -1).clone() + latents = gligen_inpaint_latent_with_noise * gligen_inpaint_mask + latents * (1 - gligen_inpaint_mask) + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + if gligen_inpaint_image is not None: + latent_model_input = torch.cat((latent_model_input, gligen_inpaint_mask_addition), dim=1) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs).sample + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +import inspect +import warnings +from typing import Any, Callable, Dict, List, Optional, Union +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...image_processor import VaeImageProcessor +from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, UNet2DConditionModel +from ...models.attention import GatedSelfAttentionDense +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion import StableDiffusionPipelineOutput +from ..stable_diffusion.clip_image_project_model import CLIPImageProjection +from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import StableDiffusionGLIGENTextImagePipeline\n >>> from diffusers.utils import load_image\n\n >>> # Insert objects described by image at the region defined by bounding boxes\n >>> pipe = StableDiffusionGLIGENTextImagePipeline.from_pretrained(\n ... "anhnct/Gligen_Inpainting_Text_Image", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n >>> input_image = load_image(\n ... "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/gligen/livingroom_modern.png"\n ... )\n >>> prompt = "a backpack"\n >>> boxes = [[0.2676, 0.4088, 0.4773, 0.7183]]\n >>> phrases = None\n >>> gligen_image = load_image(\n ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/gligen/backpack.jpeg"\n ... )\n\n >>> images = pipe(\n ... prompt=prompt,\n ... gligen_phrases=phrases,\n ... gligen_inpaint_image=input_image,\n ... gligen_boxes=boxes,\n ... gligen_images=[gligen_image],\n ... gligen_scheduled_sampling_beta=1,\n ... output_type="pil",\n ... num_inference_steps=50,\n ... ).images\n\n >>> images[0].save("./gligen-inpainting-text-image-box.jpg")\n\n >>> # Generate an image described by the prompt and\n >>> # insert objects described by text and image at the region defined by bounding boxes\n >>> pipe = StableDiffusionGLIGENTextImagePipeline.from_pretrained(\n ... "anhnct/Gligen_Text_Image", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n >>> prompt = "a flower sitting on the beach"\n >>> boxes = [[0.0, 0.09, 0.53, 0.76]]\n >>> phrases = ["flower"]\n >>> gligen_image = load_image(\n ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/gligen/pexels-pixabay-60597.jpg"\n ... )\n\n >>> images = pipe(\n ... prompt=prompt,\n ... gligen_phrases=phrases,\n ... gligen_images=[gligen_image],\n ... gligen_boxes=boxes,\n ... gligen_scheduled_sampling_beta=1,\n ... output_type="pil",\n ... num_inference_steps=50,\n ... ).images\n\n >>> images[0].save("./gligen-generation-text-image-box.jpg")\n\n >>> # Generate an image described by the prompt and\n >>> # transfer style described by image at the region defined by bounding boxes\n >>> pipe = StableDiffusionGLIGENTextImagePipeline.from_pretrained(\n ... "anhnct/Gligen_Text_Image", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n >>> prompt = "a dragon flying on the sky"\n >>> boxes = [[0.4, 0.2, 1.0, 0.8], [0.0, 1.0, 0.0, 1.0]] # Set `[0.0, 1.0, 0.0, 1.0]` for the style\n\n >>> gligen_image = load_image(\n ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/landscape.png"\n ... )\n\n >>> gligen_placeholder = load_image(\n ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/landscape.png"\n ... )\n\n >>> images = pipe(\n ... prompt=prompt,\n ... gligen_phrases=[\n ... "dragon",\n ... "placeholder",\n ... ], # Can use any text instead of `placeholder` token, because we will use mask here\n ... gligen_images=[\n ... gligen_placeholder,\n ... gligen_image,\n ... ], # Can use any image in gligen_placeholder, because we will use mask here\n ... input_phrases_mask=[1, 0], # Set 0 for the placeholder token\n ... input_images_mask=[0, 1], # Set 0 for the placeholder image\n ... gligen_boxes=boxes,\n ... gligen_scheduled_sampling_beta=1,\n ... output_type="pil",\n ... num_inference_steps=50,\n ... ).images\n\n >>> images[0].save("./gligen-generation-text-image-box-style-transfer.jpg")\n ```\n' + +class StableDiffusionGLIGENTextImagePipeline(DiffusionPipeline, StableDiffusionMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor'] + _exclude_from_cpu_offload = ['safety_checker'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, processor: CLIPProcessor, image_encoder: CLIPVisionModelWithProjection, image_project: CLIPImageProjection, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool=True): + super().__init__() + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, image_encoder=image_encoder, processor=processor, image_project=image_project, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def enable_fuser(self, enabled=True): + for module in self.unet.modules(): + if type(module) is GatedSelfAttentionDense: + module.enabled = enabled + + def draw_inpaint_mask_from_boxes(self, boxes, size): + inpaint_mask = torch.ones(size[0], size[1]) + for box in boxes: + (x0, x1) = (box[0] * size[0], box[2] * size[0]) + (y0, y1) = (box[1] * size[1], box[3] * size[1]) + inpaint_mask[int(y0):int(y1), int(x0):int(x1)] = 0 + return inpaint_mask + + def crop(self, im, new_width, new_height): + (width, height) = im.size + left = (width - new_width) / 2 + top = (height - new_height) / 2 + right = (width + new_width) / 2 + bottom = (height + new_height) / 2 + return im.crop((left, top, right, bottom)) + + def target_size_center_crop(self, im, new_hw): + (width, height) = im.size + if width != height: + im = self.crop(im, min(height, width), min(height, width)) + return im.resize((new_hw, new_hw), PIL.Image.LANCZOS) + + def complete_mask(self, has_mask, max_objs, device): + mask = torch.ones(1, max_objs).type(self.text_encoder.dtype).to(device) + if has_mask is None: + return mask + if isinstance(has_mask, int): + return mask * has_mask + else: + for (idx, value) in enumerate(has_mask): + mask[0, idx] = value + return mask + + def get_clip_feature(self, input, normalize_constant, device, is_image=False): + if is_image: + if input is None: + return None + inputs = self.processor(images=[input], return_tensors='pt').to(device) + inputs['pixel_values'] = inputs['pixel_values'].to(self.image_encoder.dtype) + outputs = self.image_encoder(**inputs) + feature = outputs.image_embeds + feature = self.image_project(feature).squeeze(0) + feature = feature / feature.norm() * normalize_constant + feature = feature.unsqueeze(0) + else: + if input is None: + return None + inputs = self.tokenizer(input, return_tensors='pt', padding=True).to(device) + outputs = self.text_encoder(**inputs) + feature = outputs.pooler_output + return feature + + def get_cross_attention_kwargs_with_grounded(self, hidden_size, gligen_phrases, gligen_images, gligen_boxes, input_phrases_mask, input_images_mask, repeat_batch, normalize_constant, max_objs, device): + (phrases, images) = (gligen_phrases, gligen_images) + images = [None] * len(phrases) if images is None else images + phrases = [None] * len(images) if phrases is None else phrases + boxes = torch.zeros(max_objs, 4, device=device, dtype=self.text_encoder.dtype) + masks = torch.zeros(max_objs, device=device, dtype=self.text_encoder.dtype) + phrases_masks = torch.zeros(max_objs, device=device, dtype=self.text_encoder.dtype) + image_masks = torch.zeros(max_objs, device=device, dtype=self.text_encoder.dtype) + phrases_embeddings = torch.zeros(max_objs, hidden_size, device=device, dtype=self.text_encoder.dtype) + image_embeddings = torch.zeros(max_objs, hidden_size, device=device, dtype=self.text_encoder.dtype) + text_features = [] + image_features = [] + for (phrase, image) in zip(phrases, images): + text_features.append(self.get_clip_feature(phrase, normalize_constant, device, is_image=False)) + image_features.append(self.get_clip_feature(image, normalize_constant, device, is_image=True)) + for (idx, (box, text_feature, image_feature)) in enumerate(zip(gligen_boxes, text_features, image_features)): + boxes[idx] = torch.tensor(box) + masks[idx] = 1 + if text_feature is not None: + phrases_embeddings[idx] = text_feature + phrases_masks[idx] = 1 + if image_feature is not None: + image_embeddings[idx] = image_feature + image_masks[idx] = 1 + input_phrases_mask = self.complete_mask(input_phrases_mask, max_objs, device) + phrases_masks = phrases_masks.unsqueeze(0).repeat(repeat_batch, 1) * input_phrases_mask + input_images_mask = self.complete_mask(input_images_mask, max_objs, device) + image_masks = image_masks.unsqueeze(0).repeat(repeat_batch, 1) * input_images_mask + boxes = boxes.unsqueeze(0).repeat(repeat_batch, 1, 1) + masks = masks.unsqueeze(0).repeat(repeat_batch, 1) + phrases_embeddings = phrases_embeddings.unsqueeze(0).repeat(repeat_batch, 1, 1) + image_embeddings = image_embeddings.unsqueeze(0).repeat(repeat_batch, 1, 1) + out = {'boxes': boxes, 'masks': masks, 'phrases_masks': phrases_masks, 'image_masks': image_masks, 'phrases_embeddings': phrases_embeddings, 'image_embeddings': image_embeddings} + return out + + def get_cross_attention_kwargs_without_grounded(self, hidden_size, repeat_batch, max_objs, device): + boxes = torch.zeros(max_objs, 4, device=device, dtype=self.text_encoder.dtype) + masks = torch.zeros(max_objs, device=device, dtype=self.text_encoder.dtype) + phrases_masks = torch.zeros(max_objs, device=device, dtype=self.text_encoder.dtype) + image_masks = torch.zeros(max_objs, device=device, dtype=self.text_encoder.dtype) + phrases_embeddings = torch.zeros(max_objs, hidden_size, device=device, dtype=self.text_encoder.dtype) + image_embeddings = torch.zeros(max_objs, hidden_size, device=device, dtype=self.text_encoder.dtype) + out = {'boxes': boxes.unsqueeze(0).repeat(repeat_batch, 1, 1), 'masks': masks.unsqueeze(0).repeat(repeat_batch, 1), 'phrases_masks': phrases_masks.unsqueeze(0).repeat(repeat_batch, 1), 'image_masks': image_masks.unsqueeze(0).repeat(repeat_batch, 1), 'phrases_embeddings': phrases_embeddings.unsqueeze(0).repeat(repeat_batch, 1, 1), 'image_embeddings': image_embeddings.unsqueeze(0).repeat(repeat_batch, 1, 1)} + return out + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=7.5, gligen_scheduled_sampling_beta: float=0.3, gligen_phrases: List[str]=None, gligen_images: List[PIL.Image.Image]=None, input_phrases_mask: Union[int, List[int]]=None, input_images_mask: Union[int, List[int]]=None, gligen_boxes: List[List[float]]=None, gligen_inpaint_image: Optional[PIL.Image.Image]=None, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, gligen_normalize_constant: float=28.7, clip_skip: int=None): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clip_skip=clip_skip) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + max_objs = 30 + if len(gligen_boxes) > max_objs: + warnings.warn(f'More that {max_objs} objects found. Only first {max_objs} objects will be processed.', FutureWarning) + gligen_phrases = gligen_phrases[:max_objs] + gligen_boxes = gligen_boxes[:max_objs] + gligen_images = gligen_images[:max_objs] + repeat_batch = batch_size * num_images_per_prompt + if do_classifier_free_guidance: + repeat_batch = repeat_batch * 2 + if cross_attention_kwargs is None: + cross_attention_kwargs = {} + hidden_size = prompt_embeds.shape[2] + cross_attention_kwargs['gligen'] = self.get_cross_attention_kwargs_with_grounded(hidden_size=hidden_size, gligen_phrases=gligen_phrases, gligen_images=gligen_images, gligen_boxes=gligen_boxes, input_phrases_mask=input_phrases_mask, input_images_mask=input_images_mask, repeat_batch=repeat_batch, normalize_constant=gligen_normalize_constant, max_objs=max_objs, device=device) + cross_attention_kwargs_without_grounded = {} + cross_attention_kwargs_without_grounded['gligen'] = self.get_cross_attention_kwargs_without_grounded(hidden_size=hidden_size, repeat_batch=repeat_batch, max_objs=max_objs, device=device) + if gligen_inpaint_image is not None: + if gligen_inpaint_image.size != (self.vae.sample_size, self.vae.sample_size): + gligen_inpaint_image = self.target_size_center_crop(gligen_inpaint_image, self.vae.sample_size) + gligen_inpaint_image = self.image_processor.preprocess(gligen_inpaint_image) + gligen_inpaint_image = gligen_inpaint_image.to(dtype=self.vae.dtype, device=self.vae.device) + gligen_inpaint_latent = self.vae.encode(gligen_inpaint_image).latent_dist.sample() + gligen_inpaint_latent = self.vae.config.scaling_factor * gligen_inpaint_latent + gligen_inpaint_mask = self.draw_inpaint_mask_from_boxes(gligen_boxes, gligen_inpaint_latent.shape[2:]) + gligen_inpaint_mask = gligen_inpaint_mask.to(dtype=gligen_inpaint_latent.dtype, device=gligen_inpaint_latent.device) + gligen_inpaint_mask = gligen_inpaint_mask[None, None] + gligen_inpaint_mask_addition = torch.cat((gligen_inpaint_latent * gligen_inpaint_mask, gligen_inpaint_mask), dim=1) + gligen_inpaint_mask_addition = gligen_inpaint_mask_addition.expand(repeat_batch, -1, -1, -1).clone() + int(gligen_scheduled_sampling_beta * len(timesteps)) + self.enable_fuser(True) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if latents.shape[1] != 4: + latents = torch.randn_like(latents[:, :4]) + if gligen_inpaint_image is not None: + gligen_inpaint_latent_with_noise = self.scheduler.add_noise(gligen_inpaint_latent, torch.randn_like(gligen_inpaint_latent), torch.tensor([t])).expand(latents.shape[0], -1, -1, -1).clone() + latents = gligen_inpaint_latent_with_noise * gligen_inpaint_mask + latents * (1 - gligen_inpaint_mask) + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + if gligen_inpaint_image is not None: + latent_model_input = torch.cat((latent_model_input, gligen_inpaint_mask_addition), dim=1) + noise_pred_with_grounding = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs).sample + noise_pred_without_grounding = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs_without_grounded).sample + if do_classifier_free_guidance: + (_, noise_pred_text) = noise_pred_with_grounding.chunk(2) + (noise_pred_uncond, _) = noise_pred_without_grounding.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + else: + noise_pred = noise_pred_with_grounding + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_k_diffusion_available, is_k_diffusion_version, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available() and is_k_diffusion_available() and is_k_diffusion_version('>=', '0.0.12')): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_and_k_diffusion_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_and_k_diffusion_objects)) +else: + _import_structure['pipeline_stable_diffusion_k_diffusion'] = ['StableDiffusionKDiffusionPipeline'] + _import_structure['pipeline_stable_diffusion_xl_k_diffusion'] = ['StableDiffusionXLKDiffusionPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available() and is_k_diffusion_available() and is_k_diffusion_version('>=', '0.0.12')): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * + else: + from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline + from .pipeline_stable_diffusion_xl_k_diffusion import StableDiffusionXLKDiffusionPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +import importlib +import inspect +from typing import Callable, List, Optional, Union +import torch +from k_diffusion.external import CompVisDenoiser, CompVisVDenoiser +from k_diffusion.sampling import BrownianTreeNoiseSampler, get_sigmas_karras +from ...image_processor import VaeImageProcessor +from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import LMSDiscreteScheduler +from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion import StableDiffusionPipelineOutput +logger = logging.get_logger(__name__) + +class ModelWrapper: + + def __init__(self, model, alphas_cumprod): + self.model = model + self.alphas_cumprod = alphas_cumprod + + def apply_model(self, *args, **kwargs): + if len(args) == 3: + encoder_hidden_states = args[-1] + args = args[:2] + if kwargs.get('cond', None) is not None: + encoder_hidden_states = kwargs.pop('cond') + return self.model(*args, encoder_hidden_states=encoder_hidden_states, **kwargs).sample + +class StableDiffusionKDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor'] + _exclude_from_cpu_offload = ['safety_checker'] + + def __init__(self, vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker: bool=True): + super().__init__() + logger.info(f'{self.__class__} is an experimntal pipeline and is likely to change in the future. We recommend to use this pipeline for fast experimentation / iteration if needed, but advice to rely on existing pipelines as defined in https://huggingface.co/docs/diffusers/api/schedulers#implemented-schedulers for production settings.') + scheduler = LMSDiscreteScheduler.from_config(scheduler.config) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + model = ModelWrapper(unet, scheduler.alphas_cumprod) + if scheduler.config.prediction_type == 'v_prediction': + self.k_diffusion_model = CompVisVDenoiser(model) + else: + self.k_diffusion_model = CompVisDenoiser(model) + + def set_scheduler(self, scheduler_type: str): + library = importlib.import_module('k_diffusion') + sampling = getattr(library, 'sampling') + try: + self.sampler = getattr(sampling, scheduler_type) + except Exception: + valid_samplers = [] + for s in dir(sampling): + if 'sample_' in s: + valid_samplers.append(s) + raise ValueError(f'Invalid scheduler type {scheduler_type}. Please choose one of {valid_samplers}.') + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def check_inputs(self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + if latents.shape != shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}') + latents = latents.to(device) + return latents + + @torch.no_grad() + def __call__(self, prompt: Union[str, List[str]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, use_karras_sigmas: Optional[bool]=False, noise_sampler_seed: Optional[int]=None, clip_skip: int=None): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = True + if guidance_scale <= 1.0: + raise ValueError('has to use guidance_scale') + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clip_skip=clip_skip) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + self.scheduler.set_timesteps(num_inference_steps, device=prompt_embeds.device) + if use_karras_sigmas: + sigma_min: float = self.k_diffusion_model.sigmas[0].item() + sigma_max: float = self.k_diffusion_model.sigmas[-1].item() + sigmas = get_sigmas_karras(n=num_inference_steps, sigma_min=sigma_min, sigma_max=sigma_max) + else: + sigmas = self.scheduler.sigmas + sigmas = sigmas.to(device) + sigmas = sigmas.to(prompt_embeds.dtype) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + latents = latents * sigmas[0] + self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device) + self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(latents.device) + + def model_fn(x, t): + latent_model_input = torch.cat([x] * 2) + t = torch.cat([t] * 2) + noise_pred = self.k_diffusion_model(latent_model_input, t, cond=prompt_embeds) + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + return noise_pred + sampler_kwargs = {} + if 'noise_sampler' in inspect.signature(self.sampler).parameters: + (min_sigma, max_sigma) = (sigmas[sigmas > 0].min(), sigmas.max()) + noise_sampler = BrownianTreeNoiseSampler(latents, min_sigma, max_sigma, noise_sampler_seed) + sampler_kwargs['noise_sampler'] = noise_sampler + if 'generator' in inspect.signature(self.sampler).parameters: + sampler_kwargs['generator'] = generator + latents = self.sampler(model_fn, latents, sigmas, **sampler_kwargs) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +import importlib +import inspect +from typing import List, Optional, Tuple, Union +import torch +from k_diffusion.external import CompVisDenoiser, CompVisVDenoiser +from k_diffusion.sampling import BrownianTreeNoiseSampler, get_sigmas_karras +from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer +from ...image_processor import VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, UNet2DConditionModel +from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers, LMSDiscreteScheduler +from ...utils import USE_PEFT_BACKEND, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import StableDiffusionXLKDiffusionPipeline\n\n >>> pipe = StableDiffusionXLKDiffusionPipeline.from_pretrained(\n ... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n >>> pipe.set_scheduler("sample_dpmpp_2m_sde")\n\n >>> prompt = "a photo of an astronaut riding a horse on mars"\n >>> image = pipe(prompt).images[0]\n ```\n' + +class ModelWrapper: + + def __init__(self, model, alphas_cumprod): + self.model = model + self.alphas_cumprod = alphas_cumprod + + def apply_model(self, *args, **kwargs): + if len(args) == 3: + encoder_hidden_states = args[-1] + args = args[:2] + if kwargs.get('cond', None) is not None: + encoder_hidden_states = kwargs.pop('cond') + return self.model(*args, encoder_hidden_states=encoder_hidden_states, **kwargs).sample + +class StableDiffusionXLKDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin, FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin, IPAdapterMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->unet->vae' + _optional_components = ['tokenizer', 'tokenizer_2', 'text_encoder', 'text_encoder_2', 'feature_extractor'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, force_zeros_for_empty_prompt: bool=True): + super().__init__() + scheduler = LMSDiscreteScheduler.from_config(scheduler.config) + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, scheduler=scheduler) + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.default_sample_size = self.unet.config.sample_size + model = ModelWrapper(unet, scheduler.alphas_cumprod) + if scheduler.config.prediction_type == 'v_prediction': + self.k_diffusion_model = CompVisVDenoiser(model) + else: + self.k_diffusion_model = CompVisDenoiser(model) + + def set_scheduler(self, scheduler_type: str): + library = importlib.import_module('k_diffusion') + sampling = getattr(library, 'sampling') + try: + self.sampler = getattr(sampling, scheduler_type) + except Exception: + valid_samplers = [] + for s in dir(sampling): + if 'sample_' in s: + valid_samplers.append(s) + raise ValueError(f'Invalid scheduler type {scheduler_type}. Please choose one of {valid_samplers}.') + + def encode_prompt(self, prompt: str, prompt_2: Optional[str]=None, device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[str]=None, negative_prompt_2: Optional[str]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) + else: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for (prompt, tokenizer, text_encoder) in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + text_inputs = tokenizer(prompt, padding='max_length', max_length=tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + prompt_embeds_list.append(prompt_embeds) + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + negative_prompt_embeds_list = [] + for (negative_prompt, tokenizer, text_encoder) in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer(negative_prompt, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True) + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + negative_prompt_embeds_list.append(negative_prompt_embeds) + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + if self.text_encoder_2 is not None: + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + if self.text_encoder_2 is not None: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def check_inputs(self, prompt, prompt_2, height, width, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + return latents + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.') + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + return add_time_ids + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor, FusedAttnProcessor2_0)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=5.0, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, original_size: Optional[Tuple[int, int]]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), target_size: Optional[Tuple[int, int]]=None, negative_original_size: Optional[Tuple[int, int]]=None, negative_crops_coords_top_left: Tuple[int, int]=(0, 0), negative_target_size: Optional[Tuple[int, int]]=None, use_karras_sigmas: Optional[bool]=False, noise_sampler_seed: Optional[int]=None, clip_skip: Optional[int]=None): + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + original_size = original_size or (height, width) + target_size = target_size or (height, width) + self.check_inputs(prompt, prompt_2, height, width, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + if guidance_scale <= 1.0: + raise ValueError('has to use guidance_scale') + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + lora_scale = None + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt=prompt, prompt_2=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=lora_scale, clip_skip=self.clip_skip) + self.scheduler.set_timesteps(num_inference_steps, device=prompt_embeds.device) + if use_karras_sigmas: + sigma_min: float = self.k_diffusion_model.sigmas[0].item() + sigma_max: float = self.k_diffusion_model.sigmas[-1].item() + sigmas = get_sigmas_karras(n=num_inference_steps, sigma_min=sigma_min, sigma_max=sigma_max) + else: + sigmas = self.scheduler.sigmas + sigmas = sigmas.to(dtype=prompt_embeds.dtype, device=device) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + latents = latents * sigmas[0] + self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device) + self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(latents.device) + add_text_embeds = pooled_prompt_embeds + if self.text_encoder_2 is None: + text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) + else: + text_encoder_projection_dim = self.text_encoder_2.config.projection_dim + add_time_ids = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + if negative_original_size is not None and negative_target_size is not None: + negative_add_time_ids = self._get_add_time_ids(negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + else: + negative_add_time_ids = add_time_ids + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + + def model_fn(x, t): + latent_model_input = torch.cat([x] * 2) + t = torch.cat([t] * 2) + noise_pred = self.k_diffusion_model(latent_model_input, t, cond=prompt_embeds, timestep_cond=timestep_cond, added_cond_kwargs=added_cond_kwargs) + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + return noise_pred + sampler_kwargs = {} + if 'noise_sampler' in inspect.signature(self.sampler).parameters: + (min_sigma, max_sigma) = (sigmas[sigmas > 0].min(), sigmas.max()) + noise_sampler = BrownianTreeNoiseSampler(latents, min_sigma, max_sigma, noise_sampler_seed) + sampler_kwargs['noise_sampler'] = noise_sampler + if 'generator' in inspect.signature(self.sampler).parameters: + sampler_kwargs['generator'] = generator + latents = self.sampler(model_fn, latents, sigmas, **sampler_kwargs) + if not output_type == 'latent': + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + if needs_upcasting: + self.vae.to(dtype=torch.float16) + else: + image = latents + if not output_type == 'latent': + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return StableDiffusionXLPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_stable_diffusion_ldm3d'] = ['StableDiffusionLDM3DPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_stable_diffusion_ldm3d import StableDiffusionLDM3DPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +import inspect +from dataclasses import dataclass +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...image_processor import PipelineImageInput, VaeImageProcessorLDM3D +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```python\n >>> from diffusers import StableDiffusionLDM3DPipeline\n\n >>> pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d-4c")\n >>> pipe = pipe.to("cuda")\n\n >>> prompt = "a photo of an astronaut riding a horse on mars"\n >>> output = pipe(prompt)\n >>> rgb_image, depth_image = output.rgb, output.depth\n >>> rgb_image[0].save("astronaut_ldm3d_rgb.jpg")\n >>> depth_image[0].save("astronaut_ldm3d_depth.png")\n ```\n' + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +@dataclass +class LDM3DPipelineOutput(BaseOutput): + rgb: Union[List[PIL.Image.Image], np.ndarray] + depth: Union[List[PIL.Image.Image], np.ndarray] + nsfw_content_detected: Optional[List[bool]] + +class StableDiffusionLDM3DPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor', 'image_encoder'] + _exclude_from_cpu_offload = ['safety_checker'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: Optional[CLIPVisionModelWithProjection], requires_safety_checker: bool=True): + super().__init__() + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessorLDM3D(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + rgb_feature_extractor_input = feature_extractor_input[0] + safety_checker_input = self.feature_extractor(rgb_feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def guidance_rescale(self): + return self._guidance_rescale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=49, timesteps: List[int]=None, sigmas: List[float]=None, guidance_scale: float=5.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, guidance_rescale: float=0.0, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`') + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._guidance_rescale = guidance_rescale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clip_skip=clip_skip) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'image_embeds': image_embeds} if ip_adapter_image is not None else None + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + (rgb, depth) = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return ((rgb, depth), has_nsfw_concept) + return LDM3DPipelineOutput(rgb=rgb, depth=depth, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_panorama/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_stable_diffusion_panorama'] = ['StableDiffusionPanoramaPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +import copy +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import DDIMScheduler +from ...utils import USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion import StableDiffusionPipelineOutput +from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import StableDiffusionPanoramaPipeline, DDIMScheduler\n\n >>> model_ckpt = "stabilityai/stable-diffusion-2-base"\n >>> scheduler = DDIMScheduler.from_pretrained(model_ckpt, subfolder="scheduler")\n >>> pipe = StableDiffusionPanoramaPipeline.from_pretrained(\n ... model_ckpt, scheduler=scheduler, torch_dtype=torch.float16\n ... )\n\n >>> pipe = pipe.to("cuda")\n\n >>> prompt = "a photo of the dolomites"\n >>> image = pipe(prompt).images[0]\n ```\n' + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusionPanoramaPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, IPAdapterMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor', 'image_encoder'] + _exclude_from_cpu_offload = ['safety_checker'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: DDIMScheduler, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: Optional[CLIPVisionModelWithProjection]=None, requires_safety_checker: bool=True): + super().__init__() + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def decode_latents_with_padding(self, latents: torch.Tensor, padding: int=8) -> torch.Tensor: + latents = 1 / self.vae.config.scaling_factor * latents + latents_left = latents[..., :padding] + latents_right = latents[..., -padding:] + latents = torch.cat((latents_right, latents, latents_left), axis=-1) + image = self.vae.decode(latents, return_dict=False)[0] + padding_pix = self.vae_scale_factor * padding + image = image[..., padding_pix:-padding_pix] + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + def get_views(self, panorama_height: int, panorama_width: int, window_size: int=64, stride: int=8, circular_padding: bool=False) -> List[Tuple[int, int, int, int]]: + panorama_height /= 8 + panorama_width /= 8 + num_blocks_height = (panorama_height - window_size) // stride + 1 if panorama_height > window_size else 1 + if circular_padding: + num_blocks_width = panorama_width // stride if panorama_width > window_size else 1 + else: + num_blocks_width = (panorama_width - window_size) // stride + 1 if panorama_width > window_size else 1 + total_num_blocks = int(num_blocks_height * num_blocks_width) + views = [] + for i in range(total_num_blocks): + h_start = int(i // num_blocks_width * stride) + h_end = h_start + window_size + w_start = int(i % num_blocks_width * stride) + w_end = w_start + window_size + views.append((h_start, h_end, w_start, w_end)) + return views + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def guidance_rescale(self): + return self._guidance_rescale + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return False + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, height: Optional[int]=512, width: Optional[int]=2048, num_inference_steps: int=50, timesteps: List[int]=None, guidance_scale: float=7.5, view_batch_size: int=1, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, guidance_rescale: float=0.0, circular_padding: bool=False, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs: Any): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`') + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._guidance_rescale = guidance_rescale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + text_encoder_lora_scale = cross_attention_kwargs.get('scale', None) if cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + views = self.get_views(height, width, circular_padding=circular_padding) + views_batch = [views[i:i + view_batch_size] for i in range(0, len(views), view_batch_size)] + views_scheduler_status = [copy.deepcopy(self.scheduler.__dict__)] * len(views_batch) + count = torch.zeros_like(latents) + value = torch.zeros_like(latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'image_embeds': image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + count.zero_() + value.zero_() + for (j, batch_view) in enumerate(views_batch): + vb_size = len(batch_view) + if circular_padding: + latents_for_view = [] + for (h_start, h_end, w_start, w_end) in batch_view: + if w_end > latents.shape[3]: + latent_view = torch.cat((latents[:, :, h_start:h_end, w_start:], latents[:, :, h_start:h_end, :w_end - latents.shape[3]]), axis=-1) + else: + latent_view = latents[:, :, h_start:h_end, w_start:w_end] + latents_for_view.append(latent_view) + latents_for_view = torch.cat(latents_for_view) + else: + latents_for_view = torch.cat([latents[:, :, h_start:h_end, w_start:w_end] for (h_start, h_end, w_start, w_end) in batch_view]) + self.scheduler.__dict__.update(views_scheduler_status[j]) + latent_model_input = latents_for_view.repeat_interleave(2, dim=0) if do_classifier_free_guidance else latents_for_view + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + prompt_embeds_input = torch.cat([prompt_embeds] * vb_size) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds_input, timestep_cond=timestep_cond, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs).sample + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = (noise_pred[::2], noise_pred[1::2]) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) + latents_denoised_batch = self.scheduler.step(noise_pred, t, latents_for_view, **extra_step_kwargs).prev_sample + views_scheduler_status[j] = copy.deepcopy(self.scheduler.__dict__) + for (latents_view_denoised, (h_start, h_end, w_start, w_end)) in zip(latents_denoised_batch.chunk(vb_size), batch_view): + if circular_padding and w_end > latents.shape[3]: + value[:, :, h_start:h_end, w_start:] += latents_view_denoised[:, :, h_start:h_end, :latents.shape[3] - w_start] + value[:, :, h_start:h_end, :w_end - latents.shape[3]] += latents_view_denoised[:, :, h_start:h_end, latents.shape[3] - w_start:] + count[:, :, h_start:h_end, w_start:] += 1 + count[:, :, h_start:h_end, :w_end - latents.shape[3]] += 1 + else: + value[:, :, h_start:h_end, w_start:w_end] += latents_view_denoised + count[:, :, h_start:h_end, w_start:w_end] += 1 + latents = torch.where(count > 0, value / count, value) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if output_type != 'latent': + if circular_padding: + image = self.decode_latents_with_padding(latents) + else: + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_safe/__init__.py +from dataclasses import dataclass +from enum import Enum +from typing import TYPE_CHECKING, List, Optional, Union +import numpy as np +import PIL +from PIL import Image +from ...utils import DIFFUSERS_SLOW_IMPORT, BaseOutput, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available + +@dataclass +class SafetyConfig(object): + WEAK = {'sld_warmup_steps': 15, 'sld_guidance_scale': 20, 'sld_threshold': 0.0, 'sld_momentum_scale': 0.0, 'sld_mom_beta': 0.0} + MEDIUM = {'sld_warmup_steps': 10, 'sld_guidance_scale': 1000, 'sld_threshold': 0.01, 'sld_momentum_scale': 0.3, 'sld_mom_beta': 0.4} + STRONG = {'sld_warmup_steps': 7, 'sld_guidance_scale': 2000, 'sld_threshold': 0.025, 'sld_momentum_scale': 0.5, 'sld_mom_beta': 0.7} + MAX = {'sld_warmup_steps': 0, 'sld_guidance_scale': 5000, 'sld_threshold': 1.0, 'sld_momentum_scale': 0.5, 'sld_mom_beta': 0.7} +_dummy_objects = {} +_additional_imports = {} +_import_structure = {} +_additional_imports.update({'SafetyConfig': SafetyConfig}) +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure.update({'pipeline_output': ['StableDiffusionSafePipelineOutput'], 'pipeline_stable_diffusion_safe': ['StableDiffusionPipelineSafe'], 'safety_checker': ['StableDiffusionSafetyChecker']}) +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_output import StableDiffusionSafePipelineOutput + from .pipeline_stable_diffusion_safe import StableDiffusionPipelineSafe + from .safety_checker import SafeStableDiffusionSafetyChecker +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + for (name, value) in _additional_imports.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_safe/pipeline_output.py +from dataclasses import dataclass +from typing import List, Optional, Union +import numpy as np +import PIL.Image +from ...utils import BaseOutput + +@dataclass +class StableDiffusionSafePipelineOutput(BaseOutput): + images: Union[List[PIL.Image.Image], np.ndarray] + nsfw_content_detected: Optional[List[bool]] + unsafe_images: Optional[Union[List[PIL.Image.Image], np.ndarray]] + applied_safety_concept: Optional[str] + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +import inspect +import warnings +from typing import Callable, List, Optional, Union +import numpy as np +import torch +from packaging import version +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...configuration_utils import FrozenDict +from ...image_processor import PipelineImageInput +from ...loaders import IPAdapterMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import deprecate, logging +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from . import StableDiffusionSafePipelineOutput +from .safety_checker import SafeStableDiffusionSafetyChecker +logger = logging.get_logger(__name__) + +class StableDiffusionPipelineSafe(DiffusionPipeline, StableDiffusionMixin, IPAdapterMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor', 'image_encoder'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: SafeStableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: Optional[CLIPVisionModelWithProjection]=None, requires_safety_checker: bool=True): + super().__init__() + safety_concept: Optional[str] = 'an image showing hate, harassment, violence, suffering, humiliation, harm, suicide, sexual, nudity, bodily fluids, blood, obscene gestures, illegal activity, drug use, theft, vandalism, weapons, child abuse, brutality, cruelty' + if hasattr(scheduler.config, 'steps_offset') and scheduler.config.steps_offset != 1: + deprecation_message = f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset` should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure to update the config accordingly as leaving `steps_offset` might led to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('steps_offset!=1', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['steps_offset'] = 1 + scheduler._internal_dict = FrozenDict(new_config) + if hasattr(scheduler.config, 'clip_sample') and scheduler.config.clip_sample is True: + deprecation_message = f'The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`. `clip_sample` should be set to False in the configuration file. Please make sure to update the config accordingly as not setting `clip_sample` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json` file' + deprecate('clip_sample not set', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config['clip_sample'] = False + scheduler._internal_dict = FrozenDict(new_config) + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + is_unet_version_less_0_9_0 = hasattr(unet.config, '_diffusers_version') and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse('0.9.0.dev0') + is_unet_sample_size_less_64 = hasattr(unet.config, 'sample_size') and unet.config.sample_size < 64 + if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: + deprecation_message = "The configuration file of the unet has set the default `sample_size` to smaller than 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n- CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5 \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the configuration file. Please make sure to update the config accordingly as leaving `sample_size=32` in the config might lead to incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for the `unet/config.json` file" + deprecate('sample_size<64', '1.0.0', deprecation_message, standard_warn=False) + new_config = dict(unet.config) + new_config['sample_size'] = 64 + unet._internal_dict = FrozenDict(new_config) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder) + self._safety_text_concept = safety_concept + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + @property + def safety_concept(self): + return self._safety_text_concept + + @safety_concept.setter + def safety_concept(self, concept): + self._safety_text_concept = concept + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, enable_safety_guidance): + batch_size = len(prompt) if isinstance(prompt, list) else 1 + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='max_length', return_tensors='pt').input_ids + if not torch.equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + max_length = text_input_ids.shape[-1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if enable_safety_guidance: + safety_concept_input = self.tokenizer([self._safety_text_concept], padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + safety_embeddings = self.text_encoder(safety_concept_input.input_ids.to(self.device))[0] + seq_len = safety_embeddings.shape[1] + safety_embeddings = safety_embeddings.repeat(batch_size, num_images_per_prompt, 1) + safety_embeddings = safety_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1) + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds, safety_embeddings]) + else: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + return prompt_embeds + + def run_safety_checker(self, image, device, dtype, enable_safety_guidance): + if self.safety_checker is not None: + images = image.copy() + safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + flagged_images = np.zeros((2, *image.shape[1:])) + if any(has_nsfw_concept): + logger.warning(f"Potential NSFW content was detected in one or more images. A black image will be returned instead.{('You may look at this images in the `unsafe_images` variable of the output at your own discretion.' if enable_safety_guidance else 'Try again with a different prompt and/or seed.')}") + for (idx, has_nsfw_concept) in enumerate(has_nsfw_concept): + if has_nsfw_concept: + flagged_images[idx] = images[idx] + image[idx] = np.zeros(image[idx].shape) + else: + has_nsfw_concept = None + flagged_images = None + return (image, has_nsfw_concept, flagged_images) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def perform_safety_guidance(self, enable_safety_guidance, safety_momentum, noise_guidance, noise_pred_out, i, sld_guidance_scale, sld_warmup_steps, sld_threshold, sld_momentum_scale, sld_mom_beta): + if enable_safety_guidance: + if safety_momentum is None: + safety_momentum = torch.zeros_like(noise_guidance) + (noise_pred_text, noise_pred_uncond) = (noise_pred_out[0], noise_pred_out[1]) + noise_pred_safety_concept = noise_pred_out[2] + scale = torch.clamp(torch.abs(noise_pred_text - noise_pred_safety_concept) * sld_guidance_scale, max=1.0) + safety_concept_scale = torch.where(noise_pred_text - noise_pred_safety_concept >= sld_threshold, torch.zeros_like(scale), scale) + noise_guidance_safety = torch.mul(noise_pred_safety_concept - noise_pred_uncond, safety_concept_scale) + noise_guidance_safety = noise_guidance_safety + sld_momentum_scale * safety_momentum + safety_momentum = sld_mom_beta * safety_momentum + (1 - sld_mom_beta) * noise_guidance_safety + if i >= sld_warmup_steps: + noise_guidance = noise_guidance - noise_guidance_safety + return (noise_guidance, safety_momentum) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + @torch.no_grad() + def __call__(self, prompt: Union[str, List[str]], height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, sld_guidance_scale: Optional[float]=1000, sld_warmup_steps: Optional[int]=10, sld_threshold: Optional[float]=0.01, sld_momentum_scale: Optional[float]=0.3, sld_mom_beta: Optional[float]=0.4): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, height, width, callback_steps) + batch_size = 1 if isinstance(prompt, str) else len(prompt) + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + enable_safety_guidance = sld_guidance_scale > 1.0 and do_classifier_free_guidance + if not enable_safety_guidance: + warnings.warn('Safety checker disabled!') + if ip_adapter_image is not None: + output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True + (image_embeds, negative_image_embeds) = self.encode_image(ip_adapter_image, device, num_images_per_prompt, output_hidden_state) + if do_classifier_free_guidance: + if enable_safety_guidance: + image_embeds = torch.cat([negative_image_embeds, image_embeds, image_embeds]) + else: + image_embeds = torch.cat([negative_image_embeds, image_embeds]) + prompt_embeds = self._encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, enable_safety_guidance) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'image_embeds': image_embeds} if ip_adapter_image is not None else None + safety_momentum = None + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * (3 if enable_safety_guidance else 2)) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, added_cond_kwargs=added_cond_kwargs).sample + if do_classifier_free_guidance: + noise_pred_out = noise_pred.chunk(3 if enable_safety_guidance else 2) + (noise_pred_uncond, noise_pred_text) = (noise_pred_out[0], noise_pred_out[1]) + noise_guidance = noise_pred_text - noise_pred_uncond + if enable_safety_guidance: + if safety_momentum is None: + safety_momentum = torch.zeros_like(noise_guidance) + noise_pred_safety_concept = noise_pred_out[2] + scale = torch.clamp(torch.abs(noise_pred_text - noise_pred_safety_concept) * sld_guidance_scale, max=1.0) + safety_concept_scale = torch.where(noise_pred_text - noise_pred_safety_concept >= sld_threshold, torch.zeros_like(scale), scale) + noise_guidance_safety = torch.mul(noise_pred_safety_concept - noise_pred_uncond, safety_concept_scale) + noise_guidance_safety = noise_guidance_safety + sld_momentum_scale * safety_momentum + safety_momentum = sld_mom_beta * safety_momentum + (1 - sld_mom_beta) * noise_guidance_safety + if i >= sld_warmup_steps: + noise_guidance = noise_guidance - noise_guidance_safety + noise_pred = noise_pred_uncond + guidance_scale * noise_guidance + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + image = self.decode_latents(latents) + (image, has_nsfw_concept, flagged_images) = self.run_safety_checker(image, device, prompt_embeds.dtype, enable_safety_guidance) + if output_type == 'pil': + image = self.numpy_to_pil(image) + if flagged_images is not None: + flagged_images = self.numpy_to_pil(flagged_images) + if not return_dict: + return (image, has_nsfw_concept, self._safety_text_concept if enable_safety_guidance else None, flagged_images) + return StableDiffusionSafePipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept, applied_safety_concept=self._safety_text_concept if enable_safety_guidance else None, unsafe_images=flagged_images) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_safe/safety_checker.py +import torch +import torch.nn as nn +from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel +from ...utils import logging +logger = logging.get_logger(__name__) + +def cosine_distance(image_embeds, text_embeds): + normalized_image_embeds = nn.functional.normalize(image_embeds) + normalized_text_embeds = nn.functional.normalize(text_embeds) + return torch.mm(normalized_image_embeds, normalized_text_embeds.t()) + +class SafeStableDiffusionSafetyChecker(PreTrainedModel): + config_class = CLIPConfig + _no_split_modules = ['CLIPEncoderLayer'] + + def __init__(self, config: CLIPConfig): + super().__init__(config) + self.vision_model = CLIPVisionModel(config.vision_config) + self.visual_projection = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=False) + self.concept_embeds = nn.Parameter(torch.ones(17, config.projection_dim), requires_grad=False) + self.special_care_embeds = nn.Parameter(torch.ones(3, config.projection_dim), requires_grad=False) + self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False) + self.special_care_embeds_weights = nn.Parameter(torch.ones(3), requires_grad=False) + + @torch.no_grad() + def forward(self, clip_input, images): + pooled_output = self.vision_model(clip_input)[1] + image_embeds = self.visual_projection(pooled_output) + special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).cpu().float().numpy() + cos_dist = cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy() + result = [] + batch_size = image_embeds.shape[0] + for i in range(batch_size): + result_img = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} + adjustment = 0.0 + for concept_idx in range(len(special_cos_dist[0])): + concept_cos = special_cos_dist[i][concept_idx] + concept_threshold = self.special_care_embeds_weights[concept_idx].item() + result_img['special_scores'][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3) + if result_img['special_scores'][concept_idx] > 0: + result_img['special_care'].append({concept_idx, result_img['special_scores'][concept_idx]}) + adjustment = 0.01 + for concept_idx in range(len(cos_dist[0])): + concept_cos = cos_dist[i][concept_idx] + concept_threshold = self.concept_embeds_weights[concept_idx].item() + result_img['concept_scores'][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3) + if result_img['concept_scores'][concept_idx] > 0: + result_img['bad_concepts'].append(concept_idx) + result.append(result_img) + has_nsfw_concepts = [len(res['bad_concepts']) > 0 for res in result] + return (images, has_nsfw_concepts) + + @torch.no_grad() + def forward_onnx(self, clip_input: torch.Tensor, images: torch.Tensor): + pooled_output = self.vision_model(clip_input)[1] + image_embeds = self.visual_projection(pooled_output) + special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds) + cos_dist = cosine_distance(image_embeds, self.concept_embeds) + adjustment = 0.0 + special_scores = special_cos_dist - self.special_care_embeds_weights + adjustment + special_care = torch.any(special_scores > 0, dim=1) + special_adjustment = special_care * 0.01 + special_adjustment = special_adjustment.unsqueeze(1).expand(-1, cos_dist.shape[1]) + concept_scores = cos_dist - self.concept_embeds_weights + special_adjustment + has_nsfw_concepts = torch.any(concept_scores > 0, dim=1) + return (images, has_nsfw_concepts) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_sag/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_stable_diffusion_sag'] = ['StableDiffusionSAGPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion import StableDiffusionPipelineOutput +from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import StableDiffusionSAGPipeline\n\n >>> pipe = StableDiffusionSAGPipeline.from_pretrained(\n ... "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n >>> prompt = "a photo of an astronaut riding a horse on mars"\n >>> image = pipe(prompt, sag_scale=0.75).images[0]\n ```\n' + +class CrossAttnStoreProcessor: + + def __init__(self): + self.attention_probs = None + + def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None): + (batch_size, sequence_length, _) = hidden_states.shape + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + query = attn.to_q(hidden_states) + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + query = attn.head_to_batch_dim(query) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + self.attention_probs = attn.get_attention_scores(query, key, attention_mask) + hidden_states = torch.bmm(self.attention_probs, value) + hidden_states = attn.batch_to_head_dim(hidden_states) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + return hidden_states + +class StableDiffusionSAGPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor', 'image_encoder'] + _exclude_from_cpu_offload = ['safety_checker'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: Optional[CLIPVisionModelWithProjection]=None, requires_safety_checker: bool=True): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + image_embeds = [] + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) + single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) + single_image_embeds = single_image_embeds.to(device) + image_embeds.append(single_image_embeds) + else: + image_embeds = ip_adapter_image_embeds + return image_embeds + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=7.5, sag_scale: float=0.75, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: Optional[int]=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: Optional[int]=None): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + do_self_attention_guidance = sag_scale > 0.0 + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, do_classifier_free_guidance) + if do_classifier_free_guidance: + image_embeds = [] + negative_image_embeds = [] + for tmp_image_embeds in ip_adapter_image_embeds: + (single_negative_image_embeds, single_image_embeds) = tmp_image_embeds.chunk(2) + image_embeds.append(single_image_embeds) + negative_image_embeds.append(single_negative_image_embeds) + else: + image_embeds = ip_adapter_image_embeds + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clip_skip=clip_skip) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + if timesteps.dtype not in [torch.int16, torch.int32, torch.int64]: + raise ValueError(f"{self.__class__.__name__} does not support using a scheduler of type {self.scheduler.__class__.__name__}. Please make sure to use one of 'DDIMScheduler, PNDMScheduler, DDPMScheduler, DEISMultistepScheduler, UniPCMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler'.") + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + added_cond_kwargs = {'image_embeds': image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None + if do_classifier_free_guidance: + added_uncond_kwargs = {'image_embeds': negative_image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None + original_attn_proc = self.unet.attn_processors + store_processor = CrossAttnStoreProcessor() + self.unet.mid_block.attentions[0].transformer_blocks[0].attn1.processor = store_processor + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + map_size = None + + def get_map_size(module, input, output): + nonlocal map_size + map_size = output[0].shape[-2:] + with self.unet.mid_block.attentions[0].register_forward_hook(get_map_size): + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs).sample + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + if do_self_attention_guidance: + if do_classifier_free_guidance: + pred_x0 = self.pred_x0(latents, noise_pred_uncond, t) + (uncond_attn, cond_attn) = store_processor.attention_probs.chunk(2) + degraded_latents = self.sag_masking(pred_x0, uncond_attn, map_size, t, self.pred_epsilon(latents, noise_pred_uncond, t)) + (uncond_emb, _) = prompt_embeds.chunk(2) + degraded_pred = self.unet(degraded_latents, t, encoder_hidden_states=uncond_emb, added_cond_kwargs=added_uncond_kwargs).sample + noise_pred += sag_scale * (noise_pred_uncond - degraded_pred) + else: + pred_x0 = self.pred_x0(latents, noise_pred, t) + cond_attn = store_processor.attention_probs + degraded_latents = self.sag_masking(pred_x0, cond_attn, map_size, t, self.pred_epsilon(latents, noise_pred, t)) + degraded_pred = self.unet(degraded_latents, t, encoder_hidden_states=prompt_embeds, added_cond_kwargs=added_cond_kwargs).sample + noise_pred += sag_scale * (noise_pred - degraded_pred) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + self.maybe_free_model_hooks() + self.unet.set_attn_processor(original_attn_proc) + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + + def sag_masking(self, original_latents, attn_map, map_size, t, eps): + (bh, hw1, hw2) = attn_map.shape + (b, latent_channel, latent_h, latent_w) = original_latents.shape + h = self.unet.config.attention_head_dim + if isinstance(h, list): + h = h[-1] + attn_map = attn_map.reshape(b, h, hw1, hw2) + attn_mask = attn_map.mean(1, keepdim=False).sum(1, keepdim=False) > 1.0 + attn_mask = attn_mask.reshape(b, map_size[0], map_size[1]).unsqueeze(1).repeat(1, latent_channel, 1, 1).type(attn_map.dtype) + attn_mask = F.interpolate(attn_mask, (latent_h, latent_w)) + degraded_latents = gaussian_blur_2d(original_latents, kernel_size=9, sigma=1.0) + degraded_latents = degraded_latents * attn_mask + original_latents * (1 - attn_mask) + degraded_latents = self.scheduler.add_noise(degraded_latents, noise=eps, timesteps=t[None]) + return degraded_latents + + def pred_x0(self, sample, model_output, timestep): + alpha_prod_t = self.scheduler.alphas_cumprod[timestep].to(sample.device) + beta_prod_t = 1 - alpha_prod_t + if self.scheduler.config.prediction_type == 'epsilon': + pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 + elif self.scheduler.config.prediction_type == 'sample': + pred_original_sample = model_output + elif self.scheduler.config.prediction_type == 'v_prediction': + pred_original_sample = alpha_prod_t ** 0.5 * sample - beta_prod_t ** 0.5 * model_output + model_output = alpha_prod_t ** 0.5 * model_output + beta_prod_t ** 0.5 * sample + else: + raise ValueError(f'prediction_type given as {self.scheduler.config.prediction_type} must be one of `epsilon`, `sample`, or `v_prediction`') + return pred_original_sample + + def pred_epsilon(self, sample, model_output, timestep): + alpha_prod_t = self.scheduler.alphas_cumprod[timestep] + beta_prod_t = 1 - alpha_prod_t + if self.scheduler.config.prediction_type == 'epsilon': + pred_eps = model_output + elif self.scheduler.config.prediction_type == 'sample': + pred_eps = (sample - alpha_prod_t ** 0.5 * model_output) / beta_prod_t ** 0.5 + elif self.scheduler.config.prediction_type == 'v_prediction': + pred_eps = beta_prod_t ** 0.5 * sample + alpha_prod_t ** 0.5 * model_output + else: + raise ValueError(f'prediction_type given as {self.scheduler.config.prediction_type} must be one of `epsilon`, `sample`, or `v_prediction`') + return pred_eps + +def gaussian_blur_2d(img, kernel_size, sigma): + ksize_half = (kernel_size - 1) * 0.5 + x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size) + pdf = torch.exp(-0.5 * (x / sigma).pow(2)) + x_kernel = pdf / pdf.sum() + x_kernel = x_kernel.to(device=img.device, dtype=img.dtype) + kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :]) + kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1]) + padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2] + img = F.pad(img, padding, mode='reflect') + img = F.conv2d(img, kernel2d, groups=img.shape[-3]) + return img + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_xl/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_flax_available, is_torch_available, is_transformers_available +_dummy_objects = {} +_additional_imports = {} +_import_structure = {'pipeline_output': ['StableDiffusionXLPipelineOutput']} +if is_transformers_available() and is_flax_available(): + _import_structure['pipeline_output'].extend(['FlaxStableDiffusionXLPipelineOutput']) +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_stable_diffusion_xl'] = ['StableDiffusionXLPipeline'] + _import_structure['pipeline_stable_diffusion_xl_img2img'] = ['StableDiffusionXLImg2ImgPipeline'] + _import_structure['pipeline_stable_diffusion_xl_inpaint'] = ['StableDiffusionXLInpaintPipeline'] + _import_structure['pipeline_stable_diffusion_xl_instruct_pix2pix'] = ['StableDiffusionXLInstructPix2PixPipeline'] +if is_transformers_available() and is_flax_available(): + from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState + _additional_imports.update({'PNDMSchedulerState': PNDMSchedulerState}) + _import_structure['pipeline_flax_stable_diffusion_xl'] = ['FlaxStableDiffusionXLPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_stable_diffusion_xl import StableDiffusionXLPipeline + from .pipeline_stable_diffusion_xl_img2img import StableDiffusionXLImg2ImgPipeline + from .pipeline_stable_diffusion_xl_inpaint import StableDiffusionXLInpaintPipeline + from .pipeline_stable_diffusion_xl_instruct_pix2pix import StableDiffusionXLInstructPix2PixPipeline + try: + if not (is_transformers_available() and is_flax_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_flax_objects import * + else: + from .pipeline_flax_stable_diffusion_xl import FlaxStableDiffusionXLPipeline + from .pipeline_output import FlaxStableDiffusionXLPipelineOutput +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + for (name, value) in _additional_imports.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +from functools import partial +from typing import Dict, List, Optional, Union +import jax +import jax.numpy as jnp +from flax.core.frozen_dict import FrozenDict +from transformers import CLIPTokenizer, FlaxCLIPTextModel +from diffusers.utils import logging +from ...models import FlaxAutoencoderKL, FlaxUNet2DConditionModel +from ...schedulers import FlaxDDIMScheduler, FlaxDPMSolverMultistepScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler +from ..pipeline_flax_utils import FlaxDiffusionPipeline +from .pipeline_output import FlaxStableDiffusionXLPipelineOutput +logger = logging.get_logger(__name__) +DEBUG = False + +class FlaxStableDiffusionXLPipeline(FlaxDiffusionPipeline): + + def __init__(self, text_encoder: FlaxCLIPTextModel, text_encoder_2: FlaxCLIPTextModel, vae: FlaxAutoencoderKL, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: FlaxUNet2DConditionModel, scheduler: Union[FlaxDDIMScheduler, FlaxPNDMScheduler, FlaxLMSDiscreteScheduler, FlaxDPMSolverMultistepScheduler], dtype: jnp.dtype=jnp.float32): + super().__init__() + self.dtype = dtype + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + + def prepare_inputs(self, prompt: Union[str, List[str]]): + if not isinstance(prompt, (str, list)): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + inputs = [] + for tokenizer in [self.tokenizer, self.tokenizer_2]: + text_inputs = tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='np') + inputs.append(text_inputs.input_ids) + inputs = jnp.stack(inputs, axis=1) + return inputs + + def __call__(self, prompt_ids: jax.Array, params: Union[Dict, FrozenDict], prng_seed: jax.Array, num_inference_steps: int=50, guidance_scale: Union[float, jax.Array]=7.5, height: Optional[int]=None, width: Optional[int]=None, latents: jnp.array=None, neg_prompt_ids: jnp.array=None, return_dict: bool=True, output_type: str=None, jit: bool=False): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + if isinstance(guidance_scale, float) and jit: + guidance_scale = jnp.array([guidance_scale] * prompt_ids.shape[0]) + guidance_scale = guidance_scale[:, None] + return_latents = output_type == 'latent' + if jit: + images = _p_generate(self, prompt_ids, params, prng_seed, num_inference_steps, height, width, guidance_scale, latents, neg_prompt_ids, return_latents) + else: + images = self._generate(prompt_ids, params, prng_seed, num_inference_steps, height, width, guidance_scale, latents, neg_prompt_ids, return_latents) + if not return_dict: + return (images,) + return FlaxStableDiffusionXLPipelineOutput(images=images) + + def get_embeddings(self, prompt_ids: jnp.array, params): + te_1_inputs = prompt_ids[:, 0, :] + te_2_inputs = prompt_ids[:, 1, :] + prompt_embeds = self.text_encoder(te_1_inputs, params=params['text_encoder'], output_hidden_states=True) + prompt_embeds = prompt_embeds['hidden_states'][-2] + prompt_embeds_2_out = self.text_encoder_2(te_2_inputs, params=params['text_encoder_2'], output_hidden_states=True) + prompt_embeds_2 = prompt_embeds_2_out['hidden_states'][-2] + text_embeds = prompt_embeds_2_out['text_embeds'] + prompt_embeds = jnp.concatenate([prompt_embeds, prompt_embeds_2], axis=-1) + return (prompt_embeds, text_embeds) + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, bs, dtype): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + add_time_ids = jnp.array([add_time_ids] * bs, dtype=dtype) + return add_time_ids + + def _generate(self, prompt_ids: jnp.array, params: Union[Dict, FrozenDict], prng_seed: jax.Array, num_inference_steps: int, height: int, width: int, guidance_scale: float, latents: Optional[jnp.array]=None, neg_prompt_ids: Optional[jnp.array]=None, return_latents=False): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + (prompt_embeds, pooled_embeds) = self.get_embeddings(prompt_ids, params) + batch_size = prompt_embeds.shape[0] + if neg_prompt_ids is None: + neg_prompt_embeds = jnp.zeros_like(prompt_embeds) + negative_pooled_embeds = jnp.zeros_like(pooled_embeds) + else: + (neg_prompt_embeds, negative_pooled_embeds) = self.get_embeddings(neg_prompt_ids, params) + add_time_ids = self._get_add_time_ids((height, width), (0, 0), (height, width), prompt_embeds.shape[0], dtype=prompt_embeds.dtype) + prompt_embeds = jnp.concatenate([neg_prompt_embeds, prompt_embeds], axis=0) + add_text_embeds = jnp.concatenate([negative_pooled_embeds, pooled_embeds], axis=0) + add_time_ids = jnp.concatenate([add_time_ids, add_time_ids], axis=0) + guidance_scale = jnp.array([guidance_scale], dtype=jnp.float32) + latents_shape = (batch_size, self.unet.config.in_channels, height // self.vae_scale_factor, width // self.vae_scale_factor) + if latents is None: + latents = jax.random.normal(prng_seed, shape=latents_shape, dtype=jnp.float32) + elif latents.shape != latents_shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}') + scheduler_state = self.scheduler.set_timesteps(params['scheduler'], num_inference_steps=num_inference_steps, shape=latents.shape) + latents = latents * scheduler_state.init_noise_sigma + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + + def loop_body(step, args): + (latents, scheduler_state) = args + latents_input = jnp.concatenate([latents] * 2) + t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step] + timestep = jnp.broadcast_to(t, latents_input.shape[0]) + latents_input = self.scheduler.scale_model_input(scheduler_state, latents_input, t) + noise_pred = self.unet.apply({'params': params['unet']}, jnp.array(latents_input), jnp.array(timestep, dtype=jnp.int32), encoder_hidden_states=prompt_embeds, added_cond_kwargs=added_cond_kwargs).sample + (noise_pred_uncond, noise_prediction_text) = jnp.split(noise_pred, 2, axis=0) + noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond) + (latents, scheduler_state) = self.scheduler.step(scheduler_state, noise_pred, t, latents).to_tuple() + return (latents, scheduler_state) + if DEBUG: + for i in range(num_inference_steps): + (latents, scheduler_state) = loop_body(i, (latents, scheduler_state)) + else: + (latents, _) = jax.lax.fori_loop(0, num_inference_steps, loop_body, (latents, scheduler_state)) + if return_latents: + return latents + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.apply({'params': params['vae']}, latents, method=self.vae.decode).sample + image = (image / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1) + return image + +@partial(jax.pmap, in_axes=(None, 0, 0, 0, None, None, None, 0, 0, 0, None), static_broadcasted_argnums=(0, 4, 5, 6, 10)) +def _p_generate(pipe, prompt_ids, params, prng_seed, num_inference_steps, height, width, guidance_scale, latents, neg_prompt_ids, return_latents): + return pipe._generate(prompt_ids, params, prng_seed, num_inference_steps, height, width, guidance_scale, latents, neg_prompt_ids, return_latents) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_xl/pipeline_output.py +from dataclasses import dataclass +from typing import List, Union +import numpy as np +import PIL.Image +from ...utils import BaseOutput, is_flax_available + +@dataclass +class StableDiffusionXLPipelineOutput(BaseOutput): + images: Union[List[PIL.Image.Image], np.ndarray] +if is_flax_available(): + import flax + + @flax.struct.dataclass + class FlaxStableDiffusionXLPipelineOutput(BaseOutput): + images: np.ndarray + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, is_invisible_watermark_available, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from .pipeline_output import StableDiffusionXLPipelineOutput +if is_invisible_watermark_available(): + from .watermark import StableDiffusionXLWatermarker +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import StableDiffusionXLPipeline\n\n >>> pipe = StableDiffusionXLPipeline.from_pretrained(\n ... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n >>> prompt = "a photo of an astronaut riding a horse on mars"\n >>> image = pipe(prompt).images[0]\n ```\n' + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusionXLPipeline(DiffusionPipeline, StableDiffusionMixin, FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin, IPAdapterMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->image_encoder->unet->vae' + _optional_components = ['tokenizer', 'tokenizer_2', 'text_encoder', 'text_encoder_2', 'image_encoder', 'feature_extractor'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'add_text_embeds', 'add_time_ids', 'negative_pooled_prompt_embeds', 'negative_add_time_ids'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, image_encoder: CLIPVisionModelWithProjection=None, feature_extractor: CLIPImageProcessor=None, force_zeros_for_empty_prompt: bool=True, add_watermarker: Optional[bool]=None): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, scheduler=scheduler, image_encoder=image_encoder, feature_extractor=feature_extractor) + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.default_sample_size = self.unet.config.sample_size + add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() + if add_watermarker: + self.watermark = StableDiffusionXLWatermarker() + else: + self.watermark = None + + def encode_prompt(self, prompt: str, prompt_2: Optional[str]=None, device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[str]=None, negative_prompt_2: Optional[str]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) + else: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for (prompt, tokenizer, text_encoder) in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + text_inputs = tokenizer(prompt, padding='max_length', max_length=tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + prompt_embeds_list.append(prompt_embeds) + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + negative_prompt_embeds_list = [] + for (negative_prompt, tokenizer, text_encoder) in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer(negative_prompt, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True) + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + negative_prompt_embeds_list.append(negative_prompt_embeds) + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + if self.text_encoder_2 is not None: + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + if self.text_encoder_2 is not None: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, prompt_2, height, width, callback_steps, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.') + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + return add_time_ids + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor, FusedAttnProcessor2_0)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def guidance_rescale(self): + return self._guidance_rescale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def denoising_end(self): + return self._denoising_end + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, timesteps: List[int]=None, sigmas: List[float]=None, denoising_end: Optional[float]=None, guidance_scale: float=5.0, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, guidance_rescale: float=0.0, original_size: Optional[Tuple[int, int]]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), target_size: Optional[Tuple[int, int]]=None, negative_original_size: Optional[Tuple[int, int]]=None, negative_crops_coords_top_left: Tuple[int, int]=(0, 0), negative_target_size: Optional[Tuple[int, int]]=None, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + original_size = original_size or (height, width) + target_size = target_size or (height, width) + self.check_inputs(prompt, prompt_2, height, width, callback_steps, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._guidance_rescale = guidance_rescale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._denoising_end = denoising_end + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt=prompt, prompt_2=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=lora_scale, clip_skip=self.clip_skip) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + add_text_embeds = pooled_prompt_embeds + if self.text_encoder_2 is None: + text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) + else: + text_encoder_projection_dim = self.text_encoder_2.config.projection_dim + add_time_ids = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + if negative_original_size is not None and negative_target_size is not None: + negative_add_time_ids = self._get_add_time_ids(negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + else: + negative_add_time_ids = add_time_ids + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + if self.denoising_end is not None and isinstance(self.denoising_end, float) and (self.denoising_end > 0) and (self.denoising_end < 1): + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - self.denoising_end * self.scheduler.config.num_train_timesteps)) + num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) + timesteps = timesteps[:num_inference_steps] + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + added_cond_kwargs['image_embeds'] = image_embeds + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + latents = latents.to(latents_dtype) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + add_text_embeds = callback_outputs.pop('add_text_embeds', add_text_embeds) + negative_pooled_prompt_embeds = callback_outputs.pop('negative_pooled_prompt_embeds', negative_pooled_prompt_embeds) + add_time_ids = callback_outputs.pop('add_time_ids', add_time_ids) + negative_add_time_ids = callback_outputs.pop('negative_add_time_ids', negative_add_time_ids) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if XLA_AVAILABLE: + xm.mark_step() + if not output_type == 'latent': + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + elif latents.dtype != self.vae.dtype: + if torch.backends.mps.is_available(): + self.vae = self.vae.to(latents.dtype) + has_latents_mean = hasattr(self.vae.config, 'latents_mean') and self.vae.config.latents_mean is not None + has_latents_std = hasattr(self.vae.config, 'latents_std') and self.vae.config.latents_std is not None + if has_latents_mean and has_latents_std: + latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) + latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) + latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean + else: + latents = latents / self.vae.config.scaling_factor + image = self.vae.decode(latents, return_dict=False)[0] + if needs_upcasting: + self.vae.to(dtype=torch.float16) + else: + image = latents + if not output_type == 'latent': + if self.watermark is not None: + image = self.watermark.apply_watermark(image) + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return StableDiffusionXLPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, is_invisible_watermark_available, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from .pipeline_output import StableDiffusionXLPipelineOutput +if is_invisible_watermark_available(): + from .watermark import StableDiffusionXLWatermarker +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import StableDiffusionXLImg2ImgPipeline\n >>> from diffusers.utils import load_image\n\n >>> pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(\n ... "stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n >>> url = "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"\n\n >>> init_image = load_image(url).convert("RGB")\n >>> prompt = "a photo of an astronaut riding a horse on mars"\n >>> image = pipe(prompt, image=init_image).images[0]\n ```\n' + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusionXLImg2ImgPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, IPAdapterMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->image_encoder->unet->vae' + _optional_components = ['tokenizer', 'tokenizer_2', 'text_encoder', 'text_encoder_2', 'image_encoder', 'feature_extractor'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'add_text_embeds', 'add_time_ids', 'negative_pooled_prompt_embeds', 'add_neg_time_ids'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, image_encoder: CLIPVisionModelWithProjection=None, feature_extractor: CLIPImageProcessor=None, requires_aesthetics_score: bool=False, force_zeros_for_empty_prompt: bool=True, add_watermarker: Optional[bool]=None): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, image_encoder=image_encoder, feature_extractor=feature_extractor, scheduler=scheduler) + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.register_to_config(requires_aesthetics_score=requires_aesthetics_score) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() + if add_watermarker: + self.watermark = StableDiffusionXLWatermarker() + else: + self.watermark = None + + def encode_prompt(self, prompt: str, prompt_2: Optional[str]=None, device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[str]=None, negative_prompt_2: Optional[str]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) + else: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for (prompt, tokenizer, text_encoder) in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + text_inputs = tokenizer(prompt, padding='max_length', max_length=tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + prompt_embeds_list.append(prompt_embeds) + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + negative_prompt_embeds_list = [] + for (negative_prompt, tokenizer, text_encoder) in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer(negative_prompt, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True) + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + negative_prompt_embeds_list.append(negative_prompt_embeds) + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + if self.text_encoder_2 is not None: + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + if self.text_encoder_2 is not None: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, prompt_2, strength, num_inference_steps, callback_steps, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None): + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if num_inference_steps is None: + raise ValueError('`num_inference_steps` cannot be None.') + elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0: + raise ValueError(f'`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type {type(num_inference_steps)}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None): + if denoising_start is None: + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + else: + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - denoising_start * self.scheduler.config.num_train_timesteps)) + num_inference_steps = (self.scheduler.timesteps < discrete_timestep_cutoff).sum().item() + if self.scheduler.order == 2 and num_inference_steps % 2 == 0: + num_inference_steps = num_inference_steps + 1 + t_start = len(self.scheduler.timesteps) - num_inference_steps + timesteps = self.scheduler.timesteps[t_start:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start) + return (timesteps, num_inference_steps) + + def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True): + if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}') + latents_mean = latents_std = None + if hasattr(self.vae.config, 'latents_mean') and self.vae.config.latents_mean is not None: + latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1) + if hasattr(self.vae.config, 'latents_std') and self.vae.config.latents_std is not None: + latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1) + if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None: + self.text_encoder_2.to('cpu') + torch.cuda.empty_cache() + image = image.to(device=device, dtype=dtype) + batch_size = batch_size * num_images_per_prompt + if image.shape[1] == 4: + init_latents = image + else: + if self.vae.config.force_upcast: + image = image.float() + self.vae.to(dtype=torch.float32) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + elif isinstance(generator, list): + if image.shape[0] < batch_size and batch_size % image.shape[0] == 0: + image = torch.cat([image] * (batch_size // image.shape[0]), dim=0) + elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} ') + init_latents = [retrieve_latents(self.vae.encode(image[i:i + 1]), generator=generator[i]) for i in range(batch_size)] + init_latents = torch.cat(init_latents, dim=0) + else: + init_latents = retrieve_latents(self.vae.encode(image), generator=generator) + if self.vae.config.force_upcast: + self.vae.to(dtype) + init_latents = init_latents.to(dtype) + if latents_mean is not None and latents_std is not None: + latents_mean = latents_mean.to(device=device, dtype=dtype) + latents_std = latents_std.to(device=device, dtype=dtype) + init_latents = (init_latents - latents_mean) * self.vae.config.scaling_factor / latents_std + else: + init_latents = self.vae.config.scaling_factor * init_latents + if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: + additional_image_per_prompt = batch_size // init_latents.shape[0] + init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) + elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts.') + else: + init_latents = torch.cat([init_latents], dim=0) + if add_noise: + shape = init_latents.shape + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + init_latents = self.scheduler.add_noise(init_latents, noise, timestep) + latents = init_latents + return latents + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, aesthetic_score, negative_aesthetic_score, negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype, text_encoder_projection_dim=None): + if self.config.requires_aesthetics_score: + add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,)) + add_neg_time_ids = list(negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)) + else: + add_time_ids = list(original_size + crops_coords_top_left + target_size) + add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size) + passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + if expected_add_embed_dim > passed_add_embed_dim and expected_add_embed_dim - passed_add_embed_dim == self.unet.config.addition_time_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model.') + elif expected_add_embed_dim < passed_add_embed_dim and passed_add_embed_dim - expected_add_embed_dim == self.unet.config.addition_time_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model.') + elif expected_add_embed_dim != passed_add_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.') + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype) + return (add_time_ids, add_neg_time_ids) + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def guidance_rescale(self): + return self._guidance_rescale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def denoising_end(self): + return self._denoising_end + + @property + def denoising_start(self): + return self._denoising_start + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, image: PipelineImageInput=None, strength: float=0.3, num_inference_steps: int=50, timesteps: List[int]=None, sigmas: List[float]=None, denoising_start: Optional[float]=None, denoising_end: Optional[float]=None, guidance_scale: float=5.0, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, guidance_rescale: float=0.0, original_size: Tuple[int, int]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), target_size: Tuple[int, int]=None, negative_original_size: Optional[Tuple[int, int]]=None, negative_crops_coords_top_left: Tuple[int, int]=(0, 0), negative_target_size: Optional[Tuple[int, int]]=None, aesthetic_score: float=6.0, negative_aesthetic_score: float=2.5, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + self.check_inputs(prompt, prompt_2, strength, num_inference_steps, callback_steps, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs) + self._guidance_scale = guidance_scale + self._guidance_rescale = guidance_rescale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._denoising_end = denoising_end + self._denoising_start = denoising_start + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + text_encoder_lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt=prompt, prompt_2=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + image = self.image_processor.preprocess(image) + + def denoising_value_valid(dnv): + return isinstance(dnv, float) and 0 < dnv < 1 + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device, denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + add_noise = True if self.denoising_start is None else False + if latents is None: + latents = self.prepare_latents(image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator, add_noise) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + (height, width) = latents.shape[-2:] + height = height * self.vae_scale_factor + width = width * self.vae_scale_factor + original_size = original_size or (height, width) + target_size = target_size or (height, width) + if negative_original_size is None: + negative_original_size = original_size + if negative_target_size is None: + negative_target_size = target_size + add_text_embeds = pooled_prompt_embeds + if self.text_encoder_2 is None: + text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) + else: + text_encoder_projection_dim = self.text_encoder_2.config.projection_dim + (add_time_ids, add_neg_time_ids) = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, aesthetic_score, negative_aesthetic_score, negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1) + add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0) + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + if self.denoising_end is not None and self.denoising_start is not None and denoising_value_valid(self.denoising_end) and denoising_value_valid(self.denoising_start) and (self.denoising_start >= self.denoising_end): + raise ValueError(f'`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: ' + f' {self.denoising_end} when using type float.') + elif self.denoising_end is not None and denoising_value_valid(self.denoising_end): + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - self.denoising_end * self.scheduler.config.num_train_timesteps)) + num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) + timesteps = timesteps[:num_inference_steps] + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + added_cond_kwargs['image_embeds'] = image_embeds + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + latents = latents.to(latents_dtype) + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + add_text_embeds = callback_outputs.pop('add_text_embeds', add_text_embeds) + negative_pooled_prompt_embeds = callback_outputs.pop('negative_pooled_prompt_embeds', negative_pooled_prompt_embeds) + add_time_ids = callback_outputs.pop('add_time_ids', add_time_ids) + add_neg_time_ids = callback_outputs.pop('add_neg_time_ids', add_neg_time_ids) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if XLA_AVAILABLE: + xm.mark_step() + if not output_type == 'latent': + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + elif latents.dtype != self.vae.dtype: + if torch.backends.mps.is_available(): + self.vae = self.vae.to(latents.dtype) + has_latents_mean = hasattr(self.vae.config, 'latents_mean') and self.vae.config.latents_mean is not None + has_latents_std = hasattr(self.vae.config, 'latents_std') and self.vae.config.latents_std is not None + if has_latents_mean and has_latents_std: + latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) + latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) + latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean + else: + latents = latents / self.vae.config.scaling_factor + image = self.vae.decode(latents, return_dict=False)[0] + if needs_upcasting: + self.vae.to(dtype=torch.float16) + else: + image = latents + if self.watermark is not None: + image = self.watermark.apply_watermark(image) + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return StableDiffusionXLPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import numpy as np +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, is_invisible_watermark_available, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from .pipeline_output import StableDiffusionXLPipelineOutput +if is_invisible_watermark_available(): + from .watermark import StableDiffusionXLWatermarker +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import StableDiffusionXLInpaintPipeline\n >>> from diffusers.utils import load_image\n\n >>> pipe = StableDiffusionXLInpaintPipeline.from_pretrained(\n ... "stabilityai/stable-diffusion-xl-base-1.0",\n ... torch_dtype=torch.float16,\n ... variant="fp16",\n ... use_safetensors=True,\n ... )\n >>> pipe.to("cuda")\n\n >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"\n >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"\n\n >>> init_image = load_image(img_url).convert("RGB")\n >>> mask_image = load_image(mask_url).convert("RGB")\n\n >>> prompt = "A majestic tiger sitting on a bench"\n >>> image = pipe(\n ... prompt=prompt, image=init_image, mask_image=mask_image, num_inference_steps=50, strength=0.80\n ... ).images[0]\n ```\n' + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +def mask_pil_to_torch(mask, height, width): + if isinstance(mask, (PIL.Image.Image, np.ndarray)): + mask = [mask] + if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image): + mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask] + mask = np.concatenate([np.array(m.convert('L'))[None, None, :] for m in mask], axis=0) + mask = mask.astype(np.float32) / 255.0 + elif isinstance(mask, list) and isinstance(mask[0], np.ndarray): + mask = np.concatenate([m[None, None, :] for m in mask], axis=0) + mask = torch.from_numpy(mask) + return mask + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusionXLInpaintPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionXLLoraLoaderMixin, FromSingleFileMixin, IPAdapterMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->image_encoder->unet->vae' + _optional_components = ['tokenizer', 'tokenizer_2', 'text_encoder', 'text_encoder_2', 'image_encoder', 'feature_extractor'] + _callback_tensor_inputs = ['latents', 'prompt_embeds', 'negative_prompt_embeds', 'add_text_embeds', 'add_time_ids', 'negative_pooled_prompt_embeds', 'add_neg_time_ids', 'mask', 'masked_image_latents'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, image_encoder: CLIPVisionModelWithProjection=None, feature_extractor: CLIPImageProcessor=None, requires_aesthetics_score: bool=False, force_zeros_for_empty_prompt: bool=True, add_watermarker: Optional[bool]=None): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, image_encoder=image_encoder, feature_extractor=feature_extractor, scheduler=scheduler) + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.register_to_config(requires_aesthetics_score=requires_aesthetics_score) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.mask_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True) + add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() + if add_watermarker: + self.watermark = StableDiffusionXLWatermarker() + else: + self.watermark = None + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def encode_prompt(self, prompt: str, prompt_2: Optional[str]=None, device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[str]=None, negative_prompt_2: Optional[str]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) + else: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for (prompt, tokenizer, text_encoder) in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + text_inputs = tokenizer(prompt, padding='max_length', max_length=tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + prompt_embeds_list.append(prompt_embeds) + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + negative_prompt_embeds_list = [] + for (negative_prompt, tokenizer, text_encoder) in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer(negative_prompt, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True) + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + negative_prompt_embeds_list.append(negative_prompt_embeds) + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + if self.text_encoder_2 is not None: + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + if self.text_encoder_2 is not None: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, prompt_2, image, mask_image, height, width, strength, callback_steps, output_type, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None, padding_mask_crop=None): + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if padding_mask_crop is not None: + if not isinstance(image, PIL.Image.Image): + raise ValueError(f'The image should be a PIL image when inpainting mask crop, but is of type {type(image)}.') + if not isinstance(mask_image, PIL.Image.Image): + raise ValueError(f'The mask image should be a PIL image when inpainting mask crop, but is of type {type(mask_image)}.') + if output_type != 'pil': + raise ValueError(f'The output type should be PIL when inpainting mask crop, but is {output_type}.') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, image=None, timestep=None, is_strength_max=True, add_noise=True, return_noise=False, return_image_latents=False): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if (image is None or timestep is None) and (not is_strength_max): + raise ValueError('Since strength < 1. initial latents are to be initialised as a combination of Image + Noise.However, either the image or the noise timestep has not been provided.') + if image.shape[1] == 4: + image_latents = image.to(device=device, dtype=dtype) + image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) + elif return_image_latents or (latents is None and (not is_strength_max)): + image = image.to(device=device, dtype=dtype) + image_latents = self._encode_vae_image(image=image, generator=generator) + image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) + if latents is None and add_noise: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep) + latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents + elif add_noise: + noise = latents.to(device) + latents = noise * self.scheduler.init_noise_sigma + else: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = image_latents.to(device) + outputs = (latents,) + if return_noise: + outputs += (noise,) + if return_image_latents: + outputs += (image_latents,) + return outputs + + def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): + dtype = image.dtype + if self.vae.config.force_upcast: + image = image.float() + self.vae.to(dtype=torch.float32) + if isinstance(generator, list): + image_latents = [retrieve_latents(self.vae.encode(image[i:i + 1]), generator=generator[i]) for i in range(image.shape[0])] + image_latents = torch.cat(image_latents, dim=0) + else: + image_latents = retrieve_latents(self.vae.encode(image), generator=generator) + if self.vae.config.force_upcast: + self.vae.to(dtype) + image_latents = image_latents.to(dtype) + image_latents = self.vae.config.scaling_factor * image_latents + return image_latents + + def prepare_mask_latents(self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance): + mask = torch.nn.functional.interpolate(mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)) + mask = mask.to(device=device, dtype=dtype) + if mask.shape[0] < batch_size: + if not batch_size % mask.shape[0] == 0: + raise ValueError(f"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number of masks that you pass is divisible by the total requested batch size.") + mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) + mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask + if masked_image is not None and masked_image.shape[1] == 4: + masked_image_latents = masked_image + else: + masked_image_latents = None + if masked_image is not None: + if masked_image_latents is None: + masked_image = masked_image.to(device=device, dtype=dtype) + masked_image_latents = self._encode_vae_image(masked_image, generator=generator) + if masked_image_latents.shape[0] < batch_size: + if not batch_size % masked_image_latents.shape[0] == 0: + raise ValueError(f"The passed images and the required batch size don't match. Images are supposed to be duplicated to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed. Make sure the number of images that you pass is divisible by the total requested batch size.") + masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) + masked_image_latents = torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents + masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) + return (mask, masked_image_latents) + + def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None): + if denoising_start is None: + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + else: + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - denoising_start * self.scheduler.config.num_train_timesteps)) + num_inference_steps = (self.scheduler.timesteps < discrete_timestep_cutoff).sum().item() + if self.scheduler.order == 2 and num_inference_steps % 2 == 0: + num_inference_steps = num_inference_steps + 1 + t_start = len(self.scheduler.timesteps) - num_inference_steps + timesteps = self.scheduler.timesteps[t_start:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start) + return (timesteps, num_inference_steps) + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, aesthetic_score, negative_aesthetic_score, negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype, text_encoder_projection_dim=None): + if self.config.requires_aesthetics_score: + add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,)) + add_neg_time_ids = list(negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)) + else: + add_time_ids = list(original_size + crops_coords_top_left + target_size) + add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size) + passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + if expected_add_embed_dim > passed_add_embed_dim and expected_add_embed_dim - passed_add_embed_dim == self.unet.config.addition_time_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model.') + elif expected_add_embed_dim < passed_add_embed_dim and passed_add_embed_dim - expected_add_embed_dim == self.unet.config.addition_time_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model.') + elif expected_add_embed_dim != passed_add_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.') + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype) + return (add_time_ids, add_neg_time_ids) + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def guidance_rescale(self): + return self._guidance_rescale + + @property + def clip_skip(self): + return self._clip_skip + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def denoising_end(self): + return self._denoising_end + + @property + def denoising_start(self): + return self._denoising_start + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, image: PipelineImageInput=None, mask_image: PipelineImageInput=None, masked_image_latents: torch.Tensor=None, height: Optional[int]=None, width: Optional[int]=None, padding_mask_crop: Optional[int]=None, strength: float=0.9999, num_inference_steps: int=50, timesteps: List[int]=None, sigmas: List[float]=None, denoising_start: Optional[float]=None, denoising_end: Optional[float]=None, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, cross_attention_kwargs: Optional[Dict[str, Any]]=None, guidance_rescale: float=0.0, original_size: Tuple[int, int]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), target_size: Tuple[int, int]=None, negative_original_size: Optional[Tuple[int, int]]=None, negative_crops_coords_top_left: Tuple[int, int]=(0, 0), negative_target_size: Optional[Tuple[int, int]]=None, aesthetic_score: float=6.0, negative_aesthetic_score: float=2.5, clip_skip: Optional[int]=None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, prompt_2, image, mask_image, height, width, strength, callback_steps, output_type, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs, padding_mask_crop) + self._guidance_scale = guidance_scale + self._guidance_rescale = guidance_rescale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._denoising_end = denoising_end + self._denoising_start = denoising_start + self._interrupt = False + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + text_encoder_lora_scale = self.cross_attention_kwargs.get('scale', None) if self.cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt=prompt, prompt_2=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip) + + def denoising_value_valid(dnv): + return isinstance(dnv, float) and 0 < dnv < 1 + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device, denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None) + if num_inference_steps < 1: + raise ValueError(f'After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipelinesteps is {num_inference_steps} which is < 1 and not appropriate for this pipeline.') + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + is_strength_max = strength == 1.0 + if padding_mask_crop is not None: + crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop) + resize_mode = 'fill' + else: + crops_coords = None + resize_mode = 'default' + original_image = image + init_image = self.image_processor.preprocess(image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode) + init_image = init_image.to(dtype=torch.float32) + mask = self.mask_processor.preprocess(mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords) + if masked_image_latents is not None: + masked_image = masked_image_latents + elif init_image.shape[1] == 4: + masked_image = None + else: + masked_image = init_image * (mask < 0.5) + num_channels_latents = self.vae.config.latent_channels + num_channels_unet = self.unet.config.in_channels + return_image_latents = num_channels_unet == 4 + add_noise = True if self.denoising_start is None else False + latents_outputs = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, image=init_image, timestep=latent_timestep, is_strength_max=is_strength_max, add_noise=add_noise, return_noise=True, return_image_latents=return_image_latents) + if return_image_latents: + (latents, noise, image_latents) = latents_outputs + else: + (latents, noise) = latents_outputs + (mask, masked_image_latents) = self.prepare_mask_latents(mask, masked_image, batch_size * num_images_per_prompt, height, width, prompt_embeds.dtype, device, generator, self.do_classifier_free_guidance) + if num_channels_unet == 9: + num_channels_mask = mask.shape[1] + num_channels_masked_image = masked_image_latents.shape[1] + if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: + raise ValueError(f'Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} + `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image} = {num_channels_latents + num_channels_masked_image + num_channels_mask}. Please verify the config of `pipeline.unet` or your `mask_image` or `image` input.') + elif num_channels_unet != 4: + raise ValueError(f'The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}.') + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + (height, width) = latents.shape[-2:] + height = height * self.vae_scale_factor + width = width * self.vae_scale_factor + original_size = original_size or (height, width) + target_size = target_size or (height, width) + if negative_original_size is None: + negative_original_size = original_size + if negative_target_size is None: + negative_target_size = target_size + add_text_embeds = pooled_prompt_embeds + if self.text_encoder_2 is None: + text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) + else: + text_encoder_projection_dim = self.text_encoder_2.config.projection_dim + (add_time_ids, add_neg_time_ids) = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, aesthetic_score, negative_aesthetic_score, negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1) + add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0) + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + if self.denoising_end is not None and self.denoising_start is not None and denoising_value_valid(self.denoising_end) and denoising_value_valid(self.denoising_start) and (self.denoising_start >= self.denoising_end): + raise ValueError(f'`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: ' + f' {self.denoising_end} when using type float.') + elif self.denoising_end is not None and denoising_value_valid(self.denoising_end): + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - self.denoising_end * self.scheduler.config.num_train_timesteps)) + num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) + timesteps = timesteps[:num_inference_steps] + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + if self.interrupt: + continue + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + if num_channels_unet == 9: + latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + added_cond_kwargs['image_embeds'] = image_embeds + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + latents = latents.to(latents_dtype) + if num_channels_unet == 4: + init_latents_proper = image_latents + if self.do_classifier_free_guidance: + (init_mask, _) = mask.chunk(2) + else: + init_mask = mask + if i < len(timesteps) - 1: + noise_timestep = timesteps[i + 1] + init_latents_proper = self.scheduler.add_noise(init_latents_proper, noise, torch.tensor([noise_timestep])) + latents = (1 - init_mask) * init_latents_proper + init_mask * latents + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + prompt_embeds = callback_outputs.pop('prompt_embeds', prompt_embeds) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + add_text_embeds = callback_outputs.pop('add_text_embeds', add_text_embeds) + negative_pooled_prompt_embeds = callback_outputs.pop('negative_pooled_prompt_embeds', negative_pooled_prompt_embeds) + add_time_ids = callback_outputs.pop('add_time_ids', add_time_ids) + add_neg_time_ids = callback_outputs.pop('add_neg_time_ids', add_neg_time_ids) + mask = callback_outputs.pop('mask', mask) + masked_image_latents = callback_outputs.pop('masked_image_latents', masked_image_latents) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if XLA_AVAILABLE: + xm.mark_step() + if not output_type == 'latent': + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + elif latents.dtype != self.vae.dtype: + if torch.backends.mps.is_available(): + self.vae = self.vae.to(latents.dtype) + has_latents_mean = hasattr(self.vae.config, 'latents_mean') and self.vae.config.latents_mean is not None + has_latents_std = hasattr(self.vae.config, 'latents_std') and self.vae.config.latents_std is not None + if has_latents_mean and has_latents_std: + latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) + latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) + latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean + else: + latents = latents / self.vae.config.scaling_factor + image = self.vae.decode(latents, return_dict=False)[0] + if needs_upcasting: + self.vae.to(dtype=torch.float16) + else: + return StableDiffusionXLPipelineOutput(images=latents) + if self.watermark is not None: + image = self.watermark.apply_watermark(image) + image = self.image_processor.postprocess(image, output_type=output_type) + if padding_mask_crop is not None: + image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image] + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return StableDiffusionXLPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import PIL.Image +import torch +from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, UNet2DConditionModel +from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, is_invisible_watermark_available, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from .pipeline_output import StableDiffusionXLPipelineOutput +if is_invisible_watermark_available(): + from .watermark import StableDiffusionXLWatermarker +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import StableDiffusionXLInstructPix2PixPipeline\n >>> from diffusers.utils import load_image\n\n >>> resolution = 768\n >>> image = load_image(\n ... "https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png"\n ... ).resize((resolution, resolution))\n >>> edit_instruction = "Turn sky into a cloudy one"\n\n >>> pipe = StableDiffusionXLInstructPix2PixPipeline.from_pretrained(\n ... "diffusers/sdxl-instructpix2pix-768", torch_dtype=torch.float16\n ... ).to("cuda")\n\n >>> edited_image = pipe(\n ... prompt=edit_instruction,\n ... image=image,\n ... height=resolution,\n ... width=resolution,\n ... guidance_scale=3.0,\n ... image_guidance_scale=1.5,\n ... num_inference_steps=30,\n ... ).images[0]\n >>> edited_image\n ```\n' + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +class StableDiffusionXLInstructPix2PixPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->unet->vae' + _optional_components = ['tokenizer', 'tokenizer_2', 'text_encoder', 'text_encoder_2'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, force_zeros_for_empty_prompt: bool=True, add_watermarker: Optional[bool]=None, is_cosxl_edit: Optional[bool]=False): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, scheduler=scheduler) + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.default_sample_size = self.unet.config.sample_size + self.is_cosxl_edit = is_cosxl_edit + add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() + if add_watermarker: + self.watermark = StableDiffusionXLWatermarker() + else: + self.watermark = None + + def encode_prompt(self, prompt: str, prompt_2: Optional[str]=None, device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[str]=None, negative_prompt_2: Optional[str]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) + else: + scale_lora_layers(self.text_encoder_2, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for (prompt, tokenizer, text_encoder) in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + text_inputs = tokenizer(prompt, padding='max_length', max_length=tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + prompt_embeds = prompt_embeds.hidden_states[-2] + prompt_embeds_list.append(prompt_embeds) + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt, negative_prompt_2] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + negative_prompt_embeds_list = [] + for (negative_prompt, tokenizer, text_encoder) in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer(negative_prompt, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True) + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + negative_prompt_embeds_list.append(negative_prompt_embeds) + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + prompt_embeds_dtype = self.text_encoder_2.dtype if self.text_encoder_2 is not None else self.unet.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None): + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def prepare_image_latents(self, image, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None): + if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}') + image = image.to(device=device, dtype=dtype) + batch_size = batch_size * num_images_per_prompt + if image.shape[1] == 4: + image_latents = image + else: + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + image = image.float() + self.upcast_vae() + image_latents = retrieve_latents(self.vae.encode(image), sample_mode='argmax') + if needs_upcasting: + self.vae.to(dtype=torch.float16) + if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: + deprecation_message = f'You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial images (`image`). Initial images are now duplicating to match the number of text prompts. Note that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update your script to pass as many initial images as text prompts to suppress this warning.' + deprecate('len(prompt) != len(image)', '1.0.0', deprecation_message, standard_warn=False) + additional_image_per_prompt = batch_size // image_latents.shape[0] + image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) + elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts.') + else: + image_latents = torch.cat([image_latents], dim=0) + if do_classifier_free_guidance: + uncond_image_latents = torch.zeros_like(image_latents) + image_latents = torch.cat([image_latents, image_latents, uncond_image_latents], dim=0) + if image_latents.dtype != self.vae.dtype: + image_latents = image_latents.to(dtype=self.vae.dtype) + if self.is_cosxl_edit: + image_latents = image_latents * self.vae.config.scaling_factor + return image_latents + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.') + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + return add_time_ids + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor, FusedAttnProcessor2_0)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, image: PipelineImageInput=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=100, denoising_end: Optional[float]=None, guidance_scale: float=5.0, image_guidance_scale: float=1.5, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, guidance_rescale: float=0.0, original_size: Tuple[int, int]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), target_size: Tuple[int, int]=None): + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + original_size = original_size or (height, width) + target_size = target_size or (height, width) + self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + if image is None: + raise ValueError('`image` input cannot be undefined.') + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 and image_guidance_scale >= 1.0 + text_encoder_lora_scale = cross_attention_kwargs.get('scale', None) if cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt=prompt, prompt_2=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=text_encoder_lora_scale) + image = self.image_processor.preprocess(image, height=height, width=width).to(device) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + image_latents = self.prepare_image_latents(image, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, do_classifier_free_guidance) + num_channels_latents = self.vae.config.latent_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + num_channels_image = image_latents.shape[1] + if num_channels_latents + num_channels_image != self.unet.config.in_channels: + raise ValueError(f'Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} + `num_channels_image`: {num_channels_image} = {num_channels_latents + num_channels_image}. Please verify the config of `pipeline.unet` or your `image` input.') + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + add_text_embeds = pooled_prompt_embeds + if self.text_encoder_2 is None: + text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) + else: + text_encoder_projection_dim = self.text_encoder_2.config.projection_dim + add_time_ids = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds, negative_prompt_embeds], dim=0) + add_text_embeds = torch.cat([add_text_embeds, negative_pooled_prompt_embeds, negative_pooled_prompt_embeds], dim=0) + add_time_ids = torch.cat([add_time_ids, add_time_ids, add_time_ids], dim=0) + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + if denoising_end is not None and isinstance(denoising_end, float) and (denoising_end > 0) and (denoising_end < 1): + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - denoising_end * self.scheduler.config.num_train_timesteps)) + num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) + timesteps = timesteps[:num_inference_steps] + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 3) if do_classifier_free_guidance else latents + scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + scaled_latent_model_input = torch.cat([scaled_latent_model_input, image_latents], dim=1) + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + noise_pred = self.unet(scaled_latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred_text, noise_pred_image, noise_pred_uncond) = noise_pred.chunk(3) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_image) + image_guidance_scale * (noise_pred_image - noise_pred_uncond) + if do_classifier_free_guidance and guidance_rescale > 0.0: + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + latents = latents.to(latents_dtype) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if XLA_AVAILABLE: + xm.mark_step() + if not output_type == 'latent': + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + elif latents.dtype != self.vae.dtype: + if torch.backends.mps.is_available(): + self.vae = self.vae.to(latents.dtype) + has_latents_mean = hasattr(self.vae.config, 'latents_mean') and self.vae.config.latents_mean is not None + has_latents_std = hasattr(self.vae.config, 'latents_std') and self.vae.config.latents_std is not None + if has_latents_mean and has_latents_std: + latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) + latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) + latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean + else: + latents = latents / self.vae.config.scaling_factor + image = self.vae.decode(latents, return_dict=False)[0] + if needs_upcasting: + self.vae.to(dtype=torch.float16) + else: + return StableDiffusionXLPipelineOutput(images=latents) + if self.watermark is not None: + image = self.watermark.apply_watermark(image) + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return StableDiffusionXLPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/stable_diffusion_xl/watermark.py +import numpy as np +import torch +from ...utils import is_invisible_watermark_available +if is_invisible_watermark_available(): + from imwatermark import WatermarkEncoder +WATERMARK_MESSAGE = 197828617679262 +WATERMARK_BITS = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] + +class StableDiffusionXLWatermarker: + + def __init__(self): + self.watermark = WATERMARK_BITS + self.encoder = WatermarkEncoder() + self.encoder.set_watermark('bits', self.watermark) + + def apply_watermark(self, images: torch.Tensor): + if images.shape[-1] < 256: + return images + images = (255 * (images / 2 + 0.5)).cpu().permute(0, 2, 3, 1).float().numpy() + images = images[:, :, :, ::-1] + images = [self.encoder.encode(image, 'dwtDct')[:, :, ::-1] for image in images] + images = np.array(images) + images = torch.from_numpy(images).permute(0, 3, 1, 2) + images = torch.clamp(2 * (images / 255 - 0.5), min=-1.0, max=1.0) + return images + +# File: diffusers-main/src/diffusers/pipelines/stable_video_diffusion/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, BaseOutput, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure.update({'pipeline_stable_video_diffusion': ['StableVideoDiffusionPipeline', 'StableVideoDiffusionPipelineOutput']}) +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_stable_video_diffusion import StableVideoDiffusionPipeline, StableVideoDiffusionPipelineOutput +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +import inspect +from dataclasses import dataclass +from typing import Callable, Dict, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection +from ...image_processor import PipelineImageInput +from ...models import AutoencoderKLTemporalDecoder, UNetSpatioTemporalConditionModel +from ...schedulers import EulerDiscreteScheduler +from ...utils import BaseOutput, logging, replace_example_docstring +from ...utils.torch_utils import is_compiled_module, randn_tensor +from ...video_processor import VideoProcessor +from ..pipeline_utils import DiffusionPipeline +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusers import StableVideoDiffusionPipeline\n >>> from diffusers.utils import load_image, export_to_video\n\n >>> pipe = StableVideoDiffusionPipeline.from_pretrained(\n ... "stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"\n ... )\n >>> pipe.to("cuda")\n\n >>> image = load_image(\n ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd-docstring-example.jpeg"\n ... )\n >>> image = image.resize((1024, 576))\n\n >>> frames = pipe(image, num_frames=25, decode_chunk_size=8).frames[0]\n >>> export_to_video(frames, "generated.mp4", fps=7)\n ```\n' + +def _append_dims(x, target_dims): + dims_to_append = target_dims - x.ndim + if dims_to_append < 0: + raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less') + return x[(...,) + (None,) * dims_to_append] + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +@dataclass +class StableVideoDiffusionPipelineOutput(BaseOutput): + frames: Union[List[List[PIL.Image.Image]], np.ndarray, torch.Tensor] + +class StableVideoDiffusionPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'image_encoder->unet->vae' + _callback_tensor_inputs = ['latents'] + + def __init__(self, vae: AutoencoderKLTemporalDecoder, image_encoder: CLIPVisionModelWithProjection, unet: UNetSpatioTemporalConditionModel, scheduler: EulerDiscreteScheduler, feature_extractor: CLIPImageProcessor): + super().__init__() + self.register_modules(vae=vae, image_encoder=image_encoder, unet=unet, scheduler=scheduler, feature_extractor=feature_extractor) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.video_processor = VideoProcessor(do_resize=True, vae_scale_factor=self.vae_scale_factor) + + def _encode_image(self, image: PipelineImageInput, device: Union[str, torch.device], num_videos_per_prompt: int, do_classifier_free_guidance: bool) -> torch.Tensor: + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.video_processor.pil_to_numpy(image) + image = self.video_processor.numpy_to_pt(image) + image = image * 2.0 - 1.0 + image = _resize_with_antialiasing(image, (224, 224)) + image = (image + 1.0) / 2.0 + image = self.feature_extractor(images=image, do_normalize=True, do_center_crop=False, do_resize=False, do_rescale=False, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + image_embeddings = self.image_encoder(image).image_embeds + image_embeddings = image_embeddings.unsqueeze(1) + (bs_embed, seq_len, _) = image_embeddings.shape + image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1) + image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + negative_image_embeddings = torch.zeros_like(image_embeddings) + image_embeddings = torch.cat([negative_image_embeddings, image_embeddings]) + return image_embeddings + + def _encode_vae_image(self, image: torch.Tensor, device: Union[str, torch.device], num_videos_per_prompt: int, do_classifier_free_guidance: bool): + image = image.to(device=device) + image_latents = self.vae.encode(image).latent_dist.mode() + image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1) + if do_classifier_free_guidance: + negative_image_latents = torch.zeros_like(image_latents) + image_latents = torch.cat([negative_image_latents, image_latents]) + return image_latents + + def _get_add_time_ids(self, fps: int, motion_bucket_id: int, noise_aug_strength: float, dtype: torch.dtype, batch_size: int, num_videos_per_prompt: int, do_classifier_free_guidance: bool): + add_time_ids = [fps, motion_bucket_id, noise_aug_strength] + passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.') + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1) + if do_classifier_free_guidance: + add_time_ids = torch.cat([add_time_ids, add_time_ids]) + return add_time_ids + + def decode_latents(self, latents: torch.Tensor, num_frames: int, decode_chunk_size: int=14): + latents = latents.flatten(0, 1) + latents = 1 / self.vae.config.scaling_factor * latents + forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward + accepts_num_frames = 'num_frames' in set(inspect.signature(forward_vae_fn).parameters.keys()) + frames = [] + for i in range(0, latents.shape[0], decode_chunk_size): + num_frames_in = latents[i:i + decode_chunk_size].shape[0] + decode_kwargs = {} + if accepts_num_frames: + decode_kwargs['num_frames'] = num_frames_in + frame = self.vae.decode(latents[i:i + decode_chunk_size], **decode_kwargs).sample + frames.append(frame) + frames = torch.cat(frames, dim=0) + frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(0, 2, 1, 3, 4) + frames = frames.float() + return frames + + def check_inputs(self, image, height, width): + if not isinstance(image, torch.Tensor) and (not isinstance(image, PIL.Image.Image)) and (not isinstance(image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is {type(image)}') + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + + def prepare_latents(self, batch_size: int, num_frames: int, num_channels_latents: int, height: int, width: int, dtype: torch.dtype, device: Union[str, torch.device], generator: torch.Generator, latents: Optional[torch.Tensor]=None): + shape = (batch_size, num_frames, num_channels_latents // 2, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def do_classifier_free_guidance(self): + if isinstance(self.guidance_scale, (int, float)): + return self.guidance_scale > 1 + return self.guidance_scale.max() > 1 + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor], height: int=576, width: int=1024, num_frames: Optional[int]=None, num_inference_steps: int=25, sigmas: Optional[List[float]]=None, min_guidance_scale: float=1.0, max_guidance_scale: float=3.0, fps: int=7, motion_bucket_id: int=127, noise_aug_strength: float=0.02, decode_chunk_size: Optional[int]=None, num_videos_per_prompt: Optional[int]=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], return_dict: bool=True): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + num_frames = num_frames if num_frames is not None else self.unet.config.num_frames + decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else num_frames + self.check_inputs(image, height, width) + if isinstance(image, PIL.Image.Image): + batch_size = 1 + elif isinstance(image, list): + batch_size = len(image) + else: + batch_size = image.shape[0] + device = self._execution_device + self._guidance_scale = max_guidance_scale + image_embeddings = self._encode_image(image, device, num_videos_per_prompt, self.do_classifier_free_guidance) + fps = fps - 1 + image = self.video_processor.preprocess(image, height=height, width=width).to(device) + noise = randn_tensor(image.shape, generator=generator, device=device, dtype=image.dtype) + image = image + noise_aug_strength * noise + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.vae.to(dtype=torch.float32) + image_latents = self._encode_vae_image(image, device=device, num_videos_per_prompt=num_videos_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance) + image_latents = image_latents.to(image_embeddings.dtype) + if needs_upcasting: + self.vae.to(dtype=torch.float16) + image_latents = image_latents.unsqueeze(1).repeat(1, num_frames, 1, 1, 1) + added_time_ids = self._get_add_time_ids(fps, motion_bucket_id, noise_aug_strength, image_embeddings.dtype, batch_size, num_videos_per_prompt, self.do_classifier_free_guidance) + added_time_ids = added_time_ids.to(device) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, None, sigmas) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_videos_per_prompt, num_frames, num_channels_latents, height, width, image_embeddings.dtype, device, generator, latents) + guidance_scale = torch.linspace(min_guidance_scale, max_guidance_scale, num_frames).unsqueeze(0) + guidance_scale = guidance_scale.to(device, latents.dtype) + guidance_scale = guidance_scale.repeat(batch_size * num_videos_per_prompt, 1) + guidance_scale = _append_dims(guidance_scale, latents.ndim) + self._guidance_scale = guidance_scale + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + latent_model_input = torch.cat([latent_model_input, image_latents], dim=2) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=image_embeddings, added_time_ids=added_time_ids, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_cond) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents).prev_sample + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if not output_type == 'latent': + if needs_upcasting: + self.vae.to(dtype=torch.float16) + frames = self.decode_latents(latents, num_frames, decode_chunk_size) + frames = self.video_processor.postprocess_video(video=frames, output_type=output_type) + else: + frames = latents + self.maybe_free_model_hooks() + if not return_dict: + return frames + return StableVideoDiffusionPipelineOutput(frames=frames) + +def _resize_with_antialiasing(input, size, interpolation='bicubic', align_corners=True): + (h, w) = input.shape[-2:] + factors = (h / size[0], w / size[1]) + sigmas = (max((factors[0] - 1.0) / 2.0, 0.001), max((factors[1] - 1.0) / 2.0, 0.001)) + ks = (int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))) + if ks[0] % 2 == 0: + ks = (ks[0] + 1, ks[1]) + if ks[1] % 2 == 0: + ks = (ks[0], ks[1] + 1) + input = _gaussian_blur2d(input, ks, sigmas) + output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners) + return output + +def _compute_padding(kernel_size): + if len(kernel_size) < 2: + raise AssertionError(kernel_size) + computed = [k - 1 for k in kernel_size] + out_padding = 2 * len(kernel_size) * [0] + for i in range(len(kernel_size)): + computed_tmp = computed[-(i + 1)] + pad_front = computed_tmp // 2 + pad_rear = computed_tmp - pad_front + out_padding[2 * i + 0] = pad_front + out_padding[2 * i + 1] = pad_rear + return out_padding + +def _filter2d(input, kernel): + (b, c, h, w) = input.shape + tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype) + tmp_kernel = tmp_kernel.expand(-1, c, -1, -1) + (height, width) = tmp_kernel.shape[-2:] + padding_shape: List[int] = _compute_padding([height, width]) + input = torch.nn.functional.pad(input, padding_shape, mode='reflect') + tmp_kernel = tmp_kernel.reshape(-1, 1, height, width) + input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1)) + output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1) + out = output.view(b, c, h, w) + return out + +def _gaussian(window_size: int, sigma): + if isinstance(sigma, float): + sigma = torch.tensor([[sigma]]) + batch_size = sigma.shape[0] + x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1) + if window_size % 2 == 0: + x = x + 0.5 + gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0))) + return gauss / gauss.sum(-1, keepdim=True) + +def _gaussian_blur2d(input, kernel_size, sigma): + if isinstance(sigma, tuple): + sigma = torch.tensor([sigma], dtype=input.dtype) + else: + sigma = sigma.to(dtype=input.dtype) + (ky, kx) = (int(kernel_size[0]), int(kernel_size[1])) + bs = sigma.shape[0] + kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1)) + kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1)) + out_x = _filter2d(input, kernel_x[..., None, :]) + out = _filter2d(out_x, kernel_y[..., None]) + return out + +# File: diffusers-main/src/diffusers/pipelines/t2i_adapter/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_stable_diffusion_adapter'] = ['StableDiffusionAdapterPipeline'] + _import_structure['pipeline_stable_diffusion_xl_adapter'] = ['StableDiffusionXLAdapterPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_stable_diffusion_adapter import StableDiffusionAdapterPipeline + from .pipeline_stable_diffusion_xl_adapter import StableDiffusionXLAdapterPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +import inspect +from dataclasses import dataclass +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer +from ...image_processor import VaeImageProcessor +from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, MultiAdapter, T2IAdapter, UNet2DConditionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import PIL_INTERPOLATION, USE_PEFT_BACKEND, BaseOutput, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker + +@dataclass +class StableDiffusionAdapterPipelineOutput(BaseOutput): + images: Union[List[PIL.Image.Image], np.ndarray] + nsfw_content_detected: Optional[List[bool]] +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> from diffusers.utils import load_image\n >>> import torch\n >>> from diffusers import StableDiffusionAdapterPipeline, T2IAdapter\n\n >>> image = load_image(\n ... "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_ref.png"\n ... )\n\n >>> color_palette = image.resize((8, 8))\n >>> color_palette = color_palette.resize((512, 512), resample=Image.Resampling.NEAREST)\n\n >>> adapter = T2IAdapter.from_pretrained("TencentARC/t2iadapter_color_sd14v1", torch_dtype=torch.float16)\n >>> pipe = StableDiffusionAdapterPipeline.from_pretrained(\n ... "CompVis/stable-diffusion-v1-4",\n ... adapter=adapter,\n ... torch_dtype=torch.float16,\n ... )\n\n >>> pipe.to("cuda")\n\n >>> out_image = pipe(\n ... "At night, glowing cubes in front of the beach",\n ... image=color_palette,\n ... ).images[0]\n ```\n' + +def _preprocess_adapter_image(image, height, width): + if isinstance(image, torch.Tensor): + return image + elif isinstance(image, PIL.Image.Image): + image = [image] + if isinstance(image[0], PIL.Image.Image): + image = [np.array(i.resize((width, height), resample=PIL_INTERPOLATION['lanczos'])) for i in image] + image = [i[None, ..., None] if i.ndim == 2 else i[None, ...] for i in image] + image = np.concatenate(image, axis=0) + image = np.array(image).astype(np.float32) / 255.0 + image = image.transpose(0, 3, 1, 2) + image = torch.from_numpy(image) + elif isinstance(image[0], torch.Tensor): + if image[0].ndim == 3: + image = torch.stack(image, dim=0) + elif image[0].ndim == 4: + image = torch.cat(image, dim=0) + else: + raise ValueError(f'Invalid image tensor! Expecting image tensor with 3 or 4 dimension, but recive: {image[0].ndim}') + return image + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin): + model_cpu_offload_seq = 'text_encoder->adapter->unet->vae' + _optional_components = ['safety_checker', 'feature_extractor'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, adapter: Union[T2IAdapter, MultiAdapter, List[T2IAdapter]], scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool=True): + super().__init__() + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + if safety_checker is not None and feature_extractor is None: + raise ValueError("Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead.") + if isinstance(adapter, (list, tuple)): + adapter = MultiAdapter(adapter) + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, adapter=adapter, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def decode_latents(self, latents): + deprecation_message = 'The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead' + deprecate('decode_latents', '1.0.0', deprecation_message, standard_warn=False) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, callback_steps, image, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if isinstance(self.adapter, MultiAdapter): + if not isinstance(image, list): + raise ValueError('MultiAdapter is enabled, but `image` is not a list. Please pass a list of images to `image`.') + if len(image) != len(self.adapter.adapters): + raise ValueError(f'MultiAdapter requires passing the same number of images as adapters. Given {len(image)} images and {len(self.adapter.adapters)} adapters.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def _default_height_width(self, height, width, image): + while isinstance(image, list): + image = image[0] + if height is None: + if isinstance(image, PIL.Image.Image): + height = image.height + elif isinstance(image, torch.Tensor): + height = image.shape[-2] + height = height // self.adapter.downscale_factor * self.adapter.downscale_factor + if width is None: + if isinstance(image, PIL.Image.Image): + width = image.width + elif isinstance(image, torch.Tensor): + width = image.shape[-1] + width = width // self.adapter.downscale_factor * self.adapter.downscale_factor + return (height, width) + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, image: Union[torch.Tensor, PIL.Image.Image, List[PIL.Image.Image]]=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, timesteps: List[int]=None, sigmas: List[float]=None, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, adapter_conditioning_scale: Union[float, List[float]]=1.0, clip_skip: Optional[int]=None): + (height, width) = self._default_height_width(height, width, image) + device = self._execution_device + self.check_inputs(prompt, height, width, callback_steps, image, negative_prompt, prompt_embeds, negative_prompt_embeds) + self._guidance_scale = guidance_scale + if isinstance(self.adapter, MultiAdapter): + adapter_input = [] + for one_image in image: + one_image = _preprocess_adapter_image(one_image, height, width) + one_image = one_image.to(device=device, dtype=self.adapter.dtype) + adapter_input.append(one_image) + else: + adapter_input = _preprocess_adapter_image(image, height, width) + adapter_input = adapter_input.to(device=device, dtype=self.adapter.dtype) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clip_skip=clip_skip) + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + if isinstance(self.adapter, MultiAdapter): + adapter_state = self.adapter(adapter_input, adapter_conditioning_scale) + for (k, v) in enumerate(adapter_state): + adapter_state[k] = v + else: + adapter_state = self.adapter(adapter_input) + for (k, v) in enumerate(adapter_state): + adapter_state[k] = v * adapter_conditioning_scale + if num_images_per_prompt > 1: + for (k, v) in enumerate(adapter_state): + adapter_state[k] = v.repeat(num_images_per_prompt, 1, 1, 1) + if self.do_classifier_free_guidance: + for (k, v) in enumerate(adapter_state): + adapter_state[k] = torch.cat([v] * 2, dim=0) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=cross_attention_kwargs, down_intrablock_additional_residuals=[state.clone() for state in adapter_state], return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if output_type == 'latent': + image = latents + has_nsfw_concept = None + elif output_type == 'pil': + image = self.decode_latents(latents) + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + image = self.numpy_to_pil(image) + else: + image = self.decode_latents(latents) + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + self.maybe_free_model_hooks() + if not return_dict: + return (image, has_nsfw_concept) + return StableDiffusionAdapterPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + +# File: diffusers-main/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import numpy as np +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection +from ...image_processor import PipelineImageInput, VaeImageProcessor +from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ImageProjection, MultiAdapter, T2IAdapter, UNet2DConditionModel +from ...models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import PIL_INTERPOLATION, USE_PEFT_BACKEND, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import T2IAdapter, StableDiffusionXLAdapterPipeline, DDPMScheduler\n >>> from diffusers.utils import load_image\n\n >>> sketch_image = load_image("https://huggingface.co/Adapter/t2iadapter/resolve/main/sketch.png").convert("L")\n\n >>> model_id = "stabilityai/stable-diffusion-xl-base-1.0"\n\n >>> adapter = T2IAdapter.from_pretrained(\n ... "Adapter/t2iadapter",\n ... subfolder="sketch_sdxl_1.0",\n ... torch_dtype=torch.float16,\n ... adapter_type="full_adapter_xl",\n ... )\n >>> scheduler = DDPMScheduler.from_pretrained(model_id, subfolder="scheduler")\n\n >>> pipe = StableDiffusionXLAdapterPipeline.from_pretrained(\n ... model_id, adapter=adapter, torch_dtype=torch.float16, variant="fp16", scheduler=scheduler\n ... ).to("cuda")\n\n >>> generator = torch.manual_seed(42)\n >>> sketch_image_out = pipe(\n ... prompt="a photo of a dog in real world, high quality",\n ... negative_prompt="extra digit, fewer digits, cropped, worst quality, low quality",\n ... image=sketch_image,\n ... generator=generator,\n ... guidance_scale=7.5,\n ... ).images[0]\n ```\n' + +def _preprocess_adapter_image(image, height, width): + if isinstance(image, torch.Tensor): + return image + elif isinstance(image, PIL.Image.Image): + image = [image] + if isinstance(image[0], PIL.Image.Image): + image = [np.array(i.resize((width, height), resample=PIL_INTERPOLATION['lanczos'])) for i in image] + image = [i[None, ..., None] if i.ndim == 2 else i[None, ...] for i in image] + image = np.concatenate(image, axis=0) + image = np.array(image).astype(np.float32) / 255.0 + image = image.transpose(0, 3, 1, 2) + image = torch.from_numpy(image) + elif isinstance(image[0], torch.Tensor): + if image[0].ndim == 3: + image = torch.stack(image, dim=0) + elif image[0].ndim == 4: + image = torch.cat(image, dim=0) + else: + raise ValueError(f'Invalid image tensor! Expecting image tensor with 3 or 4 dimension, but recive: {image[0].ndim}') + return image + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +def retrieve_timesteps(scheduler, num_inference_steps: Optional[int]=None, device: Optional[Union[str, torch.device]]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None, **kwargs): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values') + if timesteps is not None: + accepts_timesteps = 'timesteps' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom timestep schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = 'sigmas' in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError(f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom sigmas schedules. Please check whether you are using the correct scheduler.") + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return (timesteps, num_inference_steps) + +class StableDiffusionXLAdapterPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionXLLoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->image_encoder->unet->vae' + _optional_components = ['tokenizer', 'tokenizer_2', 'text_encoder', 'text_encoder_2', 'feature_extractor', 'image_encoder'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, adapter: Union[T2IAdapter, MultiAdapter, List[T2IAdapter]], scheduler: KarrasDiffusionSchedulers, force_zeros_for_empty_prompt: bool=True, feature_extractor: CLIPImageProcessor=None, image_encoder: CLIPVisionModelWithProjection=None): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, adapter=adapter, scheduler=scheduler, feature_extractor=feature_extractor, image_encoder=image_encoder) + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.default_sample_size = self.unet.config.sample_size + + def encode_prompt(self, prompt: str, prompt_2: Optional[str]=None, device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[str]=None, negative_prompt_2: Optional[str]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) + else: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for (prompt, tokenizer, text_encoder) in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + text_inputs = tokenizer(prompt, padding='max_length', max_length=tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + prompt_embeds_list.append(prompt_embeds) + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + negative_prompt_embeds_list = [] + for (negative_prompt, tokenizer, text_encoder) in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer(negative_prompt, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True) + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + negative_prompt_embeds_list.append(negative_prompt_embeds) + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + if self.text_encoder_2 is not None: + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + if self.text_encoder_2 is not None: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder(torch.zeros_like(image), output_hidden_states=True).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + return (image_enc_hidden_states, uncond_image_enc_hidden_states) + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + return (image_embeds, uncond_image_embeds) + + def prepare_ip_adapter_image_embeds(self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError(f'`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters.') + for (single_ip_adapter_image, image_proj_layer) in zip(ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + (single_image_embeds, single_negative_image_embeds) = self.encode_image(single_ip_adapter_image, device, 1, output_hidden_state) + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + (single_negative_image_embeds, single_image_embeds) = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + ip_adapter_image_embeds = [] + for (i, single_image_embeds) in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + return ip_adapter_image_embeds + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, prompt_2, height, width, callback_steps, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError('Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined.') + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError(f'`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}') + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError(f'`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.') + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + return add_time_ids + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + def _default_height_width(self, height, width, image): + while isinstance(image, list): + image = image[0] + if height is None: + if isinstance(image, PIL.Image.Image): + height = image.height + elif isinstance(image, torch.Tensor): + height = image.shape[-2] + height = height // self.adapter.downscale_factor * self.adapter.downscale_factor + if width is None: + if isinstance(image, PIL.Image.Image): + width = image.width + elif isinstance(image, torch.Tensor): + width = image.shape[-1] + width = width // self.adapter.downscale_factor * self.adapter.downscale_factor + return (height, width) + + def get_guidance_scale_embedding(self, w: torch.Tensor, embedding_dim: int=512, dtype: torch.dtype=torch.float32) -> torch.Tensor: + assert len(w.shape) == 1 + w = w * 1000.0 + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, prompt_2: Optional[Union[str, List[str]]]=None, image: PipelineImageInput=None, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, timesteps: List[int]=None, sigmas: List[float]=None, denoising_end: Optional[float]=None, guidance_scale: float=5.0, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, ip_adapter_image: Optional[PipelineImageInput]=None, ip_adapter_image_embeds: Optional[List[torch.Tensor]]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, guidance_rescale: float=0.0, original_size: Optional[Tuple[int, int]]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), target_size: Optional[Tuple[int, int]]=None, negative_original_size: Optional[Tuple[int, int]]=None, negative_crops_coords_top_left: Tuple[int, int]=(0, 0), negative_target_size: Optional[Tuple[int, int]]=None, adapter_conditioning_scale: Union[float, List[float]]=1.0, adapter_conditioning_factor: float=1.0, clip_skip: Optional[int]=None): + (height, width) = self._default_height_width(height, width, image) + device = self._execution_device + if isinstance(self.adapter, MultiAdapter): + adapter_input = [] + for one_image in image: + one_image = _preprocess_adapter_image(one_image, height, width) + one_image = one_image.to(device=device, dtype=self.adapter.dtype) + adapter_input.append(one_image) + else: + adapter_input = _preprocess_adapter_image(image, height, width) + adapter_input = adapter_input.to(device=device, dtype=self.adapter.dtype) + original_size = original_size or (height, width) + target_size = target_size or (height, width) + self.check_inputs(prompt, prompt_2, height, width, callback_steps, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds) + self._guidance_scale = guidance_scale + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt=prompt, prompt_2=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, clip_skip=clip_skip) + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds(ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance) + (timesteps, num_inference_steps) = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, sigmas) + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding(guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim).to(device=device, dtype=latents.dtype) + if isinstance(self.adapter, MultiAdapter): + adapter_state = self.adapter(adapter_input, adapter_conditioning_scale) + for (k, v) in enumerate(adapter_state): + adapter_state[k] = v + else: + adapter_state = self.adapter(adapter_input) + for (k, v) in enumerate(adapter_state): + adapter_state[k] = v * adapter_conditioning_scale + if num_images_per_prompt > 1: + for (k, v) in enumerate(adapter_state): + adapter_state[k] = v.repeat(num_images_per_prompt, 1, 1, 1) + if self.do_classifier_free_guidance: + for (k, v) in enumerate(adapter_state): + adapter_state[k] = torch.cat([v] * 2, dim=0) + add_text_embeds = pooled_prompt_embeds + if self.text_encoder_2 is None: + text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) + else: + text_encoder_projection_dim = self.text_encoder_2.config.projection_dim + add_time_ids = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + if negative_original_size is not None and negative_target_size is not None: + negative_add_time_ids = self._get_add_time_ids(negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + else: + negative_add_time_ids = add_time_ids + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + if denoising_end is not None and isinstance(denoising_end, float) and (denoising_end > 0) and (denoising_end < 1): + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - denoising_end * self.scheduler.config.num_train_timesteps)) + num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) + timesteps = timesteps[:num_inference_steps] + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + added_cond_kwargs['image_embeds'] = image_embeds + if i < int(num_inference_steps * adapter_conditioning_factor): + down_intrablock_additional_residuals = [state.clone() for state in adapter_state] + else: + down_intrablock_additional_residuals = None + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=cross_attention_kwargs, down_intrablock_additional_residuals=down_intrablock_additional_residuals, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if self.do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + if self.do_classifier_free_guidance and guidance_rescale > 0.0: + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if not output_type == 'latent': + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + if needs_upcasting: + self.vae.to(dtype=torch.float16) + else: + image = latents + return StableDiffusionXLPipelineOutput(images=image) + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (image,) + return StableDiffusionXLPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/text_to_video_synthesis/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['pipeline_output'] = ['TextToVideoSDPipelineOutput'] + _import_structure['pipeline_text_to_video_synth'] = ['TextToVideoSDPipeline'] + _import_structure['pipeline_text_to_video_synth_img2img'] = ['VideoToVideoSDPipeline'] + _import_structure['pipeline_text_to_video_zero'] = ['TextToVideoZeroPipeline'] + _import_structure['pipeline_text_to_video_zero_sdxl'] = ['TextToVideoZeroSDXLPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_output import TextToVideoSDPipelineOutput + from .pipeline_text_to_video_synth import TextToVideoSDPipeline + from .pipeline_text_to_video_synth_img2img import VideoToVideoSDPipeline + from .pipeline_text_to_video_zero import TextToVideoZeroPipeline + from .pipeline_text_to_video_zero_sdxl import TextToVideoZeroSDXLPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +from dataclasses import dataclass +from typing import List, Union +import numpy as np +import PIL +import torch +from ...utils import BaseOutput + +@dataclass +class TextToVideoSDPipelineOutput(BaseOutput): + frames: Union[torch.Tensor, np.ndarray, List[List[PIL.Image.Image]]] + +# File: diffusers-main/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import torch +from transformers import CLIPTextModel, CLIPTokenizer +from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, UNet3DConditionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ...video_processor import VideoProcessor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from . import TextToVideoSDPipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import TextToVideoSDPipeline\n >>> from diffusers.utils import export_to_video\n\n >>> pipe = TextToVideoSDPipeline.from_pretrained(\n ... "damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16"\n ... )\n >>> pipe.enable_model_cpu_offload()\n\n >>> prompt = "Spiderman is surfing"\n >>> video_frames = pipe(prompt).frames[0]\n >>> video_path = export_to_video(video_frames)\n >>> video_path\n ```\n' + +class TextToVideoSDPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet3DConditionModel, scheduler: KarrasDiffusionSchedulers): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.video_processor = VideoProcessor(do_resize=False, vae_scale_factor=self.vae_scale_factor) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def decode_latents(self, latents): + latents = 1 / self.vae.config.scaling_factor * latents + (batch_size, channels, num_frames, height, width) = latents.shape + latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) + image = self.vae.decode(latents).sample + video = image[None, :].reshape((batch_size, num_frames, -1) + image.shape[2:]).permute(0, 2, 1, 3, 4) + video = video.float() + return video + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def prepare_latents(self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, height: Optional[int]=None, width: Optional[int]=None, num_frames: int=16, num_inference_steps: int=50, guidance_scale: float=9.0, negative_prompt: Optional[Union[str, List[str]]]=None, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='np', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: Optional[int]=None): + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + num_images_per_prompt = 1 + self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + text_encoder_lora_scale = cross_attention_kwargs.get('scale', None) if cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, num_frames, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + (bsz, channel, frames, width, height) = latents.shape + latents = latents.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height) + noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + latents = latents[None, :].reshape(bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if output_type == 'latent': + video = latents + else: + video_tensor = self.decode_latents(latents) + video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (video,) + return TextToVideoSDPipelineOutput(frames=video) + +# File: diffusers-main/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +import inspect +from typing import Any, Callable, Dict, List, Optional, Union +import numpy as np +import torch +from transformers import CLIPTextModel, CLIPTokenizer +from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, UNet3DConditionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ...video_processor import VideoProcessor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from . import TextToVideoSDPipelineOutput +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler\n >>> from diffusers.utils import export_to_video\n\n >>> pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16)\n >>> pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)\n >>> pipe.to("cuda")\n\n >>> prompt = "spiderman running in the desert"\n >>> video_frames = pipe(prompt, num_inference_steps=40, height=320, width=576, num_frames=24).frames[0]\n >>> # safe low-res video\n >>> video_path = export_to_video(video_frames, output_video_path="./video_576_spiderman.mp4")\n\n >>> # let\'s offload the text-to-image model\n >>> pipe.to("cpu")\n\n >>> # and load the image-to-image model\n >>> pipe = DiffusionPipeline.from_pretrained(\n ... "cerspense/zeroscope_v2_XL", torch_dtype=torch.float16, revision="refs/pr/15"\n ... )\n >>> pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)\n >>> pipe.enable_model_cpu_offload()\n\n >>> # The VAE consumes A LOT of memory, let\'s make sure we run it in sliced mode\n >>> pipe.vae.enable_slicing()\n\n >>> # now let\'s upscale it\n >>> video = [Image.fromarray(frame).resize((1024, 576)) for frame in video_frames]\n\n >>> # and denoise it\n >>> video_frames = pipe(prompt, video=video, strength=0.6).frames[0]\n >>> video_path = export_to_video(video_frames, output_video_path="./video_1024_spiderman.mp4")\n >>> video_path\n ```\n' + +def retrieve_latents(encoder_output: torch.Tensor, generator: Optional[torch.Generator]=None, sample_mode: str='sample'): + if hasattr(encoder_output, 'latent_dist') and sample_mode == 'sample': + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, 'latent_dist') and sample_mode == 'argmax': + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, 'latents'): + return encoder_output.latents + else: + raise AttributeError('Could not access latents of provided encoder_output') + +class VideoToVideoSDPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin): + model_cpu_offload_seq = 'text_encoder->unet->vae' + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet3DConditionModel, scheduler: KarrasDiffusionSchedulers): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.video_processor = VideoProcessor(do_resize=False, vae_scale_factor=self.vae_scale_factor) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def decode_latents(self, latents): + latents = 1 / self.vae.config.scaling_factor * latents + (batch_size, channels, num_frames, height, width) = latents.shape + latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) + image = self.vae.decode(latents).sample + video = image[None, :].reshape((batch_size, num_frames, -1) + image.shape[2:]).permute(0, 2, 1, 3, 4) + video = video.float() + return video + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, strength, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None): + if strength < 0 or strength > 1: + raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def get_timesteps(self, num_inference_steps, strength, device): + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] + if hasattr(self.scheduler, 'set_begin_index'): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + return (timesteps, num_inference_steps - t_start) + + def prepare_latents(self, video, timestep, batch_size, dtype, device, generator=None): + video = video.to(device=device, dtype=dtype) + (bsz, channel, frames, width, height) = video.shape + video = video.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height) + if video.shape[1] == 4: + init_latents = video + else: + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + elif isinstance(generator, list): + init_latents = [retrieve_latents(self.vae.encode(video[i:i + 1]), generator=generator[i]) for i in range(batch_size)] + init_latents = torch.cat(init_latents, dim=0) + else: + init_latents = retrieve_latents(self.vae.encode(video), generator=generator) + init_latents = self.vae.config.scaling_factor * init_latents + if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `video` of batch size {init_latents.shape[0]} to {batch_size} text prompts.') + else: + init_latents = torch.cat([init_latents], dim=0) + shape = init_latents.shape + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + init_latents = self.scheduler.add_noise(init_latents, noise, timestep) + latents = init_latents + latents = latents[None, :].reshape((bsz, frames, latents.shape[1]) + latents.shape[2:]).permute(0, 2, 1, 3, 4) + return latents + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Union[str, List[str]]=None, video: Union[List[np.ndarray], torch.Tensor]=None, strength: float=0.6, num_inference_steps: int=50, guidance_scale: float=15.0, negative_prompt: Optional[Union[str, List[str]]]=None, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='np', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, clip_skip: Optional[int]=None): + num_images_per_prompt = 1 + self.check_inputs(prompt, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + text_encoder_lora_scale = cross_attention_kwargs.get('scale', None) if cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + video = self.video_processor.preprocess_video(video) + self.scheduler.set_timesteps(num_inference_steps, device=device) + (timesteps, num_inference_steps) = self.get_timesteps(num_inference_steps, strength, device) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + latents = self.prepare_latents(video, latent_timestep, batch_size, prompt_embeds.dtype, device, generator) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + (bsz, channel, frames, width, height) = latents.shape + latents = latents.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height) + noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + latents = latents[None, :].reshape(bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4) + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None: + self.unet.to('cpu') + if output_type == 'latent': + video = latents + else: + video_tensor = self.decode_latents(latents) + video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type) + self.maybe_free_model_hooks() + if not return_dict: + return (video,) + return TextToVideoSDPipelineOutput(frames=video) + +# File: diffusers-main/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +import copy +import inspect +from dataclasses import dataclass +from typing import Callable, List, Optional, Union +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from torch.nn.functional import grid_sample +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer +from ...image_processor import VaeImageProcessor +from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, UNet2DConditionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, BaseOutput, logging, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from ..stable_diffusion import StableDiffusionSafetyChecker +logger = logging.get_logger(__name__) + +def rearrange_0(tensor, f): + (F, C, H, W) = tensor.size() + tensor = torch.permute(torch.reshape(tensor, (F // f, f, C, H, W)), (0, 2, 1, 3, 4)) + return tensor + +def rearrange_1(tensor): + (B, C, F, H, W) = tensor.size() + return torch.reshape(torch.permute(tensor, (0, 2, 1, 3, 4)), (B * F, C, H, W)) + +def rearrange_3(tensor, f): + (F, D, C) = tensor.size() + return torch.reshape(tensor, (F // f, f, D, C)) + +def rearrange_4(tensor): + (B, F, D, C) = tensor.size() + return torch.reshape(tensor, (B * F, D, C)) + +class CrossFrameAttnProcessor: + + def __init__(self, batch_size=2): + self.batch_size = batch_size + + def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None): + (batch_size, sequence_length, _) = hidden_states.shape + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + query = attn.to_q(hidden_states) + is_cross_attention = encoder_hidden_states is not None + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + if not is_cross_attention: + video_length = key.size()[0] // self.batch_size + first_frame_index = [0] * video_length + key = rearrange_3(key, video_length) + key = key[:, first_frame_index] + value = rearrange_3(value, video_length) + value = value[:, first_frame_index] + key = rearrange_4(key) + value = rearrange_4(value) + query = attn.head_to_batch_dim(query) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + attention_probs = attn.get_attention_scores(query, key, attention_mask) + hidden_states = torch.bmm(attention_probs, value) + hidden_states = attn.batch_to_head_dim(hidden_states) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + return hidden_states + +class CrossFrameAttnProcessor2_0: + + def __init__(self, batch_size=2): + if not hasattr(F, 'scaled_dot_product_attention'): + raise ImportError('AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') + self.batch_size = batch_size + + def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None): + (batch_size, sequence_length, _) = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + inner_dim = hidden_states.shape[-1] + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + query = attn.to_q(hidden_states) + is_cross_attention = encoder_hidden_states is not None + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + if not is_cross_attention: + video_length = max(1, key.size()[0] // self.batch_size) + first_frame_index = [0] * video_length + key = rearrange_3(key, video_length) + key = key[:, first_frame_index] + value = rearrange_3(value, video_length) + value = value[:, first_frame_index] + key = rearrange_4(key) + value = rearrange_4(value) + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + return hidden_states + +@dataclass +class TextToVideoPipelineOutput(BaseOutput): + images: Union[List[PIL.Image.Image], np.ndarray] + nsfw_content_detected: Optional[List[bool]] + +def coords_grid(batch, ht, wd, device): + coords = torch.meshgrid(torch.arange(ht, device=device), torch.arange(wd, device=device)) + coords = torch.stack(coords[::-1], dim=0).float() + return coords[None].repeat(batch, 1, 1, 1) + +def warp_single_latent(latent, reference_flow): + (_, _, H, W) = reference_flow.size() + (_, _, h, w) = latent.size() + coords0 = coords_grid(1, H, W, device=latent.device).to(latent.dtype) + coords_t0 = coords0 + reference_flow + coords_t0[:, 0] /= W + coords_t0[:, 1] /= H + coords_t0 = coords_t0 * 2.0 - 1.0 + coords_t0 = F.interpolate(coords_t0, size=(h, w), mode='bilinear') + coords_t0 = torch.permute(coords_t0, (0, 2, 3, 1)) + warped = grid_sample(latent, coords_t0, mode='nearest', padding_mode='reflection') + return warped + +def create_motion_field(motion_field_strength_x, motion_field_strength_y, frame_ids, device, dtype): + seq_length = len(frame_ids) + reference_flow = torch.zeros((seq_length, 2, 512, 512), device=device, dtype=dtype) + for fr_idx in range(seq_length): + reference_flow[fr_idx, 0, :, :] = motion_field_strength_x * frame_ids[fr_idx] + reference_flow[fr_idx, 1, :, :] = motion_field_strength_y * frame_ids[fr_idx] + return reference_flow + +def create_motion_field_and_warp_latents(motion_field_strength_x, motion_field_strength_y, frame_ids, latents): + motion_field = create_motion_field(motion_field_strength_x=motion_field_strength_x, motion_field_strength_y=motion_field_strength_y, frame_ids=frame_ids, device=latents.device, dtype=latents.dtype) + warped_latents = latents.clone().detach() + for i in range(len(warped_latents)): + warped_latents[i] = warp_single_latent(latents[i][None], motion_field[i][None]) + return warped_latents + +class TextToVideoZeroPipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin): + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool=True): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) + if safety_checker is None and requires_safety_checker: + logger.warning(f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + + def forward_loop(self, x_t0, t0, t1, generator): + eps = randn_tensor(x_t0.size(), generator=generator, dtype=x_t0.dtype, device=x_t0.device) + alpha_vec = torch.prod(self.scheduler.alphas[t0:t1]) + x_t1 = torch.sqrt(alpha_vec) * x_t0 + torch.sqrt(1 - alpha_vec) * eps + return x_t1 + + def backward_loop(self, latents, timesteps, prompt_embeds, guidance_scale, callback, callback_steps, num_warmup_steps, extra_step_kwargs, cross_attention_kwargs=None): + do_classifier_free_guidance = guidance_scale > 1.0 + num_steps = (len(timesteps) - num_warmup_steps) // self.scheduler.order + with self.progress_bar(total=num_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs).sample + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + return latents.clone().detach() + + def check_inputs(self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + @torch.no_grad() + def __call__(self, prompt: Union[str, List[str]], video_length: Optional[int]=8, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, num_videos_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, motion_field_strength_x: float=12, motion_field_strength_y: float=12, output_type: Optional[str]='tensor', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: Optional[int]=1, t0: int=44, t1: int=47, frame_ids: Optional[List[int]]=None): + assert video_length > 0 + if frame_ids is None: + frame_ids = list(range(video_length)) + assert len(frame_ids) == video_length + assert num_videos_per_prompt == 1 + original_attn_proc = self.unet.attn_processors + processor = CrossFrameAttnProcessor2_0(batch_size=2) if hasattr(F, 'scaled_dot_product_attention') else CrossFrameAttnProcessor(batch_size=2) + self.unet.set_attn_processor(processor) + if isinstance(prompt, str): + prompt = [prompt] + if isinstance(negative_prompt, str): + negative_prompt = [negative_prompt] + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + self.check_inputs(prompt, height, width, callback_steps) + batch_size = 1 if isinstance(prompt, str) else len(prompt) + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + prompt_embeds_tuple = self.encode_prompt(prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_videos_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + x_1_t1 = self.backward_loop(timesteps=timesteps[:-t1 - 1], prompt_embeds=prompt_embeds, latents=latents, guidance_scale=guidance_scale, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=num_warmup_steps) + scheduler_copy = copy.deepcopy(self.scheduler) + x_1_t0 = self.backward_loop(timesteps=timesteps[-t1 - 1:-t0 - 1], prompt_embeds=prompt_embeds, latents=x_1_t1, guidance_scale=guidance_scale, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=0) + x_2k_t0 = x_1_t0.repeat(video_length - 1, 1, 1, 1) + x_2k_t0 = create_motion_field_and_warp_latents(motion_field_strength_x=motion_field_strength_x, motion_field_strength_y=motion_field_strength_y, latents=x_2k_t0, frame_ids=frame_ids[1:]) + x_2k_t1 = self.forward_loop(x_t0=x_2k_t0, t0=timesteps[-t0 - 1].item(), t1=timesteps[-t1 - 1].item(), generator=generator) + x_1k_t1 = torch.cat([x_1_t1, x_2k_t1]) + (b, l, d) = prompt_embeds.size() + prompt_embeds = prompt_embeds[:, None].repeat(1, video_length, 1, 1).reshape(b * video_length, l, d) + self.scheduler = scheduler_copy + x_1k_0 = self.backward_loop(timesteps=timesteps[-t1 - 1:], prompt_embeds=prompt_embeds, latents=x_1k_t1, guidance_scale=guidance_scale, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=0) + latents = x_1k_0 + if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None: + self.unet.to('cpu') + torch.cuda.empty_cache() + if output_type == 'latent': + image = latents + has_nsfw_concept = None + else: + image = self.decode_latents(latents) + (image, has_nsfw_concept) = self.run_safety_checker(image, device, prompt_embeds.dtype) + self.maybe_free_model_hooks() + self.unet.set_attn_processor(original_attn_proc) + if not return_dict: + return (image, has_nsfw_concept) + return TextToVideoPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type='pil') + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors='pt').to(device) + (image, has_nsfw_concept) = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype)) + return (image, has_nsfw_concept) + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def decode_latents(self, latents): + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + +# File: diffusers-main/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +import copy +import inspect +from dataclasses import dataclass +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import numpy as np +import PIL +import torch +import torch.nn.functional as F +from torch.nn.functional import grid_sample +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection +from ...image_processor import VaeImageProcessor +from ...loaders import StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, UNet2DConditionModel +from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, BaseOutput, is_invisible_watermark_available, logging, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +if is_invisible_watermark_available(): + from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker +logger = logging.get_logger(__name__) + +def rearrange_0(tensor, f): + (F, C, H, W) = tensor.size() + tensor = torch.permute(torch.reshape(tensor, (F // f, f, C, H, W)), (0, 2, 1, 3, 4)) + return tensor + +def rearrange_1(tensor): + (B, C, F, H, W) = tensor.size() + return torch.reshape(torch.permute(tensor, (0, 2, 1, 3, 4)), (B * F, C, H, W)) + +def rearrange_3(tensor, f): + (F, D, C) = tensor.size() + return torch.reshape(tensor, (F // f, f, D, C)) + +def rearrange_4(tensor): + (B, F, D, C) = tensor.size() + return torch.reshape(tensor, (B * F, D, C)) + +class CrossFrameAttnProcessor: + + def __init__(self, batch_size=2): + self.batch_size = batch_size + + def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None): + (batch_size, sequence_length, _) = hidden_states.shape + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + query = attn.to_q(hidden_states) + is_cross_attention = encoder_hidden_states is not None + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + if not is_cross_attention: + video_length = key.size()[0] // self.batch_size + first_frame_index = [0] * video_length + key = rearrange_3(key, video_length) + key = key[:, first_frame_index] + value = rearrange_3(value, video_length) + value = value[:, first_frame_index] + key = rearrange_4(key) + value = rearrange_4(value) + query = attn.head_to_batch_dim(query) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + attention_probs = attn.get_attention_scores(query, key, attention_mask) + hidden_states = torch.bmm(attention_probs, value) + hidden_states = attn.batch_to_head_dim(hidden_states) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + return hidden_states + +class CrossFrameAttnProcessor2_0: + + def __init__(self, batch_size=2): + if not hasattr(F, 'scaled_dot_product_attention'): + raise ImportError('AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.') + self.batch_size = batch_size + + def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None): + (batch_size, sequence_length, _) = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + inner_dim = hidden_states.shape[-1] + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + query = attn.to_q(hidden_states) + is_cross_attention = encoder_hidden_states is not None + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + if not is_cross_attention: + video_length = max(1, key.size()[0] // self.batch_size) + first_frame_index = [0] * video_length + key = rearrange_3(key, video_length) + key = key[:, first_frame_index] + value = rearrange_3(value, video_length) + value = value[:, first_frame_index] + key = rearrange_4(key) + value = rearrange_4(value) + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) + return hidden_states + +@dataclass +class TextToVideoSDXLPipelineOutput(BaseOutput): + images: Union[List[PIL.Image.Image], np.ndarray] + +def coords_grid(batch, ht, wd, device): + coords = torch.meshgrid(torch.arange(ht, device=device), torch.arange(wd, device=device)) + coords = torch.stack(coords[::-1], dim=0).float() + return coords[None].repeat(batch, 1, 1, 1) + +def warp_single_latent(latent, reference_flow): + (_, _, H, W) = reference_flow.size() + (_, _, h, w) = latent.size() + coords0 = coords_grid(1, H, W, device=latent.device).to(latent.dtype) + coords_t0 = coords0 + reference_flow + coords_t0[:, 0] /= W + coords_t0[:, 1] /= H + coords_t0 = coords_t0 * 2.0 - 1.0 + coords_t0 = F.interpolate(coords_t0, size=(h, w), mode='bilinear') + coords_t0 = torch.permute(coords_t0, (0, 2, 3, 1)) + warped = grid_sample(latent, coords_t0, mode='nearest', padding_mode='reflection') + return warped + +def create_motion_field(motion_field_strength_x, motion_field_strength_y, frame_ids, device, dtype): + seq_length = len(frame_ids) + reference_flow = torch.zeros((seq_length, 2, 512, 512), device=device, dtype=dtype) + for fr_idx in range(seq_length): + reference_flow[fr_idx, 0, :, :] = motion_field_strength_x * frame_ids[fr_idx] + reference_flow[fr_idx, 1, :, :] = motion_field_strength_y * frame_ids[fr_idx] + return reference_flow + +def create_motion_field_and_warp_latents(motion_field_strength_x, motion_field_strength_y, frame_ids, latents): + motion_field = create_motion_field(motion_field_strength_x=motion_field_strength_x, motion_field_strength_y=motion_field_strength_y, frame_ids=frame_ids, device=latents.device, dtype=latents.dtype) + warped_latents = latents.clone().detach() + for i in range(len(warped_latents)): + warped_latents[i] = warp_single_latent(latents[i][None], motion_field[i][None]) + return warped_latents + +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + +class TextToVideoZeroSDXLPipeline(DiffusionPipeline, StableDiffusionMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin): + model_cpu_offload_seq = 'text_encoder->text_encoder_2->unet->vae' + _optional_components = ['tokenizer', 'tokenizer_2', 'text_encoder', 'text_encoder_2', 'image_encoder', 'feature_extractor'] + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, image_encoder: CLIPVisionModelWithProjection=None, feature_extractor: CLIPImageProcessor=None, force_zeros_for_empty_prompt: bool=True, add_watermarker: Optional[bool]=None): + super().__init__() + self.register_modules(vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, scheduler=scheduler, image_encoder=image_encoder, feature_extractor=feature_extractor) + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.default_sample_size = self.unet.config.sample_size + add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() + if add_watermarker: + self.watermark = StableDiffusionXLWatermarker() + else: + self.watermark = None + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance(self.vae.decoder.mid_block.attentions[0].processor, (AttnProcessor2_0, XFormersAttnProcessor, FusedAttnProcessor2_0)) + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError(f'Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.') + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + return add_time_ids + + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def check_inputs(self, prompt, prompt_2, height, width, callback_steps, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, callback_on_step_end_tensor_inputs=None): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + elif prompt_2 is not None and (not isinstance(prompt_2, str) and (not isinstance(prompt_2, list))): + raise ValueError(f'`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError('If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`.') + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError('If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`.') + + def encode_prompt(self, prompt: str, prompt_2: Optional[str]=None, device: Optional[torch.device]=None, num_images_per_prompt: int=1, do_classifier_free_guidance: bool=True, negative_prompt: Optional[str]=None, negative_prompt_2: Optional[str]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + device = device or self._execution_device + if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) + else: + scale_lora_layers(self.text_encoder_2, lora_scale) + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for (prompt, tokenizer, text_encoder) in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + text_inputs = tokenizer(prompt, padding='max_length', max_length=tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}') + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds[0] + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + prompt_embeds_list.append(prompt_embeds) + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or '' + negative_prompt_2 = negative_prompt_2 or negative_prompt + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + negative_prompt_embeds_list = [] + for (negative_prompt, tokenizer, text_encoder) in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer(negative_prompt, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True) + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + negative_prompt_embeds_list.append(negative_prompt_embeds) + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + if self.text_encoder_2 is not None: + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + if self.text_encoder_2 is not None: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(bs_embed * num_images_per_prompt, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + return (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + + def forward_loop(self, x_t0, t0, t1, generator): + eps = randn_tensor(x_t0.size(), generator=generator, dtype=x_t0.dtype, device=x_t0.device) + alpha_vec = torch.prod(self.scheduler.alphas[t0:t1]) + x_t1 = torch.sqrt(alpha_vec) * x_t0 + torch.sqrt(1 - alpha_vec) * eps + return x_t1 + + def backward_loop(self, latents, timesteps, prompt_embeds, guidance_scale, callback, callback_steps, num_warmup_steps, extra_step_kwargs, add_text_embeds, add_time_ids, cross_attention_kwargs=None, guidance_rescale: float=0.0): + do_classifier_free_guidance = guidance_scale > 1.0 + num_steps = (len(timesteps) - num_warmup_steps) // self.scheduler.order + with self.progress_bar(total=num_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + added_cond_kwargs = {'text_embeds': add_text_embeds, 'time_ids': add_time_ids} + noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False)[0] + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + if do_classifier_free_guidance and guidance_rescale > 0.0: + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + callback(i, t, latents) + return latents.clone().detach() + + @torch.no_grad() + def __call__(self, prompt: Union[str, List[str]], prompt_2: Optional[Union[str, List[str]]]=None, video_length: Optional[int]=8, height: Optional[int]=None, width: Optional[int]=None, num_inference_steps: int=50, denoising_end: Optional[float]=None, guidance_scale: float=7.5, negative_prompt: Optional[Union[str, List[str]]]=None, negative_prompt_2: Optional[Union[str, List[str]]]=None, num_videos_per_prompt: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, frame_ids: Optional[List[int]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, pooled_prompt_embeds: Optional[torch.Tensor]=None, negative_pooled_prompt_embeds: Optional[torch.Tensor]=None, latents: Optional[torch.Tensor]=None, motion_field_strength_x: float=12, motion_field_strength_y: float=12, output_type: Optional[str]='tensor', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1, cross_attention_kwargs: Optional[Dict[str, Any]]=None, guidance_rescale: float=0.0, original_size: Optional[Tuple[int, int]]=None, crops_coords_top_left: Tuple[int, int]=(0, 0), target_size: Optional[Tuple[int, int]]=None, t0: int=44, t1: int=47): + assert video_length > 0 + if frame_ids is None: + frame_ids = list(range(video_length)) + assert len(frame_ids) == video_length + assert num_videos_per_prompt == 1 + original_attn_proc = self.unet.attn_processors + processor = CrossFrameAttnProcessor2_0(batch_size=2) if hasattr(F, 'scaled_dot_product_attention') else CrossFrameAttnProcessor(batch_size=2) + self.unet.set_attn_processor(processor) + if isinstance(prompt, str): + prompt = [prompt] + if isinstance(negative_prompt, str): + negative_prompt = [negative_prompt] + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + original_size = original_size or (height, width) + target_size = target_size or (height, width) + self.check_inputs(prompt, prompt_2, height, width, callback_steps, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) + batch_size = 1 if isinstance(prompt, str) else len(prompt) if isinstance(prompt, list) else prompt_embeds.shape[0] + device = self._execution_device + do_classifier_free_guidance = guidance_scale > 1.0 + text_encoder_lora_scale = cross_attention_kwargs.get('scale', None) if cross_attention_kwargs is not None else None + (prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds) = self.encode_prompt(prompt=prompt, prompt_2=prompt_2, device=device, num_images_per_prompt=num_videos_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=text_encoder_lora_scale) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents(batch_size * num_videos_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents) + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + add_text_embeds = pooled_prompt_embeds + if self.text_encoder_2 is None: + text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) + else: + text_encoder_projection_dim = self.text_encoder_2.config.projection_dim + add_time_ids = self._get_add_time_ids(original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device).repeat(batch_size * num_videos_per_prompt, 1) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + x_1_t1 = self.backward_loop(timesteps=timesteps[:-t1 - 1], prompt_embeds=prompt_embeds, latents=latents, guidance_scale=guidance_scale, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=num_warmup_steps, add_text_embeds=add_text_embeds, add_time_ids=add_time_ids) + scheduler_copy = copy.deepcopy(self.scheduler) + x_1_t0 = self.backward_loop(timesteps=timesteps[-t1 - 1:-t0 - 1], prompt_embeds=prompt_embeds, latents=x_1_t1, guidance_scale=guidance_scale, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=0, add_text_embeds=add_text_embeds, add_time_ids=add_time_ids) + x_2k_t0 = x_1_t0.repeat(video_length - 1, 1, 1, 1) + x_2k_t0 = create_motion_field_and_warp_latents(motion_field_strength_x=motion_field_strength_x, motion_field_strength_y=motion_field_strength_y, latents=x_2k_t0, frame_ids=frame_ids[1:]) + x_2k_t1 = self.forward_loop(x_t0=x_2k_t0, t0=timesteps[-t0 - 1].to(torch.long), t1=timesteps[-t1 - 1].to(torch.long), generator=generator) + latents = torch.cat([x_1_t1, x_2k_t1]) + self.scheduler = scheduler_copy + timesteps = timesteps[-t1 - 1:] + (b, l, d) = prompt_embeds.size() + prompt_embeds = prompt_embeds[:, None].repeat(1, video_length, 1, 1).reshape(b * video_length, l, d) + (b, k) = add_text_embeds.size() + add_text_embeds = add_text_embeds[:, None].repeat(1, video_length, 1).reshape(b * video_length, k) + (b, k) = add_time_ids.size() + add_time_ids = add_time_ids[:, None].repeat(1, video_length, 1).reshape(b * video_length, k) + if denoising_end is not None and isinstance(denoising_end, float) and (denoising_end > 0) and (denoising_end < 1): + discrete_timestep_cutoff = int(round(self.scheduler.config.num_train_timesteps - denoising_end * self.scheduler.config.num_train_timesteps)) + num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) + timesteps = timesteps[:num_inference_steps] + x_1k_0 = self.backward_loop(timesteps=timesteps, prompt_embeds=prompt_embeds, latents=latents, guidance_scale=guidance_scale, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=0, add_text_embeds=add_text_embeds, add_time_ids=add_time_ids) + latents = x_1k_0 + if not output_type == 'latent': + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + if needs_upcasting: + self.vae.to(dtype=torch.float16) + else: + image = latents + return TextToVideoSDXLPipelineOutput(images=image) + if self.watermark is not None: + image = self.watermark.apply_watermark(image) + image = self.image_processor.postprocess(image, output_type=output_type) + self.maybe_free_model_hooks() + self.unet.set_attn_processor(original_attn_proc) + if not return_dict: + return (image,) + return TextToVideoSDXLPipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/unclip/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_transformers_available, is_transformers_version +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline + _dummy_objects.update({'UnCLIPImageVariationPipeline': UnCLIPImageVariationPipeline, 'UnCLIPPipeline': UnCLIPPipeline}) +else: + _import_structure['pipeline_unclip'] = ['UnCLIPPipeline'] + _import_structure['pipeline_unclip_image_variation'] = ['UnCLIPImageVariationPipeline'] + _import_structure['text_proj'] = ['UnCLIPTextProjModel'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_unclip import UnCLIPPipeline + from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline + from .text_proj import UnCLIPTextProjModel +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/unclip/pipeline_unclip.py +import inspect +from typing import List, Optional, Tuple, Union +import torch +from torch.nn import functional as F +from transformers import CLIPTextModelWithProjection, CLIPTokenizer +from transformers.models.clip.modeling_clip import CLIPTextModelOutput +from ...models import PriorTransformer, UNet2DConditionModel, UNet2DModel +from ...schedulers import UnCLIPScheduler +from ...utils import logging +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +from .text_proj import UnCLIPTextProjModel +logger = logging.get_logger(__name__) + +class UnCLIPPipeline(DiffusionPipeline): + _exclude_from_cpu_offload = ['prior'] + prior: PriorTransformer + decoder: UNet2DConditionModel + text_proj: UnCLIPTextProjModel + text_encoder: CLIPTextModelWithProjection + tokenizer: CLIPTokenizer + super_res_first: UNet2DModel + super_res_last: UNet2DModel + prior_scheduler: UnCLIPScheduler + decoder_scheduler: UnCLIPScheduler + super_res_scheduler: UnCLIPScheduler + model_cpu_offload_seq = 'text_encoder->text_proj->decoder->super_res_first->super_res_last' + + def __init__(self, prior: PriorTransformer, decoder: UNet2DConditionModel, text_encoder: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, text_proj: UnCLIPTextProjModel, super_res_first: UNet2DModel, super_res_last: UNet2DModel, prior_scheduler: UnCLIPScheduler, decoder_scheduler: UnCLIPScheduler, super_res_scheduler: UnCLIPScheduler): + super().__init__() + self.register_modules(prior=prior, decoder=decoder, text_encoder=text_encoder, tokenizer=tokenizer, text_proj=text_proj, super_res_first=super_res_first, super_res_last=super_res_last, prior_scheduler=prior_scheduler, decoder_scheduler=decoder_scheduler, super_res_scheduler=super_res_scheduler) + + def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + if latents.shape != shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}') + latents = latents.to(device) + latents = latents * scheduler.init_noise_sigma + return latents + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]]=None, text_attention_mask: Optional[torch.Tensor]=None): + if text_model_output is None: + batch_size = len(prompt) if isinstance(prompt, list) else 1 + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + text_mask = text_inputs.attention_mask.bool().to(device) + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + text_input_ids = text_input_ids[:, :self.tokenizer.model_max_length] + text_encoder_output = self.text_encoder(text_input_ids.to(device)) + prompt_embeds = text_encoder_output.text_embeds + text_enc_hid_states = text_encoder_output.last_hidden_state + else: + batch_size = text_model_output[0].shape[0] + (prompt_embeds, text_enc_hid_states) = (text_model_output[0], text_model_output[1]) + text_mask = text_attention_mask + prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) + text_enc_hid_states = text_enc_hid_states.repeat_interleave(num_images_per_prompt, dim=0) + text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + uncond_tokens = [''] * batch_size + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + uncond_text_mask = uncond_input.attention_mask.bool().to(device) + negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) + negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds + uncond_text_enc_hid_states = negative_prompt_embeds_text_encoder_output.last_hidden_state + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) + seq_len = uncond_text_enc_hid_states.shape[1] + uncond_text_enc_hid_states = uncond_text_enc_hid_states.repeat(1, num_images_per_prompt, 1) + uncond_text_enc_hid_states = uncond_text_enc_hid_states.view(batch_size * num_images_per_prompt, seq_len, -1) + uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + text_enc_hid_states = torch.cat([uncond_text_enc_hid_states, text_enc_hid_states]) + text_mask = torch.cat([uncond_text_mask, text_mask]) + return (prompt_embeds, text_enc_hid_states, text_mask) + + @torch.no_grad() + def __call__(self, prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: int=1, prior_num_inference_steps: int=25, decoder_num_inference_steps: int=25, super_res_num_inference_steps: int=7, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, prior_latents: Optional[torch.Tensor]=None, decoder_latents: Optional[torch.Tensor]=None, super_res_latents: Optional[torch.Tensor]=None, text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]]=None, text_attention_mask: Optional[torch.Tensor]=None, prior_guidance_scale: float=4.0, decoder_guidance_scale: float=8.0, output_type: Optional[str]='pil', return_dict: bool=True): + if prompt is not None: + if isinstance(prompt, str): + batch_size = 1 + elif isinstance(prompt, list): + batch_size = len(prompt) + else: + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + else: + batch_size = text_model_output[0].shape[0] + device = self._execution_device + batch_size = batch_size * num_images_per_prompt + do_classifier_free_guidance = prior_guidance_scale > 1.0 or decoder_guidance_scale > 1.0 + (prompt_embeds, text_enc_hid_states, text_mask) = self._encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, text_model_output, text_attention_mask) + self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device) + prior_timesteps_tensor = self.prior_scheduler.timesteps + embedding_dim = self.prior.config.embedding_dim + prior_latents = self.prepare_latents((batch_size, embedding_dim), prompt_embeds.dtype, device, generator, prior_latents, self.prior_scheduler) + for (i, t) in enumerate(self.progress_bar(prior_timesteps_tensor)): + latent_model_input = torch.cat([prior_latents] * 2) if do_classifier_free_guidance else prior_latents + predicted_image_embedding = self.prior(latent_model_input, timestep=t, proj_embedding=prompt_embeds, encoder_hidden_states=text_enc_hid_states, attention_mask=text_mask).predicted_image_embedding + if do_classifier_free_guidance: + (predicted_image_embedding_uncond, predicted_image_embedding_text) = predicted_image_embedding.chunk(2) + predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * (predicted_image_embedding_text - predicted_image_embedding_uncond) + if i + 1 == prior_timesteps_tensor.shape[0]: + prev_timestep = None + else: + prev_timestep = prior_timesteps_tensor[i + 1] + prior_latents = self.prior_scheduler.step(predicted_image_embedding, timestep=t, sample=prior_latents, generator=generator, prev_timestep=prev_timestep).prev_sample + prior_latents = self.prior.post_process_latents(prior_latents) + image_embeddings = prior_latents + (text_enc_hid_states, additive_clip_time_embeddings) = self.text_proj(image_embeddings=image_embeddings, prompt_embeds=prompt_embeds, text_encoder_hidden_states=text_enc_hid_states, do_classifier_free_guidance=do_classifier_free_guidance) + if device.type == 'mps': + text_mask = text_mask.type(torch.int) + decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1) + decoder_text_mask = decoder_text_mask.type(torch.bool) + else: + decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=True) + self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device) + decoder_timesteps_tensor = self.decoder_scheduler.timesteps + num_channels_latents = self.decoder.config.in_channels + height = self.decoder.config.sample_size + width = self.decoder.config.sample_size + decoder_latents = self.prepare_latents((batch_size, num_channels_latents, height, width), text_enc_hid_states.dtype, device, generator, decoder_latents, self.decoder_scheduler) + for (i, t) in enumerate(self.progress_bar(decoder_timesteps_tensor)): + latent_model_input = torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents + noise_pred = self.decoder(sample=latent_model_input, timestep=t, encoder_hidden_states=text_enc_hid_states, class_labels=additive_clip_time_embeddings, attention_mask=decoder_text_mask).sample + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + (noise_pred_uncond, _) = noise_pred_uncond.split(latent_model_input.shape[1], dim=1) + (noise_pred_text, predicted_variance) = noise_pred_text.split(latent_model_input.shape[1], dim=1) + noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond) + noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) + if i + 1 == decoder_timesteps_tensor.shape[0]: + prev_timestep = None + else: + prev_timestep = decoder_timesteps_tensor[i + 1] + decoder_latents = self.decoder_scheduler.step(noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator).prev_sample + decoder_latents = decoder_latents.clamp(-1, 1) + image_small = decoder_latents + self.super_res_scheduler.set_timesteps(super_res_num_inference_steps, device=device) + super_res_timesteps_tensor = self.super_res_scheduler.timesteps + channels = self.super_res_first.config.in_channels // 2 + height = self.super_res_first.config.sample_size + width = self.super_res_first.config.sample_size + super_res_latents = self.prepare_latents((batch_size, channels, height, width), image_small.dtype, device, generator, super_res_latents, self.super_res_scheduler) + if device.type == 'mps': + image_upscaled = F.interpolate(image_small, size=[height, width]) + else: + interpolate_antialias = {} + if 'antialias' in inspect.signature(F.interpolate).parameters: + interpolate_antialias['antialias'] = True + image_upscaled = F.interpolate(image_small, size=[height, width], mode='bicubic', align_corners=False, **interpolate_antialias) + for (i, t) in enumerate(self.progress_bar(super_res_timesteps_tensor)): + if i == super_res_timesteps_tensor.shape[0] - 1: + unet = self.super_res_last + else: + unet = self.super_res_first + latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1) + noise_pred = unet(sample=latent_model_input, timestep=t).sample + if i + 1 == super_res_timesteps_tensor.shape[0]: + prev_timestep = None + else: + prev_timestep = super_res_timesteps_tensor[i + 1] + super_res_latents = self.super_res_scheduler.step(noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator).prev_sample + image = super_res_latents + self.maybe_free_model_hooks() + image = image * 0.5 + 0.5 + image = image.clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + if output_type == 'pil': + image = self.numpy_to_pil(image) + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +import inspect +from typing import List, Optional, Union +import PIL.Image +import torch +from torch.nn import functional as F +from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection +from ...models import UNet2DConditionModel, UNet2DModel +from ...schedulers import UnCLIPScheduler +from ...utils import logging +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +from .text_proj import UnCLIPTextProjModel +logger = logging.get_logger(__name__) + +class UnCLIPImageVariationPipeline(DiffusionPipeline): + decoder: UNet2DConditionModel + text_proj: UnCLIPTextProjModel + text_encoder: CLIPTextModelWithProjection + tokenizer: CLIPTokenizer + feature_extractor: CLIPImageProcessor + image_encoder: CLIPVisionModelWithProjection + super_res_first: UNet2DModel + super_res_last: UNet2DModel + decoder_scheduler: UnCLIPScheduler + super_res_scheduler: UnCLIPScheduler + model_cpu_offload_seq = 'text_encoder->image_encoder->text_proj->decoder->super_res_first->super_res_last' + + def __init__(self, decoder: UNet2DConditionModel, text_encoder: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, text_proj: UnCLIPTextProjModel, feature_extractor: CLIPImageProcessor, image_encoder: CLIPVisionModelWithProjection, super_res_first: UNet2DModel, super_res_last: UNet2DModel, decoder_scheduler: UnCLIPScheduler, super_res_scheduler: UnCLIPScheduler): + super().__init__() + self.register_modules(decoder=decoder, text_encoder=text_encoder, tokenizer=tokenizer, text_proj=text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=super_res_first, super_res_last=super_res_last, decoder_scheduler=decoder_scheduler, super_res_scheduler=super_res_scheduler) + + def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + if latents.shape != shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}') + latents = latents.to(device) + latents = latents * scheduler.init_noise_sigma + return latents + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance): + batch_size = len(prompt) if isinstance(prompt, list) else 1 + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, return_tensors='pt') + text_input_ids = text_inputs.input_ids + text_mask = text_inputs.attention_mask.bool().to(device) + text_encoder_output = self.text_encoder(text_input_ids.to(device)) + prompt_embeds = text_encoder_output.text_embeds + text_encoder_hidden_states = text_encoder_output.last_hidden_state + prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) + text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + uncond_tokens = [''] * batch_size + max_length = text_input_ids.shape[-1] + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + uncond_text_mask = uncond_input.attention_mask.bool().to(device) + negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) + negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds + uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) + seq_len = uncond_text_encoder_hidden_states.shape[1] + uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) + uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(batch_size * num_images_per_prompt, seq_len, -1) + uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) + text_mask = torch.cat([uncond_text_mask, text_mask]) + return (prompt_embeds, text_encoder_hidden_states, text_mask) + + def _encode_image(self, image, device, num_images_per_prompt, image_embeddings: Optional[torch.Tensor]=None): + dtype = next(self.image_encoder.parameters()).dtype + if image_embeddings is None: + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(images=image, return_tensors='pt').pixel_values + image = image.to(device=device, dtype=dtype) + image_embeddings = self.image_encoder(image).image_embeds + image_embeddings = image_embeddings.repeat_interleave(num_images_per_prompt, dim=0) + return image_embeddings + + @torch.no_grad() + def __call__(self, image: Optional[Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor]]=None, num_images_per_prompt: int=1, decoder_num_inference_steps: int=25, super_res_num_inference_steps: int=7, generator: Optional[torch.Generator]=None, decoder_latents: Optional[torch.Tensor]=None, super_res_latents: Optional[torch.Tensor]=None, image_embeddings: Optional[torch.Tensor]=None, decoder_guidance_scale: float=8.0, output_type: Optional[str]='pil', return_dict: bool=True): + if image is not None: + if isinstance(image, PIL.Image.Image): + batch_size = 1 + elif isinstance(image, list): + batch_size = len(image) + else: + batch_size = image.shape[0] + else: + batch_size = image_embeddings.shape[0] + prompt = [''] * batch_size + device = self._execution_device + batch_size = batch_size * num_images_per_prompt + do_classifier_free_guidance = decoder_guidance_scale > 1.0 + (prompt_embeds, text_encoder_hidden_states, text_mask) = self._encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance) + image_embeddings = self._encode_image(image, device, num_images_per_prompt, image_embeddings) + (text_encoder_hidden_states, additive_clip_time_embeddings) = self.text_proj(image_embeddings=image_embeddings, prompt_embeds=prompt_embeds, text_encoder_hidden_states=text_encoder_hidden_states, do_classifier_free_guidance=do_classifier_free_guidance) + if device.type == 'mps': + text_mask = text_mask.type(torch.int) + decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1) + decoder_text_mask = decoder_text_mask.type(torch.bool) + else: + decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=True) + self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device) + decoder_timesteps_tensor = self.decoder_scheduler.timesteps + num_channels_latents = self.decoder.config.in_channels + height = self.decoder.config.sample_size + width = self.decoder.config.sample_size + if decoder_latents is None: + decoder_latents = self.prepare_latents((batch_size, num_channels_latents, height, width), text_encoder_hidden_states.dtype, device, generator, decoder_latents, self.decoder_scheduler) + for (i, t) in enumerate(self.progress_bar(decoder_timesteps_tensor)): + latent_model_input = torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents + noise_pred = self.decoder(sample=latent_model_input, timestep=t, encoder_hidden_states=text_encoder_hidden_states, class_labels=additive_clip_time_embeddings, attention_mask=decoder_text_mask).sample + if do_classifier_free_guidance: + (noise_pred_uncond, noise_pred_text) = noise_pred.chunk(2) + (noise_pred_uncond, _) = noise_pred_uncond.split(latent_model_input.shape[1], dim=1) + (noise_pred_text, predicted_variance) = noise_pred_text.split(latent_model_input.shape[1], dim=1) + noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond) + noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) + if i + 1 == decoder_timesteps_tensor.shape[0]: + prev_timestep = None + else: + prev_timestep = decoder_timesteps_tensor[i + 1] + decoder_latents = self.decoder_scheduler.step(noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator).prev_sample + decoder_latents = decoder_latents.clamp(-1, 1) + image_small = decoder_latents + self.super_res_scheduler.set_timesteps(super_res_num_inference_steps, device=device) + super_res_timesteps_tensor = self.super_res_scheduler.timesteps + channels = self.super_res_first.config.in_channels // 2 + height = self.super_res_first.config.sample_size + width = self.super_res_first.config.sample_size + if super_res_latents is None: + super_res_latents = self.prepare_latents((batch_size, channels, height, width), image_small.dtype, device, generator, super_res_latents, self.super_res_scheduler) + if device.type == 'mps': + image_upscaled = F.interpolate(image_small, size=[height, width]) + else: + interpolate_antialias = {} + if 'antialias' in inspect.signature(F.interpolate).parameters: + interpolate_antialias['antialias'] = True + image_upscaled = F.interpolate(image_small, size=[height, width], mode='bicubic', align_corners=False, **interpolate_antialias) + for (i, t) in enumerate(self.progress_bar(super_res_timesteps_tensor)): + if i == super_res_timesteps_tensor.shape[0] - 1: + unet = self.super_res_last + else: + unet = self.super_res_first + latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1) + noise_pred = unet(sample=latent_model_input, timestep=t).sample + if i + 1 == super_res_timesteps_tensor.shape[0]: + prev_timestep = None + else: + prev_timestep = super_res_timesteps_tensor[i + 1] + super_res_latents = self.super_res_scheduler.step(noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator).prev_sample + image = super_res_latents + self.maybe_free_model_hooks() + image = image * 0.5 + 0.5 + image = image.clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + if output_type == 'pil': + image = self.numpy_to_pil(image) + if not return_dict: + return (image,) + return ImagePipelineOutput(images=image) + +# File: diffusers-main/src/diffusers/pipelines/unclip/text_proj.py +import torch +from torch import nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...models import ModelMixin + +class UnCLIPTextProjModel(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, *, clip_extra_context_tokens: int=4, clip_embeddings_dim: int=768, time_embed_dim: int, cross_attention_dim): + super().__init__() + self.learned_classifier_free_guidance_embeddings = nn.Parameter(torch.zeros(clip_embeddings_dim)) + self.embedding_proj = nn.Linear(clip_embeddings_dim, time_embed_dim) + self.clip_image_embeddings_project_to_time_embeddings = nn.Linear(clip_embeddings_dim, time_embed_dim) + self.clip_extra_context_tokens = clip_extra_context_tokens + self.clip_extra_context_tokens_proj = nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim) + self.encoder_hidden_states_proj = nn.Linear(clip_embeddings_dim, cross_attention_dim) + self.text_encoder_hidden_states_norm = nn.LayerNorm(cross_attention_dim) + + def forward(self, *, image_embeddings, prompt_embeds, text_encoder_hidden_states, do_classifier_free_guidance): + if do_classifier_free_guidance: + image_embeddings_batch_size = image_embeddings.shape[0] + classifier_free_guidance_embeddings = self.learned_classifier_free_guidance_embeddings.unsqueeze(0) + classifier_free_guidance_embeddings = classifier_free_guidance_embeddings.expand(image_embeddings_batch_size, -1) + image_embeddings = torch.cat([classifier_free_guidance_embeddings, image_embeddings], dim=0) + assert image_embeddings.shape[0] == prompt_embeds.shape[0] + batch_size = prompt_embeds.shape[0] + time_projected_prompt_embeds = self.embedding_proj(prompt_embeds) + time_projected_image_embeddings = self.clip_image_embeddings_project_to_time_embeddings(image_embeddings) + additive_clip_time_embeddings = time_projected_image_embeddings + time_projected_prompt_embeds + clip_extra_context_tokens = self.clip_extra_context_tokens_proj(image_embeddings) + clip_extra_context_tokens = clip_extra_context_tokens.reshape(batch_size, -1, self.clip_extra_context_tokens) + clip_extra_context_tokens = clip_extra_context_tokens.permute(0, 2, 1) + text_encoder_hidden_states = self.encoder_hidden_states_proj(text_encoder_hidden_states) + text_encoder_hidden_states = self.text_encoder_hidden_states_norm(text_encoder_hidden_states) + text_encoder_hidden_states = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states], dim=1) + return (text_encoder_hidden_states, additive_clip_time_embeddings) + +# File: diffusers-main/src/diffusers/pipelines/unidiffuser/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import ImageTextPipelineOutput, UniDiffuserPipeline + _dummy_objects.update({'ImageTextPipelineOutput': ImageTextPipelineOutput, 'UniDiffuserPipeline': UniDiffuserPipeline}) +else: + _import_structure['modeling_text_decoder'] = ['UniDiffuserTextDecoder'] + _import_structure['modeling_uvit'] = ['UniDiffuserModel', 'UTransformer2DModel'] + _import_structure['pipeline_unidiffuser'] = ['ImageTextPipelineOutput', 'UniDiffuserPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import ImageTextPipelineOutput, UniDiffuserPipeline + else: + from .modeling_text_decoder import UniDiffuserTextDecoder + from .modeling_uvit import UniDiffuserModel, UTransformer2DModel + from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/unidiffuser/modeling_text_decoder.py +from typing import Optional +import numpy as np +import torch +from torch import nn +from transformers import GPT2Config, GPT2LMHeadModel +from transformers.modeling_utils import ModuleUtilsMixin +from ...configuration_utils import ConfigMixin, register_to_config +from ...models import ModelMixin + +class UniDiffuserTextDecoder(ModelMixin, ConfigMixin, ModuleUtilsMixin): + _keys_to_ignore_on_load_unexpected = ['h\\.\\d+\\.attn\\.bias', 'h\\.\\d+\\.attn\\.masked_bias'] + + @register_to_config + def __init__(self, prefix_length: int, prefix_inner_dim: int, prefix_hidden_dim: Optional[int]=None, vocab_size: int=50257, n_positions: int=1024, n_embd: int=768, n_layer: int=12, n_head: int=12, n_inner: Optional[int]=None, activation_function: str='gelu_new', resid_pdrop: float=0.1, embd_pdrop: float=0.1, attn_pdrop: float=0.1, layer_norm_epsilon: float=1e-05, initializer_range: float=0.02, scale_attn_weights: bool=True, use_cache: bool=True, scale_attn_by_inverse_layer_idx: bool=False, reorder_and_upcast_attn: bool=False): + super().__init__() + self.prefix_length = prefix_length + if prefix_inner_dim != n_embd and prefix_hidden_dim is None: + raise ValueError(f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and `n_embd`: {n_embd} are not equal.') + self.prefix_inner_dim = prefix_inner_dim + self.prefix_hidden_dim = prefix_hidden_dim + self.encode_prefix = nn.Linear(self.prefix_inner_dim, self.prefix_hidden_dim) if self.prefix_hidden_dim is not None else nn.Identity() + self.decode_prefix = nn.Linear(self.prefix_hidden_dim, n_embd) if self.prefix_hidden_dim is not None else nn.Identity() + gpt_config = GPT2Config(vocab_size=vocab_size, n_positions=n_positions, n_embd=n_embd, n_layer=n_layer, n_head=n_head, n_inner=n_inner, activation_function=activation_function, resid_pdrop=resid_pdrop, embd_pdrop=embd_pdrop, attn_pdrop=attn_pdrop, layer_norm_epsilon=layer_norm_epsilon, initializer_range=initializer_range, scale_attn_weights=scale_attn_weights, use_cache=use_cache, scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx, reorder_and_upcast_attn=reorder_and_upcast_attn) + self.transformer = GPT2LMHeadModel(gpt_config) + + def forward(self, input_ids: torch.Tensor, prefix_embeds: torch.Tensor, attention_mask: Optional[torch.Tensor]=None, labels: Optional[torch.Tensor]=None): + embedding_text = self.transformer.transformer.wte(input_ids) + hidden = self.encode_prefix(prefix_embeds) + prefix_embeds = self.decode_prefix(hidden) + embedding_cat = torch.cat((prefix_embeds, embedding_text), dim=1) + if labels is not None: + dummy_token = self.get_dummy_token(input_ids.shape[0], input_ids.device) + labels = torch.cat((dummy_token, input_ids), dim=1) + out = self.transformer(inputs_embeds=embedding_cat, labels=labels, attention_mask=attention_mask) + if self.prefix_hidden_dim is not None: + return (out, hidden) + else: + return out + + def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor: + return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device) + + def encode(self, prefix): + return self.encode_prefix(prefix) + + @torch.no_grad() + def generate_captions(self, features, eos_token_id, device): + features = torch.split(features, 1, dim=0) + generated_tokens = [] + generated_seq_lengths = [] + for feature in features: + feature = self.decode_prefix(feature.to(device)) + (output_tokens, seq_lengths) = self.generate_beam(input_embeds=feature, device=device, eos_token_id=eos_token_id) + generated_tokens.append(output_tokens[0]) + generated_seq_lengths.append(seq_lengths[0]) + generated_tokens = torch.stack(generated_tokens) + generated_seq_lengths = torch.stack(generated_seq_lengths) + return (generated_tokens, generated_seq_lengths) + + @torch.no_grad() + def generate_beam(self, input_ids=None, input_embeds=None, device=None, beam_size: int=5, entry_length: int=67, temperature: float=1.0, eos_token_id: Optional[int]=None): + stop_token_index = eos_token_id + tokens = None + scores = None + seq_lengths = torch.ones(beam_size, device=device, dtype=torch.int) + is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool) + if input_embeds is not None: + generated = input_embeds + else: + generated = self.transformer.transformer.wte(input_ids) + for i in range(entry_length): + outputs = self.transformer(inputs_embeds=generated) + logits = outputs.logits + logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) + logits = logits.softmax(-1).log() + if scores is None: + (scores, next_tokens) = logits.topk(beam_size, -1) + generated = generated.expand(beam_size, *generated.shape[1:]) + (next_tokens, scores) = (next_tokens.permute(1, 0), scores.squeeze(0)) + if tokens is None: + tokens = next_tokens + else: + tokens = tokens.expand(beam_size, *tokens.shape[1:]) + tokens = torch.cat((tokens, next_tokens), dim=1) + else: + logits[is_stopped] = -float(np.inf) + logits[is_stopped, 0] = 0 + scores_sum = scores[:, None] + logits + seq_lengths[~is_stopped] += 1 + scores_sum_average = scores_sum / seq_lengths[:, None] + (scores_sum_average, next_tokens) = scores_sum_average.view(-1).topk(beam_size, -1) + next_tokens_source = next_tokens // scores_sum.shape[1] + seq_lengths = seq_lengths[next_tokens_source] + next_tokens = next_tokens % scores_sum.shape[1] + next_tokens = next_tokens.unsqueeze(1) + tokens = tokens[next_tokens_source] + tokens = torch.cat((tokens, next_tokens), dim=1) + generated = generated[next_tokens_source] + scores = scores_sum_average * seq_lengths + is_stopped = is_stopped[next_tokens_source] + next_token_embed = self.transformer.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1) + generated = torch.cat((generated, next_token_embed), dim=1) + is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze() + if is_stopped.all(): + break + scores = scores / seq_lengths + order = scores.argsort(descending=True) + output_texts = [tokens[i] for i in order] + output_texts = torch.stack(output_texts, dim=0) + seq_lengths = torch.tensor([seq_lengths[i] for i in order], dtype=seq_lengths.dtype) + return (output_texts, seq_lengths) + +# File: diffusers-main/src/diffusers/pipelines/unidiffuser/modeling_uvit.py +import math +from typing import Optional, Union +import torch +from torch import nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...models import ModelMixin +from ...models.attention import FeedForward +from ...models.attention_processor import Attention +from ...models.embeddings import TimestepEmbedding, Timesteps, get_2d_sincos_pos_embed +from ...models.modeling_outputs import Transformer2DModelOutput +from ...models.normalization import AdaLayerNorm +from ...utils import logging +logger = logging.get_logger(__name__) + +def _no_grad_trunc_normal_(tensor, mean, std, a, b): + + def norm_cdf(x): + return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 + if mean < a - 2 * std or mean > b + 2 * std: + logger.warning('mean is more than 2 std from [a, b] in nn.init.trunc_normal_. The distribution of values may be incorrect.') + with torch.no_grad(): + l = norm_cdf((a - mean) / std) + u = norm_cdf((b - mean) / std) + tensor.uniform_(2 * l - 1, 2 * u - 1) + tensor.erfinv_() + tensor.mul_(std * math.sqrt(2.0)) + tensor.add_(mean) + tensor.clamp_(min=a, max=b) + return tensor + +def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): + return _no_grad_trunc_normal_(tensor, mean, std, a, b) + +class PatchEmbed(nn.Module): + + def __init__(self, height=224, width=224, patch_size=16, in_channels=3, embed_dim=768, layer_norm=False, flatten=True, bias=True, use_pos_embed=True): + super().__init__() + num_patches = height // patch_size * (width // patch_size) + self.flatten = flatten + self.layer_norm = layer_norm + self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias) + if layer_norm: + self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-06) + else: + self.norm = None + self.use_pos_embed = use_pos_embed + if self.use_pos_embed: + pos_embed = get_2d_sincos_pos_embed(embed_dim, int(num_patches ** 0.5)) + self.register_buffer('pos_embed', torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=False) + + def forward(self, latent): + latent = self.proj(latent) + if self.flatten: + latent = latent.flatten(2).transpose(1, 2) + if self.layer_norm: + latent = self.norm(latent) + if self.use_pos_embed: + return latent + self.pos_embed + else: + return latent + +class SkipBlock(nn.Module): + + def __init__(self, dim: int): + super().__init__() + self.skip_linear = nn.Linear(2 * dim, dim) + self.norm = nn.LayerNorm(dim) + + def forward(self, x, skip): + x = self.skip_linear(torch.cat([x, skip], dim=-1)) + x = self.norm(x) + return x + +class UTransformerBlock(nn.Module): + + def __init__(self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout=0.0, cross_attention_dim: Optional[int]=None, activation_fn: str='geglu', num_embeds_ada_norm: Optional[int]=None, attention_bias: bool=False, only_cross_attention: bool=False, double_self_attention: bool=False, upcast_attention: bool=False, norm_elementwise_affine: bool=True, norm_type: str='layer_norm', pre_layer_norm: bool=True, final_dropout: bool=False): + super().__init__() + self.only_cross_attention = only_cross_attention + self.use_ada_layer_norm = num_embeds_ada_norm is not None and norm_type == 'ada_norm' + self.pre_layer_norm = pre_layer_norm + if norm_type in ('ada_norm', 'ada_norm_zero') and num_embeds_ada_norm is None: + raise ValueError(f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.') + self.attn1 = Attention(query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=cross_attention_dim if only_cross_attention else None, upcast_attention=upcast_attention) + if cross_attention_dim is not None or double_self_attention: + self.attn2 = Attention(query_dim=dim, cross_attention_dim=cross_attention_dim if not double_self_attention else None, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention) + else: + self.attn2 = None + if self.use_ada_layer_norm: + self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) + else: + self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) + if cross_attention_dim is not None or double_self_attention: + self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) + else: + self.norm2 = None + self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) + self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) + + def forward(self, hidden_states, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, timestep=None, cross_attention_kwargs=None, class_labels=None): + if self.pre_layer_norm: + if self.use_ada_layer_norm: + norm_hidden_states = self.norm1(hidden_states, timestep) + else: + norm_hidden_states = self.norm1(hidden_states) + else: + norm_hidden_states = hidden_states + cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} + attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs) + if not self.pre_layer_norm: + if self.use_ada_layer_norm: + attn_output = self.norm1(attn_output, timestep) + else: + attn_output = self.norm1(attn_output) + hidden_states = attn_output + hidden_states + if self.attn2 is not None: + if self.pre_layer_norm: + norm_hidden_states = self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) + else: + norm_hidden_states = hidden_states + attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs) + if not self.pre_layer_norm: + attn_output = self.norm2(attn_output, timestep) if self.use_ada_layer_norm else self.norm2(attn_output) + hidden_states = attn_output + hidden_states + if self.pre_layer_norm: + norm_hidden_states = self.norm3(hidden_states) + else: + norm_hidden_states = hidden_states + ff_output = self.ff(norm_hidden_states) + if not self.pre_layer_norm: + ff_output = self.norm3(ff_output) + hidden_states = ff_output + hidden_states + return hidden_states + +class UniDiffuserBlock(nn.Module): + + def __init__(self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout=0.0, cross_attention_dim: Optional[int]=None, activation_fn: str='geglu', num_embeds_ada_norm: Optional[int]=None, attention_bias: bool=False, only_cross_attention: bool=False, double_self_attention: bool=False, upcast_attention: bool=False, norm_elementwise_affine: bool=True, norm_type: str='layer_norm', pre_layer_norm: bool=False, final_dropout: bool=True): + super().__init__() + self.only_cross_attention = only_cross_attention + self.use_ada_layer_norm = num_embeds_ada_norm is not None and norm_type == 'ada_norm' + self.pre_layer_norm = pre_layer_norm + if norm_type in ('ada_norm', 'ada_norm_zero') and num_embeds_ada_norm is None: + raise ValueError(f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.') + self.attn1 = Attention(query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=cross_attention_dim if only_cross_attention else None, upcast_attention=upcast_attention) + if cross_attention_dim is not None or double_self_attention: + self.attn2 = Attention(query_dim=dim, cross_attention_dim=cross_attention_dim if not double_self_attention else None, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention) + else: + self.attn2 = None + if self.use_ada_layer_norm: + self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) + else: + self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) + if cross_attention_dim is not None or double_self_attention: + self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) + else: + self.norm2 = None + self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) + self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) + + def forward(self, hidden_states, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, timestep=None, cross_attention_kwargs=None, class_labels=None): + if self.pre_layer_norm: + if self.use_ada_layer_norm: + hidden_states = self.norm1(hidden_states, timestep) + else: + hidden_states = self.norm1(hidden_states) + cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} + attn_output = self.attn1(hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs) + hidden_states = attn_output + hidden_states + if not self.pre_layer_norm: + if self.use_ada_layer_norm: + hidden_states = self.norm1(hidden_states, timestep) + else: + hidden_states = self.norm1(hidden_states) + if self.attn2 is not None: + if self.pre_layer_norm: + hidden_states = self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) + attn_output = self.attn2(hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs) + hidden_states = attn_output + hidden_states + if not self.pre_layer_norm: + hidden_states = self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) + if self.pre_layer_norm: + hidden_states = self.norm3(hidden_states) + ff_output = self.ff(hidden_states) + hidden_states = ff_output + hidden_states + if not self.pre_layer_norm: + hidden_states = self.norm3(hidden_states) + return hidden_states + +class UTransformer2DModel(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, num_attention_heads: int=16, attention_head_dim: int=88, in_channels: Optional[int]=None, out_channels: Optional[int]=None, num_layers: int=1, dropout: float=0.0, norm_num_groups: int=32, cross_attention_dim: Optional[int]=None, attention_bias: bool=False, sample_size: Optional[int]=None, num_vector_embeds: Optional[int]=None, patch_size: Optional[int]=2, activation_fn: str='geglu', num_embeds_ada_norm: Optional[int]=None, use_linear_projection: bool=False, only_cross_attention: bool=False, upcast_attention: bool=False, norm_type: str='layer_norm', block_type: str='unidiffuser', pre_layer_norm: bool=False, norm_elementwise_affine: bool=True, use_patch_pos_embed=False, ff_final_dropout: bool=False): + super().__init__() + self.use_linear_projection = use_linear_projection + self.num_attention_heads = num_attention_heads + self.attention_head_dim = attention_head_dim + inner_dim = num_attention_heads * attention_head_dim + assert in_channels is not None and patch_size is not None, 'Patch input requires in_channels and patch_size.' + assert sample_size is not None, 'UTransformer2DModel over patched input must provide sample_size' + self.height = sample_size + self.width = sample_size + self.patch_size = patch_size + self.pos_embed = PatchEmbed(height=sample_size, width=sample_size, patch_size=patch_size, in_channels=in_channels, embed_dim=inner_dim, use_pos_embed=use_patch_pos_embed) + if block_type == 'unidiffuser': + block_cls = UniDiffuserBlock + else: + block_cls = UTransformerBlock + self.transformer_in_blocks = nn.ModuleList([block_cls(inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, norm_type=norm_type, pre_layer_norm=pre_layer_norm, norm_elementwise_affine=norm_elementwise_affine, final_dropout=ff_final_dropout) for d in range(num_layers // 2)]) + self.transformer_mid_block = block_cls(inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, norm_type=norm_type, pre_layer_norm=pre_layer_norm, norm_elementwise_affine=norm_elementwise_affine, final_dropout=ff_final_dropout) + self.transformer_out_blocks = nn.ModuleList([nn.ModuleDict({'skip': SkipBlock(inner_dim), 'block': block_cls(inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, norm_type=norm_type, pre_layer_norm=pre_layer_norm, norm_elementwise_affine=norm_elementwise_affine, final_dropout=ff_final_dropout)}) for d in range(num_layers // 2)]) + self.out_channels = in_channels if out_channels is None else out_channels + self.norm_out = nn.LayerNorm(inner_dim) + + def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, class_labels=None, cross_attention_kwargs=None, return_dict: bool=True, hidden_states_is_embedding: bool=False, unpatchify: bool=True): + if not unpatchify and return_dict: + raise ValueError(f'Cannot both define `unpatchify`: {unpatchify} and `return_dict`: {return_dict} since when `unpatchify` is {unpatchify} the returned output is of shape (batch_size, seq_len, hidden_dim) rather than (batch_size, num_channels, height, width).') + if not hidden_states_is_embedding: + hidden_states = self.pos_embed(hidden_states) + skips = [] + for in_block in self.transformer_in_blocks: + hidden_states = in_block(hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels) + skips.append(hidden_states) + hidden_states = self.transformer_mid_block(hidden_states) + for out_block in self.transformer_out_blocks: + hidden_states = out_block['skip'](hidden_states, skips.pop()) + hidden_states = out_block['block'](hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels) + hidden_states = self.norm_out(hidden_states) + if unpatchify: + height = width = int(hidden_states.shape[1] ** 0.5) + hidden_states = hidden_states.reshape(shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)) + hidden_states = torch.einsum('nhwpqc->nchpwq', hidden_states) + output = hidden_states.reshape(shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)) + else: + output = hidden_states + if not return_dict: + return (output,) + return Transformer2DModelOutput(sample=output) + +class UniDiffuserModel(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, text_dim: int=768, clip_img_dim: int=512, num_text_tokens: int=77, num_attention_heads: int=16, attention_head_dim: int=88, in_channels: Optional[int]=None, out_channels: Optional[int]=None, num_layers: int=1, dropout: float=0.0, norm_num_groups: int=32, cross_attention_dim: Optional[int]=None, attention_bias: bool=False, sample_size: Optional[int]=None, num_vector_embeds: Optional[int]=None, patch_size: Optional[int]=None, activation_fn: str='geglu', num_embeds_ada_norm: Optional[int]=None, use_linear_projection: bool=False, only_cross_attention: bool=False, upcast_attention: bool=False, norm_type: str='layer_norm', block_type: str='unidiffuser', pre_layer_norm: bool=False, use_timestep_embedding=False, norm_elementwise_affine: bool=True, use_patch_pos_embed=False, ff_final_dropout: bool=True, use_data_type_embedding: bool=False): + super().__init__() + self.inner_dim = num_attention_heads * attention_head_dim + assert sample_size is not None, 'UniDiffuserModel over patched input must provide sample_size' + self.sample_size = sample_size + self.in_channels = in_channels + self.out_channels = in_channels if out_channels is None else out_channels + self.patch_size = patch_size + self.num_patches = self.sample_size // patch_size * (self.sample_size // patch_size) + self.vae_img_in = PatchEmbed(height=sample_size, width=sample_size, patch_size=patch_size, in_channels=in_channels, embed_dim=self.inner_dim, use_pos_embed=use_patch_pos_embed) + self.clip_img_in = nn.Linear(clip_img_dim, self.inner_dim) + self.text_in = nn.Linear(text_dim, self.inner_dim) + self.timestep_img_proj = Timesteps(self.inner_dim, flip_sin_to_cos=True, downscale_freq_shift=0) + self.timestep_img_embed = TimestepEmbedding(self.inner_dim, 4 * self.inner_dim, out_dim=self.inner_dim) if use_timestep_embedding else nn.Identity() + self.timestep_text_proj = Timesteps(self.inner_dim, flip_sin_to_cos=True, downscale_freq_shift=0) + self.timestep_text_embed = TimestepEmbedding(self.inner_dim, 4 * self.inner_dim, out_dim=self.inner_dim) if use_timestep_embedding else nn.Identity() + self.num_text_tokens = num_text_tokens + self.num_tokens = 1 + 1 + num_text_tokens + 1 + self.num_patches + self.pos_embed = nn.Parameter(torch.zeros(1, self.num_tokens, self.inner_dim)) + self.pos_embed_drop = nn.Dropout(p=dropout) + trunc_normal_(self.pos_embed, std=0.02) + self.use_data_type_embedding = use_data_type_embedding + if self.use_data_type_embedding: + self.data_type_token_embedding = nn.Embedding(2, self.inner_dim) + self.data_type_pos_embed_token = nn.Parameter(torch.zeros(1, 1, self.inner_dim)) + self.transformer = UTransformer2DModel(num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, in_channels=in_channels, out_channels=out_channels, num_layers=num_layers, dropout=dropout, norm_num_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, attention_bias=attention_bias, sample_size=sample_size, num_vector_embeds=num_vector_embeds, patch_size=patch_size, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, norm_type=norm_type, block_type=block_type, pre_layer_norm=pre_layer_norm, norm_elementwise_affine=norm_elementwise_affine, use_patch_pos_embed=use_patch_pos_embed, ff_final_dropout=ff_final_dropout) + patch_dim = patch_size ** 2 * out_channels + self.vae_img_out = nn.Linear(self.inner_dim, patch_dim) + self.clip_img_out = nn.Linear(self.inner_dim, clip_img_dim) + self.text_out = nn.Linear(self.inner_dim, text_dim) + + @torch.jit.ignore + def no_weight_decay(self): + return {'pos_embed'} + + def forward(self, latent_image_embeds: torch.Tensor, image_embeds: torch.Tensor, prompt_embeds: torch.Tensor, timestep_img: Union[torch.Tensor, float, int], timestep_text: Union[torch.Tensor, float, int], data_type: Optional[Union[torch.Tensor, float, int]]=1, encoder_hidden_states=None, cross_attention_kwargs=None): + batch_size = latent_image_embeds.shape[0] + vae_hidden_states = self.vae_img_in(latent_image_embeds) + clip_hidden_states = self.clip_img_in(image_embeds) + text_hidden_states = self.text_in(prompt_embeds) + (num_text_tokens, num_img_tokens) = (text_hidden_states.size(1), vae_hidden_states.size(1)) + if not torch.is_tensor(timestep_img): + timestep_img = torch.tensor([timestep_img], dtype=torch.long, device=vae_hidden_states.device) + timestep_img = timestep_img * torch.ones(batch_size, dtype=timestep_img.dtype, device=timestep_img.device) + timestep_img_token = self.timestep_img_proj(timestep_img) + timestep_img_token = timestep_img_token.to(dtype=self.dtype) + timestep_img_token = self.timestep_img_embed(timestep_img_token) + timestep_img_token = timestep_img_token.unsqueeze(dim=1) + if not torch.is_tensor(timestep_text): + timestep_text = torch.tensor([timestep_text], dtype=torch.long, device=vae_hidden_states.device) + timestep_text = timestep_text * torch.ones(batch_size, dtype=timestep_text.dtype, device=timestep_text.device) + timestep_text_token = self.timestep_text_proj(timestep_text) + timestep_text_token = timestep_text_token.to(dtype=self.dtype) + timestep_text_token = self.timestep_text_embed(timestep_text_token) + timestep_text_token = timestep_text_token.unsqueeze(dim=1) + if self.use_data_type_embedding: + assert data_type is not None, 'data_type must be supplied if the model uses a data type embedding' + if not torch.is_tensor(data_type): + data_type = torch.tensor([data_type], dtype=torch.int, device=vae_hidden_states.device) + data_type = data_type * torch.ones(batch_size, dtype=data_type.dtype, device=data_type.device) + data_type_token = self.data_type_token_embedding(data_type).unsqueeze(dim=1) + hidden_states = torch.cat([timestep_img_token, timestep_text_token, data_type_token, text_hidden_states, clip_hidden_states, vae_hidden_states], dim=1) + else: + hidden_states = torch.cat([timestep_img_token, timestep_text_token, text_hidden_states, clip_hidden_states, vae_hidden_states], dim=1) + if self.use_data_type_embedding: + pos_embed = torch.cat([self.pos_embed[:, :1 + 1, :], self.data_type_pos_embed_token, self.pos_embed[:, 1 + 1:, :]], dim=1) + else: + pos_embed = self.pos_embed + hidden_states = hidden_states + pos_embed + hidden_states = self.pos_embed_drop(hidden_states) + hidden_states = self.transformer(hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=None, class_labels=None, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, hidden_states_is_embedding=True, unpatchify=False)[0] + if self.use_data_type_embedding: + (t_img_token_out, t_text_token_out, data_type_token_out, text_out, img_clip_out, img_vae_out) = hidden_states.split((1, 1, 1, num_text_tokens, 1, num_img_tokens), dim=1) + else: + (t_img_token_out, t_text_token_out, text_out, img_clip_out, img_vae_out) = hidden_states.split((1, 1, num_text_tokens, 1, num_img_tokens), dim=1) + img_vae_out = self.vae_img_out(img_vae_out) + height = width = int(img_vae_out.shape[1] ** 0.5) + img_vae_out = img_vae_out.reshape(shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)) + img_vae_out = torch.einsum('nhwpqc->nchpwq', img_vae_out) + img_vae_out = img_vae_out.reshape(shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)) + img_clip_out = self.clip_img_out(img_clip_out) + text_out = self.text_out(text_out) + return (img_vae_out, img_clip_out, text_out) + +# File: diffusers-main/src/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +import inspect +from dataclasses import dataclass +from typing import Callable, List, Optional, Union +import numpy as np +import PIL.Image +import torch +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection, GPT2Tokenizer +from ...image_processor import VaeImageProcessor +from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL +from ...models.lora import adjust_lora_scale_text_encoder +from ...schedulers import KarrasDiffusionSchedulers +from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers +from ...utils.outputs import BaseOutput +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .modeling_text_decoder import UniDiffuserTextDecoder +from .modeling_uvit import UniDiffuserModel +logger = logging.get_logger(__name__) + +@dataclass +class ImageTextPipelineOutput(BaseOutput): + images: Optional[Union[List[PIL.Image.Image], np.ndarray]] + text: Optional[Union[List[str], List[List[str]]]] + +class UniDiffuserPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'text_encoder->image_encoder->unet->vae->text_decoder' + + def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, image_encoder: CLIPVisionModelWithProjection, clip_image_processor: CLIPImageProcessor, clip_tokenizer: CLIPTokenizer, text_decoder: UniDiffuserTextDecoder, text_tokenizer: GPT2Tokenizer, unet: UniDiffuserModel, scheduler: KarrasDiffusionSchedulers): + super().__init__() + if text_encoder.config.hidden_size != text_decoder.prefix_inner_dim: + raise ValueError(f'The text encoder hidden size and text decoder prefix inner dim must be the same, but `text_encoder.config.hidden_size`: {text_encoder.config.hidden_size} and `text_decoder.prefix_inner_dim`: {text_decoder.prefix_inner_dim}') + self.register_modules(vae=vae, text_encoder=text_encoder, image_encoder=image_encoder, clip_image_processor=clip_image_processor, clip_tokenizer=clip_tokenizer, text_decoder=text_decoder, text_tokenizer=text_tokenizer, unet=unet, scheduler=scheduler) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.num_channels_latents = vae.config.latent_channels + self.text_encoder_seq_len = text_encoder.config.max_position_embeddings + self.text_encoder_hidden_size = text_encoder.config.hidden_size + self.image_encoder_projection_dim = image_encoder.config.projection_dim + self.unet_resolution = unet.config.sample_size + self.text_intermediate_dim = self.text_encoder_hidden_size + if self.text_decoder.prefix_hidden_dim is not None: + self.text_intermediate_dim = self.text_decoder.prefix_hidden_dim + self.mode = None + self.safety_checker = None + + def prepare_extra_step_kwargs(self, generator, eta): + accepts_eta = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs['eta'] = eta + accepts_generator = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs['generator'] = generator + return extra_step_kwargs + + def _infer_mode(self, prompt, prompt_embeds, image, latents, prompt_latents, vae_latents, clip_latents): + prompt_available = prompt is not None or prompt_embeds is not None + image_available = image is not None + input_available = prompt_available or image_available + prompt_latents_available = prompt_latents is not None + vae_latents_available = vae_latents is not None + clip_latents_available = clip_latents is not None + full_latents_available = latents is not None + image_latents_available = vae_latents_available and clip_latents_available + all_indv_latents_available = prompt_latents_available and image_latents_available + if self.mode is not None: + mode = self.mode + elif prompt_available: + mode = 'text2img' + elif image_available: + mode = 'img2text' + elif full_latents_available or all_indv_latents_available: + mode = 'joint' + elif prompt_latents_available: + mode = 'text' + elif image_latents_available: + mode = 'img' + else: + mode = 'joint' + if self.mode is None and prompt_available and image_available: + logger.warning(f"You have supplied both a text prompt and image to the pipeline and mode has not been set manually, defaulting to mode '{mode}'.") + if self.mode is None and (not input_available): + if vae_latents_available != clip_latents_available: + logger.warning(f"You have supplied exactly one of `vae_latents` and `clip_latents`, whereas either both or none are expected to be supplied. Defaulting to mode '{mode}'.") + elif not prompt_latents_available and (not vae_latents_available) and (not clip_latents_available): + logger.warning(f"No inputs or latents have been supplied, and mode has not been manually set, defaulting to mode '{mode}'.") + return mode + + def enable_vae_slicing(self): + self.vae.enable_slicing() + + def disable_vae_slicing(self): + self.vae.disable_slicing() + + def enable_vae_tiling(self): + self.vae.enable_tiling() + + def disable_vae_tiling(self): + self.vae.disable_tiling() + + def set_text_mode(self): + self.mode = 'text' + + def set_image_mode(self): + self.mode = 'img' + + def set_text_to_image_mode(self): + self.mode = 'text2img' + + def set_image_to_text_mode(self): + self.mode = 'img2text' + + def set_joint_mode(self): + self.mode = 'joint' + + def reset_mode(self): + self.mode = None + + def _infer_batch_size(self, mode, prompt, prompt_embeds, image, num_images_per_prompt, num_prompts_per_image, latents, prompt_latents, vae_latents, clip_latents): + if num_images_per_prompt is None: + num_images_per_prompt = 1 + if num_prompts_per_image is None: + num_prompts_per_image = 1 + assert num_images_per_prompt > 0, 'num_images_per_prompt must be a positive integer' + assert num_prompts_per_image > 0, 'num_prompts_per_image must be a positive integer' + if mode in ['text2img']: + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + multiplier = num_images_per_prompt + elif mode in ['img2text']: + if isinstance(image, PIL.Image.Image): + batch_size = 1 + else: + batch_size = image.shape[0] + multiplier = num_prompts_per_image + elif mode in ['img']: + if vae_latents is not None: + batch_size = vae_latents.shape[0] + elif clip_latents is not None: + batch_size = clip_latents.shape[0] + else: + batch_size = 1 + multiplier = num_images_per_prompt + elif mode in ['text']: + if prompt_latents is not None: + batch_size = prompt_latents.shape[0] + else: + batch_size = 1 + multiplier = num_prompts_per_image + elif mode in ['joint']: + if latents is not None: + batch_size = latents.shape[0] + elif prompt_latents is not None: + batch_size = prompt_latents.shape[0] + elif vae_latents is not None: + batch_size = vae_latents.shape[0] + elif clip_latents is not None: + batch_size = clip_latents.shape[0] + else: + batch_size = 1 + if num_images_per_prompt == num_prompts_per_image: + multiplier = num_images_per_prompt + else: + multiplier = min(num_images_per_prompt, num_prompts_per_image) + logger.warning(f'You are using mode `{mode}` and `num_images_per_prompt`: {num_images_per_prompt} and num_prompts_per_image: {num_prompts_per_image} are not equal. Using batch size equal to `min(num_images_per_prompt, num_prompts_per_image) = {batch_size}.') + return (batch_size, multiplier) + + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, **kwargs): + deprecation_message = '`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple.' + deprecate('_encode_prompt()', '1.0.0', deprecation_message, standard_warn=False) + prompt_embeds_tuple = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs) + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + return prompt_embeds + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, lora_scale: Optional[float]=None, clip_skip: Optional[int]=None): + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.clip_tokenizer) + text_inputs = self.clip_tokenizer(prompt, padding='max_length', max_length=self.clip_tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + untruncated_ids = self.clip_tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.clip_tokenizer.batch_decode(untruncated_ids[:, self.clip_tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.clip_tokenizer.model_max_length} tokens: {removed_text}') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True) + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + (bs_embed, seq_len, _) = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.clip_tokenizer) + max_length = prompt_embeds.shape[1] + uncond_input = self.clip_tokenizer(uncond_tokens, padding='max_length', max_length=max_length, truncation=True, return_tensors='pt') + if hasattr(self.text_encoder.config, 'use_attention_mask') and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) + negative_prompt_embeds = negative_prompt_embeds[0] + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + return (prompt_embeds, negative_prompt_embeds) + + def encode_image_vae_latents(self, image, batch_size, num_prompts_per_image, dtype, device, do_classifier_free_guidance, generator=None): + if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}') + image = image.to(device=device, dtype=dtype) + batch_size = batch_size * num_prompts_per_image + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if isinstance(generator, list): + image_latents = [self.vae.encode(image[i:i + 1]).latent_dist.sample(generator=generator[i]) * self.vae.config.scaling_factor for i in range(batch_size)] + image_latents = torch.cat(image_latents, dim=0) + else: + image_latents = self.vae.encode(image).latent_dist.sample(generator=generator) + image_latents = image_latents * self.vae.config.scaling_factor + if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: + deprecation_message = f'You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial images (`image`). Initial images are now duplicating to match the number of text prompts. Note that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update your script to pass as many initial images as text prompts to suppress this warning.' + deprecate('len(prompt) != len(image)', '1.0.0', deprecation_message, standard_warn=False) + additional_image_per_prompt = batch_size // image_latents.shape[0] + image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) + elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts.') + else: + image_latents = torch.cat([image_latents], dim=0) + if do_classifier_free_guidance: + uncond_image_latents = torch.zeros_like(image_latents) + image_latents = torch.cat([image_latents, image_latents, uncond_image_latents], dim=0) + return image_latents + + def encode_image_clip_latents(self, image, batch_size, num_prompts_per_image, dtype, device, generator=None): + if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): + raise ValueError(f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}') + preprocessed_image = self.clip_image_processor.preprocess(image, return_tensors='pt') + preprocessed_image = preprocessed_image.to(device=device, dtype=dtype) + batch_size = batch_size * num_prompts_per_image + if isinstance(generator, list): + image_latents = [self.image_encoder(**preprocessed_image[i:i + 1]).image_embeds for i in range(batch_size)] + image_latents = torch.cat(image_latents, dim=0) + else: + image_latents = self.image_encoder(**preprocessed_image).image_embeds + if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: + deprecation_message = f'You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial images (`image`). Initial images are now duplicating to match the number of text prompts. Note that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update your script to pass as many initial images as text prompts to suppress this warning.' + deprecate('len(prompt) != len(image)', '1.0.0', deprecation_message, standard_warn=False) + additional_image_per_prompt = batch_size // image_latents.shape[0] + image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) + elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: + raise ValueError(f'Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts.') + else: + image_latents = torch.cat([image_latents], dim=0) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + return image_latents + + def prepare_text_latents(self, batch_size, num_images_per_prompt, seq_len, hidden_size, dtype, device, generator, latents=None): + shape = (batch_size * num_images_per_prompt, seq_len, hidden_size) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.repeat(num_images_per_prompt, 1, 1) + latents = latents.to(device=device, dtype=dtype) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def prepare_image_vae_latents(self, batch_size, num_prompts_per_image, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size * num_prompts_per_image, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.repeat(num_prompts_per_image, 1, 1, 1) + latents = latents.to(device=device, dtype=dtype) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def prepare_image_clip_latents(self, batch_size, num_prompts_per_image, clip_img_dim, dtype, device, generator, latents=None): + shape = (batch_size * num_prompts_per_image, 1, clip_img_dim) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError(f'You have passed a list of generators of length {len(generator)}, but requested an effective batch size of {batch_size}. Make sure the batch size matches the length of the generators.') + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.repeat(num_prompts_per_image, 1, 1) + latents = latents.to(device=device, dtype=dtype) + latents = latents * self.scheduler.init_noise_sigma + return latents + + def decode_text_latents(self, text_latents, device): + (output_token_list, seq_lengths) = self.text_decoder.generate_captions(text_latents, self.text_tokenizer.eos_token_id, device=device) + output_list = output_token_list.cpu().numpy() + generated_text = [self.text_tokenizer.decode(output[:int(length)], skip_special_tokens=True) for (output, length) in zip(output_list, seq_lengths)] + return generated_text + + def _split(self, x, height, width): + batch_size = x.shape[0] + latent_height = height // self.vae_scale_factor + latent_width = width // self.vae_scale_factor + img_vae_dim = self.num_channels_latents * latent_height * latent_width + (img_vae, img_clip) = x.split([img_vae_dim, self.image_encoder_projection_dim], dim=1) + img_vae = torch.reshape(img_vae, (batch_size, self.num_channels_latents, latent_height, latent_width)) + img_clip = torch.reshape(img_clip, (batch_size, 1, self.image_encoder_projection_dim)) + return (img_vae, img_clip) + + def _combine(self, img_vae, img_clip): + img_vae = torch.reshape(img_vae, (img_vae.shape[0], -1)) + img_clip = torch.reshape(img_clip, (img_clip.shape[0], -1)) + return torch.concat([img_vae, img_clip], dim=-1) + + def _split_joint(self, x, height, width): + batch_size = x.shape[0] + latent_height = height // self.vae_scale_factor + latent_width = width // self.vae_scale_factor + img_vae_dim = self.num_channels_latents * latent_height * latent_width + text_dim = self.text_encoder_seq_len * self.text_intermediate_dim + (img_vae, img_clip, text) = x.split([img_vae_dim, self.image_encoder_projection_dim, text_dim], dim=1) + img_vae = torch.reshape(img_vae, (batch_size, self.num_channels_latents, latent_height, latent_width)) + img_clip = torch.reshape(img_clip, (batch_size, 1, self.image_encoder_projection_dim)) + text = torch.reshape(text, (batch_size, self.text_encoder_seq_len, self.text_intermediate_dim)) + return (img_vae, img_clip, text) + + def _combine_joint(self, img_vae, img_clip, text): + img_vae = torch.reshape(img_vae, (img_vae.shape[0], -1)) + img_clip = torch.reshape(img_clip, (img_clip.shape[0], -1)) + text = torch.reshape(text, (text.shape[0], -1)) + return torch.concat([img_vae, img_clip, text], dim=-1) + + def _get_noise_pred(self, mode, latents, t, prompt_embeds, img_vae, img_clip, max_timestep, data_type, guidance_scale, generator, device, height, width): + if mode == 'joint': + (img_vae_latents, img_clip_latents, text_latents) = self._split_joint(latents, height, width) + (img_vae_out, img_clip_out, text_out) = self.unet(img_vae_latents, img_clip_latents, text_latents, timestep_img=t, timestep_text=t, data_type=data_type) + x_out = self._combine_joint(img_vae_out, img_clip_out, text_out) + if guidance_scale <= 1.0: + return x_out + img_vae_T = randn_tensor(img_vae.shape, generator=generator, device=device, dtype=img_vae.dtype) + img_clip_T = randn_tensor(img_clip.shape, generator=generator, device=device, dtype=img_clip.dtype) + text_T = randn_tensor(prompt_embeds.shape, generator=generator, device=device, dtype=prompt_embeds.dtype) + (_, _, text_out_uncond) = self.unet(img_vae_T, img_clip_T, text_latents, timestep_img=max_timestep, timestep_text=t, data_type=data_type) + (img_vae_out_uncond, img_clip_out_uncond, _) = self.unet(img_vae_latents, img_clip_latents, text_T, timestep_img=t, timestep_text=max_timestep, data_type=data_type) + x_out_uncond = self._combine_joint(img_vae_out_uncond, img_clip_out_uncond, text_out_uncond) + return guidance_scale * x_out + (1.0 - guidance_scale) * x_out_uncond + elif mode == 'text2img': + (img_vae_latents, img_clip_latents) = self._split(latents, height, width) + (img_vae_out, img_clip_out, text_out) = self.unet(img_vae_latents, img_clip_latents, prompt_embeds, timestep_img=t, timestep_text=0, data_type=data_type) + img_out = self._combine(img_vae_out, img_clip_out) + if guidance_scale <= 1.0: + return img_out + text_T = randn_tensor(prompt_embeds.shape, generator=generator, device=device, dtype=prompt_embeds.dtype) + (img_vae_out_uncond, img_clip_out_uncond, text_out_uncond) = self.unet(img_vae_latents, img_clip_latents, text_T, timestep_img=t, timestep_text=max_timestep, data_type=data_type) + img_out_uncond = self._combine(img_vae_out_uncond, img_clip_out_uncond) + return guidance_scale * img_out + (1.0 - guidance_scale) * img_out_uncond + elif mode == 'img2text': + (img_vae_out, img_clip_out, text_out) = self.unet(img_vae, img_clip, latents, timestep_img=0, timestep_text=t, data_type=data_type) + if guidance_scale <= 1.0: + return text_out + img_vae_T = randn_tensor(img_vae.shape, generator=generator, device=device, dtype=img_vae.dtype) + img_clip_T = randn_tensor(img_clip.shape, generator=generator, device=device, dtype=img_clip.dtype) + (img_vae_out_uncond, img_clip_out_uncond, text_out_uncond) = self.unet(img_vae_T, img_clip_T, latents, timestep_img=max_timestep, timestep_text=t, data_type=data_type) + return guidance_scale * text_out + (1.0 - guidance_scale) * text_out_uncond + elif mode == 'text': + (img_vae_out, img_clip_out, text_out) = self.unet(img_vae, img_clip, latents, timestep_img=max_timestep, timestep_text=t, data_type=data_type) + return text_out + elif mode == 'img': + (img_vae_latents, img_clip_latents) = self._split(latents, height, width) + (img_vae_out, img_clip_out, text_out) = self.unet(img_vae_latents, img_clip_latents, prompt_embeds, timestep_img=t, timestep_text=max_timestep, data_type=data_type) + img_out = self._combine(img_vae_out, img_clip_out) + return img_out + + def check_latents_shape(self, latents_name, latents, expected_shape): + latents_shape = latents.shape + expected_num_dims = len(expected_shape) + 1 + expected_shape_str = ', '.join((str(dim) for dim in expected_shape)) + if len(latents_shape) != expected_num_dims: + raise ValueError(f'`{latents_name}` should have shape (batch_size, {expected_shape_str}), but the current shape {latents_shape} has {len(latents_shape)} dimensions.') + for i in range(1, expected_num_dims): + if latents_shape[i] != expected_shape[i - 1]: + raise ValueError(f'`{latents_name}` should have shape (batch_size, {expected_shape_str}), but the current shape {latents_shape} has {latents_shape[i]} != {expected_shape[i - 1]} at dimension {i}.') + + def check_inputs(self, mode, prompt, image, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, latents=None, prompt_latents=None, vae_latents=None, clip_latents=None): + if height % self.vae_scale_factor != 0 or width % self.vae_scale_factor != 0: + raise ValueError(f'`height` and `width` have to be divisible by {self.vae_scale_factor} but are {height} and {width}.') + if callback_steps is None or (callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)): + raise ValueError(f'`callback_steps` has to be a positive integer but is {callback_steps} of type {type(callback_steps)}.') + if mode == 'text2img': + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if mode == 'img2text': + if image is None: + raise ValueError('`img2text` mode requires an image to be provided.') + latent_height = height // self.vae_scale_factor + latent_width = width // self.vae_scale_factor + full_latents_available = latents is not None + prompt_latents_available = prompt_latents is not None + vae_latents_available = vae_latents is not None + clip_latents_available = clip_latents is not None + if full_latents_available: + individual_latents_available = prompt_latents is not None or vae_latents is not None or clip_latents is not None + if individual_latents_available: + logger.warning('You have supplied both `latents` and at least one of `prompt_latents`, `vae_latents`, and `clip_latents`. The value of `latents` will override the value of any individually supplied latents.') + img_vae_dim = self.num_channels_latents * latent_height * latent_width + text_dim = self.text_encoder_seq_len * self.text_encoder_hidden_size + latents_dim = img_vae_dim + self.image_encoder_projection_dim + text_dim + latents_expected_shape = (latents_dim,) + self.check_latents_shape('latents', latents, latents_expected_shape) + if prompt_latents_available: + prompt_latents_expected_shape = (self.text_encoder_seq_len, self.text_encoder_hidden_size) + self.check_latents_shape('prompt_latents', prompt_latents, prompt_latents_expected_shape) + if vae_latents_available: + vae_latents_expected_shape = (self.num_channels_latents, latent_height, latent_width) + self.check_latents_shape('vae_latents', vae_latents, vae_latents_expected_shape) + if clip_latents_available: + clip_latents_expected_shape = (1, self.image_encoder_projection_dim) + self.check_latents_shape('clip_latents', clip_latents, clip_latents_expected_shape) + if mode in ['text2img', 'img'] and vae_latents_available and clip_latents_available: + if vae_latents.shape[0] != clip_latents.shape[0]: + raise ValueError(f'Both `vae_latents` and `clip_latents` are supplied, but their batch dimensions are not equal: {vae_latents.shape[0]} != {clip_latents.shape[0]}.') + if mode == 'joint' and prompt_latents_available and vae_latents_available and clip_latents_available: + if prompt_latents.shape[0] != vae_latents.shape[0] or prompt_latents.shape[0] != clip_latents.shape[0]: + raise ValueError(f'All of `prompt_latents`, `vae_latents`, and `clip_latents` are supplied, but their batch dimensions are not equal: {prompt_latents.shape[0]} != {vae_latents.shape[0]} != {clip_latents.shape[0]}.') + + @torch.no_grad() + def __call__(self, prompt: Optional[Union[str, List[str]]]=None, image: Optional[Union[torch.Tensor, PIL.Image.Image]]=None, height: Optional[int]=None, width: Optional[int]=None, data_type: Optional[int]=1, num_inference_steps: int=50, guidance_scale: float=8.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: Optional[int]=1, num_prompts_per_image: Optional[int]=1, eta: float=0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, prompt_latents: Optional[torch.Tensor]=None, vae_latents: Optional[torch.Tensor]=None, clip_latents: Optional[torch.Tensor]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback: Optional[Callable[[int, int, torch.Tensor], None]]=None, callback_steps: int=1): + height = height or self.unet_resolution * self.vae_scale_factor + width = width or self.unet_resolution * self.vae_scale_factor + mode = self._infer_mode(prompt, prompt_embeds, image, latents, prompt_latents, vae_latents, clip_latents) + self.check_inputs(mode, prompt, image, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, latents, prompt_latents, vae_latents, clip_latents) + (batch_size, multiplier) = self._infer_batch_size(mode, prompt, prompt_embeds, image, num_images_per_prompt, num_prompts_per_image, latents, prompt_latents, vae_latents, clip_latents) + device = self._execution_device + reduce_text_emb_dim = self.text_intermediate_dim < self.text_encoder_hidden_size or self.mode != 'text2img' + do_classifier_free_guidance = guidance_scale > 1.0 + if latents is not None: + (vae_latents, clip_latents, prompt_latents) = self._split_joint(latents, height, width) + if mode in ['text2img']: + assert prompt is not None or prompt_embeds is not None + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=multiplier, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds) + else: + prompt_embeds = self.prepare_text_latents(batch_size=batch_size, num_images_per_prompt=multiplier, seq_len=self.text_encoder_seq_len, hidden_size=self.text_encoder_hidden_size, dtype=self.text_encoder.dtype, device=device, generator=generator, latents=prompt_latents) + if reduce_text_emb_dim: + prompt_embeds = self.text_decoder.encode(prompt_embeds) + if mode in ['img2text']: + assert image is not None, '`img2text` requires a conditioning image' + image_vae = self.image_processor.preprocess(image) + (height, width) = image_vae.shape[-2:] + image_vae_latents = self.encode_image_vae_latents(image=image_vae, batch_size=batch_size, num_prompts_per_image=multiplier, dtype=prompt_embeds.dtype, device=device, do_classifier_free_guidance=False, generator=generator) + image_clip_latents = self.encode_image_clip_latents(image=image, batch_size=batch_size, num_prompts_per_image=multiplier, dtype=prompt_embeds.dtype, device=device, generator=generator) + image_clip_latents = image_clip_latents.unsqueeze(1) + else: + image_vae_latents = self.prepare_image_vae_latents(batch_size=batch_size, num_prompts_per_image=multiplier, num_channels_latents=self.num_channels_latents, height=height, width=width, dtype=prompt_embeds.dtype, device=device, generator=generator, latents=vae_latents) + image_clip_latents = self.prepare_image_clip_latents(batch_size=batch_size, num_prompts_per_image=multiplier, clip_img_dim=self.image_encoder_projection_dim, dtype=prompt_embeds.dtype, device=device, generator=generator, latents=clip_latents) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + max_timestep = self.scheduler.config.num_train_timesteps + if mode == 'joint': + latents = self._combine_joint(image_vae_latents, image_clip_latents, prompt_embeds) + elif mode in ['text2img', 'img']: + latents = self._combine(image_vae_latents, image_clip_latents) + elif mode in ['img2text', 'text']: + latents = prompt_embeds + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + logger.debug(f'Scheduler extra step kwargs: {extra_step_kwargs}') + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for (i, t) in enumerate(timesteps): + noise_pred = self._get_noise_pred(mode, latents, t, prompt_embeds, image_vae_latents, image_clip_latents, max_timestep, data_type, guidance_scale, generator, device, height, width) + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + image = None + text = None + if mode == 'joint': + (image_vae_latents, image_clip_latents, text_latents) = self._split_joint(latents, height, width) + if not output_type == 'latent': + image = self.vae.decode(image_vae_latents / self.vae.config.scaling_factor, return_dict=False)[0] + else: + image = image_vae_latents + text = self.decode_text_latents(text_latents, device) + elif mode in ['text2img', 'img']: + (image_vae_latents, image_clip_latents) = self._split(latents, height, width) + if not output_type == 'latent': + image = self.vae.decode(image_vae_latents / self.vae.config.scaling_factor, return_dict=False)[0] + else: + image = image_vae_latents + elif mode in ['img2text', 'text']: + text_latents = latents + text = self.decode_text_latents(text_latents, device) + self.maybe_free_model_hooks() + if image is not None: + do_denormalize = [True] * image.shape[0] + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + if hasattr(self, 'final_offload_hook') and self.final_offload_hook is not None: + self.final_offload_hook.offload() + if not return_dict: + return (image, text) + return ImageTextPipelineOutput(images=image, text=text) + +# File: diffusers-main/src/diffusers/pipelines/wuerstchen/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure['modeling_paella_vq_model'] = ['PaellaVQModel'] + _import_structure['modeling_wuerstchen_diffnext'] = ['WuerstchenDiffNeXt'] + _import_structure['modeling_wuerstchen_prior'] = ['WuerstchenPrior'] + _import_structure['pipeline_wuerstchen'] = ['WuerstchenDecoderPipeline'] + _import_structure['pipeline_wuerstchen_combined'] = ['WuerstchenCombinedPipeline'] + _import_structure['pipeline_wuerstchen_prior'] = ['DEFAULT_STAGE_C_TIMESTEPS', 'WuerstchenPriorPipeline'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .modeling_paella_vq_model import PaellaVQModel + from .modeling_wuerstchen_diffnext import WuerstchenDiffNeXt + from .modeling_wuerstchen_prior import WuerstchenPrior + from .pipeline_wuerstchen import WuerstchenDecoderPipeline + from .pipeline_wuerstchen_combined import WuerstchenCombinedPipeline + from .pipeline_wuerstchen_prior import DEFAULT_STAGE_C_TIMESTEPS, WuerstchenPriorPipeline +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +from typing import Union +import torch +import torch.nn as nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...models.autoencoders.vae import DecoderOutput, VectorQuantizer +from ...models.modeling_utils import ModelMixin +from ...models.vq_model import VQEncoderOutput +from ...utils.accelerate_utils import apply_forward_hook + +class MixingResidualBlock(nn.Module): + + def __init__(self, inp_channels, embed_dim): + super().__init__() + self.norm1 = nn.LayerNorm(inp_channels, elementwise_affine=False, eps=1e-06) + self.depthwise = nn.Sequential(nn.ReplicationPad2d(1), nn.Conv2d(inp_channels, inp_channels, kernel_size=3, groups=inp_channels)) + self.norm2 = nn.LayerNorm(inp_channels, elementwise_affine=False, eps=1e-06) + self.channelwise = nn.Sequential(nn.Linear(inp_channels, embed_dim), nn.GELU(), nn.Linear(embed_dim, inp_channels)) + self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True) + + def forward(self, x): + mods = self.gammas + x_temp = self.norm1(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * (1 + mods[0]) + mods[1] + x = x + self.depthwise(x_temp) * mods[2] + x_temp = self.norm2(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * (1 + mods[3]) + mods[4] + x = x + self.channelwise(x_temp.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * mods[5] + return x + +class PaellaVQModel(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, in_channels: int=3, out_channels: int=3, up_down_scale_factor: int=2, levels: int=2, bottleneck_blocks: int=12, embed_dim: int=384, latent_channels: int=4, num_vq_embeddings: int=8192, scale_factor: float=0.3764): + super().__init__() + c_levels = [embed_dim // 2 ** i for i in reversed(range(levels))] + self.in_block = nn.Sequential(nn.PixelUnshuffle(up_down_scale_factor), nn.Conv2d(in_channels * up_down_scale_factor ** 2, c_levels[0], kernel_size=1)) + down_blocks = [] + for i in range(levels): + if i > 0: + down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1)) + block = MixingResidualBlock(c_levels[i], c_levels[i] * 4) + down_blocks.append(block) + down_blocks.append(nn.Sequential(nn.Conv2d(c_levels[-1], latent_channels, kernel_size=1, bias=False), nn.BatchNorm2d(latent_channels))) + self.down_blocks = nn.Sequential(*down_blocks) + self.vquantizer = VectorQuantizer(num_vq_embeddings, vq_embed_dim=latent_channels, legacy=False, beta=0.25) + up_blocks = [nn.Sequential(nn.Conv2d(latent_channels, c_levels[-1], kernel_size=1))] + for i in range(levels): + for j in range(bottleneck_blocks if i == 0 else 1): + block = MixingResidualBlock(c_levels[levels - 1 - i], c_levels[levels - 1 - i] * 4) + up_blocks.append(block) + if i < levels - 1: + up_blocks.append(nn.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2, padding=1)) + self.up_blocks = nn.Sequential(*up_blocks) + self.out_block = nn.Sequential(nn.Conv2d(c_levels[0], out_channels * up_down_scale_factor ** 2, kernel_size=1), nn.PixelShuffle(up_down_scale_factor)) + + @apply_forward_hook + def encode(self, x: torch.Tensor, return_dict: bool=True) -> VQEncoderOutput: + h = self.in_block(x) + h = self.down_blocks(h) + if not return_dict: + return (h,) + return VQEncoderOutput(latents=h) + + @apply_forward_hook + def decode(self, h: torch.Tensor, force_not_quantize: bool=True, return_dict: bool=True) -> Union[DecoderOutput, torch.Tensor]: + if not force_not_quantize: + (quant, _, _) = self.vquantizer(h) + else: + quant = h + x = self.up_blocks(quant) + dec = self.out_block(x) + if not return_dict: + return (dec,) + return DecoderOutput(sample=dec) + + def forward(self, sample: torch.Tensor, return_dict: bool=True) -> Union[DecoderOutput, torch.Tensor]: + x = sample + h = self.encode(x).latents + dec = self.decode(h).sample + if not return_dict: + return (dec,) + return DecoderOutput(sample=dec) + +# File: diffusers-main/src/diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +import torch +import torch.nn as nn +from ...models.attention_processor import Attention + +class WuerstchenLayerNorm(nn.LayerNorm): + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + def forward(self, x): + x = x.permute(0, 2, 3, 1) + x = super().forward(x) + return x.permute(0, 3, 1, 2) + +class TimestepBlock(nn.Module): + + def __init__(self, c, c_timestep): + super().__init__() + self.mapper = nn.Linear(c_timestep, c * 2) + + def forward(self, x, t): + (a, b) = self.mapper(t)[:, :, None, None].chunk(2, dim=1) + return x * (1 + a) + b + +class ResBlock(nn.Module): + + def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0): + super().__init__() + self.depthwise = nn.Conv2d(c + c_skip, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c) + self.norm = WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-06) + self.channelwise = nn.Sequential(nn.Linear(c, c * 4), nn.GELU(), GlobalResponseNorm(c * 4), nn.Dropout(dropout), nn.Linear(c * 4, c)) + + def forward(self, x, x_skip=None): + x_res = x + if x_skip is not None: + x = torch.cat([x, x_skip], dim=1) + x = self.norm(self.depthwise(x)).permute(0, 2, 3, 1) + x = self.channelwise(x).permute(0, 3, 1, 2) + return x + x_res + +class GlobalResponseNorm(nn.Module): + + def __init__(self, dim): + super().__init__() + self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) + self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) + + def forward(self, x): + agg_norm = torch.norm(x, p=2, dim=(1, 2), keepdim=True) + stand_div_norm = agg_norm / (agg_norm.mean(dim=-1, keepdim=True) + 1e-06) + return self.gamma * (x * stand_div_norm) + self.beta + x + +class AttnBlock(nn.Module): + + def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0): + super().__init__() + self.self_attn = self_attn + self.norm = WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-06) + self.attention = Attention(query_dim=c, heads=nhead, dim_head=c // nhead, dropout=dropout, bias=True) + self.kv_mapper = nn.Sequential(nn.SiLU(), nn.Linear(c_cond, c)) + + def forward(self, x, kv): + kv = self.kv_mapper(kv) + norm_x = self.norm(x) + if self.self_attn: + (batch_size, channel, _, _) = x.shape + kv = torch.cat([norm_x.view(batch_size, channel, -1).transpose(1, 2), kv], dim=1) + x = x + self.attention(norm_x, encoder_hidden_states=kv) + return x + +# File: diffusers-main/src/diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +import math +import numpy as np +import torch +import torch.nn as nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...models.modeling_utils import ModelMixin +from .modeling_wuerstchen_common import AttnBlock, GlobalResponseNorm, TimestepBlock, WuerstchenLayerNorm + +class WuerstchenDiffNeXt(ModelMixin, ConfigMixin): + + @register_to_config + def __init__(self, c_in=4, c_out=4, c_r=64, patch_size=2, c_cond=1024, c_hidden=[320, 640, 1280, 1280], nhead=[-1, 10, 20, 20], blocks=[4, 4, 14, 4], level_config=['CT', 'CTA', 'CTA', 'CTA'], inject_effnet=[False, True, True, True], effnet_embd=16, clip_embd=1024, kernel_size=3, dropout=0.1): + super().__init__() + self.c_r = c_r + self.c_cond = c_cond + if not isinstance(dropout, list): + dropout = [dropout] * len(c_hidden) + self.clip_mapper = nn.Linear(clip_embd, c_cond) + self.effnet_mappers = nn.ModuleList([nn.Conv2d(effnet_embd, c_cond, kernel_size=1) if inject else None for inject in inject_effnet + list(reversed(inject_effnet))]) + self.seq_norm = nn.LayerNorm(c_cond, elementwise_affine=False, eps=1e-06) + self.embedding = nn.Sequential(nn.PixelUnshuffle(patch_size), nn.Conv2d(c_in * patch_size ** 2, c_hidden[0], kernel_size=1), WuerstchenLayerNorm(c_hidden[0], elementwise_affine=False, eps=1e-06)) + + def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0): + if block_type == 'C': + return ResBlockStageB(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout) + elif block_type == 'A': + return AttnBlock(c_hidden, c_cond, nhead, self_attn=True, dropout=dropout) + elif block_type == 'T': + return TimestepBlock(c_hidden, c_r) + else: + raise ValueError(f'Block type {block_type} not supported') + self.down_blocks = nn.ModuleList() + for i in range(len(c_hidden)): + down_block = nn.ModuleList() + if i > 0: + down_block.append(nn.Sequential(WuerstchenLayerNorm(c_hidden[i - 1], elementwise_affine=False, eps=1e-06), nn.Conv2d(c_hidden[i - 1], c_hidden[i], kernel_size=2, stride=2))) + for _ in range(blocks[i]): + for block_type in level_config[i]: + c_skip = c_cond if inject_effnet[i] else 0 + down_block.append(get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i])) + self.down_blocks.append(down_block) + self.up_blocks = nn.ModuleList() + for i in reversed(range(len(c_hidden))): + up_block = nn.ModuleList() + for j in range(blocks[i]): + for (k, block_type) in enumerate(level_config[i]): + c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0 + c_skip += c_cond if inject_effnet[i] else 0 + up_block.append(get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i])) + if i > 0: + up_block.append(nn.Sequential(WuerstchenLayerNorm(c_hidden[i], elementwise_affine=False, eps=1e-06), nn.ConvTranspose2d(c_hidden[i], c_hidden[i - 1], kernel_size=2, stride=2))) + self.up_blocks.append(up_block) + self.clf = nn.Sequential(WuerstchenLayerNorm(c_hidden[0], elementwise_affine=False, eps=1e-06), nn.Conv2d(c_hidden[0], 2 * c_out * patch_size ** 2, kernel_size=1), nn.PixelShuffle(patch_size)) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, (nn.Conv2d, nn.Linear)): + nn.init.xavier_uniform_(m.weight) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + for mapper in self.effnet_mappers: + if mapper is not None: + nn.init.normal_(mapper.weight, std=0.02) + nn.init.normal_(self.clip_mapper.weight, std=0.02) + nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) + nn.init.constant_(self.clf[1].weight, 0) + for level_block in self.down_blocks + self.up_blocks: + for block in level_block: + if isinstance(block, ResBlockStageB): + block.channelwise[-1].weight.data *= np.sqrt(1 / sum(self.config.blocks)) + elif isinstance(block, TimestepBlock): + nn.init.constant_(block.mapper.weight, 0) + + def gen_r_embedding(self, r, max_positions=10000): + r = r * max_positions + half_dim = self.c_r // 2 + emb = math.log(max_positions) / (half_dim - 1) + emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp() + emb = r[:, None] * emb[None, :] + emb = torch.cat([emb.sin(), emb.cos()], dim=1) + if self.c_r % 2 == 1: + emb = nn.functional.pad(emb, (0, 1), mode='constant') + return emb.to(dtype=r.dtype) + + def gen_c_embeddings(self, clip): + clip = self.clip_mapper(clip) + clip = self.seq_norm(clip) + return clip + + def _down_encode(self, x, r_embed, effnet, clip=None): + level_outputs = [] + for (i, down_block) in enumerate(self.down_blocks): + effnet_c = None + for block in down_block: + if isinstance(block, ResBlockStageB): + if effnet_c is None and self.effnet_mappers[i] is not None: + dtype = effnet.dtype + effnet_c = self.effnet_mappers[i](nn.functional.interpolate(effnet.float(), size=x.shape[-2:], mode='bicubic', antialias=True, align_corners=True).to(dtype)) + skip = effnet_c if self.effnet_mappers[i] is not None else None + x = block(x, skip) + elif isinstance(block, AttnBlock): + x = block(x, clip) + elif isinstance(block, TimestepBlock): + x = block(x, r_embed) + else: + x = block(x) + level_outputs.insert(0, x) + return level_outputs + + def _up_decode(self, level_outputs, r_embed, effnet, clip=None): + x = level_outputs[0] + for (i, up_block) in enumerate(self.up_blocks): + effnet_c = None + for (j, block) in enumerate(up_block): + if isinstance(block, ResBlockStageB): + if effnet_c is None and self.effnet_mappers[len(self.down_blocks) + i] is not None: + dtype = effnet.dtype + effnet_c = self.effnet_mappers[len(self.down_blocks) + i](nn.functional.interpolate(effnet.float(), size=x.shape[-2:], mode='bicubic', antialias=True, align_corners=True).to(dtype)) + skip = level_outputs[i] if j == 0 and i > 0 else None + if effnet_c is not None: + if skip is not None: + skip = torch.cat([skip, effnet_c], dim=1) + else: + skip = effnet_c + x = block(x, skip) + elif isinstance(block, AttnBlock): + x = block(x, clip) + elif isinstance(block, TimestepBlock): + x = block(x, r_embed) + else: + x = block(x) + return x + + def forward(self, x, r, effnet, clip=None, x_cat=None, eps=0.001, return_noise=True): + if x_cat is not None: + x = torch.cat([x, x_cat], dim=1) + r_embed = self.gen_r_embedding(r) + if clip is not None: + clip = self.gen_c_embeddings(clip) + x_in = x + x = self.embedding(x) + level_outputs = self._down_encode(x, r_embed, effnet, clip) + x = self._up_decode(level_outputs, r_embed, effnet, clip) + (a, b) = self.clf(x).chunk(2, dim=1) + b = b.sigmoid() * (1 - eps * 2) + eps + if return_noise: + return (x_in - a) / b + else: + return (a, b) + +class ResBlockStageB(nn.Module): + + def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0): + super().__init__() + self.depthwise = nn.Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c) + self.norm = WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-06) + self.channelwise = nn.Sequential(nn.Linear(c + c_skip, c * 4), nn.GELU(), GlobalResponseNorm(c * 4), nn.Dropout(dropout), nn.Linear(c * 4, c)) + + def forward(self, x, x_skip=None): + x_res = x + x = self.norm(self.depthwise(x)) + if x_skip is not None: + x = torch.cat([x, x_skip], dim=1) + x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + return x + x_res + +# File: diffusers-main/src/diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +import math +from typing import Dict, Union +import torch +import torch.nn as nn +from ...configuration_utils import ConfigMixin, register_to_config +from ...loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin +from ...models.attention_processor import ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnAddedKVProcessor, AttnProcessor +from ...models.modeling_utils import ModelMixin +from ...utils import is_torch_version +from .modeling_wuerstchen_common import AttnBlock, ResBlock, TimestepBlock, WuerstchenLayerNorm + +class WuerstchenPrior(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin): + unet_name = 'prior' + _supports_gradient_checkpointing = True + + @register_to_config + def __init__(self, c_in=16, c=1280, c_cond=1024, c_r=64, depth=16, nhead=16, dropout=0.1): + super().__init__() + self.c_r = c_r + self.projection = nn.Conv2d(c_in, c, kernel_size=1) + self.cond_mapper = nn.Sequential(nn.Linear(c_cond, c), nn.LeakyReLU(0.2), nn.Linear(c, c)) + self.blocks = nn.ModuleList() + for _ in range(depth): + self.blocks.append(ResBlock(c, dropout=dropout)) + self.blocks.append(TimestepBlock(c, c_r)) + self.blocks.append(AttnBlock(c, c, nhead, self_attn=True, dropout=dropout)) + self.out = nn.Sequential(WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-06), nn.Conv2d(c, c_in * 2, kernel_size=1)) + self.gradient_checkpointing = False + self.set_default_attn_processor() + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, 'get_processor'): + processors[f'{name}.processor'] = module.get_processor() + for (sub_name, child) in module.named_children(): + fn_recursive_add_processors(f'{name}.{sub_name}', child, processors) + return processors + for (name, module) in self.named_children(): + fn_recursive_add_processors(name, module, processors) + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + count = len(self.attn_processors.keys()) + if isinstance(processor, dict) and len(processor) != count: + raise ValueError(f'A dict of processors was passed, but the number of processors {len(processor)} does not match the number of attention layers: {count}. Please make sure to pass {count} processor classes.') + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, 'set_processor'): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f'{name}.processor')) + for (sub_name, child) in module.named_children(): + fn_recursive_attn_processor(f'{name}.{sub_name}', child, processor) + for (name, module) in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def set_default_attn_processor(self): + if all((proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnAddedKVProcessor() + elif all((proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values())): + processor = AttnProcessor() + else: + raise ValueError(f'Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}') + self.set_attn_processor(processor) + + def _set_gradient_checkpointing(self, module, value=False): + self.gradient_checkpointing = value + + def gen_r_embedding(self, r, max_positions=10000): + r = r * max_positions + half_dim = self.c_r // 2 + emb = math.log(max_positions) / (half_dim - 1) + emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp() + emb = r[:, None] * emb[None, :] + emb = torch.cat([emb.sin(), emb.cos()], dim=1) + if self.c_r % 2 == 1: + emb = nn.functional.pad(emb, (0, 1), mode='constant') + return emb.to(dtype=r.dtype) + + def forward(self, x, r, c): + x_in = x + x = self.projection(x) + c_embed = self.cond_mapper(c) + r_embed = self.gen_r_embedding(r) + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs) + return custom_forward + if is_torch_version('>=', '1.11.0'): + for block in self.blocks: + if isinstance(block, AttnBlock): + x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, c_embed, use_reentrant=False) + elif isinstance(block, TimestepBlock): + x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, r_embed, use_reentrant=False) + else: + x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, use_reentrant=False) + else: + for block in self.blocks: + if isinstance(block, AttnBlock): + x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, c_embed) + elif isinstance(block, TimestepBlock): + x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, r_embed) + else: + x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x) + else: + for block in self.blocks: + if isinstance(block, AttnBlock): + x = block(x, c_embed) + elif isinstance(block, TimestepBlock): + x = block(x, r_embed) + else: + x = block(x) + (a, b) = self.out(x).chunk(2, dim=1) + return (x_in - a) / ((1 - b).abs() + 1e-05) + +# File: diffusers-main/src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +from typing import Callable, Dict, List, Optional, Union +import numpy as np +import torch +from transformers import CLIPTextModel, CLIPTokenizer +from ...schedulers import DDPMWuerstchenScheduler +from ...utils import deprecate, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput +from .modeling_paella_vq_model import PaellaVQModel +from .modeling_wuerstchen_diffnext import WuerstchenDiffNeXt +logger = logging.get_logger(__name__) +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import WuerstchenPriorPipeline, WuerstchenDecoderPipeline\n\n >>> prior_pipe = WuerstchenPriorPipeline.from_pretrained(\n ... "warp-ai/wuerstchen-prior", torch_dtype=torch.float16\n ... ).to("cuda")\n >>> gen_pipe = WuerstchenDecoderPipeline.from_pretrain("warp-ai/wuerstchen", torch_dtype=torch.float16).to(\n ... "cuda"\n ... )\n\n >>> prompt = "an image of a shiba inu, donning a spacesuit and helmet"\n >>> prior_output = pipe(prompt)\n >>> images = gen_pipe(prior_output.image_embeddings, prompt=prompt)\n ```\n' + +class WuerstchenDecoderPipeline(DiffusionPipeline): + model_cpu_offload_seq = 'text_encoder->decoder->vqgan' + _callback_tensor_inputs = ['latents', 'text_encoder_hidden_states', 'negative_prompt_embeds', 'image_embeddings'] + + def __init__(self, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModel, decoder: WuerstchenDiffNeXt, scheduler: DDPMWuerstchenScheduler, vqgan: PaellaVQModel, latent_dim_scale: float=10.67) -> None: + super().__init__() + self.register_modules(tokenizer=tokenizer, text_encoder=text_encoder, decoder=decoder, scheduler=scheduler, vqgan=vqgan) + self.register_to_config(latent_dim_scale=latent_dim_scale) + + def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + if latents.shape != shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}') + latents = latents.to(device) + latents = latents * scheduler.init_noise_sigma + return latents + + def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None): + batch_size = len(prompt) if isinstance(prompt, list) else 1 + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + attention_mask = text_inputs.attention_mask + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + text_input_ids = text_input_ids[:, :self.tokenizer.model_max_length] + attention_mask = attention_mask[:, :self.tokenizer.model_max_length] + text_encoder_output = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask.to(device)) + text_encoder_hidden_states = text_encoder_output.last_hidden_state + text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_text_encoder_hidden_states = None + if do_classifier_free_guidance: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=uncond_input.attention_mask.to(device)) + uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state + seq_len = uncond_text_encoder_hidden_states.shape[1] + uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) + uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(batch_size * num_images_per_prompt, seq_len, -1) + return (text_encoder_hidden_states, uncond_text_encoder_hidden_states) + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, image_embeddings: Union[torch.Tensor, List[torch.Tensor]], prompt: Union[str, List[str]]=None, num_inference_steps: int=12, timesteps: Optional[List[float]]=None, guidance_scale: float=0.0, negative_prompt: Optional[Union[str, List[str]]]=None, num_images_per_prompt: int=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + device = self._execution_device + dtype = self.decoder.dtype + self._guidance_scale = guidance_scale + if not isinstance(prompt, list): + if isinstance(prompt, str): + prompt = [prompt] + else: + raise TypeError(f"'prompt' must be of type 'list' or 'str', but got {type(prompt)}.") + if self.do_classifier_free_guidance: + if negative_prompt is not None and (not isinstance(negative_prompt, list)): + if isinstance(negative_prompt, str): + negative_prompt = [negative_prompt] + else: + raise TypeError(f"'negative_prompt' must be of type 'list' or 'str', but got {type(negative_prompt)}.") + if isinstance(image_embeddings, list): + image_embeddings = torch.cat(image_embeddings, dim=0) + if isinstance(image_embeddings, np.ndarray): + image_embeddings = torch.Tensor(image_embeddings, device=device).to(dtype=dtype) + if not isinstance(image_embeddings, torch.Tensor): + raise TypeError(f"'image_embeddings' must be of type 'torch.Tensor' or 'np.array', but got {type(image_embeddings)}.") + if not isinstance(num_inference_steps, int): + raise TypeError(f"'num_inference_steps' must be of type 'int', but got {type(num_inference_steps)} In Case you want to provide explicit timesteps, please use the 'timesteps' argument.") + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt, device, image_embeddings.size(0) * num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt) + text_encoder_hidden_states = torch.cat([prompt_embeds, negative_prompt_embeds]) if negative_prompt_embeds is not None else prompt_embeds + effnet = torch.cat([image_embeddings, torch.zeros_like(image_embeddings)]) if self.do_classifier_free_guidance else image_embeddings + latent_height = int(image_embeddings.size(2) * self.config.latent_dim_scale) + latent_width = int(image_embeddings.size(3) * self.config.latent_dim_scale) + latent_features_shape = (image_embeddings.size(0) * num_images_per_prompt, 4, latent_height, latent_width) + if timesteps is not None: + self.scheduler.set_timesteps(timesteps=timesteps, device=device) + timesteps = self.scheduler.timesteps + num_inference_steps = len(timesteps) + else: + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + latents = self.prepare_latents(latent_features_shape, dtype, device, generator, latents, self.scheduler) + self._num_timesteps = len(timesteps[:-1]) + for (i, t) in enumerate(self.progress_bar(timesteps[:-1])): + ratio = t.expand(latents.size(0)).to(dtype) + predicted_latents = self.decoder(torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents, r=torch.cat([ratio] * 2) if self.do_classifier_free_guidance else ratio, effnet=effnet, clip=text_encoder_hidden_states) + if self.do_classifier_free_guidance: + (predicted_latents_text, predicted_latents_uncond) = predicted_latents.chunk(2) + predicted_latents = torch.lerp(predicted_latents_uncond, predicted_latents_text, self.guidance_scale) + latents = self.scheduler.step(model_output=predicted_latents, timestep=ratio, sample=latents, generator=generator).prev_sample + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + image_embeddings = callback_outputs.pop('image_embeddings', image_embeddings) + text_encoder_hidden_states = callback_outputs.pop('text_encoder_hidden_states', text_encoder_hidden_states) + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + if output_type not in ['pt', 'np', 'pil', 'latent']: + raise ValueError(f'Only the output types `pt`, `np`, `pil` and `latent` are supported not output_type={output_type}') + if not output_type == 'latent': + latents = self.vqgan.config.scale_factor * latents + images = self.vqgan.decode(latents).sample.clamp(0, 1) + if output_type == 'np': + images = images.permute(0, 2, 3, 1).cpu().float().numpy() + elif output_type == 'pil': + images = images.permute(0, 2, 3, 1).cpu().float().numpy() + images = self.numpy_to_pil(images) + else: + images = latents + self.maybe_free_model_hooks() + if not return_dict: + return images + return ImagePipelineOutput(images) + +# File: diffusers-main/src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +from typing import Callable, Dict, List, Optional, Union +import torch +from transformers import CLIPTextModel, CLIPTokenizer +from ...schedulers import DDPMWuerstchenScheduler +from ...utils import deprecate, replace_example_docstring +from ..pipeline_utils import DiffusionPipeline +from .modeling_paella_vq_model import PaellaVQModel +from .modeling_wuerstchen_diffnext import WuerstchenDiffNeXt +from .modeling_wuerstchen_prior import WuerstchenPrior +from .pipeline_wuerstchen import WuerstchenDecoderPipeline +from .pipeline_wuerstchen_prior import WuerstchenPriorPipeline +TEXT2IMAGE_EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> from diffusions import WuerstchenCombinedPipeline\n\n >>> pipe = WuerstchenCombinedPipeline.from_pretrained("warp-ai/Wuerstchen", torch_dtype=torch.float16).to(\n ... "cuda"\n ... )\n >>> prompt = "an image of a shiba inu, donning a spacesuit and helmet"\n >>> images = pipe(prompt=prompt)\n ```\n' + +class WuerstchenCombinedPipeline(DiffusionPipeline): + _load_connected_pipes = True + + def __init__(self, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModel, decoder: WuerstchenDiffNeXt, scheduler: DDPMWuerstchenScheduler, vqgan: PaellaVQModel, prior_tokenizer: CLIPTokenizer, prior_text_encoder: CLIPTextModel, prior_prior: WuerstchenPrior, prior_scheduler: DDPMWuerstchenScheduler): + super().__init__() + self.register_modules(text_encoder=text_encoder, tokenizer=tokenizer, decoder=decoder, scheduler=scheduler, vqgan=vqgan, prior_prior=prior_prior, prior_text_encoder=prior_text_encoder, prior_tokenizer=prior_tokenizer, prior_scheduler=prior_scheduler) + self.prior_pipe = WuerstchenPriorPipeline(prior=prior_prior, text_encoder=prior_text_encoder, tokenizer=prior_tokenizer, scheduler=prior_scheduler) + self.decoder_pipe = WuerstchenDecoderPipeline(text_encoder=text_encoder, tokenizer=tokenizer, decoder=decoder, scheduler=scheduler, vqgan=vqgan) + + def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable]=None): + self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op) + + def enable_model_cpu_offload(self, gpu_id: Optional[int]=None, device: Union[torch.device, str]='cuda'): + self.prior_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device) + self.decoder_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device) + + def enable_sequential_cpu_offload(self, gpu_id: Optional[int]=None, device: Union[torch.device, str]='cuda'): + self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) + self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) + + def progress_bar(self, iterable=None, total=None): + self.prior_pipe.progress_bar(iterable=iterable, total=total) + self.decoder_pipe.progress_bar(iterable=iterable, total=total) + + def set_progress_bar_config(self, **kwargs): + self.prior_pipe.set_progress_bar_config(**kwargs) + self.decoder_pipe.set_progress_bar_config(**kwargs) + + @torch.no_grad() + @replace_example_docstring(TEXT2IMAGE_EXAMPLE_DOC_STRING) + def __call__(self, prompt: Optional[Union[str, List[str]]]=None, height: int=512, width: int=512, prior_num_inference_steps: int=60, prior_timesteps: Optional[List[float]]=None, prior_guidance_scale: float=4.0, num_inference_steps: int=12, decoder_timesteps: Optional[List[float]]=None, decoder_guidance_scale: float=0.0, negative_prompt: Optional[Union[str, List[str]]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, num_images_per_prompt: int=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pil', return_dict: bool=True, prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, prior_callback_on_step_end_tensor_inputs: List[str]=['latents'], callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + prior_kwargs = {} + if kwargs.get('prior_callback', None) is not None: + prior_kwargs['callback'] = kwargs.pop('prior_callback') + deprecate('prior_callback', '1.0.0', 'Passing `prior_callback` as an input argument to `__call__` is deprecated, consider use `prior_callback_on_step_end`') + if kwargs.get('prior_callback_steps', None) is not None: + deprecate('prior_callback_steps', '1.0.0', 'Passing `prior_callback_steps` as an input argument to `__call__` is deprecated, consider use `prior_callback_on_step_end`') + prior_kwargs['callback_steps'] = kwargs.pop('prior_callback_steps') + prior_outputs = self.prior_pipe(prompt=prompt if prompt_embeds is None else None, height=height, width=width, num_inference_steps=prior_num_inference_steps, timesteps=prior_timesteps, guidance_scale=prior_guidance_scale, negative_prompt=negative_prompt if negative_prompt_embeds is None else None, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_images_per_prompt=num_images_per_prompt, generator=generator, latents=latents, output_type='pt', return_dict=False, callback_on_step_end=prior_callback_on_step_end, callback_on_step_end_tensor_inputs=prior_callback_on_step_end_tensor_inputs, **prior_kwargs) + image_embeddings = prior_outputs[0] + outputs = self.decoder_pipe(image_embeddings=image_embeddings, prompt=prompt if prompt is not None else '', num_inference_steps=num_inference_steps, timesteps=decoder_timesteps, guidance_scale=decoder_guidance_scale, negative_prompt=negative_prompt, generator=generator, output_type=output_type, return_dict=return_dict, callback_on_step_end=callback_on_step_end, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, **kwargs) + return outputs + +# File: diffusers-main/src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +from dataclasses import dataclass +from math import ceil +from typing import Callable, Dict, List, Optional, Union +import numpy as np +import torch +from transformers import CLIPTextModel, CLIPTokenizer +from ...loaders import StableDiffusionLoraLoaderMixin +from ...schedulers import DDPMWuerstchenScheduler +from ...utils import BaseOutput, deprecate, logging, replace_example_docstring +from ...utils.torch_utils import randn_tensor +from ..pipeline_utils import DiffusionPipeline +from .modeling_wuerstchen_prior import WuerstchenPrior +logger = logging.get_logger(__name__) +DEFAULT_STAGE_C_TIMESTEPS = list(np.linspace(1.0, 2 / 3, 20)) + list(np.linspace(2 / 3, 0.0, 11))[1:] +EXAMPLE_DOC_STRING = '\n Examples:\n ```py\n >>> import torch\n >>> from diffusers import WuerstchenPriorPipeline\n\n >>> prior_pipe = WuerstchenPriorPipeline.from_pretrained(\n ... "warp-ai/wuerstchen-prior", torch_dtype=torch.float16\n ... ).to("cuda")\n\n >>> prompt = "an image of a shiba inu, donning a spacesuit and helmet"\n >>> prior_output = pipe(prompt)\n ```\n' + +@dataclass +class WuerstchenPriorPipelineOutput(BaseOutput): + image_embeddings: Union[torch.Tensor, np.ndarray] + +class WuerstchenPriorPipeline(DiffusionPipeline, StableDiffusionLoraLoaderMixin): + unet_name = 'prior' + text_encoder_name = 'text_encoder' + model_cpu_offload_seq = 'text_encoder->prior' + _callback_tensor_inputs = ['latents', 'text_encoder_hidden_states', 'negative_prompt_embeds'] + _lora_loadable_modules = ['prior', 'text_encoder'] + + def __init__(self, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModel, prior: WuerstchenPrior, scheduler: DDPMWuerstchenScheduler, latent_mean: float=42.0, latent_std: float=1.0, resolution_multiple: float=42.67) -> None: + super().__init__() + self.register_modules(tokenizer=tokenizer, text_encoder=text_encoder, prior=prior, scheduler=scheduler) + self.register_to_config(latent_mean=latent_mean, latent_std=latent_std, resolution_multiple=resolution_multiple) + + def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + if latents.shape != shape: + raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}') + latents = latents.to(device) + latents = latents * scheduler.init_noise_sigma + return latents + + def encode_prompt(self, device, num_images_per_prompt, do_classifier_free_guidance, prompt=None, negative_prompt=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None): + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt_embeds is None: + text_inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + text_input_ids = text_inputs.input_ids + attention_mask = text_inputs.attention_mask + untruncated_ids = self.tokenizer(prompt, padding='longest', return_tensors='pt').input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and (not torch.equal(text_input_ids, untruncated_ids)): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) + logger.warning(f'The following part of your input was truncated because CLIP can only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}') + text_input_ids = text_input_ids[:, :self.tokenizer.model_max_length] + attention_mask = attention_mask[:, :self.tokenizer.model_max_length] + text_encoder_output = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask.to(device)) + prompt_embeds = text_encoder_output.last_hidden_state + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) + if negative_prompt_embeds is None and do_classifier_free_guidance: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [''] * batch_size + elif type(prompt) is not type(negative_prompt): + raise TypeError(f'`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} != {type(prompt)}.') + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError(f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`: {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches the batch size of `prompt`.') + else: + uncond_tokens = negative_prompt + uncond_input = self.tokenizer(uncond_tokens, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt') + negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=uncond_input.attention_mask.to(device)) + negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.last_hidden_state + if do_classifier_free_guidance: + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + return (prompt_embeds, negative_prompt_embeds) + + def check_inputs(self, prompt, negative_prompt, num_inference_steps, do_classifier_free_guidance, prompt_embeds=None, negative_prompt_embeds=None): + if prompt is not None and prompt_embeds is not None: + raise ValueError(f'Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to only forward one of the two.') + elif prompt is None and prompt_embeds is None: + raise ValueError('Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.') + elif prompt is not None and (not isinstance(prompt, str) and (not isinstance(prompt, list))): + raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(prompt)}') + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError(f'Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to only forward one of the two.') + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError(f'`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds` {negative_prompt_embeds.shape}.') + if not isinstance(num_inference_steps, int): + raise TypeError(f"'num_inference_steps' must be of type 'int', but got {type(num_inference_steps)} In Case you want to provide explicit timesteps, please use the 'timesteps' argument.") + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__(self, prompt: Optional[Union[str, List[str]]]=None, height: int=1024, width: int=1024, num_inference_steps: int=60, timesteps: List[float]=None, guidance_scale: float=8.0, negative_prompt: Optional[Union[str, List[str]]]=None, prompt_embeds: Optional[torch.Tensor]=None, negative_prompt_embeds: Optional[torch.Tensor]=None, num_images_per_prompt: Optional[int]=1, generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None, latents: Optional[torch.Tensor]=None, output_type: Optional[str]='pt', return_dict: bool=True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]]=None, callback_on_step_end_tensor_inputs: List[str]=['latents'], **kwargs): + callback = kwargs.pop('callback', None) + callback_steps = kwargs.pop('callback_steps', None) + if callback is not None: + deprecate('callback', '1.0.0', 'Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_steps is not None: + deprecate('callback_steps', '1.0.0', 'Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`') + if callback_on_step_end_tensor_inputs is not None and (not all((k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs))): + raise ValueError(f'`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}') + device = self._execution_device + self._guidance_scale = guidance_scale + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + if prompt is not None and (not isinstance(prompt, list)): + if isinstance(prompt, str): + prompt = [prompt] + else: + raise TypeError(f"'prompt' must be of type 'list' or 'str', but got {type(prompt)}.") + if self.do_classifier_free_guidance: + if negative_prompt is not None and (not isinstance(negative_prompt, list)): + if isinstance(negative_prompt, str): + negative_prompt = [negative_prompt] + else: + raise TypeError(f"'negative_prompt' must be of type 'list' or 'str', but got {type(negative_prompt)}.") + self.check_inputs(prompt, negative_prompt, num_inference_steps, self.do_classifier_free_guidance, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds) + (prompt_embeds, negative_prompt_embeds) = self.encode_prompt(prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds) + text_encoder_hidden_states = torch.cat([prompt_embeds, negative_prompt_embeds]) if negative_prompt_embeds is not None else prompt_embeds + dtype = text_encoder_hidden_states.dtype + latent_height = ceil(height / self.config.resolution_multiple) + latent_width = ceil(width / self.config.resolution_multiple) + num_channels = self.prior.config.c_in + effnet_features_shape = (num_images_per_prompt * batch_size, num_channels, latent_height, latent_width) + if timesteps is not None: + self.scheduler.set_timesteps(timesteps=timesteps, device=device) + timesteps = self.scheduler.timesteps + num_inference_steps = len(timesteps) + else: + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + latents = self.prepare_latents(effnet_features_shape, dtype, device, generator, latents, self.scheduler) + self._num_timesteps = len(timesteps[:-1]) + for (i, t) in enumerate(self.progress_bar(timesteps[:-1])): + ratio = t.expand(latents.size(0)).to(dtype) + predicted_image_embedding = self.prior(torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents, r=torch.cat([ratio] * 2) if self.do_classifier_free_guidance else ratio, c=text_encoder_hidden_states) + if self.do_classifier_free_guidance: + (predicted_image_embedding_text, predicted_image_embedding_uncond) = predicted_image_embedding.chunk(2) + predicted_image_embedding = torch.lerp(predicted_image_embedding_uncond, predicted_image_embedding_text, self.guidance_scale) + latents = self.scheduler.step(model_output=predicted_image_embedding, timestep=ratio, sample=latents, generator=generator).prev_sample + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + latents = callback_outputs.pop('latents', latents) + text_encoder_hidden_states = callback_outputs.pop('text_encoder_hidden_states', text_encoder_hidden_states) + negative_prompt_embeds = callback_outputs.pop('negative_prompt_embeds', negative_prompt_embeds) + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, 'order', 1) + callback(step_idx, t, latents) + latents = latents * self.config.latent_mean - self.config.latent_std + self.maybe_free_model_hooks() + if output_type == 'np': + latents = latents.cpu().float().numpy() + if not return_dict: + return (latents,) + return WuerstchenPriorPipelineOutput(latents) + +# File: diffusers-main/src/diffusers/schedulers/__init__.py +from typing import TYPE_CHECKING +from ..utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available +_dummy_modules = {} +_import_structure = {} +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ..utils import dummy_pt_objects + _dummy_modules.update(get_objects_from_module(dummy_pt_objects)) +else: + _import_structure['deprecated'] = ['KarrasVeScheduler', 'ScoreSdeVpScheduler'] + _import_structure['scheduling_amused'] = ['AmusedScheduler'] + _import_structure['scheduling_consistency_decoder'] = ['ConsistencyDecoderScheduler'] + _import_structure['scheduling_consistency_models'] = ['CMStochasticIterativeScheduler'] + _import_structure['scheduling_ddim'] = ['DDIMScheduler'] + _import_structure['scheduling_ddim_cogvideox'] = ['CogVideoXDDIMScheduler'] + _import_structure['scheduling_ddim_inverse'] = ['DDIMInverseScheduler'] + _import_structure['scheduling_ddim_parallel'] = ['DDIMParallelScheduler'] + _import_structure['scheduling_ddpm'] = ['DDPMScheduler'] + _import_structure['scheduling_ddpm_parallel'] = ['DDPMParallelScheduler'] + _import_structure['scheduling_ddpm_wuerstchen'] = ['DDPMWuerstchenScheduler'] + _import_structure['scheduling_deis_multistep'] = ['DEISMultistepScheduler'] + _import_structure['scheduling_dpm_cogvideox'] = ['CogVideoXDPMScheduler'] + _import_structure['scheduling_dpmsolver_multistep'] = ['DPMSolverMultistepScheduler'] + _import_structure['scheduling_dpmsolver_multistep_inverse'] = ['DPMSolverMultistepInverseScheduler'] + _import_structure['scheduling_dpmsolver_singlestep'] = ['DPMSolverSinglestepScheduler'] + _import_structure['scheduling_edm_dpmsolver_multistep'] = ['EDMDPMSolverMultistepScheduler'] + _import_structure['scheduling_edm_euler'] = ['EDMEulerScheduler'] + _import_structure['scheduling_euler_ancestral_discrete'] = ['EulerAncestralDiscreteScheduler'] + _import_structure['scheduling_euler_discrete'] = ['EulerDiscreteScheduler'] + _import_structure['scheduling_flow_match_euler_discrete'] = ['FlowMatchEulerDiscreteScheduler'] + _import_structure['scheduling_flow_match_heun_discrete'] = ['FlowMatchHeunDiscreteScheduler'] + _import_structure['scheduling_heun_discrete'] = ['HeunDiscreteScheduler'] + _import_structure['scheduling_ipndm'] = ['IPNDMScheduler'] + _import_structure['scheduling_k_dpm_2_ancestral_discrete'] = ['KDPM2AncestralDiscreteScheduler'] + _import_structure['scheduling_k_dpm_2_discrete'] = ['KDPM2DiscreteScheduler'] + _import_structure['scheduling_lcm'] = ['LCMScheduler'] + _import_structure['scheduling_pndm'] = ['PNDMScheduler'] + _import_structure['scheduling_repaint'] = ['RePaintScheduler'] + _import_structure['scheduling_sasolver'] = ['SASolverScheduler'] + _import_structure['scheduling_sde_ve'] = ['ScoreSdeVeScheduler'] + _import_structure['scheduling_tcd'] = ['TCDScheduler'] + _import_structure['scheduling_unclip'] = ['UnCLIPScheduler'] + _import_structure['scheduling_unipc_multistep'] = ['UniPCMultistepScheduler'] + _import_structure['scheduling_utils'] = ['AysSchedules', 'KarrasDiffusionSchedulers', 'SchedulerMixin'] + _import_structure['scheduling_vq_diffusion'] = ['VQDiffusionScheduler'] +try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ..utils import dummy_flax_objects + _dummy_modules.update(get_objects_from_module(dummy_flax_objects)) +else: + _import_structure['scheduling_ddim_flax'] = ['FlaxDDIMScheduler'] + _import_structure['scheduling_ddpm_flax'] = ['FlaxDDPMScheduler'] + _import_structure['scheduling_dpmsolver_multistep_flax'] = ['FlaxDPMSolverMultistepScheduler'] + _import_structure['scheduling_euler_discrete_flax'] = ['FlaxEulerDiscreteScheduler'] + _import_structure['scheduling_karras_ve_flax'] = ['FlaxKarrasVeScheduler'] + _import_structure['scheduling_lms_discrete_flax'] = ['FlaxLMSDiscreteScheduler'] + _import_structure['scheduling_pndm_flax'] = ['FlaxPNDMScheduler'] + _import_structure['scheduling_sde_ve_flax'] = ['FlaxScoreSdeVeScheduler'] + _import_structure['scheduling_utils_flax'] = ['FlaxKarrasDiffusionSchedulers', 'FlaxSchedulerMixin', 'FlaxSchedulerOutput', 'broadcast_to_shape_from_left'] +try: + if not (is_torch_available() and is_scipy_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ..utils import dummy_torch_and_scipy_objects + _dummy_modules.update(get_objects_from_module(dummy_torch_and_scipy_objects)) +else: + _import_structure['scheduling_lms_discrete'] = ['LMSDiscreteScheduler'] +try: + if not (is_torch_available() and is_torchsde_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ..utils import dummy_torch_and_torchsde_objects + _dummy_modules.update(get_objects_from_module(dummy_torch_and_torchsde_objects)) +else: + _import_structure['scheduling_cosine_dpmsolver_multistep'] = ['CosineDPMSolverMultistepScheduler'] + _import_structure['scheduling_dpmsolver_sde'] = ['DPMSolverSDEScheduler'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + from ..utils import OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ..utils.dummy_pt_objects import * + else: + from .deprecated import KarrasVeScheduler, ScoreSdeVpScheduler + from .scheduling_amused import AmusedScheduler + from .scheduling_consistency_decoder import ConsistencyDecoderScheduler + from .scheduling_consistency_models import CMStochasticIterativeScheduler + from .scheduling_ddim import DDIMScheduler + from .scheduling_ddim_cogvideox import CogVideoXDDIMScheduler + from .scheduling_ddim_inverse import DDIMInverseScheduler + from .scheduling_ddim_parallel import DDIMParallelScheduler + from .scheduling_ddpm import DDPMScheduler + from .scheduling_ddpm_parallel import DDPMParallelScheduler + from .scheduling_ddpm_wuerstchen import DDPMWuerstchenScheduler + from .scheduling_deis_multistep import DEISMultistepScheduler + from .scheduling_dpm_cogvideox import CogVideoXDPMScheduler + from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler + from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler + from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler + from .scheduling_edm_dpmsolver_multistep import EDMDPMSolverMultistepScheduler + from .scheduling_edm_euler import EDMEulerScheduler + from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler + from .scheduling_euler_discrete import EulerDiscreteScheduler + from .scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler + from .scheduling_flow_match_heun_discrete import FlowMatchHeunDiscreteScheduler + from .scheduling_heun_discrete import HeunDiscreteScheduler + from .scheduling_ipndm import IPNDMScheduler + from .scheduling_k_dpm_2_ancestral_discrete import KDPM2AncestralDiscreteScheduler + from .scheduling_k_dpm_2_discrete import KDPM2DiscreteScheduler + from .scheduling_lcm import LCMScheduler + from .scheduling_pndm import PNDMScheduler + from .scheduling_repaint import RePaintScheduler + from .scheduling_sasolver import SASolverScheduler + from .scheduling_sde_ve import ScoreSdeVeScheduler + from .scheduling_tcd import TCDScheduler + from .scheduling_unclip import UnCLIPScheduler + from .scheduling_unipc_multistep import UniPCMultistepScheduler + from .scheduling_utils import AysSchedules, KarrasDiffusionSchedulers, SchedulerMixin + from .scheduling_vq_diffusion import VQDiffusionScheduler + try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ..utils.dummy_flax_objects import * + else: + from .scheduling_ddim_flax import FlaxDDIMScheduler + from .scheduling_ddpm_flax import FlaxDDPMScheduler + from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler + from .scheduling_euler_discrete_flax import FlaxEulerDiscreteScheduler + from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler + from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler + from .scheduling_pndm_flax import FlaxPNDMScheduler + from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler + from .scheduling_utils_flax import FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left + try: + if not (is_torch_available() and is_scipy_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ..utils.dummy_torch_and_scipy_objects import * + else: + from .scheduling_lms_discrete import LMSDiscreteScheduler + try: + if not (is_torch_available() and is_torchsde_available()): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ..utils.dummy_torch_and_torchsde_objects import * + else: + from .scheduling_cosine_dpmsolver_multistep import CosineDPMSolverMultistepScheduler + from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_modules.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/schedulers/deprecated/__init__.py +from typing import TYPE_CHECKING +from ...utils import DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available +_dummy_objects = {} +_import_structure = {} +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_pt_objects + _dummy_objects.update(get_objects_from_module(dummy_pt_objects)) +else: + _import_structure['scheduling_karras_ve'] = ['KarrasVeScheduler'] + _import_structure['scheduling_sde_vp'] = ['ScoreSdeVpScheduler'] +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + from ...utils.dummy_pt_objects import * + else: + from .scheduling_karras_ve import KarrasVeScheduler + from .scheduling_sde_vp import ScoreSdeVpScheduler +else: + import sys + sys.modules[__name__] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) + for (name, value) in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) + +# File: diffusers-main/src/diffusers/schedulers/deprecated/scheduling_karras_ve.py +from dataclasses import dataclass +from typing import Optional, Tuple, Union +import numpy as np +import torch +from ...configuration_utils import ConfigMixin, register_to_config +from ...utils import BaseOutput +from ...utils.torch_utils import randn_tensor +from ..scheduling_utils import SchedulerMixin + +@dataclass +class KarrasVeOutput(BaseOutput): + prev_sample: torch.Tensor + derivative: torch.Tensor + pred_original_sample: Optional[torch.Tensor] = None + +class KarrasVeScheduler(SchedulerMixin, ConfigMixin): + order = 2 + + @register_to_config + def __init__(self, sigma_min: float=0.02, sigma_max: float=100, s_noise: float=1.007, s_churn: float=80, s_min: float=0.05, s_max: float=50): + self.init_noise_sigma = sigma_max + self.num_inference_steps: int = None + self.timesteps: np.IntTensor = None + self.schedule: torch.Tensor = None + + def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int]=None) -> torch.Tensor: + return sample + + def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device]=None): + self.num_inference_steps = num_inference_steps + timesteps = np.arange(0, self.num_inference_steps)[::-1].copy() + self.timesteps = torch.from_numpy(timesteps).to(device) + schedule = [self.config.sigma_max ** 2 * (self.config.sigma_min ** 2 / self.config.sigma_max ** 2) ** (i / (num_inference_steps - 1)) for i in self.timesteps] + self.schedule = torch.tensor(schedule, dtype=torch.float32, device=device) + + def add_noise_to_input(self, sample: torch.Tensor, sigma: float, generator: Optional[torch.Generator]=None) -> Tuple[torch.Tensor, float]: + if self.config.s_min <= sigma <= self.config.s_max: + gamma = min(self.config.s_churn / self.num_inference_steps, 2 ** 0.5 - 1) + else: + gamma = 0 + eps = self.config.s_noise * randn_tensor(sample.shape, generator=generator).to(sample.device) + sigma_hat = sigma + gamma * sigma + sample_hat = sample + (sigma_hat ** 2 - sigma ** 2) ** 0.5 * eps + return (sample_hat, sigma_hat) + + def step(self, model_output: torch.Tensor, sigma_hat: float, sigma_prev: float, sample_hat: torch.Tensor, return_dict: bool=True) -> Union[KarrasVeOutput, Tuple]: + pred_original_sample = sample_hat + sigma_hat * model_output + derivative = (sample_hat - pred_original_sample) / sigma_hat + sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative + if not return_dict: + return (sample_prev, derivative) + return KarrasVeOutput(prev_sample=sample_prev, derivative=derivative, pred_original_sample=pred_original_sample) + + def step_correct(self, model_output: torch.Tensor, sigma_hat: float, sigma_prev: float, sample_hat: torch.Tensor, sample_prev: torch.Tensor, derivative: torch.Tensor, return_dict: bool=True) -> Union[KarrasVeOutput, Tuple]: + pred_original_sample = sample_prev + sigma_prev * model_output + derivative_corr = (sample_prev - pred_original_sample) / sigma_prev + sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) + if not return_dict: + return (sample_prev, derivative) + return KarrasVeOutput(prev_sample=sample_prev, derivative=derivative, pred_original_sample=pred_original_sample) + + def add_noise(self, original_samples, noise, timesteps): + raise NotImplementedError() + +# File: diffusers-main/src/diffusers/schedulers/deprecated/scheduling_sde_vp.py +import math +from typing import Union +import torch +from ...configuration_utils import ConfigMixin, register_to_config +from ...utils.torch_utils import randn_tensor +from ..scheduling_utils import SchedulerMixin + +class ScoreSdeVpScheduler(SchedulerMixin, ConfigMixin): + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps=2000, beta_min=0.1, beta_max=20, sampling_eps=0.001): + self.sigmas = None + self.discrete_sigmas = None + self.timesteps = None + + def set_timesteps(self, num_inference_steps, device: Union[str, torch.device]=None): + self.timesteps = torch.linspace(1, self.config.sampling_eps, num_inference_steps, device=device) + + def step_pred(self, score, x, t, generator=None): + if self.timesteps is None: + raise ValueError("`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") + log_mean_coeff = -0.25 * t ** 2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min + std = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff)) + std = std.flatten() + while len(std.shape) < len(score.shape): + std = std.unsqueeze(-1) + score = -score / std + dt = -1.0 / len(self.timesteps) + beta_t = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) + beta_t = beta_t.flatten() + while len(beta_t.shape) < len(x.shape): + beta_t = beta_t.unsqueeze(-1) + drift = -0.5 * beta_t * x + diffusion = torch.sqrt(beta_t) + drift = drift - diffusion ** 2 * score + x_mean = x + drift * dt + noise = randn_tensor(x.shape, layout=x.layout, generator=generator, device=x.device, dtype=x.dtype) + x = x_mean + diffusion * math.sqrt(-dt) * noise + return (x, x_mean) + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_amused.py +import math +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput +from .scheduling_utils import SchedulerMixin + +def gumbel_noise(t, generator=None): + device = generator.device if generator is not None else t.device + noise = torch.zeros_like(t, device=device).uniform_(0, 1, generator=generator).to(t.device) + return -torch.log((-torch.log(noise.clamp(1e-20))).clamp(1e-20)) + +def mask_by_random_topk(mask_len, probs, temperature=1.0, generator=None): + confidence = torch.log(probs.clamp(1e-20)) + temperature * gumbel_noise(probs, generator=generator) + sorted_confidence = torch.sort(confidence, dim=-1).values + cut_off = torch.gather(sorted_confidence, 1, mask_len.long()) + masking = confidence < cut_off + return masking + +@dataclass +class AmusedSchedulerOutput(BaseOutput): + prev_sample: torch.Tensor + pred_original_sample: torch.Tensor = None + +class AmusedScheduler(SchedulerMixin, ConfigMixin): + order = 1 + temperatures: torch.Tensor + + @register_to_config + def __init__(self, mask_token_id: int, masking_schedule: str='cosine'): + self.temperatures = None + self.timesteps = None + + def set_timesteps(self, num_inference_steps: int, temperature: Union[int, Tuple[int, int], List[int]]=(2, 0), device: Union[str, torch.device]=None): + self.timesteps = torch.arange(num_inference_steps, device=device).flip(0) + if isinstance(temperature, (tuple, list)): + self.temperatures = torch.linspace(temperature[0], temperature[1], num_inference_steps, device=device) + else: + self.temperatures = torch.linspace(temperature, 0.01, num_inference_steps, device=device) + + def step(self, model_output: torch.Tensor, timestep: torch.long, sample: torch.LongTensor, starting_mask_ratio: int=1, generator: Optional[torch.Generator]=None, return_dict: bool=True) -> Union[AmusedSchedulerOutput, Tuple]: + two_dim_input = sample.ndim == 3 and model_output.ndim == 4 + if two_dim_input: + (batch_size, codebook_size, height, width) = model_output.shape + sample = sample.reshape(batch_size, height * width) + model_output = model_output.reshape(batch_size, codebook_size, height * width).permute(0, 2, 1) + unknown_map = sample == self.config.mask_token_id + probs = model_output.softmax(dim=-1) + device = probs.device + probs_ = probs.to(generator.device) if generator is not None else probs + if probs_.device.type == 'cpu' and probs_.dtype != torch.float32: + probs_ = probs_.float() + probs_ = probs_.reshape(-1, probs.size(-1)) + pred_original_sample = torch.multinomial(probs_, 1, generator=generator).to(device=device) + pred_original_sample = pred_original_sample[:, 0].view(*probs.shape[:-1]) + pred_original_sample = torch.where(unknown_map, pred_original_sample, sample) + if timestep == 0: + prev_sample = pred_original_sample + else: + seq_len = sample.shape[1] + step_idx = (self.timesteps == timestep).nonzero() + ratio = (step_idx + 1) / len(self.timesteps) + if self.config.masking_schedule == 'cosine': + mask_ratio = torch.cos(ratio * math.pi / 2) + elif self.config.masking_schedule == 'linear': + mask_ratio = 1 - ratio + else: + raise ValueError(f'unknown masking schedule {self.config.masking_schedule}') + mask_ratio = starting_mask_ratio * mask_ratio + mask_len = (seq_len * mask_ratio).floor() + mask_len = torch.min(unknown_map.sum(dim=-1, keepdim=True) - 1, mask_len) + mask_len = torch.max(torch.tensor([1], device=model_output.device), mask_len) + selected_probs = torch.gather(probs, -1, pred_original_sample[:, :, None])[:, :, 0] + selected_probs = torch.where(unknown_map, selected_probs, torch.finfo(selected_probs.dtype).max) + masking = mask_by_random_topk(mask_len, selected_probs, self.temperatures[step_idx], generator) + prev_sample = torch.where(masking, self.config.mask_token_id, pred_original_sample) + if two_dim_input: + prev_sample = prev_sample.reshape(batch_size, height, width) + pred_original_sample = pred_original_sample.reshape(batch_size, height, width) + if not return_dict: + return (prev_sample, pred_original_sample) + return AmusedSchedulerOutput(prev_sample, pred_original_sample) + + def add_noise(self, sample, timesteps, generator=None): + step_idx = (self.timesteps == timesteps).nonzero() + ratio = (step_idx + 1) / len(self.timesteps) + if self.config.masking_schedule == 'cosine': + mask_ratio = torch.cos(ratio * math.pi / 2) + elif self.config.masking_schedule == 'linear': + mask_ratio = 1 - ratio + else: + raise ValueError(f'unknown masking schedule {self.config.masking_schedule}') + mask_indices = torch.rand(sample.shape, device=generator.device if generator is not None else sample.device, generator=generator).to(sample.device) < mask_ratio + masked_sample = sample.clone() + masked_sample[mask_indices] = self.config.mask_token_id + return masked_sample + +# File: diffusers-main/src/diffusers/schedulers/scheduling_consistency_decoder.py +import math +from dataclasses import dataclass +from typing import Optional, Tuple, Union +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput +from ..utils.torch_utils import randn_tensor +from .scheduling_utils import SchedulerMixin + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +@dataclass +class ConsistencyDecoderSchedulerOutput(BaseOutput): + prev_sample: torch.Tensor + +class ConsistencyDecoderScheduler(SchedulerMixin, ConfigMixin): + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps: int=1024, sigma_data: float=0.5): + betas = betas_for_alpha_bar(num_train_timesteps) + alphas = 1.0 - betas + alphas_cumprod = torch.cumprod(alphas, dim=0) + self.sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod) + self.sqrt_one_minus_alphas_cumprod = torch.sqrt(1.0 - alphas_cumprod) + sigmas = torch.sqrt(1.0 / alphas_cumprod - 1) + sqrt_recip_alphas_cumprod = torch.sqrt(1.0 / alphas_cumprod) + self.c_skip = sqrt_recip_alphas_cumprod * sigma_data ** 2 / (sigmas ** 2 + sigma_data ** 2) + self.c_out = sigmas * sigma_data / (sigmas ** 2 + sigma_data ** 2) ** 0.5 + self.c_in = sqrt_recip_alphas_cumprod / (sigmas ** 2 + sigma_data ** 2) ** 0.5 + + def set_timesteps(self, num_inference_steps: Optional[int]=None, device: Union[str, torch.device]=None): + if num_inference_steps != 2: + raise ValueError('Currently more than 2 inference steps are not supported.') + self.timesteps = torch.tensor([1008, 512], dtype=torch.long, device=device) + self.sqrt_alphas_cumprod = self.sqrt_alphas_cumprod.to(device) + self.sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod.to(device) + self.c_skip = self.c_skip.to(device) + self.c_out = self.c_out.to(device) + self.c_in = self.c_in.to(device) + + @property + def init_noise_sigma(self): + return self.sqrt_one_minus_alphas_cumprod[self.timesteps[0]] + + def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int]=None) -> torch.Tensor: + return sample * self.c_in[timestep] + + def step(self, model_output: torch.Tensor, timestep: Union[float, torch.Tensor], sample: torch.Tensor, generator: Optional[torch.Generator]=None, return_dict: bool=True) -> Union[ConsistencyDecoderSchedulerOutput, Tuple]: + x_0 = self.c_out[timestep] * model_output + self.c_skip[timestep] * sample + timestep_idx = torch.where(self.timesteps == timestep)[0] + if timestep_idx == len(self.timesteps) - 1: + prev_sample = x_0 + else: + noise = randn_tensor(x_0.shape, generator=generator, dtype=x_0.dtype, device=x_0.device) + prev_sample = self.sqrt_alphas_cumprod[self.timesteps[timestep_idx + 1]].to(x_0.dtype) * x_0 + self.sqrt_one_minus_alphas_cumprod[self.timesteps[timestep_idx + 1]].to(x_0.dtype) * noise + if not return_dict: + return (prev_sample,) + return ConsistencyDecoderSchedulerOutput(prev_sample=prev_sample) + +# File: diffusers-main/src/diffusers/schedulers/scheduling_consistency_models.py +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput, logging +from ..utils.torch_utils import randn_tensor +from .scheduling_utils import SchedulerMixin +logger = logging.get_logger(__name__) + +@dataclass +class CMStochasticIterativeSchedulerOutput(BaseOutput): + prev_sample: torch.Tensor + +class CMStochasticIterativeScheduler(SchedulerMixin, ConfigMixin): + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps: int=40, sigma_min: float=0.002, sigma_max: float=80.0, sigma_data: float=0.5, s_noise: float=1.0, rho: float=7.0, clip_denoised: bool=True): + self.init_noise_sigma = sigma_max + ramp = np.linspace(0, 1, num_train_timesteps) + sigmas = self._convert_to_karras(ramp) + timesteps = self.sigma_to_t(sigmas) + self.num_inference_steps = None + self.sigmas = torch.from_numpy(sigmas) + self.timesteps = torch.from_numpy(timesteps) + self.custom_timesteps = False + self.is_scale_input_called = False + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + @property + def step_index(self): + return self._step_index + + @property + def begin_index(self): + return self._begin_index + + def set_begin_index(self, begin_index: int=0): + self._begin_index = begin_index + + def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: + if self.step_index is None: + self._init_step_index(timestep) + sigma = self.sigmas[self.step_index] + sample = sample / (sigma ** 2 + self.config.sigma_data ** 2) ** 0.5 + self.is_scale_input_called = True + return sample + + def sigma_to_t(self, sigmas: Union[float, np.ndarray]): + if not isinstance(sigmas, np.ndarray): + sigmas = np.array(sigmas, dtype=np.float64) + timesteps = 1000 * 0.25 * np.log(sigmas + 1e-44) + return timesteps + + def set_timesteps(self, num_inference_steps: Optional[int]=None, device: Union[str, torch.device]=None, timesteps: Optional[List[int]]=None): + if num_inference_steps is None and timesteps is None: + raise ValueError('Exactly one of `num_inference_steps` or `timesteps` must be supplied.') + if num_inference_steps is not None and timesteps is not None: + raise ValueError('Can only pass one of `num_inference_steps` or `timesteps`.') + if timesteps is not None: + for i in range(1, len(timesteps)): + if timesteps[i] >= timesteps[i - 1]: + raise ValueError('`timesteps` must be in descending order.') + if timesteps[0] >= self.config.num_train_timesteps: + raise ValueError(f'`timesteps` must start before `self.config.train_timesteps`: {self.config.num_train_timesteps}.') + timesteps = np.array(timesteps, dtype=np.int64) + self.custom_timesteps = True + else: + if num_inference_steps > self.config.num_train_timesteps: + raise ValueError(f'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`: {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle maximal {self.config.num_train_timesteps} timesteps.') + self.num_inference_steps = num_inference_steps + step_ratio = self.config.num_train_timesteps // self.num_inference_steps + timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) + self.custom_timesteps = False + num_train_timesteps = self.config.num_train_timesteps + ramp = timesteps[::-1].copy() + ramp = ramp / (num_train_timesteps - 1) + sigmas = self._convert_to_karras(ramp) + timesteps = self.sigma_to_t(sigmas) + sigmas = np.concatenate([sigmas, [self.config.sigma_min]]).astype(np.float32) + self.sigmas = torch.from_numpy(sigmas).to(device=device) + if str(device).startswith('mps'): + self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32) + else: + self.timesteps = torch.from_numpy(timesteps).to(device=device) + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + def _convert_to_karras(self, ramp): + sigma_min: float = self.config.sigma_min + sigma_max: float = self.config.sigma_max + rho = self.config.rho + min_inv_rho = sigma_min ** (1 / rho) + max_inv_rho = sigma_max ** (1 / rho) + sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho + return sigmas + + def get_scalings(self, sigma): + sigma_data = self.config.sigma_data + c_skip = sigma_data ** 2 / (sigma ** 2 + sigma_data ** 2) + c_out = sigma * sigma_data / (sigma ** 2 + sigma_data ** 2) ** 0.5 + return (c_skip, c_out) + + def get_scalings_for_boundary_condition(self, sigma): + sigma_min = self.config.sigma_min + sigma_data = self.config.sigma_data + c_skip = sigma_data ** 2 / ((sigma - sigma_min) ** 2 + sigma_data ** 2) + c_out = (sigma - sigma_min) * sigma_data / (sigma ** 2 + sigma_data ** 2) ** 0.5 + return (c_skip, c_out) + + def index_for_timestep(self, timestep, schedule_timesteps=None): + if schedule_timesteps is None: + schedule_timesteps = self.timesteps + indices = (schedule_timesteps == timestep).nonzero() + pos = 1 if len(indices) > 1 else 0 + return indices[pos].item() + + def _init_step_index(self, timestep): + if self.begin_index is None: + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + self._step_index = self.index_for_timestep(timestep) + else: + self._step_index = self._begin_index + + def step(self, model_output: torch.Tensor, timestep: Union[float, torch.Tensor], sample: torch.Tensor, generator: Optional[torch.Generator]=None, return_dict: bool=True) -> Union[CMStochasticIterativeSchedulerOutput, Tuple]: + if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)): + raise ValueError(f'Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to `{self.__class__}.step()` is not supported. Make sure to pass one of the `scheduler.timesteps` as a timestep.') + if not self.is_scale_input_called: + logger.warning('The `scale_model_input` function should be called before `step` to ensure correct denoising. See `StableDiffusionPipeline` for a usage example.') + sigma_min = self.config.sigma_min + sigma_max = self.config.sigma_max + if self.step_index is None: + self._init_step_index(timestep) + sigma = self.sigmas[self.step_index] + if self.step_index + 1 < self.config.num_train_timesteps: + sigma_next = self.sigmas[self.step_index + 1] + else: + sigma_next = self.sigmas[-1] + (c_skip, c_out) = self.get_scalings_for_boundary_condition(sigma) + denoised = c_out * model_output + c_skip * sample + if self.config.clip_denoised: + denoised = denoised.clamp(-1, 1) + if len(self.timesteps) > 1: + noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator) + else: + noise = torch.zeros_like(model_output) + z = noise * self.config.s_noise + sigma_hat = sigma_next.clamp(min=sigma_min, max=sigma_max) + prev_sample = denoised + z * (sigma_hat ** 2 - sigma_min ** 2) ** 0.5 + self._step_index += 1 + if not return_dict: + return (prev_sample,) + return CMStochasticIterativeSchedulerOutput(prev_sample=prev_sample) + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor: + sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) + if original_samples.device.type == 'mps' and torch.is_floating_point(timesteps): + schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) + timesteps = timesteps.to(original_samples.device, dtype=torch.float32) + else: + schedule_timesteps = self.timesteps.to(original_samples.device) + timesteps = timesteps.to(original_samples.device) + if self.begin_index is None: + step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] + elif self.step_index is not None: + step_indices = [self.step_index] * timesteps.shape[0] + else: + step_indices = [self.begin_index] * timesteps.shape[0] + sigma = sigmas[step_indices].flatten() + while len(sigma.shape) < len(original_samples.shape): + sigma = sigma.unsqueeze(-1) + noisy_samples = original_samples + noise * sigma + return noisy_samples + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +import math +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from .scheduling_dpmsolver_sde import BrownianTreeNoiseSampler +from .scheduling_utils import SchedulerMixin, SchedulerOutput + +class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [] + order = 1 + + @register_to_config + def __init__(self, sigma_min: float=0.3, sigma_max: float=500, sigma_data: float=1.0, sigma_schedule: str='exponential', num_train_timesteps: int=1000, solver_order: int=2, prediction_type: str='v_prediction', rho: float=7.0, solver_type: str='midpoint', lower_order_final: bool=True, euler_at_final: bool=False, final_sigmas_type: Optional[str]='zero'): + if solver_type not in ['midpoint', 'heun']: + if solver_type in ['logrho', 'bh1', 'bh2']: + self.register_to_config(solver_type='midpoint') + else: + raise NotImplementedError(f'{solver_type} is not implemented for {self.__class__}') + ramp = torch.linspace(0, 1, num_train_timesteps) + if sigma_schedule == 'karras': + sigmas = self._compute_karras_sigmas(ramp) + elif sigma_schedule == 'exponential': + sigmas = self._compute_exponential_sigmas(ramp) + self.timesteps = self.precondition_noise(sigmas) + self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) + self.num_inference_steps = None + self.model_outputs = [None] * solver_order + self.lower_order_nums = 0 + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + @property + def init_noise_sigma(self): + return (self.config.sigma_max ** 2 + 1) ** 0.5 + + @property + def step_index(self): + return self._step_index + + @property + def begin_index(self): + return self._begin_index + + def set_begin_index(self, begin_index: int=0): + self._begin_index = begin_index + + def precondition_inputs(self, sample, sigma): + c_in = 1 / (sigma ** 2 + self.config.sigma_data ** 2) ** 0.5 + scaled_sample = sample * c_in + return scaled_sample + + def precondition_noise(self, sigma): + if not isinstance(sigma, torch.Tensor): + sigma = torch.tensor([sigma]) + return sigma.atan() / math.pi * 2 + + def precondition_outputs(self, sample, model_output, sigma): + sigma_data = self.config.sigma_data + c_skip = sigma_data ** 2 / (sigma ** 2 + sigma_data ** 2) + if self.config.prediction_type == 'epsilon': + c_out = sigma * sigma_data / (sigma ** 2 + sigma_data ** 2) ** 0.5 + elif self.config.prediction_type == 'v_prediction': + c_out = -sigma * sigma_data / (sigma ** 2 + sigma_data ** 2) ** 0.5 + else: + raise ValueError(f'Prediction type {self.config.prediction_type} is not supported.') + denoised = c_skip * sample + c_out * model_output + return denoised + + def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: + if self.step_index is None: + self._init_step_index(timestep) + sigma = self.sigmas[self.step_index] + sample = self.precondition_inputs(sample, sigma) + self.is_scale_input_called = True + return sample + + def set_timesteps(self, num_inference_steps: int=None, device: Union[str, torch.device]=None): + self.num_inference_steps = num_inference_steps + ramp = torch.linspace(0, 1, self.num_inference_steps) + if self.config.sigma_schedule == 'karras': + sigmas = self._compute_karras_sigmas(ramp) + elif self.config.sigma_schedule == 'exponential': + sigmas = self._compute_exponential_sigmas(ramp) + sigmas = sigmas.to(dtype=torch.float32, device=device) + self.timesteps = self.precondition_noise(sigmas) + if self.config.final_sigmas_type == 'sigma_min': + sigma_last = self.config.sigma_min + elif self.config.final_sigmas_type == 'zero': + sigma_last = 0 + else: + raise ValueError(f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}") + self.sigmas = torch.cat([sigmas, torch.tensor([sigma_last], dtype=torch.float32, device=device)]) + self.model_outputs = [None] * self.config.solver_order + self.lower_order_nums = 0 + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + self.noise_sampler = None + + def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor: + sigma_min = sigma_min or self.config.sigma_min + sigma_max = sigma_max or self.config.sigma_max + rho = self.config.rho + min_inv_rho = sigma_min ** (1 / rho) + max_inv_rho = sigma_max ** (1 / rho) + sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho + return sigmas + + def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor: + sigma_min = sigma_min or self.config.sigma_min + sigma_max = sigma_max or self.config.sigma_max + sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0) + return sigmas + + def _sigma_to_t(self, sigma, log_sigmas): + log_sigma = np.log(np.maximum(sigma, 1e-10)) + dists = log_sigma - log_sigmas[:, np.newaxis] + low_idx = np.cumsum(dists >= 0, axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) + high_idx = low_idx + 1 + low = log_sigmas[low_idx] + high = log_sigmas[high_idx] + w = (low - log_sigma) / (low - high) + w = np.clip(w, 0, 1) + t = (1 - w) * low_idx + w * high_idx + t = t.reshape(sigma.shape) + return t + + def _sigma_to_alpha_sigma_t(self, sigma): + alpha_t = torch.tensor(1) + sigma_t = sigma + return (alpha_t, sigma_t) + + def convert_model_output(self, model_output: torch.Tensor, sample: torch.Tensor=None) -> torch.Tensor: + sigma = self.sigmas[self.step_index] + x0_pred = self.precondition_outputs(sample, model_output, sigma) + return x0_pred + + def dpm_solver_first_order_update(self, model_output: torch.Tensor, sample: torch.Tensor=None, noise: Optional[torch.Tensor]=None) -> torch.Tensor: + (sigma_t, sigma_s) = (self.sigmas[self.step_index + 1], self.sigmas[self.step_index]) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s, sigma_s) = self._sigma_to_alpha_sigma_t(sigma_s) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s = torch.log(alpha_s) - torch.log(sigma_s) + h = lambda_t - lambda_s + assert noise is not None + x_t = sigma_t / sigma_s * torch.exp(-h) * sample + alpha_t * (1 - torch.exp(-2.0 * h)) * model_output + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise + return x_t + + def multistep_dpm_solver_second_order_update(self, model_output_list: List[torch.Tensor], sample: torch.Tensor=None, noise: Optional[torch.Tensor]=None) -> torch.Tensor: + (sigma_t, sigma_s0, sigma_s1) = (self.sigmas[self.step_index + 1], self.sigmas[self.step_index], self.sigmas[self.step_index - 1]) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s0, sigma_s0) = self._sigma_to_alpha_sigma_t(sigma_s0) + (alpha_s1, sigma_s1) = self._sigma_to_alpha_sigma_t(sigma_s1) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) + lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) + (m0, m1) = (model_output_list[-1], model_output_list[-2]) + (h, h_0) = (lambda_t - lambda_s0, lambda_s0 - lambda_s1) + r0 = h_0 / h + (D0, D1) = (m0, 1.0 / r0 * (m0 - m1)) + assert noise is not None + if self.config.solver_type == 'midpoint': + x_t = sigma_t / sigma_s0 * torch.exp(-h) * sample + alpha_t * (1 - torch.exp(-2.0 * h)) * D0 + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise + elif self.config.solver_type == 'heun': + x_t = sigma_t / sigma_s0 * torch.exp(-h) * sample + alpha_t * (1 - torch.exp(-2.0 * h)) * D0 + alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0) * D1 + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise + return x_t + + def index_for_timestep(self, timestep, schedule_timesteps=None): + if schedule_timesteps is None: + schedule_timesteps = self.timesteps + index_candidates = (schedule_timesteps == timestep).nonzero() + if len(index_candidates) == 0: + step_index = len(self.timesteps) - 1 + elif len(index_candidates) > 1: + step_index = index_candidates[1].item() + else: + step_index = index_candidates[0].item() + return step_index + + def _init_step_index(self, timestep): + if self.begin_index is None: + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + self._step_index = self.index_for_timestep(timestep) + else: + self._step_index = self._begin_index + + def step(self, model_output: torch.Tensor, timestep: Union[int, torch.Tensor], sample: torch.Tensor, generator=None, return_dict: bool=True) -> Union[SchedulerOutput, Tuple]: + if self.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + if self.step_index is None: + self._init_step_index(timestep) + lower_order_final = self.step_index == len(self.timesteps) - 1 and (self.config.euler_at_final or (self.config.lower_order_final and len(self.timesteps) < 15) or self.config.final_sigmas_type == 'zero') + lower_order_second = self.step_index == len(self.timesteps) - 2 and self.config.lower_order_final and (len(self.timesteps) < 15) + model_output = self.convert_model_output(model_output, sample=sample) + for i in range(self.config.solver_order - 1): + self.model_outputs[i] = self.model_outputs[i + 1] + self.model_outputs[-1] = model_output + if self.noise_sampler is None: + seed = None + if generator is not None: + seed = [g.initial_seed() for g in generator] if isinstance(generator, list) else generator.initial_seed() + self.noise_sampler = BrownianTreeNoiseSampler(model_output, sigma_min=self.config.sigma_min, sigma_max=self.config.sigma_max, seed=seed) + noise = self.noise_sampler(self.sigmas[self.step_index], self.sigmas[self.step_index + 1]).to(model_output.device) + if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final: + prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise) + elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second: + prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise) + if self.lower_order_nums < self.config.solver_order: + self.lower_order_nums += 1 + self._step_index += 1 + if not return_dict: + return (prev_sample,) + return SchedulerOutput(prev_sample=prev_sample) + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor: + sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) + if original_samples.device.type == 'mps' and torch.is_floating_point(timesteps): + schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) + timesteps = timesteps.to(original_samples.device, dtype=torch.float32) + else: + schedule_timesteps = self.timesteps.to(original_samples.device) + timesteps = timesteps.to(original_samples.device) + if self.begin_index is None: + step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] + elif self.step_index is not None: + step_indices = [self.step_index] * timesteps.shape[0] + else: + step_indices = [self.begin_index] * timesteps.shape[0] + sigma = sigmas[step_indices].flatten() + while len(sigma.shape) < len(original_samples.shape): + sigma = sigma.unsqueeze(-1) + noisy_samples = original_samples + noise * sigma + return noisy_samples + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_ddim.py +import math +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput +from ..utils.torch_utils import randn_tensor +from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin + +@dataclass +class DDIMSchedulerOutput(BaseOutput): + prev_sample: torch.Tensor + pred_original_sample: Optional[torch.Tensor] = None + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +def rescale_zero_terminal_snr(betas): + alphas = 1.0 - betas + alphas_cumprod = torch.cumprod(alphas, dim=0) + alphas_bar_sqrt = alphas_cumprod.sqrt() + alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() + alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() + alphas_bar_sqrt -= alphas_bar_sqrt_T + alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) + alphas_bar = alphas_bar_sqrt ** 2 + alphas = alphas_bar[1:] / alphas_bar[:-1] + alphas = torch.cat([alphas_bar[0:1], alphas]) + betas = 1 - alphas + return betas + +class DDIMScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in KarrasDiffusionSchedulers] + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.0001, beta_end: float=0.02, beta_schedule: str='linear', trained_betas: Optional[Union[np.ndarray, List[float]]]=None, clip_sample: bool=True, set_alpha_to_one: bool=True, steps_offset: int=0, prediction_type: str='epsilon', thresholding: bool=False, dynamic_thresholding_ratio: float=0.995, clip_sample_range: float=1.0, sample_max_value: float=1.0, timestep_spacing: str='leading', rescale_betas_zero_snr: bool=False): + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + if rescale_betas_zero_snr: + self.betas = rescale_zero_terminal_snr(self.betas) + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] + self.init_noise_sigma = 1.0 + self.num_inference_steps = None + self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64)) + + def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int]=None) -> torch.Tensor: + return sample + + def _get_variance(self, timestep, prev_timestep): + alpha_prod_t = self.alphas_cumprod[timestep] + alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod + beta_prod_t = 1 - alpha_prod_t + beta_prod_t_prev = 1 - alpha_prod_t_prev + variance = beta_prod_t_prev / beta_prod_t * (1 - alpha_prod_t / alpha_prod_t_prev) + return variance + + def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: + dtype = sample.dtype + (batch_size, channels, *remaining_dims) = sample.shape + if dtype not in (torch.float32, torch.float64): + sample = sample.float() + sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) + abs_sample = sample.abs() + s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) + s = torch.clamp(s, min=1, max=self.config.sample_max_value) + s = s.unsqueeze(1) + sample = torch.clamp(sample, -s, s) / s + sample = sample.reshape(batch_size, channels, *remaining_dims) + sample = sample.to(dtype) + return sample + + def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device]=None): + if num_inference_steps > self.config.num_train_timesteps: + raise ValueError(f'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`: {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle maximal {self.config.num_train_timesteps} timesteps.') + self.num_inference_steps = num_inference_steps + if self.config.timestep_spacing == 'linspace': + timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps).round()[::-1].copy().astype(np.int64) + elif self.config.timestep_spacing == 'leading': + step_ratio = self.config.num_train_timesteps // self.num_inference_steps + timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) + timesteps += self.config.steps_offset + elif self.config.timestep_spacing == 'trailing': + step_ratio = self.config.num_train_timesteps / self.num_inference_steps + timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64) + timesteps -= 1 + else: + raise ValueError(f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'.") + self.timesteps = torch.from_numpy(timesteps).to(device) + + def step(self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, eta: float=0.0, use_clipped_model_output: bool=False, generator=None, variance_noise: Optional[torch.Tensor]=None, return_dict: bool=True) -> Union[DDIMSchedulerOutput, Tuple]: + if self.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps + alpha_prod_t = self.alphas_cumprod[timestep] + alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod + beta_prod_t = 1 - alpha_prod_t + if self.config.prediction_type == 'epsilon': + pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 + pred_epsilon = model_output + elif self.config.prediction_type == 'sample': + pred_original_sample = model_output + pred_epsilon = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 + elif self.config.prediction_type == 'v_prediction': + pred_original_sample = alpha_prod_t ** 0.5 * sample - beta_prod_t ** 0.5 * model_output + pred_epsilon = alpha_prod_t ** 0.5 * model_output + beta_prod_t ** 0.5 * sample + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or `v_prediction`') + if self.config.thresholding: + pred_original_sample = self._threshold_sample(pred_original_sample) + elif self.config.clip_sample: + pred_original_sample = pred_original_sample.clamp(-self.config.clip_sample_range, self.config.clip_sample_range) + variance = self._get_variance(timestep, prev_timestep) + std_dev_t = eta * variance ** 0.5 + if use_clipped_model_output: + pred_epsilon = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 + pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t ** 2) ** 0.5 * pred_epsilon + prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction + if eta > 0: + if variance_noise is not None and generator is not None: + raise ValueError('Cannot pass both generator and variance_noise. Please make sure that either `generator` or `variance_noise` stays `None`.') + if variance_noise is None: + variance_noise = randn_tensor(model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype) + variance = std_dev_t * variance_noise + prev_sample = prev_sample + variance + if not return_dict: + return (prev_sample,) + return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device) + alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype) + timesteps = timesteps.to(original_samples.device) + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(original_samples.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise + return noisy_samples + + def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device) + alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype) + timesteps = timesteps.to(sample.device) + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(sample.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample + return velocity + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_ddim_cogvideox.py +import math +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput +from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin + +@dataclass +class DDIMSchedulerOutput(BaseOutput): + prev_sample: torch.Tensor + pred_original_sample: Optional[torch.Tensor] = None + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +def rescale_zero_terminal_snr(alphas_cumprod): + alphas_bar_sqrt = alphas_cumprod.sqrt() + alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() + alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() + alphas_bar_sqrt -= alphas_bar_sqrt_T + alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) + alphas_bar = alphas_bar_sqrt ** 2 + return alphas_bar + +class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in KarrasDiffusionSchedulers] + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.00085, beta_end: float=0.012, beta_schedule: str='scaled_linear', trained_betas: Optional[Union[np.ndarray, List[float]]]=None, clip_sample: bool=True, set_alpha_to_one: bool=True, steps_offset: int=0, prediction_type: str='epsilon', clip_sample_range: float=1.0, sample_max_value: float=1.0, timestep_spacing: str='leading', rescale_betas_zero_snr: bool=False, snr_shift_scale: float=3.0): + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float64) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + self.alphas_cumprod = self.alphas_cumprod / (snr_shift_scale + (1 - snr_shift_scale) * self.alphas_cumprod) + if rescale_betas_zero_snr: + self.alphas_cumprod = rescale_zero_terminal_snr(self.alphas_cumprod) + self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] + self.init_noise_sigma = 1.0 + self.num_inference_steps = None + self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64)) + + def _get_variance(self, timestep, prev_timestep): + alpha_prod_t = self.alphas_cumprod[timestep] + alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod + beta_prod_t = 1 - alpha_prod_t + beta_prod_t_prev = 1 - alpha_prod_t_prev + variance = beta_prod_t_prev / beta_prod_t * (1 - alpha_prod_t / alpha_prod_t_prev) + return variance + + def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int]=None) -> torch.Tensor: + return sample + + def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device]=None): + if num_inference_steps > self.config.num_train_timesteps: + raise ValueError(f'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`: {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle maximal {self.config.num_train_timesteps} timesteps.') + self.num_inference_steps = num_inference_steps + if self.config.timestep_spacing == 'linspace': + timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps).round()[::-1].copy().astype(np.int64) + elif self.config.timestep_spacing == 'leading': + step_ratio = self.config.num_train_timesteps // self.num_inference_steps + timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) + timesteps += self.config.steps_offset + elif self.config.timestep_spacing == 'trailing': + step_ratio = self.config.num_train_timesteps / self.num_inference_steps + timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64) + timesteps -= 1 + else: + raise ValueError(f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'.") + self.timesteps = torch.from_numpy(timesteps).to(device) + + def step(self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, eta: float=0.0, use_clipped_model_output: bool=False, generator=None, variance_noise: Optional[torch.Tensor]=None, return_dict: bool=True) -> Union[DDIMSchedulerOutput, Tuple]: + if self.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps + alpha_prod_t = self.alphas_cumprod[timestep] + alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod + beta_prod_t = 1 - alpha_prod_t + if self.config.prediction_type == 'epsilon': + pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 + elif self.config.prediction_type == 'sample': + pred_original_sample = model_output + elif self.config.prediction_type == 'v_prediction': + pred_original_sample = alpha_prod_t ** 0.5 * sample - beta_prod_t ** 0.5 * model_output + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or `v_prediction`') + a_t = ((1 - alpha_prod_t_prev) / (1 - alpha_prod_t)) ** 0.5 + b_t = alpha_prod_t_prev ** 0.5 - alpha_prod_t ** 0.5 * a_t + prev_sample = a_t * sample + b_t * pred_original_sample + if not return_dict: + return (prev_sample,) + return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device) + alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype) + timesteps = timesteps.to(original_samples.device) + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(original_samples.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise + return noisy_samples + + def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device) + alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype) + timesteps = timesteps.to(sample.device) + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(sample.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample + return velocity + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_ddim_flax.py +from dataclasses import dataclass +from typing import Optional, Tuple, Union +import flax +import jax.numpy as jnp +from ..configuration_utils import ConfigMixin, register_to_config +from .scheduling_utils_flax import CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common + +@flax.struct.dataclass +class DDIMSchedulerState: + common: CommonSchedulerState + final_alpha_cumprod: jnp.ndarray + init_noise_sigma: jnp.ndarray + timesteps: jnp.ndarray + num_inference_steps: Optional[int] = None + + @classmethod + def create(cls, common: CommonSchedulerState, final_alpha_cumprod: jnp.ndarray, init_noise_sigma: jnp.ndarray, timesteps: jnp.ndarray): + return cls(common=common, final_alpha_cumprod=final_alpha_cumprod, init_noise_sigma=init_noise_sigma, timesteps=timesteps) + +@dataclass +class FlaxDDIMSchedulerOutput(FlaxSchedulerOutput): + state: DDIMSchedulerState + +class FlaxDDIMScheduler(FlaxSchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in FlaxKarrasDiffusionSchedulers] + dtype: jnp.dtype + + @property + def has_state(self): + return True + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.0001, beta_end: float=0.02, beta_schedule: str='linear', trained_betas: Optional[jnp.ndarray]=None, clip_sample: bool=True, clip_sample_range: float=1.0, set_alpha_to_one: bool=True, steps_offset: int=0, prediction_type: str='epsilon', dtype: jnp.dtype=jnp.float32): + self.dtype = dtype + + def create_state(self, common: Optional[CommonSchedulerState]=None) -> DDIMSchedulerState: + if common is None: + common = CommonSchedulerState.create(self) + final_alpha_cumprod = jnp.array(1.0, dtype=self.dtype) if self.config.set_alpha_to_one else common.alphas_cumprod[0] + init_noise_sigma = jnp.array(1.0, dtype=self.dtype) + timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1] + return DDIMSchedulerState.create(common=common, final_alpha_cumprod=final_alpha_cumprod, init_noise_sigma=init_noise_sigma, timesteps=timesteps) + + def scale_model_input(self, state: DDIMSchedulerState, sample: jnp.ndarray, timestep: Optional[int]=None) -> jnp.ndarray: + return sample + + def set_timesteps(self, state: DDIMSchedulerState, num_inference_steps: int, shape: Tuple=()) -> DDIMSchedulerState: + step_ratio = self.config.num_train_timesteps // num_inference_steps + timesteps = (jnp.arange(0, num_inference_steps) * step_ratio).round()[::-1] + self.config.steps_offset + return state.replace(num_inference_steps=num_inference_steps, timesteps=timesteps) + + def _get_variance(self, state: DDIMSchedulerState, timestep, prev_timestep): + alpha_prod_t = state.common.alphas_cumprod[timestep] + alpha_prod_t_prev = jnp.where(prev_timestep >= 0, state.common.alphas_cumprod[prev_timestep], state.final_alpha_cumprod) + beta_prod_t = 1 - alpha_prod_t + beta_prod_t_prev = 1 - alpha_prod_t_prev + variance = beta_prod_t_prev / beta_prod_t * (1 - alpha_prod_t / alpha_prod_t_prev) + return variance + + def step(self, state: DDIMSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, eta: float=0.0, return_dict: bool=True) -> Union[FlaxDDIMSchedulerOutput, Tuple]: + if state.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + prev_timestep = timestep - self.config.num_train_timesteps // state.num_inference_steps + alphas_cumprod = state.common.alphas_cumprod + final_alpha_cumprod = state.final_alpha_cumprod + alpha_prod_t = alphas_cumprod[timestep] + alpha_prod_t_prev = jnp.where(prev_timestep >= 0, alphas_cumprod[prev_timestep], final_alpha_cumprod) + beta_prod_t = 1 - alpha_prod_t + if self.config.prediction_type == 'epsilon': + pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 + pred_epsilon = model_output + elif self.config.prediction_type == 'sample': + pred_original_sample = model_output + pred_epsilon = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 + elif self.config.prediction_type == 'v_prediction': + pred_original_sample = alpha_prod_t ** 0.5 * sample - beta_prod_t ** 0.5 * model_output + pred_epsilon = alpha_prod_t ** 0.5 * model_output + beta_prod_t ** 0.5 * sample + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or `v_prediction`') + if self.config.clip_sample: + pred_original_sample = pred_original_sample.clip(-self.config.clip_sample_range, self.config.clip_sample_range) + variance = self._get_variance(state, timestep, prev_timestep) + std_dev_t = eta * variance ** 0.5 + pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t ** 2) ** 0.5 * pred_epsilon + prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction + if not return_dict: + return (prev_sample, state) + return FlaxDDIMSchedulerOutput(prev_sample=prev_sample, state=state) + + def add_noise(self, state: DDIMSchedulerState, original_samples: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray) -> jnp.ndarray: + return add_noise_common(state.common, original_samples, noise, timesteps) + + def get_velocity(self, state: DDIMSchedulerState, sample: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray) -> jnp.ndarray: + return get_velocity_common(state.common, sample, noise, timesteps) + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_ddim_inverse.py +import math +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.schedulers.scheduling_utils import SchedulerMixin +from diffusers.utils import BaseOutput, deprecate + +@dataclass +class DDIMSchedulerOutput(BaseOutput): + prev_sample: torch.Tensor + pred_original_sample: Optional[torch.Tensor] = None + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +def rescale_zero_terminal_snr(betas): + alphas = 1.0 - betas + alphas_cumprod = torch.cumprod(alphas, dim=0) + alphas_bar_sqrt = alphas_cumprod.sqrt() + alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() + alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() + alphas_bar_sqrt -= alphas_bar_sqrt_T + alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) + alphas_bar = alphas_bar_sqrt ** 2 + alphas = alphas_bar[1:] / alphas_bar[:-1] + alphas = torch.cat([alphas_bar[0:1], alphas]) + betas = 1 - alphas + return betas + +class DDIMInverseScheduler(SchedulerMixin, ConfigMixin): + order = 1 + ignore_for_config = ['kwargs'] + _deprecated_kwargs = ['set_alpha_to_zero'] + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.0001, beta_end: float=0.02, beta_schedule: str='linear', trained_betas: Optional[Union[np.ndarray, List[float]]]=None, clip_sample: bool=True, set_alpha_to_one: bool=True, steps_offset: int=0, prediction_type: str='epsilon', clip_sample_range: float=1.0, timestep_spacing: str='leading', rescale_betas_zero_snr: bool=False, **kwargs): + if kwargs.get('set_alpha_to_zero', None) is not None: + deprecation_message = 'The `set_alpha_to_zero` argument is deprecated. Please use `set_alpha_to_one` instead.' + deprecate('set_alpha_to_zero', '1.0.0', deprecation_message, standard_warn=False) + set_alpha_to_one = kwargs['set_alpha_to_zero'] + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + if rescale_betas_zero_snr: + self.betas = rescale_zero_terminal_snr(self.betas) + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + self.initial_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] + self.init_noise_sigma = 1.0 + self.num_inference_steps = None + self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps).copy().astype(np.int64)) + + def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int]=None) -> torch.Tensor: + return sample + + def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device]=None): + if num_inference_steps > self.config.num_train_timesteps: + raise ValueError(f'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`: {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle maximal {self.config.num_train_timesteps} timesteps.') + self.num_inference_steps = num_inference_steps + if self.config.timestep_spacing == 'leading': + step_ratio = self.config.num_train_timesteps // self.num_inference_steps + timesteps = (np.arange(0, num_inference_steps) * step_ratio).round().copy().astype(np.int64) + timesteps += self.config.steps_offset + elif self.config.timestep_spacing == 'trailing': + step_ratio = self.config.num_train_timesteps / self.num_inference_steps + timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)[::-1]).astype(np.int64) + timesteps -= 1 + else: + raise ValueError(f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'.") + self.timesteps = torch.from_numpy(timesteps).to(device) + + def step(self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, return_dict: bool=True) -> Union[DDIMSchedulerOutput, Tuple]: + prev_timestep = timestep + timestep = min(timestep - self.config.num_train_timesteps // self.num_inference_steps, self.config.num_train_timesteps - 1) + alpha_prod_t = self.alphas_cumprod[timestep] if timestep >= 0 else self.initial_alpha_cumprod + alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] + beta_prod_t = 1 - alpha_prod_t + if self.config.prediction_type == 'epsilon': + pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 + pred_epsilon = model_output + elif self.config.prediction_type == 'sample': + pred_original_sample = model_output + pred_epsilon = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 + elif self.config.prediction_type == 'v_prediction': + pred_original_sample = alpha_prod_t ** 0.5 * sample - beta_prod_t ** 0.5 * model_output + pred_epsilon = alpha_prod_t ** 0.5 * model_output + beta_prod_t ** 0.5 * sample + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or `v_prediction`') + if self.config.clip_sample: + pred_original_sample = pred_original_sample.clamp(-self.config.clip_sample_range, self.config.clip_sample_range) + pred_sample_direction = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon + prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction + if not return_dict: + return (prev_sample, pred_original_sample) + return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_ddim_parallel.py +import math +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput +from ..utils.torch_utils import randn_tensor +from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin + +@dataclass +class DDIMParallelSchedulerOutput(BaseOutput): + prev_sample: torch.Tensor + pred_original_sample: Optional[torch.Tensor] = None + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +def rescale_zero_terminal_snr(betas): + alphas = 1.0 - betas + alphas_cumprod = torch.cumprod(alphas, dim=0) + alphas_bar_sqrt = alphas_cumprod.sqrt() + alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() + alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() + alphas_bar_sqrt -= alphas_bar_sqrt_T + alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) + alphas_bar = alphas_bar_sqrt ** 2 + alphas = alphas_bar[1:] / alphas_bar[:-1] + alphas = torch.cat([alphas_bar[0:1], alphas]) + betas = 1 - alphas + return betas + +class DDIMParallelScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in KarrasDiffusionSchedulers] + order = 1 + _is_ode_scheduler = True + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.0001, beta_end: float=0.02, beta_schedule: str='linear', trained_betas: Optional[Union[np.ndarray, List[float]]]=None, clip_sample: bool=True, set_alpha_to_one: bool=True, steps_offset: int=0, prediction_type: str='epsilon', thresholding: bool=False, dynamic_thresholding_ratio: float=0.995, clip_sample_range: float=1.0, sample_max_value: float=1.0, timestep_spacing: str='leading', rescale_betas_zero_snr: bool=False): + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + if rescale_betas_zero_snr: + self.betas = rescale_zero_terminal_snr(self.betas) + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] + self.init_noise_sigma = 1.0 + self.num_inference_steps = None + self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64)) + + def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int]=None) -> torch.Tensor: + return sample + + def _get_variance(self, timestep, prev_timestep=None): + if prev_timestep is None: + prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps + alpha_prod_t = self.alphas_cumprod[timestep] + alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod + beta_prod_t = 1 - alpha_prod_t + beta_prod_t_prev = 1 - alpha_prod_t_prev + variance = beta_prod_t_prev / beta_prod_t * (1 - alpha_prod_t / alpha_prod_t_prev) + return variance + + def _batch_get_variance(self, t, prev_t): + alpha_prod_t = self.alphas_cumprod[t] + alpha_prod_t_prev = self.alphas_cumprod[torch.clip(prev_t, min=0)] + alpha_prod_t_prev[prev_t < 0] = torch.tensor(1.0) + beta_prod_t = 1 - alpha_prod_t + beta_prod_t_prev = 1 - alpha_prod_t_prev + variance = beta_prod_t_prev / beta_prod_t * (1 - alpha_prod_t / alpha_prod_t_prev) + return variance + + def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: + dtype = sample.dtype + (batch_size, channels, *remaining_dims) = sample.shape + if dtype not in (torch.float32, torch.float64): + sample = sample.float() + sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) + abs_sample = sample.abs() + s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) + s = torch.clamp(s, min=1, max=self.config.sample_max_value) + s = s.unsqueeze(1) + sample = torch.clamp(sample, -s, s) / s + sample = sample.reshape(batch_size, channels, *remaining_dims) + sample = sample.to(dtype) + return sample + + def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device]=None): + if num_inference_steps > self.config.num_train_timesteps: + raise ValueError(f'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`: {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle maximal {self.config.num_train_timesteps} timesteps.') + self.num_inference_steps = num_inference_steps + if self.config.timestep_spacing == 'linspace': + timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps).round()[::-1].copy().astype(np.int64) + elif self.config.timestep_spacing == 'leading': + step_ratio = self.config.num_train_timesteps // self.num_inference_steps + timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) + timesteps += self.config.steps_offset + elif self.config.timestep_spacing == 'trailing': + step_ratio = self.config.num_train_timesteps / self.num_inference_steps + timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64) + timesteps -= 1 + else: + raise ValueError(f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'.") + self.timesteps = torch.from_numpy(timesteps).to(device) + + def step(self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, eta: float=0.0, use_clipped_model_output: bool=False, generator=None, variance_noise: Optional[torch.Tensor]=None, return_dict: bool=True) -> Union[DDIMParallelSchedulerOutput, Tuple]: + if self.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps + alpha_prod_t = self.alphas_cumprod[timestep] + alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod + beta_prod_t = 1 - alpha_prod_t + if self.config.prediction_type == 'epsilon': + pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 + pred_epsilon = model_output + elif self.config.prediction_type == 'sample': + pred_original_sample = model_output + pred_epsilon = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 + elif self.config.prediction_type == 'v_prediction': + pred_original_sample = alpha_prod_t ** 0.5 * sample - beta_prod_t ** 0.5 * model_output + pred_epsilon = alpha_prod_t ** 0.5 * model_output + beta_prod_t ** 0.5 * sample + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or `v_prediction`') + if self.config.thresholding: + pred_original_sample = self._threshold_sample(pred_original_sample) + elif self.config.clip_sample: + pred_original_sample = pred_original_sample.clamp(-self.config.clip_sample_range, self.config.clip_sample_range) + variance = self._get_variance(timestep, prev_timestep) + std_dev_t = eta * variance ** 0.5 + if use_clipped_model_output: + pred_epsilon = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 + pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t ** 2) ** 0.5 * pred_epsilon + prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction + if eta > 0: + if variance_noise is not None and generator is not None: + raise ValueError('Cannot pass both generator and variance_noise. Please make sure that either `generator` or `variance_noise` stays `None`.') + if variance_noise is None: + variance_noise = randn_tensor(model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype) + variance = std_dev_t * variance_noise + prev_sample = prev_sample + variance + if not return_dict: + return (prev_sample,) + return DDIMParallelSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) + + def batch_step_no_noise(self, model_output: torch.Tensor, timesteps: List[int], sample: torch.Tensor, eta: float=0.0, use_clipped_model_output: bool=False) -> torch.Tensor: + if self.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + assert eta == 0.0 + t = timesteps + prev_t = t - self.config.num_train_timesteps // self.num_inference_steps + t = t.view(-1, *[1] * (model_output.ndim - 1)) + prev_t = prev_t.view(-1, *[1] * (model_output.ndim - 1)) + self.alphas_cumprod = self.alphas_cumprod.to(model_output.device) + self.final_alpha_cumprod = self.final_alpha_cumprod.to(model_output.device) + alpha_prod_t = self.alphas_cumprod[t] + alpha_prod_t_prev = self.alphas_cumprod[torch.clip(prev_t, min=0)] + alpha_prod_t_prev[prev_t < 0] = torch.tensor(1.0) + beta_prod_t = 1 - alpha_prod_t + if self.config.prediction_type == 'epsilon': + pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 + pred_epsilon = model_output + elif self.config.prediction_type == 'sample': + pred_original_sample = model_output + pred_epsilon = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 + elif self.config.prediction_type == 'v_prediction': + pred_original_sample = alpha_prod_t ** 0.5 * sample - beta_prod_t ** 0.5 * model_output + pred_epsilon = alpha_prod_t ** 0.5 * model_output + beta_prod_t ** 0.5 * sample + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or `v_prediction`') + if self.config.thresholding: + pred_original_sample = self._threshold_sample(pred_original_sample) + elif self.config.clip_sample: + pred_original_sample = pred_original_sample.clamp(-self.config.clip_sample_range, self.config.clip_sample_range) + variance = self._batch_get_variance(t, prev_t).to(model_output.device).view(*alpha_prod_t_prev.shape) + std_dev_t = eta * variance ** 0.5 + if use_clipped_model_output: + pred_epsilon = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 + pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t ** 2) ** 0.5 * pred_epsilon + prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction + return prev_sample + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device) + alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype) + timesteps = timesteps.to(original_samples.device) + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(original_samples.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise + return noisy_samples + + def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device) + alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype) + timesteps = timesteps.to(sample.device) + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(sample.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample + return velocity + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_ddpm.py +import math +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput +from ..utils.torch_utils import randn_tensor +from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin + +@dataclass +class DDPMSchedulerOutput(BaseOutput): + prev_sample: torch.Tensor + pred_original_sample: Optional[torch.Tensor] = None + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +def rescale_zero_terminal_snr(betas): + alphas = 1.0 - betas + alphas_cumprod = torch.cumprod(alphas, dim=0) + alphas_bar_sqrt = alphas_cumprod.sqrt() + alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() + alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() + alphas_bar_sqrt -= alphas_bar_sqrt_T + alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) + alphas_bar = alphas_bar_sqrt ** 2 + alphas = alphas_bar[1:] / alphas_bar[:-1] + alphas = torch.cat([alphas_bar[0:1], alphas]) + betas = 1 - alphas + return betas + +class DDPMScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in KarrasDiffusionSchedulers] + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.0001, beta_end: float=0.02, beta_schedule: str='linear', trained_betas: Optional[Union[np.ndarray, List[float]]]=None, variance_type: str='fixed_small', clip_sample: bool=True, prediction_type: str='epsilon', thresholding: bool=False, dynamic_thresholding_ratio: float=0.995, clip_sample_range: float=1.0, sample_max_value: float=1.0, timestep_spacing: str='leading', steps_offset: int=0, rescale_betas_zero_snr: bool=False): + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + elif beta_schedule == 'sigmoid': + betas = torch.linspace(-6, 6, num_train_timesteps) + self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + if rescale_betas_zero_snr: + self.betas = rescale_zero_terminal_snr(self.betas) + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + self.one = torch.tensor(1.0) + self.init_noise_sigma = 1.0 + self.custom_timesteps = False + self.num_inference_steps = None + self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy()) + self.variance_type = variance_type + + def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int]=None) -> torch.Tensor: + return sample + + def set_timesteps(self, num_inference_steps: Optional[int]=None, device: Union[str, torch.device]=None, timesteps: Optional[List[int]]=None): + if num_inference_steps is not None and timesteps is not None: + raise ValueError('Can only pass one of `num_inference_steps` or `custom_timesteps`.') + if timesteps is not None: + for i in range(1, len(timesteps)): + if timesteps[i] >= timesteps[i - 1]: + raise ValueError('`custom_timesteps` must be in descending order.') + if timesteps[0] >= self.config.num_train_timesteps: + raise ValueError(f'`timesteps` must start before `self.config.train_timesteps`: {self.config.num_train_timesteps}.') + timesteps = np.array(timesteps, dtype=np.int64) + self.custom_timesteps = True + else: + if num_inference_steps > self.config.num_train_timesteps: + raise ValueError(f'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`: {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle maximal {self.config.num_train_timesteps} timesteps.') + self.num_inference_steps = num_inference_steps + self.custom_timesteps = False + if self.config.timestep_spacing == 'linspace': + timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps).round()[::-1].copy().astype(np.int64) + elif self.config.timestep_spacing == 'leading': + step_ratio = self.config.num_train_timesteps // self.num_inference_steps + timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) + timesteps += self.config.steps_offset + elif self.config.timestep_spacing == 'trailing': + step_ratio = self.config.num_train_timesteps / self.num_inference_steps + timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64) + timesteps -= 1 + else: + raise ValueError(f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.") + self.timesteps = torch.from_numpy(timesteps).to(device) + + def _get_variance(self, t, predicted_variance=None, variance_type=None): + prev_t = self.previous_timestep(t) + alpha_prod_t = self.alphas_cumprod[t] + alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one + current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev + variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t + variance = torch.clamp(variance, min=1e-20) + if variance_type is None: + variance_type = self.config.variance_type + if variance_type == 'fixed_small': + variance = variance + elif variance_type == 'fixed_small_log': + variance = torch.log(variance) + variance = torch.exp(0.5 * variance) + elif variance_type == 'fixed_large': + variance = current_beta_t + elif variance_type == 'fixed_large_log': + variance = torch.log(current_beta_t) + elif variance_type == 'learned': + return predicted_variance + elif variance_type == 'learned_range': + min_log = torch.log(variance) + max_log = torch.log(current_beta_t) + frac = (predicted_variance + 1) / 2 + variance = frac * max_log + (1 - frac) * min_log + return variance + + def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: + dtype = sample.dtype + (batch_size, channels, *remaining_dims) = sample.shape + if dtype not in (torch.float32, torch.float64): + sample = sample.float() + sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) + abs_sample = sample.abs() + s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) + s = torch.clamp(s, min=1, max=self.config.sample_max_value) + s = s.unsqueeze(1) + sample = torch.clamp(sample, -s, s) / s + sample = sample.reshape(batch_size, channels, *remaining_dims) + sample = sample.to(dtype) + return sample + + def step(self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, generator=None, return_dict: bool=True) -> Union[DDPMSchedulerOutput, Tuple]: + t = timestep + prev_t = self.previous_timestep(t) + if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ['learned', 'learned_range']: + (model_output, predicted_variance) = torch.split(model_output, sample.shape[1], dim=1) + else: + predicted_variance = None + alpha_prod_t = self.alphas_cumprod[t] + alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one + beta_prod_t = 1 - alpha_prod_t + beta_prod_t_prev = 1 - alpha_prod_t_prev + current_alpha_t = alpha_prod_t / alpha_prod_t_prev + current_beta_t = 1 - current_alpha_t + if self.config.prediction_type == 'epsilon': + pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 + elif self.config.prediction_type == 'sample': + pred_original_sample = model_output + elif self.config.prediction_type == 'v_prediction': + pred_original_sample = alpha_prod_t ** 0.5 * sample - beta_prod_t ** 0.5 * model_output + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or `v_prediction` for the DDPMScheduler.') + if self.config.thresholding: + pred_original_sample = self._threshold_sample(pred_original_sample) + elif self.config.clip_sample: + pred_original_sample = pred_original_sample.clamp(-self.config.clip_sample_range, self.config.clip_sample_range) + pred_original_sample_coeff = alpha_prod_t_prev ** 0.5 * current_beta_t / beta_prod_t + current_sample_coeff = current_alpha_t ** 0.5 * beta_prod_t_prev / beta_prod_t + pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample + variance = 0 + if t > 0: + device = model_output.device + variance_noise = randn_tensor(model_output.shape, generator=generator, device=device, dtype=model_output.dtype) + if self.variance_type == 'fixed_small_log': + variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise + elif self.variance_type == 'learned_range': + variance = self._get_variance(t, predicted_variance=predicted_variance) + variance = torch.exp(0.5 * variance) * variance_noise + else: + variance = self._get_variance(t, predicted_variance=predicted_variance) ** 0.5 * variance_noise + pred_prev_sample = pred_prev_sample + variance + if not return_dict: + return (pred_prev_sample,) + return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample) + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device) + alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype) + timesteps = timesteps.to(original_samples.device) + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(original_samples.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise + return noisy_samples + + def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device) + alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype) + timesteps = timesteps.to(sample.device) + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(sample.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample + return velocity + + def __len__(self): + return self.config.num_train_timesteps + + def previous_timestep(self, timestep): + if self.custom_timesteps: + index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0] + if index == self.timesteps.shape[0] - 1: + prev_t = torch.tensor(-1) + else: + prev_t = self.timesteps[index + 1] + else: + num_inference_steps = self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps + prev_t = timestep - self.config.num_train_timesteps // num_inference_steps + return prev_t + +# File: diffusers-main/src/diffusers/schedulers/scheduling_ddpm_flax.py +from dataclasses import dataclass +from typing import Optional, Tuple, Union +import flax +import jax +import jax.numpy as jnp +from ..configuration_utils import ConfigMixin, register_to_config +from .scheduling_utils_flax import CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common + +@flax.struct.dataclass +class DDPMSchedulerState: + common: CommonSchedulerState + init_noise_sigma: jnp.ndarray + timesteps: jnp.ndarray + num_inference_steps: Optional[int] = None + + @classmethod + def create(cls, common: CommonSchedulerState, init_noise_sigma: jnp.ndarray, timesteps: jnp.ndarray): + return cls(common=common, init_noise_sigma=init_noise_sigma, timesteps=timesteps) + +@dataclass +class FlaxDDPMSchedulerOutput(FlaxSchedulerOutput): + state: DDPMSchedulerState + +class FlaxDDPMScheduler(FlaxSchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in FlaxKarrasDiffusionSchedulers] + dtype: jnp.dtype + + @property + def has_state(self): + return True + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.0001, beta_end: float=0.02, beta_schedule: str='linear', trained_betas: Optional[jnp.ndarray]=None, variance_type: str='fixed_small', clip_sample: bool=True, prediction_type: str='epsilon', dtype: jnp.dtype=jnp.float32): + self.dtype = dtype + + def create_state(self, common: Optional[CommonSchedulerState]=None) -> DDPMSchedulerState: + if common is None: + common = CommonSchedulerState.create(self) + init_noise_sigma = jnp.array(1.0, dtype=self.dtype) + timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1] + return DDPMSchedulerState.create(common=common, init_noise_sigma=init_noise_sigma, timesteps=timesteps) + + def scale_model_input(self, state: DDPMSchedulerState, sample: jnp.ndarray, timestep: Optional[int]=None) -> jnp.ndarray: + return sample + + def set_timesteps(self, state: DDPMSchedulerState, num_inference_steps: int, shape: Tuple=()) -> DDPMSchedulerState: + step_ratio = self.config.num_train_timesteps // num_inference_steps + timesteps = (jnp.arange(0, num_inference_steps) * step_ratio).round()[::-1] + return state.replace(num_inference_steps=num_inference_steps, timesteps=timesteps) + + def _get_variance(self, state: DDPMSchedulerState, t, predicted_variance=None, variance_type=None): + alpha_prod_t = state.common.alphas_cumprod[t] + alpha_prod_t_prev = jnp.where(t > 0, state.common.alphas_cumprod[t - 1], jnp.array(1.0, dtype=self.dtype)) + variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] + if variance_type is None: + variance_type = self.config.variance_type + if variance_type == 'fixed_small': + variance = jnp.clip(variance, a_min=1e-20) + elif variance_type == 'fixed_small_log': + variance = jnp.log(jnp.clip(variance, a_min=1e-20)) + elif variance_type == 'fixed_large': + variance = state.common.betas[t] + elif variance_type == 'fixed_large_log': + variance = jnp.log(state.common.betas[t]) + elif variance_type == 'learned': + return predicted_variance + elif variance_type == 'learned_range': + min_log = variance + max_log = state.common.betas[t] + frac = (predicted_variance + 1) / 2 + variance = frac * max_log + (1 - frac) * min_log + return variance + + def step(self, state: DDPMSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, key: Optional[jax.Array]=None, return_dict: bool=True) -> Union[FlaxDDPMSchedulerOutput, Tuple]: + t = timestep + if key is None: + key = jax.random.key(0) + if len(model_output.shape) > 1 and model_output.shape[1] == sample.shape[1] * 2 and (self.config.variance_type in ['learned', 'learned_range']): + (model_output, predicted_variance) = jnp.split(model_output, sample.shape[1], axis=1) + else: + predicted_variance = None + alpha_prod_t = state.common.alphas_cumprod[t] + alpha_prod_t_prev = jnp.where(t > 0, state.common.alphas_cumprod[t - 1], jnp.array(1.0, dtype=self.dtype)) + beta_prod_t = 1 - alpha_prod_t + beta_prod_t_prev = 1 - alpha_prod_t_prev + if self.config.prediction_type == 'epsilon': + pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 + elif self.config.prediction_type == 'sample': + pred_original_sample = model_output + elif self.config.prediction_type == 'v_prediction': + pred_original_sample = alpha_prod_t ** 0.5 * sample - beta_prod_t ** 0.5 * model_output + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` for the FlaxDDPMScheduler.') + if self.config.clip_sample: + pred_original_sample = jnp.clip(pred_original_sample, -1, 1) + pred_original_sample_coeff = alpha_prod_t_prev ** 0.5 * state.common.betas[t] / beta_prod_t + current_sample_coeff = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t + pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample + + def random_variance(): + split_key = jax.random.split(key, num=1)[0] + noise = jax.random.normal(split_key, shape=model_output.shape, dtype=self.dtype) + return self._get_variance(state, t, predicted_variance=predicted_variance) ** 0.5 * noise + variance = jnp.where(t > 0, random_variance(), jnp.zeros(model_output.shape, dtype=self.dtype)) + pred_prev_sample = pred_prev_sample + variance + if not return_dict: + return (pred_prev_sample, state) + return FlaxDDPMSchedulerOutput(prev_sample=pred_prev_sample, state=state) + + def add_noise(self, state: DDPMSchedulerState, original_samples: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray) -> jnp.ndarray: + return add_noise_common(state.common, original_samples, noise, timesteps) + + def get_velocity(self, state: DDPMSchedulerState, sample: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray) -> jnp.ndarray: + return get_velocity_common(state.common, sample, noise, timesteps) + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_ddpm_parallel.py +import math +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput +from ..utils.torch_utils import randn_tensor +from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin + +@dataclass +class DDPMParallelSchedulerOutput(BaseOutput): + prev_sample: torch.Tensor + pred_original_sample: Optional[torch.Tensor] = None + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +def rescale_zero_terminal_snr(betas): + alphas = 1.0 - betas + alphas_cumprod = torch.cumprod(alphas, dim=0) + alphas_bar_sqrt = alphas_cumprod.sqrt() + alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() + alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() + alphas_bar_sqrt -= alphas_bar_sqrt_T + alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) + alphas_bar = alphas_bar_sqrt ** 2 + alphas = alphas_bar[1:] / alphas_bar[:-1] + alphas = torch.cat([alphas_bar[0:1], alphas]) + betas = 1 - alphas + return betas + +class DDPMParallelScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in KarrasDiffusionSchedulers] + order = 1 + _is_ode_scheduler = False + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.0001, beta_end: float=0.02, beta_schedule: str='linear', trained_betas: Optional[Union[np.ndarray, List[float]]]=None, variance_type: str='fixed_small', clip_sample: bool=True, prediction_type: str='epsilon', thresholding: bool=False, dynamic_thresholding_ratio: float=0.995, clip_sample_range: float=1.0, sample_max_value: float=1.0, timestep_spacing: str='leading', steps_offset: int=0, rescale_betas_zero_snr: bool=False): + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + elif beta_schedule == 'sigmoid': + betas = torch.linspace(-6, 6, num_train_timesteps) + self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + if rescale_betas_zero_snr: + self.betas = rescale_zero_terminal_snr(self.betas) + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + self.one = torch.tensor(1.0) + self.init_noise_sigma = 1.0 + self.custom_timesteps = False + self.num_inference_steps = None + self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy()) + self.variance_type = variance_type + + def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int]=None) -> torch.Tensor: + return sample + + def set_timesteps(self, num_inference_steps: Optional[int]=None, device: Union[str, torch.device]=None, timesteps: Optional[List[int]]=None): + if num_inference_steps is not None and timesteps is not None: + raise ValueError('Can only pass one of `num_inference_steps` or `custom_timesteps`.') + if timesteps is not None: + for i in range(1, len(timesteps)): + if timesteps[i] >= timesteps[i - 1]: + raise ValueError('`custom_timesteps` must be in descending order.') + if timesteps[0] >= self.config.num_train_timesteps: + raise ValueError(f'`timesteps` must start before `self.config.train_timesteps`: {self.config.num_train_timesteps}.') + timesteps = np.array(timesteps, dtype=np.int64) + self.custom_timesteps = True + else: + if num_inference_steps > self.config.num_train_timesteps: + raise ValueError(f'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`: {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle maximal {self.config.num_train_timesteps} timesteps.') + self.num_inference_steps = num_inference_steps + self.custom_timesteps = False + if self.config.timestep_spacing == 'linspace': + timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps).round()[::-1].copy().astype(np.int64) + elif self.config.timestep_spacing == 'leading': + step_ratio = self.config.num_train_timesteps // self.num_inference_steps + timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) + timesteps += self.config.steps_offset + elif self.config.timestep_spacing == 'trailing': + step_ratio = self.config.num_train_timesteps / self.num_inference_steps + timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64) + timesteps -= 1 + else: + raise ValueError(f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.") + self.timesteps = torch.from_numpy(timesteps).to(device) + + def _get_variance(self, t, predicted_variance=None, variance_type=None): + prev_t = self.previous_timestep(t) + alpha_prod_t = self.alphas_cumprod[t] + alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one + current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev + variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t + variance = torch.clamp(variance, min=1e-20) + if variance_type is None: + variance_type = self.config.variance_type + if variance_type == 'fixed_small': + variance = variance + elif variance_type == 'fixed_small_log': + variance = torch.log(variance) + variance = torch.exp(0.5 * variance) + elif variance_type == 'fixed_large': + variance = current_beta_t + elif variance_type == 'fixed_large_log': + variance = torch.log(current_beta_t) + elif variance_type == 'learned': + return predicted_variance + elif variance_type == 'learned_range': + min_log = torch.log(variance) + max_log = torch.log(current_beta_t) + frac = (predicted_variance + 1) / 2 + variance = frac * max_log + (1 - frac) * min_log + return variance + + def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: + dtype = sample.dtype + (batch_size, channels, *remaining_dims) = sample.shape + if dtype not in (torch.float32, torch.float64): + sample = sample.float() + sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) + abs_sample = sample.abs() + s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) + s = torch.clamp(s, min=1, max=self.config.sample_max_value) + s = s.unsqueeze(1) + sample = torch.clamp(sample, -s, s) / s + sample = sample.reshape(batch_size, channels, *remaining_dims) + sample = sample.to(dtype) + return sample + + def step(self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, generator=None, return_dict: bool=True) -> Union[DDPMParallelSchedulerOutput, Tuple]: + t = timestep + prev_t = self.previous_timestep(t) + if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ['learned', 'learned_range']: + (model_output, predicted_variance) = torch.split(model_output, sample.shape[1], dim=1) + else: + predicted_variance = None + alpha_prod_t = self.alphas_cumprod[t] + alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one + beta_prod_t = 1 - alpha_prod_t + beta_prod_t_prev = 1 - alpha_prod_t_prev + current_alpha_t = alpha_prod_t / alpha_prod_t_prev + current_beta_t = 1 - current_alpha_t + if self.config.prediction_type == 'epsilon': + pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 + elif self.config.prediction_type == 'sample': + pred_original_sample = model_output + elif self.config.prediction_type == 'v_prediction': + pred_original_sample = alpha_prod_t ** 0.5 * sample - beta_prod_t ** 0.5 * model_output + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or `v_prediction` for the DDPMScheduler.') + if self.config.thresholding: + pred_original_sample = self._threshold_sample(pred_original_sample) + elif self.config.clip_sample: + pred_original_sample = pred_original_sample.clamp(-self.config.clip_sample_range, self.config.clip_sample_range) + pred_original_sample_coeff = alpha_prod_t_prev ** 0.5 * current_beta_t / beta_prod_t + current_sample_coeff = current_alpha_t ** 0.5 * beta_prod_t_prev / beta_prod_t + pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample + variance = 0 + if t > 0: + device = model_output.device + variance_noise = randn_tensor(model_output.shape, generator=generator, device=device, dtype=model_output.dtype) + if self.variance_type == 'fixed_small_log': + variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise + elif self.variance_type == 'learned_range': + variance = self._get_variance(t, predicted_variance=predicted_variance) + variance = torch.exp(0.5 * variance) * variance_noise + else: + variance = self._get_variance(t, predicted_variance=predicted_variance) ** 0.5 * variance_noise + pred_prev_sample = pred_prev_sample + variance + if not return_dict: + return (pred_prev_sample,) + return DDPMParallelSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample) + + def batch_step_no_noise(self, model_output: torch.Tensor, timesteps: List[int], sample: torch.Tensor) -> torch.Tensor: + t = timesteps + num_inference_steps = self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps + prev_t = t - self.config.num_train_timesteps // num_inference_steps + t = t.view(-1, *[1] * (model_output.ndim - 1)) + prev_t = prev_t.view(-1, *[1] * (model_output.ndim - 1)) + if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ['learned', 'learned_range']: + (model_output, predicted_variance) = torch.split(model_output, sample.shape[1], dim=1) + else: + pass + self.alphas_cumprod = self.alphas_cumprod.to(model_output.device) + alpha_prod_t = self.alphas_cumprod[t] + alpha_prod_t_prev = self.alphas_cumprod[torch.clip(prev_t, min=0)] + alpha_prod_t_prev[prev_t < 0] = torch.tensor(1.0) + beta_prod_t = 1 - alpha_prod_t + beta_prod_t_prev = 1 - alpha_prod_t_prev + current_alpha_t = alpha_prod_t / alpha_prod_t_prev + current_beta_t = 1 - current_alpha_t + if self.config.prediction_type == 'epsilon': + pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 + elif self.config.prediction_type == 'sample': + pred_original_sample = model_output + elif self.config.prediction_type == 'v_prediction': + pred_original_sample = alpha_prod_t ** 0.5 * sample - beta_prod_t ** 0.5 * model_output + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or `v_prediction` for the DDPMParallelScheduler.') + if self.config.thresholding: + pred_original_sample = self._threshold_sample(pred_original_sample) + elif self.config.clip_sample: + pred_original_sample = pred_original_sample.clamp(-self.config.clip_sample_range, self.config.clip_sample_range) + pred_original_sample_coeff = alpha_prod_t_prev ** 0.5 * current_beta_t / beta_prod_t + current_sample_coeff = current_alpha_t ** 0.5 * beta_prod_t_prev / beta_prod_t + pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample + return pred_prev_sample + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device) + alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype) + timesteps = timesteps.to(original_samples.device) + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(original_samples.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise + return noisy_samples + + def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device) + alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype) + timesteps = timesteps.to(sample.device) + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(sample.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample + return velocity + + def __len__(self): + return self.config.num_train_timesteps + + def previous_timestep(self, timestep): + if self.custom_timesteps: + index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0] + if index == self.timesteps.shape[0] - 1: + prev_t = torch.tensor(-1) + else: + prev_t = self.timesteps[index + 1] + else: + num_inference_steps = self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps + prev_t = timestep - self.config.num_train_timesteps // num_inference_steps + return prev_t + +# File: diffusers-main/src/diffusers/schedulers/scheduling_ddpm_wuerstchen.py +import math +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput +from ..utils.torch_utils import randn_tensor +from .scheduling_utils import SchedulerMixin + +@dataclass +class DDPMWuerstchenSchedulerOutput(BaseOutput): + prev_sample: torch.Tensor + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +class DDPMWuerstchenScheduler(SchedulerMixin, ConfigMixin): + + @register_to_config + def __init__(self, scaler: float=1.0, s: float=0.008): + self.scaler = scaler + self.s = torch.tensor([s]) + self._init_alpha_cumprod = torch.cos(self.s / (1 + self.s) * torch.pi * 0.5) ** 2 + self.init_noise_sigma = 1.0 + + def _alpha_cumprod(self, t, device): + if self.scaler > 1: + t = 1 - (1 - t) ** self.scaler + elif self.scaler < 1: + t = t ** self.scaler + alpha_cumprod = torch.cos((t + self.s.to(device)) / (1 + self.s.to(device)) * torch.pi * 0.5) ** 2 / self._init_alpha_cumprod.to(device) + return alpha_cumprod.clamp(0.0001, 0.9999) + + def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int]=None) -> torch.Tensor: + return sample + + def set_timesteps(self, num_inference_steps: int=None, timesteps: Optional[List[int]]=None, device: Union[str, torch.device]=None): + if timesteps is None: + timesteps = torch.linspace(1.0, 0.0, num_inference_steps + 1, device=device) + if not isinstance(timesteps, torch.Tensor): + timesteps = torch.Tensor(timesteps).to(device) + self.timesteps = timesteps + + def step(self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, generator=None, return_dict: bool=True) -> Union[DDPMWuerstchenSchedulerOutput, Tuple]: + dtype = model_output.dtype + device = model_output.device + t = timestep + prev_t = self.previous_timestep(t) + alpha_cumprod = self._alpha_cumprod(t, device).view(t.size(0), *[1 for _ in sample.shape[1:]]) + alpha_cumprod_prev = self._alpha_cumprod(prev_t, device).view(prev_t.size(0), *[1 for _ in sample.shape[1:]]) + alpha = alpha_cumprod / alpha_cumprod_prev + mu = (1.0 / alpha).sqrt() * (sample - (1 - alpha) * model_output / (1 - alpha_cumprod).sqrt()) + std_noise = randn_tensor(mu.shape, generator=generator, device=model_output.device, dtype=model_output.dtype) + std = ((1 - alpha) * (1.0 - alpha_cumprod_prev) / (1.0 - alpha_cumprod)).sqrt() * std_noise + pred = mu + std * (prev_t != 0).float().view(prev_t.size(0), *[1 for _ in sample.shape[1:]]) + if not return_dict: + return (pred.to(dtype),) + return DDPMWuerstchenSchedulerOutput(prev_sample=pred.to(dtype)) + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor: + device = original_samples.device + dtype = original_samples.dtype + alpha_cumprod = self._alpha_cumprod(timesteps, device=device).view(timesteps.size(0), *[1 for _ in original_samples.shape[1:]]) + noisy_samples = alpha_cumprod.sqrt() * original_samples + (1 - alpha_cumprod).sqrt() * noise + return noisy_samples.to(dtype=dtype) + + def __len__(self): + return self.config.num_train_timesteps + + def previous_timestep(self, timestep): + index = (self.timesteps - timestep[0]).abs().argmin().item() + prev_t = self.timesteps[index + 1][None].expand(timestep.shape[0]) + return prev_t + +# File: diffusers-main/src/diffusers/schedulers/scheduling_deis_multistep.py +import math +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import deprecate +from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +class DEISMultistepScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in KarrasDiffusionSchedulers] + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.0001, beta_end: float=0.02, beta_schedule: str='linear', trained_betas: Optional[np.ndarray]=None, solver_order: int=2, prediction_type: str='epsilon', thresholding: bool=False, dynamic_thresholding_ratio: float=0.995, sample_max_value: float=1.0, algorithm_type: str='deis', solver_type: str='logrho', lower_order_final: bool=True, use_karras_sigmas: Optional[bool]=False, timestep_spacing: str='linspace', steps_offset: int=0): + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + self.alpha_t = torch.sqrt(self.alphas_cumprod) + self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) + self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) + self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 + self.init_noise_sigma = 1.0 + if algorithm_type not in ['deis']: + if algorithm_type in ['dpmsolver', 'dpmsolver++']: + self.register_to_config(algorithm_type='deis') + else: + raise NotImplementedError(f'{algorithm_type} is not implemented for {self.__class__}') + if solver_type not in ['logrho']: + if solver_type in ['midpoint', 'heun', 'bh1', 'bh2']: + self.register_to_config(solver_type='logrho') + else: + raise NotImplementedError(f'solver type {solver_type} is not implemented for {self.__class__}') + self.num_inference_steps = None + timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy() + self.timesteps = torch.from_numpy(timesteps) + self.model_outputs = [None] * solver_order + self.lower_order_nums = 0 + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + @property + def step_index(self): + return self._step_index + + @property + def begin_index(self): + return self._begin_index + + def set_begin_index(self, begin_index: int=0): + self._begin_index = begin_index + + def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device]=None): + if self.config.timestep_spacing == 'linspace': + timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps + 1).round()[::-1][:-1].copy().astype(np.int64) + elif self.config.timestep_spacing == 'leading': + step_ratio = self.config.num_train_timesteps // (num_inference_steps + 1) + timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64) + timesteps += self.config.steps_offset + elif self.config.timestep_spacing == 'trailing': + step_ratio = self.config.num_train_timesteps / num_inference_steps + timesteps = np.arange(self.config.num_train_timesteps, 0, -step_ratio).round().copy().astype(np.int64) + timesteps -= 1 + else: + raise ValueError(f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.") + sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) + if self.config.use_karras_sigmas: + log_sigmas = np.log(sigmas) + sigmas = np.flip(sigmas).copy() + sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) + timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round() + sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32) + else: + sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) + sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5 + sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32) + self.sigmas = torch.from_numpy(sigmas) + self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64) + self.num_inference_steps = len(timesteps) + self.model_outputs = [None] * self.config.solver_order + self.lower_order_nums = 0 + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: + dtype = sample.dtype + (batch_size, channels, *remaining_dims) = sample.shape + if dtype not in (torch.float32, torch.float64): + sample = sample.float() + sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) + abs_sample = sample.abs() + s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) + s = torch.clamp(s, min=1, max=self.config.sample_max_value) + s = s.unsqueeze(1) + sample = torch.clamp(sample, -s, s) / s + sample = sample.reshape(batch_size, channels, *remaining_dims) + sample = sample.to(dtype) + return sample + + def _sigma_to_t(self, sigma, log_sigmas): + log_sigma = np.log(np.maximum(sigma, 1e-10)) + dists = log_sigma - log_sigmas[:, np.newaxis] + low_idx = np.cumsum(dists >= 0, axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) + high_idx = low_idx + 1 + low = log_sigmas[low_idx] + high = log_sigmas[high_idx] + w = (low - log_sigma) / (low - high) + w = np.clip(w, 0, 1) + t = (1 - w) * low_idx + w * high_idx + t = t.reshape(sigma.shape) + return t + + def _sigma_to_alpha_sigma_t(self, sigma): + alpha_t = 1 / (sigma ** 2 + 1) ** 0.5 + sigma_t = sigma * alpha_t + return (alpha_t, sigma_t) + + def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor: + if hasattr(self.config, 'sigma_min'): + sigma_min = self.config.sigma_min + else: + sigma_min = None + if hasattr(self.config, 'sigma_max'): + sigma_max = self.config.sigma_max + else: + sigma_max = None + sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() + sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() + rho = 7.0 + ramp = np.linspace(0, 1, num_inference_steps) + min_inv_rho = sigma_min ** (1 / rho) + max_inv_rho = sigma_max ** (1 / rho) + sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho + return sigmas + + def convert_model_output(self, model_output: torch.Tensor, *args, sample: torch.Tensor=None, **kwargs) -> torch.Tensor: + timestep = args[0] if len(args) > 0 else kwargs.pop('timestep', None) + if sample is None: + if len(args) > 1: + sample = args[1] + else: + raise ValueError('missing `sample` as a required keyward argument') + if timestep is not None: + deprecate('timesteps', '1.0.0', 'Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + sigma = self.sigmas[self.step_index] + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma) + if self.config.prediction_type == 'epsilon': + x0_pred = (sample - sigma_t * model_output) / alpha_t + elif self.config.prediction_type == 'sample': + x0_pred = model_output + elif self.config.prediction_type == 'v_prediction': + x0_pred = alpha_t * sample - sigma_t * model_output + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or `v_prediction` for the DEISMultistepScheduler.') + if self.config.thresholding: + x0_pred = self._threshold_sample(x0_pred) + if self.config.algorithm_type == 'deis': + return (sample - alpha_t * x0_pred) / sigma_t + else: + raise NotImplementedError('only support log-rho multistep deis now') + + def deis_first_order_update(self, model_output: torch.Tensor, *args, sample: torch.Tensor=None, **kwargs) -> torch.Tensor: + timestep = args[0] if len(args) > 0 else kwargs.pop('timestep', None) + prev_timestep = args[1] if len(args) > 1 else kwargs.pop('prev_timestep', None) + if sample is None: + if len(args) > 2: + sample = args[2] + else: + raise ValueError(' missing `sample` as a required keyward argument') + if timestep is not None: + deprecate('timesteps', '1.0.0', 'Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + if prev_timestep is not None: + deprecate('prev_timestep', '1.0.0', 'Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + (sigma_t, sigma_s) = (self.sigmas[self.step_index + 1], self.sigmas[self.step_index]) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s, sigma_s) = self._sigma_to_alpha_sigma_t(sigma_s) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s = torch.log(alpha_s) - torch.log(sigma_s) + h = lambda_t - lambda_s + if self.config.algorithm_type == 'deis': + x_t = alpha_t / alpha_s * sample - sigma_t * (torch.exp(h) - 1.0) * model_output + else: + raise NotImplementedError('only support log-rho multistep deis now') + return x_t + + def multistep_deis_second_order_update(self, model_output_list: List[torch.Tensor], *args, sample: torch.Tensor=None, **kwargs) -> torch.Tensor: + timestep_list = args[0] if len(args) > 0 else kwargs.pop('timestep_list', None) + prev_timestep = args[1] if len(args) > 1 else kwargs.pop('prev_timestep', None) + if sample is None: + if len(args) > 2: + sample = args[2] + else: + raise ValueError(' missing `sample` as a required keyward argument') + if timestep_list is not None: + deprecate('timestep_list', '1.0.0', 'Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + if prev_timestep is not None: + deprecate('prev_timestep', '1.0.0', 'Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + (sigma_t, sigma_s0, sigma_s1) = (self.sigmas[self.step_index + 1], self.sigmas[self.step_index], self.sigmas[self.step_index - 1]) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s0, sigma_s0) = self._sigma_to_alpha_sigma_t(sigma_s0) + (alpha_s1, sigma_s1) = self._sigma_to_alpha_sigma_t(sigma_s1) + (m0, m1) = (model_output_list[-1], model_output_list[-2]) + (rho_t, rho_s0, rho_s1) = (sigma_t / alpha_t, sigma_s0 / alpha_s0, sigma_s1 / alpha_s1) + if self.config.algorithm_type == 'deis': + + def ind_fn(t, b, c): + return t * (-np.log(c) + np.log(t) - 1) / (np.log(b) - np.log(c)) + coef1 = ind_fn(rho_t, rho_s0, rho_s1) - ind_fn(rho_s0, rho_s0, rho_s1) + coef2 = ind_fn(rho_t, rho_s1, rho_s0) - ind_fn(rho_s0, rho_s1, rho_s0) + x_t = alpha_t * (sample / alpha_s0 + coef1 * m0 + coef2 * m1) + return x_t + else: + raise NotImplementedError('only support log-rho multistep deis now') + + def multistep_deis_third_order_update(self, model_output_list: List[torch.Tensor], *args, sample: torch.Tensor=None, **kwargs) -> torch.Tensor: + timestep_list = args[0] if len(args) > 0 else kwargs.pop('timestep_list', None) + prev_timestep = args[1] if len(args) > 1 else kwargs.pop('prev_timestep', None) + if sample is None: + if len(args) > 2: + sample = args[2] + else: + raise ValueError(' missing`sample` as a required keyward argument') + if timestep_list is not None: + deprecate('timestep_list', '1.0.0', 'Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + if prev_timestep is not None: + deprecate('prev_timestep', '1.0.0', 'Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + (sigma_t, sigma_s0, sigma_s1, sigma_s2) = (self.sigmas[self.step_index + 1], self.sigmas[self.step_index], self.sigmas[self.step_index - 1], self.sigmas[self.step_index - 2]) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s0, sigma_s0) = self._sigma_to_alpha_sigma_t(sigma_s0) + (alpha_s1, sigma_s1) = self._sigma_to_alpha_sigma_t(sigma_s1) + (alpha_s2, sigma_s2) = self._sigma_to_alpha_sigma_t(sigma_s2) + (m0, m1, m2) = (model_output_list[-1], model_output_list[-2], model_output_list[-3]) + (rho_t, rho_s0, rho_s1, rho_s2) = (sigma_t / alpha_t, sigma_s0 / alpha_s0, sigma_s1 / alpha_s1, sigma_s2 / alpha_s2) + if self.config.algorithm_type == 'deis': + + def ind_fn(t, b, c, d): + numerator = t * (np.log(c) * (np.log(d) - np.log(t) + 1) - np.log(d) * np.log(t) + np.log(d) + np.log(t) ** 2 - 2 * np.log(t) + 2) + denominator = (np.log(b) - np.log(c)) * (np.log(b) - np.log(d)) + return numerator / denominator + coef1 = ind_fn(rho_t, rho_s0, rho_s1, rho_s2) - ind_fn(rho_s0, rho_s0, rho_s1, rho_s2) + coef2 = ind_fn(rho_t, rho_s1, rho_s2, rho_s0) - ind_fn(rho_s0, rho_s1, rho_s2, rho_s0) + coef3 = ind_fn(rho_t, rho_s2, rho_s0, rho_s1) - ind_fn(rho_s0, rho_s2, rho_s0, rho_s1) + x_t = alpha_t * (sample / alpha_s0 + coef1 * m0 + coef2 * m1 + coef3 * m2) + return x_t + else: + raise NotImplementedError('only support log-rho multistep deis now') + + def index_for_timestep(self, timestep, schedule_timesteps=None): + if schedule_timesteps is None: + schedule_timesteps = self.timesteps + index_candidates = (schedule_timesteps == timestep).nonzero() + if len(index_candidates) == 0: + step_index = len(self.timesteps) - 1 + elif len(index_candidates) > 1: + step_index = index_candidates[1].item() + else: + step_index = index_candidates[0].item() + return step_index + + def _init_step_index(self, timestep): + if self.begin_index is None: + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + self._step_index = self.index_for_timestep(timestep) + else: + self._step_index = self._begin_index + + def step(self, model_output: torch.Tensor, timestep: Union[int, torch.Tensor], sample: torch.Tensor, return_dict: bool=True) -> Union[SchedulerOutput, Tuple]: + if self.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + if self.step_index is None: + self._init_step_index(timestep) + lower_order_final = self.step_index == len(self.timesteps) - 1 and self.config.lower_order_final and (len(self.timesteps) < 15) + lower_order_second = self.step_index == len(self.timesteps) - 2 and self.config.lower_order_final and (len(self.timesteps) < 15) + model_output = self.convert_model_output(model_output, sample=sample) + for i in range(self.config.solver_order - 1): + self.model_outputs[i] = self.model_outputs[i + 1] + self.model_outputs[-1] = model_output + if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final: + prev_sample = self.deis_first_order_update(model_output, sample=sample) + elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second: + prev_sample = self.multistep_deis_second_order_update(self.model_outputs, sample=sample) + else: + prev_sample = self.multistep_deis_third_order_update(self.model_outputs, sample=sample) + if self.lower_order_nums < self.config.solver_order: + self.lower_order_nums += 1 + self._step_index += 1 + if not return_dict: + return (prev_sample,) + return SchedulerOutput(prev_sample=prev_sample) + + def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor: + return sample + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) + if original_samples.device.type == 'mps' and torch.is_floating_point(timesteps): + schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) + timesteps = timesteps.to(original_samples.device, dtype=torch.float32) + else: + schedule_timesteps = self.timesteps.to(original_samples.device) + timesteps = timesteps.to(original_samples.device) + if self.begin_index is None: + step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] + elif self.step_index is not None: + step_indices = [self.step_index] * timesteps.shape[0] + else: + step_indices = [self.begin_index] * timesteps.shape[0] + sigma = sigmas[step_indices].flatten() + while len(sigma.shape) < len(original_samples.shape): + sigma = sigma.unsqueeze(-1) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma) + noisy_samples = alpha_t * original_samples + sigma_t * noise + return noisy_samples + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_dpm_cogvideox.py +import math +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput +from ..utils.torch_utils import randn_tensor +from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin + +@dataclass +class DDIMSchedulerOutput(BaseOutput): + prev_sample: torch.Tensor + pred_original_sample: Optional[torch.Tensor] = None + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +def rescale_zero_terminal_snr(alphas_cumprod): + alphas_bar_sqrt = alphas_cumprod.sqrt() + alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() + alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() + alphas_bar_sqrt -= alphas_bar_sqrt_T + alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) + alphas_bar = alphas_bar_sqrt ** 2 + return alphas_bar + +class CogVideoXDPMScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in KarrasDiffusionSchedulers] + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.00085, beta_end: float=0.012, beta_schedule: str='scaled_linear', trained_betas: Optional[Union[np.ndarray, List[float]]]=None, clip_sample: bool=True, set_alpha_to_one: bool=True, steps_offset: int=0, prediction_type: str='epsilon', clip_sample_range: float=1.0, sample_max_value: float=1.0, timestep_spacing: str='leading', rescale_betas_zero_snr: bool=False, snr_shift_scale: float=3.0): + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float64) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + self.alphas_cumprod = self.alphas_cumprod / (snr_shift_scale + (1 - snr_shift_scale) * self.alphas_cumprod) + if rescale_betas_zero_snr: + self.alphas_cumprod = rescale_zero_terminal_snr(self.alphas_cumprod) + self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] + self.init_noise_sigma = 1.0 + self.num_inference_steps = None + self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64)) + + def _get_variance(self, timestep, prev_timestep): + alpha_prod_t = self.alphas_cumprod[timestep] + alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod + beta_prod_t = 1 - alpha_prod_t + beta_prod_t_prev = 1 - alpha_prod_t_prev + variance = beta_prod_t_prev / beta_prod_t * (1 - alpha_prod_t / alpha_prod_t_prev) + return variance + + def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int]=None) -> torch.Tensor: + return sample + + def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device]=None): + if num_inference_steps > self.config.num_train_timesteps: + raise ValueError(f'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`: {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle maximal {self.config.num_train_timesteps} timesteps.') + self.num_inference_steps = num_inference_steps + if self.config.timestep_spacing == 'linspace': + timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps).round()[::-1].copy().astype(np.int64) + elif self.config.timestep_spacing == 'leading': + step_ratio = self.config.num_train_timesteps // self.num_inference_steps + timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) + timesteps += self.config.steps_offset + elif self.config.timestep_spacing == 'trailing': + step_ratio = self.config.num_train_timesteps / self.num_inference_steps + timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64) + timesteps -= 1 + else: + raise ValueError(f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'.") + self.timesteps = torch.from_numpy(timesteps).to(device) + + def get_variables(self, alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back=None): + lamb = ((alpha_prod_t / (1 - alpha_prod_t)) ** 0.5).log() + lamb_next = ((alpha_prod_t_prev / (1 - alpha_prod_t_prev)) ** 0.5).log() + h = lamb_next - lamb + if alpha_prod_t_back is not None: + lamb_previous = ((alpha_prod_t_back / (1 - alpha_prod_t_back)) ** 0.5).log() + h_last = lamb - lamb_previous + r = h_last / h + return (h, r, lamb, lamb_next) + else: + return (h, None, lamb, lamb_next) + + def get_mult(self, h, r, alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back): + mult1 = ((1 - alpha_prod_t_prev) / (1 - alpha_prod_t)) ** 0.5 * (-h).exp() + mult2 = (-2 * h).expm1() * alpha_prod_t_prev ** 0.5 + if alpha_prod_t_back is not None: + mult3 = 1 + 1 / (2 * r) + mult4 = 1 / (2 * r) + return (mult1, mult2, mult3, mult4) + else: + return (mult1, mult2) + + def step(self, model_output: torch.Tensor, old_pred_original_sample: torch.Tensor, timestep: int, timestep_back: int, sample: torch.Tensor, eta: float=0.0, use_clipped_model_output: bool=False, generator=None, variance_noise: Optional[torch.Tensor]=None, return_dict: bool=False) -> Union[DDIMSchedulerOutput, Tuple]: + if self.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps + alpha_prod_t = self.alphas_cumprod[timestep] + alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod + alpha_prod_t_back = self.alphas_cumprod[timestep_back] if timestep_back is not None else None + beta_prod_t = 1 - alpha_prod_t + if self.config.prediction_type == 'epsilon': + pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 + elif self.config.prediction_type == 'sample': + pred_original_sample = model_output + elif self.config.prediction_type == 'v_prediction': + pred_original_sample = alpha_prod_t ** 0.5 * sample - beta_prod_t ** 0.5 * model_output + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or `v_prediction`') + (h, r, lamb, lamb_next) = self.get_variables(alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back) + mult = list(self.get_mult(h, r, alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back)) + mult_noise = (1 - alpha_prod_t_prev) ** 0.5 * (1 - (-2 * h).exp()) ** 0.5 + noise = randn_tensor(sample.shape, generator=generator, device=sample.device, dtype=sample.dtype) + prev_sample = mult[0] * sample - mult[1] * pred_original_sample + mult_noise * noise + if old_pred_original_sample is None or prev_timestep < 0: + return (prev_sample, pred_original_sample) + else: + denoised_d = mult[2] * pred_original_sample - mult[3] * old_pred_original_sample + noise = randn_tensor(sample.shape, generator=generator, device=sample.device, dtype=sample.dtype) + x_advanced = mult[0] * sample - mult[1] * denoised_d + mult_noise * noise + prev_sample = x_advanced + if not return_dict: + return (prev_sample, pred_original_sample) + return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device) + alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype) + timesteps = timesteps.to(original_samples.device) + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(original_samples.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise + return noisy_samples + + def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device) + alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype) + timesteps = timesteps.to(sample.device) + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(sample.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample + return velocity + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py +import math +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import deprecate +from ..utils.torch_utils import randn_tensor +from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +def rescale_zero_terminal_snr(betas): + alphas = 1.0 - betas + alphas_cumprod = torch.cumprod(alphas, dim=0) + alphas_bar_sqrt = alphas_cumprod.sqrt() + alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() + alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() + alphas_bar_sqrt -= alphas_bar_sqrt_T + alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) + alphas_bar = alphas_bar_sqrt ** 2 + alphas = alphas_bar[1:] / alphas_bar[:-1] + alphas = torch.cat([alphas_bar[0:1], alphas]) + betas = 1 - alphas + return betas + +class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in KarrasDiffusionSchedulers] + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.0001, beta_end: float=0.02, beta_schedule: str='linear', trained_betas: Optional[Union[np.ndarray, List[float]]]=None, solver_order: int=2, prediction_type: str='epsilon', thresholding: bool=False, dynamic_thresholding_ratio: float=0.995, sample_max_value: float=1.0, algorithm_type: str='dpmsolver++', solver_type: str='midpoint', lower_order_final: bool=True, euler_at_final: bool=False, use_karras_sigmas: Optional[bool]=False, use_lu_lambdas: Optional[bool]=False, final_sigmas_type: Optional[str]='zero', lambda_min_clipped: float=-float('inf'), variance_type: Optional[str]=None, timestep_spacing: str='linspace', steps_offset: int=0, rescale_betas_zero_snr: bool=False): + if algorithm_type in ['dpmsolver', 'sde-dpmsolver']: + deprecation_message = f'algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead' + deprecate('algorithm_types dpmsolver and sde-dpmsolver', '1.0.0', deprecation_message) + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + if rescale_betas_zero_snr: + self.betas = rescale_zero_terminal_snr(self.betas) + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + if rescale_betas_zero_snr: + self.alphas_cumprod[-1] = 2 ** (-24) + self.alpha_t = torch.sqrt(self.alphas_cumprod) + self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) + self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) + self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 + self.init_noise_sigma = 1.0 + if algorithm_type not in ['dpmsolver', 'dpmsolver++', 'sde-dpmsolver', 'sde-dpmsolver++']: + if algorithm_type == 'deis': + self.register_to_config(algorithm_type='dpmsolver++') + else: + raise NotImplementedError(f'{algorithm_type} is not implemented for {self.__class__}') + if solver_type not in ['midpoint', 'heun']: + if solver_type in ['logrho', 'bh1', 'bh2']: + self.register_to_config(solver_type='midpoint') + else: + raise NotImplementedError(f'{solver_type} is not implemented for {self.__class__}') + if algorithm_type not in ['dpmsolver++', 'sde-dpmsolver++'] and final_sigmas_type == 'zero': + raise ValueError(f'`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please choose `sigma_min` instead.') + self.num_inference_steps = None + timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy() + self.timesteps = torch.from_numpy(timesteps) + self.model_outputs = [None] * solver_order + self.lower_order_nums = 0 + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + @property + def step_index(self): + return self._step_index + + @property + def begin_index(self): + return self._begin_index + + def set_begin_index(self, begin_index: int=0): + self._begin_index = begin_index + + def set_timesteps(self, num_inference_steps: int=None, device: Union[str, torch.device]=None, timesteps: Optional[List[int]]=None): + if num_inference_steps is None and timesteps is None: + raise ValueError('Must pass exactly one of `num_inference_steps` or `timesteps`.') + if num_inference_steps is not None and timesteps is not None: + raise ValueError('Can only pass one of `num_inference_steps` or `custom_timesteps`.') + if timesteps is not None and self.config.use_karras_sigmas: + raise ValueError('Cannot use `timesteps` with `config.use_karras_sigmas = True`') + if timesteps is not None and self.config.use_lu_lambdas: + raise ValueError('Cannot use `timesteps` with `config.use_lu_lambdas = True`') + if timesteps is not None: + timesteps = np.array(timesteps).astype(np.int64) + else: + clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped) + last_timestep = (self.config.num_train_timesteps - clipped_idx).numpy().item() + if self.config.timestep_spacing == 'linspace': + timesteps = np.linspace(0, last_timestep - 1, num_inference_steps + 1).round()[::-1][:-1].copy().astype(np.int64) + elif self.config.timestep_spacing == 'leading': + step_ratio = last_timestep // (num_inference_steps + 1) + timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64) + timesteps += self.config.steps_offset + elif self.config.timestep_spacing == 'trailing': + step_ratio = self.config.num_train_timesteps / num_inference_steps + timesteps = np.arange(last_timestep, 0, -step_ratio).round().copy().astype(np.int64) + timesteps -= 1 + else: + raise ValueError(f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.") + sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) + log_sigmas = np.log(sigmas) + if self.config.use_karras_sigmas: + sigmas = np.flip(sigmas).copy() + sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) + timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round() + elif self.config.use_lu_lambdas: + lambdas = np.flip(log_sigmas.copy()) + lambdas = self._convert_to_lu(in_lambdas=lambdas, num_inference_steps=num_inference_steps) + sigmas = np.exp(lambdas) + timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round() + else: + sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) + if self.config.final_sigmas_type == 'sigma_min': + sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5 + elif self.config.final_sigmas_type == 'zero': + sigma_last = 0 + else: + raise ValueError(f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}") + sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32) + self.sigmas = torch.from_numpy(sigmas) + self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64) + self.num_inference_steps = len(timesteps) + self.model_outputs = [None] * self.config.solver_order + self.lower_order_nums = 0 + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: + dtype = sample.dtype + (batch_size, channels, *remaining_dims) = sample.shape + if dtype not in (torch.float32, torch.float64): + sample = sample.float() + sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) + abs_sample = sample.abs() + s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) + s = torch.clamp(s, min=1, max=self.config.sample_max_value) + s = s.unsqueeze(1) + sample = torch.clamp(sample, -s, s) / s + sample = sample.reshape(batch_size, channels, *remaining_dims) + sample = sample.to(dtype) + return sample + + def _sigma_to_t(self, sigma, log_sigmas): + log_sigma = np.log(np.maximum(sigma, 1e-10)) + dists = log_sigma - log_sigmas[:, np.newaxis] + low_idx = np.cumsum(dists >= 0, axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) + high_idx = low_idx + 1 + low = log_sigmas[low_idx] + high = log_sigmas[high_idx] + w = (low - log_sigma) / (low - high) + w = np.clip(w, 0, 1) + t = (1 - w) * low_idx + w * high_idx + t = t.reshape(sigma.shape) + return t + + def _sigma_to_alpha_sigma_t(self, sigma): + alpha_t = 1 / (sigma ** 2 + 1) ** 0.5 + sigma_t = sigma * alpha_t + return (alpha_t, sigma_t) + + def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor: + if hasattr(self.config, 'sigma_min'): + sigma_min = self.config.sigma_min + else: + sigma_min = None + if hasattr(self.config, 'sigma_max'): + sigma_max = self.config.sigma_max + else: + sigma_max = None + sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() + sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() + rho = 7.0 + ramp = np.linspace(0, 1, num_inference_steps) + min_inv_rho = sigma_min ** (1 / rho) + max_inv_rho = sigma_max ** (1 / rho) + sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho + return sigmas + + def _convert_to_lu(self, in_lambdas: torch.Tensor, num_inference_steps) -> torch.Tensor: + lambda_min: float = in_lambdas[-1].item() + lambda_max: float = in_lambdas[0].item() + rho = 1.0 + ramp = np.linspace(0, 1, num_inference_steps) + min_inv_rho = lambda_min ** (1 / rho) + max_inv_rho = lambda_max ** (1 / rho) + lambdas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho + return lambdas + + def convert_model_output(self, model_output: torch.Tensor, *args, sample: torch.Tensor=None, **kwargs) -> torch.Tensor: + timestep = args[0] if len(args) > 0 else kwargs.pop('timestep', None) + if sample is None: + if len(args) > 1: + sample = args[1] + else: + raise ValueError('missing `sample` as a required keyward argument') + if timestep is not None: + deprecate('timesteps', '1.0.0', 'Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + if self.config.algorithm_type in ['dpmsolver++', 'sde-dpmsolver++']: + if self.config.prediction_type == 'epsilon': + if self.config.variance_type in ['learned', 'learned_range']: + model_output = model_output[:, :3] + sigma = self.sigmas[self.step_index] + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma) + x0_pred = (sample - sigma_t * model_output) / alpha_t + elif self.config.prediction_type == 'sample': + x0_pred = model_output + elif self.config.prediction_type == 'v_prediction': + sigma = self.sigmas[self.step_index] + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma) + x0_pred = alpha_t * sample - sigma_t * model_output + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or `v_prediction` for the DPMSolverMultistepScheduler.') + if self.config.thresholding: + x0_pred = self._threshold_sample(x0_pred) + return x0_pred + elif self.config.algorithm_type in ['dpmsolver', 'sde-dpmsolver']: + if self.config.prediction_type == 'epsilon': + if self.config.variance_type in ['learned', 'learned_range']: + epsilon = model_output[:, :3] + else: + epsilon = model_output + elif self.config.prediction_type == 'sample': + sigma = self.sigmas[self.step_index] + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma) + epsilon = (sample - alpha_t * model_output) / sigma_t + elif self.config.prediction_type == 'v_prediction': + sigma = self.sigmas[self.step_index] + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma) + epsilon = alpha_t * model_output + sigma_t * sample + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or `v_prediction` for the DPMSolverMultistepScheduler.') + if self.config.thresholding: + sigma = self.sigmas[self.step_index] + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma) + x0_pred = (sample - sigma_t * epsilon) / alpha_t + x0_pred = self._threshold_sample(x0_pred) + epsilon = (sample - alpha_t * x0_pred) / sigma_t + return epsilon + + def dpm_solver_first_order_update(self, model_output: torch.Tensor, *args, sample: torch.Tensor=None, noise: Optional[torch.Tensor]=None, **kwargs) -> torch.Tensor: + timestep = args[0] if len(args) > 0 else kwargs.pop('timestep', None) + prev_timestep = args[1] if len(args) > 1 else kwargs.pop('prev_timestep', None) + if sample is None: + if len(args) > 2: + sample = args[2] + else: + raise ValueError(' missing `sample` as a required keyward argument') + if timestep is not None: + deprecate('timesteps', '1.0.0', 'Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + if prev_timestep is not None: + deprecate('prev_timestep', '1.0.0', 'Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + (sigma_t, sigma_s) = (self.sigmas[self.step_index + 1], self.sigmas[self.step_index]) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s, sigma_s) = self._sigma_to_alpha_sigma_t(sigma_s) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s = torch.log(alpha_s) - torch.log(sigma_s) + h = lambda_t - lambda_s + if self.config.algorithm_type == 'dpmsolver++': + x_t = sigma_t / sigma_s * sample - alpha_t * (torch.exp(-h) - 1.0) * model_output + elif self.config.algorithm_type == 'dpmsolver': + x_t = alpha_t / alpha_s * sample - sigma_t * (torch.exp(h) - 1.0) * model_output + elif self.config.algorithm_type == 'sde-dpmsolver++': + assert noise is not None + x_t = sigma_t / sigma_s * torch.exp(-h) * sample + alpha_t * (1 - torch.exp(-2.0 * h)) * model_output + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise + elif self.config.algorithm_type == 'sde-dpmsolver': + assert noise is not None + x_t = alpha_t / alpha_s * sample - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * model_output + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise + return x_t + + def multistep_dpm_solver_second_order_update(self, model_output_list: List[torch.Tensor], *args, sample: torch.Tensor=None, noise: Optional[torch.Tensor]=None, **kwargs) -> torch.Tensor: + timestep_list = args[0] if len(args) > 0 else kwargs.pop('timestep_list', None) + prev_timestep = args[1] if len(args) > 1 else kwargs.pop('prev_timestep', None) + if sample is None: + if len(args) > 2: + sample = args[2] + else: + raise ValueError(' missing `sample` as a required keyward argument') + if timestep_list is not None: + deprecate('timestep_list', '1.0.0', 'Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + if prev_timestep is not None: + deprecate('prev_timestep', '1.0.0', 'Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + (sigma_t, sigma_s0, sigma_s1) = (self.sigmas[self.step_index + 1], self.sigmas[self.step_index], self.sigmas[self.step_index - 1]) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s0, sigma_s0) = self._sigma_to_alpha_sigma_t(sigma_s0) + (alpha_s1, sigma_s1) = self._sigma_to_alpha_sigma_t(sigma_s1) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) + lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) + (m0, m1) = (model_output_list[-1], model_output_list[-2]) + (h, h_0) = (lambda_t - lambda_s0, lambda_s0 - lambda_s1) + r0 = h_0 / h + (D0, D1) = (m0, 1.0 / r0 * (m0 - m1)) + if self.config.algorithm_type == 'dpmsolver++': + if self.config.solver_type == 'midpoint': + x_t = sigma_t / sigma_s0 * sample - alpha_t * (torch.exp(-h) - 1.0) * D0 - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1 + elif self.config.solver_type == 'heun': + x_t = sigma_t / sigma_s0 * sample - alpha_t * (torch.exp(-h) - 1.0) * D0 + alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0) * D1 + elif self.config.algorithm_type == 'dpmsolver': + if self.config.solver_type == 'midpoint': + x_t = alpha_t / alpha_s0 * sample - sigma_t * (torch.exp(h) - 1.0) * D0 - 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1 + elif self.config.solver_type == 'heun': + x_t = alpha_t / alpha_s0 * sample - sigma_t * (torch.exp(h) - 1.0) * D0 - sigma_t * ((torch.exp(h) - 1.0) / h - 1.0) * D1 + elif self.config.algorithm_type == 'sde-dpmsolver++': + assert noise is not None + if self.config.solver_type == 'midpoint': + x_t = sigma_t / sigma_s0 * torch.exp(-h) * sample + alpha_t * (1 - torch.exp(-2.0 * h)) * D0 + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise + elif self.config.solver_type == 'heun': + x_t = sigma_t / sigma_s0 * torch.exp(-h) * sample + alpha_t * (1 - torch.exp(-2.0 * h)) * D0 + alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0) * D1 + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise + elif self.config.algorithm_type == 'sde-dpmsolver': + assert noise is not None + if self.config.solver_type == 'midpoint': + x_t = alpha_t / alpha_s0 * sample - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0 - sigma_t * (torch.exp(h) - 1.0) * D1 + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise + elif self.config.solver_type == 'heun': + x_t = alpha_t / alpha_s0 * sample - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0 - 2.0 * (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise + return x_t + + def multistep_dpm_solver_third_order_update(self, model_output_list: List[torch.Tensor], *args, sample: torch.Tensor=None, **kwargs) -> torch.Tensor: + timestep_list = args[0] if len(args) > 0 else kwargs.pop('timestep_list', None) + prev_timestep = args[1] if len(args) > 1 else kwargs.pop('prev_timestep', None) + if sample is None: + if len(args) > 2: + sample = args[2] + else: + raise ValueError(' missing`sample` as a required keyward argument') + if timestep_list is not None: + deprecate('timestep_list', '1.0.0', 'Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + if prev_timestep is not None: + deprecate('prev_timestep', '1.0.0', 'Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + (sigma_t, sigma_s0, sigma_s1, sigma_s2) = (self.sigmas[self.step_index + 1], self.sigmas[self.step_index], self.sigmas[self.step_index - 1], self.sigmas[self.step_index - 2]) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s0, sigma_s0) = self._sigma_to_alpha_sigma_t(sigma_s0) + (alpha_s1, sigma_s1) = self._sigma_to_alpha_sigma_t(sigma_s1) + (alpha_s2, sigma_s2) = self._sigma_to_alpha_sigma_t(sigma_s2) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) + lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) + lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2) + (m0, m1, m2) = (model_output_list[-1], model_output_list[-2], model_output_list[-3]) + (h, h_0, h_1) = (lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2) + (r0, r1) = (h_0 / h, h_1 / h) + D0 = m0 + (D1_0, D1_1) = (1.0 / r0 * (m0 - m1), 1.0 / r1 * (m1 - m2)) + D1 = D1_0 + r0 / (r0 + r1) * (D1_0 - D1_1) + D2 = 1.0 / (r0 + r1) * (D1_0 - D1_1) + if self.config.algorithm_type == 'dpmsolver++': + x_t = sigma_t / sigma_s0 * sample - alpha_t * (torch.exp(-h) - 1.0) * D0 + alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0) * D1 - alpha_t * ((torch.exp(-h) - 1.0 + h) / h ** 2 - 0.5) * D2 + elif self.config.algorithm_type == 'dpmsolver': + x_t = alpha_t / alpha_s0 * sample - sigma_t * (torch.exp(h) - 1.0) * D0 - sigma_t * ((torch.exp(h) - 1.0) / h - 1.0) * D1 - sigma_t * ((torch.exp(h) - 1.0 - h) / h ** 2 - 0.5) * D2 + return x_t + + def index_for_timestep(self, timestep, schedule_timesteps=None): + if schedule_timesteps is None: + schedule_timesteps = self.timesteps + index_candidates = (schedule_timesteps == timestep).nonzero() + if len(index_candidates) == 0: + step_index = len(self.timesteps) - 1 + elif len(index_candidates) > 1: + step_index = index_candidates[1].item() + else: + step_index = index_candidates[0].item() + return step_index + + def _init_step_index(self, timestep): + if self.begin_index is None: + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + self._step_index = self.index_for_timestep(timestep) + else: + self._step_index = self._begin_index + + def step(self, model_output: torch.Tensor, timestep: Union[int, torch.Tensor], sample: torch.Tensor, generator=None, variance_noise: Optional[torch.Tensor]=None, return_dict: bool=True) -> Union[SchedulerOutput, Tuple]: + if self.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + if self.step_index is None: + self._init_step_index(timestep) + lower_order_final = self.step_index == len(self.timesteps) - 1 and (self.config.euler_at_final or (self.config.lower_order_final and len(self.timesteps) < 15) or self.config.final_sigmas_type == 'zero') + lower_order_second = self.step_index == len(self.timesteps) - 2 and self.config.lower_order_final and (len(self.timesteps) < 15) + model_output = self.convert_model_output(model_output, sample=sample) + for i in range(self.config.solver_order - 1): + self.model_outputs[i] = self.model_outputs[i + 1] + self.model_outputs[-1] = model_output + sample = sample.to(torch.float32) + if self.config.algorithm_type in ['sde-dpmsolver', 'sde-dpmsolver++'] and variance_noise is None: + noise = randn_tensor(model_output.shape, generator=generator, device=model_output.device, dtype=torch.float32) + elif self.config.algorithm_type in ['sde-dpmsolver', 'sde-dpmsolver++']: + noise = variance_noise.to(device=model_output.device, dtype=torch.float32) + else: + noise = None + if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final: + prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise) + elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second: + prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise) + else: + prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample) + if self.lower_order_nums < self.config.solver_order: + self.lower_order_nums += 1 + prev_sample = prev_sample.to(model_output.dtype) + self._step_index += 1 + if not return_dict: + return (prev_sample,) + return SchedulerOutput(prev_sample=prev_sample) + + def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor: + return sample + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) + if original_samples.device.type == 'mps' and torch.is_floating_point(timesteps): + schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) + timesteps = timesteps.to(original_samples.device, dtype=torch.float32) + else: + schedule_timesteps = self.timesteps.to(original_samples.device) + timesteps = timesteps.to(original_samples.device) + if self.begin_index is None: + step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] + elif self.step_index is not None: + step_indices = [self.step_index] * timesteps.shape[0] + else: + step_indices = [self.begin_index] * timesteps.shape[0] + sigma = sigmas[step_indices].flatten() + while len(sigma.shape) < len(original_samples.shape): + sigma = sigma.unsqueeze(-1) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma) + noisy_samples = alpha_t * original_samples + sigma_t * noise + return noisy_samples + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union +import flax +import jax +import jax.numpy as jnp +from ..configuration_utils import ConfigMixin, register_to_config +from .scheduling_utils_flax import CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common + +@flax.struct.dataclass +class DPMSolverMultistepSchedulerState: + common: CommonSchedulerState + alpha_t: jnp.ndarray + sigma_t: jnp.ndarray + lambda_t: jnp.ndarray + init_noise_sigma: jnp.ndarray + timesteps: jnp.ndarray + num_inference_steps: Optional[int] = None + model_outputs: Optional[jnp.ndarray] = None + lower_order_nums: Optional[jnp.int32] = None + prev_timestep: Optional[jnp.int32] = None + cur_sample: Optional[jnp.ndarray] = None + + @classmethod + def create(cls, common: CommonSchedulerState, alpha_t: jnp.ndarray, sigma_t: jnp.ndarray, lambda_t: jnp.ndarray, init_noise_sigma: jnp.ndarray, timesteps: jnp.ndarray): + return cls(common=common, alpha_t=alpha_t, sigma_t=sigma_t, lambda_t=lambda_t, init_noise_sigma=init_noise_sigma, timesteps=timesteps) + +@dataclass +class FlaxDPMSolverMultistepSchedulerOutput(FlaxSchedulerOutput): + state: DPMSolverMultistepSchedulerState + +class FlaxDPMSolverMultistepScheduler(FlaxSchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in FlaxKarrasDiffusionSchedulers] + dtype: jnp.dtype + + @property + def has_state(self): + return True + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.0001, beta_end: float=0.02, beta_schedule: str='linear', trained_betas: Optional[jnp.ndarray]=None, solver_order: int=2, prediction_type: str='epsilon', thresholding: bool=False, dynamic_thresholding_ratio: float=0.995, sample_max_value: float=1.0, algorithm_type: str='dpmsolver++', solver_type: str='midpoint', lower_order_final: bool=True, timestep_spacing: str='linspace', dtype: jnp.dtype=jnp.float32): + self.dtype = dtype + + def create_state(self, common: Optional[CommonSchedulerState]=None) -> DPMSolverMultistepSchedulerState: + if common is None: + common = CommonSchedulerState.create(self) + alpha_t = jnp.sqrt(common.alphas_cumprod) + sigma_t = jnp.sqrt(1 - common.alphas_cumprod) + lambda_t = jnp.log(alpha_t) - jnp.log(sigma_t) + if self.config.algorithm_type not in ['dpmsolver', 'dpmsolver++']: + raise NotImplementedError(f'{self.config.algorithm_type} is not implemented for {self.__class__}') + if self.config.solver_type not in ['midpoint', 'heun']: + raise NotImplementedError(f'{self.config.solver_type} is not implemented for {self.__class__}') + init_noise_sigma = jnp.array(1.0, dtype=self.dtype) + timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1] + return DPMSolverMultistepSchedulerState.create(common=common, alpha_t=alpha_t, sigma_t=sigma_t, lambda_t=lambda_t, init_noise_sigma=init_noise_sigma, timesteps=timesteps) + + def set_timesteps(self, state: DPMSolverMultistepSchedulerState, num_inference_steps: int, shape: Tuple) -> DPMSolverMultistepSchedulerState: + last_timestep = self.config.num_train_timesteps + if self.config.timestep_spacing == 'linspace': + timesteps = jnp.linspace(0, last_timestep - 1, num_inference_steps + 1).round()[::-1][:-1].astype(jnp.int32) + elif self.config.timestep_spacing == 'leading': + step_ratio = last_timestep // (num_inference_steps + 1) + timesteps = (jnp.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(jnp.int32) + timesteps += self.config.steps_offset + elif self.config.timestep_spacing == 'trailing': + step_ratio = self.config.num_train_timesteps / num_inference_steps + timesteps = jnp.arange(last_timestep, 0, -step_ratio).round().copy().astype(jnp.int32) + timesteps -= 1 + else: + raise ValueError(f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.") + model_outputs = jnp.zeros((self.config.solver_order,) + shape, dtype=self.dtype) + lower_order_nums = jnp.int32(0) + prev_timestep = jnp.int32(-1) + cur_sample = jnp.zeros(shape, dtype=self.dtype) + return state.replace(num_inference_steps=num_inference_steps, timesteps=timesteps, model_outputs=model_outputs, lower_order_nums=lower_order_nums, prev_timestep=prev_timestep, cur_sample=cur_sample) + + def convert_model_output(self, state: DPMSolverMultistepSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray) -> jnp.ndarray: + if self.config.algorithm_type == 'dpmsolver++': + if self.config.prediction_type == 'epsilon': + (alpha_t, sigma_t) = (state.alpha_t[timestep], state.sigma_t[timestep]) + x0_pred = (sample - sigma_t * model_output) / alpha_t + elif self.config.prediction_type == 'sample': + x0_pred = model_output + elif self.config.prediction_type == 'v_prediction': + (alpha_t, sigma_t) = (state.alpha_t[timestep], state.sigma_t[timestep]) + x0_pred = alpha_t * sample - sigma_t * model_output + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or `v_prediction` for the FlaxDPMSolverMultistepScheduler.') + if self.config.thresholding: + dynamic_max_val = jnp.percentile(jnp.abs(x0_pred), self.config.dynamic_thresholding_ratio, axis=tuple(range(1, x0_pred.ndim))) + dynamic_max_val = jnp.maximum(dynamic_max_val, self.config.sample_max_value * jnp.ones_like(dynamic_max_val)) + x0_pred = jnp.clip(x0_pred, -dynamic_max_val, dynamic_max_val) / dynamic_max_val + return x0_pred + elif self.config.algorithm_type == 'dpmsolver': + if self.config.prediction_type == 'epsilon': + return model_output + elif self.config.prediction_type == 'sample': + (alpha_t, sigma_t) = (state.alpha_t[timestep], state.sigma_t[timestep]) + epsilon = (sample - alpha_t * model_output) / sigma_t + return epsilon + elif self.config.prediction_type == 'v_prediction': + (alpha_t, sigma_t) = (state.alpha_t[timestep], state.sigma_t[timestep]) + epsilon = alpha_t * model_output + sigma_t * sample + return epsilon + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or `v_prediction` for the FlaxDPMSolverMultistepScheduler.') + + def dpm_solver_first_order_update(self, state: DPMSolverMultistepSchedulerState, model_output: jnp.ndarray, timestep: int, prev_timestep: int, sample: jnp.ndarray) -> jnp.ndarray: + (t, s0) = (prev_timestep, timestep) + m0 = model_output + (lambda_t, lambda_s) = (state.lambda_t[t], state.lambda_t[s0]) + (alpha_t, alpha_s) = (state.alpha_t[t], state.alpha_t[s0]) + (sigma_t, sigma_s) = (state.sigma_t[t], state.sigma_t[s0]) + h = lambda_t - lambda_s + if self.config.algorithm_type == 'dpmsolver++': + x_t = sigma_t / sigma_s * sample - alpha_t * (jnp.exp(-h) - 1.0) * m0 + elif self.config.algorithm_type == 'dpmsolver': + x_t = alpha_t / alpha_s * sample - sigma_t * (jnp.exp(h) - 1.0) * m0 + return x_t + + def multistep_dpm_solver_second_order_update(self, state: DPMSolverMultistepSchedulerState, model_output_list: jnp.ndarray, timestep_list: List[int], prev_timestep: int, sample: jnp.ndarray) -> jnp.ndarray: + (t, s0, s1) = (prev_timestep, timestep_list[-1], timestep_list[-2]) + (m0, m1) = (model_output_list[-1], model_output_list[-2]) + (lambda_t, lambda_s0, lambda_s1) = (state.lambda_t[t], state.lambda_t[s0], state.lambda_t[s1]) + (alpha_t, alpha_s0) = (state.alpha_t[t], state.alpha_t[s0]) + (sigma_t, sigma_s0) = (state.sigma_t[t], state.sigma_t[s0]) + (h, h_0) = (lambda_t - lambda_s0, lambda_s0 - lambda_s1) + r0 = h_0 / h + (D0, D1) = (m0, 1.0 / r0 * (m0 - m1)) + if self.config.algorithm_type == 'dpmsolver++': + if self.config.solver_type == 'midpoint': + x_t = sigma_t / sigma_s0 * sample - alpha_t * (jnp.exp(-h) - 1.0) * D0 - 0.5 * (alpha_t * (jnp.exp(-h) - 1.0)) * D1 + elif self.config.solver_type == 'heun': + x_t = sigma_t / sigma_s0 * sample - alpha_t * (jnp.exp(-h) - 1.0) * D0 + alpha_t * ((jnp.exp(-h) - 1.0) / h + 1.0) * D1 + elif self.config.algorithm_type == 'dpmsolver': + if self.config.solver_type == 'midpoint': + x_t = alpha_t / alpha_s0 * sample - sigma_t * (jnp.exp(h) - 1.0) * D0 - 0.5 * (sigma_t * (jnp.exp(h) - 1.0)) * D1 + elif self.config.solver_type == 'heun': + x_t = alpha_t / alpha_s0 * sample - sigma_t * (jnp.exp(h) - 1.0) * D0 - sigma_t * ((jnp.exp(h) - 1.0) / h - 1.0) * D1 + return x_t + + def multistep_dpm_solver_third_order_update(self, state: DPMSolverMultistepSchedulerState, model_output_list: jnp.ndarray, timestep_list: List[int], prev_timestep: int, sample: jnp.ndarray) -> jnp.ndarray: + (t, s0, s1, s2) = (prev_timestep, timestep_list[-1], timestep_list[-2], timestep_list[-3]) + (m0, m1, m2) = (model_output_list[-1], model_output_list[-2], model_output_list[-3]) + (lambda_t, lambda_s0, lambda_s1, lambda_s2) = (state.lambda_t[t], state.lambda_t[s0], state.lambda_t[s1], state.lambda_t[s2]) + (alpha_t, alpha_s0) = (state.alpha_t[t], state.alpha_t[s0]) + (sigma_t, sigma_s0) = (state.sigma_t[t], state.sigma_t[s0]) + (h, h_0, h_1) = (lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2) + (r0, r1) = (h_0 / h, h_1 / h) + D0 = m0 + (D1_0, D1_1) = (1.0 / r0 * (m0 - m1), 1.0 / r1 * (m1 - m2)) + D1 = D1_0 + r0 / (r0 + r1) * (D1_0 - D1_1) + D2 = 1.0 / (r0 + r1) * (D1_0 - D1_1) + if self.config.algorithm_type == 'dpmsolver++': + x_t = sigma_t / sigma_s0 * sample - alpha_t * (jnp.exp(-h) - 1.0) * D0 + alpha_t * ((jnp.exp(-h) - 1.0) / h + 1.0) * D1 - alpha_t * ((jnp.exp(-h) - 1.0 + h) / h ** 2 - 0.5) * D2 + elif self.config.algorithm_type == 'dpmsolver': + x_t = alpha_t / alpha_s0 * sample - sigma_t * (jnp.exp(h) - 1.0) * D0 - sigma_t * ((jnp.exp(h) - 1.0) / h - 1.0) * D1 - sigma_t * ((jnp.exp(h) - 1.0 - h) / h ** 2 - 0.5) * D2 + return x_t + + def step(self, state: DPMSolverMultistepSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, return_dict: bool=True) -> Union[FlaxDPMSolverMultistepSchedulerOutput, Tuple]: + if state.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + (step_index,) = jnp.where(state.timesteps == timestep, size=1) + step_index = step_index[0] + prev_timestep = jax.lax.select(step_index == len(state.timesteps) - 1, 0, state.timesteps[step_index + 1]) + model_output = self.convert_model_output(state, model_output, timestep, sample) + model_outputs_new = jnp.roll(state.model_outputs, -1, axis=0) + model_outputs_new = model_outputs_new.at[-1].set(model_output) + state = state.replace(model_outputs=model_outputs_new, prev_timestep=prev_timestep, cur_sample=sample) + + def step_1(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray: + return self.dpm_solver_first_order_update(state, state.model_outputs[-1], state.timesteps[step_index], state.prev_timestep, state.cur_sample) + + def step_23(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray: + + def step_2(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray: + timestep_list = jnp.array([state.timesteps[step_index - 1], state.timesteps[step_index]]) + return self.multistep_dpm_solver_second_order_update(state, state.model_outputs, timestep_list, state.prev_timestep, state.cur_sample) + + def step_3(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray: + timestep_list = jnp.array([state.timesteps[step_index - 2], state.timesteps[step_index - 1], state.timesteps[step_index]]) + return self.multistep_dpm_solver_third_order_update(state, state.model_outputs, timestep_list, state.prev_timestep, state.cur_sample) + step_2_output = step_2(state) + step_3_output = step_3(state) + if self.config.solver_order == 2: + return step_2_output + elif self.config.lower_order_final and len(state.timesteps) < 15: + return jax.lax.select(state.lower_order_nums < 2, step_2_output, jax.lax.select(step_index == len(state.timesteps) - 2, step_2_output, step_3_output)) + else: + return jax.lax.select(state.lower_order_nums < 2, step_2_output, step_3_output) + step_1_output = step_1(state) + step_23_output = step_23(state) + if self.config.solver_order == 1: + prev_sample = step_1_output + elif self.config.lower_order_final and len(state.timesteps) < 15: + prev_sample = jax.lax.select(state.lower_order_nums < 1, step_1_output, jax.lax.select(step_index == len(state.timesteps) - 1, step_1_output, step_23_output)) + else: + prev_sample = jax.lax.select(state.lower_order_nums < 1, step_1_output, step_23_output) + state = state.replace(lower_order_nums=jnp.minimum(state.lower_order_nums + 1, self.config.solver_order)) + if not return_dict: + return (prev_sample, state) + return FlaxDPMSolverMultistepSchedulerOutput(prev_sample=prev_sample, state=state) + + def scale_model_input(self, state: DPMSolverMultistepSchedulerState, sample: jnp.ndarray, timestep: Optional[int]=None) -> jnp.ndarray: + return sample + + def add_noise(self, state: DPMSolverMultistepSchedulerState, original_samples: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray) -> jnp.ndarray: + return add_noise_common(state.common, original_samples, noise, timesteps) + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +import math +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import deprecate +from ..utils.torch_utils import randn_tensor +from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in KarrasDiffusionSchedulers] + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.0001, beta_end: float=0.02, beta_schedule: str='linear', trained_betas: Optional[Union[np.ndarray, List[float]]]=None, solver_order: int=2, prediction_type: str='epsilon', thresholding: bool=False, dynamic_thresholding_ratio: float=0.995, sample_max_value: float=1.0, algorithm_type: str='dpmsolver++', solver_type: str='midpoint', lower_order_final: bool=True, euler_at_final: bool=False, use_karras_sigmas: Optional[bool]=False, lambda_min_clipped: float=-float('inf'), variance_type: Optional[str]=None, timestep_spacing: str='linspace', steps_offset: int=0): + if algorithm_type in ['dpmsolver', 'sde-dpmsolver']: + deprecation_message = f'algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead' + deprecate('algorithm_types dpmsolver and sde-dpmsolver', '1.0.0', deprecation_message) + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + self.alpha_t = torch.sqrt(self.alphas_cumprod) + self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) + self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) + self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 + self.init_noise_sigma = 1.0 + if algorithm_type not in ['dpmsolver', 'dpmsolver++', 'sde-dpmsolver', 'sde-dpmsolver++']: + if algorithm_type == 'deis': + self.register_to_config(algorithm_type='dpmsolver++') + else: + raise NotImplementedError(f'{algorithm_type} is not implemented for {self.__class__}') + if solver_type not in ['midpoint', 'heun']: + if solver_type in ['logrho', 'bh1', 'bh2']: + self.register_to_config(solver_type='midpoint') + else: + raise NotImplementedError(f'{solver_type} is not implemented for {self.__class__}') + self.num_inference_steps = None + timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32).copy() + self.timesteps = torch.from_numpy(timesteps) + self.model_outputs = [None] * solver_order + self.lower_order_nums = 0 + self._step_index = None + self.sigmas = self.sigmas.to('cpu') + self.use_karras_sigmas = use_karras_sigmas + + @property + def step_index(self): + return self._step_index + + def set_timesteps(self, num_inference_steps: int=None, device: Union[str, torch.device]=None): + clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped).item() + self.noisiest_timestep = self.config.num_train_timesteps - 1 - clipped_idx + if self.config.timestep_spacing == 'linspace': + timesteps = np.linspace(0, self.noisiest_timestep, num_inference_steps + 1).round()[:-1].copy().astype(np.int64) + elif self.config.timestep_spacing == 'leading': + step_ratio = (self.noisiest_timestep + 1) // (num_inference_steps + 1) + timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[:-1].copy().astype(np.int64) + timesteps += self.config.steps_offset + elif self.config.timestep_spacing == 'trailing': + step_ratio = self.config.num_train_timesteps / num_inference_steps + timesteps = np.arange(self.noisiest_timestep + 1, 0, -step_ratio).round()[::-1].copy().astype(np.int64) + timesteps -= 1 + else: + raise ValueError(f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.") + sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) + log_sigmas = np.log(sigmas) + if self.config.use_karras_sigmas: + sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) + timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round() + timesteps = timesteps.copy().astype(np.int64) + sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32) + else: + sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) + sigma_max = ((1 - self.alphas_cumprod[self.noisiest_timestep]) / self.alphas_cumprod[self.noisiest_timestep]) ** 0.5 + sigmas = np.concatenate([sigmas, [sigma_max]]).astype(np.float32) + self.sigmas = torch.from_numpy(sigmas) + (_, unique_indices) = np.unique(timesteps, return_index=True) + timesteps = timesteps[np.sort(unique_indices)] + self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64) + self.num_inference_steps = len(timesteps) + self.model_outputs = [None] * self.config.solver_order + self.lower_order_nums = 0 + self._step_index = None + self.sigmas = self.sigmas.to('cpu') + + def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: + dtype = sample.dtype + (batch_size, channels, *remaining_dims) = sample.shape + if dtype not in (torch.float32, torch.float64): + sample = sample.float() + sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) + abs_sample = sample.abs() + s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) + s = torch.clamp(s, min=1, max=self.config.sample_max_value) + s = s.unsqueeze(1) + sample = torch.clamp(sample, -s, s) / s + sample = sample.reshape(batch_size, channels, *remaining_dims) + sample = sample.to(dtype) + return sample + + def _sigma_to_t(self, sigma, log_sigmas): + log_sigma = np.log(np.maximum(sigma, 1e-10)) + dists = log_sigma - log_sigmas[:, np.newaxis] + low_idx = np.cumsum(dists >= 0, axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) + high_idx = low_idx + 1 + low = log_sigmas[low_idx] + high = log_sigmas[high_idx] + w = (low - log_sigma) / (low - high) + w = np.clip(w, 0, 1) + t = (1 - w) * low_idx + w * high_idx + t = t.reshape(sigma.shape) + return t + + def _sigma_to_alpha_sigma_t(self, sigma): + alpha_t = 1 / (sigma ** 2 + 1) ** 0.5 + sigma_t = sigma * alpha_t + return (alpha_t, sigma_t) + + def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor: + if hasattr(self.config, 'sigma_min'): + sigma_min = self.config.sigma_min + else: + sigma_min = None + if hasattr(self.config, 'sigma_max'): + sigma_max = self.config.sigma_max + else: + sigma_max = None + sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() + sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() + rho = 7.0 + ramp = np.linspace(0, 1, num_inference_steps) + min_inv_rho = sigma_min ** (1 / rho) + max_inv_rho = sigma_max ** (1 / rho) + sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho + return sigmas + + def convert_model_output(self, model_output: torch.Tensor, *args, sample: torch.Tensor=None, **kwargs) -> torch.Tensor: + timestep = args[0] if len(args) > 0 else kwargs.pop('timestep', None) + if sample is None: + if len(args) > 1: + sample = args[1] + else: + raise ValueError('missing `sample` as a required keyward argument') + if timestep is not None: + deprecate('timesteps', '1.0.0', 'Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + if self.config.algorithm_type in ['dpmsolver++', 'sde-dpmsolver++']: + if self.config.prediction_type == 'epsilon': + if self.config.variance_type in ['learned', 'learned_range']: + model_output = model_output[:, :3] + sigma = self.sigmas[self.step_index] + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma) + x0_pred = (sample - sigma_t * model_output) / alpha_t + elif self.config.prediction_type == 'sample': + x0_pred = model_output + elif self.config.prediction_type == 'v_prediction': + sigma = self.sigmas[self.step_index] + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma) + x0_pred = alpha_t * sample - sigma_t * model_output + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or `v_prediction` for the DPMSolverMultistepScheduler.') + if self.config.thresholding: + x0_pred = self._threshold_sample(x0_pred) + return x0_pred + elif self.config.algorithm_type in ['dpmsolver', 'sde-dpmsolver']: + if self.config.prediction_type == 'epsilon': + if self.config.variance_type in ['learned', 'learned_range']: + epsilon = model_output[:, :3] + else: + epsilon = model_output + elif self.config.prediction_type == 'sample': + sigma = self.sigmas[self.step_index] + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma) + epsilon = (sample - alpha_t * model_output) / sigma_t + elif self.config.prediction_type == 'v_prediction': + sigma = self.sigmas[self.step_index] + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma) + epsilon = alpha_t * model_output + sigma_t * sample + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or `v_prediction` for the DPMSolverMultistepScheduler.') + if self.config.thresholding: + sigma = self.sigmas[self.step_index] + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma) + x0_pred = (sample - sigma_t * epsilon) / alpha_t + x0_pred = self._threshold_sample(x0_pred) + epsilon = (sample - alpha_t * x0_pred) / sigma_t + return epsilon + + def dpm_solver_first_order_update(self, model_output: torch.Tensor, *args, sample: torch.Tensor=None, noise: Optional[torch.Tensor]=None, **kwargs) -> torch.Tensor: + timestep = args[0] if len(args) > 0 else kwargs.pop('timestep', None) + prev_timestep = args[1] if len(args) > 1 else kwargs.pop('prev_timestep', None) + if sample is None: + if len(args) > 2: + sample = args[2] + else: + raise ValueError(' missing `sample` as a required keyward argument') + if timestep is not None: + deprecate('timesteps', '1.0.0', 'Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + if prev_timestep is not None: + deprecate('prev_timestep', '1.0.0', 'Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + (sigma_t, sigma_s) = (self.sigmas[self.step_index + 1], self.sigmas[self.step_index]) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s, sigma_s) = self._sigma_to_alpha_sigma_t(sigma_s) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s = torch.log(alpha_s) - torch.log(sigma_s) + h = lambda_t - lambda_s + if self.config.algorithm_type == 'dpmsolver++': + x_t = sigma_t / sigma_s * sample - alpha_t * (torch.exp(-h) - 1.0) * model_output + elif self.config.algorithm_type == 'dpmsolver': + x_t = alpha_t / alpha_s * sample - sigma_t * (torch.exp(h) - 1.0) * model_output + elif self.config.algorithm_type == 'sde-dpmsolver++': + assert noise is not None + x_t = sigma_t / sigma_s * torch.exp(-h) * sample + alpha_t * (1 - torch.exp(-2.0 * h)) * model_output + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise + elif self.config.algorithm_type == 'sde-dpmsolver': + assert noise is not None + x_t = alpha_t / alpha_s * sample - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * model_output + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise + return x_t + + def multistep_dpm_solver_second_order_update(self, model_output_list: List[torch.Tensor], *args, sample: torch.Tensor=None, noise: Optional[torch.Tensor]=None, **kwargs) -> torch.Tensor: + timestep_list = args[0] if len(args) > 0 else kwargs.pop('timestep_list', None) + prev_timestep = args[1] if len(args) > 1 else kwargs.pop('prev_timestep', None) + if sample is None: + if len(args) > 2: + sample = args[2] + else: + raise ValueError(' missing `sample` as a required keyward argument') + if timestep_list is not None: + deprecate('timestep_list', '1.0.0', 'Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + if prev_timestep is not None: + deprecate('prev_timestep', '1.0.0', 'Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + (sigma_t, sigma_s0, sigma_s1) = (self.sigmas[self.step_index + 1], self.sigmas[self.step_index], self.sigmas[self.step_index - 1]) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s0, sigma_s0) = self._sigma_to_alpha_sigma_t(sigma_s0) + (alpha_s1, sigma_s1) = self._sigma_to_alpha_sigma_t(sigma_s1) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) + lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) + (m0, m1) = (model_output_list[-1], model_output_list[-2]) + (h, h_0) = (lambda_t - lambda_s0, lambda_s0 - lambda_s1) + r0 = h_0 / h + (D0, D1) = (m0, 1.0 / r0 * (m0 - m1)) + if self.config.algorithm_type == 'dpmsolver++': + if self.config.solver_type == 'midpoint': + x_t = sigma_t / sigma_s0 * sample - alpha_t * (torch.exp(-h) - 1.0) * D0 - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1 + elif self.config.solver_type == 'heun': + x_t = sigma_t / sigma_s0 * sample - alpha_t * (torch.exp(-h) - 1.0) * D0 + alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0) * D1 + elif self.config.algorithm_type == 'dpmsolver': + if self.config.solver_type == 'midpoint': + x_t = alpha_t / alpha_s0 * sample - sigma_t * (torch.exp(h) - 1.0) * D0 - 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1 + elif self.config.solver_type == 'heun': + x_t = alpha_t / alpha_s0 * sample - sigma_t * (torch.exp(h) - 1.0) * D0 - sigma_t * ((torch.exp(h) - 1.0) / h - 1.0) * D1 + elif self.config.algorithm_type == 'sde-dpmsolver++': + assert noise is not None + if self.config.solver_type == 'midpoint': + x_t = sigma_t / sigma_s0 * torch.exp(-h) * sample + alpha_t * (1 - torch.exp(-2.0 * h)) * D0 + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise + elif self.config.solver_type == 'heun': + x_t = sigma_t / sigma_s0 * torch.exp(-h) * sample + alpha_t * (1 - torch.exp(-2.0 * h)) * D0 + alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0) * D1 + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise + elif self.config.algorithm_type == 'sde-dpmsolver': + assert noise is not None + if self.config.solver_type == 'midpoint': + x_t = alpha_t / alpha_s0 * sample - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0 - sigma_t * (torch.exp(h) - 1.0) * D1 + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise + elif self.config.solver_type == 'heun': + x_t = alpha_t / alpha_s0 * sample - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0 - 2.0 * (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise + return x_t + + def multistep_dpm_solver_third_order_update(self, model_output_list: List[torch.Tensor], *args, sample: torch.Tensor=None, **kwargs) -> torch.Tensor: + timestep_list = args[0] if len(args) > 0 else kwargs.pop('timestep_list', None) + prev_timestep = args[1] if len(args) > 1 else kwargs.pop('prev_timestep', None) + if sample is None: + if len(args) > 2: + sample = args[2] + else: + raise ValueError(' missing`sample` as a required keyward argument') + if timestep_list is not None: + deprecate('timestep_list', '1.0.0', 'Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + if prev_timestep is not None: + deprecate('prev_timestep', '1.0.0', 'Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + (sigma_t, sigma_s0, sigma_s1, sigma_s2) = (self.sigmas[self.step_index + 1], self.sigmas[self.step_index], self.sigmas[self.step_index - 1], self.sigmas[self.step_index - 2]) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s0, sigma_s0) = self._sigma_to_alpha_sigma_t(sigma_s0) + (alpha_s1, sigma_s1) = self._sigma_to_alpha_sigma_t(sigma_s1) + (alpha_s2, sigma_s2) = self._sigma_to_alpha_sigma_t(sigma_s2) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) + lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) + lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2) + (m0, m1, m2) = (model_output_list[-1], model_output_list[-2], model_output_list[-3]) + (h, h_0, h_1) = (lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2) + (r0, r1) = (h_0 / h, h_1 / h) + D0 = m0 + (D1_0, D1_1) = (1.0 / r0 * (m0 - m1), 1.0 / r1 * (m1 - m2)) + D1 = D1_0 + r0 / (r0 + r1) * (D1_0 - D1_1) + D2 = 1.0 / (r0 + r1) * (D1_0 - D1_1) + if self.config.algorithm_type == 'dpmsolver++': + x_t = sigma_t / sigma_s0 * sample - alpha_t * (torch.exp(-h) - 1.0) * D0 + alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0) * D1 - alpha_t * ((torch.exp(-h) - 1.0 + h) / h ** 2 - 0.5) * D2 + elif self.config.algorithm_type == 'dpmsolver': + x_t = alpha_t / alpha_s0 * sample - sigma_t * (torch.exp(h) - 1.0) * D0 - sigma_t * ((torch.exp(h) - 1.0) / h - 1.0) * D1 - sigma_t * ((torch.exp(h) - 1.0 - h) / h ** 2 - 0.5) * D2 + return x_t + + def _init_step_index(self, timestep): + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + index_candidates = (self.timesteps == timestep).nonzero() + if len(index_candidates) == 0: + step_index = len(self.timesteps) - 1 + elif len(index_candidates) > 1: + step_index = index_candidates[1].item() + else: + step_index = index_candidates[0].item() + self._step_index = step_index + + def step(self, model_output: torch.Tensor, timestep: Union[int, torch.Tensor], sample: torch.Tensor, generator=None, variance_noise: Optional[torch.Tensor]=None, return_dict: bool=True) -> Union[SchedulerOutput, Tuple]: + if self.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + if self.step_index is None: + self._init_step_index(timestep) + lower_order_final = self.step_index == len(self.timesteps) - 1 and (self.config.euler_at_final or (self.config.lower_order_final and len(self.timesteps) < 15)) + lower_order_second = self.step_index == len(self.timesteps) - 2 and self.config.lower_order_final and (len(self.timesteps) < 15) + model_output = self.convert_model_output(model_output, sample=sample) + for i in range(self.config.solver_order - 1): + self.model_outputs[i] = self.model_outputs[i + 1] + self.model_outputs[-1] = model_output + if self.config.algorithm_type in ['sde-dpmsolver', 'sde-dpmsolver++'] and variance_noise is None: + noise = randn_tensor(model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype) + elif self.config.algorithm_type in ['sde-dpmsolver', 'sde-dpmsolver++']: + noise = variance_noise + else: + noise = None + if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final: + prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise) + elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second: + prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise) + else: + prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample) + if self.lower_order_nums < self.config.solver_order: + self.lower_order_nums += 1 + self._step_index += 1 + if not return_dict: + return (prev_sample,) + return SchedulerOutput(prev_sample=prev_sample) + + def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor: + return sample + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) + if original_samples.device.type == 'mps' and torch.is_floating_point(timesteps): + schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) + timesteps = timesteps.to(original_samples.device, dtype=torch.float32) + else: + schedule_timesteps = self.timesteps.to(original_samples.device) + timesteps = timesteps.to(original_samples.device) + step_indices = [] + for timestep in timesteps: + index_candidates = (schedule_timesteps == timestep).nonzero() + if len(index_candidates) == 0: + step_index = len(schedule_timesteps) - 1 + elif len(index_candidates) > 1: + step_index = index_candidates[1].item() + else: + step_index = index_candidates[0].item() + step_indices.append(step_index) + sigma = sigmas[step_indices].flatten() + while len(sigma.shape) < len(original_samples.shape): + sigma = sigma.unsqueeze(-1) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma) + noisy_samples = alpha_t * original_samples + sigma_t * noise + return noisy_samples + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_dpmsolver_sde.py +import math +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +import torchsde +from ..configuration_utils import ConfigMixin, register_to_config +from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput + +class BatchedBrownianTree: + + def __init__(self, x, t0, t1, seed=None, **kwargs): + (t0, t1, self.sign) = self.sort(t0, t1) + w0 = kwargs.get('w0', torch.zeros_like(x)) + if seed is None: + seed = torch.randint(0, 2 ** 63 - 1, []).item() + self.batched = True + try: + assert len(seed) == x.shape[0] + w0 = w0[0] + except TypeError: + seed = [seed] + self.batched = False + self.trees = [torchsde.BrownianInterval(t0=t0, t1=t1, size=w0.shape, dtype=w0.dtype, device=w0.device, entropy=s, tol=1e-06, pool_size=24, halfway_tree=True) for s in seed] + + @staticmethod + def sort(a, b): + return (a, b, 1) if a < b else (b, a, -1) + + def __call__(self, t0, t1): + (t0, t1, sign) = self.sort(t0, t1) + w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign) + return w if self.batched else w[0] + +class BrownianTreeNoiseSampler: + + def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x): + self.transform = transform + (t0, t1) = (self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))) + self.tree = BatchedBrownianTree(x, t0, t1, seed) + + def __call__(self, sigma, sigma_next): + (t0, t1) = (self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))) + return self.tree(t0, t1) / (t1 - t0).abs().sqrt() + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in KarrasDiffusionSchedulers] + order = 2 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.00085, beta_end: float=0.012, beta_schedule: str='linear', trained_betas: Optional[Union[np.ndarray, List[float]]]=None, prediction_type: str='epsilon', use_karras_sigmas: Optional[bool]=False, noise_sampler_seed: Optional[int]=None, timestep_spacing: str='linspace', steps_offset: int=0): + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + self.set_timesteps(num_train_timesteps, None, num_train_timesteps) + self.use_karras_sigmas = use_karras_sigmas + self.noise_sampler = None + self.noise_sampler_seed = noise_sampler_seed + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + def index_for_timestep(self, timestep, schedule_timesteps=None): + if schedule_timesteps is None: + schedule_timesteps = self.timesteps + indices = (schedule_timesteps == timestep).nonzero() + pos = 1 if len(indices) > 1 else 0 + return indices[pos].item() + + def _init_step_index(self, timestep): + if self.begin_index is None: + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + self._step_index = self.index_for_timestep(timestep) + else: + self._step_index = self._begin_index + + @property + def init_noise_sigma(self): + if self.config.timestep_spacing in ['linspace', 'trailing']: + return self.sigmas.max() + return (self.sigmas.max() ** 2 + 1) ** 0.5 + + @property + def step_index(self): + return self._step_index + + @property + def begin_index(self): + return self._begin_index + + def set_begin_index(self, begin_index: int=0): + self._begin_index = begin_index + + def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: + if self.step_index is None: + self._init_step_index(timestep) + sigma = self.sigmas[self.step_index] + sigma_input = sigma if self.state_in_first_order else self.mid_point_sigma + sample = sample / (sigma_input ** 2 + 1) ** 0.5 + return sample + + def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device]=None, num_train_timesteps: Optional[int]=None): + self.num_inference_steps = num_inference_steps + num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps + if self.config.timestep_spacing == 'linspace': + timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy() + elif self.config.timestep_spacing == 'leading': + step_ratio = num_train_timesteps // self.num_inference_steps + timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(float) + timesteps += self.config.steps_offset + elif self.config.timestep_spacing == 'trailing': + step_ratio = num_train_timesteps / self.num_inference_steps + timesteps = np.arange(num_train_timesteps, 0, -step_ratio).round().copy().astype(float) + timesteps -= 1 + else: + raise ValueError(f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.") + sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) + log_sigmas = np.log(sigmas) + sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) + if self.config.use_karras_sigmas: + sigmas = self._convert_to_karras(in_sigmas=sigmas) + timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) + second_order_timesteps = self._second_order_timesteps(sigmas, log_sigmas) + sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) + sigmas = torch.from_numpy(sigmas).to(device=device) + self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]]) + timesteps = torch.from_numpy(timesteps) + second_order_timesteps = torch.from_numpy(second_order_timesteps) + timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)]) + timesteps[1::2] = second_order_timesteps + if str(device).startswith('mps'): + self.timesteps = timesteps.to(device, dtype=torch.float32) + else: + self.timesteps = timesteps.to(device=device) + self.sample = None + self.mid_point_sigma = None + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + self.noise_sampler = None + + def _second_order_timesteps(self, sigmas, log_sigmas): + + def sigma_fn(_t): + return np.exp(-_t) + + def t_fn(_sigma): + return -np.log(_sigma) + midpoint_ratio = 0.5 + t = t_fn(sigmas) + delta_time = np.diff(t) + t_proposed = t[:-1] + delta_time * midpoint_ratio + sig_proposed = sigma_fn(t_proposed) + timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sig_proposed]) + return timesteps + + def _sigma_to_t(self, sigma, log_sigmas): + log_sigma = np.log(np.maximum(sigma, 1e-10)) + dists = log_sigma - log_sigmas[:, np.newaxis] + low_idx = np.cumsum(dists >= 0, axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) + high_idx = low_idx + 1 + low = log_sigmas[low_idx] + high = log_sigmas[high_idx] + w = (low - log_sigma) / (low - high) + w = np.clip(w, 0, 1) + t = (1 - w) * low_idx + w * high_idx + t = t.reshape(sigma.shape) + return t + + def _convert_to_karras(self, in_sigmas: torch.Tensor) -> torch.Tensor: + sigma_min: float = in_sigmas[-1].item() + sigma_max: float = in_sigmas[0].item() + rho = 7.0 + ramp = np.linspace(0, 1, self.num_inference_steps) + min_inv_rho = sigma_min ** (1 / rho) + max_inv_rho = sigma_max ** (1 / rho) + sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho + return sigmas + + @property + def state_in_first_order(self): + return self.sample is None + + def step(self, model_output: Union[torch.Tensor, np.ndarray], timestep: Union[float, torch.Tensor], sample: Union[torch.Tensor, np.ndarray], return_dict: bool=True, s_noise: float=1.0) -> Union[SchedulerOutput, Tuple]: + if self.step_index is None: + self._init_step_index(timestep) + if self.noise_sampler is None: + (min_sigma, max_sigma) = (self.sigmas[self.sigmas > 0].min(), self.sigmas.max()) + self.noise_sampler = BrownianTreeNoiseSampler(sample, min_sigma, max_sigma, self.noise_sampler_seed) + + def sigma_fn(_t: torch.Tensor) -> torch.Tensor: + return _t.neg().exp() + + def t_fn(_sigma: torch.Tensor) -> torch.Tensor: + return _sigma.log().neg() + if self.state_in_first_order: + sigma = self.sigmas[self.step_index] + sigma_next = self.sigmas[self.step_index + 1] + else: + sigma = self.sigmas[self.step_index - 1] + sigma_next = self.sigmas[self.step_index] + midpoint_ratio = 0.5 + (t, t_next) = (t_fn(sigma), t_fn(sigma_next)) + delta_time = t_next - t + t_proposed = t + delta_time * midpoint_ratio + if self.config.prediction_type == 'epsilon': + sigma_input = sigma if self.state_in_first_order else sigma_fn(t_proposed) + pred_original_sample = sample - sigma_input * model_output + elif self.config.prediction_type == 'v_prediction': + sigma_input = sigma if self.state_in_first_order else sigma_fn(t_proposed) + pred_original_sample = model_output * (-sigma_input / (sigma_input ** 2 + 1) ** 0.5) + sample / (sigma_input ** 2 + 1) + elif self.config.prediction_type == 'sample': + raise NotImplementedError('prediction_type not implemented yet: sample') + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`') + if sigma_next == 0: + derivative = (sample - pred_original_sample) / sigma + dt = sigma_next - sigma + prev_sample = sample + derivative * dt + else: + if self.state_in_first_order: + t_next = t_proposed + else: + sample = self.sample + sigma_from = sigma_fn(t) + sigma_to = sigma_fn(t_next) + sigma_up = min(sigma_to, (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5) + sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5 + ancestral_t = t_fn(sigma_down) + prev_sample = sigma_fn(ancestral_t) / sigma_fn(t) * sample - (t - ancestral_t).expm1() * pred_original_sample + prev_sample = prev_sample + self.noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * sigma_up + if self.state_in_first_order: + self.sample = sample + self.mid_point_sigma = sigma_fn(t_next) + else: + self.sample = None + self.mid_point_sigma = None + self._step_index += 1 + if not return_dict: + return (prev_sample,) + return SchedulerOutput(prev_sample=prev_sample) + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor: + sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) + if original_samples.device.type == 'mps' and torch.is_floating_point(timesteps): + schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) + timesteps = timesteps.to(original_samples.device, dtype=torch.float32) + else: + schedule_timesteps = self.timesteps.to(original_samples.device) + timesteps = timesteps.to(original_samples.device) + if self.begin_index is None: + step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] + elif self.step_index is not None: + step_indices = [self.step_index] * timesteps.shape[0] + else: + step_indices = [self.begin_index] * timesteps.shape[0] + sigma = sigmas[step_indices].flatten() + while len(sigma.shape) < len(original_samples.shape): + sigma = sigma.unsqueeze(-1) + noisy_samples = original_samples + noise * sigma + return noisy_samples + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py +import math +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import deprecate, logging +from ..utils.torch_utils import randn_tensor +from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput +logger = logging.get_logger(__name__) + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in KarrasDiffusionSchedulers] + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.0001, beta_end: float=0.02, beta_schedule: str='linear', trained_betas: Optional[np.ndarray]=None, solver_order: int=2, prediction_type: str='epsilon', thresholding: bool=False, dynamic_thresholding_ratio: float=0.995, sample_max_value: float=1.0, algorithm_type: str='dpmsolver++', solver_type: str='midpoint', lower_order_final: bool=False, use_karras_sigmas: Optional[bool]=False, final_sigmas_type: Optional[str]='zero', lambda_min_clipped: float=-float('inf'), variance_type: Optional[str]=None): + if algorithm_type == 'dpmsolver': + deprecation_message = 'algorithm_type `dpmsolver` is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead' + deprecate('algorithm_types=dpmsolver', '1.0.0', deprecation_message) + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + self.alpha_t = torch.sqrt(self.alphas_cumprod) + self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) + self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) + self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 + self.init_noise_sigma = 1.0 + if algorithm_type not in ['dpmsolver', 'dpmsolver++', 'sde-dpmsolver++']: + if algorithm_type == 'deis': + self.register_to_config(algorithm_type='dpmsolver++') + else: + raise NotImplementedError(f'{algorithm_type} is not implemented for {self.__class__}') + if solver_type not in ['midpoint', 'heun']: + if solver_type in ['logrho', 'bh1', 'bh2']: + self.register_to_config(solver_type='midpoint') + else: + raise NotImplementedError(f'{solver_type} is not implemented for {self.__class__}') + if algorithm_type not in ['dpmsolver++', 'sde-dpmsolver++'] and final_sigmas_type == 'zero': + raise ValueError(f'`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please chooose `sigma_min` instead.') + self.num_inference_steps = None + timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy() + self.timesteps = torch.from_numpy(timesteps) + self.model_outputs = [None] * solver_order + self.sample = None + self.order_list = self.get_order_list(num_train_timesteps) + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + def get_order_list(self, num_inference_steps: int) -> List[int]: + steps = num_inference_steps + order = self.config.solver_order + if order > 3: + raise ValueError('Order > 3 is not supported by this scheduler') + if self.config.lower_order_final: + if order == 3: + if steps % 3 == 0: + orders = [1, 2, 3] * (steps // 3 - 1) + [1, 2] + [1] + elif steps % 3 == 1: + orders = [1, 2, 3] * (steps // 3) + [1] + else: + orders = [1, 2, 3] * (steps // 3) + [1, 2] + elif order == 2: + if steps % 2 == 0: + orders = [1, 2] * (steps // 2 - 1) + [1, 1] + else: + orders = [1, 2] * (steps // 2) + [1] + elif order == 1: + orders = [1] * steps + elif order == 3: + orders = [1, 2, 3] * (steps // 3) + elif order == 2: + orders = [1, 2] * (steps // 2) + elif order == 1: + orders = [1] * steps + return orders + + @property + def step_index(self): + return self._step_index + + @property + def begin_index(self): + return self._begin_index + + def set_begin_index(self, begin_index: int=0): + self._begin_index = begin_index + + def set_timesteps(self, num_inference_steps: int=None, device: Union[str, torch.device]=None, timesteps: Optional[List[int]]=None): + if num_inference_steps is None and timesteps is None: + raise ValueError('Must pass exactly one of `num_inference_steps` or `timesteps`.') + if num_inference_steps is not None and timesteps is not None: + raise ValueError('Must pass exactly one of `num_inference_steps` or `timesteps`.') + if timesteps is not None and self.config.use_karras_sigmas: + raise ValueError('Cannot use `timesteps` when `config.use_karras_sigmas=True`.') + num_inference_steps = num_inference_steps or len(timesteps) + self.num_inference_steps = num_inference_steps + if timesteps is not None: + timesteps = np.array(timesteps).astype(np.int64) + else: + clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped) + timesteps = np.linspace(0, self.config.num_train_timesteps - 1 - clipped_idx, num_inference_steps + 1).round()[::-1][:-1].copy().astype(np.int64) + sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) + if self.config.use_karras_sigmas: + log_sigmas = np.log(sigmas) + sigmas = np.flip(sigmas).copy() + sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) + timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round() + else: + sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) + if self.config.final_sigmas_type == 'sigma_min': + sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5 + elif self.config.final_sigmas_type == 'zero': + sigma_last = 0 + else: + raise ValueError(f' `final_sigmas_type` must be one of `sigma_min` or `zero`, but got {self.config.final_sigmas_type}') + sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32) + self.sigmas = torch.from_numpy(sigmas).to(device=device) + self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64) + self.model_outputs = [None] * self.config.solver_order + self.sample = None + if not self.config.lower_order_final and num_inference_steps % self.config.solver_order != 0: + logger.warning('Changing scheduler {self.config} to have `lower_order_final` set to True to handle uneven amount of inference steps. Please make sure to always use an even number of `num_inference steps when using `lower_order_final=False`.') + self.register_to_config(lower_order_final=True) + if not self.config.lower_order_final and self.config.final_sigmas_type == 'zero': + logger.warning(" `last_sigmas_type='zero'` is not supported for `lower_order_final=False`. Changing scheduler {self.config} to have `lower_order_final` set to True.") + self.register_to_config(lower_order_final=True) + self.order_list = self.get_order_list(num_inference_steps) + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: + dtype = sample.dtype + (batch_size, channels, *remaining_dims) = sample.shape + if dtype not in (torch.float32, torch.float64): + sample = sample.float() + sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) + abs_sample = sample.abs() + s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) + s = torch.clamp(s, min=1, max=self.config.sample_max_value) + s = s.unsqueeze(1) + sample = torch.clamp(sample, -s, s) / s + sample = sample.reshape(batch_size, channels, *remaining_dims) + sample = sample.to(dtype) + return sample + + def _sigma_to_t(self, sigma, log_sigmas): + log_sigma = np.log(np.maximum(sigma, 1e-10)) + dists = log_sigma - log_sigmas[:, np.newaxis] + low_idx = np.cumsum(dists >= 0, axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) + high_idx = low_idx + 1 + low = log_sigmas[low_idx] + high = log_sigmas[high_idx] + w = (low - log_sigma) / (low - high) + w = np.clip(w, 0, 1) + t = (1 - w) * low_idx + w * high_idx + t = t.reshape(sigma.shape) + return t + + def _sigma_to_alpha_sigma_t(self, sigma): + alpha_t = 1 / (sigma ** 2 + 1) ** 0.5 + sigma_t = sigma * alpha_t + return (alpha_t, sigma_t) + + def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor: + if hasattr(self.config, 'sigma_min'): + sigma_min = self.config.sigma_min + else: + sigma_min = None + if hasattr(self.config, 'sigma_max'): + sigma_max = self.config.sigma_max + else: + sigma_max = None + sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() + sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() + rho = 7.0 + ramp = np.linspace(0, 1, num_inference_steps) + min_inv_rho = sigma_min ** (1 / rho) + max_inv_rho = sigma_max ** (1 / rho) + sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho + return sigmas + + def convert_model_output(self, model_output: torch.Tensor, *args, sample: torch.Tensor=None, **kwargs) -> torch.Tensor: + timestep = args[0] if len(args) > 0 else kwargs.pop('timestep', None) + if sample is None: + if len(args) > 1: + sample = args[1] + else: + raise ValueError('missing `sample` as a required keyward argument') + if timestep is not None: + deprecate('timesteps', '1.0.0', 'Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + if self.config.algorithm_type in ['dpmsolver++', 'sde-dpmsolver++']: + if self.config.prediction_type == 'epsilon': + if self.config.variance_type in ['learned', 'learned_range']: + model_output = model_output[:, :3] + sigma = self.sigmas[self.step_index] + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma) + x0_pred = (sample - sigma_t * model_output) / alpha_t + elif self.config.prediction_type == 'sample': + x0_pred = model_output + elif self.config.prediction_type == 'v_prediction': + sigma = self.sigmas[self.step_index] + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma) + x0_pred = alpha_t * sample - sigma_t * model_output + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or `v_prediction` for the DPMSolverSinglestepScheduler.') + if self.config.thresholding: + x0_pred = self._threshold_sample(x0_pred) + return x0_pred + elif self.config.algorithm_type == 'dpmsolver': + if self.config.prediction_type == 'epsilon': + if self.config.variance_type in ['learned', 'learned_range']: + epsilon = model_output[:, :3] + else: + epsilon = model_output + elif self.config.prediction_type == 'sample': + sigma = self.sigmas[self.step_index] + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma) + epsilon = (sample - alpha_t * model_output) / sigma_t + elif self.config.prediction_type == 'v_prediction': + sigma = self.sigmas[self.step_index] + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma) + epsilon = alpha_t * model_output + sigma_t * sample + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or `v_prediction` for the DPMSolverSinglestepScheduler.') + if self.config.thresholding: + (alpha_t, sigma_t) = (self.alpha_t[timestep], self.sigma_t[timestep]) + x0_pred = (sample - sigma_t * epsilon) / alpha_t + x0_pred = self._threshold_sample(x0_pred) + epsilon = (sample - alpha_t * x0_pred) / sigma_t + return epsilon + + def dpm_solver_first_order_update(self, model_output: torch.Tensor, *args, sample: torch.Tensor=None, noise: Optional[torch.Tensor]=None, **kwargs) -> torch.Tensor: + timestep = args[0] if len(args) > 0 else kwargs.pop('timestep', None) + prev_timestep = args[1] if len(args) > 1 else kwargs.pop('prev_timestep', None) + if sample is None: + if len(args) > 2: + sample = args[2] + else: + raise ValueError(' missing `sample` as a required keyward argument') + if timestep is not None: + deprecate('timesteps', '1.0.0', 'Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + if prev_timestep is not None: + deprecate('prev_timestep', '1.0.0', 'Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + (sigma_t, sigma_s) = (self.sigmas[self.step_index + 1], self.sigmas[self.step_index]) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s, sigma_s) = self._sigma_to_alpha_sigma_t(sigma_s) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s = torch.log(alpha_s) - torch.log(sigma_s) + h = lambda_t - lambda_s + if self.config.algorithm_type == 'dpmsolver++': + x_t = sigma_t / sigma_s * sample - alpha_t * (torch.exp(-h) - 1.0) * model_output + elif self.config.algorithm_type == 'dpmsolver': + x_t = alpha_t / alpha_s * sample - sigma_t * (torch.exp(h) - 1.0) * model_output + elif self.config.algorithm_type == 'sde-dpmsolver++': + assert noise is not None + x_t = sigma_t / sigma_s * torch.exp(-h) * sample + alpha_t * (1 - torch.exp(-2.0 * h)) * model_output + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise + return x_t + + def singlestep_dpm_solver_second_order_update(self, model_output_list: List[torch.Tensor], *args, sample: torch.Tensor=None, noise: Optional[torch.Tensor]=None, **kwargs) -> torch.Tensor: + timestep_list = args[0] if len(args) > 0 else kwargs.pop('timestep_list', None) + prev_timestep = args[1] if len(args) > 1 else kwargs.pop('prev_timestep', None) + if sample is None: + if len(args) > 2: + sample = args[2] + else: + raise ValueError(' missing `sample` as a required keyward argument') + if timestep_list is not None: + deprecate('timestep_list', '1.0.0', 'Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + if prev_timestep is not None: + deprecate('prev_timestep', '1.0.0', 'Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + (sigma_t, sigma_s0, sigma_s1) = (self.sigmas[self.step_index + 1], self.sigmas[self.step_index], self.sigmas[self.step_index - 1]) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s0, sigma_s0) = self._sigma_to_alpha_sigma_t(sigma_s0) + (alpha_s1, sigma_s1) = self._sigma_to_alpha_sigma_t(sigma_s1) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) + lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) + (m0, m1) = (model_output_list[-1], model_output_list[-2]) + (h, h_0) = (lambda_t - lambda_s1, lambda_s0 - lambda_s1) + r0 = h_0 / h + (D0, D1) = (m1, 1.0 / r0 * (m0 - m1)) + if self.config.algorithm_type == 'dpmsolver++': + if self.config.solver_type == 'midpoint': + x_t = sigma_t / sigma_s1 * sample - alpha_t * (torch.exp(-h) - 1.0) * D0 - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1 + elif self.config.solver_type == 'heun': + x_t = sigma_t / sigma_s1 * sample - alpha_t * (torch.exp(-h) - 1.0) * D0 + alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0) * D1 + elif self.config.algorithm_type == 'dpmsolver': + if self.config.solver_type == 'midpoint': + x_t = alpha_t / alpha_s1 * sample - sigma_t * (torch.exp(h) - 1.0) * D0 - 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1 + elif self.config.solver_type == 'heun': + x_t = alpha_t / alpha_s1 * sample - sigma_t * (torch.exp(h) - 1.0) * D0 - sigma_t * ((torch.exp(h) - 1.0) / h - 1.0) * D1 + elif self.config.algorithm_type == 'sde-dpmsolver++': + assert noise is not None + if self.config.solver_type == 'midpoint': + x_t = sigma_t / sigma_s1 * torch.exp(-h) * sample + alpha_t * (1 - torch.exp(-2.0 * h)) * D0 + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise + elif self.config.solver_type == 'heun': + x_t = sigma_t / sigma_s1 * torch.exp(-h) * sample + alpha_t * (1 - torch.exp(-2.0 * h)) * D0 + alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0) * D1 + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise + return x_t + + def singlestep_dpm_solver_third_order_update(self, model_output_list: List[torch.Tensor], *args, sample: torch.Tensor=None, **kwargs) -> torch.Tensor: + timestep_list = args[0] if len(args) > 0 else kwargs.pop('timestep_list', None) + prev_timestep = args[1] if len(args) > 1 else kwargs.pop('prev_timestep', None) + if sample is None: + if len(args) > 2: + sample = args[2] + else: + raise ValueError(' missing`sample` as a required keyward argument') + if timestep_list is not None: + deprecate('timestep_list', '1.0.0', 'Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + if prev_timestep is not None: + deprecate('prev_timestep', '1.0.0', 'Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + (sigma_t, sigma_s0, sigma_s1, sigma_s2) = (self.sigmas[self.step_index + 1], self.sigmas[self.step_index], self.sigmas[self.step_index - 1], self.sigmas[self.step_index - 2]) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s0, sigma_s0) = self._sigma_to_alpha_sigma_t(sigma_s0) + (alpha_s1, sigma_s1) = self._sigma_to_alpha_sigma_t(sigma_s1) + (alpha_s2, sigma_s2) = self._sigma_to_alpha_sigma_t(sigma_s2) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) + lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) + lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2) + (m0, m1, m2) = (model_output_list[-1], model_output_list[-2], model_output_list[-3]) + (h, h_0, h_1) = (lambda_t - lambda_s2, lambda_s0 - lambda_s2, lambda_s1 - lambda_s2) + (r0, r1) = (h_0 / h, h_1 / h) + D0 = m2 + (D1_0, D1_1) = (1.0 / r1 * (m1 - m2), 1.0 / r0 * (m0 - m2)) + D1 = (r0 * D1_0 - r1 * D1_1) / (r0 - r1) + D2 = 2.0 * (D1_1 - D1_0) / (r0 - r1) + if self.config.algorithm_type == 'dpmsolver++': + if self.config.solver_type == 'midpoint': + x_t = sigma_t / sigma_s2 * sample - alpha_t * (torch.exp(-h) - 1.0) * D0 + alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0) * D1_1 + elif self.config.solver_type == 'heun': + x_t = sigma_t / sigma_s2 * sample - alpha_t * (torch.exp(-h) - 1.0) * D0 + alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0) * D1 - alpha_t * ((torch.exp(-h) - 1.0 + h) / h ** 2 - 0.5) * D2 + elif self.config.algorithm_type == 'dpmsolver': + if self.config.solver_type == 'midpoint': + x_t = alpha_t / alpha_s2 * sample - sigma_t * (torch.exp(h) - 1.0) * D0 - sigma_t * ((torch.exp(h) - 1.0) / h - 1.0) * D1_1 + elif self.config.solver_type == 'heun': + x_t = alpha_t / alpha_s2 * sample - sigma_t * (torch.exp(h) - 1.0) * D0 - sigma_t * ((torch.exp(h) - 1.0) / h - 1.0) * D1 - sigma_t * ((torch.exp(h) - 1.0 - h) / h ** 2 - 0.5) * D2 + return x_t + + def singlestep_dpm_solver_update(self, model_output_list: List[torch.Tensor], *args, sample: torch.Tensor=None, order: int=None, noise: Optional[torch.Tensor]=None, **kwargs) -> torch.Tensor: + timestep_list = args[0] if len(args) > 0 else kwargs.pop('timestep_list', None) + prev_timestep = args[1] if len(args) > 1 else kwargs.pop('prev_timestep', None) + if sample is None: + if len(args) > 2: + sample = args[2] + else: + raise ValueError(' missing`sample` as a required keyward argument') + if order is None: + if len(args) > 3: + order = args[3] + else: + raise ValueError(' missing `order` as a required keyward argument') + if timestep_list is not None: + deprecate('timestep_list', '1.0.0', 'Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + if prev_timestep is not None: + deprecate('prev_timestep', '1.0.0', 'Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + if order == 1: + return self.dpm_solver_first_order_update(model_output_list[-1], sample=sample, noise=noise) + elif order == 2: + return self.singlestep_dpm_solver_second_order_update(model_output_list, sample=sample, noise=noise) + elif order == 3: + return self.singlestep_dpm_solver_third_order_update(model_output_list, sample=sample) + else: + raise ValueError(f'Order must be 1, 2, 3, got {order}') + + def index_for_timestep(self, timestep, schedule_timesteps=None): + if schedule_timesteps is None: + schedule_timesteps = self.timesteps + index_candidates = (schedule_timesteps == timestep).nonzero() + if len(index_candidates) == 0: + step_index = len(self.timesteps) - 1 + elif len(index_candidates) > 1: + step_index = index_candidates[1].item() + else: + step_index = index_candidates[0].item() + return step_index + + def _init_step_index(self, timestep): + if self.begin_index is None: + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + self._step_index = self.index_for_timestep(timestep) + else: + self._step_index = self._begin_index + + def step(self, model_output: torch.Tensor, timestep: Union[int, torch.Tensor], sample: torch.Tensor, generator=None, return_dict: bool=True) -> Union[SchedulerOutput, Tuple]: + if self.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + if self.step_index is None: + self._init_step_index(timestep) + model_output = self.convert_model_output(model_output, sample=sample) + for i in range(self.config.solver_order - 1): + self.model_outputs[i] = self.model_outputs[i + 1] + self.model_outputs[-1] = model_output + if self.config.algorithm_type == 'sde-dpmsolver++': + noise = randn_tensor(model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype) + else: + noise = None + order = self.order_list[self.step_index] + while self.model_outputs[-order] is None: + order -= 1 + if order == 1: + self.sample = sample + prev_sample = self.singlestep_dpm_solver_update(self.model_outputs, sample=self.sample, order=order, noise=noise) + self._step_index += 1 + if not return_dict: + return (prev_sample,) + return SchedulerOutput(prev_sample=prev_sample) + + def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor: + return sample + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) + if original_samples.device.type == 'mps' and torch.is_floating_point(timesteps): + schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) + timesteps = timesteps.to(original_samples.device, dtype=torch.float32) + else: + schedule_timesteps = self.timesteps.to(original_samples.device) + timesteps = timesteps.to(original_samples.device) + if self.begin_index is None: + step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] + elif self.step_index is not None: + step_indices = [self.step_index] * timesteps.shape[0] + else: + step_indices = [self.begin_index] * timesteps.shape[0] + sigma = sigmas[step_indices].flatten() + while len(sigma.shape) < len(original_samples.shape): + sigma = sigma.unsqueeze(-1) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma) + noisy_samples = alpha_t * original_samples + sigma_t * noise + return noisy_samples + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +import math +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils.torch_utils import randn_tensor +from .scheduling_utils import SchedulerMixin, SchedulerOutput + +class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [] + order = 1 + + @register_to_config + def __init__(self, sigma_min: float=0.002, sigma_max: float=80.0, sigma_data: float=0.5, sigma_schedule: str='karras', num_train_timesteps: int=1000, prediction_type: str='epsilon', rho: float=7.0, solver_order: int=2, thresholding: bool=False, dynamic_thresholding_ratio: float=0.995, sample_max_value: float=1.0, algorithm_type: str='dpmsolver++', solver_type: str='midpoint', lower_order_final: bool=True, euler_at_final: bool=False, final_sigmas_type: Optional[str]='zero'): + if algorithm_type not in ['dpmsolver++', 'sde-dpmsolver++']: + if algorithm_type == 'deis': + self.register_to_config(algorithm_type='dpmsolver++') + else: + raise NotImplementedError(f'{algorithm_type} is not implemented for {self.__class__}') + if solver_type not in ['midpoint', 'heun']: + if solver_type in ['logrho', 'bh1', 'bh2']: + self.register_to_config(solver_type='midpoint') + else: + raise NotImplementedError(f'{solver_type} is not implemented for {self.__class__}') + if algorithm_type not in ['dpmsolver++', 'sde-dpmsolver++'] and final_sigmas_type == 'zero': + raise ValueError(f'`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please choose `sigma_min` instead.') + ramp = torch.linspace(0, 1, num_train_timesteps) + if sigma_schedule == 'karras': + sigmas = self._compute_karras_sigmas(ramp) + elif sigma_schedule == 'exponential': + sigmas = self._compute_exponential_sigmas(ramp) + self.timesteps = self.precondition_noise(sigmas) + self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) + self.num_inference_steps = None + self.model_outputs = [None] * solver_order + self.lower_order_nums = 0 + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + @property + def init_noise_sigma(self): + return (self.config.sigma_max ** 2 + 1) ** 0.5 + + @property + def step_index(self): + return self._step_index + + @property + def begin_index(self): + return self._begin_index + + def set_begin_index(self, begin_index: int=0): + self._begin_index = begin_index + + def precondition_inputs(self, sample, sigma): + c_in = 1 / (sigma ** 2 + self.config.sigma_data ** 2) ** 0.5 + scaled_sample = sample * c_in + return scaled_sample + + def precondition_noise(self, sigma): + if not isinstance(sigma, torch.Tensor): + sigma = torch.tensor([sigma]) + c_noise = 0.25 * torch.log(sigma) + return c_noise + + def precondition_outputs(self, sample, model_output, sigma): + sigma_data = self.config.sigma_data + c_skip = sigma_data ** 2 / (sigma ** 2 + sigma_data ** 2) + if self.config.prediction_type == 'epsilon': + c_out = sigma * sigma_data / (sigma ** 2 + sigma_data ** 2) ** 0.5 + elif self.config.prediction_type == 'v_prediction': + c_out = -sigma * sigma_data / (sigma ** 2 + sigma_data ** 2) ** 0.5 + else: + raise ValueError(f'Prediction type {self.config.prediction_type} is not supported.') + denoised = c_skip * sample + c_out * model_output + return denoised + + def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: + if self.step_index is None: + self._init_step_index(timestep) + sigma = self.sigmas[self.step_index] + sample = self.precondition_inputs(sample, sigma) + self.is_scale_input_called = True + return sample + + def set_timesteps(self, num_inference_steps: int=None, device: Union[str, torch.device]=None): + self.num_inference_steps = num_inference_steps + ramp = torch.linspace(0, 1, self.num_inference_steps) + if self.config.sigma_schedule == 'karras': + sigmas = self._compute_karras_sigmas(ramp) + elif self.config.sigma_schedule == 'exponential': + sigmas = self._compute_exponential_sigmas(ramp) + sigmas = sigmas.to(dtype=torch.float32, device=device) + self.timesteps = self.precondition_noise(sigmas) + if self.config.final_sigmas_type == 'sigma_min': + sigma_last = self.config.sigma_min + elif self.config.final_sigmas_type == 'zero': + sigma_last = 0 + else: + raise ValueError(f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}") + self.sigmas = torch.cat([sigmas, torch.tensor([sigma_last], dtype=torch.float32, device=device)]) + self.model_outputs = [None] * self.config.solver_order + self.lower_order_nums = 0 + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor: + sigma_min = sigma_min or self.config.sigma_min + sigma_max = sigma_max or self.config.sigma_max + rho = self.config.rho + min_inv_rho = sigma_min ** (1 / rho) + max_inv_rho = sigma_max ** (1 / rho) + sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho + return sigmas + + def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor: + sigma_min = sigma_min or self.config.sigma_min + sigma_max = sigma_max or self.config.sigma_max + sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0) + return sigmas + + def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: + dtype = sample.dtype + (batch_size, channels, *remaining_dims) = sample.shape + if dtype not in (torch.float32, torch.float64): + sample = sample.float() + sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) + abs_sample = sample.abs() + s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) + s = torch.clamp(s, min=1, max=self.config.sample_max_value) + s = s.unsqueeze(1) + sample = torch.clamp(sample, -s, s) / s + sample = sample.reshape(batch_size, channels, *remaining_dims) + sample = sample.to(dtype) + return sample + + def _sigma_to_t(self, sigma, log_sigmas): + log_sigma = np.log(np.maximum(sigma, 1e-10)) + dists = log_sigma - log_sigmas[:, np.newaxis] + low_idx = np.cumsum(dists >= 0, axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) + high_idx = low_idx + 1 + low = log_sigmas[low_idx] + high = log_sigmas[high_idx] + w = (low - log_sigma) / (low - high) + w = np.clip(w, 0, 1) + t = (1 - w) * low_idx + w * high_idx + t = t.reshape(sigma.shape) + return t + + def _sigma_to_alpha_sigma_t(self, sigma): + alpha_t = torch.tensor(1) + sigma_t = sigma + return (alpha_t, sigma_t) + + def convert_model_output(self, model_output: torch.Tensor, sample: torch.Tensor=None) -> torch.Tensor: + sigma = self.sigmas[self.step_index] + x0_pred = self.precondition_outputs(sample, model_output, sigma) + if self.config.thresholding: + x0_pred = self._threshold_sample(x0_pred) + return x0_pred + + def dpm_solver_first_order_update(self, model_output: torch.Tensor, sample: torch.Tensor=None, noise: Optional[torch.Tensor]=None) -> torch.Tensor: + (sigma_t, sigma_s) = (self.sigmas[self.step_index + 1], self.sigmas[self.step_index]) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s, sigma_s) = self._sigma_to_alpha_sigma_t(sigma_s) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s = torch.log(alpha_s) - torch.log(sigma_s) + h = lambda_t - lambda_s + if self.config.algorithm_type == 'dpmsolver++': + x_t = sigma_t / sigma_s * sample - alpha_t * (torch.exp(-h) - 1.0) * model_output + elif self.config.algorithm_type == 'sde-dpmsolver++': + assert noise is not None + x_t = sigma_t / sigma_s * torch.exp(-h) * sample + alpha_t * (1 - torch.exp(-2.0 * h)) * model_output + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise + return x_t + + def multistep_dpm_solver_second_order_update(self, model_output_list: List[torch.Tensor], sample: torch.Tensor=None, noise: Optional[torch.Tensor]=None) -> torch.Tensor: + (sigma_t, sigma_s0, sigma_s1) = (self.sigmas[self.step_index + 1], self.sigmas[self.step_index], self.sigmas[self.step_index - 1]) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s0, sigma_s0) = self._sigma_to_alpha_sigma_t(sigma_s0) + (alpha_s1, sigma_s1) = self._sigma_to_alpha_sigma_t(sigma_s1) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) + lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) + (m0, m1) = (model_output_list[-1], model_output_list[-2]) + (h, h_0) = (lambda_t - lambda_s0, lambda_s0 - lambda_s1) + r0 = h_0 / h + (D0, D1) = (m0, 1.0 / r0 * (m0 - m1)) + if self.config.algorithm_type == 'dpmsolver++': + if self.config.solver_type == 'midpoint': + x_t = sigma_t / sigma_s0 * sample - alpha_t * (torch.exp(-h) - 1.0) * D0 - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1 + elif self.config.solver_type == 'heun': + x_t = sigma_t / sigma_s0 * sample - alpha_t * (torch.exp(-h) - 1.0) * D0 + alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0) * D1 + elif self.config.algorithm_type == 'sde-dpmsolver++': + assert noise is not None + if self.config.solver_type == 'midpoint': + x_t = sigma_t / sigma_s0 * torch.exp(-h) * sample + alpha_t * (1 - torch.exp(-2.0 * h)) * D0 + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise + elif self.config.solver_type == 'heun': + x_t = sigma_t / sigma_s0 * torch.exp(-h) * sample + alpha_t * (1 - torch.exp(-2.0 * h)) * D0 + alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0) * D1 + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise + return x_t + + def multistep_dpm_solver_third_order_update(self, model_output_list: List[torch.Tensor], sample: torch.Tensor=None) -> torch.Tensor: + (sigma_t, sigma_s0, sigma_s1, sigma_s2) = (self.sigmas[self.step_index + 1], self.sigmas[self.step_index], self.sigmas[self.step_index - 1], self.sigmas[self.step_index - 2]) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s0, sigma_s0) = self._sigma_to_alpha_sigma_t(sigma_s0) + (alpha_s1, sigma_s1) = self._sigma_to_alpha_sigma_t(sigma_s1) + (alpha_s2, sigma_s2) = self._sigma_to_alpha_sigma_t(sigma_s2) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) + lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) + lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2) + (m0, m1, m2) = (model_output_list[-1], model_output_list[-2], model_output_list[-3]) + (h, h_0, h_1) = (lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2) + (r0, r1) = (h_0 / h, h_1 / h) + D0 = m0 + (D1_0, D1_1) = (1.0 / r0 * (m0 - m1), 1.0 / r1 * (m1 - m2)) + D1 = D1_0 + r0 / (r0 + r1) * (D1_0 - D1_1) + D2 = 1.0 / (r0 + r1) * (D1_0 - D1_1) + if self.config.algorithm_type == 'dpmsolver++': + x_t = sigma_t / sigma_s0 * sample - alpha_t * (torch.exp(-h) - 1.0) * D0 + alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0) * D1 - alpha_t * ((torch.exp(-h) - 1.0 + h) / h ** 2 - 0.5) * D2 + return x_t + + def index_for_timestep(self, timestep, schedule_timesteps=None): + if schedule_timesteps is None: + schedule_timesteps = self.timesteps + index_candidates = (schedule_timesteps == timestep).nonzero() + if len(index_candidates) == 0: + step_index = len(self.timesteps) - 1 + elif len(index_candidates) > 1: + step_index = index_candidates[1].item() + else: + step_index = index_candidates[0].item() + return step_index + + def _init_step_index(self, timestep): + if self.begin_index is None: + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + self._step_index = self.index_for_timestep(timestep) + else: + self._step_index = self._begin_index + + def step(self, model_output: torch.Tensor, timestep: Union[int, torch.Tensor], sample: torch.Tensor, generator=None, return_dict: bool=True) -> Union[SchedulerOutput, Tuple]: + if self.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + if self.step_index is None: + self._init_step_index(timestep) + lower_order_final = self.step_index == len(self.timesteps) - 1 and (self.config.euler_at_final or (self.config.lower_order_final and len(self.timesteps) < 15) or self.config.final_sigmas_type == 'zero') + lower_order_second = self.step_index == len(self.timesteps) - 2 and self.config.lower_order_final and (len(self.timesteps) < 15) + model_output = self.convert_model_output(model_output, sample=sample) + for i in range(self.config.solver_order - 1): + self.model_outputs[i] = self.model_outputs[i + 1] + self.model_outputs[-1] = model_output + if self.config.algorithm_type == 'sde-dpmsolver++': + noise = randn_tensor(model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype) + else: + noise = None + if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final: + prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise) + elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second: + prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise) + else: + prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample) + if self.lower_order_nums < self.config.solver_order: + self.lower_order_nums += 1 + self._step_index += 1 + if not return_dict: + return (prev_sample,) + return SchedulerOutput(prev_sample=prev_sample) + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor: + sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) + if original_samples.device.type == 'mps' and torch.is_floating_point(timesteps): + schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) + timesteps = timesteps.to(original_samples.device, dtype=torch.float32) + else: + schedule_timesteps = self.timesteps.to(original_samples.device) + timesteps = timesteps.to(original_samples.device) + if self.begin_index is None: + step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] + elif self.step_index is not None: + step_indices = [self.step_index] * timesteps.shape[0] + else: + step_indices = [self.begin_index] * timesteps.shape[0] + sigma = sigmas[step_indices].flatten() + while len(sigma.shape) < len(original_samples.shape): + sigma = sigma.unsqueeze(-1) + noisy_samples = original_samples + noise * sigma + return noisy_samples + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_edm_euler.py +import math +from dataclasses import dataclass +from typing import Optional, Tuple, Union +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput, logging +from ..utils.torch_utils import randn_tensor +from .scheduling_utils import SchedulerMixin +logger = logging.get_logger(__name__) + +@dataclass +class EDMEulerSchedulerOutput(BaseOutput): + prev_sample: torch.Tensor + pred_original_sample: Optional[torch.Tensor] = None + +class EDMEulerScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [] + order = 1 + + @register_to_config + def __init__(self, sigma_min: float=0.002, sigma_max: float=80.0, sigma_data: float=0.5, sigma_schedule: str='karras', num_train_timesteps: int=1000, prediction_type: str='epsilon', rho: float=7.0): + if sigma_schedule not in ['karras', 'exponential']: + raise ValueError(f'Wrong value for provided for `sigma_schedule={sigma_schedule!r}`.`') + self.num_inference_steps = None + ramp = torch.linspace(0, 1, num_train_timesteps) + if sigma_schedule == 'karras': + sigmas = self._compute_karras_sigmas(ramp) + elif sigma_schedule == 'exponential': + sigmas = self._compute_exponential_sigmas(ramp) + self.timesteps = self.precondition_noise(sigmas) + self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) + self.is_scale_input_called = False + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + @property + def init_noise_sigma(self): + return (self.config.sigma_max ** 2 + 1) ** 0.5 + + @property + def step_index(self): + return self._step_index + + @property + def begin_index(self): + return self._begin_index + + def set_begin_index(self, begin_index: int=0): + self._begin_index = begin_index + + def precondition_inputs(self, sample, sigma): + c_in = 1 / (sigma ** 2 + self.config.sigma_data ** 2) ** 0.5 + scaled_sample = sample * c_in + return scaled_sample + + def precondition_noise(self, sigma): + if not isinstance(sigma, torch.Tensor): + sigma = torch.tensor([sigma]) + c_noise = 0.25 * torch.log(sigma) + return c_noise + + def precondition_outputs(self, sample, model_output, sigma): + sigma_data = self.config.sigma_data + c_skip = sigma_data ** 2 / (sigma ** 2 + sigma_data ** 2) + if self.config.prediction_type == 'epsilon': + c_out = sigma * sigma_data / (sigma ** 2 + sigma_data ** 2) ** 0.5 + elif self.config.prediction_type == 'v_prediction': + c_out = -sigma * sigma_data / (sigma ** 2 + sigma_data ** 2) ** 0.5 + else: + raise ValueError(f'Prediction type {self.config.prediction_type} is not supported.') + denoised = c_skip * sample + c_out * model_output + return denoised + + def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: + if self.step_index is None: + self._init_step_index(timestep) + sigma = self.sigmas[self.step_index] + sample = self.precondition_inputs(sample, sigma) + self.is_scale_input_called = True + return sample + + def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device]=None): + self.num_inference_steps = num_inference_steps + ramp = torch.linspace(0, 1, self.num_inference_steps) + if self.config.sigma_schedule == 'karras': + sigmas = self._compute_karras_sigmas(ramp) + elif self.config.sigma_schedule == 'exponential': + sigmas = self._compute_exponential_sigmas(ramp) + sigmas = sigmas.to(dtype=torch.float32, device=device) + self.timesteps = self.precondition_noise(sigmas) + self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor: + sigma_min = sigma_min or self.config.sigma_min + sigma_max = sigma_max or self.config.sigma_max + rho = self.config.rho + min_inv_rho = sigma_min ** (1 / rho) + max_inv_rho = sigma_max ** (1 / rho) + sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho + return sigmas + + def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor: + sigma_min = sigma_min or self.config.sigma_min + sigma_max = sigma_max or self.config.sigma_max + sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0) + return sigmas + + def index_for_timestep(self, timestep, schedule_timesteps=None): + if schedule_timesteps is None: + schedule_timesteps = self.timesteps + indices = (schedule_timesteps == timestep).nonzero() + pos = 1 if len(indices) > 1 else 0 + return indices[pos].item() + + def _init_step_index(self, timestep): + if self.begin_index is None: + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + self._step_index = self.index_for_timestep(timestep) + else: + self._step_index = self._begin_index + + def step(self, model_output: torch.Tensor, timestep: Union[float, torch.Tensor], sample: torch.Tensor, s_churn: float=0.0, s_tmin: float=0.0, s_tmax: float=float('inf'), s_noise: float=1.0, generator: Optional[torch.Generator]=None, return_dict: bool=True) -> Union[EDMEulerSchedulerOutput, Tuple]: + if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)): + raise ValueError('Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to `EDMEulerScheduler.step()` is not supported. Make sure to pass one of the `scheduler.timesteps` as a timestep.') + if not self.is_scale_input_called: + logger.warning('The `scale_model_input` function should be called before `step` to ensure correct denoising. See `StableDiffusionPipeline` for a usage example.') + if self.step_index is None: + self._init_step_index(timestep) + sample = sample.to(torch.float32) + sigma = self.sigmas[self.step_index] + gamma = min(s_churn / (len(self.sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0 + noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator) + eps = noise * s_noise + sigma_hat = sigma * (gamma + 1) + if gamma > 0: + sample = sample + eps * (sigma_hat ** 2 - sigma ** 2) ** 0.5 + pred_original_sample = self.precondition_outputs(sample, model_output, sigma_hat) + derivative = (sample - pred_original_sample) / sigma_hat + dt = self.sigmas[self.step_index + 1] - sigma_hat + prev_sample = sample + derivative * dt + prev_sample = prev_sample.to(model_output.dtype) + self._step_index += 1 + if not return_dict: + return (prev_sample,) + return EDMEulerSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor: + sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) + if original_samples.device.type == 'mps' and torch.is_floating_point(timesteps): + schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) + timesteps = timesteps.to(original_samples.device, dtype=torch.float32) + else: + schedule_timesteps = self.timesteps.to(original_samples.device) + timesteps = timesteps.to(original_samples.device) + if self.begin_index is None: + step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] + elif self.step_index is not None: + step_indices = [self.step_index] * timesteps.shape[0] + else: + step_indices = [self.begin_index] * timesteps.shape[0] + sigma = sigmas[step_indices].flatten() + while len(sigma.shape) < len(original_samples.shape): + sigma = sigma.unsqueeze(-1) + noisy_samples = original_samples + noise * sigma + return noisy_samples + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py +import math +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput, logging +from ..utils.torch_utils import randn_tensor +from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin +logger = logging.get_logger(__name__) + +@dataclass +class EulerAncestralDiscreteSchedulerOutput(BaseOutput): + prev_sample: torch.Tensor + pred_original_sample: Optional[torch.Tensor] = None + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +def rescale_zero_terminal_snr(betas): + alphas = 1.0 - betas + alphas_cumprod = torch.cumprod(alphas, dim=0) + alphas_bar_sqrt = alphas_cumprod.sqrt() + alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() + alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() + alphas_bar_sqrt -= alphas_bar_sqrt_T + alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) + alphas_bar = alphas_bar_sqrt ** 2 + alphas = alphas_bar[1:] / alphas_bar[:-1] + alphas = torch.cat([alphas_bar[0:1], alphas]) + betas = 1 - alphas + return betas + +class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in KarrasDiffusionSchedulers] + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.0001, beta_end: float=0.02, beta_schedule: str='linear', trained_betas: Optional[Union[np.ndarray, List[float]]]=None, prediction_type: str='epsilon', timestep_spacing: str='linspace', steps_offset: int=0, rescale_betas_zero_snr: bool=False): + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + if rescale_betas_zero_snr: + self.betas = rescale_zero_terminal_snr(self.betas) + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + if rescale_betas_zero_snr: + self.alphas_cumprod[-1] = 2 ** (-24) + sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) + sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32) + self.sigmas = torch.from_numpy(sigmas) + self.num_inference_steps = None + timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy() + self.timesteps = torch.from_numpy(timesteps) + self.is_scale_input_called = False + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + @property + def init_noise_sigma(self): + if self.config.timestep_spacing in ['linspace', 'trailing']: + return self.sigmas.max() + return (self.sigmas.max() ** 2 + 1) ** 0.5 + + @property + def step_index(self): + return self._step_index + + @property + def begin_index(self): + return self._begin_index + + def set_begin_index(self, begin_index: int=0): + self._begin_index = begin_index + + def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: + if self.step_index is None: + self._init_step_index(timestep) + sigma = self.sigmas[self.step_index] + sample = sample / (sigma ** 2 + 1) ** 0.5 + self.is_scale_input_called = True + return sample + + def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device]=None): + self.num_inference_steps = num_inference_steps + if self.config.timestep_spacing == 'linspace': + timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[::-1].copy() + elif self.config.timestep_spacing == 'leading': + step_ratio = self.config.num_train_timesteps // self.num_inference_steps + timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32) + timesteps += self.config.steps_offset + elif self.config.timestep_spacing == 'trailing': + step_ratio = self.config.num_train_timesteps / self.num_inference_steps + timesteps = np.arange(self.config.num_train_timesteps, 0, -step_ratio).round().copy().astype(np.float32) + timesteps -= 1 + else: + raise ValueError(f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.") + sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) + sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) + sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) + self.sigmas = torch.from_numpy(sigmas).to(device=device) + self.timesteps = torch.from_numpy(timesteps).to(device=device) + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + def index_for_timestep(self, timestep, schedule_timesteps=None): + if schedule_timesteps is None: + schedule_timesteps = self.timesteps + indices = (schedule_timesteps == timestep).nonzero() + pos = 1 if len(indices) > 1 else 0 + return indices[pos].item() + + def _init_step_index(self, timestep): + if self.begin_index is None: + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + self._step_index = self.index_for_timestep(timestep) + else: + self._step_index = self._begin_index + + def step(self, model_output: torch.Tensor, timestep: Union[float, torch.Tensor], sample: torch.Tensor, generator: Optional[torch.Generator]=None, return_dict: bool=True) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]: + if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)): + raise ValueError('Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to `EulerDiscreteScheduler.step()` is not supported. Make sure to pass one of the `scheduler.timesteps` as a timestep.') + if not self.is_scale_input_called: + logger.warning('The `scale_model_input` function should be called before `step` to ensure correct denoising. See `StableDiffusionPipeline` for a usage example.') + if self.step_index is None: + self._init_step_index(timestep) + sigma = self.sigmas[self.step_index] + sample = sample.to(torch.float32) + if self.config.prediction_type == 'epsilon': + pred_original_sample = sample - sigma * model_output + elif self.config.prediction_type == 'v_prediction': + pred_original_sample = model_output * (-sigma / (sigma ** 2 + 1) ** 0.5) + sample / (sigma ** 2 + 1) + elif self.config.prediction_type == 'sample': + raise NotImplementedError('prediction_type not implemented yet: sample') + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`') + sigma_from = self.sigmas[self.step_index] + sigma_to = self.sigmas[self.step_index + 1] + sigma_up = (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5 + sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5 + derivative = (sample - pred_original_sample) / sigma + dt = sigma_down - sigma + prev_sample = sample + derivative * dt + device = model_output.device + noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=device, generator=generator) + prev_sample = prev_sample + noise * sigma_up + prev_sample = prev_sample.to(model_output.dtype) + self._step_index += 1 + if not return_dict: + return (prev_sample,) + return EulerAncestralDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor: + sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) + if original_samples.device.type == 'mps' and torch.is_floating_point(timesteps): + schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) + timesteps = timesteps.to(original_samples.device, dtype=torch.float32) + else: + schedule_timesteps = self.timesteps.to(original_samples.device) + timesteps = timesteps.to(original_samples.device) + if self.begin_index is None: + step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] + elif self.step_index is not None: + step_indices = [self.step_index] * timesteps.shape[0] + else: + step_indices = [self.begin_index] * timesteps.shape[0] + sigma = sigmas[step_indices].flatten() + while len(sigma.shape) < len(original_samples.shape): + sigma = sigma.unsqueeze(-1) + noisy_samples = original_samples + noise * sigma + return noisy_samples + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_euler_discrete.py +import math +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput, logging +from ..utils.torch_utils import randn_tensor +from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin +logger = logging.get_logger(__name__) + +@dataclass +class EulerDiscreteSchedulerOutput(BaseOutput): + prev_sample: torch.Tensor + pred_original_sample: Optional[torch.Tensor] = None + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +def rescale_zero_terminal_snr(betas): + alphas = 1.0 - betas + alphas_cumprod = torch.cumprod(alphas, dim=0) + alphas_bar_sqrt = alphas_cumprod.sqrt() + alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() + alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() + alphas_bar_sqrt -= alphas_bar_sqrt_T + alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) + alphas_bar = alphas_bar_sqrt ** 2 + alphas = alphas_bar[1:] / alphas_bar[:-1] + alphas = torch.cat([alphas_bar[0:1], alphas]) + betas = 1 - alphas + return betas + +class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in KarrasDiffusionSchedulers] + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.0001, beta_end: float=0.02, beta_schedule: str='linear', trained_betas: Optional[Union[np.ndarray, List[float]]]=None, prediction_type: str='epsilon', interpolation_type: str='linear', use_karras_sigmas: Optional[bool]=False, sigma_min: Optional[float]=None, sigma_max: Optional[float]=None, timestep_spacing: str='linspace', timestep_type: str='discrete', steps_offset: int=0, rescale_betas_zero_snr: bool=False, final_sigmas_type: str='zero'): + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + if rescale_betas_zero_snr: + self.betas = rescale_zero_terminal_snr(self.betas) + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + if rescale_betas_zero_snr: + self.alphas_cumprod[-1] = 2 ** (-24) + sigmas = (((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5).flip(0) + timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy() + timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32) + self.num_inference_steps = None + if timestep_type == 'continuous' and prediction_type == 'v_prediction': + self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas]) + else: + self.timesteps = timesteps + self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) + self.is_scale_input_called = False + self.use_karras_sigmas = use_karras_sigmas + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + @property + def init_noise_sigma(self): + max_sigma = max(self.sigmas) if isinstance(self.sigmas, list) else self.sigmas.max() + if self.config.timestep_spacing in ['linspace', 'trailing']: + return max_sigma + return (max_sigma ** 2 + 1) ** 0.5 + + @property + def step_index(self): + return self._step_index + + @property + def begin_index(self): + return self._begin_index + + def set_begin_index(self, begin_index: int=0): + self._begin_index = begin_index + + def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: + if self.step_index is None: + self._init_step_index(timestep) + sigma = self.sigmas[self.step_index] + sample = sample / (sigma ** 2 + 1) ** 0.5 + self.is_scale_input_called = True + return sample + + def set_timesteps(self, num_inference_steps: int=None, device: Union[str, torch.device]=None, timesteps: Optional[List[int]]=None, sigmas: Optional[List[float]]=None): + if timesteps is not None and sigmas is not None: + raise ValueError('Only one of `timesteps` or `sigmas` should be set.') + if num_inference_steps is None and timesteps is None and (sigmas is None): + raise ValueError('Must pass exactly one of `num_inference_steps` or `timesteps` or `sigmas.') + if num_inference_steps is not None and (timesteps is not None or sigmas is not None): + raise ValueError('Can only pass one of `num_inference_steps` or `timesteps` or `sigmas`.') + if timesteps is not None and self.config.use_karras_sigmas: + raise ValueError('Cannot set `timesteps` with `config.use_karras_sigmas = True`.') + if timesteps is not None and self.config.timestep_type == 'continuous' and (self.config.prediction_type == 'v_prediction'): + raise ValueError("Cannot set `timesteps` with `config.timestep_type = 'continuous'` and `config.prediction_type = 'v_prediction'`.") + if num_inference_steps is None: + num_inference_steps = len(timesteps) if timesteps is not None else len(sigmas) - 1 + self.num_inference_steps = num_inference_steps + if sigmas is not None: + log_sigmas = np.log(np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)) + sigmas = np.array(sigmas).astype(np.float32) + timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas[:-1]]) + else: + if timesteps is not None: + timesteps = np.array(timesteps).astype(np.float32) + elif self.config.timestep_spacing == 'linspace': + timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[::-1].copy() + elif self.config.timestep_spacing == 'leading': + step_ratio = self.config.num_train_timesteps // self.num_inference_steps + timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32) + timesteps += self.config.steps_offset + elif self.config.timestep_spacing == 'trailing': + step_ratio = self.config.num_train_timesteps / self.num_inference_steps + timesteps = np.arange(self.config.num_train_timesteps, 0, -step_ratio).round().copy().astype(np.float32) + timesteps -= 1 + else: + raise ValueError(f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.") + sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) + log_sigmas = np.log(sigmas) + if self.config.interpolation_type == 'linear': + sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) + elif self.config.interpolation_type == 'log_linear': + sigmas = torch.linspace(np.log(sigmas[-1]), np.log(sigmas[0]), num_inference_steps + 1).exp().numpy() + else: + raise ValueError(f"{self.config.interpolation_type} is not implemented. Please specify interpolation_type to either 'linear' or 'log_linear'") + if self.config.use_karras_sigmas: + sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps) + timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) + if self.config.final_sigmas_type == 'sigma_min': + sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5 + elif self.config.final_sigmas_type == 'zero': + sigma_last = 0 + else: + raise ValueError(f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}") + sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32) + sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) + if self.config.timestep_type == 'continuous' and self.config.prediction_type == 'v_prediction': + self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas[:-1]]).to(device=device) + else: + self.timesteps = torch.from_numpy(timesteps.astype(np.float32)).to(device=device) + self._step_index = None + self._begin_index = None + self.sigmas = sigmas.to('cpu') + + def _sigma_to_t(self, sigma, log_sigmas): + log_sigma = np.log(np.maximum(sigma, 1e-10)) + dists = log_sigma - log_sigmas[:, np.newaxis] + low_idx = np.cumsum(dists >= 0, axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) + high_idx = low_idx + 1 + low = log_sigmas[low_idx] + high = log_sigmas[high_idx] + w = (low - log_sigma) / (low - high) + w = np.clip(w, 0, 1) + t = (1 - w) * low_idx + w * high_idx + t = t.reshape(sigma.shape) + return t + + def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor: + if hasattr(self.config, 'sigma_min'): + sigma_min = self.config.sigma_min + else: + sigma_min = None + if hasattr(self.config, 'sigma_max'): + sigma_max = self.config.sigma_max + else: + sigma_max = None + sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() + sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() + rho = 7.0 + ramp = np.linspace(0, 1, num_inference_steps) + min_inv_rho = sigma_min ** (1 / rho) + max_inv_rho = sigma_max ** (1 / rho) + sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho + return sigmas + + def index_for_timestep(self, timestep, schedule_timesteps=None): + if schedule_timesteps is None: + schedule_timesteps = self.timesteps + indices = (schedule_timesteps == timestep).nonzero() + pos = 1 if len(indices) > 1 else 0 + return indices[pos].item() + + def _init_step_index(self, timestep): + if self.begin_index is None: + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + self._step_index = self.index_for_timestep(timestep) + else: + self._step_index = self._begin_index + + def step(self, model_output: torch.Tensor, timestep: Union[float, torch.Tensor], sample: torch.Tensor, s_churn: float=0.0, s_tmin: float=0.0, s_tmax: float=float('inf'), s_noise: float=1.0, generator: Optional[torch.Generator]=None, return_dict: bool=True) -> Union[EulerDiscreteSchedulerOutput, Tuple]: + if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)): + raise ValueError('Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to `EulerDiscreteScheduler.step()` is not supported. Make sure to pass one of the `scheduler.timesteps` as a timestep.') + if not self.is_scale_input_called: + logger.warning('The `scale_model_input` function should be called before `step` to ensure correct denoising. See `StableDiffusionPipeline` for a usage example.') + if self.step_index is None: + self._init_step_index(timestep) + sample = sample.to(torch.float32) + sigma = self.sigmas[self.step_index] + gamma = min(s_churn / (len(self.sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0 + noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator) + eps = noise * s_noise + sigma_hat = sigma * (gamma + 1) + if gamma > 0: + sample = sample + eps * (sigma_hat ** 2 - sigma ** 2) ** 0.5 + if self.config.prediction_type == 'original_sample' or self.config.prediction_type == 'sample': + pred_original_sample = model_output + elif self.config.prediction_type == 'epsilon': + pred_original_sample = sample - sigma_hat * model_output + elif self.config.prediction_type == 'v_prediction': + pred_original_sample = model_output * (-sigma / (sigma ** 2 + 1) ** 0.5) + sample / (sigma ** 2 + 1) + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`') + derivative = (sample - pred_original_sample) / sigma_hat + dt = self.sigmas[self.step_index + 1] - sigma_hat + prev_sample = sample + derivative * dt + prev_sample = prev_sample.to(model_output.dtype) + self._step_index += 1 + if not return_dict: + return (prev_sample,) + return EulerDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor: + sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) + if original_samples.device.type == 'mps' and torch.is_floating_point(timesteps): + schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) + timesteps = timesteps.to(original_samples.device, dtype=torch.float32) + else: + schedule_timesteps = self.timesteps.to(original_samples.device) + timesteps = timesteps.to(original_samples.device) + if self.begin_index is None: + step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] + elif self.step_index is not None: + step_indices = [self.step_index] * timesteps.shape[0] + else: + step_indices = [self.begin_index] * timesteps.shape[0] + sigma = sigmas[step_indices].flatten() + while len(sigma.shape) < len(original_samples.shape): + sigma = sigma.unsqueeze(-1) + noisy_samples = original_samples + noise * sigma + return noisy_samples + + def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor: + if isinstance(timesteps, int) or isinstance(timesteps, torch.IntTensor) or isinstance(timesteps, torch.LongTensor): + raise ValueError('Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to `EulerDiscreteScheduler.get_velocity()` is not supported. Make sure to pass one of the `scheduler.timesteps` as a timestep.') + if sample.device.type == 'mps' and torch.is_floating_point(timesteps): + schedule_timesteps = self.timesteps.to(sample.device, dtype=torch.float32) + timesteps = timesteps.to(sample.device, dtype=torch.float32) + else: + schedule_timesteps = self.timesteps.to(sample.device) + timesteps = timesteps.to(sample.device) + step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] + alphas_cumprod = self.alphas_cumprod.to(sample) + sqrt_alpha_prod = alphas_cumprod[step_indices] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(sample.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[step_indices]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample + return velocity + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_euler_discrete_flax.py +from dataclasses import dataclass +from typing import Optional, Tuple, Union +import flax +import jax.numpy as jnp +from ..configuration_utils import ConfigMixin, register_to_config +from .scheduling_utils_flax import CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left + +@flax.struct.dataclass +class EulerDiscreteSchedulerState: + common: CommonSchedulerState + init_noise_sigma: jnp.ndarray + timesteps: jnp.ndarray + sigmas: jnp.ndarray + num_inference_steps: Optional[int] = None + + @classmethod + def create(cls, common: CommonSchedulerState, init_noise_sigma: jnp.ndarray, timesteps: jnp.ndarray, sigmas: jnp.ndarray): + return cls(common=common, init_noise_sigma=init_noise_sigma, timesteps=timesteps, sigmas=sigmas) + +@dataclass +class FlaxEulerDiscreteSchedulerOutput(FlaxSchedulerOutput): + state: EulerDiscreteSchedulerState + +class FlaxEulerDiscreteScheduler(FlaxSchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in FlaxKarrasDiffusionSchedulers] + dtype: jnp.dtype + + @property + def has_state(self): + return True + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.0001, beta_end: float=0.02, beta_schedule: str='linear', trained_betas: Optional[jnp.ndarray]=None, prediction_type: str='epsilon', timestep_spacing: str='linspace', dtype: jnp.dtype=jnp.float32): + self.dtype = dtype + + def create_state(self, common: Optional[CommonSchedulerState]=None) -> EulerDiscreteSchedulerState: + if common is None: + common = CommonSchedulerState.create(self) + timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1] + sigmas = ((1 - common.alphas_cumprod) / common.alphas_cumprod) ** 0.5 + sigmas = jnp.interp(timesteps, jnp.arange(0, len(sigmas)), sigmas) + sigmas = jnp.concatenate([sigmas, jnp.array([0.0], dtype=self.dtype)]) + if self.config.timestep_spacing in ['linspace', 'trailing']: + init_noise_sigma = sigmas.max() + else: + init_noise_sigma = (sigmas.max() ** 2 + 1) ** 0.5 + return EulerDiscreteSchedulerState.create(common=common, init_noise_sigma=init_noise_sigma, timesteps=timesteps, sigmas=sigmas) + + def scale_model_input(self, state: EulerDiscreteSchedulerState, sample: jnp.ndarray, timestep: int) -> jnp.ndarray: + (step_index,) = jnp.where(state.timesteps == timestep, size=1) + step_index = step_index[0] + sigma = state.sigmas[step_index] + sample = sample / (sigma ** 2 + 1) ** 0.5 + return sample + + def set_timesteps(self, state: EulerDiscreteSchedulerState, num_inference_steps: int, shape: Tuple=()) -> EulerDiscreteSchedulerState: + if self.config.timestep_spacing == 'linspace': + timesteps = jnp.linspace(self.config.num_train_timesteps - 1, 0, num_inference_steps, dtype=self.dtype) + elif self.config.timestep_spacing == 'leading': + step_ratio = self.config.num_train_timesteps // num_inference_steps + timesteps = (jnp.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(float) + timesteps += 1 + else: + raise ValueError(f"timestep_spacing must be one of ['linspace', 'leading'], got {self.config.timestep_spacing}") + sigmas = ((1 - state.common.alphas_cumprod) / state.common.alphas_cumprod) ** 0.5 + sigmas = jnp.interp(timesteps, jnp.arange(0, len(sigmas)), sigmas) + sigmas = jnp.concatenate([sigmas, jnp.array([0.0], dtype=self.dtype)]) + if self.config.timestep_spacing in ['linspace', 'trailing']: + init_noise_sigma = sigmas.max() + else: + init_noise_sigma = (sigmas.max() ** 2 + 1) ** 0.5 + return state.replace(timesteps=timesteps, sigmas=sigmas, num_inference_steps=num_inference_steps, init_noise_sigma=init_noise_sigma) + + def step(self, state: EulerDiscreteSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, return_dict: bool=True) -> Union[FlaxEulerDiscreteSchedulerOutput, Tuple]: + if state.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + (step_index,) = jnp.where(state.timesteps == timestep, size=1) + step_index = step_index[0] + sigma = state.sigmas[step_index] + if self.config.prediction_type == 'epsilon': + pred_original_sample = sample - sigma * model_output + elif self.config.prediction_type == 'v_prediction': + pred_original_sample = model_output * (-sigma / (sigma ** 2 + 1) ** 0.5) + sample / (sigma ** 2 + 1) + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`') + derivative = (sample - pred_original_sample) / sigma + dt = state.sigmas[step_index + 1] - sigma + prev_sample = sample + derivative * dt + if not return_dict: + return (prev_sample, state) + return FlaxEulerDiscreteSchedulerOutput(prev_sample=prev_sample, state=state) + + def add_noise(self, state: EulerDiscreteSchedulerState, original_samples: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray) -> jnp.ndarray: + sigma = state.sigmas[timesteps].flatten() + sigma = broadcast_to_shape_from_left(sigma, noise.shape) + noisy_samples = original_samples + noise * sigma + return noisy_samples + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py +import math +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput, logging +from .scheduling_utils import SchedulerMixin +logger = logging.get_logger(__name__) + +@dataclass +class FlowMatchEulerDiscreteSchedulerOutput(BaseOutput): + prev_sample: torch.FloatTensor + +class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [] + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, shift: float=1.0, use_dynamic_shifting=False, base_shift: Optional[float]=0.5, max_shift: Optional[float]=1.15, base_image_seq_len: Optional[int]=256, max_image_seq_len: Optional[int]=4096): + timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy() + timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32) + sigmas = timesteps / num_train_timesteps + if not use_dynamic_shifting: + sigmas = shift * sigmas / (1 + (shift - 1) * sigmas) + self.timesteps = sigmas * num_train_timesteps + self._step_index = None + self._begin_index = None + self.sigmas = sigmas.to('cpu') + self.sigma_min = self.sigmas[-1].item() + self.sigma_max = self.sigmas[0].item() + + @property + def step_index(self): + return self._step_index + + @property + def begin_index(self): + return self._begin_index + + def set_begin_index(self, begin_index: int=0): + self._begin_index = begin_index + + def scale_noise(self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor], noise: Optional[torch.FloatTensor]=None) -> torch.FloatTensor: + sigmas = self.sigmas.to(device=sample.device, dtype=sample.dtype) + if sample.device.type == 'mps' and torch.is_floating_point(timestep): + schedule_timesteps = self.timesteps.to(sample.device, dtype=torch.float32) + timestep = timestep.to(sample.device, dtype=torch.float32) + else: + schedule_timesteps = self.timesteps.to(sample.device) + timestep = timestep.to(sample.device) + if self.begin_index is None: + step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timestep] + elif self.step_index is not None: + step_indices = [self.step_index] * timestep.shape[0] + else: + step_indices = [self.begin_index] * timestep.shape[0] + sigma = sigmas[step_indices].flatten() + while len(sigma.shape) < len(sample.shape): + sigma = sigma.unsqueeze(-1) + sample = sigma * noise + (1.0 - sigma) * sample + return sample + + def _sigma_to_t(self, sigma): + return sigma * self.config.num_train_timesteps + + def time_shift(self, mu: float, sigma: float, t: torch.Tensor): + return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) + + def set_timesteps(self, num_inference_steps: int=None, device: Union[str, torch.device]=None, sigmas: Optional[List[float]]=None, mu: Optional[float]=None): + if self.config.use_dynamic_shifting and mu is None: + raise ValueError(' you have a pass a value for `mu` when `use_dynamic_shifting` is set to be `True`') + if sigmas is None: + self.num_inference_steps = num_inference_steps + timesteps = np.linspace(self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps) + sigmas = timesteps / self.config.num_train_timesteps + if self.config.use_dynamic_shifting: + sigmas = self.time_shift(mu, 1.0, sigmas) + else: + sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas) + sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) + timesteps = sigmas * self.config.num_train_timesteps + self.timesteps = timesteps.to(device=device) + self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) + self._step_index = None + self._begin_index = None + + def index_for_timestep(self, timestep, schedule_timesteps=None): + if schedule_timesteps is None: + schedule_timesteps = self.timesteps + indices = (schedule_timesteps == timestep).nonzero() + pos = 1 if len(indices) > 1 else 0 + return indices[pos].item() + + def _init_step_index(self, timestep): + if self.begin_index is None: + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + self._step_index = self.index_for_timestep(timestep) + else: + self._step_index = self._begin_index + + def step(self, model_output: torch.FloatTensor, timestep: Union[float, torch.FloatTensor], sample: torch.FloatTensor, s_churn: float=0.0, s_tmin: float=0.0, s_tmax: float=float('inf'), s_noise: float=1.0, generator: Optional[torch.Generator]=None, return_dict: bool=True) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]: + if isinstance(timestep, int) or isinstance(timestep, torch.IntTensor) or isinstance(timestep, torch.LongTensor): + raise ValueError('Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to `EulerDiscreteScheduler.step()` is not supported. Make sure to pass one of the `scheduler.timesteps` as a timestep.') + if self.step_index is None: + self._init_step_index(timestep) + sample = sample.to(torch.float32) + sigma = self.sigmas[self.step_index] + sigma_next = self.sigmas[self.step_index + 1] + prev_sample = sample + (sigma_next - sigma) * model_output + prev_sample = prev_sample.to(model_output.dtype) + self._step_index += 1 + if not return_dict: + return (prev_sample,) + return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample) + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_flow_match_heun_discrete.py +from dataclasses import dataclass +from typing import Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput, logging +from ..utils.torch_utils import randn_tensor +from .scheduling_utils import SchedulerMixin +logger = logging.get_logger(__name__) + +@dataclass +class FlowMatchHeunDiscreteSchedulerOutput(BaseOutput): + prev_sample: torch.FloatTensor + +class FlowMatchHeunDiscreteScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [] + order = 2 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, shift: float=1.0): + timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy() + timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32) + sigmas = timesteps / num_train_timesteps + sigmas = shift * sigmas / (1 + (shift - 1) * sigmas) + self.timesteps = sigmas * num_train_timesteps + self._step_index = None + self._begin_index = None + self.sigmas = sigmas.to('cpu') + self.sigma_min = self.sigmas[-1].item() + self.sigma_max = self.sigmas[0].item() + + @property + def step_index(self): + return self._step_index + + @property + def begin_index(self): + return self._begin_index + + def set_begin_index(self, begin_index: int=0): + self._begin_index = begin_index + + def scale_noise(self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor], noise: Optional[torch.FloatTensor]=None) -> torch.FloatTensor: + if self.step_index is None: + self._init_step_index(timestep) + sigma = self.sigmas[self.step_index] + sample = sigma * noise + (1.0 - sigma) * sample + return sample + + def _sigma_to_t(self, sigma): + return sigma * self.config.num_train_timesteps + + def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device]=None): + self.num_inference_steps = num_inference_steps + timesteps = np.linspace(self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps) + sigmas = timesteps / self.config.num_train_timesteps + sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas) + sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) + timesteps = sigmas * self.config.num_train_timesteps + timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)]) + self.timesteps = timesteps.to(device=device) + sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) + self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]]) + self.prev_derivative = None + self.dt = None + self._step_index = None + self._begin_index = None + + def index_for_timestep(self, timestep, schedule_timesteps=None): + if schedule_timesteps is None: + schedule_timesteps = self.timesteps + indices = (schedule_timesteps == timestep).nonzero() + pos = 1 if len(indices) > 1 else 0 + return indices[pos].item() + + def _init_step_index(self, timestep): + if self.begin_index is None: + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + self._step_index = self.index_for_timestep(timestep) + else: + self._step_index = self._begin_index + + @property + def state_in_first_order(self): + return self.dt is None + + def step(self, model_output: torch.FloatTensor, timestep: Union[float, torch.FloatTensor], sample: torch.FloatTensor, s_churn: float=0.0, s_tmin: float=0.0, s_tmax: float=float('inf'), s_noise: float=1.0, generator: Optional[torch.Generator]=None, return_dict: bool=True) -> Union[FlowMatchHeunDiscreteSchedulerOutput, Tuple]: + if isinstance(timestep, int) or isinstance(timestep, torch.IntTensor) or isinstance(timestep, torch.LongTensor): + raise ValueError('Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to `HeunDiscreteScheduler.step()` is not supported. Make sure to pass one of the `scheduler.timesteps` as a timestep.') + if self.step_index is None: + self._init_step_index(timestep) + sample = sample.to(torch.float32) + if self.state_in_first_order: + sigma = self.sigmas[self.step_index] + sigma_next = self.sigmas[self.step_index + 1] + else: + sigma = self.sigmas[self.step_index - 1] + sigma_next = self.sigmas[self.step_index] + gamma = min(s_churn / (len(self.sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0 + noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator) + eps = noise * s_noise + sigma_hat = sigma * (gamma + 1) + if gamma > 0: + sample = sample + eps * (sigma_hat ** 2 - sigma ** 2) ** 0.5 + if self.state_in_first_order: + denoised = sample - model_output * sigma + derivative = (sample - denoised) / sigma_hat + dt = sigma_next - sigma_hat + self.prev_derivative = derivative + self.dt = dt + self.sample = sample + else: + denoised = sample - model_output * sigma_next + derivative = (sample - denoised) / sigma_next + derivative = 0.5 * (self.prev_derivative + derivative) + dt = self.dt + sample = self.sample + self.prev_derivative = None + self.dt = None + self.sample = None + prev_sample = sample + derivative * dt + prev_sample = prev_sample.to(model_output.dtype) + self._step_index += 1 + if not return_dict: + return (prev_sample,) + return FlowMatchHeunDiscreteSchedulerOutput(prev_sample=prev_sample) + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_heun_discrete.py +import math +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in KarrasDiffusionSchedulers] + order = 2 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.00085, beta_end: float=0.012, beta_schedule: str='linear', trained_betas: Optional[Union[np.ndarray, List[float]]]=None, prediction_type: str='epsilon', use_karras_sigmas: Optional[bool]=False, clip_sample: Optional[bool]=False, clip_sample_range: float=1.0, timestep_spacing: str='linspace', steps_offset: int=0): + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type='cosine') + elif beta_schedule == 'exp': + self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type='exp') + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + self.set_timesteps(num_train_timesteps, None, num_train_timesteps) + self.use_karras_sigmas = use_karras_sigmas + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + def index_for_timestep(self, timestep, schedule_timesteps=None): + if schedule_timesteps is None: + schedule_timesteps = self.timesteps + indices = (schedule_timesteps == timestep).nonzero() + pos = 1 if len(indices) > 1 else 0 + return indices[pos].item() + + @property + def init_noise_sigma(self): + if self.config.timestep_spacing in ['linspace', 'trailing']: + return self.sigmas.max() + return (self.sigmas.max() ** 2 + 1) ** 0.5 + + @property + def step_index(self): + return self._step_index + + @property + def begin_index(self): + return self._begin_index + + def set_begin_index(self, begin_index: int=0): + self._begin_index = begin_index + + def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: + if self.step_index is None: + self._init_step_index(timestep) + sigma = self.sigmas[self.step_index] + sample = sample / (sigma ** 2 + 1) ** 0.5 + return sample + + def set_timesteps(self, num_inference_steps: Optional[int]=None, device: Union[str, torch.device]=None, num_train_timesteps: Optional[int]=None, timesteps: Optional[List[int]]=None): + if num_inference_steps is None and timesteps is None: + raise ValueError('Must pass exactly one of `num_inference_steps` or `custom_timesteps`.') + if num_inference_steps is not None and timesteps is not None: + raise ValueError('Can only pass one of `num_inference_steps` or `custom_timesteps`.') + if timesteps is not None and self.config.use_karras_sigmas: + raise ValueError('Cannot use `timesteps` with `config.use_karras_sigmas = True`') + num_inference_steps = num_inference_steps or len(timesteps) + self.num_inference_steps = num_inference_steps + num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps + if timesteps is not None: + timesteps = np.array(timesteps, dtype=np.float32) + elif self.config.timestep_spacing == 'linspace': + timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[::-1].copy() + elif self.config.timestep_spacing == 'leading': + step_ratio = num_train_timesteps // self.num_inference_steps + timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32) + timesteps += self.config.steps_offset + elif self.config.timestep_spacing == 'trailing': + step_ratio = num_train_timesteps / self.num_inference_steps + timesteps = np.arange(num_train_timesteps, 0, -step_ratio).round().copy().astype(np.float32) + timesteps -= 1 + else: + raise ValueError(f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.") + sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) + log_sigmas = np.log(sigmas) + sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) + if self.config.use_karras_sigmas: + sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps) + timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) + sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) + sigmas = torch.from_numpy(sigmas).to(device=device) + self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]]) + timesteps = torch.from_numpy(timesteps) + timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)]) + self.timesteps = timesteps.to(device=device) + self.prev_derivative = None + self.dt = None + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + def _sigma_to_t(self, sigma, log_sigmas): + log_sigma = np.log(np.maximum(sigma, 1e-10)) + dists = log_sigma - log_sigmas[:, np.newaxis] + low_idx = np.cumsum(dists >= 0, axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) + high_idx = low_idx + 1 + low = log_sigmas[low_idx] + high = log_sigmas[high_idx] + w = (low - log_sigma) / (low - high) + w = np.clip(w, 0, 1) + t = (1 - w) * low_idx + w * high_idx + t = t.reshape(sigma.shape) + return t + + def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor: + if hasattr(self.config, 'sigma_min'): + sigma_min = self.config.sigma_min + else: + sigma_min = None + if hasattr(self.config, 'sigma_max'): + sigma_max = self.config.sigma_max + else: + sigma_max = None + sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() + sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() + rho = 7.0 + ramp = np.linspace(0, 1, num_inference_steps) + min_inv_rho = sigma_min ** (1 / rho) + max_inv_rho = sigma_max ** (1 / rho) + sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho + return sigmas + + @property + def state_in_first_order(self): + return self.dt is None + + def _init_step_index(self, timestep): + if self.begin_index is None: + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + self._step_index = self.index_for_timestep(timestep) + else: + self._step_index = self._begin_index + + def step(self, model_output: Union[torch.Tensor, np.ndarray], timestep: Union[float, torch.Tensor], sample: Union[torch.Tensor, np.ndarray], return_dict: bool=True) -> Union[SchedulerOutput, Tuple]: + if self.step_index is None: + self._init_step_index(timestep) + if self.state_in_first_order: + sigma = self.sigmas[self.step_index] + sigma_next = self.sigmas[self.step_index + 1] + else: + sigma = self.sigmas[self.step_index - 1] + sigma_next = self.sigmas[self.step_index] + gamma = 0 + sigma_hat = sigma * (gamma + 1) + if self.config.prediction_type == 'epsilon': + sigma_input = sigma_hat if self.state_in_first_order else sigma_next + pred_original_sample = sample - sigma_input * model_output + elif self.config.prediction_type == 'v_prediction': + sigma_input = sigma_hat if self.state_in_first_order else sigma_next + pred_original_sample = model_output * (-sigma_input / (sigma_input ** 2 + 1) ** 0.5) + sample / (sigma_input ** 2 + 1) + elif self.config.prediction_type == 'sample': + pred_original_sample = model_output + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`') + if self.config.clip_sample: + pred_original_sample = pred_original_sample.clamp(-self.config.clip_sample_range, self.config.clip_sample_range) + if self.state_in_first_order: + derivative = (sample - pred_original_sample) / sigma_hat + dt = sigma_next - sigma_hat + self.prev_derivative = derivative + self.dt = dt + self.sample = sample + else: + derivative = (sample - pred_original_sample) / sigma_next + derivative = (self.prev_derivative + derivative) / 2 + dt = self.dt + sample = self.sample + self.prev_derivative = None + self.dt = None + self.sample = None + prev_sample = sample + derivative * dt + self._step_index += 1 + if not return_dict: + return (prev_sample,) + return SchedulerOutput(prev_sample=prev_sample) + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor: + sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) + if original_samples.device.type == 'mps' and torch.is_floating_point(timesteps): + schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) + timesteps = timesteps.to(original_samples.device, dtype=torch.float32) + else: + schedule_timesteps = self.timesteps.to(original_samples.device) + timesteps = timesteps.to(original_samples.device) + if self.begin_index is None: + step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] + elif self.step_index is not None: + step_indices = [self.step_index] * timesteps.shape[0] + else: + step_indices = [self.begin_index] * timesteps.shape[0] + sigma = sigmas[step_indices].flatten() + while len(sigma.shape) < len(original_samples.shape): + sigma = sigma.unsqueeze(-1) + noisy_samples = original_samples + noise * sigma + return noisy_samples + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_ipndm.py +import math +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from .scheduling_utils import SchedulerMixin, SchedulerOutput + +class IPNDMScheduler(SchedulerMixin, ConfigMixin): + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, trained_betas: Optional[Union[np.ndarray, List[float]]]=None): + self.set_timesteps(num_train_timesteps) + self.init_noise_sigma = 1.0 + self.pndm_order = 4 + self.ets = [] + self._step_index = None + self._begin_index = None + + @property + def step_index(self): + return self._step_index + + @property + def begin_index(self): + return self._begin_index + + def set_begin_index(self, begin_index: int=0): + self._begin_index = begin_index + + def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device]=None): + self.num_inference_steps = num_inference_steps + steps = torch.linspace(1, 0, num_inference_steps + 1)[:-1] + steps = torch.cat([steps, torch.tensor([0.0])]) + if self.config.trained_betas is not None: + self.betas = torch.tensor(self.config.trained_betas, dtype=torch.float32) + else: + self.betas = torch.sin(steps * math.pi / 2) ** 2 + self.alphas = (1.0 - self.betas ** 2) ** 0.5 + timesteps = (torch.atan2(self.betas, self.alphas) / math.pi * 2)[:-1] + self.timesteps = timesteps.to(device) + self.ets = [] + self._step_index = None + self._begin_index = None + + def index_for_timestep(self, timestep, schedule_timesteps=None): + if schedule_timesteps is None: + schedule_timesteps = self.timesteps + indices = (schedule_timesteps == timestep).nonzero() + pos = 1 if len(indices) > 1 else 0 + return indices[pos].item() + + def _init_step_index(self, timestep): + if self.begin_index is None: + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + self._step_index = self.index_for_timestep(timestep) + else: + self._step_index = self._begin_index + + def step(self, model_output: torch.Tensor, timestep: Union[int, torch.Tensor], sample: torch.Tensor, return_dict: bool=True) -> Union[SchedulerOutput, Tuple]: + if self.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + if self.step_index is None: + self._init_step_index(timestep) + timestep_index = self.step_index + prev_timestep_index = self.step_index + 1 + ets = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] + self.ets.append(ets) + if len(self.ets) == 1: + ets = self.ets[-1] + elif len(self.ets) == 2: + ets = (3 * self.ets[-1] - self.ets[-2]) / 2 + elif len(self.ets) == 3: + ets = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 + else: + ets = 1 / 24 * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) + prev_sample = self._get_prev_sample(sample, timestep_index, prev_timestep_index, ets) + self._step_index += 1 + if not return_dict: + return (prev_sample,) + return SchedulerOutput(prev_sample=prev_sample) + + def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor: + return sample + + def _get_prev_sample(self, sample, timestep_index, prev_timestep_index, ets): + alpha = self.alphas[timestep_index] + sigma = self.betas[timestep_index] + next_alpha = self.alphas[prev_timestep_index] + next_sigma = self.betas[prev_timestep_index] + pred = (sample - sigma * ets) / max(alpha, 1e-08) + prev_sample = next_alpha * pred + ets * next_sigma + return prev_sample + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +import math +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils.torch_utils import randn_tensor +from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in KarrasDiffusionSchedulers] + order = 2 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.00085, beta_end: float=0.012, beta_schedule: str='linear', trained_betas: Optional[Union[np.ndarray, List[float]]]=None, use_karras_sigmas: Optional[bool]=False, prediction_type: str='epsilon', timestep_spacing: str='linspace', steps_offset: int=0): + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + self.set_timesteps(num_train_timesteps, None, num_train_timesteps) + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + @property + def init_noise_sigma(self): + if self.config.timestep_spacing in ['linspace', 'trailing']: + return self.sigmas.max() + return (self.sigmas.max() ** 2 + 1) ** 0.5 + + @property + def step_index(self): + return self._step_index + + @property + def begin_index(self): + return self._begin_index + + def set_begin_index(self, begin_index: int=0): + self._begin_index = begin_index + + def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: + if self.step_index is None: + self._init_step_index(timestep) + if self.state_in_first_order: + sigma = self.sigmas[self.step_index] + else: + sigma = self.sigmas_interpol[self.step_index - 1] + sample = sample / (sigma ** 2 + 1) ** 0.5 + return sample + + def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device]=None, num_train_timesteps: Optional[int]=None): + self.num_inference_steps = num_inference_steps + num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps + if self.config.timestep_spacing == 'linspace': + timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[::-1].copy() + elif self.config.timestep_spacing == 'leading': + step_ratio = num_train_timesteps // self.num_inference_steps + timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32) + timesteps += self.config.steps_offset + elif self.config.timestep_spacing == 'trailing': + step_ratio = num_train_timesteps / self.num_inference_steps + timesteps = np.arange(num_train_timesteps, 0, -step_ratio).round().copy().astype(np.float32) + timesteps -= 1 + else: + raise ValueError(f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.") + sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) + log_sigmas = np.log(sigmas) + sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) + if self.config.use_karras_sigmas: + sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) + timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round() + self.log_sigmas = torch.from_numpy(log_sigmas).to(device) + sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) + sigmas = torch.from_numpy(sigmas).to(device=device) + sigmas_next = sigmas.roll(-1) + sigmas_next[-1] = 0.0 + sigmas_up = (sigmas_next ** 2 * (sigmas ** 2 - sigmas_next ** 2) / sigmas ** 2) ** 0.5 + sigmas_down = (sigmas_next ** 2 - sigmas_up ** 2) ** 0.5 + sigmas_down[-1] = 0.0 + sigmas_interpol = sigmas.log().lerp(sigmas_down.log(), 0.5).exp() + sigmas_interpol[-2:] = 0.0 + self.sigmas = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]]) + self.sigmas_interpol = torch.cat([sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]]) + self.sigmas_up = torch.cat([sigmas_up[:1], sigmas_up[1:].repeat_interleave(2), sigmas_up[-1:]]) + self.sigmas_down = torch.cat([sigmas_down[:1], sigmas_down[1:].repeat_interleave(2), sigmas_down[-1:]]) + if str(device).startswith('mps'): + timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32) + else: + timesteps = torch.from_numpy(timesteps).to(device) + sigmas_interpol = sigmas_interpol.cpu() + log_sigmas = self.log_sigmas.cpu() + timesteps_interpol = np.array([self._sigma_to_t(sigma_interpol, log_sigmas) for sigma_interpol in sigmas_interpol]) + timesteps_interpol = torch.from_numpy(timesteps_interpol).to(device, dtype=timesteps.dtype) + interleaved_timesteps = torch.stack((timesteps_interpol[:-2, None], timesteps[1:, None]), dim=-1).flatten() + self.timesteps = torch.cat([timesteps[:1], interleaved_timesteps]) + self.sample = None + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + def _sigma_to_t(self, sigma, log_sigmas): + log_sigma = np.log(np.maximum(sigma, 1e-10)) + dists = log_sigma - log_sigmas[:, np.newaxis] + low_idx = np.cumsum(dists >= 0, axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) + high_idx = low_idx + 1 + low = log_sigmas[low_idx] + high = log_sigmas[high_idx] + w = (low - log_sigma) / (low - high) + w = np.clip(w, 0, 1) + t = (1 - w) * low_idx + w * high_idx + t = t.reshape(sigma.shape) + return t + + def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor: + if hasattr(self.config, 'sigma_min'): + sigma_min = self.config.sigma_min + else: + sigma_min = None + if hasattr(self.config, 'sigma_max'): + sigma_max = self.config.sigma_max + else: + sigma_max = None + sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() + sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() + rho = 7.0 + ramp = np.linspace(0, 1, num_inference_steps) + min_inv_rho = sigma_min ** (1 / rho) + max_inv_rho = sigma_max ** (1 / rho) + sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho + return sigmas + + @property + def state_in_first_order(self): + return self.sample is None + + def index_for_timestep(self, timestep, schedule_timesteps=None): + if schedule_timesteps is None: + schedule_timesteps = self.timesteps + indices = (schedule_timesteps == timestep).nonzero() + pos = 1 if len(indices) > 1 else 0 + return indices[pos].item() + + def _init_step_index(self, timestep): + if self.begin_index is None: + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + self._step_index = self.index_for_timestep(timestep) + else: + self._step_index = self._begin_index + + def step(self, model_output: Union[torch.Tensor, np.ndarray], timestep: Union[float, torch.Tensor], sample: Union[torch.Tensor, np.ndarray], generator: Optional[torch.Generator]=None, return_dict: bool=True) -> Union[SchedulerOutput, Tuple]: + if self.step_index is None: + self._init_step_index(timestep) + if self.state_in_first_order: + sigma = self.sigmas[self.step_index] + sigma_interpol = self.sigmas_interpol[self.step_index] + sigma_up = self.sigmas_up[self.step_index] + sigma_down = self.sigmas_down[self.step_index - 1] + else: + sigma = self.sigmas[self.step_index - 1] + sigma_interpol = self.sigmas_interpol[self.step_index - 1] + sigma_up = self.sigmas_up[self.step_index - 1] + sigma_down = self.sigmas_down[self.step_index - 1] + gamma = 0 + sigma_hat = sigma * (gamma + 1) + device = model_output.device + noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=device, generator=generator) + if self.config.prediction_type == 'epsilon': + sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol + pred_original_sample = sample - sigma_input * model_output + elif self.config.prediction_type == 'v_prediction': + sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol + pred_original_sample = model_output * (-sigma_input / (sigma_input ** 2 + 1) ** 0.5) + sample / (sigma_input ** 2 + 1) + elif self.config.prediction_type == 'sample': + raise NotImplementedError('prediction_type not implemented yet: sample') + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`') + if self.state_in_first_order: + derivative = (sample - pred_original_sample) / sigma_hat + dt = sigma_interpol - sigma_hat + self.sample = sample + self.dt = dt + prev_sample = sample + derivative * dt + else: + derivative = (sample - pred_original_sample) / sigma_interpol + dt = sigma_down - sigma_hat + sample = self.sample + self.sample = None + prev_sample = sample + derivative * dt + prev_sample = prev_sample + noise * sigma_up + self._step_index += 1 + if not return_dict: + return (prev_sample,) + return SchedulerOutput(prev_sample=prev_sample) + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor: + sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) + if original_samples.device.type == 'mps' and torch.is_floating_point(timesteps): + schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) + timesteps = timesteps.to(original_samples.device, dtype=torch.float32) + else: + schedule_timesteps = self.timesteps.to(original_samples.device) + timesteps = timesteps.to(original_samples.device) + if self.begin_index is None: + step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] + elif self.step_index is not None: + step_indices = [self.step_index] * timesteps.shape[0] + else: + step_indices = [self.begin_index] * timesteps.shape[0] + sigma = sigmas[step_indices].flatten() + while len(sigma.shape) < len(original_samples.shape): + sigma = sigma.unsqueeze(-1) + noisy_samples = original_samples + noise * sigma + return noisy_samples + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_k_dpm_2_discrete.py +import math +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in KarrasDiffusionSchedulers] + order = 2 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.00085, beta_end: float=0.012, beta_schedule: str='linear', trained_betas: Optional[Union[np.ndarray, List[float]]]=None, use_karras_sigmas: Optional[bool]=False, prediction_type: str='epsilon', timestep_spacing: str='linspace', steps_offset: int=0): + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + self.set_timesteps(num_train_timesteps, None, num_train_timesteps) + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + @property + def init_noise_sigma(self): + if self.config.timestep_spacing in ['linspace', 'trailing']: + return self.sigmas.max() + return (self.sigmas.max() ** 2 + 1) ** 0.5 + + @property + def step_index(self): + return self._step_index + + @property + def begin_index(self): + return self._begin_index + + def set_begin_index(self, begin_index: int=0): + self._begin_index = begin_index + + def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: + if self.step_index is None: + self._init_step_index(timestep) + if self.state_in_first_order: + sigma = self.sigmas[self.step_index] + else: + sigma = self.sigmas_interpol[self.step_index] + sample = sample / (sigma ** 2 + 1) ** 0.5 + return sample + + def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device]=None, num_train_timesteps: Optional[int]=None): + self.num_inference_steps = num_inference_steps + num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps + if self.config.timestep_spacing == 'linspace': + timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[::-1].copy() + elif self.config.timestep_spacing == 'leading': + step_ratio = num_train_timesteps // self.num_inference_steps + timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32) + timesteps += self.config.steps_offset + elif self.config.timestep_spacing == 'trailing': + step_ratio = num_train_timesteps / self.num_inference_steps + timesteps = np.arange(num_train_timesteps, 0, -step_ratio).round().copy().astype(np.float32) + timesteps -= 1 + else: + raise ValueError(f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.") + sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) + log_sigmas = np.log(sigmas) + sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) + if self.config.use_karras_sigmas: + sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) + timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round() + self.log_sigmas = torch.from_numpy(log_sigmas).to(device=device) + sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) + sigmas = torch.from_numpy(sigmas).to(device=device) + sigmas_interpol = sigmas.log().lerp(sigmas.roll(1).log(), 0.5).exp() + self.sigmas = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]]) + self.sigmas_interpol = torch.cat([sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]]) + timesteps = torch.from_numpy(timesteps).to(device) + sigmas_interpol = sigmas_interpol.cpu() + log_sigmas = self.log_sigmas.cpu() + timesteps_interpol = np.array([self._sigma_to_t(sigma_interpol, log_sigmas) for sigma_interpol in sigmas_interpol]) + timesteps_interpol = torch.from_numpy(timesteps_interpol).to(device, dtype=timesteps.dtype) + interleaved_timesteps = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]), dim=-1).flatten() + self.timesteps = torch.cat([timesteps[:1], interleaved_timesteps]) + self.sample = None + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + @property + def state_in_first_order(self): + return self.sample is None + + def index_for_timestep(self, timestep, schedule_timesteps=None): + if schedule_timesteps is None: + schedule_timesteps = self.timesteps + indices = (schedule_timesteps == timestep).nonzero() + pos = 1 if len(indices) > 1 else 0 + return indices[pos].item() + + def _init_step_index(self, timestep): + if self.begin_index is None: + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + self._step_index = self.index_for_timestep(timestep) + else: + self._step_index = self._begin_index + + def _sigma_to_t(self, sigma, log_sigmas): + log_sigma = np.log(np.maximum(sigma, 1e-10)) + dists = log_sigma - log_sigmas[:, np.newaxis] + low_idx = np.cumsum(dists >= 0, axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) + high_idx = low_idx + 1 + low = log_sigmas[low_idx] + high = log_sigmas[high_idx] + w = (low - log_sigma) / (low - high) + w = np.clip(w, 0, 1) + t = (1 - w) * low_idx + w * high_idx + t = t.reshape(sigma.shape) + return t + + def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor: + if hasattr(self.config, 'sigma_min'): + sigma_min = self.config.sigma_min + else: + sigma_min = None + if hasattr(self.config, 'sigma_max'): + sigma_max = self.config.sigma_max + else: + sigma_max = None + sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() + sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() + rho = 7.0 + ramp = np.linspace(0, 1, num_inference_steps) + min_inv_rho = sigma_min ** (1 / rho) + max_inv_rho = sigma_max ** (1 / rho) + sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho + return sigmas + + def step(self, model_output: Union[torch.Tensor, np.ndarray], timestep: Union[float, torch.Tensor], sample: Union[torch.Tensor, np.ndarray], return_dict: bool=True) -> Union[SchedulerOutput, Tuple]: + if self.step_index is None: + self._init_step_index(timestep) + if self.state_in_first_order: + sigma = self.sigmas[self.step_index] + sigma_interpol = self.sigmas_interpol[self.step_index + 1] + sigma_next = self.sigmas[self.step_index + 1] + else: + sigma = self.sigmas[self.step_index - 1] + sigma_interpol = self.sigmas_interpol[self.step_index] + sigma_next = self.sigmas[self.step_index] + gamma = 0 + sigma_hat = sigma * (gamma + 1) + if self.config.prediction_type == 'epsilon': + sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol + pred_original_sample = sample - sigma_input * model_output + elif self.config.prediction_type == 'v_prediction': + sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol + pred_original_sample = model_output * (-sigma_input / (sigma_input ** 2 + 1) ** 0.5) + sample / (sigma_input ** 2 + 1) + elif self.config.prediction_type == 'sample': + raise NotImplementedError('prediction_type not implemented yet: sample') + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`') + if self.state_in_first_order: + derivative = (sample - pred_original_sample) / sigma_hat + dt = sigma_interpol - sigma_hat + self.sample = sample + else: + derivative = (sample - pred_original_sample) / sigma_interpol + dt = sigma_next - sigma_hat + sample = self.sample + self.sample = None + self._step_index += 1 + prev_sample = sample + derivative * dt + if not return_dict: + return (prev_sample,) + return SchedulerOutput(prev_sample=prev_sample) + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor: + sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) + if original_samples.device.type == 'mps' and torch.is_floating_point(timesteps): + schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) + timesteps = timesteps.to(original_samples.device, dtype=torch.float32) + else: + schedule_timesteps = self.timesteps.to(original_samples.device) + timesteps = timesteps.to(original_samples.device) + if self.begin_index is None: + step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] + elif self.step_index is not None: + step_indices = [self.step_index] * timesteps.shape[0] + else: + step_indices = [self.begin_index] * timesteps.shape[0] + sigma = sigmas[step_indices].flatten() + while len(sigma.shape) < len(original_samples.shape): + sigma = sigma.unsqueeze(-1) + noisy_samples = original_samples + noise * sigma + return noisy_samples + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_karras_ve_flax.py +from dataclasses import dataclass +from typing import Optional, Tuple, Union +import flax +import jax +import jax.numpy as jnp +from jax import random +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput +from .scheduling_utils_flax import FlaxSchedulerMixin + +@flax.struct.dataclass +class KarrasVeSchedulerState: + num_inference_steps: Optional[int] = None + timesteps: Optional[jnp.ndarray] = None + schedule: Optional[jnp.ndarray] = None + + @classmethod + def create(cls): + return cls() + +@dataclass +class FlaxKarrasVeOutput(BaseOutput): + prev_sample: jnp.ndarray + derivative: jnp.ndarray + state: KarrasVeSchedulerState + +class FlaxKarrasVeScheduler(FlaxSchedulerMixin, ConfigMixin): + + @property + def has_state(self): + return True + + @register_to_config + def __init__(self, sigma_min: float=0.02, sigma_max: float=100, s_noise: float=1.007, s_churn: float=80, s_min: float=0.05, s_max: float=50): + pass + + def create_state(self): + return KarrasVeSchedulerState.create() + + def set_timesteps(self, state: KarrasVeSchedulerState, num_inference_steps: int, shape: Tuple=()) -> KarrasVeSchedulerState: + timesteps = jnp.arange(0, num_inference_steps)[::-1].copy() + schedule = [self.config.sigma_max ** 2 * (self.config.sigma_min ** 2 / self.config.sigma_max ** 2) ** (i / (num_inference_steps - 1)) for i in timesteps] + return state.replace(num_inference_steps=num_inference_steps, schedule=jnp.array(schedule, dtype=jnp.float32), timesteps=timesteps) + + def add_noise_to_input(self, state: KarrasVeSchedulerState, sample: jnp.ndarray, sigma: float, key: jax.Array) -> Tuple[jnp.ndarray, float]: + if self.config.s_min <= sigma <= self.config.s_max: + gamma = min(self.config.s_churn / state.num_inference_steps, 2 ** 0.5 - 1) + else: + gamma = 0 + key = random.split(key, num=1) + eps = self.config.s_noise * random.normal(key=key, shape=sample.shape) + sigma_hat = sigma + gamma * sigma + sample_hat = sample + (sigma_hat ** 2 - sigma ** 2) ** 0.5 * eps + return (sample_hat, sigma_hat) + + def step(self, state: KarrasVeSchedulerState, model_output: jnp.ndarray, sigma_hat: float, sigma_prev: float, sample_hat: jnp.ndarray, return_dict: bool=True) -> Union[FlaxKarrasVeOutput, Tuple]: + pred_original_sample = sample_hat + sigma_hat * model_output + derivative = (sample_hat - pred_original_sample) / sigma_hat + sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative + if not return_dict: + return (sample_prev, derivative, state) + return FlaxKarrasVeOutput(prev_sample=sample_prev, derivative=derivative, state=state) + + def step_correct(self, state: KarrasVeSchedulerState, model_output: jnp.ndarray, sigma_hat: float, sigma_prev: float, sample_hat: jnp.ndarray, sample_prev: jnp.ndarray, derivative: jnp.ndarray, return_dict: bool=True) -> Union[FlaxKarrasVeOutput, Tuple]: + pred_original_sample = sample_prev + sigma_prev * model_output + derivative_corr = (sample_prev - pred_original_sample) / sigma_prev + sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) + if not return_dict: + return (sample_prev, derivative, state) + return FlaxKarrasVeOutput(prev_sample=sample_prev, derivative=derivative, state=state) + + def add_noise(self, state: KarrasVeSchedulerState, original_samples, noise, timesteps): + raise NotImplementedError() + +# File: diffusers-main/src/diffusers/schedulers/scheduling_lcm.py +import math +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput, logging +from ..utils.torch_utils import randn_tensor +from .scheduling_utils import SchedulerMixin +logger = logging.get_logger(__name__) + +@dataclass +class LCMSchedulerOutput(BaseOutput): + prev_sample: torch.Tensor + denoised: Optional[torch.Tensor] = None + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +def rescale_zero_terminal_snr(betas: torch.Tensor) -> torch.Tensor: + alphas = 1.0 - betas + alphas_cumprod = torch.cumprod(alphas, dim=0) + alphas_bar_sqrt = alphas_cumprod.sqrt() + alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() + alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() + alphas_bar_sqrt -= alphas_bar_sqrt_T + alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) + alphas_bar = alphas_bar_sqrt ** 2 + alphas = alphas_bar[1:] / alphas_bar[:-1] + alphas = torch.cat([alphas_bar[0:1], alphas]) + betas = 1 - alphas + return betas + +class LCMScheduler(SchedulerMixin, ConfigMixin): + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.00085, beta_end: float=0.012, beta_schedule: str='scaled_linear', trained_betas: Optional[Union[np.ndarray, List[float]]]=None, original_inference_steps: int=50, clip_sample: bool=False, clip_sample_range: float=1.0, set_alpha_to_one: bool=True, steps_offset: int=0, prediction_type: str='epsilon', thresholding: bool=False, dynamic_thresholding_ratio: float=0.995, sample_max_value: float=1.0, timestep_spacing: str='leading', timestep_scaling: float=10.0, rescale_betas_zero_snr: bool=False): + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + if rescale_betas_zero_snr: + self.betas = rescale_zero_terminal_snr(self.betas) + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] + self.init_noise_sigma = 1.0 + self.num_inference_steps = None + self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64)) + self.custom_timesteps = False + self._step_index = None + self._begin_index = None + + def index_for_timestep(self, timestep, schedule_timesteps=None): + if schedule_timesteps is None: + schedule_timesteps = self.timesteps + indices = (schedule_timesteps == timestep).nonzero() + pos = 1 if len(indices) > 1 else 0 + return indices[pos].item() + + def _init_step_index(self, timestep): + if self.begin_index is None: + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + self._step_index = self.index_for_timestep(timestep) + else: + self._step_index = self._begin_index + + @property + def step_index(self): + return self._step_index + + @property + def begin_index(self): + return self._begin_index + + def set_begin_index(self, begin_index: int=0): + self._begin_index = begin_index + + def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int]=None) -> torch.Tensor: + return sample + + def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: + dtype = sample.dtype + (batch_size, channels, *remaining_dims) = sample.shape + if dtype not in (torch.float32, torch.float64): + sample = sample.float() + sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) + abs_sample = sample.abs() + s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) + s = torch.clamp(s, min=1, max=self.config.sample_max_value) + s = s.unsqueeze(1) + sample = torch.clamp(sample, -s, s) / s + sample = sample.reshape(batch_size, channels, *remaining_dims) + sample = sample.to(dtype) + return sample + + def set_timesteps(self, num_inference_steps: Optional[int]=None, device: Union[str, torch.device]=None, original_inference_steps: Optional[int]=None, timesteps: Optional[List[int]]=None, strength: int=1.0): + if num_inference_steps is None and timesteps is None: + raise ValueError('Must pass exactly one of `num_inference_steps` or `custom_timesteps`.') + if num_inference_steps is not None and timesteps is not None: + raise ValueError('Can only pass one of `num_inference_steps` or `custom_timesteps`.') + original_steps = original_inference_steps if original_inference_steps is not None else self.config.original_inference_steps + if original_steps > self.config.num_train_timesteps: + raise ValueError(f'`original_steps`: {original_steps} cannot be larger than `self.config.train_timesteps`: {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle maximal {self.config.num_train_timesteps} timesteps.') + k = self.config.num_train_timesteps // original_steps + lcm_origin_timesteps = np.asarray(list(range(1, int(original_steps * strength) + 1))) * k - 1 + if timesteps is not None: + train_timesteps = set(lcm_origin_timesteps) + non_train_timesteps = [] + for i in range(1, len(timesteps)): + if timesteps[i] >= timesteps[i - 1]: + raise ValueError('`custom_timesteps` must be in descending order.') + if timesteps[i] not in train_timesteps: + non_train_timesteps.append(timesteps[i]) + if timesteps[0] >= self.config.num_train_timesteps: + raise ValueError(f'`timesteps` must start before `self.config.train_timesteps`: {self.config.num_train_timesteps}.') + if strength == 1.0 and timesteps[0] != self.config.num_train_timesteps - 1: + logger.warning(f'The first timestep on the custom timestep schedule is {timesteps[0]}, not `self.config.num_train_timesteps - 1`: {self.config.num_train_timesteps - 1}. You may get unexpected results when using this timestep schedule.') + if non_train_timesteps: + logger.warning(f'The custom timestep schedule contains the following timesteps which are not on the original training/distillation timestep schedule: {non_train_timesteps}. You may get unexpected results when using this timestep schedule.') + if len(timesteps) > original_steps: + logger.warning(f'The number of timesteps in the custom timestep schedule is {len(timesteps)}, which exceeds the the length of the timestep schedule used for training: {original_steps}. You may get some unexpected results when using this timestep schedule.') + timesteps = np.array(timesteps, dtype=np.int64) + self.num_inference_steps = len(timesteps) + self.custom_timesteps = True + init_timestep = min(int(self.num_inference_steps * strength), self.num_inference_steps) + t_start = max(self.num_inference_steps - init_timestep, 0) + timesteps = timesteps[t_start * self.order:] + else: + if num_inference_steps > self.config.num_train_timesteps: + raise ValueError(f'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`: {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle maximal {self.config.num_train_timesteps} timesteps.') + skipping_step = len(lcm_origin_timesteps) // num_inference_steps + if skipping_step < 1: + raise ValueError(f'The combination of `original_steps x strength`: {original_steps} x {strength} is smaller than `num_inference_steps`: {num_inference_steps}. Make sure to either reduce `num_inference_steps` to a value smaller than {int(original_steps * strength)} or increase `strength` to a value higher than {float(num_inference_steps / original_steps)}.') + self.num_inference_steps = num_inference_steps + if num_inference_steps > original_steps: + raise ValueError(f'`num_inference_steps`: {num_inference_steps} cannot be larger than `original_inference_steps`: {original_steps} because the final timestep schedule will be a subset of the `original_inference_steps`-sized initial timestep schedule.') + lcm_origin_timesteps = lcm_origin_timesteps[::-1].copy() + inference_indices = np.linspace(0, len(lcm_origin_timesteps), num=num_inference_steps, endpoint=False) + inference_indices = np.floor(inference_indices).astype(np.int64) + timesteps = lcm_origin_timesteps[inference_indices] + self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.long) + self._step_index = None + self._begin_index = None + + def get_scalings_for_boundary_condition_discrete(self, timestep): + self.sigma_data = 0.5 + scaled_timestep = timestep * self.config.timestep_scaling + c_skip = self.sigma_data ** 2 / (scaled_timestep ** 2 + self.sigma_data ** 2) + c_out = scaled_timestep / (scaled_timestep ** 2 + self.sigma_data ** 2) ** 0.5 + return (c_skip, c_out) + + def step(self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, generator: Optional[torch.Generator]=None, return_dict: bool=True) -> Union[LCMSchedulerOutput, Tuple]: + if self.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + if self.step_index is None: + self._init_step_index(timestep) + prev_step_index = self.step_index + 1 + if prev_step_index < len(self.timesteps): + prev_timestep = self.timesteps[prev_step_index] + else: + prev_timestep = timestep + alpha_prod_t = self.alphas_cumprod[timestep] + alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod + beta_prod_t = 1 - alpha_prod_t + beta_prod_t_prev = 1 - alpha_prod_t_prev + (c_skip, c_out) = self.get_scalings_for_boundary_condition_discrete(timestep) + if self.config.prediction_type == 'epsilon': + predicted_original_sample = (sample - beta_prod_t.sqrt() * model_output) / alpha_prod_t.sqrt() + elif self.config.prediction_type == 'sample': + predicted_original_sample = model_output + elif self.config.prediction_type == 'v_prediction': + predicted_original_sample = alpha_prod_t.sqrt() * sample - beta_prod_t.sqrt() * model_output + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or `v_prediction` for `LCMScheduler`.') + if self.config.thresholding: + predicted_original_sample = self._threshold_sample(predicted_original_sample) + elif self.config.clip_sample: + predicted_original_sample = predicted_original_sample.clamp(-self.config.clip_sample_range, self.config.clip_sample_range) + denoised = c_out * predicted_original_sample + c_skip * sample + if self.step_index != self.num_inference_steps - 1: + noise = randn_tensor(model_output.shape, generator=generator, device=model_output.device, dtype=denoised.dtype) + prev_sample = alpha_prod_t_prev.sqrt() * denoised + beta_prod_t_prev.sqrt() * noise + else: + prev_sample = denoised + self._step_index += 1 + if not return_dict: + return (prev_sample, denoised) + return LCMSchedulerOutput(prev_sample=prev_sample, denoised=denoised) + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device) + alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype) + timesteps = timesteps.to(original_samples.device) + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(original_samples.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise + return noisy_samples + + def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device) + alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype) + timesteps = timesteps.to(sample.device) + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(sample.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample + return velocity + + def __len__(self): + return self.config.num_train_timesteps + + def previous_timestep(self, timestep): + if self.custom_timesteps: + index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0] + if index == self.timesteps.shape[0] - 1: + prev_t = torch.tensor(-1) + else: + prev_t = self.timesteps[index + 1] + else: + num_inference_steps = self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps + prev_t = timestep - self.config.num_train_timesteps // num_inference_steps + return prev_t + +# File: diffusers-main/src/diffusers/schedulers/scheduling_lms_discrete.py +import math +import warnings +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from scipy import integrate +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput +from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin + +@dataclass +class LMSDiscreteSchedulerOutput(BaseOutput): + prev_sample: torch.Tensor + pred_original_sample: Optional[torch.Tensor] = None + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in KarrasDiffusionSchedulers] + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.0001, beta_end: float=0.02, beta_schedule: str='linear', trained_betas: Optional[Union[np.ndarray, List[float]]]=None, use_karras_sigmas: Optional[bool]=False, prediction_type: str='epsilon', timestep_spacing: str='linspace', steps_offset: int=0): + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) + sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32) + self.sigmas = torch.from_numpy(sigmas) + self.num_inference_steps = None + self.use_karras_sigmas = use_karras_sigmas + self.set_timesteps(num_train_timesteps, None) + self.derivatives = [] + self.is_scale_input_called = False + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + @property + def init_noise_sigma(self): + if self.config.timestep_spacing in ['linspace', 'trailing']: + return self.sigmas.max() + return (self.sigmas.max() ** 2 + 1) ** 0.5 + + @property + def step_index(self): + return self._step_index + + @property + def begin_index(self): + return self._begin_index + + def set_begin_index(self, begin_index: int=0): + self._begin_index = begin_index + + def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: + if self.step_index is None: + self._init_step_index(timestep) + sigma = self.sigmas[self.step_index] + sample = sample / (sigma ** 2 + 1) ** 0.5 + self.is_scale_input_called = True + return sample + + def get_lms_coefficient(self, order, t, current_order): + + def lms_derivative(tau): + prod = 1.0 + for k in range(order): + if current_order == k: + continue + prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k]) + return prod + integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=0.0001)[0] + return integrated_coeff + + def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device]=None): + self.num_inference_steps = num_inference_steps + if self.config.timestep_spacing == 'linspace': + timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[::-1].copy() + elif self.config.timestep_spacing == 'leading': + step_ratio = self.config.num_train_timesteps // self.num_inference_steps + timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32) + timesteps += self.config.steps_offset + elif self.config.timestep_spacing == 'trailing': + step_ratio = self.config.num_train_timesteps / self.num_inference_steps + timesteps = np.arange(self.config.num_train_timesteps, 0, -step_ratio).round().copy().astype(np.float32) + timesteps -= 1 + else: + raise ValueError(f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.") + sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) + log_sigmas = np.log(sigmas) + sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) + if self.config.use_karras_sigmas: + sigmas = self._convert_to_karras(in_sigmas=sigmas) + timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) + sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) + self.sigmas = torch.from_numpy(sigmas).to(device=device) + self.timesteps = torch.from_numpy(timesteps).to(device=device) + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + self.derivatives = [] + + def index_for_timestep(self, timestep, schedule_timesteps=None): + if schedule_timesteps is None: + schedule_timesteps = self.timesteps + indices = (schedule_timesteps == timestep).nonzero() + pos = 1 if len(indices) > 1 else 0 + return indices[pos].item() + + def _init_step_index(self, timestep): + if self.begin_index is None: + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + self._step_index = self.index_for_timestep(timestep) + else: + self._step_index = self._begin_index + + def _sigma_to_t(self, sigma, log_sigmas): + log_sigma = np.log(np.maximum(sigma, 1e-10)) + dists = log_sigma - log_sigmas[:, np.newaxis] + low_idx = np.cumsum(dists >= 0, axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) + high_idx = low_idx + 1 + low = log_sigmas[low_idx] + high = log_sigmas[high_idx] + w = (low - log_sigma) / (low - high) + w = np.clip(w, 0, 1) + t = (1 - w) * low_idx + w * high_idx + t = t.reshape(sigma.shape) + return t + + def _convert_to_karras(self, in_sigmas: torch.Tensor) -> torch.Tensor: + sigma_min: float = in_sigmas[-1].item() + sigma_max: float = in_sigmas[0].item() + rho = 7.0 + ramp = np.linspace(0, 1, self.num_inference_steps) + min_inv_rho = sigma_min ** (1 / rho) + max_inv_rho = sigma_max ** (1 / rho) + sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho + return sigmas + + def step(self, model_output: torch.Tensor, timestep: Union[float, torch.Tensor], sample: torch.Tensor, order: int=4, return_dict: bool=True) -> Union[LMSDiscreteSchedulerOutput, Tuple]: + if not self.is_scale_input_called: + warnings.warn('The `scale_model_input` function should be called before `step` to ensure correct denoising. See `StableDiffusionPipeline` for a usage example.') + if self.step_index is None: + self._init_step_index(timestep) + sigma = self.sigmas[self.step_index] + if self.config.prediction_type == 'epsilon': + pred_original_sample = sample - sigma * model_output + elif self.config.prediction_type == 'v_prediction': + pred_original_sample = model_output * (-sigma / (sigma ** 2 + 1) ** 0.5) + sample / (sigma ** 2 + 1) + elif self.config.prediction_type == 'sample': + pred_original_sample = model_output + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`') + derivative = (sample - pred_original_sample) / sigma + self.derivatives.append(derivative) + if len(self.derivatives) > order: + self.derivatives.pop(0) + order = min(self.step_index + 1, order) + lms_coeffs = [self.get_lms_coefficient(order, self.step_index, curr_order) for curr_order in range(order)] + prev_sample = sample + sum((coeff * derivative for (coeff, derivative) in zip(lms_coeffs, reversed(self.derivatives)))) + self._step_index += 1 + if not return_dict: + return (prev_sample,) + return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor: + sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) + if original_samples.device.type == 'mps' and torch.is_floating_point(timesteps): + schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) + timesteps = timesteps.to(original_samples.device, dtype=torch.float32) + else: + schedule_timesteps = self.timesteps.to(original_samples.device) + timesteps = timesteps.to(original_samples.device) + if self.begin_index is None: + step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] + elif self.step_index is not None: + step_indices = [self.step_index] * timesteps.shape[0] + else: + step_indices = [self.begin_index] * timesteps.shape[0] + sigma = sigmas[step_indices].flatten() + while len(sigma.shape) < len(original_samples.shape): + sigma = sigma.unsqueeze(-1) + noisy_samples = original_samples + noise * sigma + return noisy_samples + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_lms_discrete_flax.py +from dataclasses import dataclass +from typing import Optional, Tuple, Union +import flax +import jax.numpy as jnp +from scipy import integrate +from ..configuration_utils import ConfigMixin, register_to_config +from .scheduling_utils_flax import CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left + +@flax.struct.dataclass +class LMSDiscreteSchedulerState: + common: CommonSchedulerState + init_noise_sigma: jnp.ndarray + timesteps: jnp.ndarray + sigmas: jnp.ndarray + num_inference_steps: Optional[int] = None + derivatives: Optional[jnp.ndarray] = None + + @classmethod + def create(cls, common: CommonSchedulerState, init_noise_sigma: jnp.ndarray, timesteps: jnp.ndarray, sigmas: jnp.ndarray): + return cls(common=common, init_noise_sigma=init_noise_sigma, timesteps=timesteps, sigmas=sigmas) + +@dataclass +class FlaxLMSSchedulerOutput(FlaxSchedulerOutput): + state: LMSDiscreteSchedulerState + +class FlaxLMSDiscreteScheduler(FlaxSchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in FlaxKarrasDiffusionSchedulers] + dtype: jnp.dtype + + @property + def has_state(self): + return True + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.0001, beta_end: float=0.02, beta_schedule: str='linear', trained_betas: Optional[jnp.ndarray]=None, prediction_type: str='epsilon', dtype: jnp.dtype=jnp.float32): + self.dtype = dtype + + def create_state(self, common: Optional[CommonSchedulerState]=None) -> LMSDiscreteSchedulerState: + if common is None: + common = CommonSchedulerState.create(self) + timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1] + sigmas = ((1 - common.alphas_cumprod) / common.alphas_cumprod) ** 0.5 + init_noise_sigma = sigmas.max() + return LMSDiscreteSchedulerState.create(common=common, init_noise_sigma=init_noise_sigma, timesteps=timesteps, sigmas=sigmas) + + def scale_model_input(self, state: LMSDiscreteSchedulerState, sample: jnp.ndarray, timestep: int) -> jnp.ndarray: + (step_index,) = jnp.where(state.timesteps == timestep, size=1) + step_index = step_index[0] + sigma = state.sigmas[step_index] + sample = sample / (sigma ** 2 + 1) ** 0.5 + return sample + + def get_lms_coefficient(self, state: LMSDiscreteSchedulerState, order, t, current_order): + + def lms_derivative(tau): + prod = 1.0 + for k in range(order): + if current_order == k: + continue + prod *= (tau - state.sigmas[t - k]) / (state.sigmas[t - current_order] - state.sigmas[t - k]) + return prod + integrated_coeff = integrate.quad(lms_derivative, state.sigmas[t], state.sigmas[t + 1], epsrel=0.0001)[0] + return integrated_coeff + + def set_timesteps(self, state: LMSDiscreteSchedulerState, num_inference_steps: int, shape: Tuple=()) -> LMSDiscreteSchedulerState: + timesteps = jnp.linspace(self.config.num_train_timesteps - 1, 0, num_inference_steps, dtype=self.dtype) + low_idx = jnp.floor(timesteps).astype(jnp.int32) + high_idx = jnp.ceil(timesteps).astype(jnp.int32) + frac = jnp.mod(timesteps, 1.0) + sigmas = ((1 - state.common.alphas_cumprod) / state.common.alphas_cumprod) ** 0.5 + sigmas = (1 - frac) * sigmas[low_idx] + frac * sigmas[high_idx] + sigmas = jnp.concatenate([sigmas, jnp.array([0.0], dtype=self.dtype)]) + timesteps = timesteps.astype(jnp.int32) + derivatives = jnp.zeros((0,) + shape, dtype=self.dtype) + return state.replace(timesteps=timesteps, sigmas=sigmas, num_inference_steps=num_inference_steps, derivatives=derivatives) + + def step(self, state: LMSDiscreteSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, order: int=4, return_dict: bool=True) -> Union[FlaxLMSSchedulerOutput, Tuple]: + if state.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + sigma = state.sigmas[timestep] + if self.config.prediction_type == 'epsilon': + pred_original_sample = sample - sigma * model_output + elif self.config.prediction_type == 'v_prediction': + pred_original_sample = model_output * (-sigma / (sigma ** 2 + 1) ** 0.5) + sample / (sigma ** 2 + 1) + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`') + derivative = (sample - pred_original_sample) / sigma + state = state.replace(derivatives=jnp.append(state.derivatives, derivative)) + if len(state.derivatives) > order: + state = state.replace(derivatives=jnp.delete(state.derivatives, 0)) + order = min(timestep + 1, order) + lms_coeffs = [self.get_lms_coefficient(state, order, timestep, curr_order) for curr_order in range(order)] + prev_sample = sample + sum((coeff * derivative for (coeff, derivative) in zip(lms_coeffs, reversed(state.derivatives)))) + if not return_dict: + return (prev_sample, state) + return FlaxLMSSchedulerOutput(prev_sample=prev_sample, state=state) + + def add_noise(self, state: LMSDiscreteSchedulerState, original_samples: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray) -> jnp.ndarray: + sigma = state.sigmas[timesteps].flatten() + sigma = broadcast_to_shape_from_left(sigma, noise.shape) + noisy_samples = original_samples + noise * sigma + return noisy_samples + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_pndm.py +import math +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +class PNDMScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in KarrasDiffusionSchedulers] + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.0001, beta_end: float=0.02, beta_schedule: str='linear', trained_betas: Optional[Union[np.ndarray, List[float]]]=None, skip_prk_steps: bool=False, set_alpha_to_one: bool=False, prediction_type: str='epsilon', timestep_spacing: str='leading', steps_offset: int=0): + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] + self.init_noise_sigma = 1.0 + self.pndm_order = 4 + self.cur_model_output = 0 + self.counter = 0 + self.cur_sample = None + self.ets = [] + self.num_inference_steps = None + self._timesteps = np.arange(0, num_train_timesteps)[::-1].copy() + self.prk_timesteps = None + self.plms_timesteps = None + self.timesteps = None + + def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device]=None): + self.num_inference_steps = num_inference_steps + if self.config.timestep_spacing == 'linspace': + self._timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps).round().astype(np.int64) + elif self.config.timestep_spacing == 'leading': + step_ratio = self.config.num_train_timesteps // self.num_inference_steps + self._timesteps = (np.arange(0, num_inference_steps) * step_ratio).round() + self._timesteps += self.config.steps_offset + elif self.config.timestep_spacing == 'trailing': + step_ratio = self.config.num_train_timesteps / self.num_inference_steps + self._timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio))[::-1].astype(np.int64) + self._timesteps -= 1 + else: + raise ValueError(f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.") + if self.config.skip_prk_steps: + self.prk_timesteps = np.array([]) + self.plms_timesteps = np.concatenate([self._timesteps[:-1], self._timesteps[-2:-1], self._timesteps[-1:]])[::-1].copy() + else: + prk_timesteps = np.array(self._timesteps[-self.pndm_order:]).repeat(2) + np.tile(np.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order) + self.prk_timesteps = prk_timesteps[:-1].repeat(2)[1:-1][::-1].copy() + self.plms_timesteps = self._timesteps[:-3][::-1].copy() + timesteps = np.concatenate([self.prk_timesteps, self.plms_timesteps]).astype(np.int64) + self.timesteps = torch.from_numpy(timesteps).to(device) + self.ets = [] + self.counter = 0 + self.cur_model_output = 0 + + def step(self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, return_dict: bool=True) -> Union[SchedulerOutput, Tuple]: + if self.counter < len(self.prk_timesteps) and (not self.config.skip_prk_steps): + return self.step_prk(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict) + else: + return self.step_plms(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict) + + def step_prk(self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, return_dict: bool=True) -> Union[SchedulerOutput, Tuple]: + if self.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + diff_to_prev = 0 if self.counter % 2 else self.config.num_train_timesteps // self.num_inference_steps // 2 + prev_timestep = timestep - diff_to_prev + timestep = self.prk_timesteps[self.counter // 4 * 4] + if self.counter % 4 == 0: + self.cur_model_output += 1 / 6 * model_output + self.ets.append(model_output) + self.cur_sample = sample + elif (self.counter - 1) % 4 == 0: + self.cur_model_output += 1 / 3 * model_output + elif (self.counter - 2) % 4 == 0: + self.cur_model_output += 1 / 3 * model_output + elif (self.counter - 3) % 4 == 0: + model_output = self.cur_model_output + 1 / 6 * model_output + self.cur_model_output = 0 + cur_sample = self.cur_sample if self.cur_sample is not None else sample + prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output) + self.counter += 1 + if not return_dict: + return (prev_sample,) + return SchedulerOutput(prev_sample=prev_sample) + + def step_plms(self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, return_dict: bool=True) -> Union[SchedulerOutput, Tuple]: + if self.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + if not self.config.skip_prk_steps and len(self.ets) < 3: + raise ValueError(f"{self.__class__} can only be run AFTER scheduler has been run in 'prk' mode for at least 12 iterations See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py for more information.") + prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps + if self.counter != 1: + self.ets = self.ets[-3:] + self.ets.append(model_output) + else: + prev_timestep = timestep + timestep = timestep + self.config.num_train_timesteps // self.num_inference_steps + if len(self.ets) == 1 and self.counter == 0: + model_output = model_output + self.cur_sample = sample + elif len(self.ets) == 1 and self.counter == 1: + model_output = (model_output + self.ets[-1]) / 2 + sample = self.cur_sample + self.cur_sample = None + elif len(self.ets) == 2: + model_output = (3 * self.ets[-1] - self.ets[-2]) / 2 + elif len(self.ets) == 3: + model_output = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 + else: + model_output = 1 / 24 * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) + prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output) + self.counter += 1 + if not return_dict: + return (prev_sample,) + return SchedulerOutput(prev_sample=prev_sample) + + def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor: + return sample + + def _get_prev_sample(self, sample, timestep, prev_timestep, model_output): + alpha_prod_t = self.alphas_cumprod[timestep] + alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod + beta_prod_t = 1 - alpha_prod_t + beta_prod_t_prev = 1 - alpha_prod_t_prev + if self.config.prediction_type == 'v_prediction': + model_output = alpha_prod_t ** 0.5 * model_output + beta_prod_t ** 0.5 * sample + elif self.config.prediction_type != 'epsilon': + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `v_prediction`') + sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** 0.5 + model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** 0.5 + (alpha_prod_t * beta_prod_t * alpha_prod_t_prev) ** 0.5 + prev_sample = sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff + return prev_sample + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device) + alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype) + timesteps = timesteps.to(original_samples.device) + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(original_samples.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise + return noisy_samples + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_pndm_flax.py +from dataclasses import dataclass +from typing import Optional, Tuple, Union +import flax +import jax +import jax.numpy as jnp +from ..configuration_utils import ConfigMixin, register_to_config +from .scheduling_utils_flax import CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common + +@flax.struct.dataclass +class PNDMSchedulerState: + common: CommonSchedulerState + final_alpha_cumprod: jnp.ndarray + init_noise_sigma: jnp.ndarray + timesteps: jnp.ndarray + num_inference_steps: Optional[int] = None + prk_timesteps: Optional[jnp.ndarray] = None + plms_timesteps: Optional[jnp.ndarray] = None + cur_model_output: Optional[jnp.ndarray] = None + counter: Optional[jnp.int32] = None + cur_sample: Optional[jnp.ndarray] = None + ets: Optional[jnp.ndarray] = None + + @classmethod + def create(cls, common: CommonSchedulerState, final_alpha_cumprod: jnp.ndarray, init_noise_sigma: jnp.ndarray, timesteps: jnp.ndarray): + return cls(common=common, final_alpha_cumprod=final_alpha_cumprod, init_noise_sigma=init_noise_sigma, timesteps=timesteps) + +@dataclass +class FlaxPNDMSchedulerOutput(FlaxSchedulerOutput): + state: PNDMSchedulerState + +class FlaxPNDMScheduler(FlaxSchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in FlaxKarrasDiffusionSchedulers] + dtype: jnp.dtype + pndm_order: int + + @property + def has_state(self): + return True + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.0001, beta_end: float=0.02, beta_schedule: str='linear', trained_betas: Optional[jnp.ndarray]=None, skip_prk_steps: bool=False, set_alpha_to_one: bool=False, steps_offset: int=0, prediction_type: str='epsilon', dtype: jnp.dtype=jnp.float32): + self.dtype = dtype + self.pndm_order = 4 + + def create_state(self, common: Optional[CommonSchedulerState]=None) -> PNDMSchedulerState: + if common is None: + common = CommonSchedulerState.create(self) + final_alpha_cumprod = jnp.array(1.0, dtype=self.dtype) if self.config.set_alpha_to_one else common.alphas_cumprod[0] + init_noise_sigma = jnp.array(1.0, dtype=self.dtype) + timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1] + return PNDMSchedulerState.create(common=common, final_alpha_cumprod=final_alpha_cumprod, init_noise_sigma=init_noise_sigma, timesteps=timesteps) + + def set_timesteps(self, state: PNDMSchedulerState, num_inference_steps: int, shape: Tuple) -> PNDMSchedulerState: + step_ratio = self.config.num_train_timesteps // num_inference_steps + _timesteps = (jnp.arange(0, num_inference_steps) * step_ratio).round() + self.config.steps_offset + if self.config.skip_prk_steps: + prk_timesteps = jnp.array([], dtype=jnp.int32) + plms_timesteps = jnp.concatenate([_timesteps[:-1], _timesteps[-2:-1], _timesteps[-1:]])[::-1] + else: + prk_timesteps = _timesteps[-self.pndm_order:].repeat(2) + jnp.tile(jnp.array([0, self.config.num_train_timesteps // num_inference_steps // 2], dtype=jnp.int32), self.pndm_order) + prk_timesteps = prk_timesteps[:-1].repeat(2)[1:-1][::-1] + plms_timesteps = _timesteps[:-3][::-1] + timesteps = jnp.concatenate([prk_timesteps, plms_timesteps]) + cur_model_output = jnp.zeros(shape, dtype=self.dtype) + counter = jnp.int32(0) + cur_sample = jnp.zeros(shape, dtype=self.dtype) + ets = jnp.zeros((4,) + shape, dtype=self.dtype) + return state.replace(timesteps=timesteps, num_inference_steps=num_inference_steps, prk_timesteps=prk_timesteps, plms_timesteps=plms_timesteps, cur_model_output=cur_model_output, counter=counter, cur_sample=cur_sample, ets=ets) + + def scale_model_input(self, state: PNDMSchedulerState, sample: jnp.ndarray, timestep: Optional[int]=None) -> jnp.ndarray: + return sample + + def step(self, state: PNDMSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, return_dict: bool=True) -> Union[FlaxPNDMSchedulerOutput, Tuple]: + if state.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + if self.config.skip_prk_steps: + (prev_sample, state) = self.step_plms(state, model_output, timestep, sample) + else: + (prk_prev_sample, prk_state) = self.step_prk(state, model_output, timestep, sample) + (plms_prev_sample, plms_state) = self.step_plms(state, model_output, timestep, sample) + cond = state.counter < len(state.prk_timesteps) + prev_sample = jax.lax.select(cond, prk_prev_sample, plms_prev_sample) + state = state.replace(cur_model_output=jax.lax.select(cond, prk_state.cur_model_output, plms_state.cur_model_output), ets=jax.lax.select(cond, prk_state.ets, plms_state.ets), cur_sample=jax.lax.select(cond, prk_state.cur_sample, plms_state.cur_sample), counter=jax.lax.select(cond, prk_state.counter, plms_state.counter)) + if not return_dict: + return (prev_sample, state) + return FlaxPNDMSchedulerOutput(prev_sample=prev_sample, state=state) + + def step_prk(self, state: PNDMSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray) -> Union[FlaxPNDMSchedulerOutput, Tuple]: + if state.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + diff_to_prev = jnp.where(state.counter % 2, 0, self.config.num_train_timesteps // state.num_inference_steps // 2) + prev_timestep = timestep - diff_to_prev + timestep = state.prk_timesteps[state.counter // 4 * 4] + model_output = jax.lax.select(state.counter % 4 != 3, model_output, state.cur_model_output + 1 / 6 * model_output) + state = state.replace(cur_model_output=jax.lax.select_n(state.counter % 4, state.cur_model_output + 1 / 6 * model_output, state.cur_model_output + 1 / 3 * model_output, state.cur_model_output + 1 / 3 * model_output, jnp.zeros_like(state.cur_model_output)), ets=jax.lax.select(state.counter % 4 == 0, state.ets.at[0:3].set(state.ets[1:4]).at[3].set(model_output), state.ets), cur_sample=jax.lax.select(state.counter % 4 == 0, sample, state.cur_sample)) + cur_sample = state.cur_sample + prev_sample = self._get_prev_sample(state, cur_sample, timestep, prev_timestep, model_output) + state = state.replace(counter=state.counter + 1) + return (prev_sample, state) + + def step_plms(self, state: PNDMSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray) -> Union[FlaxPNDMSchedulerOutput, Tuple]: + if state.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + prev_timestep = timestep - self.config.num_train_timesteps // state.num_inference_steps + prev_timestep = jnp.where(prev_timestep > 0, prev_timestep, 0) + prev_timestep = jnp.where(state.counter == 1, timestep, prev_timestep) + timestep = jnp.where(state.counter == 1, timestep + self.config.num_train_timesteps // state.num_inference_steps, timestep) + state = state.replace(ets=jax.lax.select(state.counter != 1, state.ets.at[0:3].set(state.ets[1:4]).at[3].set(model_output), state.ets), cur_sample=jax.lax.select(state.counter != 1, sample, state.cur_sample)) + state = state.replace(cur_model_output=jax.lax.select_n(jnp.clip(state.counter, 0, 4), model_output, (model_output + state.ets[-1]) / 2, (3 * state.ets[-1] - state.ets[-2]) / 2, (23 * state.ets[-1] - 16 * state.ets[-2] + 5 * state.ets[-3]) / 12, 1 / 24 * (55 * state.ets[-1] - 59 * state.ets[-2] + 37 * state.ets[-3] - 9 * state.ets[-4]))) + sample = state.cur_sample + model_output = state.cur_model_output + prev_sample = self._get_prev_sample(state, sample, timestep, prev_timestep, model_output) + state = state.replace(counter=state.counter + 1) + return (prev_sample, state) + + def _get_prev_sample(self, state: PNDMSchedulerState, sample, timestep, prev_timestep, model_output): + alpha_prod_t = state.common.alphas_cumprod[timestep] + alpha_prod_t_prev = jnp.where(prev_timestep >= 0, state.common.alphas_cumprod[prev_timestep], state.final_alpha_cumprod) + beta_prod_t = 1 - alpha_prod_t + beta_prod_t_prev = 1 - alpha_prod_t_prev + if self.config.prediction_type == 'v_prediction': + model_output = alpha_prod_t ** 0.5 * model_output + beta_prod_t ** 0.5 * sample + elif self.config.prediction_type != 'epsilon': + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `v_prediction`') + sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** 0.5 + model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** 0.5 + (alpha_prod_t * beta_prod_t * alpha_prod_t_prev) ** 0.5 + prev_sample = sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff + return prev_sample + + def add_noise(self, state: PNDMSchedulerState, original_samples: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray) -> jnp.ndarray: + return add_noise_common(state.common, original_samples, noise, timesteps) + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_repaint.py +import math +from dataclasses import dataclass +from typing import Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput +from ..utils.torch_utils import randn_tensor +from .scheduling_utils import SchedulerMixin + +@dataclass +class RePaintSchedulerOutput(BaseOutput): + prev_sample: torch.Tensor + pred_original_sample: torch.Tensor + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +class RePaintScheduler(SchedulerMixin, ConfigMixin): + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.0001, beta_end: float=0.02, beta_schedule: str='linear', eta: float=0.0, trained_betas: Optional[np.ndarray]=None, clip_sample: bool=True): + if trained_betas is not None: + self.betas = torch.from_numpy(trained_betas) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + elif beta_schedule == 'sigmoid': + betas = torch.linspace(-6, 6, num_train_timesteps) + self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + self.one = torch.tensor(1.0) + self.final_alpha_cumprod = torch.tensor(1.0) + self.init_noise_sigma = 1.0 + self.num_inference_steps = None + self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy()) + self.eta = eta + + def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int]=None) -> torch.Tensor: + return sample + + def set_timesteps(self, num_inference_steps: int, jump_length: int=10, jump_n_sample: int=10, device: Union[str, torch.device]=None): + num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps) + self.num_inference_steps = num_inference_steps + timesteps = [] + jumps = {} + for j in range(0, num_inference_steps - jump_length, jump_length): + jumps[j] = jump_n_sample - 1 + t = num_inference_steps + while t >= 1: + t = t - 1 + timesteps.append(t) + if jumps.get(t, 0) > 0: + jumps[t] = jumps[t] - 1 + for _ in range(jump_length): + t = t + 1 + timesteps.append(t) + timesteps = np.array(timesteps) * (self.config.num_train_timesteps // self.num_inference_steps) + self.timesteps = torch.from_numpy(timesteps).to(device) + + def _get_variance(self, t): + prev_timestep = t - self.config.num_train_timesteps // self.num_inference_steps + alpha_prod_t = self.alphas_cumprod[t] + alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod + beta_prod_t = 1 - alpha_prod_t + beta_prod_t_prev = 1 - alpha_prod_t_prev + variance = beta_prod_t_prev / beta_prod_t * (1 - alpha_prod_t / alpha_prod_t_prev) + return variance + + def step(self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, original_image: torch.Tensor, mask: torch.Tensor, generator: Optional[torch.Generator]=None, return_dict: bool=True) -> Union[RePaintSchedulerOutput, Tuple]: + t = timestep + prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps + alpha_prod_t = self.alphas_cumprod[t] + alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod + beta_prod_t = 1 - alpha_prod_t + pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 + if self.config.clip_sample: + pred_original_sample = torch.clamp(pred_original_sample, -1, 1) + device = model_output.device + noise = randn_tensor(model_output.shape, generator=generator, device=device, dtype=model_output.dtype) + std_dev_t = self.eta * self._get_variance(timestep) ** 0.5 + variance = 0 + if t > 0 and self.eta > 0: + variance = std_dev_t * noise + pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t ** 2) ** 0.5 * model_output + prev_unknown_part = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction + variance + prev_known_part = alpha_prod_t_prev ** 0.5 * original_image + (1 - alpha_prod_t_prev) ** 0.5 * noise + pred_prev_sample = mask * prev_known_part + (1.0 - mask) * prev_unknown_part + if not return_dict: + return (pred_prev_sample, pred_original_sample) + return RePaintSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample) + + def undo_step(self, sample, timestep, generator=None): + n = self.config.num_train_timesteps // self.num_inference_steps + for i in range(n): + beta = self.betas[timestep + i] + if sample.device.type == 'mps': + noise = randn_tensor(sample.shape, dtype=sample.dtype, generator=generator) + noise = noise.to(sample.device) + else: + noise = randn_tensor(sample.shape, generator=generator, device=sample.device, dtype=sample.dtype) + sample = (1 - beta) ** 0.5 * sample + beta ** 0.5 * noise + return sample + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + raise NotImplementedError('Use `DDPMScheduler.add_noise()` to train for sampling with RePaint.') + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_sasolver.py +import math +from typing import Callable, List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import deprecate +from ..utils.torch_utils import randn_tensor +from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +class SASolverScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in KarrasDiffusionSchedulers] + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.0001, beta_end: float=0.02, beta_schedule: str='linear', trained_betas: Optional[Union[np.ndarray, List[float]]]=None, predictor_order: int=2, corrector_order: int=2, prediction_type: str='epsilon', tau_func: Optional[Callable]=None, thresholding: bool=False, dynamic_thresholding_ratio: float=0.995, sample_max_value: float=1.0, algorithm_type: str='data_prediction', lower_order_final: bool=True, use_karras_sigmas: Optional[bool]=False, lambda_min_clipped: float=-float('inf'), variance_type: Optional[str]=None, timestep_spacing: str='linspace', steps_offset: int=0): + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + self.alpha_t = torch.sqrt(self.alphas_cumprod) + self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) + self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) + self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 + self.init_noise_sigma = 1.0 + if algorithm_type not in ['data_prediction', 'noise_prediction']: + raise NotImplementedError(f'{algorithm_type} is not implemented for {self.__class__}') + self.num_inference_steps = None + timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy() + self.timesteps = torch.from_numpy(timesteps) + self.timestep_list = [None] * max(predictor_order, corrector_order - 1) + self.model_outputs = [None] * max(predictor_order, corrector_order - 1) + if tau_func is None: + self.tau_func = lambda t: 1 if t >= 200 and t <= 800 else 0 + else: + self.tau_func = tau_func + self.predict_x0 = algorithm_type == 'data_prediction' + self.lower_order_nums = 0 + self.last_sample = None + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + @property + def step_index(self): + return self._step_index + + @property + def begin_index(self): + return self._begin_index + + def set_begin_index(self, begin_index: int=0): + self._begin_index = begin_index + + def set_timesteps(self, num_inference_steps: int=None, device: Union[str, torch.device]=None): + clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped) + last_timestep = (self.config.num_train_timesteps - clipped_idx).numpy().item() + if self.config.timestep_spacing == 'linspace': + timesteps = np.linspace(0, last_timestep - 1, num_inference_steps + 1).round()[::-1][:-1].copy().astype(np.int64) + elif self.config.timestep_spacing == 'leading': + step_ratio = last_timestep // (num_inference_steps + 1) + timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64) + timesteps += self.config.steps_offset + elif self.config.timestep_spacing == 'trailing': + step_ratio = self.config.num_train_timesteps / num_inference_steps + timesteps = np.arange(last_timestep, 0, -step_ratio).round().copy().astype(np.int64) + timesteps -= 1 + else: + raise ValueError(f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.") + sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) + if self.config.use_karras_sigmas: + log_sigmas = np.log(sigmas) + sigmas = np.flip(sigmas).copy() + sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) + timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round() + sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32) + else: + sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) + sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5 + sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32) + self.sigmas = torch.from_numpy(sigmas) + self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64) + self.num_inference_steps = len(timesteps) + self.model_outputs = [None] * max(self.config.predictor_order, self.config.corrector_order - 1) + self.lower_order_nums = 0 + self.last_sample = None + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: + dtype = sample.dtype + (batch_size, channels, *remaining_dims) = sample.shape + if dtype not in (torch.float32, torch.float64): + sample = sample.float() + sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) + abs_sample = sample.abs() + s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) + s = torch.clamp(s, min=1, max=self.config.sample_max_value) + s = s.unsqueeze(1) + sample = torch.clamp(sample, -s, s) / s + sample = sample.reshape(batch_size, channels, *remaining_dims) + sample = sample.to(dtype) + return sample + + def _sigma_to_t(self, sigma, log_sigmas): + log_sigma = np.log(np.maximum(sigma, 1e-10)) + dists = log_sigma - log_sigmas[:, np.newaxis] + low_idx = np.cumsum(dists >= 0, axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) + high_idx = low_idx + 1 + low = log_sigmas[low_idx] + high = log_sigmas[high_idx] + w = (low - log_sigma) / (low - high) + w = np.clip(w, 0, 1) + t = (1 - w) * low_idx + w * high_idx + t = t.reshape(sigma.shape) + return t + + def _sigma_to_alpha_sigma_t(self, sigma): + alpha_t = 1 / (sigma ** 2 + 1) ** 0.5 + sigma_t = sigma * alpha_t + return (alpha_t, sigma_t) + + def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor: + if hasattr(self.config, 'sigma_min'): + sigma_min = self.config.sigma_min + else: + sigma_min = None + if hasattr(self.config, 'sigma_max'): + sigma_max = self.config.sigma_max + else: + sigma_max = None + sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() + sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() + rho = 7.0 + ramp = np.linspace(0, 1, num_inference_steps) + min_inv_rho = sigma_min ** (1 / rho) + max_inv_rho = sigma_max ** (1 / rho) + sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho + return sigmas + + def convert_model_output(self, model_output: torch.Tensor, *args, sample: torch.Tensor=None, **kwargs) -> torch.Tensor: + timestep = args[0] if len(args) > 0 else kwargs.pop('timestep', None) + if sample is None: + if len(args) > 1: + sample = args[1] + else: + raise ValueError('missing `sample` as a required keyward argument') + if timestep is not None: + deprecate('timesteps', '1.0.0', 'Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + sigma = self.sigmas[self.step_index] + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma) + if self.config.algorithm_type in ['data_prediction']: + if self.config.prediction_type == 'epsilon': + if self.config.variance_type in ['learned', 'learned_range']: + model_output = model_output[:, :3] + x0_pred = (sample - sigma_t * model_output) / alpha_t + elif self.config.prediction_type == 'sample': + x0_pred = model_output + elif self.config.prediction_type == 'v_prediction': + x0_pred = alpha_t * sample - sigma_t * model_output + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or `v_prediction` for the SASolverScheduler.') + if self.config.thresholding: + x0_pred = self._threshold_sample(x0_pred) + return x0_pred + elif self.config.algorithm_type in ['noise_prediction']: + if self.config.prediction_type == 'epsilon': + if self.config.variance_type in ['learned', 'learned_range']: + epsilon = model_output[:, :3] + else: + epsilon = model_output + elif self.config.prediction_type == 'sample': + epsilon = (sample - alpha_t * model_output) / sigma_t + elif self.config.prediction_type == 'v_prediction': + epsilon = alpha_t * model_output + sigma_t * sample + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or `v_prediction` for the SASolverScheduler.') + if self.config.thresholding: + (alpha_t, sigma_t) = (self.alpha_t[timestep], self.sigma_t[timestep]) + x0_pred = (sample - sigma_t * epsilon) / alpha_t + x0_pred = self._threshold_sample(x0_pred) + epsilon = (sample - alpha_t * x0_pred) / sigma_t + return epsilon + + def get_coefficients_exponential_negative(self, order, interval_start, interval_end): + assert order in [0, 1, 2, 3], 'order is only supported for 0, 1, 2 and 3' + if order == 0: + return torch.exp(-interval_end) * (torch.exp(interval_end - interval_start) - 1) + elif order == 1: + return torch.exp(-interval_end) * ((interval_start + 1) * torch.exp(interval_end - interval_start) - (interval_end + 1)) + elif order == 2: + return torch.exp(-interval_end) * ((interval_start ** 2 + 2 * interval_start + 2) * torch.exp(interval_end - interval_start) - (interval_end ** 2 + 2 * interval_end + 2)) + elif order == 3: + return torch.exp(-interval_end) * ((interval_start ** 3 + 3 * interval_start ** 2 + 6 * interval_start + 6) * torch.exp(interval_end - interval_start) - (interval_end ** 3 + 3 * interval_end ** 2 + 6 * interval_end + 6)) + + def get_coefficients_exponential_positive(self, order, interval_start, interval_end, tau): + assert order in [0, 1, 2, 3], 'order is only supported for 0, 1, 2 and 3' + interval_end_cov = (1 + tau ** 2) * interval_end + interval_start_cov = (1 + tau ** 2) * interval_start + if order == 0: + return torch.exp(interval_end_cov) * (1 - torch.exp(-(interval_end_cov - interval_start_cov))) / (1 + tau ** 2) + elif order == 1: + return torch.exp(interval_end_cov) * (interval_end_cov - 1 - (interval_start_cov - 1) * torch.exp(-(interval_end_cov - interval_start_cov))) / (1 + tau ** 2) ** 2 + elif order == 2: + return torch.exp(interval_end_cov) * (interval_end_cov ** 2 - 2 * interval_end_cov + 2 - (interval_start_cov ** 2 - 2 * interval_start_cov + 2) * torch.exp(-(interval_end_cov - interval_start_cov))) / (1 + tau ** 2) ** 3 + elif order == 3: + return torch.exp(interval_end_cov) * (interval_end_cov ** 3 - 3 * interval_end_cov ** 2 + 6 * interval_end_cov - 6 - (interval_start_cov ** 3 - 3 * interval_start_cov ** 2 + 6 * interval_start_cov - 6) * torch.exp(-(interval_end_cov - interval_start_cov))) / (1 + tau ** 2) ** 4 + + def lagrange_polynomial_coefficient(self, order, lambda_list): + assert order in [0, 1, 2, 3] + assert order == len(lambda_list) - 1 + if order == 0: + return [[1]] + elif order == 1: + return [[1 / (lambda_list[0] - lambda_list[1]), -lambda_list[1] / (lambda_list[0] - lambda_list[1])], [1 / (lambda_list[1] - lambda_list[0]), -lambda_list[0] / (lambda_list[1] - lambda_list[0])]] + elif order == 2: + denominator1 = (lambda_list[0] - lambda_list[1]) * (lambda_list[0] - lambda_list[2]) + denominator2 = (lambda_list[1] - lambda_list[0]) * (lambda_list[1] - lambda_list[2]) + denominator3 = (lambda_list[2] - lambda_list[0]) * (lambda_list[2] - lambda_list[1]) + return [[1 / denominator1, (-lambda_list[1] - lambda_list[2]) / denominator1, lambda_list[1] * lambda_list[2] / denominator1], [1 / denominator2, (-lambda_list[0] - lambda_list[2]) / denominator2, lambda_list[0] * lambda_list[2] / denominator2], [1 / denominator3, (-lambda_list[0] - lambda_list[1]) / denominator3, lambda_list[0] * lambda_list[1] / denominator3]] + elif order == 3: + denominator1 = (lambda_list[0] - lambda_list[1]) * (lambda_list[0] - lambda_list[2]) * (lambda_list[0] - lambda_list[3]) + denominator2 = (lambda_list[1] - lambda_list[0]) * (lambda_list[1] - lambda_list[2]) * (lambda_list[1] - lambda_list[3]) + denominator3 = (lambda_list[2] - lambda_list[0]) * (lambda_list[2] - lambda_list[1]) * (lambda_list[2] - lambda_list[3]) + denominator4 = (lambda_list[3] - lambda_list[0]) * (lambda_list[3] - lambda_list[1]) * (lambda_list[3] - lambda_list[2]) + return [[1 / denominator1, (-lambda_list[1] - lambda_list[2] - lambda_list[3]) / denominator1, (lambda_list[1] * lambda_list[2] + lambda_list[1] * lambda_list[3] + lambda_list[2] * lambda_list[3]) / denominator1, -lambda_list[1] * lambda_list[2] * lambda_list[3] / denominator1], [1 / denominator2, (-lambda_list[0] - lambda_list[2] - lambda_list[3]) / denominator2, (lambda_list[0] * lambda_list[2] + lambda_list[0] * lambda_list[3] + lambda_list[2] * lambda_list[3]) / denominator2, -lambda_list[0] * lambda_list[2] * lambda_list[3] / denominator2], [1 / denominator3, (-lambda_list[0] - lambda_list[1] - lambda_list[3]) / denominator3, (lambda_list[0] * lambda_list[1] + lambda_list[0] * lambda_list[3] + lambda_list[1] * lambda_list[3]) / denominator3, -lambda_list[0] * lambda_list[1] * lambda_list[3] / denominator3], [1 / denominator4, (-lambda_list[0] - lambda_list[1] - lambda_list[2]) / denominator4, (lambda_list[0] * lambda_list[1] + lambda_list[0] * lambda_list[2] + lambda_list[1] * lambda_list[2]) / denominator4, -lambda_list[0] * lambda_list[1] * lambda_list[2] / denominator4]] + + def get_coefficients_fn(self, order, interval_start, interval_end, lambda_list, tau): + assert order in [1, 2, 3, 4] + assert order == len(lambda_list), 'the length of lambda list must be equal to the order' + coefficients = [] + lagrange_coefficient = self.lagrange_polynomial_coefficient(order - 1, lambda_list) + for i in range(order): + coefficient = 0 + for j in range(order): + if self.predict_x0: + coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_positive(order - 1 - j, interval_start, interval_end, tau) + else: + coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_negative(order - 1 - j, interval_start, interval_end) + coefficients.append(coefficient) + assert len(coefficients) == order, 'the length of coefficients does not match the order' + return coefficients + + def stochastic_adams_bashforth_update(self, model_output: torch.Tensor, *args, sample: torch.Tensor, noise: torch.Tensor, order: int, tau: torch.Tensor, **kwargs) -> torch.Tensor: + prev_timestep = args[0] if len(args) > 0 else kwargs.pop('prev_timestep', None) + if sample is None: + if len(args) > 1: + sample = args[1] + else: + raise ValueError(' missing `sample` as a required keyward argument') + if noise is None: + if len(args) > 2: + noise = args[2] + else: + raise ValueError(' missing `noise` as a required keyward argument') + if order is None: + if len(args) > 3: + order = args[3] + else: + raise ValueError(' missing `order` as a required keyward argument') + if tau is None: + if len(args) > 4: + tau = args[4] + else: + raise ValueError(' missing `tau` as a required keyward argument') + if prev_timestep is not None: + deprecate('prev_timestep', '1.0.0', 'Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + model_output_list = self.model_outputs + (sigma_t, sigma_s0) = (self.sigmas[self.step_index + 1], self.sigmas[self.step_index]) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s0, sigma_s0) = self._sigma_to_alpha_sigma_t(sigma_s0) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) + gradient_part = torch.zeros_like(sample) + h = lambda_t - lambda_s0 + lambda_list = [] + for i in range(order): + si = self.step_index - i + (alpha_si, sigma_si) = self._sigma_to_alpha_sigma_t(self.sigmas[si]) + lambda_si = torch.log(alpha_si) - torch.log(sigma_si) + lambda_list.append(lambda_si) + gradient_coefficients = self.get_coefficients_fn(order, lambda_s0, lambda_t, lambda_list, tau) + x = sample + if self.predict_x0: + if order == 2: + temp_sigma = self.sigmas[self.step_index - 1] + (temp_alpha_s, temp_sigma_s) = self._sigma_to_alpha_sigma_t(temp_sigma) + temp_lambda_s = torch.log(temp_alpha_s) - torch.log(temp_sigma_s) + gradient_coefficients[0] += 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * (h ** 2 / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * -h)) / (1 + tau ** 2) ** 2) / (lambda_s0 - temp_lambda_s) + gradient_coefficients[1] -= 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * (h ** 2 / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * -h)) / (1 + tau ** 2) ** 2) / (lambda_s0 - temp_lambda_s) + for i in range(order): + if self.predict_x0: + gradient_part += (1 + tau ** 2) * sigma_t * torch.exp(-tau ** 2 * lambda_t) * gradient_coefficients[i] * model_output_list[-(i + 1)] + else: + gradient_part += -(1 + tau ** 2) * alpha_t * gradient_coefficients[i] * model_output_list[-(i + 1)] + if self.predict_x0: + noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau ** 2 * h)) * noise + else: + noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise + if self.predict_x0: + x_t = torch.exp(-tau ** 2 * h) * (sigma_t / sigma_s0) * x + gradient_part + noise_part + else: + x_t = alpha_t / alpha_s0 * x + gradient_part + noise_part + x_t = x_t.to(x.dtype) + return x_t + + def stochastic_adams_moulton_update(self, this_model_output: torch.Tensor, *args, last_sample: torch.Tensor, last_noise: torch.Tensor, this_sample: torch.Tensor, order: int, tau: torch.Tensor, **kwargs) -> torch.Tensor: + this_timestep = args[0] if len(args) > 0 else kwargs.pop('this_timestep', None) + if last_sample is None: + if len(args) > 1: + last_sample = args[1] + else: + raise ValueError(' missing`last_sample` as a required keyward argument') + if last_noise is None: + if len(args) > 2: + last_noise = args[2] + else: + raise ValueError(' missing`last_noise` as a required keyward argument') + if this_sample is None: + if len(args) > 3: + this_sample = args[3] + else: + raise ValueError(' missing`this_sample` as a required keyward argument') + if order is None: + if len(args) > 4: + order = args[4] + else: + raise ValueError(' missing`order` as a required keyward argument') + if tau is None: + if len(args) > 5: + tau = args[5] + else: + raise ValueError(' missing`tau` as a required keyward argument') + if this_timestep is not None: + deprecate('this_timestep', '1.0.0', 'Passing `this_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + model_output_list = self.model_outputs + (sigma_t, sigma_s0) = (self.sigmas[self.step_index], self.sigmas[self.step_index - 1]) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s0, sigma_s0) = self._sigma_to_alpha_sigma_t(sigma_s0) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) + gradient_part = torch.zeros_like(this_sample) + h = lambda_t - lambda_s0 + lambda_list = [] + for i in range(order): + si = self.step_index - i + (alpha_si, sigma_si) = self._sigma_to_alpha_sigma_t(self.sigmas[si]) + lambda_si = torch.log(alpha_si) - torch.log(sigma_si) + lambda_list.append(lambda_si) + model_prev_list = model_output_list + [this_model_output] + gradient_coefficients = self.get_coefficients_fn(order, lambda_s0, lambda_t, lambda_list, tau) + x = last_sample + if self.predict_x0: + if order == 2: + gradient_coefficients[0] += 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * (h / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * -h)) / ((1 + tau ** 2) ** 2 * h)) + gradient_coefficients[1] -= 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * (h / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * -h)) / ((1 + tau ** 2) ** 2 * h)) + for i in range(order): + if self.predict_x0: + gradient_part += (1 + tau ** 2) * sigma_t * torch.exp(-tau ** 2 * lambda_t) * gradient_coefficients[i] * model_prev_list[-(i + 1)] + else: + gradient_part += -(1 + tau ** 2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)] + if self.predict_x0: + noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau ** 2 * h)) * last_noise + else: + noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * last_noise + if self.predict_x0: + x_t = torch.exp(-tau ** 2 * h) * (sigma_t / sigma_s0) * x + gradient_part + noise_part + else: + x_t = alpha_t / alpha_s0 * x + gradient_part + noise_part + x_t = x_t.to(x.dtype) + return x_t + + def index_for_timestep(self, timestep, schedule_timesteps=None): + if schedule_timesteps is None: + schedule_timesteps = self.timesteps + index_candidates = (schedule_timesteps == timestep).nonzero() + if len(index_candidates) == 0: + step_index = len(self.timesteps) - 1 + elif len(index_candidates) > 1: + step_index = index_candidates[1].item() + else: + step_index = index_candidates[0].item() + return step_index + + def _init_step_index(self, timestep): + if self.begin_index is None: + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + self._step_index = self.index_for_timestep(timestep) + else: + self._step_index = self._begin_index + + def step(self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, generator=None, return_dict: bool=True) -> Union[SchedulerOutput, Tuple]: + if self.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + if self.step_index is None: + self._init_step_index(timestep) + use_corrector = self.step_index > 0 and self.last_sample is not None + model_output_convert = self.convert_model_output(model_output, sample=sample) + if use_corrector: + current_tau = self.tau_func(self.timestep_list[-1]) + sample = self.stochastic_adams_moulton_update(this_model_output=model_output_convert, last_sample=self.last_sample, last_noise=self.last_noise, this_sample=sample, order=self.this_corrector_order, tau=current_tau) + for i in range(max(self.config.predictor_order, self.config.corrector_order - 1) - 1): + self.model_outputs[i] = self.model_outputs[i + 1] + self.timestep_list[i] = self.timestep_list[i + 1] + self.model_outputs[-1] = model_output_convert + self.timestep_list[-1] = timestep + noise = randn_tensor(model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype) + if self.config.lower_order_final: + this_predictor_order = min(self.config.predictor_order, len(self.timesteps) - self.step_index) + this_corrector_order = min(self.config.corrector_order, len(self.timesteps) - self.step_index + 1) + else: + this_predictor_order = self.config.predictor_order + this_corrector_order = self.config.corrector_order + self.this_predictor_order = min(this_predictor_order, self.lower_order_nums + 1) + self.this_corrector_order = min(this_corrector_order, self.lower_order_nums + 2) + assert self.this_predictor_order > 0 + assert self.this_corrector_order > 0 + self.last_sample = sample + self.last_noise = noise + current_tau = self.tau_func(self.timestep_list[-1]) + prev_sample = self.stochastic_adams_bashforth_update(model_output=model_output_convert, sample=sample, noise=noise, order=self.this_predictor_order, tau=current_tau) + if self.lower_order_nums < max(self.config.predictor_order, self.config.corrector_order - 1): + self.lower_order_nums += 1 + self._step_index += 1 + if not return_dict: + return (prev_sample,) + return SchedulerOutput(prev_sample=prev_sample) + + def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor: + return sample + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device) + alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype) + timesteps = timesteps.to(original_samples.device) + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(original_samples.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise + return noisy_samples + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_sde_ve.py +import math +from dataclasses import dataclass +from typing import Optional, Tuple, Union +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput +from ..utils.torch_utils import randn_tensor +from .scheduling_utils import SchedulerMixin, SchedulerOutput + +@dataclass +class SdeVeOutput(BaseOutput): + prev_sample: torch.Tensor + prev_sample_mean: torch.Tensor + +class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin): + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps: int=2000, snr: float=0.15, sigma_min: float=0.01, sigma_max: float=1348.0, sampling_eps: float=1e-05, correct_steps: int=1): + self.init_noise_sigma = sigma_max + self.timesteps = None + self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps) + + def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int]=None) -> torch.Tensor: + return sample + + def set_timesteps(self, num_inference_steps: int, sampling_eps: float=None, device: Union[str, torch.device]=None): + sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps + self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps, device=device) + + def set_sigmas(self, num_inference_steps: int, sigma_min: float=None, sigma_max: float=None, sampling_eps: float=None): + sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min + sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max + sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps + if self.timesteps is None: + self.set_timesteps(num_inference_steps, sampling_eps) + self.sigmas = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) + self.discrete_sigmas = torch.exp(torch.linspace(math.log(sigma_min), math.log(sigma_max), num_inference_steps)) + self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) + + def get_adjacent_sigma(self, timesteps, t): + return torch.where(timesteps == 0, torch.zeros_like(t.to(timesteps.device)), self.discrete_sigmas[timesteps - 1].to(timesteps.device)) + + def step_pred(self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, generator: Optional[torch.Generator]=None, return_dict: bool=True) -> Union[SdeVeOutput, Tuple]: + if self.timesteps is None: + raise ValueError("`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") + timestep = timestep * torch.ones(sample.shape[0], device=sample.device) + timesteps = (timestep * (len(self.timesteps) - 1)).long() + timesteps = timesteps.to(self.discrete_sigmas.device) + sigma = self.discrete_sigmas[timesteps].to(sample.device) + adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep).to(sample.device) + drift = torch.zeros_like(sample) + diffusion = (sigma ** 2 - adjacent_sigma ** 2) ** 0.5 + diffusion = diffusion.flatten() + while len(diffusion.shape) < len(sample.shape): + diffusion = diffusion.unsqueeze(-1) + drift = drift - diffusion ** 2 * model_output + noise = randn_tensor(sample.shape, layout=sample.layout, generator=generator, device=sample.device, dtype=sample.dtype) + prev_sample_mean = sample - drift + prev_sample = prev_sample_mean + diffusion * noise + if not return_dict: + return (prev_sample, prev_sample_mean) + return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean) + + def step_correct(self, model_output: torch.Tensor, sample: torch.Tensor, generator: Optional[torch.Generator]=None, return_dict: bool=True) -> Union[SchedulerOutput, Tuple]: + if self.timesteps is None: + raise ValueError("`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") + noise = randn_tensor(sample.shape, layout=sample.layout, generator=generator).to(sample.device) + grad_norm = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() + noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() + step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 + step_size = step_size * torch.ones(sample.shape[0]).to(sample.device) + step_size = step_size.flatten() + while len(step_size.shape) < len(sample.shape): + step_size = step_size.unsqueeze(-1) + prev_sample_mean = sample + step_size * model_output + prev_sample = prev_sample_mean + (step_size * 2) ** 0.5 * noise + if not return_dict: + return (prev_sample,) + return SchedulerOutput(prev_sample=prev_sample) + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor: + timesteps = timesteps.to(original_samples.device) + sigmas = self.discrete_sigmas.to(original_samples.device)[timesteps] + noise = noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(original_samples) * sigmas[:, None, None, None] + noisy_samples = noise + original_samples + return noisy_samples + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_sde_ve_flax.py +from dataclasses import dataclass +from typing import Optional, Tuple, Union +import flax +import jax +import jax.numpy as jnp +from jax import random +from ..configuration_utils import ConfigMixin, register_to_config +from .scheduling_utils_flax import FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left + +@flax.struct.dataclass +class ScoreSdeVeSchedulerState: + timesteps: Optional[jnp.ndarray] = None + discrete_sigmas: Optional[jnp.ndarray] = None + sigmas: Optional[jnp.ndarray] = None + + @classmethod + def create(cls): + return cls() + +@dataclass +class FlaxSdeVeOutput(FlaxSchedulerOutput): + state: ScoreSdeVeSchedulerState + prev_sample: jnp.ndarray + prev_sample_mean: Optional[jnp.ndarray] = None + +class FlaxScoreSdeVeScheduler(FlaxSchedulerMixin, ConfigMixin): + + @property + def has_state(self): + return True + + @register_to_config + def __init__(self, num_train_timesteps: int=2000, snr: float=0.15, sigma_min: float=0.01, sigma_max: float=1348.0, sampling_eps: float=1e-05, correct_steps: int=1): + pass + + def create_state(self): + state = ScoreSdeVeSchedulerState.create() + return self.set_sigmas(state, self.config.num_train_timesteps, self.config.sigma_min, self.config.sigma_max, self.config.sampling_eps) + + def set_timesteps(self, state: ScoreSdeVeSchedulerState, num_inference_steps: int, shape: Tuple=(), sampling_eps: float=None) -> ScoreSdeVeSchedulerState: + sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps + timesteps = jnp.linspace(1, sampling_eps, num_inference_steps) + return state.replace(timesteps=timesteps) + + def set_sigmas(self, state: ScoreSdeVeSchedulerState, num_inference_steps: int, sigma_min: float=None, sigma_max: float=None, sampling_eps: float=None) -> ScoreSdeVeSchedulerState: + sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min + sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max + sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps + if state.timesteps is None: + state = self.set_timesteps(state, num_inference_steps, sampling_eps) + discrete_sigmas = jnp.exp(jnp.linspace(jnp.log(sigma_min), jnp.log(sigma_max), num_inference_steps)) + sigmas = jnp.array([sigma_min * (sigma_max / sigma_min) ** t for t in state.timesteps]) + return state.replace(discrete_sigmas=discrete_sigmas, sigmas=sigmas) + + def get_adjacent_sigma(self, state, timesteps, t): + return jnp.where(timesteps == 0, jnp.zeros_like(t), state.discrete_sigmas[timesteps - 1]) + + def step_pred(self, state: ScoreSdeVeSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, key: jax.Array, return_dict: bool=True) -> Union[FlaxSdeVeOutput, Tuple]: + if state.timesteps is None: + raise ValueError("`state.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") + timestep = timestep * jnp.ones(sample.shape[0]) + timesteps = (timestep * (len(state.timesteps) - 1)).long() + sigma = state.discrete_sigmas[timesteps] + adjacent_sigma = self.get_adjacent_sigma(state, timesteps, timestep) + drift = jnp.zeros_like(sample) + diffusion = (sigma ** 2 - adjacent_sigma ** 2) ** 0.5 + diffusion = diffusion.flatten() + diffusion = broadcast_to_shape_from_left(diffusion, sample.shape) + drift = drift - diffusion ** 2 * model_output + key = random.split(key, num=1) + noise = random.normal(key=key, shape=sample.shape) + prev_sample_mean = sample - drift + prev_sample = prev_sample_mean + diffusion * noise + if not return_dict: + return (prev_sample, prev_sample_mean, state) + return FlaxSdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean, state=state) + + def step_correct(self, state: ScoreSdeVeSchedulerState, model_output: jnp.ndarray, sample: jnp.ndarray, key: jax.Array, return_dict: bool=True) -> Union[FlaxSdeVeOutput, Tuple]: + if state.timesteps is None: + raise ValueError("`state.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") + key = random.split(key, num=1) + noise = random.normal(key=key, shape=sample.shape) + grad_norm = jnp.linalg.norm(model_output) + noise_norm = jnp.linalg.norm(noise) + step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 + step_size = step_size * jnp.ones(sample.shape[0]) + step_size = step_size.flatten() + step_size = broadcast_to_shape_from_left(step_size, sample.shape) + prev_sample_mean = sample + step_size * model_output + prev_sample = prev_sample_mean + (step_size * 2) ** 0.5 * noise + if not return_dict: + return (prev_sample, state) + return FlaxSdeVeOutput(prev_sample=prev_sample, state=state) + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_tcd.py +import math +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..schedulers.scheduling_utils import SchedulerMixin +from ..utils import BaseOutput, logging +from ..utils.torch_utils import randn_tensor +logger = logging.get_logger(__name__) + +@dataclass +class TCDSchedulerOutput(BaseOutput): + prev_sample: torch.Tensor + pred_noised_sample: Optional[torch.Tensor] = None + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +def rescale_zero_terminal_snr(betas: torch.Tensor) -> torch.Tensor: + alphas = 1.0 - betas + alphas_cumprod = torch.cumprod(alphas, dim=0) + alphas_bar_sqrt = alphas_cumprod.sqrt() + alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() + alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() + alphas_bar_sqrt -= alphas_bar_sqrt_T + alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) + alphas_bar = alphas_bar_sqrt ** 2 + alphas = alphas_bar[1:] / alphas_bar[:-1] + alphas = torch.cat([alphas_bar[0:1], alphas]) + betas = 1 - alphas + return betas + +class TCDScheduler(SchedulerMixin, ConfigMixin): + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.00085, beta_end: float=0.012, beta_schedule: str='scaled_linear', trained_betas: Optional[Union[np.ndarray, List[float]]]=None, original_inference_steps: int=50, clip_sample: bool=False, clip_sample_range: float=1.0, set_alpha_to_one: bool=True, steps_offset: int=0, prediction_type: str='epsilon', thresholding: bool=False, dynamic_thresholding_ratio: float=0.995, sample_max_value: float=1.0, timestep_spacing: str='leading', timestep_scaling: float=10.0, rescale_betas_zero_snr: bool=False): + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + if rescale_betas_zero_snr: + self.betas = rescale_zero_terminal_snr(self.betas) + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] + self.init_noise_sigma = 1.0 + self.num_inference_steps = None + self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64)) + self.custom_timesteps = False + self._step_index = None + self._begin_index = None + + def index_for_timestep(self, timestep, schedule_timesteps=None): + if schedule_timesteps is None: + schedule_timesteps = self.timesteps + indices = (schedule_timesteps == timestep).nonzero() + pos = 1 if len(indices) > 1 else 0 + return indices[pos].item() + + def _init_step_index(self, timestep): + if self.begin_index is None: + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + self._step_index = self.index_for_timestep(timestep) + else: + self._step_index = self._begin_index + + @property + def step_index(self): + return self._step_index + + @property + def begin_index(self): + return self._begin_index + + def set_begin_index(self, begin_index: int=0): + self._begin_index = begin_index + + def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int]=None) -> torch.Tensor: + return sample + + def _get_variance(self, timestep, prev_timestep): + alpha_prod_t = self.alphas_cumprod[timestep] + alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod + beta_prod_t = 1 - alpha_prod_t + beta_prod_t_prev = 1 - alpha_prod_t_prev + variance = beta_prod_t_prev / beta_prod_t * (1 - alpha_prod_t / alpha_prod_t_prev) + return variance + + def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: + dtype = sample.dtype + (batch_size, channels, *remaining_dims) = sample.shape + if dtype not in (torch.float32, torch.float64): + sample = sample.float() + sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) + abs_sample = sample.abs() + s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) + s = torch.clamp(s, min=1, max=self.config.sample_max_value) + s = s.unsqueeze(1) + sample = torch.clamp(sample, -s, s) / s + sample = sample.reshape(batch_size, channels, *remaining_dims) + sample = sample.to(dtype) + return sample + + def set_timesteps(self, num_inference_steps: Optional[int]=None, device: Union[str, torch.device]=None, original_inference_steps: Optional[int]=None, timesteps: Optional[List[int]]=None, strength: float=1.0): + if num_inference_steps is None and timesteps is None: + raise ValueError('Must pass exactly one of `num_inference_steps` or `custom_timesteps`.') + if num_inference_steps is not None and timesteps is not None: + raise ValueError('Can only pass one of `num_inference_steps` or `custom_timesteps`.') + original_steps = original_inference_steps if original_inference_steps is not None else self.config.original_inference_steps + if original_inference_steps is None: + if original_steps > self.config.num_train_timesteps: + raise ValueError(f'`original_steps`: {original_steps} cannot be larger than `self.config.train_timesteps`: {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle maximal {self.config.num_train_timesteps} timesteps.') + k = self.config.num_train_timesteps // original_steps + tcd_origin_timesteps = np.asarray(list(range(1, int(original_steps * strength) + 1))) * k - 1 + else: + tcd_origin_timesteps = np.asarray(list(range(0, int(self.config.num_train_timesteps * strength)))) + if timesteps is not None: + train_timesteps = set(tcd_origin_timesteps) + non_train_timesteps = [] + for i in range(1, len(timesteps)): + if timesteps[i] >= timesteps[i - 1]: + raise ValueError('`custom_timesteps` must be in descending order.') + if timesteps[i] not in train_timesteps: + non_train_timesteps.append(timesteps[i]) + if timesteps[0] >= self.config.num_train_timesteps: + raise ValueError(f'`timesteps` must start before `self.config.train_timesteps`: {self.config.num_train_timesteps}.') + if strength == 1.0 and timesteps[0] != self.config.num_train_timesteps - 1: + logger.warning(f'The first timestep on the custom timestep schedule is {timesteps[0]}, not `self.config.num_train_timesteps - 1`: {self.config.num_train_timesteps - 1}. You may get unexpected results when using this timestep schedule.') + if non_train_timesteps: + logger.warning(f'The custom timestep schedule contains the following timesteps which are not on the original training/distillation timestep schedule: {non_train_timesteps}. You may get unexpected results when using this timestep schedule.') + if original_steps is not None: + if len(timesteps) > original_steps: + logger.warning(f'The number of timesteps in the custom timestep schedule is {len(timesteps)}, which exceeds the the length of the timestep schedule used for training: {original_steps}. You may get some unexpected results when using this timestep schedule.') + elif len(timesteps) > self.config.num_train_timesteps: + logger.warning(f'The number of timesteps in the custom timestep schedule is {len(timesteps)}, which exceeds the the length of the timestep schedule used for training: {self.config.num_train_timesteps}. You may get some unexpected results when using this timestep schedule.') + timesteps = np.array(timesteps, dtype=np.int64) + self.num_inference_steps = len(timesteps) + self.custom_timesteps = True + init_timestep = min(int(self.num_inference_steps * strength), self.num_inference_steps) + t_start = max(self.num_inference_steps - init_timestep, 0) + timesteps = timesteps[t_start * self.order:] + else: + if num_inference_steps > self.config.num_train_timesteps: + raise ValueError(f'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`: {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle maximal {self.config.num_train_timesteps} timesteps.') + if original_steps is not None: + skipping_step = len(tcd_origin_timesteps) // num_inference_steps + if skipping_step < 1: + raise ValueError(f'The combination of `original_steps x strength`: {original_steps} x {strength} is smaller than `num_inference_steps`: {num_inference_steps}. Make sure to either reduce `num_inference_steps` to a value smaller than {int(original_steps * strength)} or increase `strength` to a value higher than {float(num_inference_steps / original_steps)}.') + self.num_inference_steps = num_inference_steps + if original_steps is not None: + if num_inference_steps > original_steps: + raise ValueError(f'`num_inference_steps`: {num_inference_steps} cannot be larger than `original_inference_steps`: {original_steps} because the final timestep schedule will be a subset of the `original_inference_steps`-sized initial timestep schedule.') + elif num_inference_steps > self.config.num_train_timesteps: + raise ValueError(f'`num_inference_steps`: {num_inference_steps} cannot be larger than `num_train_timesteps`: {self.config.num_train_timesteps} because the final timestep schedule will be a subset of the `num_train_timesteps`-sized initial timestep schedule.') + tcd_origin_timesteps = tcd_origin_timesteps[::-1].copy() + inference_indices = np.linspace(0, len(tcd_origin_timesteps), num=num_inference_steps, endpoint=False) + inference_indices = np.floor(inference_indices).astype(np.int64) + timesteps = tcd_origin_timesteps[inference_indices] + self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.long) + self._step_index = None + self._begin_index = None + + def step(self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, eta: float=0.3, generator: Optional[torch.Generator]=None, return_dict: bool=True) -> Union[TCDSchedulerOutput, Tuple]: + if self.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + if self.step_index is None: + self._init_step_index(timestep) + assert 0 <= eta <= 1.0, 'gamma must be less than or equal to 1.0' + prev_step_index = self.step_index + 1 + if prev_step_index < len(self.timesteps): + prev_timestep = self.timesteps[prev_step_index] + else: + prev_timestep = torch.tensor(0) + timestep_s = torch.floor((1 - eta) * prev_timestep).to(dtype=torch.long) + alpha_prod_t = self.alphas_cumprod[timestep] + beta_prod_t = 1 - alpha_prod_t + alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod + alpha_prod_s = self.alphas_cumprod[timestep_s] + beta_prod_s = 1 - alpha_prod_s + if self.config.prediction_type == 'epsilon': + pred_original_sample = (sample - beta_prod_t.sqrt() * model_output) / alpha_prod_t.sqrt() + pred_epsilon = model_output + pred_noised_sample = alpha_prod_s.sqrt() * pred_original_sample + beta_prod_s.sqrt() * pred_epsilon + elif self.config.prediction_type == 'sample': + pred_original_sample = model_output + pred_epsilon = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 + pred_noised_sample = alpha_prod_s.sqrt() * pred_original_sample + beta_prod_s.sqrt() * pred_epsilon + elif self.config.prediction_type == 'v_prediction': + pred_original_sample = alpha_prod_t ** 0.5 * sample - beta_prod_t ** 0.5 * model_output + pred_epsilon = alpha_prod_t ** 0.5 * model_output + beta_prod_t ** 0.5 * sample + pred_noised_sample = alpha_prod_s.sqrt() * pred_original_sample + beta_prod_s.sqrt() * pred_epsilon + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or `v_prediction` for `TCDScheduler`.') + if eta > 0: + if self.step_index != self.num_inference_steps - 1: + noise = randn_tensor(model_output.shape, generator=generator, device=model_output.device, dtype=pred_noised_sample.dtype) + prev_sample = (alpha_prod_t_prev / alpha_prod_s).sqrt() * pred_noised_sample + (1 - alpha_prod_t_prev / alpha_prod_s).sqrt() * noise + else: + prev_sample = pred_noised_sample + else: + prev_sample = pred_noised_sample + self._step_index += 1 + if not return_dict: + return (prev_sample, pred_noised_sample) + return TCDSchedulerOutput(prev_sample=prev_sample, pred_noised_sample=pred_noised_sample) + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device) + alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype) + timesteps = timesteps.to(original_samples.device) + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(original_samples.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise + return noisy_samples + + def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device) + alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype) + timesteps = timesteps.to(sample.device) + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(sample.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample + return velocity + + def __len__(self): + return self.config.num_train_timesteps + + def previous_timestep(self, timestep): + if self.custom_timesteps: + index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0] + if index == self.timesteps.shape[0] - 1: + prev_t = torch.tensor(-1) + else: + prev_t = self.timesteps[index + 1] + else: + num_inference_steps = self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps + prev_t = timestep - self.config.num_train_timesteps // num_inference_steps + return prev_t + +# File: diffusers-main/src/diffusers/schedulers/scheduling_unclip.py +import math +from dataclasses import dataclass +from typing import Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput +from ..utils.torch_utils import randn_tensor +from .scheduling_utils import SchedulerMixin + +@dataclass +class UnCLIPSchedulerOutput(BaseOutput): + prev_sample: torch.Tensor + pred_original_sample: Optional[torch.Tensor] = None + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +class UnCLIPScheduler(SchedulerMixin, ConfigMixin): + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, variance_type: str='fixed_small_log', clip_sample: bool=True, clip_sample_range: Optional[float]=1.0, prediction_type: str='epsilon', beta_schedule: str='squaredcos_cap_v2'): + if beta_schedule != 'squaredcos_cap_v2': + raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'") + self.betas = betas_for_alpha_bar(num_train_timesteps) + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + self.one = torch.tensor(1.0) + self.init_noise_sigma = 1.0 + self.num_inference_steps = None + self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy()) + self.variance_type = variance_type + + def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int]=None) -> torch.Tensor: + return sample + + def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device]=None): + self.num_inference_steps = num_inference_steps + step_ratio = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) + timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) + self.timesteps = torch.from_numpy(timesteps).to(device) + + def _get_variance(self, t, prev_timestep=None, predicted_variance=None, variance_type=None): + if prev_timestep is None: + prev_timestep = t - 1 + alpha_prod_t = self.alphas_cumprod[t] + alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one + beta_prod_t = 1 - alpha_prod_t + beta_prod_t_prev = 1 - alpha_prod_t_prev + if prev_timestep == t - 1: + beta = self.betas[t] + else: + beta = 1 - alpha_prod_t / alpha_prod_t_prev + variance = beta_prod_t_prev / beta_prod_t * beta + if variance_type is None: + variance_type = self.config.variance_type + if variance_type == 'fixed_small_log': + variance = torch.log(torch.clamp(variance, min=1e-20)) + variance = torch.exp(0.5 * variance) + elif variance_type == 'learned_range': + min_log = variance.log() + max_log = beta.log() + frac = (predicted_variance + 1) / 2 + variance = frac * max_log + (1 - frac) * min_log + return variance + + def step(self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, prev_timestep: Optional[int]=None, generator=None, return_dict: bool=True) -> Union[UnCLIPSchedulerOutput, Tuple]: + t = timestep + if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == 'learned_range': + (model_output, predicted_variance) = torch.split(model_output, sample.shape[1], dim=1) + else: + predicted_variance = None + if prev_timestep is None: + prev_timestep = t - 1 + alpha_prod_t = self.alphas_cumprod[t] + alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one + beta_prod_t = 1 - alpha_prod_t + beta_prod_t_prev = 1 - alpha_prod_t_prev + if prev_timestep == t - 1: + beta = self.betas[t] + alpha = self.alphas[t] + else: + beta = 1 - alpha_prod_t / alpha_prod_t_prev + alpha = 1 - beta + if self.config.prediction_type == 'epsilon': + pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 + elif self.config.prediction_type == 'sample': + pred_original_sample = model_output + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample` for the UnCLIPScheduler.') + if self.config.clip_sample: + pred_original_sample = torch.clamp(pred_original_sample, -self.config.clip_sample_range, self.config.clip_sample_range) + pred_original_sample_coeff = alpha_prod_t_prev ** 0.5 * beta / beta_prod_t + current_sample_coeff = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t + pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample + variance = 0 + if t > 0: + variance_noise = randn_tensor(model_output.shape, dtype=model_output.dtype, generator=generator, device=model_output.device) + variance = self._get_variance(t, predicted_variance=predicted_variance, prev_timestep=prev_timestep) + if self.variance_type == 'fixed_small_log': + variance = variance + elif self.variance_type == 'learned_range': + variance = (0.5 * variance).exp() + else: + raise ValueError(f'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range` for the UnCLIPScheduler.') + variance = variance * variance_noise + pred_prev_sample = pred_prev_sample + variance + if not return_dict: + return (pred_prev_sample,) + return UnCLIPSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample) + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device) + alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype) + timesteps = timesteps.to(original_samples.device) + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + while len(sqrt_alpha_prod.shape) < len(original_samples.shape): + sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) + noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise + return noisy_samples + +# File: diffusers-main/src/diffusers/schedulers/scheduling_unipc_multistep.py +import math +from typing import List, Optional, Tuple, Union +import numpy as np +import torch +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import deprecate +from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput + +def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999, alpha_transform_type='cosine'): + if alpha_transform_type == 'cosine': + + def alpha_bar_fn(t): + return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 + elif alpha_transform_type == 'exp': + + def alpha_bar_fn(t): + return math.exp(t * -12.0) + else: + raise ValueError(f'Unsupported alpha_transform_type: {alpha_transform_type}') + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float32) + +def rescale_zero_terminal_snr(betas): + alphas = 1.0 - betas + alphas_cumprod = torch.cumprod(alphas, dim=0) + alphas_bar_sqrt = alphas_cumprod.sqrt() + alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() + alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() + alphas_bar_sqrt -= alphas_bar_sqrt_T + alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) + alphas_bar = alphas_bar_sqrt ** 2 + alphas = alphas_bar[1:] / alphas_bar[:-1] + alphas = torch.cat([alphas_bar[0:1], alphas]) + betas = 1 - alphas + return betas + +class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin): + _compatibles = [e.name for e in KarrasDiffusionSchedulers] + order = 1 + + @register_to_config + def __init__(self, num_train_timesteps: int=1000, beta_start: float=0.0001, beta_end: float=0.02, beta_schedule: str='linear', trained_betas: Optional[Union[np.ndarray, List[float]]]=None, solver_order: int=2, prediction_type: str='epsilon', thresholding: bool=False, dynamic_thresholding_ratio: float=0.995, sample_max_value: float=1.0, predict_x0: bool=True, solver_type: str='bh2', lower_order_final: bool=True, disable_corrector: List[int]=[], solver_p: SchedulerMixin=None, use_karras_sigmas: Optional[bool]=False, timestep_spacing: str='linspace', steps_offset: int=0, final_sigmas_type: Optional[str]='zero', rescale_betas_zero_snr: bool=False): + if trained_betas is not None: + self.betas = torch.tensor(trained_betas, dtype=torch.float32) + elif beta_schedule == 'linear': + self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) + elif beta_schedule == 'scaled_linear': + self.betas = torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2 + elif beta_schedule == 'squaredcos_cap_v2': + self.betas = betas_for_alpha_bar(num_train_timesteps) + else: + raise NotImplementedError(f'{beta_schedule} is not implemented for {self.__class__}') + if rescale_betas_zero_snr: + self.betas = rescale_zero_terminal_snr(self.betas) + self.alphas = 1.0 - self.betas + self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) + if rescale_betas_zero_snr: + self.alphas_cumprod[-1] = 2 ** (-24) + self.alpha_t = torch.sqrt(self.alphas_cumprod) + self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) + self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) + self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 + self.init_noise_sigma = 1.0 + if solver_type not in ['bh1', 'bh2']: + if solver_type in ['midpoint', 'heun', 'logrho']: + self.register_to_config(solver_type='bh2') + else: + raise NotImplementedError(f'{solver_type} is not implemented for {self.__class__}') + self.predict_x0 = predict_x0 + self.num_inference_steps = None + timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy() + self.timesteps = torch.from_numpy(timesteps) + self.model_outputs = [None] * solver_order + self.timestep_list = [None] * solver_order + self.lower_order_nums = 0 + self.disable_corrector = disable_corrector + self.solver_p = solver_p + self.last_sample = None + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + @property + def step_index(self): + return self._step_index + + @property + def begin_index(self): + return self._begin_index + + def set_begin_index(self, begin_index: int=0): + self._begin_index = begin_index + + def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device]=None): + if self.config.timestep_spacing == 'linspace': + timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps + 1).round()[::-1][:-1].copy().astype(np.int64) + elif self.config.timestep_spacing == 'leading': + step_ratio = self.config.num_train_timesteps // (num_inference_steps + 1) + timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64) + timesteps += self.config.steps_offset + elif self.config.timestep_spacing == 'trailing': + step_ratio = self.config.num_train_timesteps / num_inference_steps + timesteps = np.arange(self.config.num_train_timesteps, 0, -step_ratio).round().copy().astype(np.int64) + timesteps -= 1 + else: + raise ValueError(f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.") + sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) + if self.config.use_karras_sigmas: + log_sigmas = np.log(sigmas) + sigmas = np.flip(sigmas).copy() + sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) + timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round() + if self.config.final_sigmas_type == 'sigma_min': + sigma_last = sigmas[-1] + elif self.config.final_sigmas_type == 'zero': + sigma_last = 0 + else: + raise ValueError(f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}") + sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32) + else: + sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) + if self.config.final_sigmas_type == 'sigma_min': + sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5 + elif self.config.final_sigmas_type == 'zero': + sigma_last = 0 + else: + raise ValueError(f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}") + sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32) + self.sigmas = torch.from_numpy(sigmas) + self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64) + self.num_inference_steps = len(timesteps) + self.model_outputs = [None] * self.config.solver_order + self.lower_order_nums = 0 + self.last_sample = None + if self.solver_p: + self.solver_p.set_timesteps(self.num_inference_steps, device=device) + self._step_index = None + self._begin_index = None + self.sigmas = self.sigmas.to('cpu') + + def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: + dtype = sample.dtype + (batch_size, channels, *remaining_dims) = sample.shape + if dtype not in (torch.float32, torch.float64): + sample = sample.float() + sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) + abs_sample = sample.abs() + s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) + s = torch.clamp(s, min=1, max=self.config.sample_max_value) + s = s.unsqueeze(1) + sample = torch.clamp(sample, -s, s) / s + sample = sample.reshape(batch_size, channels, *remaining_dims) + sample = sample.to(dtype) + return sample + + def _sigma_to_t(self, sigma, log_sigmas): + log_sigma = np.log(np.maximum(sigma, 1e-10)) + dists = log_sigma - log_sigmas[:, np.newaxis] + low_idx = np.cumsum(dists >= 0, axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) + high_idx = low_idx + 1 + low = log_sigmas[low_idx] + high = log_sigmas[high_idx] + w = (low - log_sigma) / (low - high) + w = np.clip(w, 0, 1) + t = (1 - w) * low_idx + w * high_idx + t = t.reshape(sigma.shape) + return t + + def _sigma_to_alpha_sigma_t(self, sigma): + alpha_t = 1 / (sigma ** 2 + 1) ** 0.5 + sigma_t = sigma * alpha_t + return (alpha_t, sigma_t) + + def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor: + if hasattr(self.config, 'sigma_min'): + sigma_min = self.config.sigma_min + else: + sigma_min = None + if hasattr(self.config, 'sigma_max'): + sigma_max = self.config.sigma_max + else: + sigma_max = None + sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() + sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() + rho = 7.0 + ramp = np.linspace(0, 1, num_inference_steps) + min_inv_rho = sigma_min ** (1 / rho) + max_inv_rho = sigma_max ** (1 / rho) + sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho + return sigmas + + def convert_model_output(self, model_output: torch.Tensor, *args, sample: torch.Tensor=None, **kwargs) -> torch.Tensor: + timestep = args[0] if len(args) > 0 else kwargs.pop('timestep', None) + if sample is None: + if len(args) > 1: + sample = args[1] + else: + raise ValueError('missing `sample` as a required keyward argument') + if timestep is not None: + deprecate('timesteps', '1.0.0', 'Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + sigma = self.sigmas[self.step_index] + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma) + if self.predict_x0: + if self.config.prediction_type == 'epsilon': + x0_pred = (sample - sigma_t * model_output) / alpha_t + elif self.config.prediction_type == 'sample': + x0_pred = model_output + elif self.config.prediction_type == 'v_prediction': + x0_pred = alpha_t * sample - sigma_t * model_output + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or `v_prediction` for the UniPCMultistepScheduler.') + if self.config.thresholding: + x0_pred = self._threshold_sample(x0_pred) + return x0_pred + elif self.config.prediction_type == 'epsilon': + return model_output + elif self.config.prediction_type == 'sample': + epsilon = (sample - alpha_t * model_output) / sigma_t + return epsilon + elif self.config.prediction_type == 'v_prediction': + epsilon = alpha_t * model_output + sigma_t * sample + return epsilon + else: + raise ValueError(f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or `v_prediction` for the UniPCMultistepScheduler.') + + def multistep_uni_p_bh_update(self, model_output: torch.Tensor, *args, sample: torch.Tensor=None, order: int=None, **kwargs) -> torch.Tensor: + prev_timestep = args[0] if len(args) > 0 else kwargs.pop('prev_timestep', None) + if sample is None: + if len(args) > 1: + sample = args[1] + else: + raise ValueError(' missing `sample` as a required keyward argument') + if order is None: + if len(args) > 2: + order = args[2] + else: + raise ValueError(' missing `order` as a required keyward argument') + if prev_timestep is not None: + deprecate('prev_timestep', '1.0.0', 'Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + model_output_list = self.model_outputs + s0 = self.timestep_list[-1] + m0 = model_output_list[-1] + x = sample + if self.solver_p: + x_t = self.solver_p.step(model_output, s0, x).prev_sample + return x_t + (sigma_t, sigma_s0) = (self.sigmas[self.step_index + 1], self.sigmas[self.step_index]) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s0, sigma_s0) = self._sigma_to_alpha_sigma_t(sigma_s0) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) + h = lambda_t - lambda_s0 + device = sample.device + rks = [] + D1s = [] + for i in range(1, order): + si = self.step_index - i + mi = model_output_list[-(i + 1)] + (alpha_si, sigma_si) = self._sigma_to_alpha_sigma_t(self.sigmas[si]) + lambda_si = torch.log(alpha_si) - torch.log(sigma_si) + rk = (lambda_si - lambda_s0) / h + rks.append(rk) + D1s.append((mi - m0) / rk) + rks.append(1.0) + rks = torch.tensor(rks, device=device) + R = [] + b = [] + hh = -h if self.predict_x0 else h + h_phi_1 = torch.expm1(hh) + h_phi_k = h_phi_1 / hh - 1 + factorial_i = 1 + if self.config.solver_type == 'bh1': + B_h = hh + elif self.config.solver_type == 'bh2': + B_h = torch.expm1(hh) + else: + raise NotImplementedError() + for i in range(1, order + 1): + R.append(torch.pow(rks, i - 1)) + b.append(h_phi_k * factorial_i / B_h) + factorial_i *= i + 1 + h_phi_k = h_phi_k / hh - 1 / factorial_i + R = torch.stack(R) + b = torch.tensor(b, device=device) + if len(D1s) > 0: + D1s = torch.stack(D1s, dim=1) + if order == 2: + rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device) + else: + rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]).to(device).to(x.dtype) + else: + D1s = None + if self.predict_x0: + x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0 + if D1s is not None: + pred_res = torch.einsum('k,bkc...->bc...', rhos_p, D1s) + else: + pred_res = 0 + x_t = x_t_ - alpha_t * B_h * pred_res + else: + x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0 + if D1s is not None: + pred_res = torch.einsum('k,bkc...->bc...', rhos_p, D1s) + else: + pred_res = 0 + x_t = x_t_ - sigma_t * B_h * pred_res + x_t = x_t.to(x.dtype) + return x_t + + def multistep_uni_c_bh_update(self, this_model_output: torch.Tensor, *args, last_sample: torch.Tensor=None, this_sample: torch.Tensor=None, order: int=None, **kwargs) -> torch.Tensor: + this_timestep = args[0] if len(args) > 0 else kwargs.pop('this_timestep', None) + if last_sample is None: + if len(args) > 1: + last_sample = args[1] + else: + raise ValueError(' missing`last_sample` as a required keyward argument') + if this_sample is None: + if len(args) > 2: + this_sample = args[2] + else: + raise ValueError(' missing`this_sample` as a required keyward argument') + if order is None: + if len(args) > 3: + order = args[3] + else: + raise ValueError(' missing`order` as a required keyward argument') + if this_timestep is not None: + deprecate('this_timestep', '1.0.0', 'Passing `this_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`') + model_output_list = self.model_outputs + m0 = model_output_list[-1] + x = last_sample + x_t = this_sample + model_t = this_model_output + (sigma_t, sigma_s0) = (self.sigmas[self.step_index], self.sigmas[self.step_index - 1]) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma_t) + (alpha_s0, sigma_s0) = self._sigma_to_alpha_sigma_t(sigma_s0) + lambda_t = torch.log(alpha_t) - torch.log(sigma_t) + lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) + h = lambda_t - lambda_s0 + device = this_sample.device + rks = [] + D1s = [] + for i in range(1, order): + si = self.step_index - (i + 1) + mi = model_output_list[-(i + 1)] + (alpha_si, sigma_si) = self._sigma_to_alpha_sigma_t(self.sigmas[si]) + lambda_si = torch.log(alpha_si) - torch.log(sigma_si) + rk = (lambda_si - lambda_s0) / h + rks.append(rk) + D1s.append((mi - m0) / rk) + rks.append(1.0) + rks = torch.tensor(rks, device=device) + R = [] + b = [] + hh = -h if self.predict_x0 else h + h_phi_1 = torch.expm1(hh) + h_phi_k = h_phi_1 / hh - 1 + factorial_i = 1 + if self.config.solver_type == 'bh1': + B_h = hh + elif self.config.solver_type == 'bh2': + B_h = torch.expm1(hh) + else: + raise NotImplementedError() + for i in range(1, order + 1): + R.append(torch.pow(rks, i - 1)) + b.append(h_phi_k * factorial_i / B_h) + factorial_i *= i + 1 + h_phi_k = h_phi_k / hh - 1 / factorial_i + R = torch.stack(R) + b = torch.tensor(b, device=device) + if len(D1s) > 0: + D1s = torch.stack(D1s, dim=1) + else: + D1s = None + if order == 1: + rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device) + else: + rhos_c = torch.linalg.solve(R, b).to(device).to(x.dtype) + if self.predict_x0: + x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0 + if D1s is not None: + corr_res = torch.einsum('k,bkc...->bc...', rhos_c[:-1], D1s) + else: + corr_res = 0 + D1_t = model_t - m0 + x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t) + else: + x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0 + if D1s is not None: + corr_res = torch.einsum('k,bkc...->bc...', rhos_c[:-1], D1s) + else: + corr_res = 0 + D1_t = model_t - m0 + x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t) + x_t = x_t.to(x.dtype) + return x_t + + def index_for_timestep(self, timestep, schedule_timesteps=None): + if schedule_timesteps is None: + schedule_timesteps = self.timesteps + index_candidates = (schedule_timesteps == timestep).nonzero() + if len(index_candidates) == 0: + step_index = len(self.timesteps) - 1 + elif len(index_candidates) > 1: + step_index = index_candidates[1].item() + else: + step_index = index_candidates[0].item() + return step_index + + def _init_step_index(self, timestep): + if self.begin_index is None: + if isinstance(timestep, torch.Tensor): + timestep = timestep.to(self.timesteps.device) + self._step_index = self.index_for_timestep(timestep) + else: + self._step_index = self._begin_index + + def step(self, model_output: torch.Tensor, timestep: Union[int, torch.Tensor], sample: torch.Tensor, return_dict: bool=True) -> Union[SchedulerOutput, Tuple]: + if self.num_inference_steps is None: + raise ValueError("Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") + if self.step_index is None: + self._init_step_index(timestep) + use_corrector = self.step_index > 0 and self.step_index - 1 not in self.disable_corrector and (self.last_sample is not None) + model_output_convert = self.convert_model_output(model_output, sample=sample) + if use_corrector: + sample = self.multistep_uni_c_bh_update(this_model_output=model_output_convert, last_sample=self.last_sample, this_sample=sample, order=self.this_order) + for i in range(self.config.solver_order - 1): + self.model_outputs[i] = self.model_outputs[i + 1] + self.timestep_list[i] = self.timestep_list[i + 1] + self.model_outputs[-1] = model_output_convert + self.timestep_list[-1] = timestep + if self.config.lower_order_final: + this_order = min(self.config.solver_order, len(self.timesteps) - self.step_index) + else: + this_order = self.config.solver_order + self.this_order = min(this_order, self.lower_order_nums + 1) + assert self.this_order > 0 + self.last_sample = sample + prev_sample = self.multistep_uni_p_bh_update(model_output=model_output, sample=sample, order=self.this_order) + if self.lower_order_nums < self.config.solver_order: + self.lower_order_nums += 1 + self._step_index += 1 + if not return_dict: + return (prev_sample,) + return SchedulerOutput(prev_sample=prev_sample) + + def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor: + return sample + + def add_noise(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: + sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) + if original_samples.device.type == 'mps' and torch.is_floating_point(timesteps): + schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) + timesteps = timesteps.to(original_samples.device, dtype=torch.float32) + else: + schedule_timesteps = self.timesteps.to(original_samples.device) + timesteps = timesteps.to(original_samples.device) + if self.begin_index is None: + step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] + elif self.step_index is not None: + step_indices = [self.step_index] * timesteps.shape[0] + else: + step_indices = [self.begin_index] * timesteps.shape[0] + sigma = sigmas[step_indices].flatten() + while len(sigma.shape) < len(original_samples.shape): + sigma = sigma.unsqueeze(-1) + (alpha_t, sigma_t) = self._sigma_to_alpha_sigma_t(sigma) + noisy_samples = alpha_t * original_samples + sigma_t * noise + return noisy_samples + + def __len__(self): + return self.config.num_train_timesteps + +# File: diffusers-main/src/diffusers/schedulers/scheduling_utils.py +import importlib +import os +from dataclasses import dataclass +from enum import Enum +from typing import Optional, Union +import torch +from huggingface_hub.utils import validate_hf_hub_args +from ..utils import BaseOutput, PushToHubMixin +SCHEDULER_CONFIG_NAME = 'scheduler_config.json' + +class KarrasDiffusionSchedulers(Enum): + DDIMScheduler = 1 + DDPMScheduler = 2 + PNDMScheduler = 3 + LMSDiscreteScheduler = 4 + EulerDiscreteScheduler = 5 + HeunDiscreteScheduler = 6 + EulerAncestralDiscreteScheduler = 7 + DPMSolverMultistepScheduler = 8 + DPMSolverSinglestepScheduler = 9 + KDPM2DiscreteScheduler = 10 + KDPM2AncestralDiscreteScheduler = 11 + DEISMultistepScheduler = 12 + UniPCMultistepScheduler = 13 + DPMSolverSDEScheduler = 14 + EDMEulerScheduler = 15 +AysSchedules = {'StableDiffusionTimesteps': [999, 850, 736, 645, 545, 455, 343, 233, 124, 24], 'StableDiffusionSigmas': [14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.0], 'StableDiffusionXLTimesteps': [999, 845, 730, 587, 443, 310, 193, 116, 53, 13], 'StableDiffusionXLSigmas': [14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.38, 0.234, 0.113, 0.0], 'StableDiffusionVideoSigmas': [700.0, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.0]} + +@dataclass +class SchedulerOutput(BaseOutput): + prev_sample: torch.Tensor + +class SchedulerMixin(PushToHubMixin): + config_name = SCHEDULER_CONFIG_NAME + _compatibles = [] + has_compatibles = True + + @classmethod + @validate_hf_hub_args + def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]]=None, subfolder: Optional[str]=None, return_unused_kwargs=False, **kwargs): + (config, kwargs, commit_hash) = cls.load_config(pretrained_model_name_or_path=pretrained_model_name_or_path, subfolder=subfolder, return_unused_kwargs=True, return_commit_hash=True, **kwargs) + return cls.from_config(config, return_unused_kwargs=return_unused_kwargs, **kwargs) + + def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool=False, **kwargs): + self.save_config(save_directory=save_directory, push_to_hub=push_to_hub, **kwargs) + + @property + def compatibles(self): + return self._get_compatibles() + + @classmethod + def _get_compatibles(cls): + compatible_classes_str = list(set([cls.__name__] + cls._compatibles)) + diffusers_library = importlib.import_module(__name__.split('.')[0]) + compatible_classes = [getattr(diffusers_library, c) for c in compatible_classes_str if hasattr(diffusers_library, c)] + return compatible_classes + +# File: diffusers-main/src/diffusers/schedulers/scheduling_utils_flax.py +import importlib +import math +import os +from dataclasses import dataclass +from enum import Enum +from typing import Optional, Tuple, Union +import flax +import jax.numpy as jnp +from huggingface_hub.utils import validate_hf_hub_args +from ..utils import BaseOutput, PushToHubMixin +SCHEDULER_CONFIG_NAME = 'scheduler_config.json' + +class FlaxKarrasDiffusionSchedulers(Enum): + FlaxDDIMScheduler = 1 + FlaxDDPMScheduler = 2 + FlaxPNDMScheduler = 3 + FlaxLMSDiscreteScheduler = 4 + FlaxDPMSolverMultistepScheduler = 5 + FlaxEulerDiscreteScheduler = 6 + +@dataclass +class FlaxSchedulerOutput(BaseOutput): + prev_sample: jnp.ndarray + +class FlaxSchedulerMixin(PushToHubMixin): + config_name = SCHEDULER_CONFIG_NAME + ignore_for_config = ['dtype'] + _compatibles = [] + has_compatibles = True + + @classmethod + @validate_hf_hub_args + def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]]=None, subfolder: Optional[str]=None, return_unused_kwargs=False, **kwargs): + (config, kwargs) = cls.load_config(pretrained_model_name_or_path=pretrained_model_name_or_path, subfolder=subfolder, return_unused_kwargs=True, **kwargs) + (scheduler, unused_kwargs) = cls.from_config(config, return_unused_kwargs=True, **kwargs) + if hasattr(scheduler, 'create_state') and getattr(scheduler, 'has_state', False): + state = scheduler.create_state() + if return_unused_kwargs: + return (scheduler, state, unused_kwargs) + return (scheduler, state) + + def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool=False, **kwargs): + self.save_config(save_directory=save_directory, push_to_hub=push_to_hub, **kwargs) + + @property + def compatibles(self): + return self._get_compatibles() + + @classmethod + def _get_compatibles(cls): + compatible_classes_str = list(set([cls.__name__] + cls._compatibles)) + diffusers_library = importlib.import_module(__name__.split('.')[0]) + compatible_classes = [getattr(diffusers_library, c) for c in compatible_classes_str if hasattr(diffusers_library, c)] + return compatible_classes + +def broadcast_to_shape_from_left(x: jnp.ndarray, shape: Tuple[int]) -> jnp.ndarray: + assert len(shape) >= x.ndim + return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(shape) - x.ndim)), shape) + +def betas_for_alpha_bar(num_diffusion_timesteps: int, max_beta=0.999, dtype=jnp.float32) -> jnp.ndarray: + + def alpha_bar(time_step): + return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) + return jnp.array(betas, dtype=dtype) + +@flax.struct.dataclass +class CommonSchedulerState: + alphas: jnp.ndarray + betas: jnp.ndarray + alphas_cumprod: jnp.ndarray + + @classmethod + def create(cls, scheduler): + config = scheduler.config + if config.trained_betas is not None: + betas = jnp.asarray(config.trained_betas, dtype=scheduler.dtype) + elif config.beta_schedule == 'linear': + betas = jnp.linspace(config.beta_start, config.beta_end, config.num_train_timesteps, dtype=scheduler.dtype) + elif config.beta_schedule == 'scaled_linear': + betas = jnp.linspace(config.beta_start ** 0.5, config.beta_end ** 0.5, config.num_train_timesteps, dtype=scheduler.dtype) ** 2 + elif config.beta_schedule == 'squaredcos_cap_v2': + betas = betas_for_alpha_bar(config.num_train_timesteps, dtype=scheduler.dtype) + else: + raise NotImplementedError(f'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}') + alphas = 1.0 - betas + alphas_cumprod = jnp.cumprod(alphas, axis=0) + return cls(alphas=alphas, betas=betas, alphas_cumprod=alphas_cumprod) + +def get_sqrt_alpha_prod(state: CommonSchedulerState, original_samples: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray): + alphas_cumprod = state.alphas_cumprod + sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 + sqrt_alpha_prod = sqrt_alpha_prod.flatten() + sqrt_alpha_prod = broadcast_to_shape_from_left(sqrt_alpha_prod, original_samples.shape) + sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 + sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() + sqrt_one_minus_alpha_prod = broadcast_to_shape_from_left(sqrt_one_minus_alpha_prod, original_samples.shape) + return (sqrt_alpha_prod, sqrt_one_minus_alpha_prod) + +def add_noise_common(state: CommonSchedulerState, original_samples: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray): + (sqrt_alpha_prod, sqrt_one_minus_alpha_prod) = get_sqrt_alpha_prod(state, original_samples, noise, timesteps) + noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise + return noisy_samples + +def get_velocity_common(state: CommonSchedulerState, sample: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray): + (sqrt_alpha_prod, sqrt_one_minus_alpha_prod) = get_sqrt_alpha_prod(state, sample, noise, timesteps) + velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample + return velocity + +# File: diffusers-main/src/diffusers/schedulers/scheduling_vq_diffusion.py +from dataclasses import dataclass +from typing import Optional, Tuple, Union +import numpy as np +import torch +import torch.nn.functional as F +from ..configuration_utils import ConfigMixin, register_to_config +from ..utils import BaseOutput +from .scheduling_utils import SchedulerMixin + +@dataclass +class VQDiffusionSchedulerOutput(BaseOutput): + prev_sample: torch.LongTensor + +def index_to_log_onehot(x: torch.LongTensor, num_classes: int) -> torch.Tensor: + x_onehot = F.one_hot(x, num_classes) + x_onehot = x_onehot.permute(0, 2, 1) + log_x = torch.log(x_onehot.float().clamp(min=1e-30)) + return log_x + +def gumbel_noised(logits: torch.Tensor, generator: Optional[torch.Generator]) -> torch.Tensor: + uniform = torch.rand(logits.shape, device=logits.device, generator=generator) + gumbel_noise = -torch.log(-torch.log(uniform + 1e-30) + 1e-30) + noised = gumbel_noise + logits + return noised + +def alpha_schedules(num_diffusion_timesteps: int, alpha_cum_start=0.99999, alpha_cum_end=9e-06): + att = np.arange(0, num_diffusion_timesteps) / (num_diffusion_timesteps - 1) * (alpha_cum_end - alpha_cum_start) + alpha_cum_start + att = np.concatenate(([1], att)) + at = att[1:] / att[:-1] + att = np.concatenate((att[1:], [1])) + return (at, att) + +def gamma_schedules(num_diffusion_timesteps: int, gamma_cum_start=9e-06, gamma_cum_end=0.99999): + ctt = np.arange(0, num_diffusion_timesteps) / (num_diffusion_timesteps - 1) * (gamma_cum_end - gamma_cum_start) + gamma_cum_start + ctt = np.concatenate(([0], ctt)) + one_minus_ctt = 1 - ctt + one_minus_ct = one_minus_ctt[1:] / one_minus_ctt[:-1] + ct = 1 - one_minus_ct + ctt = np.concatenate((ctt[1:], [0])) + return (ct, ctt) + +class VQDiffusionScheduler(SchedulerMixin, ConfigMixin): + order = 1 + + @register_to_config + def __init__(self, num_vec_classes: int, num_train_timesteps: int=100, alpha_cum_start: float=0.99999, alpha_cum_end: float=9e-06, gamma_cum_start: float=9e-06, gamma_cum_end: float=0.99999): + self.num_embed = num_vec_classes + self.mask_class = self.num_embed - 1 + (at, att) = alpha_schedules(num_train_timesteps, alpha_cum_start=alpha_cum_start, alpha_cum_end=alpha_cum_end) + (ct, ctt) = gamma_schedules(num_train_timesteps, gamma_cum_start=gamma_cum_start, gamma_cum_end=gamma_cum_end) + num_non_mask_classes = self.num_embed - 1 + bt = (1 - at - ct) / num_non_mask_classes + btt = (1 - att - ctt) / num_non_mask_classes + at = torch.tensor(at.astype('float64')) + bt = torch.tensor(bt.astype('float64')) + ct = torch.tensor(ct.astype('float64')) + log_at = torch.log(at) + log_bt = torch.log(bt) + log_ct = torch.log(ct) + att = torch.tensor(att.astype('float64')) + btt = torch.tensor(btt.astype('float64')) + ctt = torch.tensor(ctt.astype('float64')) + log_cumprod_at = torch.log(att) + log_cumprod_bt = torch.log(btt) + log_cumprod_ct = torch.log(ctt) + self.log_at = log_at.float() + self.log_bt = log_bt.float() + self.log_ct = log_ct.float() + self.log_cumprod_at = log_cumprod_at.float() + self.log_cumprod_bt = log_cumprod_bt.float() + self.log_cumprod_ct = log_cumprod_ct.float() + self.num_inference_steps = None + self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy()) + + def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device]=None): + self.num_inference_steps = num_inference_steps + timesteps = np.arange(0, self.num_inference_steps)[::-1].copy() + self.timesteps = torch.from_numpy(timesteps).to(device) + self.log_at = self.log_at.to(device) + self.log_bt = self.log_bt.to(device) + self.log_ct = self.log_ct.to(device) + self.log_cumprod_at = self.log_cumprod_at.to(device) + self.log_cumprod_bt = self.log_cumprod_bt.to(device) + self.log_cumprod_ct = self.log_cumprod_ct.to(device) + + def step(self, model_output: torch.Tensor, timestep: torch.long, sample: torch.LongTensor, generator: Optional[torch.Generator]=None, return_dict: bool=True) -> Union[VQDiffusionSchedulerOutput, Tuple]: + if timestep == 0: + log_p_x_t_min_1 = model_output + else: + log_p_x_t_min_1 = self.q_posterior(model_output, sample, timestep) + log_p_x_t_min_1 = gumbel_noised(log_p_x_t_min_1, generator) + x_t_min_1 = log_p_x_t_min_1.argmax(dim=1) + if not return_dict: + return (x_t_min_1,) + return VQDiffusionSchedulerOutput(prev_sample=x_t_min_1) + + def q_posterior(self, log_p_x_0, x_t, t): + log_onehot_x_t = index_to_log_onehot(x_t, self.num_embed) + log_q_x_t_given_x_0 = self.log_Q_t_transitioning_to_known_class(t=t, x_t=x_t, log_onehot_x_t=log_onehot_x_t, cumulative=True) + log_q_t_given_x_t_min_1 = self.log_Q_t_transitioning_to_known_class(t=t, x_t=x_t, log_onehot_x_t=log_onehot_x_t, cumulative=False) + q = log_p_x_0 - log_q_x_t_given_x_0 + q_log_sum_exp = torch.logsumexp(q, dim=1, keepdim=True) + q = q - q_log_sum_exp + q = self.apply_cumulative_transitions(q, t - 1) + log_p_x_t_min_1 = q + log_q_t_given_x_t_min_1 + q_log_sum_exp + return log_p_x_t_min_1 + + def log_Q_t_transitioning_to_known_class(self, *, t: torch.int, x_t: torch.LongTensor, log_onehot_x_t: torch.Tensor, cumulative: bool): + if cumulative: + a = self.log_cumprod_at[t] + b = self.log_cumprod_bt[t] + c = self.log_cumprod_ct[t] + else: + a = self.log_at[t] + b = self.log_bt[t] + c = self.log_ct[t] + if not cumulative: + log_onehot_x_t_transitioning_from_masked = log_onehot_x_t[:, -1, :].unsqueeze(1) + log_onehot_x_t = log_onehot_x_t[:, :-1, :] + log_Q_t = (log_onehot_x_t + a).logaddexp(b) + mask_class_mask = x_t == self.mask_class + mask_class_mask = mask_class_mask.unsqueeze(1).expand(-1, self.num_embed - 1, -1) + log_Q_t[mask_class_mask] = c + if not cumulative: + log_Q_t = torch.cat((log_Q_t, log_onehot_x_t_transitioning_from_masked), dim=1) + return log_Q_t + + def apply_cumulative_transitions(self, q, t): + bsz = q.shape[0] + a = self.log_cumprod_at[t] + b = self.log_cumprod_bt[t] + c = self.log_cumprod_ct[t] + num_latent_pixels = q.shape[2] + c = c.expand(bsz, 1, num_latent_pixels) + q = (q + a).logaddexp(b) + q = torch.cat((q, c), dim=1) + return q + +# File: diffusers-main/src/diffusers/training_utils.py +import contextlib +import copy +import gc +import math +import random +from typing import Any, Dict, Iterable, List, Optional, Tuple, Union +import numpy as np +import torch +from .models import UNet2DConditionModel +from .schedulers import SchedulerMixin +from .utils import convert_state_dict_to_diffusers, convert_state_dict_to_peft, deprecate, is_peft_available, is_torch_npu_available, is_torchvision_available, is_transformers_available +if is_transformers_available(): + import transformers +if is_peft_available(): + from peft import set_peft_model_state_dict +if is_torchvision_available(): + from torchvision import transforms +if is_torch_npu_available(): + import torch_npu + +def set_seed(seed: int): + random.seed(seed) + np.random.seed(seed) + torch.manual_seed(seed) + if is_torch_npu_available(): + torch.npu.manual_seed_all(seed) + else: + torch.cuda.manual_seed_all(seed) + +def compute_snr(noise_scheduler, timesteps): + alphas_cumprod = noise_scheduler.alphas_cumprod + sqrt_alphas_cumprod = alphas_cumprod ** 0.5 + sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5 + sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float() + while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape): + sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None] + alpha = sqrt_alphas_cumprod.expand(timesteps.shape) + sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float() + while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape): + sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None] + sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape) + snr = (alpha / sigma) ** 2 + return snr + +def resolve_interpolation_mode(interpolation_type: str): + if not is_torchvision_available(): + raise ImportError('Please make sure to install `torchvision` to be able to use the `resolve_interpolation_mode()` function.') + if interpolation_type == 'bilinear': + interpolation_mode = transforms.InterpolationMode.BILINEAR + elif interpolation_type == 'bicubic': + interpolation_mode = transforms.InterpolationMode.BICUBIC + elif interpolation_type == 'box': + interpolation_mode = transforms.InterpolationMode.BOX + elif interpolation_type == 'nearest': + interpolation_mode = transforms.InterpolationMode.NEAREST + elif interpolation_type == 'nearest_exact': + interpolation_mode = transforms.InterpolationMode.NEAREST_EXACT + elif interpolation_type == 'hamming': + interpolation_mode = transforms.InterpolationMode.HAMMING + elif interpolation_type == 'lanczos': + interpolation_mode = transforms.InterpolationMode.LANCZOS + else: + raise ValueError(f'The given interpolation mode {interpolation_type} is not supported. Currently supported interpolation modes are `bilinear`, `bicubic`, `box`, `nearest`, `nearest_exact`, `hamming`, and `lanczos`.') + return interpolation_mode + +def compute_dream_and_update_latents(unet: UNet2DConditionModel, noise_scheduler: SchedulerMixin, timesteps: torch.Tensor, noise: torch.Tensor, noisy_latents: torch.Tensor, target: torch.Tensor, encoder_hidden_states: torch.Tensor, dream_detail_preservation: float=1.0) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor]]: + alphas_cumprod = noise_scheduler.alphas_cumprod.to(timesteps.device)[timesteps, None, None, None] + sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5 + dream_lambda = sqrt_one_minus_alphas_cumprod ** dream_detail_preservation + pred = None + with torch.no_grad(): + pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample + (_noisy_latents, _target) = (None, None) + if noise_scheduler.config.prediction_type == 'epsilon': + predicted_noise = pred + delta_noise = (noise - predicted_noise).detach() + delta_noise.mul_(dream_lambda) + _noisy_latents = noisy_latents.add(sqrt_one_minus_alphas_cumprod * delta_noise) + _target = target.add(delta_noise) + elif noise_scheduler.config.prediction_type == 'v_prediction': + raise NotImplementedError('DREAM has not been implemented for v-prediction') + else: + raise ValueError(f'Unknown prediction type {noise_scheduler.config.prediction_type}') + return (_noisy_latents, _target) + +def unet_lora_state_dict(unet: UNet2DConditionModel) -> Dict[str, torch.Tensor]: + lora_state_dict = {} + for (name, module) in unet.named_modules(): + if hasattr(module, 'set_lora_layer'): + lora_layer = getattr(module, 'lora_layer') + if lora_layer is not None: + current_lora_layer_sd = lora_layer.state_dict() + for (lora_layer_matrix_name, lora_param) in current_lora_layer_sd.items(): + lora_state_dict[f'{name}.lora.{lora_layer_matrix_name}'] = lora_param + return lora_state_dict + +def cast_training_params(model: Union[torch.nn.Module, List[torch.nn.Module]], dtype=torch.float32): + if not isinstance(model, list): + model = [model] + for m in model: + for param in m.parameters(): + if param.requires_grad: + param.data = param.to(dtype) + +def _set_state_dict_into_text_encoder(lora_state_dict: Dict[str, torch.Tensor], prefix: str, text_encoder: torch.nn.Module): + text_encoder_state_dict = {f"{k.replace(prefix, '')}": v for (k, v) in lora_state_dict.items() if k.startswith(prefix)} + text_encoder_state_dict = convert_state_dict_to_peft(convert_state_dict_to_diffusers(text_encoder_state_dict)) + set_peft_model_state_dict(text_encoder, text_encoder_state_dict, adapter_name='default') + +def compute_density_for_timestep_sampling(weighting_scheme: str, batch_size: int, logit_mean: float=None, logit_std: float=None, mode_scale: float=None): + if weighting_scheme == 'logit_normal': + u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device='cpu') + u = torch.nn.functional.sigmoid(u) + elif weighting_scheme == 'mode': + u = torch.rand(size=(batch_size,), device='cpu') + u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u) + else: + u = torch.rand(size=(batch_size,), device='cpu') + return u + +def compute_loss_weighting_for_sd3(weighting_scheme: str, sigmas=None): + if weighting_scheme == 'sigma_sqrt': + weighting = (sigmas ** (-2.0)).float() + elif weighting_scheme == 'cosmap': + bot = 1 - 2 * sigmas + 2 * sigmas ** 2 + weighting = 2 / (math.pi * bot) + else: + weighting = torch.ones_like(sigmas) + return weighting + +def clear_objs_and_retain_memory(objs: List[Any]): + if len(objs) >= 1: + for obj in objs: + del obj + gc.collect() + if torch.cuda.is_available(): + torch.cuda.empty_cache() + elif torch.backends.mps.is_available(): + torch.mps.empty_cache() + elif is_torch_npu_available(): + torch_npu.empty_cache() + +class EMAModel: + + def __init__(self, parameters: Iterable[torch.nn.Parameter], decay: float=0.9999, min_decay: float=0.0, update_after_step: int=0, use_ema_warmup: bool=False, inv_gamma: Union[float, int]=1.0, power: Union[float, int]=2 / 3, foreach: bool=False, model_cls: Optional[Any]=None, model_config: Dict[str, Any]=None, **kwargs): + if isinstance(parameters, torch.nn.Module): + deprecation_message = 'Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. Please pass the parameters of the module instead.' + deprecate('passing a `torch.nn.Module` to `ExponentialMovingAverage`', '1.0.0', deprecation_message, standard_warn=False) + parameters = parameters.parameters() + use_ema_warmup = True + if kwargs.get('max_value', None) is not None: + deprecation_message = 'The `max_value` argument is deprecated. Please use `decay` instead.' + deprecate('max_value', '1.0.0', deprecation_message, standard_warn=False) + decay = kwargs['max_value'] + if kwargs.get('min_value', None) is not None: + deprecation_message = 'The `min_value` argument is deprecated. Please use `min_decay` instead.' + deprecate('min_value', '1.0.0', deprecation_message, standard_warn=False) + min_decay = kwargs['min_value'] + parameters = list(parameters) + self.shadow_params = [p.clone().detach() for p in parameters] + if kwargs.get('device', None) is not None: + deprecation_message = 'The `device` argument is deprecated. Please use `to` instead.' + deprecate('device', '1.0.0', deprecation_message, standard_warn=False) + self.to(device=kwargs['device']) + self.temp_stored_params = None + self.decay = decay + self.min_decay = min_decay + self.update_after_step = update_after_step + self.use_ema_warmup = use_ema_warmup + self.inv_gamma = inv_gamma + self.power = power + self.optimization_step = 0 + self.cur_decay_value = None + self.foreach = foreach + self.model_cls = model_cls + self.model_config = model_config + + @classmethod + def from_pretrained(cls, path, model_cls, foreach=False) -> 'EMAModel': + (_, ema_kwargs) = model_cls.load_config(path, return_unused_kwargs=True) + model = model_cls.from_pretrained(path) + ema_model = cls(model.parameters(), model_cls=model_cls, model_config=model.config, foreach=foreach) + ema_model.load_state_dict(ema_kwargs) + return ema_model + + def save_pretrained(self, path): + if self.model_cls is None: + raise ValueError('`save_pretrained` can only be used if `model_cls` was defined at __init__.') + if self.model_config is None: + raise ValueError('`save_pretrained` can only be used if `model_config` was defined at __init__.') + model = self.model_cls.from_config(self.model_config) + state_dict = self.state_dict() + state_dict.pop('shadow_params', None) + model.register_to_config(**state_dict) + self.copy_to(model.parameters()) + model.save_pretrained(path) + + def get_decay(self, optimization_step: int) -> float: + step = max(0, optimization_step - self.update_after_step - 1) + if step <= 0: + return 0.0 + if self.use_ema_warmup: + cur_decay_value = 1 - (1 + step / self.inv_gamma) ** (-self.power) + else: + cur_decay_value = (1 + step) / (10 + step) + cur_decay_value = min(cur_decay_value, self.decay) + cur_decay_value = max(cur_decay_value, self.min_decay) + return cur_decay_value + + @torch.no_grad() + def step(self, parameters: Iterable[torch.nn.Parameter]): + if isinstance(parameters, torch.nn.Module): + deprecation_message = 'Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. Please pass the parameters of the module instead.' + deprecate('passing a `torch.nn.Module` to `ExponentialMovingAverage.step`', '1.0.0', deprecation_message, standard_warn=False) + parameters = parameters.parameters() + parameters = list(parameters) + self.optimization_step += 1 + decay = self.get_decay(self.optimization_step) + self.cur_decay_value = decay + one_minus_decay = 1 - decay + context_manager = contextlib.nullcontext + if is_transformers_available() and transformers.integrations.deepspeed.is_deepspeed_zero3_enabled(): + import deepspeed + if self.foreach: + if is_transformers_available() and transformers.integrations.deepspeed.is_deepspeed_zero3_enabled(): + context_manager = deepspeed.zero.GatheredParameters(parameters, modifier_rank=None) + with context_manager(): + params_grad = [param for param in parameters if param.requires_grad] + s_params_grad = [s_param for (s_param, param) in zip(self.shadow_params, parameters) if param.requires_grad] + if len(params_grad) < len(parameters): + torch._foreach_copy_([s_param for (s_param, param) in zip(self.shadow_params, parameters) if not param.requires_grad], [param for param in parameters if not param.requires_grad], non_blocking=True) + torch._foreach_sub_(s_params_grad, torch._foreach_sub(s_params_grad, params_grad), alpha=one_minus_decay) + else: + for (s_param, param) in zip(self.shadow_params, parameters): + if is_transformers_available() and transformers.integrations.deepspeed.is_deepspeed_zero3_enabled(): + context_manager = deepspeed.zero.GatheredParameters(param, modifier_rank=None) + with context_manager(): + if param.requires_grad: + s_param.sub_(one_minus_decay * (s_param - param)) + else: + s_param.copy_(param) + + def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None: + parameters = list(parameters) + if self.foreach: + torch._foreach_copy_([param.data for param in parameters], [s_param.to(param.device).data for (s_param, param) in zip(self.shadow_params, parameters)]) + else: + for (s_param, param) in zip(self.shadow_params, parameters): + param.data.copy_(s_param.to(param.device).data) + + def pin_memory(self) -> None: + self.shadow_params = [p.pin_memory() for p in self.shadow_params] + + def to(self, device=None, dtype=None, non_blocking=False) -> None: + self.shadow_params = [p.to(device=device, dtype=dtype, non_blocking=non_blocking) if p.is_floating_point() else p.to(device=device, non_blocking=non_blocking) for p in self.shadow_params] + + def state_dict(self) -> dict: + return {'decay': self.decay, 'min_decay': self.min_decay, 'optimization_step': self.optimization_step, 'update_after_step': self.update_after_step, 'use_ema_warmup': self.use_ema_warmup, 'inv_gamma': self.inv_gamma, 'power': self.power, 'shadow_params': self.shadow_params} + + def store(self, parameters: Iterable[torch.nn.Parameter]) -> None: + self.temp_stored_params = [param.detach().cpu().clone() for param in parameters] + + def restore(self, parameters: Iterable[torch.nn.Parameter]) -> None: + if self.temp_stored_params is None: + raise RuntimeError('This ExponentialMovingAverage has no `store()`ed weights to `restore()`') + if self.foreach: + torch._foreach_copy_([param.data for param in parameters], [c_param.data for c_param in self.temp_stored_params]) + else: + for (c_param, param) in zip(self.temp_stored_params, parameters): + param.data.copy_(c_param.data) + self.temp_stored_params = None + + def load_state_dict(self, state_dict: dict) -> None: + state_dict = copy.deepcopy(state_dict) + self.decay = state_dict.get('decay', self.decay) + if self.decay < 0.0 or self.decay > 1.0: + raise ValueError('Decay must be between 0 and 1') + self.min_decay = state_dict.get('min_decay', self.min_decay) + if not isinstance(self.min_decay, float): + raise ValueError('Invalid min_decay') + self.optimization_step = state_dict.get('optimization_step', self.optimization_step) + if not isinstance(self.optimization_step, int): + raise ValueError('Invalid optimization_step') + self.update_after_step = state_dict.get('update_after_step', self.update_after_step) + if not isinstance(self.update_after_step, int): + raise ValueError('Invalid update_after_step') + self.use_ema_warmup = state_dict.get('use_ema_warmup', self.use_ema_warmup) + if not isinstance(self.use_ema_warmup, bool): + raise ValueError('Invalid use_ema_warmup') + self.inv_gamma = state_dict.get('inv_gamma', self.inv_gamma) + if not isinstance(self.inv_gamma, (float, int)): + raise ValueError('Invalid inv_gamma') + self.power = state_dict.get('power', self.power) + if not isinstance(self.power, (float, int)): + raise ValueError('Invalid power') + shadow_params = state_dict.get('shadow_params', None) + if shadow_params is not None: + self.shadow_params = shadow_params + if not isinstance(self.shadow_params, list): + raise ValueError('shadow_params must be a list') + if not all((isinstance(p, torch.Tensor) for p in self.shadow_params)): + raise ValueError('shadow_params must all be Tensors') + +# File: diffusers-main/src/diffusers/video_processor.py +import warnings +from typing import List, Optional, Union +import numpy as np +import PIL +import torch +from .image_processor import VaeImageProcessor, is_valid_image, is_valid_image_imagelist + +class VideoProcessor(VaeImageProcessor): + + def preprocess_video(self, video, height: Optional[int]=None, width: Optional[int]=None) -> torch.Tensor: + if isinstance(video, list) and isinstance(video[0], np.ndarray) and (video[0].ndim == 5): + warnings.warn('Passing `video` as a list of 5d np.ndarray is deprecated.Please concatenate the list along the batch dimension and pass it as a single 5d np.ndarray', FutureWarning) + video = np.concatenate(video, axis=0) + if isinstance(video, list) and isinstance(video[0], torch.Tensor) and (video[0].ndim == 5): + warnings.warn('Passing `video` as a list of 5d torch.Tensor is deprecated.Please concatenate the list along the batch dimension and pass it as a single 5d torch.Tensor', FutureWarning) + video = torch.cat(video, axis=0) + if isinstance(video, (np.ndarray, torch.Tensor)) and video.ndim == 5: + video = list(video) + elif isinstance(video, list) and is_valid_image(video[0]) or is_valid_image_imagelist(video): + video = [video] + elif isinstance(video, list) and is_valid_image_imagelist(video[0]): + video = video + else: + raise ValueError('Input is in incorrect format. Currently, we only support numpy.ndarray, torch.Tensor, PIL.Image.Image') + video = torch.stack([self.preprocess(img, height=height, width=width) for img in video], dim=0) + video = video.permute(0, 2, 1, 3, 4) + return video + + def postprocess_video(self, video: torch.Tensor, output_type: str='np') -> Union[np.ndarray, torch.Tensor, List[PIL.Image.Image]]: + batch_size = video.shape[0] + outputs = [] + for batch_idx in range(batch_size): + batch_vid = video[batch_idx].permute(1, 0, 2, 3) + batch_output = self.postprocess(batch_vid, output_type) + outputs.append(batch_output) + if output_type == 'np': + outputs = np.stack(outputs) + elif output_type == 'pt': + outputs = torch.stack(outputs) + elif not output_type == 'pil': + raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']") + return outputs +