Datasets:
Tasks:
Text Generation
Formats:
parquet
Sub-tasks:
language-modeling
Languages:
Danish
Size:
1M - 10M
License:
File size: 10,396 Bytes
73fd2fd f2ad4e1 73fd2fd f2ad4e1 73fd2fd 9c15515 73fd2fd ef0f90a 73fd2fd 9c15515 f2ad4e1 ef0f90a f2ad4e1 73fd2fd 9c15515 73fd2fd 9c15515 38b692a 9c15515 73fd2fd 9c15515 73fd2fd 9c15515 73fd2fd 9c15515 73fd2fd ef0f90a 73fd2fd f2ad4e1 ef0f90a f2ad4e1 38b692a f2ad4e1 73fd2fd f2ad4e1 73fd2fd 38b692a 73fd2fd f2ad4e1 c0f5fe9 f2ad4e1 ef0f90a 38b692a 546c3b3 ef0f90a 546c3b3 ef0f90a 546c3b3 ef0f90a 3e28a50 ef0f90a 546c3b3 ef0f90a 546c3b3 ef0f90a 546c3b3 ef0f90a 38b692a ef0f90a 936cd0c f2ad4e1 38b692a f2ad4e1 546c3b3 f2ad4e1 546c3b3 f2ad4e1 73fd2fd 546c3b3 f2ad4e1 546c3b3 f2ad4e1 c0f5fe9 f2ad4e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
"""
A simple CLI to updates descriptive statistics on all datasets.
Example use:
python update_descriptive_statistics.py --dataset wikisource
"""
import argparse
import json
import logging
import multiprocessing
from dataclasses import dataclass
from pathlib import Path
from textwrap import dedent
from typing import Self, cast
import pandas as pd
from datasets import Dataset, load_dataset
from transformers import AutoTokenizer
from git_utilities import check_is_ancestor, get_current_revision, get_latest_revision
from tests.readme_parsing import get_tag_content, read_frontmatter_and_body, replace_tag
logger = logging.getLogger(__name__)
repo_path = Path(__file__).parent.parent
tokenizer_name = "AI-Sweden-Models/Llama-3-8B-instruct"
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=True)
def human_readable_large_int(value: int) -> str:
thresholds = [
(1_000_000_000, "B"),
(1_000_000, "M"),
(1_000, "K"),
]
for threshold, label in thresholds:
if value > threshold:
return f"{value/threshold:.2f}{label}"
return str(value)
def calculate_average_document_length(
dataset: Dataset, text_column: str = "text"
) -> float:
texts = sum(len(t) for t in dataset[text_column])
return texts / len(dataset)
def _count_tokens(batch):
return {
"token_count": [
len(tokens)
for tokens in tokenizer(batch["text"], padding=False)["input_ids"] # type: ignore
]
}
def calculate_number_of_tokens(
dataset: Dataset,
text_column: str = "text",
) -> int:
token_counts = dataset.map(
_count_tokens,
batched=True,
batch_size=1000,
num_proc=multiprocessing.cpu_count(),
)
return sum(token_counts["token_count"])
@dataclass()
class DescriptiveStatsOverview:
number_of_samples: int
average_document_length: float
number_of_tokens: int
language: str = "dan, dansk, Danish"
@classmethod
def from_dataset(cls, dataset: Dataset) -> Self:
return cls(
number_of_samples=len(dataset),
average_document_length=calculate_average_document_length(dataset),
number_of_tokens=calculate_number_of_tokens(dataset),
)
def to_markdown(self) -> str:
format = dedent(f"""
- **Language**: {self.language}
- **Number of samples**: {human_readable_large_int(self.number_of_samples)}
- **Number of tokens (Llama 3)**: {human_readable_large_int(self.number_of_tokens)}
- **Average document length (characters)**: {self.average_document_length:.2f}
""")
return format
def add_to_markdown(self, markdown: str) -> str:
return replace_tag(
markdown=markdown, package=self.to_markdown(), tag="DESC-STATS"
)
def to_disk(self, path: Path):
data = self.__dict__
data["revision"] = get_current_revision()
with path.with_suffix(".json").open("w") as f:
json.dump(self.__dict__, f)
@classmethod
def from_disk(cls, path: Path):
with path.open("r") as f:
data = json.load(f)
if "revision" in data:
data.pop("revision")
obj = cls(**data)
return obj
sample_template = """
```py
{sample}
```
### Data Fields
An entry in the dataset consists of the following fields:
- `text`(`str`): The content of the document.
- `source` (`str`): The source of the document (see [Source Data](#source-data)).
- `id` (`str`): An unique identifier for each document.
- `added` (`str`): An date for when the document was added to this collection.
- `created` (`str`): An date range for when the document was originally created.
- `license` (`str`): The license of the document. The licenses vary according to the source.
- `domain` (`str`): The domain of the source
- `metadata/source-pretty` (`str`): The long form version of the short-form source name
- `metadata/*`: Potentially additional metadata
"""
def create_sample(dataset: Dataset, max_str_len: int = 100) -> str:
sample = dataset[0]
for k in sample:
if isinstance(k, str) and len(sample[k]) > max_str_len:
sample[k] = sample[k][:max_str_len] + "[...]"
json_sample = json.dumps(sample, indent=2, ensure_ascii=False)
sample_str = sample_template.format(sample=json_sample)
return sample_str
def update_statitics(
dataset_path: Path,
name: str,
readme_name: None | str = None,
force: bool = False,
) -> None:
rev = get_latest_revision(dataset_path)
desc_stats_path = dataset_path / "descriptive_stats.json"
if desc_stats_path.exists() and force is False:
with desc_stats_path.open("r") as f:
last_update = json.load(f).get("revision", None)
if last_update is None:
logging.warning(f"revision is not defined in {desc_stats_path}.")
elif check_is_ancestor(ancestor_rev=last_update, rev=rev):
logging.info(
f"descriptive statistics for '{name}' is already up to date, skipping."
)
return
logger.info(f"Updating statistics for {name}")
ds = load_dataset(str(repo_path), name, split="train")
ds = cast(Dataset, ds)
desc_stats = DescriptiveStatsOverview.from_dataset(ds)
readme_name = f"{name}.md" if readme_name is None else readme_name
markdown_path = dataset_path / readme_name
with markdown_path.open("r") as f:
markdown = f.read()
new_markdown = desc_stats.add_to_markdown(markdown)
new_markdown = replace_tag(
markdown=new_markdown, package=create_sample(ds), tag="SAMPLE"
)
with markdown_path.open("w") as f:
f.write(new_markdown)
desc_stats.to_disk(desc_stats_path)
def create_parser():
parser = argparse.ArgumentParser(
description="Calculated descriptive statistics of the datasets in tha data folder"
)
parser.add_argument(
"--dataset",
default=None,
type=str,
help="Use to specify if you only want to compute the statistics from a singular dataset.",
)
parser.add_argument(
"--logging_level",
default=20,
type=int,
help="Sets the logging level. Default to 20 (INFO), other reasonable levels are 10 (DEBUG) and 30 (WARNING).",
)
parser.add_argument(
"--force",
type=bool,
default=False,
action=argparse.BooleanOptionalAction,
help="Should the statistics be forcefully recomputed. By default it checks the difference in commit ids.",
)
parser.add_argument(
"--repo_path",
default=str(repo_path),
type=str,
help="The repository where to calculate the descriptive statistics from",
)
return parser
def create_main_table(repo_path: Path = repo_path) -> tuple[pd.DataFrame, str, str]:
frontmatter, _ = read_frontmatter_and_body(repo_path / "README.md")
datasets = [
cfg["config_name"]
for cfg in frontmatter["configs"]
if cfg["config_name"] != "default"
]
table = {
"Source": [],
"Description": [],
# "Domain": [], # TODO Add domain
"N. Tokens": [],
"License": [],
}
readme_references = ""
license_references = (
"[CC-0]: https://creativecommons.org/publicdomain/zero/1.0/legalcode.en\n"
+ "[CC-BY-SA 4.0]: https://creativecommons.org/licenses/by-sa/4.0/deed.en\n"
)
for dataset in datasets:
dataset_path = repo_path / "data" / dataset
readme_path = dataset_path / f"{dataset_path.name}.md"
frontmatter, body = read_frontmatter_and_body(readme_path)
desc_stats = DescriptiveStatsOverview.from_disk(
dataset_path / "descriptive_stats.json"
)
short_description = get_tag_content(body, tag="SHORT DESCRIPTION").strip()[
:-1
] # to exclude "."
license, license_name = frontmatter["license"], frontmatter["license_name"]
table["Source"] += [f"[{dataset_path.name}]"]
readme_references += (
f"[{dataset_path.name}]: data/{dataset_path.name}/{dataset_path.name}.md\n"
)
table["License"] += [f"[{license_name}]"]
if license == "other":
license_references += f"[{license_name}]: ./data/{dataset_path.name}/{dataset_path.name}.md#license-information\n"
table["Description"] += [short_description]
table["N. Tokens"] += [desc_stats.number_of_tokens]
# total
table["Source"] += ["**Total**"]
# table["Domain"] += [""]
table["License"] += [""]
table["Description"] += [""]
table["N. Tokens"] += [sum(table["N. Tokens"])]
df = pd.DataFrame.from_dict(table)
df["N. Tokens"] = df["N. Tokens"].apply(human_readable_large_int)
return df, readme_references, license_references
def update_main_table(repo_path: Path = repo_path) -> None:
logging.info("Updating MAIN TABLE")
main_table, readme_references, license_references = create_main_table(repo_path)
readme_path = repo_path / "README.md"
with readme_path.open("r") as f:
markdown = f.read()
package = f"{main_table.to_markdown(index=False)}\n\n{readme_references}\n\n{license_references}\n\n"
markdown = replace_tag(markdown, package=package, tag="MAIN TABLE")
with readme_path.open("w") as f:
f.write(markdown)
def main(
dataset: str | None = None,
logging_level: int = 20,
force: bool = False,
repo_path: Path = repo_path,
) -> None:
logging.basicConfig(level=logging_level)
if dataset and dataset != "default":
dataset_path = repo_path / "data" / dataset
update_statitics(dataset_path, dataset_path.name, force=force)
return
if dataset is None:
datasets = (repo_path / "data").glob("*")
for dataset_path in datasets:
update_statitics(dataset_path, dataset_path.name, force=force)
if dataset is None or dataset == "default":
update_statitics(repo_path, "default", "README.md", force=force)
update_main_table(repo_path)
if __name__ == "__main__":
parser = create_parser()
args = parser.parse_args()
main(
args.dataset,
logging_level=args.logging_level,
force=args.force,
repo_path=Path(args.repo_path),
)
|