# File: datatrove-main/src/datatrove/data.py """""" from dataclasses import dataclass, field from typing import Generator, NewType class MediaType: IMAGE = 0 VIDEO = 1 AUDIO = 2 @dataclass class Media: type: int url: str alt: str | None = None local_path: str | None = None @dataclass class Document: text: str id: str media: list[Media] = field(default_factory=list) metadata: dict[str, str | int | float | bool] = field(default_factory=dict) DocumentsPipeline = NewType('DocumentsPipeline', Generator[Document, None, None] | None) # File: datatrove-main/src/datatrove/executor/base.py import dataclasses import json import random import time from abc import ABC, abstractmethod from collections import deque from collections.abc import Sequence from typing import Callable from datatrove.io import DataFolderLike, get_datafolder from datatrove.pipeline.base import PipelineStep from datatrove.utils.logging import add_task_logger, close_task_logger, get_random_str, get_timestamp, log_pipeline, logger from datatrove.utils.stats import PipelineStats class PipelineExecutor(ABC): @abstractmethod def __init__(self, pipeline: list[PipelineStep | Callable], logging_dir: DataFolderLike=None, skip_completed: bool=True, randomize_start_duration: int=0): self.pipeline: list[PipelineStep | Callable] = pipeline self.logging_dir = get_datafolder(logging_dir if logging_dir else f'logs/{get_timestamp()}_{get_random_str()}') self.skip_completed = skip_completed self.randomize_start_duration = randomize_start_duration @abstractmethod def run(self): pass @property @abstractmethod def world_size(self) -> int: return 0 def _run_for_rank(self, rank: int, local_rank: int=0) -> PipelineStats: if self.is_rank_completed(rank): logger.info(f'Skipping rank={rank!r} as it has already been completed.') return PipelineStats() logfile = add_task_logger(self.logging_dir, rank, local_rank) log_pipeline(self.pipeline) if self.randomize_start_duration > 0: time.sleep(random.randint(0, self.randomize_start_duration)) try: pipelined_data = None for pipeline_step in self.pipeline: if callable(pipeline_step): pipelined_data = pipeline_step(pipelined_data, rank, self.world_size) elif isinstance(pipeline_step, Sequence) and (not isinstance(pipeline_step, str)): pipelined_data = pipeline_step else: raise ValueError if pipelined_data: deque(pipelined_data, maxlen=0) logger.success(f'Processing done for rank={rank!r}') stats = PipelineStats(self.pipeline) with self.logging_dir.open(f'stats/{rank:05d}.json', 'w') as f: stats.save_to_disk(f) logger.info(stats.get_repr(f'Task {rank}')) self.mark_rank_as_completed(rank) except Exception as e: logger.exception(e) raise e finally: close_task_logger(logfile) return stats def is_rank_completed(self, rank: int) -> bool: return self.skip_completed and self.logging_dir.isfile(f'completions/{rank:05d}') def mark_rank_as_completed(self, rank: int): self.logging_dir.open(f'completions/{rank:05d}', 'w').close() def get_incomplete_ranks(self, ranks=None) -> list[int]: completed = set(self.logging_dir.list_files('completions')) return list(filter(lambda rank: not self.skip_completed or f'completions/{rank:05d}' not in completed, ranks if ranks is not None else range(self.world_size))) def to_json(self, indent=4) -> str: data = self.__dict__ data['pipeline'] = [{a: b for (a, b) in x.__dict__.items() if a != 'stats'} for x in data['pipeline']] return json.dumps(data, indent=indent) def save_executor_as_json(self, indent: int=4): with self.logging_dir.open('executor.json', 'w') as f: json.dump(self, f, cls=ExecutorJSONEncoder, indent=indent) class ExecutorJSONEncoder(json.JSONEncoder): def default(self, o): if dataclasses.is_dataclass(o): return dataclasses.asdict(o) if isinstance(o, PipelineExecutor): return o.__dict__ | {'world_size': o.world_size} if isinstance(o, PipelineStep): return {a: b for (a, b) in o.__dict__.items() if a != 'stats'} return str(o) # File: datatrove-main/src/datatrove/executor/local.py import time from copy import deepcopy from functools import partial from typing import Callable import multiprocess from datatrove.executor.base import PipelineExecutor from datatrove.io import DataFolderLike from datatrove.pipeline.base import PipelineStep from datatrove.utils.logging import logger from datatrove.utils.stats import PipelineStats class LocalPipelineExecutor(PipelineExecutor): def __init__(self, pipeline: list[PipelineStep | Callable], tasks: int=1, workers: int=-1, logging_dir: DataFolderLike=None, depends: 'LocalPipelineExecutor'=None, skip_completed: bool=True, start_method: str='forkserver', local_tasks: int=-1, local_rank_offset: int=0, randomize_start_duration: int=0): super().__init__(pipeline, logging_dir, skip_completed, randomize_start_duration) self.tasks = tasks self.workers = workers if workers != -1 else tasks self.start_method = start_method self.local_tasks = local_tasks if local_tasks != -1 else tasks self.local_rank_offset = local_rank_offset self.depends = depends if self.local_rank_offset + self.local_tasks > self.tasks: raise ValueError(f'Local tasks go beyond the total tasks (local_rank_offset + local_tasks = {self.local_rank_offset + self.local_tasks} > {self.tasks} = tasks)') self._launched = False def _launch_run_for_rank(self, rank: int, ranks_q, completed=None, completed_lock=None) -> PipelineStats: local_rank = ranks_q.get() try: return self._run_for_rank(rank, local_rank) finally: if completed and completed_lock: with completed_lock: completed.value += 1 logger.info(f'{completed.value}/{self.world_size} tasks completed.') ranks_q.put(local_rank) def run(self): assert not self.depends or isinstance(self.depends, LocalPipelineExecutor), 'depends= must be a LocalPipelineExecutor' if self.depends: if not self.depends._launched: logger.info(f'Launching dependency job "{self.depends}"') self.depends.run() while (incomplete := len(self.depends.get_incomplete_ranks())) > 0: logger.info(f'Dependency job still has {incomplete}/{self.depends.world_size} tasks. Waiting...') time.sleep(2 * 60) self._launched = True if all(map(self.is_rank_completed, range(self.local_rank_offset, self.local_rank_offset + self.local_tasks))): logger.info(f'Not doing anything as all {self.local_tasks} tasks have already been completed.') return self.save_executor_as_json() mg = multiprocess.Manager() ranks_q = mg.Queue() for i in range(self.workers): ranks_q.put(i) ranks_to_run = self.get_incomplete_ranks(range(self.local_rank_offset, self.local_rank_offset + self.local_tasks)) if (skipped := (self.local_tasks - len(ranks_to_run))) > 0: logger.info(f'Skipping {skipped} already completed tasks') if self.workers == 1: pipeline = self.pipeline stats = [] for rank in ranks_to_run: self.pipeline = deepcopy(pipeline) stats.append(self._launch_run_for_rank(rank, ranks_q)) else: completed_counter = mg.Value('i', skipped) completed_lock = mg.Lock() ctx = multiprocess.get_context(self.start_method) with ctx.Pool(self.workers) as pool: stats = list(pool.imap_unordered(partial(self._launch_run_for_rank, ranks_q=ranks_q, completed=completed_counter, completed_lock=completed_lock), ranks_to_run)) stats = sum(stats, start=PipelineStats()) with self.logging_dir.open('stats.json', 'wt') as statsfile: stats.save_to_disk(statsfile) logger.success(stats.get_repr(f'All {self.local_tasks} tasks')) return stats @property def world_size(self) -> int: return self.tasks # File: datatrove-main/src/datatrove/executor/slurm.py from __future__ import annotations import json import math import os import signal import subprocess import sys import tempfile import textwrap import time from copy import deepcopy from typing import Callable import dill from dill import CONTENTS_FMODE from datatrove.executor.base import PipelineExecutor from datatrove.io import DataFolderLike from datatrove.pipeline.base import PipelineStep from datatrove.utils.logging import get_random_str, get_timestamp, logger def requeue_handler(signum, _frame): signame = signal.Signals(signum).name logger.warning(f'Received signal {signum} ({signame}). Requeueing and exiting...') subprocess.run(['scontrol', 'requeue', os.environ.get('SLURM_JOB_ID')]) sys.exit(15) class SlurmPipelineExecutor(PipelineExecutor): def __init__(self, pipeline: list[PipelineStep | Callable], tasks: int, time: str, partition: str, cpus_per_task: int=1, mem_per_cpu_gb: int=2, workers: int=-1, job_name: str='data_processing', qos: str='normal', env_command: str=None, condaenv: str=None, venv_path: str=None, sbatch_args: dict | None=None, max_array_size: int=1001, depends: SlurmPipelineExecutor | None=None, depends_job_id: str | None=None, logging_dir: DataFolderLike=None, skip_completed: bool=True, slurm_logs_folder: str=None, max_array_launch_parallel: bool=False, stagger_max_array_jobs: int=0, run_on_dependency_fail: bool=False, randomize_start_duration: int=0, requeue_signals: tuple[str] | None=('SIGUSR1',), mail_type: str='ALL', mail_user: str=None, requeue: bool=True, srun_args: dict=None, tasks_per_job: int=1): super().__init__(pipeline, logging_dir, skip_completed, randomize_start_duration) self.tasks = tasks self.workers = workers self.partition = partition self.cpus_per_task = cpus_per_task self.mem_per_cpu_gb = mem_per_cpu_gb self.tasks_per_job = tasks_per_job self.time = time self.job_name = job_name self.qos = qos self.env_command = env_command self.condaenv = condaenv self.venv_path = venv_path self.depends = depends self.depends_job_id = depends_job_id self._sbatch_args = sbatch_args if sbatch_args else {} self.max_array_size = max_array_size self.max_array_launch_parallel = max_array_launch_parallel self.stagger_max_array_jobs = stagger_max_array_jobs self.run_on_dependency_fail = run_on_dependency_fail self.randomize_start_duration = randomize_start_duration self.job_id = None self.requeue_signals = requeue_signals self.mail_type = mail_type self.mail_user = mail_user self.srun_args = srun_args self.slurm_logs_folder = slurm_logs_folder if slurm_logs_folder else f'slurm_logs/{self.job_name}/{get_timestamp()}_{get_random_str()}' if not self.logging_dir.is_local() else self.logging_dir.resolve_paths('slurm_logs') self.requeue = requeue def run(self): if 'SLURM_ARRAY_TASK_ID' in os.environ: slurm_rank = int(os.environ['SLURM_ARRAY_TASK_ID']) + self.max_array_size * int(os.environ.get('RUN_OFFSET', 0)) ranks_to_run_range = (slurm_rank * self.tasks_per_job, (slurm_rank + 1) * self.tasks_per_job) with self.logging_dir.open('ranks_to_run.json', 'r') as ranks_to_run_file: all_ranks = json.load(ranks_to_run_file) if ranks_to_run_range[0] >= len(all_ranks): return for ss in self.requeue_signals or []: signal.signal(signal.Signals[ss], requeue_handler) for rank_to_run in range(*ranks_to_run_range): if rank_to_run >= len(all_ranks): break rank = all_ranks[rank_to_run] self._run_for_rank(rank) else: self.launch_job() def launch_merge_stats(self): launch_slurm_job(self.get_launch_file_contents({**self.get_sbatch_args(), 'cpus-per-task': 1, 'mem-per-cpu': '1G', 'dependency': f'afterok:{self.job_id}'}, f"merge_stats {self.logging_dir.resolve_paths('stats')} -o {self.logging_dir.resolve_paths('stats.json')}")) @property def dependency(self) -> str: dependency = [] if self.depends_job_id: dependency.append(f"{('afterany' if self.run_on_dependency_fail else 'afterok')}:{self.depends_job_id}") if self.job_id and (not self.max_array_launch_parallel): dependency.append(f'afterany:{self.job_id}') return ','.join(dependency) def launch_job(self): assert not self.depends or isinstance(self.depends, SlurmPipelineExecutor), 'depends= must be a SlurmPipelineExecutor' if self.depends: if not self.depends.job_id: logger.info(f'Launching dependency job "{self.depends.job_name}"') self.depends.launch_job() if self.depends.job_id != -1: self.depends_job_id = self.depends.job_id self.depends = None ranks_to_run = self.get_incomplete_ranks() if len(ranks_to_run) == 0: logger.info(f'Skipping launch of {self.job_name} as all {self.tasks} tasks have already been completed.') self.job_id = -1 return executor = deepcopy(self) with self.logging_dir.open('executor.pik', 'wb') as executor_f: dill.dump(executor, executor_f, fmode=CONTENTS_FMODE) self.save_executor_as_json() with self.logging_dir.open('ranks_to_run.json', 'w') as ranks_to_run_file: json.dump(ranks_to_run, ranks_to_run_file) nb_jobs_to_launch = math.ceil(len(ranks_to_run) / self.tasks_per_job) max_array = min(nb_jobs_to_launch, self.max_array_size) if self.max_array_size != -1 else nb_jobs_to_launch srun_args_str = ' '.join([f'--{k}={v}' for (k, v) in self.srun_args.items()]) if self.srun_args else '' launch_file_contents = self.get_launch_file_contents(self.get_sbatch_args(max_array), f"srun {srun_args_str} -l launch_pickled_pipeline {self.logging_dir.resolve_paths('executor.pik')}") with self.logging_dir.open('launch_script.slurm', 'w') as launchscript_f: launchscript_f.write(launch_file_contents) logger.info(f'''Launching Slurm job {self.job_name} ({len(ranks_to_run)} tasks) with launch script "{self.logging_dir.resolve_paths('launch_script.slurm')}"''') launched_jobs = 0 while launched_jobs * max_array < nb_jobs_to_launch: if launched_jobs and self.max_array_launch_parallel and (self.stagger_max_array_jobs > 0): time.sleep(self.stagger_max_array_jobs) args = [f'--export=ALL,RUN_OFFSET={launched_jobs}'] if self.dependency: args.append(f'--dependency={self.dependency}') self.job_id = launch_slurm_job(launch_file_contents, *args) launched_jobs += 1 logger.info(f'Slurm job launched successfully with (last) id={self.job_id}.') self.launch_merge_stats() def get_sbatch_args(self, max_array: int=1) -> dict: os.makedirs(self.slurm_logs_folder, exist_ok=True) slurm_logfile = os.path.join(self.slurm_logs_folder, '%A_%a.out') sbatch_args = {'cpus-per-task': self.cpus_per_task, 'mem-per-cpu': f'{self.mem_per_cpu_gb}G', 'partition': self.partition, 'job-name': self.job_name, 'time': self.time, 'output': slurm_logfile, 'error': slurm_logfile, 'array': f"0-{max_array - 1}{(f'%{self.workers}' if self.workers != -1 else '')}", **({'mail-type': self.mail_type, 'mail-user': self.mail_user} if self.mail_user else {}), **self._sbatch_args} if self.requeue: sbatch_args['requeue'] = '' if self.qos: sbatch_args['qos'] = self.qos return sbatch_args def get_launch_file_contents(self, sbatch_args: dict, run_script: str) -> str: args = '\n'.join([f'#SBATCH --{k}={v}' if v else f'#SBATCH --{k}' for (k, v) in sbatch_args.items()]) env_command = self.env_command if self.env_command else f'conda init bash\n conda activate {self.condaenv}\n source ~/.bashrc' if self.condaenv else f'source {self.venv_path}' if self.venv_path else '' return '#!/bin/bash\n' + args + textwrap.dedent(f'\n echo "Starting data processing job {self.job_name}"\n {env_command}\n set -xe\n export PYTHONUNBUFFERED=TRUE\n {run_script}\n ') @property def world_size(self) -> int: return self.tasks def launch_slurm_job(launch_file_contents, *args): with tempfile.NamedTemporaryFile('w') as f: f.write(launch_file_contents) f.flush() return subprocess.check_output(['sbatch', *args, f.name]).decode('utf-8').split()[-1] # File: datatrove-main/src/datatrove/io.py import os.path from glob import has_magic from typing import IO, Callable, TypeAlias from fsspec import AbstractFileSystem from fsspec import open as fsspec_open from fsspec.callbacks import NoOpCallback, TqdmCallback from fsspec.core import get_fs_token_paths, strip_protocol, url_to_fs from fsspec.implementations.cached import CachingFileSystem from fsspec.implementations.dirfs import DirFileSystem from fsspec.implementations.local import LocalFileSystem from huggingface_hub import HfFileSystem, cached_assets_path from datatrove.utils._import_utils import check_required_dependencies from datatrove.utils.logging import logger class OutputFileManager: def __init__(self, fs, mode: str='wt', compression: str | None='infer'): self.fs = fs self.mode = mode self.compression = compression self._output_files = {} def get_file(self, filename): if filename not in self._output_files: self._output_files[filename] = self.fs.open(filename, mode=self.mode, compression=self.compression) return self._output_files[filename] def get_open_files(self): return self._output_files def pop(self, filename): file = self.get_file(filename) self._output_files.pop(filename) return file def write(self, filename, data): self.get_file(filename).write(data) def __enter__(self): return self def close(self): for file in self._output_files.values(): file.close() self._output_files.clear() def __exit__(self, exc_type, exc_val, exc_tb): self.close() class DataFolder(DirFileSystem): def __init__(self, path: str, fs: AbstractFileSystem | None=None, auto_mkdir: bool=True, **storage_options): super().__init__(path=path, fs=fs if fs else url_to_fs(path, **storage_options)[0]) self.auto_mkdir = auto_mkdir def list_files(self, subdirectory: str='', recursive: bool=True, glob_pattern: str | None=None, include_directories: bool=False) -> list[str]: if glob_pattern and (not has_magic(glob_pattern)): glob_pattern = f'*{glob_pattern}' extra_options = {} if isinstance(_get_true_fs(self.fs), HfFileSystem): extra_options['expand_info'] = False if include_directories and (not glob_pattern): extra_options['withdirs'] = True return sorted([f for (f, info) in (self.find(subdirectory, maxdepth=1 if not recursive else None, detail=True, **extra_options) if not glob_pattern else self.glob(self.fs.sep.join([subdirectory, glob_pattern]) if subdirectory else glob_pattern, maxdepth=1 if not recursive else None, detail=True, **extra_options)).items() if include_directories or info['type'] != 'directory']) def get_shard(self, rank: int, world_size: int, **kwargs) -> list[str]: return self.list_files(**kwargs)[rank::world_size] def resolve_paths(self, paths) -> list[str] | str: if isinstance(paths, str): if isinstance(self.fs, LocalFileSystem): return self.fs._strip_protocol(self._join(paths)) return self.fs.unstrip_protocol(self._join(paths)) return list(map(self.resolve_paths, paths)) def get_output_file_manager(self, **kwargs) -> OutputFileManager: return OutputFileManager(self, **kwargs) def open_files(self, paths, mode='rb', **kwargs): return [self.open(path, mode=mode, **kwargs) for path in paths] def open(self, path, mode='rb', *args, **kwargs): if self.auto_mkdir and ('w' in mode or 'a' in mode): self.fs.makedirs(self.fs._parent(self._join(path)), exist_ok=True) return super().open(path, *args, mode=mode, **kwargs) def is_local(self): return isinstance(self.fs, LocalFileSystem) def get_datafolder(data: DataFolder | str | tuple[str, dict] | tuple[str, AbstractFileSystem]) -> DataFolder: if isinstance(data, DataFolder): return data if isinstance(data, str): return DataFolder(data) if isinstance(data, tuple) and isinstance(data[0], str) and isinstance(data[1], dict): return DataFolder(data[0], **data[1]) if isinstance(data, tuple) and isinstance(data[0], str) and isinstance(data[1], AbstractFileSystem): return DataFolder(data[0], fs=data[1]) raise ValueError('You must pass a DataFolder instance, a str path, a (str path, fs_init_kwargs) or (str path, fs object)') def open_file(file: IO | str, mode='rt', **kwargs): if isinstance(file, str): return fsspec_open(file, mode, **kwargs) return file def file_exists(path: str): (fs, a, fpath) = get_fs_token_paths(path) return fs.exists(fpath[0]) def download_file(remote_path: str, local_path: str, progress: bool=True): (fs, _, paths) = get_fs_token_paths(remote_path) fs.get_file(paths[0], local_path, callback=TqdmCallback(tqdm_kwargs={'desc': f'↓ Downloading {os.path.basename(remote_path)}', 'unit': 'B', 'unit_scale': True, 'unit_divisor': 1024, 'miniters': 1}) if progress else NoOpCallback()) def safely_create_file(file_to_lock: str, do_processing: Callable): check_required_dependencies('io', ['fasteners']) from fasteners import InterProcessLock completed_file = f'{file_to_lock}.completed' if os.path.exists(completed_file): return with InterProcessLock(f'{file_to_lock}.lock'): if not os.path.exists(completed_file): do_processing() open(completed_file, 'a').close() def cached_asset_path_or_download(remote_path: str, progress: bool=True, namespace: str='default', subfolder: str='default', desc: str='file'): download_dir = cached_assets_path(library_name='datatrove', namespace=namespace, subfolder=subfolder) local_path = os.path.join(download_dir, strip_protocol(remote_path).replace('/', '_')) def do_download_file(): logger.info(f'⬇️ Downloading {desc} from "{remote_path}"...') download_file(remote_path, local_path, progress) logger.info(f'⬇️ Downloaded {desc} to "{local_path}".') safely_create_file(local_path, do_download_file) return local_path DataFolderLike: TypeAlias = str | tuple[str, dict] | DataFolder DataFileLike: TypeAlias = str | tuple[str, dict] def get_shard_from_paths_file(paths_file: DataFileLike, rank: int, world_size): kwargs = {} if isinstance(paths_file, tuple): (paths_file, kwargs) = paths_file with open_file(paths_file, mode='rt', **kwargs) as f: for (pathi, path) in enumerate(f): if (pathi - rank) % world_size == 0: yield path.strip() def _get_true_fs(fs: AbstractFileSystem): if isinstance(fs, CachingFileSystem): return fs.fs return fs # File: datatrove-main/src/datatrove/pipeline/base.py from abc import ABC, abstractmethod from itertools import chain from datatrove.data import Document, DocumentsPipeline from datatrove.utils._import_utils import check_required_dependencies from datatrove.utils.stats import Stats class PipelineStep(ABC): name: str = None type: str = None def __new__(cls, *args, **kwargs): required_dependencies = chain.from_iterable((getattr(t, '_requires_dependencies', []) for t in cls.mro())) if required_dependencies: check_required_dependencies(cls.__name__, required_dependencies) return super().__new__(cls) def __init__(self): super().__init__() self.stats = Stats(str(self)) def stat_update(self, *labels, value: int=1, unit: str=None): for label in labels: self.stats[label].update(value, unit) def update_doc_stats(self, document: Document): self.stat_update('doc_len', value=len(document.text), unit='doc') if (token_count := document.metadata.get('token_count', None)): self.stat_update('doc_len_tokens', value=token_count, unit='doc') def track_time(self, unit: str=None): if unit: self.stats.time_stats.unit = unit return self.stats.time_stats def __repr__(self): return f'{self.type}: {self.name}' @abstractmethod def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline: if data: yield from data def __call__(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1) -> DocumentsPipeline: return self.run(data, rank, world_size) # File: datatrove-main/src/datatrove/pipeline/decont/n_grams.py """""" import os from collections import defaultdict from concurrent.futures import ThreadPoolExecutor from dataclasses import dataclass, field from typing import Tuple import numpy as np from datatrove.data import Document, DocumentsPipeline from datatrove.io import DataFolderLike, file_exists, get_datafolder, open_file from datatrove.pipeline.base import PipelineStep from datatrove.pipeline.filters.base_filter import BaseFilter from datatrove.pipeline.writers.disk_base import DiskWriter from datatrove.utils.binaryio import read_np_from_file from datatrove.utils.hashing import HashConfig, create_hash_func from datatrove.utils.logging import logger from datatrove.utils.text import TextNormConfig, ngrams, simplify_text from datatrove.utils.typeshelper import Languages from datatrove.utils.word_tokenizers import load_word_tokenizer @dataclass class NGramsDecontConfig: n_grams: int = 12 find_query_ngrams: bool = False find_overlap_ngrams: bool = True norm_config: TextNormConfig = field(default_factory=TextNormConfig) hash_config: HashConfig = field(default_factory=HashConfig) class NGramsDecontIndexer(PipelineStep): type = '🦠 - DECONT' name = '💥 N-grams build index' _requires_dependencies = ['lighteval'] def __init__(self, output_folder: DataFolderLike, lighteval_tasks: str | list[str] | None=None, custom_lighteval_tasks: str | None=None, config: NGramsDecontConfig=None, language: str=Languages.english): super().__init__() self.output_folder = get_datafolder(output_folder) if isinstance(lighteval_tasks, str): if file_exists(lighteval_tasks): with open_file(lighteval_tasks, 'rt') as f: self.lighteval_tasks = f.read().strip().splitlines() else: self.lighteval_tasks = [lighteval_tasks] else: self.lighteval_tasks = lighteval_tasks self.custom_lighteval_tasks = custom_lighteval_tasks self.config = config or NGramsDecontConfig() self.tokenizer = load_word_tokenizer(language) self.hash_func = create_hash_func(self.config.hash_config) def compute_hashes(self, label: str, query: str | None=None) -> list[int]: label_tokens = self.tokenizer.word_tokenize(simplify_text(label, self.config.norm_config)) ngrams_to_compute = list(ngrams(label_tokens, self.config.n_grams)) if query is not None: query_tokens = self.tokenizer.word_tokenize(simplify_text(query, self.config.norm_config)) if self.config.find_query_ngrams: ngrams_to_compute.extend(ngrams(query_tokens, self.config.n_grams)) if self.config.find_overlap_ngrams: '' ngrams_to_compute.extend([query_tokens[-self.config.n_grams + 1 + i:] + label_tokens[:i + 1] for i in range(self.config.n_grams - 1) if len(query_tokens) >= self.config.n_grams - 1 - i and len(label_tokens) >= i + 1]) return list(map(self.hash_func, map(' '.join, ngrams_to_compute))) def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1): if world_size != 1: raise ValueError('Decontamination index building requires a single worker.') hashes = defaultdict(set) if data: for doc in data: if not self.config.find_query_ngrams and 'query' not in doc.metadata: raise ValueError("only_label_ngrams is False but could not find 'query' field in documents metadata") hashes[doc.metadata.get('task', 'input')].update(self.compute_hashes(doc.text, doc.metadata.get('query', None))) from lighteval.tasks.lighteval_task import LightevalTask from lighteval.tasks.registry import Registry task_dict = Registry(cache_dir=os.getenv('HF_HOME')).get_task_dict(self.lighteval_tasks, custom_tasks=self.custom_lighteval_tasks) LightevalTask.load_datasets(task_dict.values()) for (task_name, task) in task_dict.items(): for eval_doc in task.eval_docs(): try: golds = eval_doc.get_golds() query = eval_doc.query except Exception as e: logger.warning(f'Error while fetching doc data: {e}') continue for gold in golds: hashes[task_name].update(self.compute_hashes(gold, query)) for (task_name, task_hashes) in hashes.items(): hashes_array = np.array(list(task_hashes), dtype=self.config.hash_config.np_descr) logger.info(f'Saving {len(task_hashes)} hashes for {task_name}') with self.output_folder.open(f"{task_name.replace(' ', '_')}.index.hashes", mode='wb') as f: if self.output_folder.is_local(): hashes_array.tofile(f) else: f.write(hashes_array.tobytes()) class NGramsDecontFilter(BaseFilter): type = '🦠 - DECONT' name = '💥 N-grams decontaminate' def __init__(self, index_folder: DataFolderLike, config: NGramsDecontConfig=None, exclusion_writer: DiskWriter=None, language: str=Languages.english): super().__init__() self.index_folder = get_datafolder(index_folder) self.config = config or NGramsDecontConfig() self.exclusion_writer = exclusion_writer self.language = language self._index_hashes = None self.hash_func = create_hash_func(self.config.hash_config) self.tokenizer = load_word_tokenizer(language) def load_index_hashes(self): def load_index_from_file(file): with self.index_folder.open(file, mode='rb') as f: return (file, read_np_from_file(f, np.dtype(self.config.hash_config.np_descr), self.index_folder.is_local()).tolist()) with ThreadPoolExecutor() as pool: hashes = pool.map(load_index_from_file, self.index_folder.list_files()) self._index_hashes = {} for (filename, hashlist) in hashes: taskname = filename.removesuffix('.index.hashes') logger.info(f'Loading {len(hashlist)} hashes for {taskname}') for hash in hashlist: self._index_hashes[hash] = taskname def filter(self, doc: Document) -> bool | Tuple[bool, str]: if self._index_hashes is None: self.load_index_hashes() text_tokens = self.tokenizer.word_tokenize(simplify_text(doc.text, self.config.norm_config)) ngrams_to_compute = list(ngrams(text_tokens, self.config.n_grams)) for n_gram in map(' '.join, ngrams_to_compute): task = self._index_hashes.get(self.hash_func(n_gram), None) if task is not None: doc.metadata['contaminated_ngram'] = n_gram doc.metadata['contaminated_task'] = task self.stat_update(f'contaminated_{task}') if ':' in task: self.stat_update(f"contaminated_tg_{task[:task.index(':')]}") return (False, 'contaminated') return True # File: datatrove-main/src/datatrove/pipeline/dedup/__init__.py from .bloom_filter import SingleBloomFilter from .exact_substrings import ESDatasetToSequence, ESMergeSequences, ESRangeRemover from .minhash import MinhashBuildIndex, MinhashConfig, MinhashDedupBuckets, MinhashDedupCluster, MinhashDedupFilter, MinhashDedupSignature from .sentence_dedup import SentDedupConfig, SentenceDedupFilter, SentenceDedupSignature, SentenceFindDedups from .url_dedup import UrlDedupConfig, UrlDedupFilter, UrlDedupSignature, UrlFindDedups # File: datatrove-main/src/datatrove/pipeline/dedup/bloom_filter.py import contextlib import math from dataclasses import dataclass, field import numpy as np from datatrove.data import Document, DocumentsPipeline from datatrove.io import DataFolderLike, get_datafolder from datatrove.pipeline.base import PipelineStep from datatrove.pipeline.writers.disk_base import DiskWriter from datatrove.utils.hashing import HashConfig, create_hash_func from datatrove.utils.logging import logger from datatrove.utils.text import TextNormConfig, ngrams, simplify_text from datatrove.utils.typeshelper import Languages, StatHints from datatrove.utils.word_tokenizers import load_word_tokenizer _mersenne_prime = np.uint64((1 << 61) - 1) MAX_HASH = 1 << 32 - 1 @dataclass class BloomFilterConfig: m_bytes: int k: int = None expected_elements: int = None duplicate_threshold: float = 0.8 n_grams: int = 13 seed: int = 0 norm_config: TextNormConfig = field(default_factory=TextNormConfig) hash_config: HashConfig = field(default_factory=lambda : HashConfig(precision=32)) @property def m(self): return self.m_bytes * 8 def __post_init__(self): if self.k is None: self.k = get_optimal_k(self.m, expected_elements=self.expected_elements) def get_optimal_k(size_in_bytes: int, expected_elements: int) -> int: assert expected_elements, f'if expected_elements={expected_elements!r} then k must be given' m = size_in_bytes * 8 k = m / expected_elements * np.log(2) return math.ceil(k) def get_false_positive_prob(size_in_bytes: int, n: int, k: int) -> float: m = size_in_bytes * 8 return (1.0 - (1.0 - 1.0 / m) ** (k * n)) ** k class SingleBloomFilter(PipelineStep): type = '🫂 - DEDUPS' name = '\U0001fab7 Bloom-filter' def __init__(self, output_folder: DataFolderLike, config: BloomFilterConfig, save_bloom_filter: bool=False, exclusion_writer: DiskWriter=None, language: str=Languages.english): super().__init__() self.output_folder = get_datafolder(output_folder) self.tokenizer = load_word_tokenizer(language) self.config = config self.bit_vector = bytearray([0] * self.config.m_bytes) self.save_bloom_filter = save_bloom_filter self.exclusion_writer = exclusion_writer assert self.config.hash_config.precision == 32, 'Bloom filter only supports 32-bit hashes' self.hash_fc = create_hash_func(self.config.hash_config) assert self.config.m < MAX_HASH self.total_shingles = 0 self._parameters = None assert self.config.m_bytes < MAX_HASH, f'MAX_HASH={MAX_HASH!r} is smaller than self.config.m_bytes={self.config.m_bytes!r}' if self.config.expected_elements: fp = get_false_positive_prob(self.config.m_bytes, n=self.config.expected_elements, k=self.config.k) if fp > 0.05: logger.warning(f'False probability = {fp:.3}') else: logger.info(f'False probability = {fp:.3}') self.language = language @property def parameters(self): if self._parameters is None: gen = np.random.RandomState(self.config.seed) self._parameters = (gen.randint(1, _mersenne_prime, dtype=np.uint64, size=(1, self.config.k)), gen.randint(0, _mersenne_prime, dtype=np.uint64, size=(1, self.config.k))) return self._parameters def get_shingles(self, text: str) -> np.ndarray: return np.fromiter([self.hash_fc(' '.join(x)) for x in ngrams(self.tokenizer.word_tokenize(simplify_text(text, self.config.norm_config)), self.config.n_grams)], dtype=np.uint64).reshape((-1, 1)) def get_indexes(self, shingles: np.ndarray) -> list[list[int]]: (a, b) = self.parameters phv = np.bitwise_and((shingles * a + b) % _mersenne_prime, self.config.m_bytes) return phv.tolist() def update_bf(self, indexes: list[int]): for index in indexes: (byte_index, bit_index) = divmod(index, 8) mask = 1 << bit_index self.bit_vector[byte_index] |= mask def query(self, indexes: list[int]) -> bool: for idx in indexes: (byte_index, bit_index) = divmod(idx, 8) mask = 1 << bit_index if self.bit_vector[byte_index] & mask == 0: return False return True def step(self, doc: Document) -> bool: shingles = self.get_shingles(doc.text) self.total_shingles += shingles.size if shingles.size == 0: return True shingle_indexes = self.get_indexes(shingles) duplicate_shingles = 0 indexes_to_update = [] for indexes in shingle_indexes: if self.query(indexes): duplicate_shingles += 1 else: indexes_to_update.extend(indexes) self.update_bf(indexes_to_update) if duplicate_shingles / len(shingles) > self.config.duplicate_threshold: self.stat_update(StatHints.dropped) return False return True def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1): with self.exclusion_writer if self.exclusion_writer else contextlib.nullcontext() as writer: for (doc_idx, doc) in enumerate(data): with self.track_time(): self.stat_update(StatHints.total) if not self.step(doc): self.stat_update(StatHints.dropped) if self.exclusion_writer: writer.write(doc, rank) continue self.stat_update(StatHints.forwarded) yield doc if self.save_bloom_filter: with self.output_folder.open('bloom_filter.bloom', mode='wb') as f: f.write(self.bit_vector) logger.info(f'self.total_shingles={self.total_shingles!r}') logger.info(f'False probability = {get_false_positive_prob(self.config.m_bytes, n=self.total_shingles, k=self.config.k):.3}') logger.info(f'Optimal K given total shingles = {get_optimal_k(self.config.m_bytes, self.total_shingles)}') # File: datatrove-main/src/datatrove/pipeline/dedup/exact_substrings.py """""" import struct from typing import BinaryIO, Generator import numpy as np from datatrove.io import DataFolderLike, get_datafolder from datatrove.pipeline.base import DocumentsPipeline, PipelineStep from datatrove.utils.logging import logger from ...utils.tokenization import PipelineStepWithTokenizer from ...utils.typeshelper import ExtensionHelperES as EH from ...utils.typeshelper import Languages from ...utils.word_tokenizers import load_word_tokenizer SEPARATOR_BYTES = 12 def prepare_doc(tokenizer, doc: str, rank: int, doc_id: int): tokens = tokenizer.encode(doc).ids tokens = np.fromiter(tokens, dtype=np.uint16, count=len(tokens)) b_doc = b'\xff\xff' + struct.pack(' Generator[list, None, None]: with size_file as f_size: with file as f: while True: n_bytes = f_size.read(struct.calcsize(' self.sequence_bytes_offset[self.rank]={self.sequence_bytes_offset[self.rank]!r}') def get_bytearange(self, bytes_range_file: BinaryIO): with bytes_range_file as f: dup_ranges = f.read() dup_ranges = dup_ranges.split('\n') i = 0 for (i, x) in enumerate(dup_ranges): if x == 'out': break dup_ranges = dup_ranges[i + 1:-1] rank_dup_ranges = [] for br in dup_ranges: (a, b) = br.split(' ') (a, b) = (int(a), int(b)) if b > self.sequence_bytes_offset[self.rank + 1] + SEPARATOR_BYTES: break if b > self.sequence_bytes_offset[self.rank] + SEPARATOR_BYTES: (a, b) = (a - self.sequence_bytes_offset[self.rank], b - self.sequence_bytes_offset[self.rank]) rank_dup_ranges.append((a, b)) self.dup_ranges = rank_dup_ranges def get_all_files(self, rank: int, world_size: int): self.get_sequence_bytes_offset() sequence_file = self.sequence_folder.get_shard(rank, world_size, glob_pattern=EH.stage_1_sequence) docs_sizes_file = self.sequence_folder.get_shard(rank, world_size, glob_pattern=EH.stage_1_sequence_size) byte_range_file = self.sequence_folder.list_files(glob_pattern=EH.stage_3_bytes_ranges) assert all([len(sequence_file) == 1, len(docs_sizes_file) == 1, len(byte_range_file) == 1]), f'Need to run with n_tasks = n_files. len(sequence_file)={len(sequence_file)!r}, len(sequence_file)={len(sequence_file)!r}, len(byte_range_file)={len(byte_range_file)!r}' (sequence_file, docs_sizes_file, byte_range_file) = (sequence_file[0], docs_sizes_file[0], byte_range_file[0]) self.get_bytearange(self.sequence_folder.open(byte_range_file, 'rt')) return (sequence_file, docs_sizes_file) def normalize_range(self, a, b, bytes_len): (a, b) = (a - self.bytes_counter, b - self.bytes_counter) a = max(SEPARATOR_BYTES, a) b = min(bytes_len, b) assert SEPARATOR_BYTES <= a < b <= bytes_len, f'SEPARATOR_BYTES={SEPARATOR_BYTES!r} < a={a!r} < b={b!r} < bytes_len={bytes_len!r} is NOT satisfied' if b % 2 == 1: b -= 1 if a % 2 == 1: a += 1 b = max(a, b) return (a, b) def get_duplicate_range(self, bytes_len: int): ranges = [] upper_limit = self.bytes_counter + bytes_len + SEPARATOR_BYTES if self.exhausted_ranges: return ranges while True: (a, b) = (self.dup_ranges[self.range_idx][0], self.dup_ranges[self.range_idx][1]) left = a < self.bytes_counter and self.bytes_counter + SEPARATOR_BYTES < b <= upper_limit centre = self.bytes_counter <= a < b <= upper_limit right = self.bytes_counter <= a < upper_limit - SEPARATOR_BYTES and upper_limit < b outside = a < self.bytes_counter < upper_limit < b if not any([left, centre, right, outside]): break assert sum([left, centre, right, outside]) == 1, f'left={left!r}, centre={centre!r}, right={right!r}, outside={outside!r}' if left: self.range_idx += 1 a = self.bytes_counter if centre: self.range_idx += 1 if right: ranges.append(self.normalize_range(a, upper_limit, bytes_len)) break if outside: ranges.append(self.normalize_range(self.bytes_counter, upper_limit, bytes_len)) break ranges.append(self.normalize_range(a, b, bytes_len)) if self.range_idx == len(self.dup_ranges): self.exhausted_ranges = True break return ranges def remove_duplicate(self, doc, bytes_content): n_bytes = len(bytes_content) duplicates_ranges = self.get_duplicate_range(n_bytes) duplicates = [] for (byte_a, byte_b) in duplicates_ranges: dup_sentence = self.tokenizer.decode(np.frombuffer(bytes_content[byte_a:byte_b], dtype=np.uint16).tolist()) duplicates.append(dup_sentence) if duplicates: text = doc.text for d in duplicates: text = text.replace(d, '') doc.text = text self.bytes_counter += len(bytes_content) if len(self.word_tokenizer.word_tokenize(doc.text)) < self.min_doc_words: return False return True def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1) -> DocumentsPipeline: self.reset() self.rank = rank (sequence_file, size_file) = self.get_all_files(rank=self.rank, world_size=world_size) if not self.dup_ranges: return for (doc, doc_content) in zip(data, sequence_reader(self.sequence_folder.open(sequence_file, 'rb'), self.sequence_folder.open(size_file, 'rb'))): with self.stats.time_stats: assert doc.text == self.tokenizer.decode(read_bytes(doc_content), skip_special_tokens=False), f'{doc.text}\n\n{self.tokenizer.decode(read_bytes(doc_content))}' to_yield = self.remove_duplicate(doc, doc_content) if to_yield: self.update_doc_stats(doc) yield doc assert self.bytes_counter == self.sequence_bytes_offset[rank + 1] - self.sequence_bytes_offset[rank], f'got self.bytes_counter={self.bytes_counter!r}, expected = {self.sequence_bytes_offset[rank + 1] - self.sequence_bytes_offset[rank]}' assert self.exhausted_ranges, 'One or more duplicate ranges have not been used' # File: datatrove-main/src/datatrove/pipeline/dedup/minhash.py import contextlib import heapq import os import re import struct from dataclasses import dataclass, field from pathlib import Path from typing import Generator import numpy as np from fsspec.spec import AbstractBufferedFile from datatrove.data import DocumentsPipeline from datatrove.io import DataFolderLike, get_datafolder from datatrove.pipeline.base import PipelineStep from datatrove.pipeline.writers.disk_base import DiskWriter from datatrove.utils.binaryio import read_tuples_from_file, seek_to_start from datatrove.utils.hashing import HashConfig, create_hash_func from datatrove.utils.logging import logger from datatrove.utils.text import TextNormConfig, ngrams, simplify_text from datatrove.utils.typeshelper import Languages, StatHints from datatrove.utils.word_tokenizers import load_word_tokenizer _mersenne_prime = np.uint64((1 << 61) - 1) '' SENTINEL = (1 << 32) - 1 @dataclass class MinhashConfig: n_grams: int = 5 num_buckets: int = 14 hashes_per_bucket: int = 8 seed: int = 1 norm_config: TextNormConfig = field(default_factory=TextNormConfig) hash_config: HashConfig = field(default_factory=HashConfig) def __str__(self): return f'{self.n_grams}ng_{self.num_buckets}bs_{self.hashes_per_bucket}hs_{self.hash_config}' @dataclass(order=True) class HashSig: sig: tuple[int] file_id: int file_stem: str doc_id: int reader_id: int def is_from_index(self): return self.reader_id != self.file_id def read_sigs(file: AbstractBufferedFile, reader_id: int, config: MinhashConfig, index_file: bool=False, min_hash: int=0, max_hash: int=_mersenne_prime, ensure_order: bool=True, lines_to_buffer: int=5) -> Generator: line_format = f"{config.hashes_per_bucket}{config.hash_config.struct_format}{('I' if not index_file else '')}" with file as f: if f.size == 0: return seek_to_start(f, min_hash, line_format, config.hash_config.struct_format) last = None file_stem = Path(file.path).name.removesuffix('.minhash.sig') for data in read_tuples_from_file(f, line_format, lines_to_buffer=lines_to_buffer): sigdata = data if index_file else data[:-1] assert sigdata[0] >= min_hash and (ensure_order is False or last is None or sigdata >= last), f'Hash order error. f.tell()={f.tell()!r}, min_hash={min_hash!r}, sigdata={sigdata!r}, last={last!r}' if sigdata[0] >= max_hash: break last = sigdata yield (HashSig(sig=sigdata, doc_id=-1, file_id=-1, reader_id=reader_id, file_stem=file_stem) if index_file else HashSig(sig=sigdata, doc_id=data[-1], file_id=reader_id, reader_id=reader_id, file_stem=file_stem)) class MinhashDedupSignature(PipelineStep): type = '🫂 - DEDUP' name = '🎯 MinHash stage 1' def __init__(self, output_folder: DataFolderLike, config: MinhashConfig=None, language: str=Languages.english): super().__init__() self.output_folder = get_datafolder(output_folder) self.config = config or MinhashConfig() self.num_hashes = self.config.num_buckets * self.config.hashes_per_bucket self._parameters = None self._hash_func = create_hash_func(self.config.hash_config) self.language = language self.word_tokenizer = load_word_tokenizer(language) @property def parameters(self): if self._parameters is None: gen = np.random.RandomState(self.config.seed) self._parameters = (gen.randint(1, _mersenne_prime, dtype=np.uint64, size=(1, self.num_hashes)), gen.randint(0, _mersenne_prime, dtype=np.uint64, size=(1, self.num_hashes))) return self._parameters def get_signature(self, shingles: np.ndarray) -> list[list[int]]: (a, b) = self.parameters phv = (shingles * a + b) % _mersenne_prime if self.config.hash_config.precision == 32: phv = np.bitwise_and(phv, self.config.hash_config.max) return [x.tolist() for x in np.split(np.min(phv, axis=0).astype(self.config.hash_config.np_dtype), self.config.num_buckets)] def get_shingles(self, text: str) -> np.ndarray: return np.fromiter([self._hash_func(' '.join(x)) for x in ngrams(self.word_tokenizer.word_tokenize(simplify_text(text, self.config.norm_config)), self.config.n_grams)], dtype=np.uint64).reshape((-1, 1)) def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1): buckets = [self.output_folder.open(f'bucket_{bi:03d}/{rank:05d}.minhash.sig', mode='wb') for bi in range(self.config.num_buckets)] with self.track_time(): for (doc_idx, doc) in enumerate(data): self.stat_update(StatHints.total) shingles = self.get_shingles(doc.text) if shingles.size != 0: sig = self.get_signature(shingles) for (bi, (bucket, bucket_sig)) in enumerate(zip(buckets, sig)): bucket.write(struct.pack(f'<{self.config.hashes_per_bucket}{self.config.hash_config.struct_format}I', *bucket_sig, doc_idx)) for file in buckets: file.close() logger.info('Sorting buckets...') for bi in range(len(buckets)): sigs = sorted(read_sigs(self.output_folder.open(f'bucket_{bi:03d}/{rank:05d}.minhash.sig', mode='rb'), -1, self.config, ensure_order=False, lines_to_buffer=-1)) with self.output_folder.open(f'bucket_{bi:03d}/{rank:05d}.minhash.sig', mode='wb') as fo: for sig in sigs: fo.write(struct.pack(f'<{self.config.hashes_per_bucket}{self.config.hash_config.struct_format}I', *sig.sig, sig.doc_id)) class MinhashDedupBuckets(PipelineStep): type = '🫂 - DEDUP' name = '🎯 MinHash stage 2' def __init__(self, input_folder: DataFolderLike, output_folder: DataFolderLike, index_folder: DataFolderLike=None, config: MinhashConfig=None, only_dedup_in_index: bool=True, create_index_name: str=None, lines_to_buffer: int=5): super().__init__() self.input_folder = get_datafolder(input_folder) self.output_folder = get_datafolder(output_folder) self.index_folder = get_datafolder(index_folder) if index_folder else None self.config = config or MinhashConfig() self.only_dedup_in_index = only_dedup_in_index self.create_index_name = create_index_name self.lines_to_buffer = lines_to_buffer def get_worker_hash_range(self, sig_files, rank, world_size): workers_per_bucket = world_size // self.config.num_buckets (bucket, bucket_worker) = divmod(rank, workers_per_bucket) (hash_min, hash_max) = (0, _mersenne_prime if self.config.hash_config.precision == 64 else self.config.hash_config.max) if workers_per_bucket > 1 and len(sig_files): with self.input_folder.open(sig_files[0], mode='rb') as f: line_size = struct.calcsize(f'{self.config.hashes_per_bucket}{self.config.hash_config.struct_format}I') (L, rem) = divmod(f.size, line_size) assert rem == 0, 'file size not divisible by line size' assert L >= workers_per_bucket, f'tried to use workers_per_bucket={workers_per_bucket!r} but there are only {L} lines' if bucket_worker > 0: f.seek(line_size * (L // workers_per_bucket) * bucket_worker, os.SEEK_SET) hash_min = struct.unpack(self.config.hash_config.struct_format, f.read(struct.calcsize(self.config.hash_config.struct_format)))[0] if bucket_worker + 1 < workers_per_bucket: f.seek(line_size * (L // workers_per_bucket) * (bucket_worker + 1), os.SEEK_SET) hash_max = struct.unpack(self.config.hash_config.struct_format, f.read(struct.calcsize(self.config.hash_config.struct_format)))[0] return (hash_min, hash_max) def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1): assert data is None, 'You should not use an input block before MinhashDedupBuckets' assert world_size % self.config.num_buckets == 0, 'Number of tasks must be divisible by num_buckets' workers_per_bucket = world_size // self.config.num_buckets (bucket, bucket_worker) = divmod(rank, workers_per_bucket) with self.track_time(): sig_files = self.input_folder.list_files(subdirectory=f'bucket_{bucket:03d}') (hash_min, hash_max) = self.get_worker_hash_range(sig_files, rank, world_size) logger.info(f'Running worker {bucket_worker + 1}/{workers_per_bucket} on bucket {bucket:03d}. Hash range: {[hash_min, hash_max]}') sig_readers = [read_sigs(file, file_i, self.config, min_hash=hash_min, max_hash=hash_max, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.input_folder.open_files(sig_files, mode='rb'))] own_index_regex = re.compile(f'bucket_{bucket:03d}/{self.create_index_name}_\\d{{2}}.minhash.index') index_files = [filename for filename in self.index_folder.list_files(subdirectory=f'bucket_{bucket:03d}') if not self.create_index_name or not own_index_regex.fullmatch(filename)] if self.index_folder else None if index_files: logger.info(f"Found {len(index_files)} index file(s): {', '.join(index_files)}") sig_readers.extend([read_sigs(file, len(sig_readers) + file_i, self.config, index_file=True, min_hash=hash_min, max_hash=hash_max, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.index_folder.open_files(index_files, mode='rb'))]) pq = [x for x in [next(sig_reader, None) for sig_reader in sig_readers] if x is not None] heapq.heapify(pq) logger.info('Finished initializing signatures priority queue.') out_index = None if self.index_folder and self.create_index_name: out_index = self.index_folder.open(f'bucket_{bucket:03d}/{self.create_index_name}_{bucket_worker:02d}.minhash.index', mode='wb') with self.output_folder.open(f'{bucket:05d}_{bucket_worker:02d}.dups', mode='wb') as out_f: last: HashSig | None = None while pq: v: HashSig = heapq.heappop(pq) assert last is None or v >= last, f'Sig queue sort error. v={v!r} < last={last!r}' if not v.is_from_index(): if last and last.sig == v.sig: if last.is_from_index(): out_f.write(struct.pack('<4I', SENTINEL, SENTINEL, int(v.file_stem), v.doc_id)) self.stat_update('index_match', 'total_matches') elif not index_files or not self.only_dedup_in_index: out_f.write(struct.pack('<4I', int(last.file_stem), last.doc_id, int(v.file_stem), v.doc_id)) self.stat_update('total_matches') elif out_index: out_index.write(struct.pack(f'<%d{self.config.hash_config.struct_format}' % self.config.hashes_per_bucket, *v.sig)) last = v next_sig = next(sig_readers[v.reader_id], None) if next_sig: assert next_sig >= v, f'Next sig sort error. next_sig={next_sig!r} < v={v!r}' heapq.heappush(pq, next_sig) if out_index: out_index.close() class MinhashDedupCluster(PipelineStep): type = '🫂 - DEDUP' name = '🎯 MinHash stage 3' def __init__(self, input_folder: DataFolderLike, output_folder: DataFolderLike, config: MinhashConfig=None, save_cluster_id: bool=False, ignore_index_matches: bool=False, lines_to_buffer: int=5): super().__init__() self.input_folder = get_datafolder(input_folder) self.output_folder = get_datafolder(output_folder) self.config = config or MinhashConfig() self.save_cluster_id = save_cluster_id self.ignore_index_matches = ignore_index_matches self.lines_to_buffer = lines_to_buffer def run(self, data: DocumentsPipeline=None, _: int=0, world_size: int=1): dup_files = self.input_folder.list_files(glob_pattern='*.dups') assert len(dup_files) % self.config.num_buckets == 0, 'Number of .dups files should be divisible by number of buckets' assert world_size == 1, 'World size must be 1 for clustering' union_set = {} def parent(x): if x not in union_set or union_set[x] == x: return x union_set[x] = parent(union_set[x]) return union_set[x] with self.track_time(): for dup_file in dup_files: with self.input_folder.open(dup_file, 'rb') as dupf: for (f1, d1, f2, d2) in read_tuples_from_file(dupf, '4I', lines_to_buffer=self.lines_to_buffer): (a, b) = ((f1, d1), (f2, d2)) if self.ignore_index_matches and a == (SENTINEL, SENTINEL): continue union_set[parent(b)] = parent(a) ci = 0 cluster_ids = {} with self.output_folder.get_output_file_manager(mode='wb') as output_mg: for node in sorted(union_set.keys()): self.stat_update('duplicates') (file, doc) = node p = parent(node) if node != p: output_mg.write(f'{file:06d}.remove', struct.pack('= 1') elif finder_workers > 1: logger.warning(f'Remember to also set the name of tasks of the finder block to finder_workers={finder_workers!r}!') self.finder_workers = finder_workers self.config = config or SentDedupConfig() self.hash_fc = create_hash_func(config.hash_config) self.language = language self.tokenizer = load_word_tokenizer(language) def save_hashes(self, rank: int, signatures): signatures = np.array(signatures, dtype=[('hash', self.config.hash_config.np_descr), ('doc', ' left_idx: if self.output_folder.is_local(): signatures[left_idx:right_idx].tofile(f) else: f.write(signatures[left_idx:right_idx].tobytes()) left_idx = right_idx if right_idx >= len(signatures): break def get_hashes(self, doc: Document, doc_idx: int) -> list[None] | list[tuple[int, int, int]]: sentences = self.tokenizer.sent_tokenize(doc.text) if self.config.split_sentences else doc.text.splitlines() if len(sentences) < self.config.n_sentences: return [] sentences_tokens = [simplify_text(sent, self.config.norm_config) for sent in sentences] n_sent_grams: list = [' '.join(x) for x in ngrams(sentences_tokens, self.config.n_sentences)] hashes = [(self.hash_fc(n_sent_gram), doc_idx, sentence_idx) for (sentence_idx, n_sent_gram) in enumerate(n_sent_grams) if n_sent_gram.strip() != ''] return hashes def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1): signatures = [] for (doc_idx, doc) in enumerate(data): with self.stats.time_stats: self.stat_update(StatHints.total) signatures.extend(self.get_hashes(doc, doc_idx)) self.save_hashes(rank, signatures) def read_sigs(file: AbstractBufferedFile, file_id: int, config: SentDedupConfig, index_file: bool=False, lines_to_buffer: int=5) -> Generator[HashSig, None, None]: line_format = f'{config.hash_config.struct_format}IH' if not index_file else config.hash_config.struct_format file_stem = Path(file.path).name.removesuffix(ExtensionHelperSD.stage_1_signature) last = None with file as f: for data in read_tuples_from_file(f, line_format, lines_to_buffer=lines_to_buffer): assert last is None or data[0] >= last, f'Hash order error. f.tell()={f.tell()!r}, data[0]={data[0]!r}, last={last!r}' last = data[0] yield (HashSig(hash_value=data[0], doc_id=-1, file_id=file_id, sent_id=-1, file_stem=file_stem) if index_file else HashSig(file_id=file_id, hash_value=data[0], doc_id=data[1], sent_id=data[2], file_stem=file_stem)) class SentenceFindDedups(PipelineStep): type = '🫂 - DEDUPS' name = '💥 sentence-deduplication stage 2' def __init__(self, data_folder: DataFolderLike, output_folder: DataFolderLike, index_folder: DataFolderLike=None, config: SentDedupConfig=None, lines_to_buffer: int=5): super().__init__() self.data_folder = get_datafolder(data_folder) self.output_folder = get_datafolder(output_folder) self.index_folder = get_datafolder(index_folder) if index_folder else None self.config = config or SentDedupConfig() self.lines_to_buffer = lines_to_buffer def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1): with self.stats.time_stats: if world_size == 1: sig_files = self.data_folder.list_files(glob_pattern='*/*' + ExtensionHelperSD.stage_1_signature) if any((not sig_file.startswith('0000/') for sig_file in sig_files)): raise ValueError(f'world_size={world_size!r} but found sig files for different hash buckets. Set tasks=finder_workers') else: sig_files = self.data_folder.list_files(subdirectory=f'{rank:04d}', glob_pattern=ExtensionHelperSD.stage_1_signature) sig_readers = [read_sigs(file, file_i, config=self.config, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.data_folder.open_files(sig_files))] index_files = self.index_folder.list_files() if self.index_folder else None if index_files: logger.info(f"Found index file(s): {', '.join(index_files)}") sig_readers.extend([read_sigs(file, len(sig_readers) + file_i, config=self.config, index_file=True, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.data_folder.open_files(index_files))]) logger.info(f'Initializing pq with {len(sig_readers)} files.') with ThreadPoolExecutor() as executor: pq = [x for x in tqdm(executor.map(lambda x: next(x, None), sig_readers), total=len(sig_readers), desc='Initializing pq...') if x] heapq.heapify(pq) logger.info('PQ initialized.') output_mg = self.output_folder.get_output_file_manager(mode='wb') packer = struct.Struct(' np.ndarray: return read_np_from_file(file, dtype=np.dtype([('doc', ' tuple[str, str]: sentence_spans = list(self.tokenizer.span_tokenize(doc.text)) if self.config.split_sentences else doc.text.splitlines() kept_sentences = [] original_formatted = [] last_s = 0 du_line_idx = 0 drop_until = 0 removed_span = [] for (idx, s) in enumerate(sentence_spans): line_text = doc.text[last_s:s[1]] if self.config.split_sentences else s if du_line_idx < len(du_lines): if du_lines[du_line_idx] < idx: raise ValueError('Error with duplicate line index') elif du_lines[du_line_idx] == idx: drop_until = idx + self.config.n_sentences du_line_idx += 1 if idx >= drop_until: if removed_span: original_formatted.append('<<<') if self.config.min_words_to_remove_span > 0 and len(self.tokenizer.word_tokenize('\n'.join(removed_span))) < self.config.min_words_to_remove_span: kept_sentences.extend(removed_span) removed_span.clear() kept_sentences.append(line_text) elif not removed_span: removed_span.append(line_text) original_formatted.append('>>>') original_formatted.append(line_text) if self.config.split_sentences: last_s = s[1] if removed_span: original_formatted.append('<<<') if self.config.min_words_to_remove_span > 0 and len(self.tokenizer.word_tokenize('\n'.join(removed_span))) < self.config.min_words_to_remove_span: kept_sentences.extend(removed_span) if len(kept_sentences) < len(sentence_spans): self.stat_update('removed_sentences', value=len(sentence_spans) - len(kept_sentences)) self.stat_update('original_sentences', value=len(sentence_spans)) merge_char = '' if self.config.split_sentences else '\n' return (merge_char.join(kept_sentences).lstrip(), merge_char.join(original_formatted)) def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline: folders = self.data_folder.list_files(include_directories=True, recursive=False) files = [f for f in [f'{folder}/{rank:05d}{ExtensionHelperSD.stage_2_duplicates}' for folder in folders] if self.data_folder.exists(f)] logger.info(f'Loading duplicate indexes from {len(files)} results files.') all_dups = np.array([], dtype=[('doc', '= len(doc_starts) or all_dups['doc'][doc_starts[dups_doc_i]] > doc_idx: (filtered_text, original_formatted) = (doc.text, None) else: (sents_span_l, sents_span_r) = (doc_starts[dups_doc_i], doc_starts[dups_doc_i + 1] if dups_doc_i + 1 < len(doc_starts) else None) (filtered_text, original_formatted) = self.remove_dup_sentences(doc, all_dups['sent'][sents_span_l:sents_span_r]) dups_doc_i += 1 if (filtered_text == doc.text or ((self.config.min_doc_words <= 0 or len(self.tokenizer.word_tokenize(filtered_text)) >= self.config.min_doc_words) and (self.config.min_num_sentences <= 0 or len(split_into_parts(filtered_text, SPLIT_TEXT_SENTENCES, self.language)) >= self.config.min_num_sentences))) and filtered_text: self.update_doc_stats(doc) if not filtered_text == doc.text and writer: writer.write(dataclasses.replace(doc, text=original_formatted), rank=rank) doc.text = filtered_text yield doc elif writer: doc.text = original_formatted writer.write(doc, rank=rank) class SentenceDedupBuildIndex(PipelineStep): type = '🫂 - DEDUP' name = '💥 sentence-deduplication build index' def __init__(self, data_folder: DataFolderLike, output_folder: DataFolderLike, index_name: str, config: SentDedupConfig=None, lines_to_buffer: int=5): super().__init__() self.data_folder = get_datafolder(data_folder) self.output_folder = get_datafolder(output_folder) self.index_name = index_name self.lines_to_buffer = lines_to_buffer self.config = config or SentDedupConfig() def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1): assert world_size == 1, 'SentenceDedupBuildIndex can only run on a single worker.' with self.stats.time_stats: sig_files = self.data_folder.list_files(glob_pattern=ExtensionHelperSD.stage_1_signature) sig_readers = [read_sigs(file, file_i, self.config, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.data_folder.open_files(sig_files))] pq = [next(sig_reader) for sig_reader in sig_readers] heapq.heapify(pq) with self.output_folder.open(f'{self.index_name}.{ExtensionHelperSD.index}', mode='wb') as out_f: last = None while pq: v: HashSig = heapq.heappop(pq) if last != v.hash_value: out_f.write(struct.pack(f'<{self.config.hash_config.struct_format}', v.hash_value)) last = v.hash_value new_v = next(sig_readers[v.file_id], None) if new_v: heapq.heappush(pq, new_v) # File: datatrove-main/src/datatrove/pipeline/dedup/url_dedup.py """""" import contextlib import heapq import struct from concurrent.futures import ThreadPoolExecutor from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import BinaryIO, Callable, Generator import numpy as np from fsspec.spec import AbstractBufferedFile from tqdm import tqdm from datatrove.data import Document, DocumentsPipeline from datatrove.io import DataFolderLike, get_datafolder from datatrove.pipeline.base import PipelineStep from datatrove.utils.binaryio import read_np_from_file, read_tuples_from_file from datatrove.utils.hashing import HashConfig, create_hash_func from datatrove.utils.logging import logger from datatrove.utils.typeshelper import ExtensionHelperSD, StatHints from ..writers.disk_base import DiskWriter @dataclass class UrlDedupConfig: url_normalizer: Callable[[str], str] | None = None document_priority: Callable[[Document], int] | None = None hash_config: HashConfig = field(default_factory=HashConfig) only_dedup_in_index: bool = True @dataclass(order=False) class HashSig: hash_value: int priority: int doc_id: int file_id: int file_stem: str def is_from_index(self): return self.doc_id == -1 and self.priority == 1 def __lt__(self, other: 'HashSig') -> bool: return (self.hash_value, -self.priority, self.doc_id) < (other.hash_value, -other.priority, other.doc_id) def get_sig_dtype(config: HashConfig) -> np.dtype: return np.dtype([('hash', config.np_dtype), ('priority', '= 1') elif finder_workers > 1: logger.warning(f'Remember to also set the number of tasks of the finder block to finder_workers={finder_workers!r}!') self.finder_workers = finder_workers self.config = config or UrlDedupConfig() self.hash_fc = create_hash_func(self.config.hash_config) def save_hashes(self, rank: int, signatures): sig_dtype = get_sig_dtype(self.config.hash_config) priority_max = np.iinfo(sig_dtype['priority']).max assert all((sig[1] >= 1 and sig[1] <= priority_max for sig in signatures)), f'priority must be between 1 and {priority_max}' signatures = np.array(signatures, dtype=sig_dtype) signatures['priority'] = -signatures['priority'] signatures.sort(axis=0) signatures['priority'] = -signatures['priority'] hashes_per_worker = self.config.hash_config.max // self.finder_workers left_idx = 0 for hash_i in range(self.finder_workers): with self.output_folder.open(f'{hash_i:04d}/{rank:05d}{ExtensionHelperSD.stage_1_signature}', mode='wb') as f: right_hash = (hash_i + 1) * hashes_per_worker if hash_i != self.finder_workers - 1 else np.iinfo(np.uint64).max right_idx = left_idx + signatures['hash'][left_idx:].searchsorted(right_hash, side='right') if right_idx > left_idx: bts = signatures[left_idx:right_idx].tobytes() f.write(bts) left_idx = right_idx if right_idx >= len(signatures): break def get_hashes(self, doc: Document, doc_idx: int) -> list[None] | list[tuple[int, int, int]]: normalized_url: str = self.config.url_normalizer(doc.metadata['url']) if self.config.url_normalizer else doc.metadata['url'] priority = self.config.document_priority(doc) if self.config.document_priority else 1 hashes = [(self.hash_fc(normalized_url), priority, doc_idx)] return hashes def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1): signatures = [] for (doc_idx, doc) in enumerate(data): with self.stats.time_stats: self.stat_update(StatHints.total) signatures.extend(self.get_hashes(doc, doc_idx)) self.save_hashes(rank, signatures) def read_sigs(file: AbstractBufferedFile, file_id: int, hash_config: HashConfig, index_file: bool=False, lines_to_buffer: int=5) -> Generator[HashSig, None, None]: last = None line_format = f'{hash_config.struct_format}HI' if not index_file else hash_config.struct_format with file as f: file_stem = Path(f.path).name.removesuffix(ExtensionHelperSD.stage_1_signature) for data in read_tuples_from_file(f, line_format, lines_to_buffer=lines_to_buffer): assert last is None or data[0] >= last, f'Hash order error. f.tell()={f.tell()!r}, data[0]={data[0]!r}, last={last!r}' last = data[0] yield (HashSig(hash_value=data[0], doc_id=-1, file_id=file_id, priority=-1, file_stem=file_stem) if index_file else HashSig(file_id=file_id, file_stem=file_stem, hash_value=data[0], priority=data[1], doc_id=data[2])) class UrlFindDedups(PipelineStep): type = '🫂 - DEDUPS' name = '💥 url-deduplication stage 2' def __init__(self, data_folder: DataFolderLike, output_folder: DataFolderLike, index_folder: DataFolderLike | None=None, config: UrlDedupConfig | None=None, lines_to_buffer: int=5): super().__init__() self.data_folder = get_datafolder(data_folder) self.output_folder = get_datafolder(output_folder) self.index_folder = get_datafolder(index_folder) if index_folder else None self.config = config or UrlDedupConfig() self.lines_to_buffer = lines_to_buffer def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1): with self.stats.time_stats: if world_size == 1: sig_files = self.data_folder.list_files(glob_pattern='*/*' + ExtensionHelperSD.stage_1_signature) if any((not sig_file.startswith('0000/') for sig_file in sig_files)): raise ValueError(f'world_size={world_size!r} but found sig files for different hash buckets. Set tasks=finder_workers') else: sig_files = self.data_folder.list_files(subdirectory=f'{rank:04d}', glob_pattern=ExtensionHelperSD.stage_1_signature) sig_readers = [read_sigs(file, file_i, self.config.hash_config, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.data_folder.open_files(sig_files))] index_files = self.index_folder.list_files() if self.index_folder else None if index_files: logger.info(f"Found index file(s): {', '.join(index_files)}") sig_readers.extend([read_sigs(file, len(sig_readers) + file_i, self.config.hash_config, index_file=True, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.data_folder.open_files(index_files))]) logger.info(f'Initializing pq with {len(sig_readers)} files.') with ThreadPoolExecutor() as executor: pq = [x for x in tqdm(executor.map(lambda x: next(x, None), sig_readers), total=len(sig_readers), desc='Initializing pq...') if x] heapq.heapify(pq) logger.info('PQ initialized.') output_mg = self.output_folder.get_output_file_manager(mode='wb') last: HashSig | None = None packer = struct.Struct(' np.ndarray: with file as f: return read_np_from_file(f, dtype=dup_dtype, is_local_file=self.data_folder.is_local()) def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1): folders = self.data_folder.list_files(include_directories=True, recursive=False) files = [f for f in [f'{folder}/{rank:05d}{ExtensionHelperSD.stage_2_duplicates}' for folder in folders] if self.data_folder.exists(f)] logger.info(f'Loading duplicate indexes from {len(files)} results files.') dup_dtype = get_sig_dtype(self.config.hash_config)[2] all_dups = np.array([], dtype=dup_dtype) if files: with ThreadPoolExecutor() as pool: read_partial = partial(self.read_duplicates, dup_dtype=dup_dtype) all_dups = np.concatenate(list(tqdm(pool.map(read_partial, self.data_folder.open_files(files)), total=len(files))), axis=0) all_dups.sort() logger.info('Loaded duplicate indexes.') dups_doc_i = 0 with self.exclusion_writer if self.exclusion_writer else contextlib.nullcontext() as writer: with self.stats.time_stats: for (doc_idx, doc) in enumerate(data): self.stat_update(StatHints.total) with self.stats.time_stats: if dups_doc_i < all_dups.shape[0] and all_dups[dups_doc_i] == doc_idx: if writer: writer.write(doc, rank=rank) self.stat_update(StatHints.dropped) dups_doc_i += 1 else: self.stat_update(StatHints.forwarded) self.update_doc_stats(doc) yield doc class UrlDedupBuildIndex(PipelineStep): type = '🫂 - DEDUP' name = '💥 url-deduplication build index' def __init__(self, data_folder: DataFolderLike, output_folder: DataFolderLike, index_name: str, config: UrlDedupConfig | None=None, lines_to_buffer: int=5): super().__init__() self.data_folder = get_datafolder(data_folder) self.output_folder = get_datafolder(output_folder) self.index_name = index_name self.lines_to_buffer = lines_to_buffer self.config = config or UrlDedupConfig() def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1): assert world_size == 1, 'UrlDedupBuildIndex can only run on a single worker.' with self.stats.time_stats: sig_files = self.data_folder.list_files(glob_pattern=ExtensionHelperSD.stage_1_signature) sig_readers = [read_sigs(file, file_i, self.config.hash_config, lines_to_buffer=self.lines_to_buffer) for (file_i, file) in enumerate(self.data_folder.open_files(sig_files))] pq = [next(sig_reader) for sig_reader in sig_readers] heapq.heapify(pq) with self.output_folder.open(f'{self.index_name}.{ExtensionHelperSD.index}', mode='wb') as out_f: last = None while pq: v: HashSig = heapq.heappop(pq) if last != v.hash_value: out_f.write(struct.pack(f'<{self.config.hash_config.struct_format}', v.hash_value)) last = v.hash_value new_v = next(sig_readers[v.file_id], None) if new_v: heapq.heappush(pq, new_v) # File: datatrove-main/src/datatrove/pipeline/extractors/base.py from abc import abstractmethod from concurrent.futures import ThreadPoolExecutor from datatrove.data import DocumentsPipeline from datatrove.pipeline.base import PipelineStep from datatrove.utils.logging import logger from datatrove.utils.typeshelper import StatHints class BaseExtractor(PipelineStep): type = '🛢 - EXTRAC' @abstractmethod def __init__(self, timeout: float=0.1): super().__init__() self.timeout = timeout @abstractmethod def extract(self, text: str) -> str: pass def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline: with ThreadPoolExecutor() as executor: for doc in data: self.stat_update(StatHints.total) with self.track_time(): future = executor.submit(self.extract, doc.text) try: doc.text = future.result(timeout=self.timeout) except TimeoutError: logger.warning('⏰ Timeout while cleaning record text. Skipping record.') continue except Exception as e: logger.warning(f'❌ Error "{e}" while cleaning record text. Skipping record.') continue if doc.text: self.stat_update(StatHints.forwarded) self.update_doc_stats(doc) yield doc else: self.stat_update(StatHints.dropped) # File: datatrove-main/src/datatrove/pipeline/extractors/modular.py import re from .base import BaseExtractor class ReadabilityInscriptis(BaseExtractor): _requires_dependencies = ['inscriptis', ('readability', 'readability-lxml @ git+https://github.com/huggingface/python-readability.git@speedup')] def __init__(self, max_new_lines: int=2, min_text_length=25, min_text_score=20, timeout: float=0.1): from inscriptis.css_profiles import CSS_PROFILES from inscriptis.model.config import ParserConfig super().__init__(timeout) self.min_text_length = min_text_length self.min_text_score = min_text_score self.new_line_chars = '\n' * max_new_lines self.regex_excessive_lines = re.compile('(' + self.new_line_chars + '\n+)') self._parser_config = ParserConfig(css=CSS_PROFILES['strict']) def extract(self, text: str) -> str: from inscriptis import get_text from readability import Document as _Document parsed_doc = _Document(text, min_text_length=self.min_text_length, min_text_score=self.min_text_score) clean_html = parsed_doc.summary(html_partial=True) text = get_text(clean_html, self._parser_config).strip() return self.regex_excessive_lines.sub(self.new_line_chars, text) # File: datatrove-main/src/datatrove/pipeline/extractors/trafilatura.py from .base import BaseExtractor class Trafilatura(BaseExtractor): name = '⛏ Trafilatura' _requires_dependencies = ['trafilatura'] def __init__(self, favour_precision: bool=True, include_images: bool=False, timeout: float=0.1, deduplicate: bool=True, **kwargs): super().__init__(timeout) self.favour_precision = favour_precision self.include_images = include_images self.deduplicate = deduplicate self.kwargs = kwargs if self.include_images: raise NotImplementedError def extract(self, text: str) -> str: from trafilatura import extract return extract(text, favor_precision=self.favour_precision, include_comments=False, deduplicate=self.deduplicate, **self.kwargs) # File: datatrove-main/src/datatrove/pipeline/filters/__init__.py from .c4_filters import C4BadWordsFilter, C4ParagraphFilter, C4QualityFilter from .fasttext_filter import FastTextClassifierFilter from .fineweb_quality_filter import FineWebQualityFilter from .gopher_quality_filter import GopherQualityFilter from .gopher_repetition_filter import GopherRepetitionFilter from .lambda_filter import LambdaFilter from .language_filter import LanguageFilter from .regex_filter import RegexFilter from .sampler_filter import SamplerFilter from .unigram_log_probs import UnigramLogProbFilter from .url_filter import URLFilter # File: datatrove-main/src/datatrove/pipeline/filters/base_filter.py import contextlib from abc import ABC, abstractmethod from typing import List, Tuple from loguru import logger from datatrove.data import Document, DocumentsPipeline from datatrove.pipeline.base import PipelineStep from datatrove.pipeline.writers.disk_base import DiskWriter from datatrove.utils.batching import batched from datatrove.utils.typeshelper import StatHints def get_filter_result(res): (result, reason) = (res, None) if isinstance(result, tuple): (result, reason) = res return (result, reason) class BaseFilter(PipelineStep, ABC): type = '🔻 - FILTER' def __init__(self, exclusion_writer: DiskWriter=None, batch_size: int=1): super().__init__() self.exclusion_writer = exclusion_writer self.batch_size = batch_size if self.batch_size > 1 and type(self).filter_batch == BaseFilter.filter_batch: logger.warning(f'batch_size={batch_size!r} > 1 but {self} does not implement a custom filter_batch method.') @abstractmethod def filter(self, doc: Document) -> bool | Tuple[bool, str]: raise NotImplementedError def filter_batch(self, batch: List[Document]) -> List[bool | Tuple[bool, str]]: return list(map(self.filter, batch)) def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline: with self.exclusion_writer if self.exclusion_writer else contextlib.nullcontext() as writer: for batch in batched(data, self.batch_size): if self.batch_size > 1: self.stat_update('batches') with self.track_time('batch' if self.batch_size > 1 else None): batch_filter_result = self.filter_batch(batch) for (doc, doc_filter_result) in zip(batch, batch_filter_result): self.stat_update(StatHints.total) (filter_result, reason) = get_filter_result(doc_filter_result) if filter_result: self.stat_update(StatHints.forwarded) self.update_doc_stats(doc) yield doc else: self.stat_update(StatHints.dropped) if reason: self.stat_update(f'dropped_{reason}') if self.exclusion_writer: if reason: doc.metadata['filter_reason'] = reason writer.write(doc, rank) # File: datatrove-main/src/datatrove/pipeline/filters/c4_filters.py import heapq import re from numpy.random import default_rng from datatrove.data import Document from datatrove.io import cached_asset_path_or_download from datatrove.pipeline.filters.base_filter import BaseFilter from datatrove.pipeline.writers.disk_base import DiskWriter from datatrove.utils.typeshelper import Languages from datatrove.utils.word_tokenizers import load_word_tokenizer CITATION_REGEX = re.compile('\\[\\d*]|\\[edit]|\\[citation needed]') END_PUNCTUATION = ('.', '?', '!', '"', "'") ELLIPSIS = '...' POLICY_SUBSTRINGS = ['terms of use', 'privacy policy', 'cookie policy', 'uses cookies', 'use of cookies', 'use cookies'] class C4QualityFilter(BaseFilter): name = '⛰ C4 Quality' def __init__(self, exclusion_writer: DiskWriter=None, split_paragraph: bool=True, remove_citations: bool=True, filter_no_terminal_punct: bool=True, min_num_sentences: int=5, min_words_per_line: int=3, max_word_length: int=1000, filter_lorem_ipsum: bool=True, filter_javascript: bool=True, filter_curly_bracket: bool=True, filter_policy: bool=True, language: str=Languages.english): super().__init__(exclusion_writer) self.split_paragraph = split_paragraph self.remove_citations = remove_citations self.filter_no_terminal_punct = filter_no_terminal_punct self.min_num_sentences = min_num_sentences self.min_words_per_line = min_words_per_line self.max_word_length = max_word_length self.filter_lorem_ipsum = filter_lorem_ipsum self.filter_javascript = filter_javascript self.filter_curly_bracket = filter_curly_bracket self.filter_policy = filter_policy self.tokenizer = load_word_tokenizer(language) def filter(self, doc: Document) -> bool | tuple[bool, str]: lines = doc.text.splitlines() if self.split_paragraph else self.tokenizer.sent_tokenize(doc.text) num_sentences = 0 kept_lines = [] for line in lines: line = line.strip() words = line.split() self.stat_update('line-total') if self.max_word_length != -1 and any((len(word) > self.max_word_length for word in words)): self.stat_update('line-filter-too_long_word') continue if self.remove_citations: line = CITATION_REGEX.sub('', line) if self.filter_no_terminal_punct and (not line.endswith(END_PUNCTUATION) or line.endswith(ELLIPSIS)): self.stat_update('line-filter-no_terminal_punc') continue if len(words) < self.min_words_per_line: self.stat_update('line-filter-too_few_words') continue line_l = line.lower() if self.filter_lorem_ipsum and 'lorem ipsum' in line_l: return (False, 'lorem_ipsum') if self.filter_javascript and 'javascript' in line_l: self.stat_update('line-filter-javascript') continue if self.filter_curly_bracket and '{' in line: return (False, 'curly_bracket') if self.filter_policy and any((p in line_l for p in POLICY_SUBSTRINGS)): self.stat_update('line-filter-policy') continue if self.min_num_sentences != -1: num_sentences += len(self.tokenizer.sent_tokenize(line)) if self.split_paragraph else 1 kept_lines.append(line) self.stat_update('line-kept') if num_sentences < self.min_num_sentences: return (False, 'too_few_sentences') doc.text = ('\n' if self.split_paragraph else ' ').join(kept_lines).strip() return True class C4ParagraphFilter(BaseFilter): name = '⛰ C4 Paragraph' def __init__(self, exclusion_writer: DiskWriter=None): super().__init__(exclusion_writer) self.min_paragraphs = 3 self.min_paragraph_len = 200 self.line_delimiter = '\n' def paragraph_filter(self, page): lines = page.split(self.line_delimiter) if len(lines) < self.min_paragraphs or min(heapq.nlargest(3, [len(line) for line in lines])) < self.min_paragraph_len: return False return True def filter(self, doc: Document) -> bool | tuple[bool, str]: if not self.paragraph_filter(doc.text): return (False, f'< {self.min_paragraphs} paragraphs') return True _EN_BADWORDS_URL = 'https://raw.githubusercontent.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words/25e679f03d96baa721cde20db9944649e8d0a844/en' _BADWORDS_URL = 'https://raw.githubusercontent.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words/5faf2ba42d7b1c0977169ec3611df25a3c08eb13/' _BADWORDS_LANGS = ['ar', 'cs', 'da', 'de', 'en', 'eo', 'es', 'fa', 'fi', 'fil', 'fr', 'fr-CA-u-sd-caqc', 'hi', 'hu', 'it', 'ja', 'kab', 'ko', 'nl', 'no', 'pl', 'pt', 'ru', 'sv', 'th', 'tlh', 'tr', 'zh'] _BADWORDS_ALLOWLIST = {'ja': {'sm', 'グロ', '女の子'}, 'zh': {'性'}} class C4BadWordsFilter(BaseFilter): name = '⛰ C4 Badwords' def __init__(self, keep_fraction: float=0.0, fail_on_missing_language: bool=True, seed: int=None, default_language: str='en', exclusion_writer: DiskWriter=None): super().__init__(exclusion_writer) self.keep_fraction = keep_fraction self.fail_on_missing_language = fail_on_missing_language self._badwords_regex: dict[str, re.Pattern] = {} self.uniform = default_rng(seed).uniform self.default_language = default_language def _get_badwords(self, lang: str): if lang not in self._badwords_regex: if lang not in _BADWORDS_LANGS: if self.fail_on_missing_language: raise ValueError(f'There is not badwords list available for "{lang}". Set fail_on_missing_language=False to continue anyway.') else: return None local_path = cached_asset_path_or_download(_BADWORDS_URL + lang if lang != 'en' else _EN_BADWORDS_URL, namespace='filters', subfolder='c4_badwords') badwords: set[str] = set() with open(local_path, 'rt') as f: badwords.update((line.strip() for line in f)) for (lang, allowlist) in _BADWORDS_ALLOWLIST.items(): badwords -= allowlist words = [re.escape(w) for w in badwords] self._badwords_regex[lang] = re.compile('|'.join(words)) if lang in ('ja', 'th', 'zh') else re.compile('(?:\\W|^)({})(?:\\W|$)'.format('|'.join(words))) return self._badwords_regex[lang] def filter(self, doc: Document) -> bool | tuple[bool, str]: lang: str = doc.metadata.get('language', self.default_language) badwords_regex = self._get_badwords(lang) if badwords_regex is None: self.stat_update('missing_badwords_lang', f'missing_badwords_lang_{lang}') return True badwords_found = badwords_regex.search(doc.text.lower()) if badwords_found is not None: self.stat_update('documents_with_badwords', f'documents_with_badwords_{lang}') if self.keep_fraction > 0.0 and self.uniform() < self.keep_fraction: self.stat_update('document_kept_with_badwords', f'document_kept_with_badwords_{lang}') return True self.stat_update(f'document_removed_with_badwords_{lang}') return (False, 'document_removed_with_badwords') return True # File: datatrove-main/src/datatrove/pipeline/filters/fasttext_filter.py from collections import defaultdict from typing import Tuple import numpy as np from datatrove.data import Document from datatrove.io import cached_asset_path_or_download from datatrove.pipeline.filters.base_filter import BaseFilter from datatrove.pipeline.writers.disk_base import DiskWriter from datatrove.utils.text import SPLIT_TEXT_DOCUMENTS, split_into_parts class FastTextClassifierFilter(BaseFilter): name = '🤖 fastText' _requires_dependencies = [('fasttext', 'fasttext-wheel'), 'fasteners'] def __init__(self, model_url: str, keep_labels: Tuple[str, float] | list[Tuple[str, float]] | None=None, remove_labels: Tuple[str, float] | list[Tuple[str, float]] | None=None, save_labels_in_metadata: bool=True, exclusion_writer: DiskWriter | None=None, newline_replacement='', filter_mode: str=SPLIT_TEXT_DOCUMENTS): super().__init__(exclusion_writer) self.model_url = model_url self.keep_labels = keep_labels self.remove_labels = remove_labels self.filter_mode = filter_mode if keep_labels and remove_labels: raise ValueError('You can only supply one of `keep_labels` or `remove_labels`.') self.newline_replacement = newline_replacement if keep_labels and isinstance(keep_labels[0], str): self.keep_labels = [keep_labels] if remove_labels and isinstance(remove_labels[0], str): self.remove_labels = [remove_labels] self.save_labels_in_metadata = save_labels_in_metadata self._model = None @property def model(self): if self._model is None: from fasttext.FastText import _FastText model_file = cached_asset_path_or_download(self.model_url, namespace='filters', subfolder='fasttext', desc='fast-text model') self._model = _FastText(model_file) available_labels = [x.removeprefix('__label__') for x in self._model.labels] for (label, _) in self.keep_labels or [] + self.remove_labels or []: if label not in available_labels: raise ValueError(f"Label '{label}' passed as keep_labels or remove_labels is not available in this FastText model. Available labels: {available_labels}") return self._model def filter(self, doc: Document) -> bool: def check_label_scores(unit_scores): if self.keep_labels: return any((unit_scores.get(f'__label__{label}', -9000000000.0) >= min_score for (label, min_score) in self.keep_labels)) else: return not self.remove_labels or not any((unit_scores.get(f'__label__{label}', -9000000000.0) >= min_score for (label, min_score) in self.remove_labels)) units = split_into_parts(doc.text, mode=self.filter_mode) kept_spans = [] label_scores = defaultdict(list) for unit in units: (labels, scores) = self.model.predict(unit.strip().replace('\n', self.newline_replacement), k=-1) if self.save_labels_in_metadata: for (label, score) in zip(labels, scores): label_scores[label].append(score) if check_label_scores(dict(zip(labels, scores))): kept_spans.append(unit) self.stat_update('kept_span') else: self.stat_update('removed_span') doc.text = ''.join(kept_spans) if self.save_labels_in_metadata: doc.metadata.update({label: np.mean(scores).item() for (label, scores) in label_scores.items()}) return not not doc.text.strip() # File: datatrove-main/src/datatrove/pipeline/filters/fineweb_quality_filter.py from datatrove.pipeline.filters.base_filter import BaseFilter from datatrove.pipeline.filters.gopher_repetition_filter import find_duplicates from datatrove.pipeline.writers.disk_base import DiskWriter from datatrove.utils.typeshelper import Languages from datatrove.utils.word_tokenizers import load_word_tokenizer class FineWebQualityFilter(BaseFilter): name = '🍷 FineWeb Quality' def __init__(self, exclusion_writer: DiskWriter=None, line_punct_thr: float=0.12, line_punct_exclude_zero: bool=False, short_line_thr: float=0.67, short_line_length: int=30, char_duplicates_ratio: float=0.01, new_line_ratio: float=0.3, language: str=Languages.english): super().__init__(exclusion_writer) self.line_punct_thr = line_punct_thr self.line_punct_exclude_zero = line_punct_exclude_zero self.short_line_threshold = short_line_thr self.short_line_length = short_line_length self.char_duplicates_ratio = char_duplicates_ratio self.new_line_ratio = new_line_ratio self.tokenizer = load_word_tokenizer(language) def filter(self, doc) -> bool | tuple[bool, str]: stop_chars = ('.', "'", '"', '!', '?') lines = doc.text.split('\n') ratio = sum((1 for line in lines if line.endswith(stop_chars))) / len(lines) if ratio <= self.line_punct_thr and (not (ratio == 0 and self.line_punct_exclude_zero)): return (False, 'line_punct_ratio') ratio = sum((1 for line in lines if len(line) <= self.short_line_length)) / len(lines) if ratio >= self.short_line_threshold: return (False, 'short_line_ratio') non_empty_lines = [line for line in lines if line.strip() != ''] ratio = find_duplicates(non_empty_lines)[1] / len(doc.text.replace('\n', '')) if ratio >= self.char_duplicates_ratio: return (False, 'char_dup_ratio') words = self.tokenizer.word_tokenize(doc.text) new_line = doc.text.count('\n') if new_line / len(words) > self.new_line_ratio: return (False, 'list_ratio') return True # File: datatrove-main/src/datatrove/pipeline/filters/gopher_quality_filter.py import numpy as np from datatrove.data import Document from datatrove.pipeline.filters.base_filter import BaseFilter from datatrove.pipeline.writers.disk_base import DiskWriter from datatrove.utils.text import PUNCTUATION_SET from datatrove.utils.typeshelper import Languages from datatrove.utils.word_tokenizers import load_word_tokenizer STOP_WORDS = ['the', 'be', 'to', 'of', 'and', 'that', 'have', 'with'] class GopherQualityFilter(BaseFilter): name = '🥇 Gopher Quality' def __init__(self, min_doc_words: int | None=50, max_doc_words: int | None=100000, min_avg_word_length: int | None=3, max_avg_word_length: int | None=10, max_symbol_word_ratio: float | None=0.1, max_bullet_lines_ratio: float | None=0.9, max_ellipsis_lines_ratio: float | None=0.3, max_non_alpha_words_ratio: float | None=0.8, min_stop_words: int | None=2, stop_words: list[str] | None=None, exclusion_writer: DiskWriter=None, language: str=Languages.english): super().__init__(exclusion_writer) self.min_doc_words = min_doc_words self.max_doc_words = max_doc_words self.min_avg_word_length = min_avg_word_length self.max_avg_word_length = max_avg_word_length self.max_symbol_word_ratio = max_symbol_word_ratio self.max_bullet_lines_ratio = max_bullet_lines_ratio self.max_ellipsis_lines_ratio = max_ellipsis_lines_ratio self.max_non_alpha_words_ratio = max_non_alpha_words_ratio self.min_stop_words = min_stop_words self.stop_words = set(STOP_WORDS if stop_words is None else stop_words) self.tokenizer = load_word_tokenizer(language) def filter(self, doc: Document) -> bool | tuple[bool, str]: text = doc.text words = self.tokenizer.word_tokenize(text) n_words = len(words) non_symbol_words = [w for w in words if any((ch not in PUNCTUATION_SET for ch in w))] n_non_symbol_words_words = len(non_symbol_words) if self.min_doc_words and n_non_symbol_words_words < self.min_doc_words: return (False, 'gopher_short_doc') if self.max_doc_words and n_non_symbol_words_words > self.max_doc_words: return (False, 'gopher_long_doc') avg_n_words = np.mean([len(w) for w in non_symbol_words]) if self.min_avg_word_length and avg_n_words < self.min_avg_word_length: return (False, 'gopher_below_avg_threshold') if self.max_avg_word_length and avg_n_words > self.max_avg_word_length: return (False, 'gopher_above_avg_threshold') if self.max_symbol_word_ratio and text.count('#') / n_words > self.max_symbol_word_ratio: return (False, 'gopher_too_many_hashes') if self.max_symbol_word_ratio and (text.count('...') + text.count('…')) / n_words > self.max_symbol_word_ratio: return (False, 'gopher_too_many_ellipsis') lines = text.splitlines() if self.max_bullet_lines_ratio and sum((s.lstrip().startswith('•') or s.lstrip().startswith('-') for s in lines)) / len(lines) > self.max_bullet_lines_ratio: return (False, 'gopher_too_many_bullets') if self.max_ellipsis_lines_ratio and sum((s.rstrip().endswith('...') or s.rstrip().endswith('…') for s in lines)) / len(lines) > self.max_ellipsis_lines_ratio: return (False, 'gopher_too_many_end_ellipsis') if self.max_non_alpha_words_ratio and sum([any((c.isalpha() for c in w)) for w in words]) / n_words < self.max_non_alpha_words_ratio: return (False, 'gopher_below_alpha_threshold') if self.min_stop_words and sum((w in self.stop_words for w in words)) < self.min_stop_words: return (False, 'gopher_enough_stop_words') return True # File: datatrove-main/src/datatrove/pipeline/filters/gopher_repetition_filter.py import re from collections import Counter from datatrove.data import Document from datatrove.pipeline.filters.base_filter import BaseFilter from datatrove.pipeline.writers.disk_base import DiskWriter from datatrove.utils.typeshelper import Languages from datatrove.utils.word_tokenizers import load_word_tokenizer '' def get_n_grams(words: list[str], n: int) -> list[str]: return [' '.join(words[i:i + n]) for i in range(len(words) - n + 1)] def find_duplicates(x: list[str]) -> tuple[int, int]: unique_x = set() duplicate_chars = 0 duplicate_elements = 0 for element in x: if element in unique_x: duplicate_chars += len(element) duplicate_elements += 1 else: unique_x.add(element) return (duplicate_elements, duplicate_chars) def find_top_duplicate(x: list[str]) -> int: counter = Counter() for element in x: counter[element] += 1 top_n_gram = counter.most_common(1)[0] return len(top_n_gram[0]) * top_n_gram[1] def find_all_duplicate(words: list[str], n: int) -> int: n_words = len(words) unique = set() (repeated_chars, idx) = (0, 0) while idx < n_words - n + 1: n_gram = ''.join(words[idx:idx + n]) if n_gram in unique: repeated_chars += len(n_gram) idx += n else: unique.add(n_gram) idx += 1 assert repeated_chars <= len(''.join(words)) return repeated_chars class GopherRepetitionFilter(BaseFilter): name = '👯 Gopher Repetition' def __init__(self, dup_line_frac: float | None=0.3, dup_para_frac: float | None=0.3, dup_line_char_frac: float | None=0.2, dup_para_char_frac: float | None=0.2, top_n_grams: tuple[tuple[int, float]]=((2, 0.2), (3, 0.18), (4, 0.16)), dup_n_grams: tuple[tuple[int, float]]=((5, 0.15), (6, 0.14), (7, 0.13), (8, 0.12), (9, 0.11), (10, 0.1)), exclusion_writer: DiskWriter=None, language: str=Languages.english): super().__init__(exclusion_writer) self.dup_line_frac = dup_line_frac self.dup_para_frac = dup_para_frac self.dup_line_char_frac = dup_line_char_frac self.dup_para_char_frac = dup_para_char_frac self.top_n_grams = top_n_grams self.dup_n_grams = dup_n_grams self.paragraph_exp = re.compile('\\n{2,}') self._line_splitter = re.compile('\n+') self.tokenizer = load_word_tokenizer(language) def filter(self, doc: Document) -> bool | tuple[bool, str]: text = doc.text paragraphs = self.paragraph_exp.split(text.strip()) (paragraphs_duplicates, char_duplicates) = find_duplicates(paragraphs) if self.dup_para_frac and paragraphs_duplicates / len(paragraphs) > self.dup_para_frac: return (False, 'dup_para_frac') if self.dup_para_char_frac and char_duplicates / len(text) > self.dup_para_char_frac: return (False, 'dup_para_char_frac') lines = self._line_splitter.split(text) (line_duplicates, char_duplicates) = find_duplicates(lines) if self.dup_line_frac and line_duplicates / len(lines) > self.dup_line_frac: return (False, 'dup_line_frac') if self.dup_line_char_frac and char_duplicates / len(text) > self.dup_line_char_frac: return (False, 'dup_line_char_frac') words = self.tokenizer.word_tokenize(text) for (n, n_frac) in self.top_n_grams: n_grams = get_n_grams(words, n) if not n_grams: continue top_char_length = find_top_duplicate(n_grams) if top_char_length / len(text) > n_frac: return (False, f'top_{n}_gram') for (n, n_frac) in self.dup_n_grams: n_duplicates_char = find_all_duplicate(words, n) if n_duplicates_char / len(text) > n_frac: return (False, f'duplicated_{n}_n_grams') return True # File: datatrove-main/src/datatrove/pipeline/filters/lambda_filter.py from typing import Callable from datatrove.data import Document from datatrove.pipeline.filters.base_filter import BaseFilter from datatrove.pipeline.writers.disk_base import DiskWriter class LambdaFilter(BaseFilter): name = '👤 Lambda' def __init__(self, filter_function: Callable[[Document], bool], exclusion_writer: DiskWriter=None): super().__init__(exclusion_writer) self.filter_function = filter_function def filter(self, doc: Document) -> bool: return self.filter_function(doc) # File: datatrove-main/src/datatrove/pipeline/filters/language_filter.py from typing import Literal from datatrove.data import Document from datatrove.pipeline.filters.base_filter import BaseFilter from datatrove.pipeline.writers.disk_base import DiskWriter from datatrove.utils.lid import FT176LID, GlotLID class LanguageFilter(BaseFilter): name = '🌍 Language ID' _requires_dependencies = [('fasttext', 'fasttext-wheel'), 'fasteners'] def __init__(self, languages: list[str] | str | None=None, language_threshold: float=0.65, exclusion_writer: DiskWriter=None, backend: Literal['ft176', 'glotlid']='ft176', label_only: bool=False, keep_top_pairs_threshold: float=-1): super().__init__(exclusion_writer) self.language_threshold = language_threshold if isinstance(languages, str): languages = list(languages) self.languages = languages self.backend = backend self.model = FT176LID(languages) if backend == 'ft176' else GlotLID(languages) self.label_only = label_only self.keep_top_pairs_threshold = keep_top_pairs_threshold def filter(self, doc: Document) -> bool: (best_lang_pair, lang_pairs) = self.model.predict(doc) (lang, lang_score) = best_lang_pair if self.backend == 'glotlid': (lang, script) = lang.split('_') doc.metadata['language_script'] = script doc.metadata['language'] = lang doc.metadata['language_score'] = lang_score if self.keep_top_pairs_threshold != -1: for (key, value) in lang_pairs.items(): if value > self.keep_top_pairs_threshold: doc.metadata[f'top_language_{key}_score'] = value return self.label_only or (self.languages and any((score > self.language_threshold for score in lang_pairs.values()))) or (self.languages is None and lang_score > self.language_threshold) # File: datatrove-main/src/datatrove/pipeline/filters/regex_filter.py import re from datatrove.data import Document from datatrove.pipeline.filters.base_filter import BaseFilter from datatrove.pipeline.writers.disk_base import DiskWriter class RegexFilter(BaseFilter): name = '🕵 Regex' def __init__(self, regex_exp: str, exclusion_writer: DiskWriter=None): super().__init__(exclusion_writer) self.regex = re.compile(regex_exp) def filter(self, doc: Document) -> bool: return not self.regex.search(doc.text) # File: datatrove-main/src/datatrove/pipeline/filters/sampler_filter.py from numpy.random import default_rng from datatrove.data import Document from datatrove.pipeline.filters.base_filter import BaseFilter from datatrove.pipeline.writers.disk_base import DiskWriter class SamplerFilter(BaseFilter): name = '🎲 Sampler' def __init__(self, rate: float | None=0.5, seed: int=None, exclusion_writer: DiskWriter=None): """""" super().__init__(exclusion_writer) self.rate = rate self.uniform = default_rng(seed).uniform def filter(self, doc: Document) -> bool | tuple[bool, str]: return self.uniform() < self.rate # File: datatrove-main/src/datatrove/pipeline/filters/unigram_log_probs.py import csv import os import urllib.request import numpy as np from huggingface_hub import cached_assets_path from datatrove.data import Document from datatrove.pipeline.filters.base_filter import BaseFilter from datatrove.pipeline.writers.disk_base import DiskWriter from datatrove.utils.logging import logger from datatrove.utils.typeshelper import Languages from datatrove.utils.word_tokenizers import load_word_tokenizer UNIGRAM_DOWNLOAD = 'https://ai2-s2-research-public.s3-us-west-2.amazonaws.com/lucas/google-1T-unigram/unigram_freq.csv' class UnigramLogProbFilter(BaseFilter): name = '🧑\u200d🍳 Unigram log-prob filter' def __init__(self, logprobs_threshold: float=-10, exclusion_writer: DiskWriter=None, language: str=Languages.english): super().__init__(exclusion_writer) self.logprobs_threshold = logprobs_threshold self.unigram_frequencies = self.get_frequencies() self.tokenizer = load_word_tokenizer(language) def get_frequencies(self): download_dir = cached_assets_path(library_name='datatrove', namespace='filters', subfolder='unigram_logprob_filter') unigram_freq_file = os.path.join(download_dir, 'unigram_freq.csv') if not os.path.isfile(unigram_freq_file): logger.info('⬇️ Downloading unigram-frequencies ...') urllib.request.urlretrieve(UNIGRAM_DOWNLOAD, unigram_freq_file) words = [] counts = [] with open(unigram_freq_file, encoding='utf-8', newline='') as f: csv_reader = csv.DictReader(f) for row in csv_reader: words.append(row['word']) counts.append(int(row['count'])) total_count = sum(counts) return {word: count / total_count for (word, count) in zip(words, counts)} def get_logprob(self, doc): words = self.tokenizer.word_tokenize(doc.text) freqs = [self.unigram_frequencies.get(word.lower(), 1e-09) for word in words] if len(freqs) == 0: return 0 return sum([np.log(f) for f in freqs]) / len(freqs) def filter(self, doc: Document) -> bool: return self.get_logprob(doc) > self.logprobs_threshold # File: datatrove-main/src/datatrove/pipeline/filters/url_filter.py import os import re import tarfile from typing import Iterable from huggingface_hub import cached_assets_path from datatrove.data import Document from datatrove.io import safely_create_file from datatrove.utils._import_utils import ASSETS_PATH from datatrove.utils.logging import logger from ..writers.disk_base import DiskWriter from .base_filter import BaseFilter normalizer = re.compile('[^a-zA-Z0-9]+') def normalize(text, replace=''): return normalizer.sub(replace, text).lower() def parse_list(line, do_normalize=True): return {normalize(x) if do_normalize else x.strip() for x in line if x[0] != '#'} def get_list(abs_path: str, file_name: str, extra: set, do_normalize: bool=True): with open(os.path.join(abs_path, file_name)) as f: return parse_list(f, do_normalize).union(extra) class URLFilter(BaseFilter): name = '😈 Url-filter' _requires_dependencies = ['tldextract', 'fasteners', ('ahocorasick', 'pyahocorasick')] def __init__(self, soft_word_threshold: int=2, extra_domains: Iterable=None, extra_urls: Iterable=None, banned_words: Iterable=None, banned_subwords: Iterable=None, soft_banned_words: Iterable=None, use_integrated_lists: bool=True, exclusion_writer: DiskWriter=None): import ahocorasick from tldextract import TLDExtract super().__init__(exclusion_writer) self.soft_word_threshold = soft_word_threshold self.block_listed_domains = parse_list(extra_domains, do_normalize=False) if extra_domains else set() self.block_listed_url = parse_list(extra_urls, do_normalize=False) if extra_urls else set() self.banned_words = parse_list(banned_words) if banned_words else set() self.banned_subwords = parse_list(banned_subwords) if banned_subwords else set() self.soft_banned_words = parse_list(soft_banned_words) if soft_banned_words else set() self.use_integrated_lists = use_integrated_lists self._downloaded = False self.tldextractor = TLDExtract() self.banned_subwords_automaton = ahocorasick.Automaton(ahocorasick.STORE_INTS) for word in self.banned_subwords: self.banned_subwords_automaton.add_word(word, len(self.banned_subwords_automaton)) if not self.use_integrated_lists: self.banned_subwords_automaton.make_automaton() def download_data(self): if self._downloaded or not self.use_integrated_lists: return download_dir = cached_assets_path(library_name='datatrove', namespace='filters', subfolder='url_filter') file_to_lock = os.path.join(download_dir, 'url_filterblacklists.tar.gz') def do_extract(): logger.info('💥 Extracting url filter blacklists...') with tarfile.open(os.path.join(ASSETS_PATH, 'url_filterblacklists.tar.gz'), 'r:gz') as tar: tar.extractall(download_dir) logger.info('💥 Extracted url filter blacklists.') safely_create_file(file_to_lock, do_extract) self.block_listed_domains = get_list(download_dir, 'adult/domains', self.block_listed_domains, do_normalize=False) self.block_listed_url = get_list(download_dir, 'adult/urls', self.block_listed_url, do_normalize=False) self.banned_words = get_list(ASSETS_PATH, 'banned_words.txt', self.banned_words) self.banned_subwords = get_list(ASSETS_PATH, 'banned_subwords.txt', self.banned_subwords) self.soft_banned_words = get_list(ASSETS_PATH, 'soft_banned_words.txt', self.soft_banned_words) for word in self.banned_subwords: self.banned_subwords_automaton.add_word(word, len(self.banned_subwords_automaton)) self.banned_subwords_automaton.make_automaton() self._downloaded = True def filter(self, document: Document) -> bool | tuple[bool, str]: self.download_data() url = document.metadata.get('url') assert url, 'Document does not have url in its metadata' url_info = self.tldextractor(url) if url_info.registered_domain in self.block_listed_domains: return (False, 'domain') if url_info.fqdn in self.block_listed_domains: return (False, 'subdomain') if url in self.block_listed_url: return (False, 'url') url_words = set(normalizer.split(url)) if any((word in url_words for word in self.banned_words)): return (False, 'hard_blacklisted') nb_soft_words = sum([word in url_words for word in self.soft_banned_words]) if nb_soft_words >= self.soft_word_threshold: return (False, 'soft_blacklisted') normalized_space = normalize(url) if self.banned_subwords and next(self.banned_subwords_automaton.iter(normalized_space), False): return (False, 'blacklisted_subword') return True # File: datatrove-main/src/datatrove/pipeline/formatters/base.py from abc import ABC, abstractmethod from datatrove.data import DocumentsPipeline from datatrove.pipeline.base import PipelineStep from datatrove.utils.typeshelper import StatHints class BaseFormatter(PipelineStep, ABC): type = '✂️ - FORMAT' def __init__(self): super().__init__() @abstractmethod def format(self, text: str) -> str: return text def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline: for doc in data: self.stat_update(StatHints.total) with self.track_time(): doc.text = self.format(doc.text) yield doc # File: datatrove-main/src/datatrove/pipeline/formatters/pii.py import ipaddress import re from functools import partial from typing import Callable from datatrove.pipeline.formatters.base import BaseFormatter class PIIReplacer: def __init__(self, regex: str, replacements: tuple[str, ...] | str, validator: Callable[[str], bool] | None=None): self.regex: re.Pattern = re.compile(regex) self.replacements = replacements if type(replacements) is tuple else tuple(replacements) if not isinstance(replacements, str) else (replacements,) self.validator = validator self._replace_i = 0 def replace(self, text: str): def get_replacement(matchobj): if self.validator and (not self.validator(matchobj.group(0))): return matchobj.group(0) replacement = self.replacements[self._replace_i] self._replace_i = (self._replace_i + 1) % len(self.replacements) return replacement return self.regex.sub(get_replacement, text) def public_ip_validator(ip, public_only: bool=True) -> bool: try: ip = ipaddress.ip_address(ip) return not public_only or ip.is_global except ValueError: return False class PIIFormatter(BaseFormatter): name = '📞 PII' def __init__(self, remove_emails: bool=True, remove_ips: bool=True, only_remove_public_ips: bool=True, email_replacement: tuple[str, ...] | str=('email@example.com', 'firstname.lastname@example.org'), ip_replacement: tuple[str, ...] | str=('22.214.171.124', '126.96.36.199', '188.8.131.52', '184.108.40.206', '220.127.116.11', '18.104.22.168')): super().__init__() self.remove_emails = remove_emails self.remove_ips = remove_ips self.emails_replacer = PIIReplacer("\\b[A-Za-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\\.[A-Za-z0-9!#$%&'*+/=?^_`{|}~-]+)*@(?:(?:[A-Za-z0-9](?:[A-Za-z0-9-]*[A-Za-z0-9])?\\.)+[A-Za-z0-9](?:[A-Za-z0-9-]*[A-Za-z0-9])?|\\[(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?|[A-Za-z0-9-]*[A-Za-z0-9]:)])", email_replacement) self.ip_replacer = PIIReplacer('(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)', validator=partial(public_ip_validator, public_only=only_remove_public_ips), replacements=ip_replacement) def format(self, text: str) -> str: if self.remove_emails: text = self.emails_replacer.replace(text) if self.remove_ips: text = self.ip_replacer.replace(text) return text # File: datatrove-main/src/datatrove/pipeline/formatters/symbol_lines_remover.py from ...utils.text import PUNCTUATION_SET from .base import BaseFormatter class SymbolLinesFormatter(BaseFormatter): name = ' ⚞ Symbol Lines Remover' def __init__(self, replace_char: str=''): super().__init__() self.replace_char = replace_char def format(self, text: str) -> str: formatted = [] in_removed_span = False for line in text.splitlines(): chars_line = line.strip() != '' and all((c in PUNCTUATION_SET or c == ' ' for c in line)) if chars_line and (not in_removed_span): if self.replace_char: formatted.append(self.replace_char) in_removed_span = True elif not chars_line: formatted.append(line) in_removed_span = False return '\n'.join(formatted) # File: datatrove-main/src/datatrove/pipeline/readers/base.py import random from abc import abstractmethod from types import MethodType from typing import Callable from tqdm import tqdm from datatrove.data import Document, DocumentsPipeline from datatrove.io import DataFileLike, DataFolderLike, get_datafolder, get_shard_from_paths_file from datatrove.pipeline.base import PipelineStep from datatrove.utils.logging import logger class BaseReader(PipelineStep): type = '📖 - READER' def __init__(self, limit: int=-1, skip: int=0, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None): super().__init__() self.limit = limit self.skip = skip self.text_key = text_key self.id_key = id_key self.adapter = MethodType(adapter, self) if adapter else self._default_adapter self._empty_warning = False self.default_metadata = default_metadata def _default_adapter(self, data: dict, path: str, id_in_file: int | str): return {'text': data.pop(self.text_key, ''), 'id': data.pop(self.id_key, f'{path}/{id_in_file}'), 'media': data.pop('media', []), 'metadata': data.pop('metadata', {}) | data} def get_document_from_dict(self, data: dict, source_file: str, id_in_file: int | str): parsed_data = self.adapter(data, source_file, id_in_file) if not parsed_data.get('text', None): if not self._empty_warning: self._empty_warning = True logger.warning(f'Found document without text, skipping. Is your `text_key` ("{self.text_key}") correct? Available keys: {list(data.keys())}') return None document = Document(**parsed_data) if self.default_metadata: document.metadata = self.default_metadata | document.metadata return document @abstractmethod def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1) -> DocumentsPipeline: raise NotImplementedError class BaseDiskReader(BaseReader): type = '📖 - READER' def __init__(self, data_folder: DataFolderLike, paths_file: DataFileLike | None=None, limit: int=-1, skip: int=0, file_progress: bool=False, doc_progress: bool=False, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None, recursive: bool=True, glob_pattern: str | None=None, shuffle_files: bool=False): super().__init__(limit, skip, adapter, text_key, id_key, default_metadata) self.data_folder = get_datafolder(data_folder) self.paths_file = paths_file self.recursive = recursive self.glob_pattern = glob_pattern self.shuffle_files = shuffle_files self.file_progress = file_progress self.doc_progress = doc_progress def get_document_from_dict(self, data: dict, source_file: str, id_in_file: int): document = super().get_document_from_dict(data, source_file, id_in_file) if document: document.metadata.setdefault('file_path', self.data_folder.resolve_paths(source_file)) return document @abstractmethod def read_file(self, filepath: str) -> DocumentsPipeline: raise NotImplementedError def read_files_shard(self, shard: list[str]) -> DocumentsPipeline: li = 0 skipped = 0 with tqdm(total=self.limit if self.limit != -1 else None, desc='Document progress', unit='doc', disable=not self.doc_progress) as doc_pbar, tqdm(total=len(shard), desc='File progress', unit='file', disable=not self.file_progress) as file_pbar: for (i, filepath) in enumerate(shard): self.stat_update('input_files') logger.info(f'Reading input file {filepath}, {i + 1}/{len(shard)}') di = 0 ndocs = 0 for (di, document) in enumerate(self.read_file(filepath)): if skipped < self.skip: skipped += 1 continue if self.limit != -1 and li >= self.limit: break yield document doc_pbar.update() li += 1 ndocs += 1 file_pbar.update() self.stat_update('documents', value=ndocs, unit='input_file') if self.limit != -1 and li >= self.limit: break def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1) -> DocumentsPipeline: if data: yield from data files_shard = self.data_folder.get_shard(rank, world_size, recursive=self.recursive, glob_pattern=self.glob_pattern) if not self.paths_file else list(get_shard_from_paths_file(self.paths_file, rank, world_size)) if len(files_shard) == 0: if rank == 0: raise RuntimeError(f'No files found on {self.data_folder.path}!') logger.warning(f'No files found on {self.data_folder.path} for rank={rank!r}') if self.shuffle_files: random.shuffle(files_shard) for doc in self.read_files_shard(files_shard): self.update_doc_stats(doc) yield doc # File: datatrove-main/src/datatrove/pipeline/readers/csv.py import csv from typing import Callable, Literal from datatrove.io import DataFileLike, DataFolderLike from datatrove.pipeline.readers.base import BaseDiskReader class CsvReader(BaseDiskReader): name = '🔢 Csv' def __init__(self, data_folder: DataFolderLike, paths_file: DataFileLike | None=None, compression: Literal['infer', 'gzip', 'zstd'] | None='infer', limit: int=-1, skip: int=0, file_progress: bool=False, doc_progress: bool=False, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None, recursive: bool=True, glob_pattern: str | None=None, shuffle_files: bool=False): super().__init__(data_folder, paths_file, limit, skip, file_progress, doc_progress, adapter, text_key, id_key, default_metadata, recursive, glob_pattern, shuffle_files) self.compression = compression self.empty_warning = False def read_file(self, filepath: str): with self.data_folder.open(filepath, 'r', compression=self.compression) as f: csv_reader = csv.DictReader(f) for (di, d) in enumerate(csv_reader): with self.track_time(): document = self.get_document_from_dict(d, filepath, di) if not document: continue yield document CSVReader = CsvReader # File: datatrove-main/src/datatrove/pipeline/readers/huggingface.py import copy from typing import Callable from loguru import logger from tqdm import tqdm from datatrove.data import DocumentsPipeline from datatrove.pipeline.readers.base import BaseReader class HuggingFaceDatasetReader(BaseReader): name = '🤗 HuggingFace' _requires_dependencies = ['datasets'] def __init__(self, dataset: str, dataset_options: dict | None=None, streaming: bool=False, limit: int=-1, skip: int=0, batch_size: int=1000, doc_progress: bool=False, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None, shuffle_files: bool=False): super().__init__(limit, skip, adapter, text_key, id_key, default_metadata) self.dataset = dataset self.dataset_options = dataset_options or {} self.batch_size = batch_size self.doc_progress = doc_progress self.streaming = streaming self.shuffle_files = shuffle_files def get_document_from_dict(self, data: dict, source: str, id_in_file: int | str): document = super().get_document_from_dict(data, source, id_in_file) if document: document.metadata.setdefault('dataset', source) return document def _get_dataset_shard(self, dst, rank: int, world_size: int): from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node if isinstance(dst, Dataset): return dst.shard(world_size, rank, contiguous=True) elif isinstance(dst, IterableDataset) and dst.n_shards > 1: if rank >= dst.n_shards: logger.warning(f'Requested shard {rank} of a streaming dataset, but it only has {dst.n_shards} shards.') return None ex_iterable = dst._ex_iterable.shard_data_sources(rank, world_size) return IterableDataset(ex_iterable=ex_iterable, info=dst._info.copy(), split=dst._split, formatting=dst._formatting, shuffling=copy.deepcopy(dst._shuffling), distributed=copy.deepcopy(dst._distributed), token_per_repo_id=dst._token_per_repo_id) else: return split_dataset_by_node(dst, rank, world_size) def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1) -> DocumentsPipeline: from datasets import load_dataset if data: yield from data ds = load_dataset(self.dataset, **self.dataset_options, streaming=self.streaming) if self.shuffle_files: if not self.streaming: ds = ds.shuffle(seed=42) else: ds = ds.shuffle(seed=42, buffer_size=1000) if isinstance(ds, dict): raise ValueError(f"You forgot to specify the split of the dataset. Update your dataset_options to include 'split'. Available splits: {list(ds.keys())}") shard = self._get_dataset_shard(ds, rank, world_size) if not shard: return with tqdm(total=self.limit if self.limit != -1 else None, disable=not self.doc_progress) as pbar: li = 0 for batch in shard.iter(self.batch_size): if self.limit != -1 and li >= self.limit: break documents = [] with self.track_time('batch'): for line in (dict(zip(batch, t)) for t in zip(*batch.values())): if self.limit != -1 and li >= self.limit: break document = self.get_document_from_dict(line, self.dataset, f'{rank:05d}/{li}') if not document: continue documents.append(document) self.update_doc_stats(document) self.stat_update('documents') li += 1 pbar.update() yield from documents # File: datatrove-main/src/datatrove/pipeline/readers/ipc.py from typing import Callable from datatrove.io import DataFileLike, DataFolderLike from datatrove.pipeline.readers.base import BaseDiskReader class IpcReader(BaseDiskReader): name = '🪶 Ipc' _requires_dependencies = ['pyarrow'] def __init__(self, data_folder: DataFolderLike, paths_file: DataFileLike | None=None, limit: int=-1, skip: int=0, stream: bool=False, file_progress: bool=False, doc_progress: bool=False, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None, recursive: bool=True, glob_pattern: str | None=None, shuffle_files: bool=False): super().__init__(data_folder, paths_file, limit, skip, file_progress, doc_progress, adapter, text_key, id_key, default_metadata, recursive, glob_pattern, shuffle_files) self.stream = stream def _iter_file_batches(self, filepath: str): import pyarrow as pa with self.data_folder.open(filepath, 'rb') as f: with pa.ipc.open_file(f) as ipc_reader: for i in range(ipc_reader.num_record_batches): yield ipc_reader.get_batch(i) def _iter_stream_batches(self, filepath: str): import pyarrow as pa with self.data_folder.open(filepath, 'rb') as f: with pa.ipc.open_stream(f) as ipc_stream_reader: for batch in ipc_stream_reader: yield batch def read_file(self, filepath: str): batch_iter = self._iter_file_batches(filepath) if not self.stream else self._iter_stream_batches(filepath) li = 0 for batch in batch_iter: documents = [] with self.track_time('batch'): for line in batch.to_pylist(): document = self.get_document_from_dict(line, filepath, li) if not document: continue documents.append(document) li += 1 yield from documents # File: datatrove-main/src/datatrove/pipeline/readers/jsonl.py from typing import Callable, Literal from datatrove.io import DataFileLike, DataFolderLike from datatrove.pipeline.readers.base import BaseDiskReader from datatrove.utils.logging import logger class JsonlReader(BaseDiskReader): name = '🐿 Jsonl' _requires_dependencies = ['orjson'] def __init__(self, data_folder: DataFolderLike, paths_file: DataFileLike | None=None, compression: Literal['infer', 'gzip', 'zstd'] | None='infer', limit: int=-1, skip: int=0, file_progress: bool=False, doc_progress: bool=False, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None, recursive: bool=True, glob_pattern: str | None=None, shuffle_files: bool=False): super().__init__(data_folder, paths_file, limit, skip, file_progress, doc_progress, adapter, text_key, id_key, default_metadata, recursive, glob_pattern, shuffle_files) self.compression = compression def read_file(self, filepath: str): import orjson from orjson import JSONDecodeError with self.data_folder.open(filepath, 'r', compression=self.compression) as f: try: for (li, line) in enumerate(f): with self.track_time(): try: document = self.get_document_from_dict(orjson.loads(line), filepath, li) if not document: continue except (EOFError, JSONDecodeError) as e: logger.warning(f'Error when reading `{filepath}`: {e}') continue yield document except UnicodeDecodeError as e: logger.warning(f'File `{filepath}` may be corrupted: raised UnicodeDecodeError ({e})') # File: datatrove-main/src/datatrove/pipeline/readers/parquet.py from typing import Callable from datatrove.io import DataFileLike, DataFolderLike from datatrove.pipeline.readers.base import BaseDiskReader class ParquetReader(BaseDiskReader): name = '📒 Parquet' _requires_dependencies = ['pyarrow'] def __init__(self, data_folder: DataFolderLike, paths_file: DataFileLike | None=None, limit: int=-1, skip: int=0, batch_size: int=1000, read_metadata: bool=True, file_progress: bool=False, doc_progress: bool=False, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None, recursive: bool=True, glob_pattern: str | None=None, shuffle_files: bool=False): super().__init__(data_folder, paths_file, limit, skip, file_progress, doc_progress, adapter, text_key, id_key, default_metadata, recursive, glob_pattern, shuffle_files) self.batch_size = batch_size self.read_metadata = read_metadata def read_file(self, filepath: str): import pyarrow.parquet as pq with self.data_folder.open(filepath, 'rb') as f: with pq.ParquetFile(f) as pqf: li = 0 columns = [self.text_key, self.id_key] if not self.read_metadata else None for batch in pqf.iter_batches(batch_size=self.batch_size, columns=columns): documents = [] with self.track_time('batch'): for line in batch.to_pylist(): document = self.get_document_from_dict(line, filepath, li) if not document: continue documents.append(document) li += 1 yield from documents # File: datatrove-main/src/datatrove/pipeline/readers/warc.py from typing import TYPE_CHECKING, Callable, Literal from datatrove.io import DataFileLike, DataFolderLike from datatrove.pipeline.readers.base import BaseDiskReader if TYPE_CHECKING: from warcio.recordloader import ArcWarcRecord class WarcReader(BaseDiskReader): name = '🕷 Warc' _requires_dependencies = ['warcio', ('cchardet', 'faust-cchardet'), ('magic', 'python-magic')] def __init__(self, data_folder: DataFolderLike, paths_file: DataFileLike | None=None, compression: Literal['infer', 'gzip', 'zstd'] | None='infer', limit: int=-1, skip: int=0, file_progress: bool=False, doc_progress: bool=False, adapter: Callable=None, text_key: str='text', id_key: str='id', default_metadata: dict=None, recursive: bool=True, glob_pattern: str | None=None, shuffle_files: bool=False): self.compression = compression super().__init__(data_folder, paths_file, limit, skip, file_progress, doc_progress, adapter, text_key, id_key, default_metadata, recursive, glob_pattern, shuffle_files) def read_file(self, filepath: str): from warcio.archiveiterator import ArchiveIterator with self.data_folder.open(filepath, 'rb', compression=self.compression) as f: for (ri, record) in enumerate(ArchiveIterator(f)): with self.track_time(): extracted_data = process_record(record) if not extracted_data: continue document = self.get_document_from_dict(extracted_data, filepath, ri) if not document: continue yield document def process_record(record: 'ArcWarcRecord') -> dict | None: import cchardet import magic if record.rec_type != 'response' and record.rec_type != 'conversion': return mime_type = record.rec_headers.get('WARC-Identified-Payload-Type', None) if mime_type is not None and (mime_type != 'text/html' and (record.rec_type != 'conversion' or mime_type != 'text/plain')): return content_bytes = record.content_stream().read() if mime_type is None: mime_type = magic.from_buffer(content_bytes, mime=True) if mime_type != 'text/html' and (record.rec_type != 'conversion' or mime_type != 'text/plain'): return charset = 'UTF-8' try: html = content_bytes.decode(charset) except UnicodeDecodeError: encoding_det = cchardet.detect(content_bytes)['encoding'] if not encoding_det or encoding_det == charset: return charset = encoding_det try: html = content_bytes.decode(charset) except (UnicodeDecodeError, LookupError): return id_ = record.rec_headers['WARC-Record-ID'] url = record.rec_headers.get('WARC-Target-URI', None) date = record.rec_headers.get('WARC-Date', None) if not url: url = dict(record.rec_headers.headers)['uri'] if not date: date = dict(record.rec_headers.headers)['archive-date'] return {'text': html, 'id': id_, 'url': url, 'date': date} # File: datatrove-main/src/datatrove/pipeline/stats/__init__.py from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, STAT_TYPE, TopKConfig from datatrove.pipeline.stats.contamination_stats import WordsContaminationStats from datatrove.pipeline.stats.doc_stats import DocStats from datatrove.pipeline.stats.lang_stats import LangStats from datatrove.pipeline.stats.line_stats import LineStats from datatrove.pipeline.stats.merger import STATS_MERGED_NAME, StatsMerger from datatrove.pipeline.stats.paragraph_stats import ParagraphStats from datatrove.pipeline.stats.perplexity_stats import CCNetPerplexityStats from datatrove.pipeline.stats.sentence_stats import SentenceStats from datatrove.pipeline.stats.token_stats import TokenStats from datatrove.pipeline.stats.word_stats import WordStats # File: datatrove-main/src/datatrove/pipeline/stats/base.py import heapq import json from abc import abstractmethod from collections import defaultdict from typing import get_args from loguru import logger from datatrove.data import Document, DocumentsPipeline from datatrove.io import DataFolderLike, get_datafolder from datatrove.pipeline.base import PipelineStep from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, STAT_TYPE, TopKConfig from datatrove.utils.stats import MetricStatsDict class BaseStats(PipelineStep): type = '📊 - STATS' name = '👑 Summary stats' _requires_dependencies = ['tldextract'] def __init__(self, output_folder: DataFolderLike, groups_to_compute: list[GROUP] | None=None, histogram_round_digits: int=3, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None: from tldextract import TLDExtract super().__init__() self.output_folder = get_datafolder(output_folder) self.groups = groups_to_compute or list(get_args(GROUP)) self.histogram_round_digits = histogram_round_digits self.top_k_cfg = top_k_config self.tld_extractor = TLDExtract() @abstractmethod def extract_stats(self, doc: Document) -> dict[str, int | float]: raise NotImplementedError() def get_kv(self, doc: Document, value: STAT_TYPE, group_name: GROUP) -> tuple[str, STAT_TYPE | dict[str, STAT_TYPE]]: if group_name == 'histogram': return (str(round(value, self.histogram_round_digits)), {'': 1, 'chars': len(doc.text), **({'tokens': doc.metadata['token_count']} if 'token_count' in doc.metadata else {})}) elif group_name == 'summary': return ('summary', value) elif group_name == 'fqdn': fqdn = doc.metadata.get('fqdn') if fqdn is None: fqdn = self.tld_extractor.extract_str(doc.metadata['url']).fqdn doc.metadata['fqdn'] = fqdn return (fqdn, value) elif group_name == 'suffix': suffix = doc.metadata.get('suffix') if suffix is None: suffix = self.tld_extractor.extract_str(doc.metadata['url']).suffix doc.metadata['suffix'] = suffix return (suffix, value) else: raise ValueError(f'Unknown group name: {group_name}') def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline: groups_dicts: dict[GROUP, dict[str, MetricStatsDict]] = {group: defaultdict(MetricStatsDict) for group in self.groups} for doc in data: with self.track_time(): try: doc_stats = self.extract_stats(doc) except Exception as e: logger.error(f'Error while extracting stats from document {doc.id}', exc_info=e) raise e for (group, counters) in groups_dicts.items(): for (stat, value) in doc_stats.items(): (key, value) = self.get_kv(doc, value, group) if not isinstance(value, dict): counters[stat][key] += value else: for (suffix, val) in value.items(): stat_name = stat if not suffix else f'{stat}__{suffix}' counters[stat_name][key] += val doc.metadata.update(doc_stats) yield doc for (group, stats_dict) in groups_dicts.items(): group_top_k_keys = None for (stat_name, stat_values) in stats_dict.items(): if group in self.top_k_cfg.top_k_groups: if group_top_k_keys is None: group_top_k_keys = heapq.nlargest(self.top_k_cfg.top_k, stat_values, key=lambda x: stat_values[x].n) stat_values = MetricStatsDict(init={s: stat_values[s] for s in group_top_k_keys}) with self.output_folder.open(f'{group}/{stat_name}/{rank:05d}.json', 'wt') as f: json.dump(stat_values.to_dict(), f) del groups_dicts # File: datatrove-main/src/datatrove/pipeline/stats/config.py from dataclasses import dataclass from typing import Literal GROUP = Literal['summary', 'histogram', 'fqdn', 'suffix'] @dataclass(frozen=True) class TopKConfig: top_k_groups: list[Literal['fqdn', 'suffix']] top_k: int DEFAULT_TOP_K_CONFIG = TopKConfig(top_k_groups=['fqdn', 'suffix'], top_k=100000) STAT_TYPE = int | float # File: datatrove-main/src/datatrove/pipeline/stats/contamination_stats.py from typing import get_args from datatrove.data import Document from datatrove.io import DataFolderLike from datatrove.pipeline.stats.base import BaseStats from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig from datatrove.utils.text import TextNormConfig, simplify_text from datatrove.utils.typeshelper import Languages from datatrove.utils.word_tokenizers import load_word_tokenizer class WordsContaminationStats(BaseStats): name = '😷 Words contamination' def __init__(self, output_folder: DataFolderLike, words: list[str], norm_config: TextNormConfig=TextNormConfig(), language: str=Languages.english, groups_to_compute: list[GROUP]=list(get_args(GROUP)), histogram_round_digits: int=3, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None: super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config=top_k_config) if len(words) == 0: raise ValueError('At least one word must be provided') self.norm_config = norm_config self.language = language self.words = words def extract_stats(self, doc: Document) -> dict[str, int | float]: word_tokenizer = load_word_tokenizer(self.language) doc_words = word_tokenizer.word_tokenize(simplify_text(doc.text, self.norm_config)) return {f'words_contamination_{self.words[0]}': sum([1 for word in doc_words if word in self.words]) / len(doc_words)} # File: datatrove-main/src/datatrove/pipeline/stats/doc_stats.py import re from typing import get_args from datatrove.data import Document from datatrove.io import DataFolderLike from datatrove.pipeline.stats.base import BaseStats from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig from datatrove.utils.text import PUNCTUATION ELIPSIS = ['...', '…'] class DocStats(BaseStats): name = '📜 Doc stats' def __init__(self, output_folder: DataFolderLike, groups_to_compute: list[GROUP]=list(get_args(GROUP)), histogram_round_digits: int=3, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None: super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config) self.elipsis_regex = re.compile('|'.join([f'(?:{re.escape(elipsis)})' for elipsis in ELIPSIS])) self.punc_regex = re.compile('|'.join([f'(?:{re.escape(punc)})' for punc in PUNCTUATION])) def extract_stats(self, doc: Document) -> dict[str, int | float]: return {'length': len(doc.text), 'white_space_ratio': sum([1 for c in doc.text if c.isspace()]) / len(doc.text), 'non_alpha_digit_ratio': sum([1 for c in doc.text if not c.isalpha() and (not c.isdigit())]) / len(doc.text), 'digit_ratio': sum([1 for c in doc.text if c.isdigit()]) / len(doc.text), 'uppercase_ratio': sum([1 for c in doc.text if c.isupper()]) / len(doc.text), 'elipsis_ratio': sum((len(elipsis) for elipsis in self.elipsis_regex.findall(doc.text))) / len(doc.text), 'punctuation_ratio': sum((len(punc) for punc in self.punc_regex.findall(doc.text))) / len(doc.text)} # File: datatrove-main/src/datatrove/pipeline/stats/lang_stats.py from typing import get_args from datatrove.data import Document from datatrove.io import DataFolderLike from datatrove.pipeline.stats.base import BaseStats from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig from datatrove.utils.lid import FT176LID class LangStats(BaseStats): name = '🎤 Language stats' def __init__(self, output_folder: DataFolderLike, language: str, groups_to_compute: list[GROUP]=list(get_args(GROUP)), histogram_round_digits: int=3, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None: super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config) self.fasttext = FT176LID([language]) self.language = language def extract_stats(self, doc: Document) -> dict[str, int | float]: language_score = 0 if doc.metadata.get('language') == self.language and 'language_score' in doc.metadata: language_score = doc.metadata['language_score'] else: language_score = self.fasttext.predict(doc)[1][self.language] return {f'fasttext_{self.language}': language_score} # File: datatrove-main/src/datatrove/pipeline/stats/line_stats.py from typing import get_args from datatrove.data import Document from datatrove.io import DataFolderLike from datatrove.pipeline.filters.c4_filters import END_PUNCTUATION from datatrove.pipeline.filters.gopher_repetition_filter import find_duplicates from datatrove.pipeline.stats.base import BaseStats from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig def get_max_chars_per_line_ratio(lines, chars: int) -> float: return sum([1 for line in lines if len(line) <= chars]) / len(lines) def get_min_chars_per_line_ratio(lines, chars: int) -> float: return sum([1 for line in lines if len(line) >= chars]) / len(lines) def is_bullet_line(line: str): if len(line.strip()) == 0: return False return line.strip()[0] in '-*•' class LineStats(BaseStats): name = '🎼 Line stats' def __init__(self, output_folder: DataFolderLike, max_k_chars_per_line_tresholds: list[int] | None=None, min_k_chars_per_line_thresholds: list[int] | None=None, groups_to_compute: list[GROUP]=list(get_args(GROUP)), ignore_empty_lines: bool=False, histogram_round_digits: int=3, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None: super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config) self.short_max_chars = max_k_chars_per_line_tresholds if max_k_chars_per_line_tresholds is not None else [10, 30] self.long_max_chars = min_k_chars_per_line_thresholds if min_k_chars_per_line_thresholds is not None else [2000, 10000] self.ignore_empty_lines = ignore_empty_lines def extract_stats(self, doc: Document): lines: list[str] = doc.metadata.get('lines') or doc.text.split('\n') n_lines = len(lines) lines = [line for line in lines if len(line.strip()) > 0] if self.ignore_empty_lines else lines (line_dups, char_dups) = find_duplicates(lines) return {'n_lines': n_lines, 'avg_line_length': sum([len(line) for line in lines]) / len(lines), **{f'short_line_ratio_chars_{chars}': get_max_chars_per_line_ratio(lines, chars) for chars in self.short_max_chars}, **{f'long_line_ratio_chars_{chars}': get_min_chars_per_line_ratio(lines, chars) for chars in self.long_max_chars}, 'lines_ending_with_terminal_mark_ratio': sum((1 for line in lines if line.endswith(END_PUNCTUATION))) / len(lines), 'bullet_point_lines_ratio': sum((1 for line in lines if is_bullet_line(line))) / len(lines), 'line_duplicates': line_dups / len(lines), 'line_char_duplicates': char_dups / sum((len(line) for line in lines))} # File: datatrove-main/src/datatrove/pipeline/stats/merger.py import heapq import json from pathlib import Path from loguru import logger from tqdm import tqdm from datatrove.data import DocumentsPipeline from datatrove.io import DataFolderLike, get_datafolder from datatrove.pipeline.base import PipelineStep from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, TopKConfig from datatrove.utils.stats import MetricStats, MetricStatsDict STATS_MERGED_NAME = 'metric.json' class StatsMerger(PipelineStep): type = '📊 - STATS' name = '🔗 Merging stats' def __init__(self, input_folder: DataFolderLike, output_folder: DataFolderLike, remove_input: bool=False, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None: super().__init__() self.input_folder = get_datafolder(input_folder) self.output_folder = get_datafolder(output_folder) self.remove_input = remove_input self.top_k_config = top_k_config def get_leaf_non_empty_folders(self): return sorted([path for (path, folders, files) in self.input_folder.walk('') if not folders and files]) def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline: folders_shard = self.get_leaf_non_empty_folders()[rank::world_size] logger.info(f'Merging {len(folders_shard)} stat folders') with self.track_time(): for folder in tqdm(folders_shard): input_files = self.input_folder.glob(f'{folder}/[0-9][0-9][0-9][0-9][0-9].json') logger.info(f'Processing folder {folder} with {len(input_files)} files') stat = MetricStatsDict() for file in tqdm(input_files): with self.input_folder.open(file, 'rt') as f: for (key, item) in json.load(f).items(): stat[key] += MetricStats.from_dict(item) with self.output_folder.open(f'{folder}/{STATS_MERGED_NAME}', 'wt') as f: group_name = Path(folder).parent.name if group_name in self.top_k_config.top_k_groups: top_k_keys = heapq.nlargest(self.top_k_config.top_k, stat, key=lambda x: stat.get(x).n) stat = MetricStatsDict(init={s: stat.get(s) for s in top_k_keys}) json.dump(stat.to_dict(), f) if self.remove_input: for file in input_files: self.input_folder.rm(file) if data: yield from data # File: datatrove-main/src/datatrove/pipeline/stats/paragraph_stats.py from typing import get_args from datatrove.data import Document from datatrove.io import DataFolderLike from datatrove.pipeline.filters.gopher_repetition_filter import find_duplicates from datatrove.pipeline.stats.base import BaseStats from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig def get_short_paragraph_ratio(paragraphs: list[str], threshold: int) -> float: return sum([1 for paragraph in paragraphs if len(paragraph) <= threshold]) / len(paragraphs) def get_long_paragraph_ratio(paragraphs: list[str], threshold: int) -> float: return sum([1 for paragraph in paragraphs if len(paragraph) >= threshold]) / len(paragraphs) class ParagraphStats(BaseStats): type = '📊 - STATS' name = '📄 Paragraph stats' def __init__(self, output_folder: DataFolderLike, short_paragraph_max_chars_threshold: list[int] | None=None, long_paragraph_max_chars_threshold: list[int] | None=None, ignore_empty_paragraphs: bool=False, histogram_round_digits: int=3, groups_to_compute: list[GROUP]=list(get_args(GROUP)), top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None: super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config) self.ignore_empty_paragraphs = ignore_empty_paragraphs self.short_paragraph_max_chars_threshold = short_paragraph_max_chars_threshold or [100] self.long_paragraph_max_chars_threshold = long_paragraph_max_chars_threshold or [1000] def extract_stats(self, doc: Document) -> dict[str, int | float]: paragraphs = [p for p in doc.text.split('\n\n') if p.strip()] n_paragraphs = len(paragraphs) paragraphs = [p for p in paragraphs if p.strip()] if self.ignore_empty_paragraphs else paragraphs (paragraph_dups, paragraph_char_dups) = find_duplicates(paragraphs) return {'n_paragraphs': n_paragraphs, 'avg_paragraph_length': sum([len(p) for p in paragraphs]) / n_paragraphs, **{f'short_paragraph_ratio_{chars}': get_short_paragraph_ratio(paragraphs, chars) for chars in self.short_paragraph_max_chars_threshold}, **{f'long_paragraph_ratio_{chars}': get_long_paragraph_ratio(paragraphs, chars) for chars in self.long_paragraph_max_chars_threshold}, 'paragraph_duplicates': paragraph_dups / n_paragraphs, 'paragraph_char_duplicates': paragraph_char_dups / sum((len(p) for p in paragraphs))} # File: datatrove-main/src/datatrove/pipeline/stats/perplexity_stats.py from typing import get_args from datatrove.data import Document from datatrove.io import DataFolderLike from datatrove.pipeline.stats.base import BaseStats from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig from datatrove.utils.perplexity import KenlmModel from datatrove.utils.typeshelper import Languages class CCNetPerplexityStats(BaseStats): name = '🤯 CCNet perplexity stats' _requires_dependencies = BaseStats._requires_dependencies + ['kenlm'] def __init__(self, output_folder: DataFolderLike, model_dataset: str, language: str=Languages.english, histogram_round_digits: int=3, groups_to_compute: list[GROUP]=list(get_args(GROUP)), top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None: super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config) self.model = KenlmModel(model_dataset=model_dataset, language=language) def extract_stats(self, doc: Document) -> dict[str, int | float]: return {f'ccnet_perplexity_{self.model.model_dataset}_{self.model.language}': self.model.get_perplexity(doc.text)} # File: datatrove-main/src/datatrove/pipeline/stats/sentence_stats.py from typing import get_args from datatrove.data import Document from datatrove.io import DataFolderLike from datatrove.pipeline.stats.base import BaseStats from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig from datatrove.utils.typeshelper import Languages from datatrove.utils.word_tokenizers import load_word_tokenizer def get_short_sentence_ratio(sentences: list[str], threshold: int) -> float: return sum([1 for sentence in sentences if len(sentence) <= threshold]) / len(sentences) def get_long_sentence_ratio(sentences: list[str], threshold: int) -> float: return sum([1 for sentence in sentences if len(sentence) >= threshold]) / len(sentences) class SentenceStats(BaseStats): name = '🈂️ Sentence stats' def __init__(self, output_folder: DataFolderLike, short_sentence_max_chars_threshold: list[int] | None=None, long_sentence_max_chars_threshold: list[int] | None=None, language: str=Languages.english, histogram_round_digits: int=3, groups_to_compute: list[GROUP]=list(get_args(GROUP)), top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None: super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config) self.short_sentence_max_chars_threshold = short_sentence_max_chars_threshold or [20] self.long_sentence_max_chars_threshold = long_sentence_max_chars_threshold or [75] self.language = language def extract_stats(self, doc: Document) -> dict[str, int | float]: word_tokenizer = load_word_tokenizer(self.language) sentences = [s for s in word_tokenizer.sent_tokenize(doc.text) if s.strip()] return {'n_sentences': len(sentences), 'avg_sentence_length': sum([len(s) for s in sentences]) / len(sentences), **{f'short_sentence_ratio_{chars}': get_short_sentence_ratio(sentences, chars) for chars in self.short_sentence_max_chars_threshold}, **{f'long_sentence_ratio_{chars}': get_long_sentence_ratio(sentences, chars) for chars in self.long_sentence_max_chars_threshold}} # File: datatrove-main/src/datatrove/pipeline/stats/token_stats.py from datatrove.data import Document from datatrove.io import DataFolderLike from datatrove.pipeline.stats.base import BaseStats from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig from datatrove.utils.tokenization import PipelineStepWithTokenizer class TokenStats(BaseStats, PipelineStepWithTokenizer): name = '🔗 Token counter' _requires_dependencies = ['tokenizers'] + BaseStats._requires_dependencies def __init__(self, output_folder: DataFolderLike, tokenizer_name_or_path: str='gpt2', groups_to_compute: list[GROUP]=['fqdn', 'suffix', 'summary', 'histogram'], histogram_rounding: int=3, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None: BaseStats.__init__(self, output_folder, groups_to_compute, histogram_rounding, top_k_config) PipelineStepWithTokenizer.__init__(self) self.tokenizer_name_or_path = tokenizer_name_or_path def extract_stats(self, doc: Document) -> dict[str, int | float]: tokens_count = doc.metadata.get('token_count', None) if tokens_count is None: tokens_count = len(self.tokenizer.encode(doc.text).tokens) return {'token_count': tokens_count} # File: datatrove-main/src/datatrove/pipeline/stats/word_stats.py from typing import get_args from datatrove.data import Document from datatrove.io import DataFolderLike from datatrove.pipeline.filters.gopher_quality_filter import STOP_WORDS from datatrove.pipeline.stats.base import BaseStats from datatrove.pipeline.stats.config import DEFAULT_TOP_K_CONFIG, GROUP, TopKConfig from datatrove.utils.typeshelper import Languages from datatrove.utils.word_tokenizers import load_word_tokenizer def get_short_word_ratio(words: list[str], threshold: int) -> float: return sum([1 for word in words if len(word) <= threshold]) / len(words) def get_long_word_ratio(words: list[str], threshold: int) -> float: return sum([1 for word in words if len(word) >= threshold]) / len(words) class WordStats(BaseStats): name = '🈂️ Word stats' def __init__(self, output_folder: DataFolderLike, stop_words: list[str]=STOP_WORDS, short_word_max_chars_threshold: list[int] | None=None, long_word_max_chars_threshold: list[int] | None=None, language: str=Languages.english, groups_to_compute: list[GROUP]=list(get_args(GROUP)), histogram_round_digits: int=3, top_k_config: TopKConfig=DEFAULT_TOP_K_CONFIG) -> None: super().__init__(output_folder, groups_to_compute, histogram_round_digits, top_k_config) self.short_word_max_chars_threshold = short_word_max_chars_threshold or [3] self.long_word_max_chars_threshold = long_word_max_chars_threshold or [7] self.language = language self.stop_words = stop_words def extract_stats(self, doc: Document) -> dict[str, int | float]: word_tokenizer = load_word_tokenizer(self.language) words = word_tokenizer.word_tokenize(doc.text) lines = doc.text.splitlines() return {'n_words': len(words), 'avg_word_length': sum([len(word) for word in words]) / len(words), 'avg_words_per_line': len(words) / len(lines), **{f'short_word_ratio_{chars}': get_short_word_ratio(words, chars) for chars in self.short_word_max_chars_threshold}, **{f'long_word_ratio_{chars}': get_long_word_ratio(words, chars) for chars in self.long_word_max_chars_threshold}, 'type_token_ratio': len(set(words)) / len(words), 'uppercase_word_ratio': sum([1 for word in words if word.isupper()]) / len(words), 'capitalized_word_ratio': sum([1 for word in words if word.istitle()]) / len(words), 'stop_word_ratio': sum([1 for word in words if word in self.stop_words]) / len(words)} # File: datatrove-main/src/datatrove/pipeline/tokens/context_shuffler.py import mmap import numpy as np from numpy.random import default_rng from datatrove.data import DocumentsPipeline from datatrove.io import DataFolderLike, get_datafolder from datatrove.pipeline.base import PipelineStep from datatrove.pipeline.tokens.merger import load_doc_ends from datatrove.utils.logging import logger class DocumentTokenizerContextShuffler(PipelineStep): name = '🗃 Context Shuffler' type = '🔢 - TOKENIZER' def __init__(self, input_folder: DataFolderLike, output_folder: DataFolderLike, window_size: int=2048 + 1, seed: int=None, token_size: int=2): super().__init__() self.input_folder = get_datafolder(input_folder) self.output_folder = get_datafolder(output_folder) self.window_size = window_size self.token_size = token_size self.rand = default_rng(seed) def get_ordering(self, all_doc_ends): doc_ids = np.concatenate([np.ones(len(doc_ends), dtype=int) * i for (i, doc_ends) in enumerate(all_doc_ends)]) return self.rand.permutation(doc_ids) def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1) -> DocumentsPipeline: datafiles = self.input_folder.get_shard(rank, world_size, glob_pattern='*.ds') datafiles_index = self.input_folder.get_shard(rank, world_size, glob_pattern='*.ds.index') for (datafile, index) in zip(datafiles, datafiles_index): logger.info(f'Context shuffling {datafile} with a {self.window_size} token window') total_len = load_doc_ends(self.input_folder.open(index, 'rb'))[-1] nr_windows = total_len // self.window_size ordering = self.rand.permutation(np.arange(0, nr_windows, dtype=int)) with self.output_folder.open(datafile, 'wb') as fout: with self.input_folder.open(datafile, 'rb') as f: with mmap.mmap(f.fileno(), 0, prot=mmap.PROT_READ) as unshuf: with self.track_time(): for windowi in ordering: (start, end) = (windowi * self.window_size * self.token_size, (windowi + 1) * self.window_size * self.token_size) fout.write(unshuf[start:end]) # File: datatrove-main/src/datatrove/pipeline/tokens/counter.py from datatrove.data import DocumentsPipeline from datatrove.pipeline.base import PipelineStep from datatrove.utils.batching import batched from datatrove.utils.tokenization import PipelineStepWithTokenizer class TokensCounter(PipelineStepWithTokenizer): name = '📊 Counter' type = '🔢 - TOKENIZER' def __init__(self, tokenizer_name_or_path: str='gpt2', count_eos_token: bool=False, batch_size: int=10000): super().__init__() self.tokenizer_name_or_path = tokenizer_name_or_path self.count_eos_token = count_eos_token self.batch_size = batch_size def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline: from tokenizers import Encoding for batch in batched(data, self.batch_size): with self.track_time(unit='batch'): encoded_batch: list[Encoding] = self.tokenizer.encode_batch([document.text for document in batch]) for (document, encoded) in zip(batch, encoded_batch): count = len(encoded.ids) if self.count_eos_token: count += 1 document.metadata['token_count'] = count self.stat_update('tokens', value=count) yield document class LengthCounter(PipelineStep): name = '📊 Document length counter' type = '🔢 - TOKENIZER' def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline: for document in data: count = document.metadata['token_count'] self.stats[count].update(1) yield document # File: datatrove-main/src/datatrove/pipeline/tokens/merger.py from functools import partial from typing import BinaryIO, Generator import numpy as np from numpy.random import default_rng from tqdm import tqdm from datatrove.data import DocumentsPipeline from datatrove.io import DataFolderLike, get_datafolder from datatrove.pipeline.base import PipelineStep from datatrove.pipeline.tokens.tokenizer import TokenizedFile class DocumentTokenizerMerger(PipelineStep): name = '🗃 Document Merger' type = '🔢 - TOKENIZER' def __init__(self, input_folder: DataFolderLike, output_folder: DataFolderLike, save_filename: str, max_tokens_per_file: int=100000000000.0, max_tokens: int=-1, shuffle: bool=True, upload_block_size: int=20 * 2 ** 20, seed: int=None, save_loss_metadata: bool=False, save_final_metadata: bool=True, progress: bool=True): super().__init__() self.input_folder = get_datafolder(input_folder) self.output_folder = get_datafolder(output_folder) self.save_filename = save_filename self.max_tokens_per_file = max_tokens_per_file self.max_tokens = max_tokens self.shuffle = shuffle self.save_loss_metadata = save_loss_metadata self.rand = default_rng(seed) self.save_final_metadata = save_final_metadata self.upload_block_size = upload_block_size self.progress = progress def get_ordering(self, all_doc_ends): doc_ids = np.concatenate([np.ones(len(doc_ends), dtype=int) * i for (i, doc_ends) in enumerate(all_doc_ends)]) return doc_ids if not self.shuffle else self.rand.permutation(doc_ids) def run(self, data: DocumentsPipeline=None, rank: int=0, world_size: int=1) -> DocumentsPipeline: assert world_size == 1, 'world_size must be 1 for DocumentTokenizerMerger' datafiles = self.input_folder.list_files(glob_pattern='*.ds') datafiles_index = self.input_folder.list_files(glob_pattern='*.ds.index') datafiles_loss = self.input_folder.list_files(glob_pattern='*.ds.loss') if self.save_loss_metadata else [None] * len(datafiles) assert len(datafiles) == len(datafiles_index) == len(datafiles_loss), f'Mismatch between number of .ds, .ds.index and/or .ds.loss files({len(datafiles)} vs {len(datafiles_index)} vs {len(datafiles_loss)})' (tokenizer_name_or_path, token_size) = (None, 2) if self.save_final_metadata: if self.input_folder.isfile(f'{datafiles[0]}.metadata'): with self.input_folder.open(f'{datafiles[0]}.metadata', 'rt') as f: tokenizer_name_or_path = f.read().splitlines()[0] if '|' in tokenizer_name_or_path: (tokenizer_name_or_path, token_size) = tokenizer_name_or_path.split('|') token_size = int(token_size) doc_ends = [load_doc_ends(self.input_folder.open(file, 'rb')) for file in datafiles_index] token_inputs = list(map(partial(get_data_reader, nb_bytes=token_size), self.input_folder.open_files(datafiles), doc_ends)) loss_inputs = list(map(partial(get_data_reader, nb_bytes=1), self.input_folder.open_files(datafiles_loss), doc_ends)) if self.save_loss_metadata else None ordering = self.get_ordering(doc_ends) file_ct = 0 output_file = TokenizedFile(output_folder=self.output_folder, filename=f'{file_ct:03d}_{self.save_filename}.ds', save_loss_metadata=self.save_loss_metadata, upload_block_size=self.upload_block_size, tokenizer_name_or_path=tokenizer_name_or_path, save_final_metadata=self.save_final_metadata, token_size=token_size) for input_file_id in tqdm(ordering, desc='Merging documents', unit='documents', total=len(ordering), disable=not self.progress): if 0 < self.max_tokens <= self.stats['tokens'].total: break if 0 < self.max_tokens_per_file <= len(output_file): output_file.close() file_ct += 1 output_file = TokenizedFile(output_folder=self.output_folder, filename=f'{file_ct:03d}_{self.save_filename}.ds', save_loss_metadata=self.save_loss_metadata, upload_block_size=self.upload_block_size, tokenizer_name_or_path=tokenizer_name_or_path, save_final_metadata=self.save_final_metadata, token_size=token_size) tokens = next(token_inputs[input_file_id]) output_file.write_bytes(tokens) if loss_inputs: output_file.write_loss_bytes(next(loss_inputs[input_file_id])) self.stat_update('tokens', value=len(tokens) // token_size) output_file.close() if self.save_final_metadata: output_file.write_final_metadata(self.stats['tokens'].total, filename=f'{self.save_filename}.ds') def load_doc_ends(file: BinaryIO) -> np.ndarray: with file as f: return np.frombuffer(f.read(), dtype=np.uint64).astype(int) def get_data_reader(file: BinaryIO, doc_ends: list, nb_bytes: int=1, start_e: int=0) -> Generator[bytes, None, None]: with file as f: if start_e != 0: f.seek(int(start_e) * nb_bytes) for r_e in doc_ends: yield f.read((r_e - start_e) * nb_bytes) start_e = r_e # File: datatrove-main/src/datatrove/pipeline/tokens/tokenizer.py import struct from typing import TYPE_CHECKING import humanize import numpy as np from numpy.random import default_rng from datatrove.data import Document, DocumentsPipeline from datatrove.io import DataFolder, DataFolderLike, get_datafolder from datatrove.utils.batching import batched from datatrove.utils.logging import logger from datatrove.utils.tokenization import PipelineStepWithTokenizer SHUFFLING_READ_BLOCK_SIZE = 50000 SHUFFLING_CACHE_TYPE = 'none' if TYPE_CHECKING: from tokenizers import Encoding class TokenizedFile: def __init__(self, output_folder: DataFolderLike, filename: str, save_index: bool=True, save_loss_metadata: bool=False, upload_block_size: int | None=None, tokenizer_name_or_path: str | None=None, save_final_metadata: bool=False, token_size: int=2): self.output_folder = get_datafolder(output_folder) self.filename = filename self.save_index = save_index self.save_loss_metadata = save_loss_metadata self.upload_block_size = upload_block_size self.write_idx = 0 self.token_size = token_size self.token_format = 'I' if self.token_size == 4 else 'H' self.doc_ends = [] self.tokenizer_name_or_path = tokenizer_name_or_path self.save_final_metadata = save_final_metadata self.tokens_file = self.output_folder.open(self.filename, mode='wb', block_size=upload_block_size) self.loss_file: DataFolderLike | None = None if self.save_loss_metadata: self.loss_file = self.output_folder.open(f'{self.filename}.loss', mode='wb', block_size=upload_block_size) def __len__(self): return self.doc_ends[-1] if self.doc_ends else 0 def close(self): if self.tokens_file: self.tokens_file.close() if self.loss_file: self.loss_file.close() if self.save_index: index_file = self.output_folder.open(f'{self.filename}.index', mode='wb') index_file.write(struct.pack('<%sQ' % len(self.doc_ends), *self.doc_ends)) index_file.close() if self.save_final_metadata: self.write_final_metadata() def cleanup(self): self.doc_ends = [] self.output_folder.rm_file(self.filename) if self.loss_file: self.output_folder.rm_file(f'{self.filename}.loss') if self.save_final_metadata and self.output_folder.exists(f'{self.filename}.metadata'): self.output_folder.rm_file(f'{self.filename}.metadata') def write_bytes(self, tk_bytes: bytes, doc_ends: list[int]=None): self.tokens_file.write(tk_bytes) if doc_ends is not None: self.doc_ends.extend([d + self.write_idx for d in doc_ends]) self.write_idx += len(tk_bytes) // self.token_size else: self.write_idx += len(tk_bytes) // self.token_size self.doc_ends.append(self.write_idx) def write_loss_bytes(self, l_bytes: bytes): if self.save_loss_metadata: self.loss_file.write(l_bytes) def write(self, tokens: list[int], loss_values: np.ndarray | None): self.write_bytes(struct.pack(f'<%s{self.token_format}' % len(tokens), *tokens)) if loss_values is not None: self.write_loss_bytes(struct.pack('<%s?' % len(loss_values), *loss_values)) def copy(self, save_filename: str, ordering: np.ndarray, new_output_folder: DataFolder=None, rank: int=0, max_tokens_per_file: int=None) -> 'TokenizedFile': with self.output_folder.open(self.filename, mode='rb', cache_type=SHUFFLING_CACHE_TYPE, block_size=SHUFFLING_READ_BLOCK_SIZE) as tokens_file: loss_file = None if not self.loss_file else self.output_folder.open(f'{self.filename}.loss', mode='rb', cache_type=SHUFFLING_CACHE_TYPE, block_size=SHUFFLING_READ_BLOCK_SIZE // 2) sub_rank = 0 destination = get_output_filename(save_filename, rank, 'shuffled', sub_rank) new_file = TokenizedFile(self.output_folder if not new_output_folder else new_output_folder, destination, save_loss_metadata=self.save_loss_metadata, upload_block_size=self.upload_block_size, tokenizer_name_or_path=self.tokenizer_name_or_path, save_final_metadata=self.save_final_metadata, token_size=self.token_size) logger.info(f'Shuffling in {destination}...') total_tokens_written = 0 for doc_id in ordering: (start, end) = (self.doc_ends[doc_id - 1] if doc_id > 0 else 0, self.doc_ends[doc_id]) tokens_file.seek(start * self.token_size) new_file.write_bytes(tokens_file.read((end - start) * self.token_size)) if loss_file: loss_file.seek(start) new_file.write_loss_bytes(loss_file.read(end - start)) total_tokens_written += end - start if max_tokens_per_file and total_tokens_written > max_tokens_per_file: new_file.close() sub_rank += 1 destination = get_output_filename(save_filename, rank, 'shuffled', sub_rank) new_file = TokenizedFile(self.output_folder if not new_output_folder else new_output_folder, destination, save_loss_metadata=self.save_loss_metadata, upload_block_size=self.upload_block_size, tokenizer_name_or_path=self.tokenizer_name_or_path, save_final_metadata=self.save_final_metadata, token_size=self.token_size) logger.info(f'Shuffling in {destination}...') total_tokens_written = 0 if loss_file: loss_file.close() new_file.close() return new_file def write_final_metadata(self, token_count: int=-1, filename: str=None): tokenizer_name = self.tokenizer_name_or_path if not tokenizer_name: tokenizer_name = 'Unknown Tokenizer' + '|' + str(self.token_size) if filename is None: filename = self.filename with self.output_folder.open(f'{filename}.metadata', 'wt') as f: if token_count == -1: token_count = self.write_idx f.write('\n'.join([tokenizer_name + '|' + str(self.token_size), str(token_count), humanize.metric(token_count, unit='T')])) def get_output_filename(save_filename, rank: int, name: str, sub_rank: int=None): if sub_rank is not None: return '_'.join([x for x in [save_filename, f'{rank:05d}', f'{sub_rank:05d}', f'{name}.ds'] if x]) return '_'.join([x for x in [save_filename, f'{rank:05d}', f'{name}.ds'] if x]) class DocumentTokenizer(PipelineStepWithTokenizer): name = '✍️ Writer' type = '🔢 - TOKENIZER' def __init__(self, output_folder: DataFolderLike, local_working_dir: DataFolderLike | None=None, save_filename: str=None, tokenizer_name_or_path: str='gpt2', eos_token: str='<|endoftext|>', save_loss_metadata: bool=False, shuffle: bool=True, batch_size: int=10000, max_tokens_per_file: int=None, seed: int=None, save_final_metadata: bool=True, upload_block_size: int | None=None): super().__init__() self.output_folder = get_datafolder(output_folder) self.local_working_dir = get_datafolder(local_working_dir) if local_working_dir else None if self.local_working_dir and (not self.local_working_dir.is_local()): raise ValueError('local_working_dir must be a local path') if self.local_working_dir is None and shuffle and (not self.output_folder.is_local()): logger.warning('local_working_dir is not set and output folder is not local. This may slow down the process.') self.save_filename = save_filename self.tokenizer_name_or_path = tokenizer_name_or_path self.eos_token = eos_token self.save_loss_metadata = save_loss_metadata self.shuffle = shuffle self.batch_size = batch_size self.rand = default_rng(seed) self.save_final_metadata = save_final_metadata self.upload_block_size = upload_block_size self.max_tokens_per_file = max_tokens_per_file def get_loss_values(self, document: Document, encoded: 'Encoding'): if self.save_loss_metadata: loss_values = np.ones(len(encoded.ids)) if (no_loss := document.metadata.get('no_loss_ranges', None)): for (start, end) in no_loss: (t_start, t_end) = (encoded.char_to_token(start), encoded.char_to_token(end)) loss_values[t_start:t_end] = 0 if t_end is None or t_end >= len(encoded.ids): loss_values = loss_values[:t_start] return loss_values def write_unshuffled(self, data: DocumentsPipeline, filename: str): from tokenizers import Encoding unshuff = TokenizedFile(self.output_folder if not self.shuffle or not self.local_working_dir else self.local_working_dir, filename, save_index=not self.shuffle, save_loss_metadata=self.save_loss_metadata, upload_block_size=self.upload_block_size, tokenizer_name_or_path=self.tokenizer_name_or_path, save_final_metadata=self.save_final_metadata, token_size=self.token_size) for batch in batched(data, self.batch_size): with self.track_time(unit='batch'): encoded_batch: list[Encoding] = self.tokenizer.encode_batch([document.text for document in batch]) for (document, encoded) in zip(batch, encoded_batch): tokens = encoded.ids loss_values = self.get_loss_values(document, encoded) if loss_values is not None and len(loss_values) < len(tokens): tokens = tokens[:len(loss_values)] unshuff.write(tokens, loss_values) self.stat_update('tokens', value=len(tokens)) unshuff.close() return unshuff def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline: unshuf_filename = get_output_filename(self.save_filename, rank, 'unshuffled') logger.info(f'Tokenizing in "{unshuf_filename}"...') outputfile: TokenizedFile = self.write_unshuffled(data, unshuf_filename) if len(outputfile) == 0: logger.warning('No data saved.') return if self.shuffle: logger.info('Shuffling...') outputfile.copy(self.save_filename, self.rand.permutation(len(outputfile.doc_ends)), self.output_folder, max_tokens_per_file=self.max_tokens_per_file, rank=rank) outputfile.cleanup() # File: datatrove-main/src/datatrove/pipeline/writers/disk_base.py import dataclasses import os.path from abc import ABC, abstractmethod from collections import Counter from string import Template from types import MethodType from typing import IO, Callable from datatrove.data import Document, DocumentsPipeline from datatrove.io import DataFolderLike, get_datafolder from datatrove.pipeline.base import PipelineStep from datatrove.utils.typeshelper import StatHints class DiskWriter(PipelineStep, ABC): default_output_filename: str = None type = '💽 - WRITER' def __init__(self, output_folder: DataFolderLike, output_filename: str=None, compression: str | None='infer', adapter: Callable=None, mode: str='wt', expand_metadata: bool=False, max_file_size: int=-1): super().__init__() self.compression = compression self.output_folder = get_datafolder(output_folder) output_filename = output_filename or self.default_output_filename if self.compression == 'gzip' and (not output_filename.endswith('.gz')): output_filename += '.gz' elif self.compression == 'zstd' and (not output_filename.endswith('.zst')): output_filename += '.zst' self.max_file_size = max_file_size self.file_id_counter = Counter() if self.max_file_size > 0 and mode != 'wb': raise ValueError('Can only specify `max_file_size` when writing in binary mode!') self.output_filename = Template(output_filename) self.output_mg = self.output_folder.get_output_file_manager(mode=mode, compression=compression) self.adapter = MethodType(adapter, self) if adapter else self._default_adapter self.expand_metadata = expand_metadata def _default_adapter(self, document: Document) -> dict: data = {key: val for (key, val) in dataclasses.asdict(document).items() if val} if self.expand_metadata and 'metadata' in data: data |= data.pop('metadata') return data def __enter__(self): return self def close(self): self.output_mg.close() def __exit__(self, exc_type, exc_val, exc_tb): self.close() def _get_output_filename(self, document: Document, rank: int | str=0, **kwargs) -> str: return self.output_filename.substitute({'rank': str(rank).zfill(5), 'id': document.id, **document.metadata, **kwargs}) @abstractmethod def _write(self, document: dict, file_handler: IO, filename: str): raise NotImplementedError def _on_file_switch(self, _original_name, old_filename, _new_filename): self.output_mg.pop(old_filename).close() def _get_filename_with_file_id(self, filename): if os.path.dirname(filename): return f'{os.path.dirname(filename)}/{self.file_id_counter[filename]:03d}_{os.path.basename(filename)}' return f'{self.file_id_counter[filename]:03d}_{os.path.basename(filename)}' def write(self, document: Document, rank: int=0, **kwargs): original_name = output_filename = self._get_output_filename(document, rank, **kwargs) if self.max_file_size > 0: output_filename = self._get_filename_with_file_id(original_name) if self.output_mg.get_file(output_filename).tell() >= self.max_file_size: self.file_id_counter[original_name] += 1 new_output_filename = self._get_filename_with_file_id(original_name) self._on_file_switch(original_name, output_filename, new_output_filename) output_filename = new_output_filename self._write(self.adapter(document), self.output_mg.get_file(output_filename), original_name) self.stat_update(self._get_output_filename(document, 'XXXXX', **kwargs)) self.stat_update(StatHints.total) self.update_doc_stats(document) def run(self, data: DocumentsPipeline, rank: int=0, world_size: int=1) -> DocumentsPipeline: with self: for document in data: with self.track_time(): self.write(document, rank) yield document # File: datatrove-main/src/datatrove/pipeline/writers/huggingface.py import os import random import tempfile import time from typing import Callable from huggingface_hub import CommitOperationAdd, create_commit, create_repo, preupload_lfs_files from huggingface_hub.utils import HfHubHTTPError from datatrove.io import DataFolderLike, get_datafolder from datatrove.pipeline.writers import ParquetWriter from datatrove.utils.logging import logger MAX_RETRIES = 12 BASE_DELAY = 0.1 class HuggingFaceDatasetWriter(ParquetWriter): default_output_filename: str = 'data/${rank}.parquet' name = '🤗 HuggingFace' def __init__(self, dataset: str, private: bool=True, local_working_dir: DataFolderLike | None=None, output_filename: str=None, compression: str | None=None, adapter: Callable=None, cleanup: bool=True, expand_metadata: bool=True, max_file_size: int=round(4.5 * 2 ** 30)): self.dataset = dataset self.private = private self.local_working_dir = get_datafolder(local_working_dir if local_working_dir else tempfile.TemporaryDirectory()) self.cleanup = cleanup if not self.local_working_dir.is_local(): raise ValueError('local_working_dir must be a local path') if os.environ.get('HF_HUB_ENABLE_HF_TRANSFER', '0') != '1': logger.warning('HF_HUB_ENABLE_HF_TRANSFER is not set to "1". Install hf_transfer and set the env variable for faster uploads:\npip install hf-transfer\nexport HF_HUB_ENABLE_HF_TRANSFER=1') super().__init__(output_folder=local_working_dir, output_filename=output_filename, compression=compression, adapter=adapter, expand_metadata=expand_metadata, max_file_size=max_file_size) self.operations = [] self._repo_init = False def upload_files(self, *filenames): if not self._repo_init: create_repo(self.dataset, private=self.private, repo_type='dataset', exist_ok=True) self._repo_init = True additions = [CommitOperationAdd(path_in_repo=filename, path_or_fileobj=self.local_working_dir.resolve_paths(filename)) for filename in filenames] logger.info(f"Uploading {','.join(filenames)} to the hub...") preupload_lfs_files(self.dataset, repo_type='dataset', additions=additions) logger.info(f"Upload of {','.join(filenames)} to the hub complete!") if self.cleanup: for filename in filenames: self.local_working_dir.rm(filename) self.operations.extend(additions) def close(self, rank: int=0): filelist = list(self.output_mg.get_open_files().keys()) super().close() if filelist: logger.info(f'Starting upload of {len(filelist)} files to {self.dataset}') self.upload_files(*filelist) retries = 0 while True: try: create_commit(self.dataset, repo_type='dataset', operations=self.operations, commit_message=f'DataTrove upload ({len(self.operations)} files)') break except HfHubHTTPError as e: if 'A commit has happened since' in e.server_message: if retries >= MAX_RETRIES: logger.error(f'Failed to create commit after MAX_RETRIES={MAX_RETRIES!r}. Giving up.') raise e logger.info('Commit creation race condition issue. Waiting...') time.sleep(BASE_DELAY * 2 ** retries + random.uniform(0, 2)) retries += 1 else: raise e def _on_file_switch(self, original_name, old_filename, new_filename): super()._on_file_switch(original_name, old_filename, new_filename) self.upload_files(old_filename) # File: datatrove-main/src/datatrove/pipeline/writers/jsonl.py from typing import IO, Callable from datatrove.io import DataFolderLike from datatrove.pipeline.writers.disk_base import DiskWriter class JsonlWriter(DiskWriter): default_output_filename: str = '${rank}.jsonl' name = '🐿 Jsonl' _requires_dependencies = ['orjson'] def __init__(self, output_folder: DataFolderLike, output_filename: str=None, compression: str | None='gzip', adapter: Callable=None, expand_metadata: bool=False, max_file_size: int=-1): super().__init__(output_folder, output_filename=output_filename, compression=compression, adapter=adapter, expand_metadata=expand_metadata, mode='wb', max_file_size=max_file_size) def _write(self, document: dict, file_handler: IO, _filename: str): import orjson file_handler.write(orjson.dumps(document, option=orjson.OPT_APPEND_NEWLINE)) # File: datatrove-main/src/datatrove/pipeline/writers/parquet.py from collections import Counter, defaultdict from typing import IO, Callable, Literal from datatrove.io import DataFolderLike from datatrove.pipeline.writers.disk_base import DiskWriter class ParquetWriter(DiskWriter): default_output_filename: str = '${rank}.parquet' name = '📒 Parquet' _requires_dependencies = ['pyarrow'] def __init__(self, output_folder: DataFolderLike, output_filename: str=None, compression: Literal['snappy', 'gzip', 'brotli', 'lz4', 'zstd'] | None=None, adapter: Callable=None, batch_size: int=1000, expand_metadata: bool=False, max_file_size: int=5 * 2 ** 30): if compression not in {'snappy', 'gzip', 'brotli', 'lz4', 'zstd', None}: raise ValueError("Invalid compression type. Allowed types are 'snappy', 'gzip', 'brotli', 'lz4', 'zstd', or None.") super().__init__(output_folder, output_filename, compression=None, adapter=adapter, mode='wb', expand_metadata=expand_metadata, max_file_size=max_file_size) self._writers = {} self._batches = defaultdict(list) self._file_counter = Counter() self.compression = compression self.batch_size = batch_size def _on_file_switch(self, original_name, old_filename, new_filename): self._writers.pop(original_name).close() super()._on_file_switch(original_name, old_filename, new_filename) def _write_batch(self, filename): if not self._batches[filename]: return import pyarrow as pa batch = pa.RecordBatch.from_pylist(self._batches.pop(filename)) self._writers[filename].write_batch(batch) def _write(self, document: dict, file_handler: IO, filename: str): import pyarrow as pa import pyarrow.parquet as pq if filename not in self._writers: self._writers[filename] = pq.ParquetWriter(file_handler, schema=pa.RecordBatch.from_pylist([document]).schema, compression=self.compression) self._batches[filename].append(document) if len(self._batches[filename]) == self.batch_size: self._write_batch(filename) def close(self): for filename in list(self._batches.keys()): self._write_batch(filename) for writer in self._writers.values(): writer.close() self._batches.clear() self._writers.clear() super().close() # File: datatrove-main/src/datatrove/tools/check_dataset.py import argparse import os import struct from typing import IO import numpy as np from tqdm import tqdm from datatrove.io import DataFolder, get_datafolder from datatrove.utils.tokenization import load_tokenizer parser = argparse.ArgumentParser() parser.add_argument('data', type=str, help='path to folder with dataset to check', nargs='?', default=os.getcwd()) parser.add_argument('-t', '--tokenizer', type=str, help='tokenizer to use', default='gpt2') parser.add_argument('--eos', type=str, help='eos token', default='<|endoftext|>') '' def load_doc_ends(file: IO): with file as f: return np.frombuffer(f.read(), dtype=np.uint64).tolist() def load_dataset_bytes(file, doc_ends, bytes_per_value: int=2): with file as f: for (start, end) in zip([0] + doc_ends[:-1], doc_ends): data = f.read((end - start) * bytes_per_value) assert len(data) == (end - start) * bytes_per_value, 'Could not read correct number of bytes' yield data assert f.read(1) == b'', 'Dataset should be exhausted but there is more data to read' def check_dataset(input_folder: DataFolder, tokenizer: str='gpt2', eos_token: str='<|endoftext|>'): tokenizer = load_tokenizer(tokenizer) eos_token = tokenizer.token_to_id(eos_token) def open_file(path): return input_folder.open(path, 'rb') datafiles = input_folder.list_files(glob_pattern='*.ds') datafiles_index = input_folder.list_files(glob_pattern='*.ds.index') datafiles_loss = input_folder.list_files(glob_pattern='*.ds.loss') check_loss = bool(datafiles_loss) assert len(datafiles) == len(datafiles_index) and (not check_loss or len(datafiles) == len(datafiles_loss)), 'Mismatch between number of .ds, .ds.index and/or .ds.loss files' doc_ends = [load_doc_ends(open_file(file)) for file in datafiles_index] token_inputs = [load_dataset_bytes(open_file(path), ends) for (path, ends) in zip(datafiles, doc_ends)] loss_inputs = [load_dataset_bytes(open_file(path), ends, bytes_per_value=1) for (path, ends) in zip(datafiles_loss, doc_ends)] if check_loss else [None] * len(token_inputs) for (filei, (file_doc_ends, file_token_inputs, file_loss_inputs)) in enumerate(zip(doc_ends, token_inputs, loss_inputs)): for (doci, tokens) in tqdm(enumerate(file_token_inputs), total=len(file_doc_ends)): last_token = struct.unpack(' 5000)", default=False): filter_expr_text = Confirm.get_input(console, 'Type your filtering expression: ', password=False) filter_expr = get_filter_expr(filter_expr_text) good_samples = [] bad_samples = [] iterator = sampler(reader()) try: for sample in iterator: if not filter_expr(sample): continue with console.pager(styles=True): console.print(Panel(f'[yellow]Data ID:[reset] {sample.id}\n[yellow]Metadata:[reset]\n' + '\n'.join((f'- [blue]{field}: [reset] {value}' for (field, value) in sample.metadata.items())))) console.print(sample.text) if label_folder: result = Prompt.ask("To label as good/bad example enter 'g'/'b'. Enter 'q' to skip labelling and move to the next sample. Enter 'e' (exit) to leave:", console=console, choices=['g', 'b', 'e', 'q']) if result == 'g': good_samples.append(sample) elif result == 'b': bad_samples.append(sample) elif result == 'e': break except Exception: console.print_exception() finally: if good_samples and label_folder: with JsonlWriter(label_folder, 'good_samples.jsonl', compression=None) as writer: for sample in good_samples: writer.write(sample) if bad_samples and label_folder: with JsonlWriter(label_folder, 'bad_samples.jsonl', compression=None) as writer: for sample in bad_samples: writer.write(sample) if __name__ == '__main__': main() # File: datatrove-main/src/datatrove/tools/jobs_status.py import argparse import json import os.path from rich.console import Console from datatrove.io import get_datafolder from datatrove.utils._import_utils import is_rich_available from datatrove.utils.logging import logger if not is_rich_available(): raise ImportError('Please install `rich` to run this command (`pip install rich`).') parser = argparse.ArgumentParser('Fetch all jobs that are running or complete.') parser.add_argument('path', type=str, nargs='?', help='Path to the logging folder. Defaults to current directory.', default=os.getcwd()) parser.add_argument('-p', '--log_prefix', type=str, nargs='?', help='Prefix of logging folders to be scanned.', default='') parser.add_argument('-hc', '--hide_complete', help='Hide all jobs that are already complete.', action='store_true') def main(): args = parser.parse_args() console = Console() main_folder = get_datafolder(args.path) logging_dirs = [f for (f, info) in main_folder.glob(f'{args.log_prefix}*', detail=True, maxdepth=1).items() if info['type'] == 'directory'] logger.remove() complete_jobs = 0 incomplete_jobs = 0 complete_tasks = 0 incomplete_tasks = 0 for path in logging_dirs: logging_dir = get_datafolder(main_folder.resolve_paths(path)) if not logging_dir.isfile('executor.json'): console.log(f'Could not find "executor.json" in the given directory ({path}). Are you sure it is a logging folder?', style='red') continue with logging_dir.open('executor.json', 'rt') as f: world_size = json.load(f).get('world_size', None) if not world_size: console.log(f'Could not get the total number of tasks in {path}, please try relaunching the run.', style='red') continue with console.status('Fetching list of incomplete tasks'): completed = set(logging_dir.list_files('completions')) incomplete = set(filter(lambda rank: f'completions/{rank:05d}' not in completed, range(world_size))) complete_tasks += len(completed) incomplete_tasks += len(incomplete) if len(incomplete) == 0: emoji = '✅' complete_jobs += 1 else: emoji = '❌' incomplete_jobs += 1 if len(incomplete) > 0 or not args.hide_complete: console.log(f"{emoji} {path + ':': <50}{len(completed)}/{world_size} ({len(completed) / world_size:.0%}) completed tasks.") if complete_jobs + incomplete_jobs > 0: console.log(f'Summary: {complete_jobs}/{complete_jobs + incomplete_jobs} ({complete_jobs / (complete_jobs + incomplete_jobs):.0%}) jobs completed, {complete_tasks}/{complete_tasks + incomplete_tasks} ({complete_tasks / (complete_tasks + incomplete_tasks):.0%}) tasks completed.') else: console.log('No jobs found.') if __name__ == '__main__': main() # File: datatrove-main/src/datatrove/tools/launch_pickled_pipeline.py import argparse import dill from datatrove.executor.base import PipelineExecutor from datatrove.io import open_file parser = argparse.ArgumentParser('Loads a pickled pipeline executor and launches it.') parser.add_argument('path', type=str, help='Path to the pickled file (usually a file called executor.pik)') def main(): args = parser.parse_args() with open_file(args.path, 'rb') as f: executor: PipelineExecutor = dill.load(f) executor.run() if __name__ == '__main__': main() # File: datatrove-main/src/datatrove/tools/merge_stats.py import argparse import json import os.path from tqdm import tqdm from datatrove.io import get_datafolder, open_file from datatrove.utils.logging import logger from datatrove.utils.stats import PipelineStats parser = argparse.ArgumentParser('Combine and average per task statistics into a single file.') parser.add_argument('path', type=str, nargs='?', help='Path to the stats folder. Defaults to current directory.', default=os.getcwd()) parser.add_argument('--output', '-o', type=str, help="Save file location. Defaults to 'merged_stats.json'.", default='merged_stats.json') def main(): args = parser.parse_args() stats_folder = get_datafolder(args.path) path = args.output stats = [] for file in tqdm(stats_folder.list_files()): with stats_folder.open(file, 'rt') as f: stats.append(PipelineStats.from_json(json.load(f))) merged = sum(tqdm(stats), start=PipelineStats()) with open_file(path, mode='wt') as f: merged.save_to_disk(f) logger.info(f'Processing complete. Results saved to {path}.') logger.info(merged) if __name__ == '__main__': main()