File size: 35,600 Bytes
81d747c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
""" AutoAugment, RandAugment, AugMix, and 3-Augment for PyTorch

This code implements the searched ImageNet policies with various tweaks and improvements and
does not include any of the search code.

AA and RA Implementation adapted from:
    https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py

AugMix adapted from:
    https://github.com/google-research/augmix

3-Augment based on: https://github.com/facebookresearch/deit/blob/main/README_revenge.md

Papers:
    AutoAugment: Learning Augmentation Policies from Data - https://arxiv.org/abs/1805.09501
    Learning Data Augmentation Strategies for Object Detection - https://arxiv.org/abs/1906.11172
    RandAugment: Practical automated data augmentation... - https://arxiv.org/abs/1909.13719
    AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty - https://arxiv.org/abs/1912.02781
    3-Augment: DeiT III: Revenge of the ViT - https://arxiv.org/abs/2204.07118

Hacked together by / Copyright 2019, Ross Wightman
"""
import random
import math
import re
from functools import partial
from typing import Dict, List, Optional, Union

from PIL import Image, ImageOps, ImageEnhance, ImageChops, ImageFilter
import PIL
import numpy as np


_PIL_VER = tuple([int(x) for x in PIL.__version__.split('.')[:2]])

_FILL = (128, 128, 128)

_LEVEL_DENOM = 10.  # denominator for conversion from 'Mx' magnitude scale to fractional aug level for op arguments

_HPARAMS_DEFAULT = dict(
    translate_const=250,
    img_mean=_FILL,
)

if hasattr(Image, "Resampling"):
    _RANDOM_INTERPOLATION = (Image.Resampling.BILINEAR, Image.Resampling.BICUBIC)
    _DEFAULT_INTERPOLATION = Image.Resampling.BICUBIC
else:
    _RANDOM_INTERPOLATION = (Image.BILINEAR, Image.BICUBIC)
    _DEFAULT_INTERPOLATION = Image.BICUBIC


def _interpolation(kwargs):
    interpolation = kwargs.pop('resample', _DEFAULT_INTERPOLATION)
    if isinstance(interpolation, (list, tuple)):
        return random.choice(interpolation)
    return interpolation


def _check_args_tf(kwargs):
    if 'fillcolor' in kwargs and _PIL_VER < (5, 0):
        kwargs.pop('fillcolor')
    kwargs['resample'] = _interpolation(kwargs)


def shear_x(img, factor, **kwargs):
    _check_args_tf(kwargs)
    return img.transform(img.size, Image.AFFINE, (1, factor, 0, 0, 1, 0), **kwargs)


def shear_y(img, factor, **kwargs):
    _check_args_tf(kwargs)
    return img.transform(img.size, Image.AFFINE, (1, 0, 0, factor, 1, 0), **kwargs)


def translate_x_rel(img, pct, **kwargs):
    pixels = pct * img.size[0]
    _check_args_tf(kwargs)
    return img.transform(img.size, Image.AFFINE, (1, 0, pixels, 0, 1, 0), **kwargs)


def translate_y_rel(img, pct, **kwargs):
    pixels = pct * img.size[1]
    _check_args_tf(kwargs)
    return img.transform(img.size, Image.AFFINE, (1, 0, 0, 0, 1, pixels), **kwargs)


def translate_x_abs(img, pixels, **kwargs):
    _check_args_tf(kwargs)
    return img.transform(img.size, Image.AFFINE, (1, 0, pixels, 0, 1, 0), **kwargs)


def translate_y_abs(img, pixels, **kwargs):
    _check_args_tf(kwargs)
    return img.transform(img.size, Image.AFFINE, (1, 0, 0, 0, 1, pixels), **kwargs)


def rotate(img, degrees, **kwargs):
    _check_args_tf(kwargs)
    if _PIL_VER >= (5, 2):
        return img.rotate(degrees, **kwargs)
    if _PIL_VER >= (5, 0):
        w, h = img.size
        post_trans = (0, 0)
        rotn_center = (w / 2.0, h / 2.0)
        angle = -math.radians(degrees)
        matrix = [
            round(math.cos(angle), 15),
            round(math.sin(angle), 15),
            0.0,
            round(-math.sin(angle), 15),
            round(math.cos(angle), 15),
            0.0,
        ]

        def transform(x, y, matrix):
            (a, b, c, d, e, f) = matrix
            return a * x + b * y + c, d * x + e * y + f

        matrix[2], matrix[5] = transform(
            -rotn_center[0] - post_trans[0], -rotn_center[1] - post_trans[1], matrix
        )
        matrix[2] += rotn_center[0]
        matrix[5] += rotn_center[1]
        return img.transform(img.size, Image.AFFINE, matrix, **kwargs)
    return img.rotate(degrees, resample=kwargs['resample'])


def auto_contrast(img, **__):
    return ImageOps.autocontrast(img)


def invert(img, **__):
    return ImageOps.invert(img)


def equalize(img, **__):
    return ImageOps.equalize(img)


def solarize(img, thresh, **__):
    return ImageOps.solarize(img, thresh)


def solarize_add(img, add, thresh=128, **__):
    lut = []
    for i in range(256):
        if i < thresh:
            lut.append(min(255, i + add))
        else:
            lut.append(i)

    if img.mode in ("L", "RGB"):
        if img.mode == "RGB" and len(lut) == 256:
            lut = lut + lut + lut
        return img.point(lut)

    return img


def posterize(img, bits_to_keep, **__):
    if bits_to_keep >= 8:
        return img
    return ImageOps.posterize(img, bits_to_keep)


def contrast(img, factor, **__):
    return ImageEnhance.Contrast(img).enhance(factor)


def color(img, factor, **__):
    return ImageEnhance.Color(img).enhance(factor)


def brightness(img, factor, **__):
    return ImageEnhance.Brightness(img).enhance(factor)


def sharpness(img, factor, **__):
    return ImageEnhance.Sharpness(img).enhance(factor)


def gaussian_blur(img, factor, **__):
    img = img.filter(ImageFilter.GaussianBlur(radius=factor))
    return img


def gaussian_blur_rand(img, factor, **__):
    radius_min = 0.1
    radius_max = 2.0
    img = img.filter(ImageFilter.GaussianBlur(radius=random.uniform(radius_min, radius_max * factor)))
    return img


def desaturate(img, factor, **_):
    factor = min(1., max(0., 1. - factor))
    # enhance factor 0 = grayscale, 1.0 = no-change
    return ImageEnhance.Color(img).enhance(factor)


def _randomly_negate(v):
    """With 50% prob, negate the value"""
    return -v if random.random() > 0.5 else v


def _rotate_level_to_arg(level, _hparams):
    # range [-30, 30]
    level = (level / _LEVEL_DENOM) * 30.
    level = _randomly_negate(level)
    return level,


def _enhance_level_to_arg(level, _hparams):
    # range [0.1, 1.9]
    return (level / _LEVEL_DENOM) * 1.8 + 0.1,


def _enhance_increasing_level_to_arg(level, _hparams):
    # the 'no change' level is 1.0, moving away from that towards 0. or 2.0 increases the enhancement blend
    # range [0.1, 1.9] if level <= _LEVEL_DENOM
    level = (level / _LEVEL_DENOM) * .9
    level = max(0.1, 1.0 + _randomly_negate(level))  # keep it >= 0.1
    return level,


def _minmax_level_to_arg(level, _hparams, min_val=0., max_val=1.0, clamp=True):
    level = (level / _LEVEL_DENOM)
    level = min_val + (max_val - min_val) * level
    if clamp:
        level = max(min_val, min(max_val, level))
    return level,


def _shear_level_to_arg(level, _hparams):
    # range [-0.3, 0.3]
    level = (level / _LEVEL_DENOM) * 0.3
    level = _randomly_negate(level)
    return level,


def _translate_abs_level_to_arg(level, hparams):
    translate_const = hparams['translate_const']
    level = (level / _LEVEL_DENOM) * float(translate_const)
    level = _randomly_negate(level)
    return level,


def _translate_rel_level_to_arg(level, hparams):
    # default range [-0.45, 0.45]
    translate_pct = hparams.get('translate_pct', 0.45)
    level = (level / _LEVEL_DENOM) * translate_pct
    level = _randomly_negate(level)
    return level,


def _posterize_level_to_arg(level, _hparams):
    # As per Tensorflow TPU EfficientNet impl
    # range [0, 4], 'keep 0 up to 4 MSB of original image'
    # intensity/severity of augmentation decreases with level
    return int((level / _LEVEL_DENOM) * 4),


def _posterize_increasing_level_to_arg(level, hparams):
    # As per Tensorflow models research and UDA impl
    # range [4, 0], 'keep 4 down to 0 MSB of original image',
    # intensity/severity of augmentation increases with level
    return 4 - _posterize_level_to_arg(level, hparams)[0],


def _posterize_original_level_to_arg(level, _hparams):
    # As per original AutoAugment paper description
    # range [4, 8], 'keep 4 up to 8 MSB of image'
    # intensity/severity of augmentation decreases with level
    return int((level / _LEVEL_DENOM) * 4) + 4,


def _solarize_level_to_arg(level, _hparams):
    # range [0, 256]
    # intensity/severity of augmentation decreases with level
    return min(256, int((level / _LEVEL_DENOM) * 256)),


def _solarize_increasing_level_to_arg(level, _hparams):
    # range [0, 256]
    # intensity/severity of augmentation increases with level
    return 256 - _solarize_level_to_arg(level, _hparams)[0],


def _solarize_add_level_to_arg(level, _hparams):
    # range [0, 110]
    return min(128, int((level / _LEVEL_DENOM) * 110)),


LEVEL_TO_ARG = {
    'AutoContrast': None,
    'Equalize': None,
    'Invert': None,
    'Rotate': _rotate_level_to_arg,
    # There are several variations of the posterize level scaling in various Tensorflow/Google repositories/papers
    'Posterize': _posterize_level_to_arg,
    'PosterizeIncreasing': _posterize_increasing_level_to_arg,
    'PosterizeOriginal': _posterize_original_level_to_arg,
    'Solarize': _solarize_level_to_arg,
    'SolarizeIncreasing': _solarize_increasing_level_to_arg,
    'SolarizeAdd': _solarize_add_level_to_arg,
    'Color': _enhance_level_to_arg,
    'ColorIncreasing': _enhance_increasing_level_to_arg,
    'Contrast': _enhance_level_to_arg,
    'ContrastIncreasing': _enhance_increasing_level_to_arg,
    'Brightness': _enhance_level_to_arg,
    'BrightnessIncreasing': _enhance_increasing_level_to_arg,
    'Sharpness': _enhance_level_to_arg,
    'SharpnessIncreasing': _enhance_increasing_level_to_arg,
    'ShearX': _shear_level_to_arg,
    'ShearY': _shear_level_to_arg,
    'TranslateX': _translate_abs_level_to_arg,
    'TranslateY': _translate_abs_level_to_arg,
    'TranslateXRel': _translate_rel_level_to_arg,
    'TranslateYRel': _translate_rel_level_to_arg,
    'Desaturate': partial(_minmax_level_to_arg, min_val=0.5, max_val=1.0),
    'GaussianBlur': partial(_minmax_level_to_arg, min_val=0.1, max_val=2.0),
    'GaussianBlurRand': _minmax_level_to_arg,
}


NAME_TO_OP = {
    'AutoContrast': auto_contrast,
    'Equalize': equalize,
    'Invert': invert,
    'Rotate': rotate,
    'Posterize': posterize,
    'PosterizeIncreasing': posterize,
    'PosterizeOriginal': posterize,
    'Solarize': solarize,
    'SolarizeIncreasing': solarize,
    'SolarizeAdd': solarize_add,
    'Color': color,
    'ColorIncreasing': color,
    'Contrast': contrast,
    'ContrastIncreasing': contrast,
    'Brightness': brightness,
    'BrightnessIncreasing': brightness,
    'Sharpness': sharpness,
    'SharpnessIncreasing': sharpness,
    'ShearX': shear_x,
    'ShearY': shear_y,
    'TranslateX': translate_x_abs,
    'TranslateY': translate_y_abs,
    'TranslateXRel': translate_x_rel,
    'TranslateYRel': translate_y_rel,
    'Desaturate': desaturate,
    'GaussianBlur': gaussian_blur,
    'GaussianBlurRand': gaussian_blur_rand,
}


class AugmentOp:

    def __init__(self, name, prob=0.5, magnitude=10, hparams=None):
        hparams = hparams or _HPARAMS_DEFAULT
        self.name = name
        self.aug_fn = NAME_TO_OP[name]
        self.level_fn = LEVEL_TO_ARG[name]
        self.prob = prob
        self.magnitude = magnitude
        self.hparams = hparams.copy()
        self.kwargs = dict(
            fillcolor=hparams['img_mean'] if 'img_mean' in hparams else _FILL,
            resample=hparams['interpolation'] if 'interpolation' in hparams else _RANDOM_INTERPOLATION,
        )

        # If magnitude_std is > 0, we introduce some randomness
        # in the usually fixed policy and sample magnitude from a normal distribution
        # with mean `magnitude` and std-dev of `magnitude_std`.
        # NOTE This is my own hack, being tested, not in papers or reference impls.
        # If magnitude_std is inf, we sample magnitude from a uniform distribution
        self.magnitude_std = self.hparams.get('magnitude_std', 0)
        self.magnitude_max = self.hparams.get('magnitude_max', None)

    def __call__(self, img):
        if self.prob < 1.0 and random.random() > self.prob:
            return img
        magnitude = self.magnitude
        if self.magnitude_std > 0:
            # magnitude randomization enabled
            if self.magnitude_std == float('inf'):
                # inf == uniform sampling
                magnitude = random.uniform(0, magnitude)
            elif self.magnitude_std > 0:
                magnitude = random.gauss(magnitude, self.magnitude_std)
        # default upper_bound for the timm RA impl is _LEVEL_DENOM (10)
        # setting magnitude_max overrides this to allow M > 10 (behaviour closer to Google TF RA impl)
        upper_bound = self.magnitude_max or _LEVEL_DENOM
        magnitude = max(0., min(magnitude, upper_bound))
        level_args = self.level_fn(magnitude, self.hparams) if self.level_fn is not None else tuple()
        return self.aug_fn(img, *level_args, **self.kwargs)

    def __repr__(self):
        fs = self.__class__.__name__ + f'(name={self.name}, p={self.prob}'
        fs += f', m={self.magnitude}, mstd={self.magnitude_std}'
        if self.magnitude_max is not None:
            fs += f', mmax={self.magnitude_max}'
        fs += ')'
        return fs


def auto_augment_policy_v0(hparams):
    # ImageNet v0 policy from TPU EfficientNet impl, cannot find a paper reference.
    policy = [
        [('Equalize', 0.8, 1), ('ShearY', 0.8, 4)],
        [('Color', 0.4, 9), ('Equalize', 0.6, 3)],
        [('Color', 0.4, 1), ('Rotate', 0.6, 8)],
        [('Solarize', 0.8, 3), ('Equalize', 0.4, 7)],
        [('Solarize', 0.4, 2), ('Solarize', 0.6, 2)],
        [('Color', 0.2, 0), ('Equalize', 0.8, 8)],
        [('Equalize', 0.4, 8), ('SolarizeAdd', 0.8, 3)],
        [('ShearX', 0.2, 9), ('Rotate', 0.6, 8)],
        [('Color', 0.6, 1), ('Equalize', 1.0, 2)],
        [('Invert', 0.4, 9), ('Rotate', 0.6, 0)],
        [('Equalize', 1.0, 9), ('ShearY', 0.6, 3)],
        [('Color', 0.4, 7), ('Equalize', 0.6, 0)],
        [('Posterize', 0.4, 6), ('AutoContrast', 0.4, 7)],
        [('Solarize', 0.6, 8), ('Color', 0.6, 9)],
        [('Solarize', 0.2, 4), ('Rotate', 0.8, 9)],
        [('Rotate', 1.0, 7), ('TranslateYRel', 0.8, 9)],
        [('ShearX', 0.0, 0), ('Solarize', 0.8, 4)],
        [('ShearY', 0.8, 0), ('Color', 0.6, 4)],
        [('Color', 1.0, 0), ('Rotate', 0.6, 2)],
        [('Equalize', 0.8, 4), ('Equalize', 0.0, 8)],
        [('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)],
        [('ShearY', 0.4, 7), ('SolarizeAdd', 0.6, 7)],
        [('Posterize', 0.8, 2), ('Solarize', 0.6, 10)],  # This results in black image with Tpu posterize
        [('Solarize', 0.6, 8), ('Equalize', 0.6, 1)],
        [('Color', 0.8, 6), ('Rotate', 0.4, 5)],
    ]
    pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
    return pc


def auto_augment_policy_v0r(hparams):
    # ImageNet v0 policy from TPU EfficientNet impl, with variation of Posterize used
    # in Google research implementation (number of bits discarded increases with magnitude)
    policy = [
        [('Equalize', 0.8, 1), ('ShearY', 0.8, 4)],
        [('Color', 0.4, 9), ('Equalize', 0.6, 3)],
        [('Color', 0.4, 1), ('Rotate', 0.6, 8)],
        [('Solarize', 0.8, 3), ('Equalize', 0.4, 7)],
        [('Solarize', 0.4, 2), ('Solarize', 0.6, 2)],
        [('Color', 0.2, 0), ('Equalize', 0.8, 8)],
        [('Equalize', 0.4, 8), ('SolarizeAdd', 0.8, 3)],
        [('ShearX', 0.2, 9), ('Rotate', 0.6, 8)],
        [('Color', 0.6, 1), ('Equalize', 1.0, 2)],
        [('Invert', 0.4, 9), ('Rotate', 0.6, 0)],
        [('Equalize', 1.0, 9), ('ShearY', 0.6, 3)],
        [('Color', 0.4, 7), ('Equalize', 0.6, 0)],
        [('PosterizeIncreasing', 0.4, 6), ('AutoContrast', 0.4, 7)],
        [('Solarize', 0.6, 8), ('Color', 0.6, 9)],
        [('Solarize', 0.2, 4), ('Rotate', 0.8, 9)],
        [('Rotate', 1.0, 7), ('TranslateYRel', 0.8, 9)],
        [('ShearX', 0.0, 0), ('Solarize', 0.8, 4)],
        [('ShearY', 0.8, 0), ('Color', 0.6, 4)],
        [('Color', 1.0, 0), ('Rotate', 0.6, 2)],
        [('Equalize', 0.8, 4), ('Equalize', 0.0, 8)],
        [('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)],
        [('ShearY', 0.4, 7), ('SolarizeAdd', 0.6, 7)],
        [('PosterizeIncreasing', 0.8, 2), ('Solarize', 0.6, 10)],
        [('Solarize', 0.6, 8), ('Equalize', 0.6, 1)],
        [('Color', 0.8, 6), ('Rotate', 0.4, 5)],
    ]
    pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
    return pc


def auto_augment_policy_original(hparams):
    # ImageNet policy from https://arxiv.org/abs/1805.09501
    policy = [
        [('PosterizeOriginal', 0.4, 8), ('Rotate', 0.6, 9)],
        [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
        [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
        [('PosterizeOriginal', 0.6, 7), ('PosterizeOriginal', 0.6, 6)],
        [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
        [('Equalize', 0.4, 4), ('Rotate', 0.8, 8)],
        [('Solarize', 0.6, 3), ('Equalize', 0.6, 7)],
        [('PosterizeOriginal', 0.8, 5), ('Equalize', 1.0, 2)],
        [('Rotate', 0.2, 3), ('Solarize', 0.6, 8)],
        [('Equalize', 0.6, 8), ('PosterizeOriginal', 0.4, 6)],
        [('Rotate', 0.8, 8), ('Color', 0.4, 0)],
        [('Rotate', 0.4, 9), ('Equalize', 0.6, 2)],
        [('Equalize', 0.0, 7), ('Equalize', 0.8, 8)],
        [('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
        [('Color', 0.6, 4), ('Contrast', 1.0, 8)],
        [('Rotate', 0.8, 8), ('Color', 1.0, 2)],
        [('Color', 0.8, 8), ('Solarize', 0.8, 7)],
        [('Sharpness', 0.4, 7), ('Invert', 0.6, 8)],
        [('ShearX', 0.6, 5), ('Equalize', 1.0, 9)],
        [('Color', 0.4, 0), ('Equalize', 0.6, 3)],
        [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
        [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
        [('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
        [('Color', 0.6, 4), ('Contrast', 1.0, 8)],
        [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
    ]
    pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
    return pc


def auto_augment_policy_originalr(hparams):
    # ImageNet policy from https://arxiv.org/abs/1805.09501 with research posterize variation
    policy = [
        [('PosterizeIncreasing', 0.4, 8), ('Rotate', 0.6, 9)],
        [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
        [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
        [('PosterizeIncreasing', 0.6, 7), ('PosterizeIncreasing', 0.6, 6)],
        [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
        [('Equalize', 0.4, 4), ('Rotate', 0.8, 8)],
        [('Solarize', 0.6, 3), ('Equalize', 0.6, 7)],
        [('PosterizeIncreasing', 0.8, 5), ('Equalize', 1.0, 2)],
        [('Rotate', 0.2, 3), ('Solarize', 0.6, 8)],
        [('Equalize', 0.6, 8), ('PosterizeIncreasing', 0.4, 6)],
        [('Rotate', 0.8, 8), ('Color', 0.4, 0)],
        [('Rotate', 0.4, 9), ('Equalize', 0.6, 2)],
        [('Equalize', 0.0, 7), ('Equalize', 0.8, 8)],
        [('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
        [('Color', 0.6, 4), ('Contrast', 1.0, 8)],
        [('Rotate', 0.8, 8), ('Color', 1.0, 2)],
        [('Color', 0.8, 8), ('Solarize', 0.8, 7)],
        [('Sharpness', 0.4, 7), ('Invert', 0.6, 8)],
        [('ShearX', 0.6, 5), ('Equalize', 1.0, 9)],
        [('Color', 0.4, 0), ('Equalize', 0.6, 3)],
        [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
        [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
        [('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
        [('Color', 0.6, 4), ('Contrast', 1.0, 8)],
        [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
    ]
    pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
    return pc


def auto_augment_policy_3a(hparams):
    policy = [
        [('Solarize', 1.0, 5)],  # 128 solarize threshold @ 5 magnitude
        [('Desaturate', 1.0, 10)],  # grayscale at 10 magnitude
        [('GaussianBlurRand', 1.0, 10)],
    ]
    pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
    return pc


def auto_augment_policy(name='v0', hparams=None):
    hparams = hparams or _HPARAMS_DEFAULT
    if name == 'original':
        return auto_augment_policy_original(hparams)
    if name == 'originalr':
        return auto_augment_policy_originalr(hparams)
    if name == 'v0':
        return auto_augment_policy_v0(hparams)
    if name == 'v0r':
        return auto_augment_policy_v0r(hparams)
    if name == '3a':
        return auto_augment_policy_3a(hparams)
    assert False, f'Unknown AA policy {name}'


class AutoAugment:

    def __init__(self, policy):
        self.policy = policy

    def __call__(self, img):
        sub_policy = random.choice(self.policy)
        for op in sub_policy:
            img = op(img)
        return img

    def __repr__(self):
        fs = self.__class__.__name__ + '(policy='
        for p in self.policy:
            fs += '\n\t['
            fs += ', '.join([str(op) for op in p])
            fs += ']'
        fs += ')'
        return fs


def auto_augment_transform(config_str: str, hparams: Optional[Dict] = None):
    """ Create a AutoAugment transform

    Args:
        config_str: String defining configuration of auto augmentation. Consists of multiple sections separated by
            dashes ('-').
            The first section defines the AutoAugment policy (one of 'v0', 'v0r', 'original', 'originalr').
            While the remaining sections define other arguments
                * 'mstd' -  float std deviation of magnitude noise applied
        hparams: Other hparams (kwargs) for the AutoAugmentation scheme

    Returns:
         A PyTorch compatible Transform

    Examples::

        'original-mstd0.5' results in AutoAugment with original policy, magnitude_std 0.5
    """
    config = config_str.split('-')
    policy_name = config[0]
    config = config[1:]
    for c in config:
        cs = re.split(r'(\d.*)', c)
        if len(cs) < 2:
            continue
        key, val = cs[:2]
        if key == 'mstd':
            # noise param injected via hparams for now
            hparams.setdefault('magnitude_std', float(val))
        else:
            assert False, 'Unknown AutoAugment config section'
    aa_policy = auto_augment_policy(policy_name, hparams=hparams)
    return AutoAugment(aa_policy)


_RAND_TRANSFORMS = [
    'AutoContrast',
    'Equalize',
    'Invert',
    'Rotate',
    'Posterize',
    'Solarize',
    'SolarizeAdd',
    'Color',
    'Contrast',
    'Brightness',
    'Sharpness',
    'ShearX',
    'ShearY',
    'TranslateXRel',
    'TranslateYRel',
    # 'Cutout'  # NOTE I've implement this as random erasing separately
]


_RAND_INCREASING_TRANSFORMS = [
    'AutoContrast',
    'Equalize',
    'Invert',
    'Rotate',
    'PosterizeIncreasing',
    'SolarizeIncreasing',
    'SolarizeAdd',
    'ColorIncreasing',
    'ContrastIncreasing',
    'BrightnessIncreasing',
    'SharpnessIncreasing',
    'ShearX',
    'ShearY',
    'TranslateXRel',
    'TranslateYRel',
    # 'Cutout'  # NOTE I've implement this as random erasing separately
]


_RAND_3A = [
    'SolarizeIncreasing',
    'Desaturate',
    'GaussianBlur',
]


_RAND_WEIGHTED_3A = {
    'SolarizeIncreasing': 6,
    'Desaturate': 6,
    'GaussianBlur': 6,
    'Rotate': 3,
    'ShearX': 2,
    'ShearY': 2,
    'PosterizeIncreasing': 1,
    'AutoContrast': 1,
    'ColorIncreasing': 1,
    'SharpnessIncreasing': 1,
    'ContrastIncreasing': 1,
    'BrightnessIncreasing': 1,
    'Equalize': 1,
    'Invert': 1,
}


# These experimental weights are based loosely on the relative improvements mentioned in paper.
# They may not result in increased performance, but could likely be tuned to so.
_RAND_WEIGHTED_0 = {
    'Rotate': 3,
    'ShearX': 2,
    'ShearY': 2,
    'TranslateXRel': 1,
    'TranslateYRel': 1,
    'ColorIncreasing': .25,
    'SharpnessIncreasing': 0.25,
    'AutoContrast': 0.25,
    'SolarizeIncreasing': .05,
    'SolarizeAdd': .05,
    'ContrastIncreasing': .05,
    'BrightnessIncreasing': .05,
    'Equalize': .05,
    'PosterizeIncreasing': 0.05,
    'Invert': 0.05,
}


def _get_weighted_transforms(transforms: Dict):
    transforms, probs = list(zip(*transforms.items()))
    probs = np.array(probs)
    probs = probs / np.sum(probs)
    return transforms, probs


def rand_augment_choices(name: str, increasing=True):
    if name == 'weights':
        return _RAND_WEIGHTED_0
    if name == '3aw':
        return _RAND_WEIGHTED_3A
    if name == '3a':
        return _RAND_3A
    return _RAND_INCREASING_TRANSFORMS if increasing else _RAND_TRANSFORMS


def rand_augment_ops(
        magnitude: Union[int, float] = 10,
        prob: float = 0.5,
        hparams: Optional[Dict] = None,
        transforms: Optional[Union[Dict, List]] = None,
):
    hparams = hparams or _HPARAMS_DEFAULT
    transforms = transforms or _RAND_TRANSFORMS
    return [AugmentOp(
        name, prob=prob, magnitude=magnitude, hparams=hparams) for name in transforms]


class RandAugment:
    def __init__(self, ops, num_layers=2, choice_weights=None):
        self.ops = ops
        self.num_layers = num_layers
        self.choice_weights = choice_weights

    def __call__(self, img):
        # no replacement when using weighted choice
        ops = np.random.choice(
            self.ops,
            self.num_layers,
            replace=self.choice_weights is None,
            p=self.choice_weights,
        )
        for op in ops:
            img = op(img)
        return img

    def __repr__(self):
        fs = self.__class__.__name__ + f'(n={self.num_layers}, ops='
        for op in self.ops:
            fs += f'\n\t{op}'
        fs += ')'
        return fs


def rand_augment_transform(
        config_str: str,
        hparams: Optional[Dict] = None,
        transforms: Optional[Union[str, Dict, List]] = None,
):
    """ Create a RandAugment transform

    Args:
        config_str (str): String defining configuration of random augmentation. Consists of multiple sections separated
            by dashes ('-'). The first section defines the specific variant of rand augment (currently only 'rand').
            The remaining sections, not order specific determine
                * 'm' - integer magnitude of rand augment
                * 'n' - integer num layers (number of transform ops selected per image)
                * 'p' - float probability of applying each layer (default 0.5)
                * 'mstd' -  float std deviation of magnitude noise applied, or uniform sampling if infinity (or > 100)
                * 'mmax' - set upper bound for magnitude to something other than default of  _LEVEL_DENOM (10)
                * 'inc' - integer (bool), use augmentations that increase in severity with magnitude (default: 0)
                * 't' - str name of transform set to use
        hparams (dict): Other hparams (kwargs) for the RandAugmentation scheme

    Returns:
         A PyTorch compatible Transform

    Examples::

        'rand-m9-n3-mstd0.5' results in RandAugment with magnitude 9, num_layers 3, magnitude_std 0.5

        'rand-mstd1-tweights' results in mag std 1.0, weighted transforms, default mag of 10 and num_layers 2

    """
    magnitude = _LEVEL_DENOM  # default to _LEVEL_DENOM for magnitude (currently 10)
    num_layers = 2  # default to 2 ops per image
    increasing = False
    prob = 0.5
    config = config_str.split('-')
    assert config[0] == 'rand'
    config = config[1:]
    for c in config:
        if c.startswith('t'):
            # NOTE old 'w' key was removed, 'w0' is not equivalent to 'tweights'
            val = str(c[1:])
            if transforms is None:
                transforms = val
        else:
            # numeric options
            cs = re.split(r'(\d.*)', c)
            if len(cs) < 2:
                continue
            key, val = cs[:2]
            if key == 'mstd':
                # noise param / randomization of magnitude values
                mstd = float(val)
                if mstd > 100:
                    # use uniform sampling in 0 to magnitude if mstd is > 100
                    mstd = float('inf')
                hparams.setdefault('magnitude_std', mstd)
            elif key == 'mmax':
                # clip magnitude between [0, mmax] instead of default [0, _LEVEL_DENOM]
                hparams.setdefault('magnitude_max', int(val))
            elif key == 'inc':
                if bool(val):
                    increasing = True
            elif key == 'm':
                magnitude = int(val)
            elif key == 'n':
                num_layers = int(val)
            elif key == 'p':
                prob = float(val)
            else:
                assert False, 'Unknown RandAugment config section'

    if isinstance(transforms, str):
        transforms = rand_augment_choices(transforms, increasing=increasing)
    elif transforms is None:
        transforms = _RAND_INCREASING_TRANSFORMS if increasing else _RAND_TRANSFORMS

    choice_weights = None
    if isinstance(transforms, Dict):
        transforms, choice_weights = _get_weighted_transforms(transforms)

    ra_ops = rand_augment_ops(magnitude=magnitude, prob=prob, hparams=hparams, transforms=transforms)
    return RandAugment(ra_ops, num_layers, choice_weights=choice_weights)


_AUGMIX_TRANSFORMS = [
    'AutoContrast',
    'ColorIncreasing',  # not in paper
    'ContrastIncreasing',  # not in paper
    'BrightnessIncreasing',  # not in paper
    'SharpnessIncreasing',  # not in paper
    'Equalize',
    'Rotate',
    'PosterizeIncreasing',
    'SolarizeIncreasing',
    'ShearX',
    'ShearY',
    'TranslateXRel',
    'TranslateYRel',
]


def augmix_ops(
        magnitude: Union[int, float] = 10,
        hparams: Optional[Dict] = None,
        transforms: Optional[Union[str, Dict, List]] = None,
):
    hparams = hparams or _HPARAMS_DEFAULT
    transforms = transforms or _AUGMIX_TRANSFORMS
    return [AugmentOp(
        name,
        prob=1.0,
        magnitude=magnitude,
        hparams=hparams
    ) for name in transforms]


class AugMixAugment:
    """ AugMix Transform
    Adapted and improved from impl here: https://github.com/google-research/augmix/blob/master/imagenet.py
    From paper: 'AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty -
    https://arxiv.org/abs/1912.02781
    """
    def __init__(self, ops, alpha=1., width=3, depth=-1, blended=False):
        self.ops = ops
        self.alpha = alpha
        self.width = width
        self.depth = depth
        self.blended = blended  # blended mode is faster but not well tested

    def _calc_blended_weights(self, ws, m):
        ws = ws * m
        cump = 1.
        rws = []
        for w in ws[::-1]:
            alpha = w / cump
            cump *= (1 - alpha)
            rws.append(alpha)
        return np.array(rws[::-1], dtype=np.float32)

    def _apply_blended(self, img, mixing_weights, m):
        # This is my first crack and implementing a slightly faster mixed augmentation. Instead
        # of accumulating the mix for each chain in a Numpy array and then blending with original,
        # it recomputes the blending coefficients and applies one PIL image blend per chain.
        # TODO the results appear in the right ballpark but they differ by more than rounding.
        img_orig = img.copy()
        ws = self._calc_blended_weights(mixing_weights, m)
        for w in ws:
            depth = self.depth if self.depth > 0 else np.random.randint(1, 4)
            ops = np.random.choice(self.ops, depth, replace=True)
            img_aug = img_orig  # no ops are in-place, deep copy not necessary
            for op in ops:
                img_aug = op(img_aug)
            img = Image.blend(img, img_aug, w)
        return img

    def _apply_basic(self, img, mixing_weights, m):
        # This is a literal adaptation of the paper/official implementation without normalizations and
        # PIL <-> Numpy conversions between every op. It is still quite CPU compute heavy compared to the
        # typical augmentation transforms, could use a GPU / Kornia implementation.
        img_shape = img.size[0], img.size[1], len(img.getbands())
        mixed = np.zeros(img_shape, dtype=np.float32)
        for mw in mixing_weights:
            depth = self.depth if self.depth > 0 else np.random.randint(1, 4)
            ops = np.random.choice(self.ops, depth, replace=True)
            img_aug = img  # no ops are in-place, deep copy not necessary
            for op in ops:
                img_aug = op(img_aug)
            mixed += mw * np.asarray(img_aug, dtype=np.float32)
        np.clip(mixed, 0, 255., out=mixed)
        mixed = Image.fromarray(mixed.astype(np.uint8))
        return Image.blend(img, mixed, m)

    def __call__(self, img):
        mixing_weights = np.float32(np.random.dirichlet([self.alpha] * self.width))
        m = np.float32(np.random.beta(self.alpha, self.alpha))
        if self.blended:
            mixed = self._apply_blended(img, mixing_weights, m)
        else:
            mixed = self._apply_basic(img, mixing_weights, m)
        return mixed

    def __repr__(self):
        fs = self.__class__.__name__ + f'(alpha={self.alpha}, width={self.width}, depth={self.depth}, ops='
        for op in self.ops:
            fs += f'\n\t{op}'
        fs += ')'
        return fs


def augment_and_mix_transform(config_str: str, hparams: Optional[Dict] = None):
    """ Create AugMix PyTorch transform

    Args:
        config_str (str): String defining configuration of random augmentation. Consists of multiple sections separated
            by dashes ('-'). The first section defines the specific variant of rand augment (currently only 'rand').
            The remaining sections, not order sepecific determine
                'm' - integer magnitude (severity) of augmentation mix (default: 3)
                'w' - integer width of augmentation chain (default: 3)
                'd' - integer depth of augmentation chain (-1 is random [1, 3], default: -1)
                'b' - integer (bool), blend each branch of chain into end result without a final blend, less CPU (default: 0)
                'mstd' -  float std deviation of magnitude noise applied (default: 0)
            Ex 'augmix-m5-w4-d2' results in AugMix with severity 5, chain width 4, chain depth 2

        hparams: Other hparams (kwargs) for the Augmentation transforms

    Returns:
         A PyTorch compatible Transform
    """
    magnitude = 3
    width = 3
    depth = -1
    alpha = 1.
    blended = False
    config = config_str.split('-')
    assert config[0] == 'augmix'
    config = config[1:]
    for c in config:
        cs = re.split(r'(\d.*)', c)
        if len(cs) < 2:
            continue
        key, val = cs[:2]
        if key == 'mstd':
            # noise param injected via hparams for now
            hparams.setdefault('magnitude_std', float(val))
        elif key == 'm':
            magnitude = int(val)
        elif key == 'w':
            width = int(val)
        elif key == 'd':
            depth = int(val)
        elif key == 'a':
            alpha = float(val)
        elif key == 'b':
            blended = bool(val)
        else:
            assert False, 'Unknown AugMix config section'
    hparams.setdefault('magnitude_std', float('inf'))  # default to uniform sampling (if not set via mstd arg)
    ops = augmix_ops(magnitude=magnitude, hparams=hparams)
    return AugMixAugment(ops, alpha=alpha, width=width, depth=depth, blended=blended)