dannymartin commited on
Commit
5714dbc
1 Parent(s): 66a2894

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +218 -48
README.md CHANGED
@@ -1,50 +1,220 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: text
5
- dtype: string
6
- id: field
7
- - name: label
8
- list:
9
- - name: user_id
10
- dtype: string
11
- id: question
12
- - name: value
13
- sequence: string
14
- id: question
15
- - name: status
16
- dtype: string
17
- id: question
18
- - name: label-suggestion
19
- sequence: string
20
- id: suggestion
21
- - name: label-suggestion-metadata
22
- struct:
23
- - name: type
24
- dtype: string
25
- id: suggestion-metadata
26
- - name: score
27
- sequence:
28
- dtype: float32
29
- id: suggestion-metadata
30
- - name: agent
31
- dtype: string
32
- id: suggestion-metadata
33
- - name: external_id
34
- dtype: string
35
- id: external_id
36
- - name: metadata
37
- dtype: string
38
- id: metadata
39
- splits:
40
- - name: train
41
- num_bytes: 2173729
42
- num_examples: 1559
43
- download_size: 1099549
44
- dataset_size: 2173729
45
- configs:
46
- - config_name: default
47
- data_files:
48
- - split: train
49
- path: data/train-*
50
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ size_categories: 1K<n<10K
3
+ tags:
4
+ - rlfh
5
+ - argilla
6
+ - human-feedback
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  ---
8
+
9
+ # Dataset Card for argilla-contextual-ai
10
+
11
+ This dataset has been created with [Argilla](https://docs.argilla.io).
12
+
13
+ As shown in the sections below, this dataset can be loaded into Argilla as explained in [Load with Argilla](#load-with-argilla), or used directly with the `datasets` library in [Load with `datasets`](#load-with-datasets).
14
+
15
+ ## Dataset Description
16
+
17
+ - **Homepage:** https://argilla.io
18
+ - **Repository:** https://github.com/argilla-io/argilla
19
+ - **Paper:**
20
+ - **Leaderboard:**
21
+ - **Point of Contact:**
22
+
23
+ ### Dataset Summary
24
+
25
+ This dataset contains:
26
+
27
+ * A dataset configuration file conforming to the Argilla dataset format named `argilla.yaml`. This configuration file will be used to configure the dataset when using the `FeedbackDataset.from_huggingface` method in Argilla.
28
+
29
+ * Dataset records in a format compatible with HuggingFace `datasets`. These records will be loaded automatically when using `FeedbackDataset.from_huggingface` and can be loaded independently using the `datasets` library via `load_dataset`.
30
+
31
+ * The [annotation guidelines](#annotation-guidelines) that have been used for building and curating the dataset, if they've been defined in Argilla.
32
+
33
+ ### Load with Argilla
34
+
35
+ To load with Argilla, you'll just need to install Argilla as `pip install argilla --upgrade` and then use the following code:
36
+
37
+ ```python
38
+ import argilla as rg
39
+
40
+ ds = rg.FeedbackDataset.from_huggingface("dannymartin/argilla-contextual-ai")
41
+ ```
42
+
43
+ ### Load with `datasets`
44
+
45
+ To load this dataset with `datasets`, you'll just need to install `datasets` as `pip install datasets --upgrade` and then use the following code:
46
+
47
+ ```python
48
+ from datasets import load_dataset
49
+
50
+ ds = load_dataset("dannymartin/argilla-contextual-ai")
51
+ ```
52
+
53
+ ### Supported Tasks and Leaderboards
54
+
55
+ This dataset can contain [multiple fields, questions and responses](https://docs.argilla.io/en/latest/conceptual_guides/data_model.html#feedback-dataset) so it can be used for different NLP tasks, depending on the configuration. The dataset structure is described in the [Dataset Structure section](#dataset-structure).
56
+
57
+ There are no leaderboards associated with this dataset.
58
+
59
+ ### Languages
60
+
61
+ [More Information Needed]
62
+
63
+ ## Dataset Structure
64
+
65
+ ### Data in Argilla
66
+
67
+ The dataset is created in Argilla with: **fields**, **questions**, **suggestions**, **metadata**, **vectors**, and **guidelines**.
68
+
69
+ The **fields** are the dataset records themselves, for the moment just text fields are supported. These are the ones that will be used to provide responses to the questions.
70
+
71
+ | Field Name | Title | Type | Required | Markdown |
72
+ | ---------- | ----- | ---- | -------- | -------- |
73
+ | text | Text | text | True | False |
74
+
75
+
76
+ The **questions** are the questions that will be asked to the annotators. They can be of different types, such as rating, text, label_selection, multi_label_selection, or ranking.
77
+
78
+ | Question Name | Title | Type | Required | Description | Values/Labels |
79
+ | ------------- | ----- | ---- | -------- | ----------- | ------------- |
80
+ | label | Label | multi_label_selection | True | Classify the text by selecting the correct label from the given list of labels. | ['Baking', 'Grilling', 'Slow cooking', 'Pressure cooking', 'Air-fryer', 'Smoking', 'Pickling', 'Roasting', 'Steaming', 'Boiling', 'Sautéing', 'Sous vide', 'Stir-frying'] |
81
+
82
+
83
+ The **suggestions** are human or machine generated recommendations for each question to assist the annotator during the annotation process, so those are always linked to the existing questions, and named appending "-suggestion" and "-suggestion-metadata" to those, containing the value/s of the suggestion and its metadata, respectively. So on, the possible values are the same as in the table above, but the column name is appended with "-suggestion" and the metadata is appended with "-suggestion-metadata".
84
+
85
+ The **metadata** is a dictionary that can be used to provide additional information about the dataset record. This can be useful to provide additional context to the annotators, or to provide additional information about the dataset record itself. For example, you can use this to provide a link to the original source of the dataset record, or to provide additional information about the dataset record itself, such as the author, the date, or the source. The metadata is always optional, and can be potentially linked to the `metadata_properties` defined in the dataset configuration file in `argilla.yaml`.
86
+
87
+
88
+
89
+ | Metadata Name | Title | Type | Values | Visible for Annotators |
90
+ | ------------- | ----- | ---- | ------ | ---------------------- |
91
+
92
+
93
+ The **guidelines**, are optional as well, and are just a plain string that can be used to provide instructions to the annotators. Find those in the [annotation guidelines](#annotation-guidelines) section.
94
+
95
+ ### Data Instances
96
+
97
+ An example of a dataset instance in Argilla looks as follows:
98
+
99
+ ```json
100
+ {
101
+ "external_id": "record-0",
102
+ "fields": {
103
+ "text": "Recipe: Zinger Green Tea Drink\nDescription: I got an email from Biggest Loser with this recipe on it. \r\nThis is refreshing drink that\u0027s perfect for spring. Packed with antioxidants, this tea is bursting with flavor, too. Fresh lime juice gives it a tangy zing and a wallop of vitamin C.\nIngredients: [{\"text\": \"6 cups water\"}, {\"text\": \"1 cup firmly packed fresh mint leaves\"}, {\"text\": \"3 green tea bags\"}, {\"text\": \"1 1/3 cups agave nectar\"}, {\"text\": \"1 1/3 cups fresh lime juice\"}, {\"text\": \"6 lime slices, for garnish\"}]\nInstructions: Bring the water to boil in a 3-quart saucepan. Add the mint and tea bags, remove from the heat, and let steep for 5 minutes. \r\nStrain.\r\nStir in the agave and lime juice. \r\nServe hot or iced, garnished with the lime slices. \r\nmakes 11.2 quarts.\n"
104
+ },
105
+ "metadata": {},
106
+ "responses": [],
107
+ "suggestions": [],
108
+ "vectors": {}
109
+ }
110
+ ```
111
+
112
+ While the same record in HuggingFace `datasets` looks as follows:
113
+
114
+ ```json
115
+ {
116
+ "external_id": "record-0",
117
+ "label": [],
118
+ "label-suggestion": null,
119
+ "label-suggestion-metadata": {
120
+ "agent": null,
121
+ "score": null,
122
+ "type": null
123
+ },
124
+ "metadata": "{}",
125
+ "text": "Recipe: Zinger Green Tea Drink\nDescription: I got an email from Biggest Loser with this recipe on it. \r\nThis is refreshing drink that\u0027s perfect for spring. Packed with antioxidants, this tea is bursting with flavor, too. Fresh lime juice gives it a tangy zing and a wallop of vitamin C.\nIngredients: [{\"text\": \"6 cups water\"}, {\"text\": \"1 cup firmly packed fresh mint leaves\"}, {\"text\": \"3 green tea bags\"}, {\"text\": \"1 1/3 cups agave nectar\"}, {\"text\": \"1 1/3 cups fresh lime juice\"}, {\"text\": \"6 lime slices, for garnish\"}]\nInstructions: Bring the water to boil in a 3-quart saucepan. Add the mint and tea bags, remove from the heat, and let steep for 5 minutes. \r\nStrain.\r\nStir in the agave and lime juice. \r\nServe hot or iced, garnished with the lime slices. \r\nmakes 11.2 quarts.\n"
126
+ }
127
+ ```
128
+
129
+ ### Data Fields
130
+
131
+ Among the dataset fields, we differentiate between the following:
132
+
133
+ * **Fields:** These are the dataset records themselves, for the moment just text fields are supported. These are the ones that will be used to provide responses to the questions.
134
+
135
+ * **text** is of type `text`.
136
+
137
+ * **Questions:** These are the questions that will be asked to the annotators. They can be of different types, such as `RatingQuestion`, `TextQuestion`, `LabelQuestion`, `MultiLabelQuestion`, and `RankingQuestion`.
138
+
139
+ * **label** is of type `multi_label_selection` with the following allowed values ['Baking', 'Grilling', 'Slow cooking', 'Pressure cooking', 'Air-fryer', 'Smoking', 'Pickling', 'Roasting', 'Steaming', 'Boiling', 'Sautéing', 'Sous vide', 'Stir-frying'], and description "Classify the text by selecting the correct label from the given list of labels.".
140
+
141
+ * **Suggestions:** As of Argilla 1.13.0, the suggestions have been included to provide the annotators with suggestions to ease or assist during the annotation process. Suggestions are linked to the existing questions, are always optional, and contain not just the suggestion itself, but also the metadata linked to it, if applicable.
142
+
143
+ * (optional) **label-suggestion** is of type `multi_label_selection` with the following allowed values ['Baking', 'Grilling', 'Slow cooking', 'Pressure cooking', 'Air-fryer', 'Smoking', 'Pickling', 'Roasting', 'Steaming', 'Boiling', 'Sautéing', 'Sous vide', 'Stir-frying'].
144
+
145
+
146
+
147
+ Additionally, we also have two more fields that are optional and are the following:
148
+
149
+ * **metadata:** This is an optional field that can be used to provide additional information about the dataset record. This can be useful to provide additional context to the annotators, or to provide additional information about the dataset record itself. For example, you can use this to provide a link to the original source of the dataset record, or to provide additional information about the dataset record itself, such as the author, the date, or the source. The metadata is always optional, and can be potentially linked to the `metadata_properties` defined in the dataset configuration file in `argilla.yaml`.
150
+ * **external_id:** This is an optional field that can be used to provide an external ID for the dataset record. This can be useful if you want to link the dataset record to an external resource, such as a database or a file.
151
+
152
+ ### Data Splits
153
+
154
+ The dataset contains a single split, which is `train`.
155
+
156
+ ## Dataset Creation
157
+
158
+ ### Curation Rationale
159
+
160
+ [More Information Needed]
161
+
162
+ ### Source Data
163
+
164
+ #### Initial Data Collection and Normalization
165
+
166
+ [More Information Needed]
167
+
168
+ #### Who are the source language producers?
169
+
170
+ [More Information Needed]
171
+
172
+ ### Annotations
173
+
174
+ #### Annotation guidelines
175
+
176
+ This is a text classification dataset that contains texts and labels. Given a set of texts and a predefined set of labels, the goal of text classification is to assign one or more labels to each text based on its content. Please classify the texts by making the correct selection.
177
+
178
+ #### Annotation process
179
+
180
+ [More Information Needed]
181
+
182
+ #### Who are the annotators?
183
+
184
+ [More Information Needed]
185
+
186
+ ### Personal and Sensitive Information
187
+
188
+ [More Information Needed]
189
+
190
+ ## Considerations for Using the Data
191
+
192
+ ### Social Impact of Dataset
193
+
194
+ [More Information Needed]
195
+
196
+ ### Discussion of Biases
197
+
198
+ [More Information Needed]
199
+
200
+ ### Other Known Limitations
201
+
202
+ [More Information Needed]
203
+
204
+ ## Additional Information
205
+
206
+ ### Dataset Curators
207
+
208
+ [More Information Needed]
209
+
210
+ ### Licensing Information
211
+
212
+ [More Information Needed]
213
+
214
+ ### Citation Information
215
+
216
+ [More Information Needed]
217
+
218
+ ### Contributions
219
+
220
+ [More Information Needed]