File size: 16,977 Bytes
81d747c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
""" Dataset reader for webdataset

Hacked together by / Copyright 2022 Ross Wightman
"""
import io
import json
import logging
import math
import os
import random
import sys
from dataclasses import dataclass
from functools import partial
from itertools import islice
from typing import Any, Callable, Dict, List, Optional, Tuple

import torch
import torch.distributed as dist
import yaml
from PIL import Image
from torch.utils.data import Dataset, IterableDataset, get_worker_info

try:
    import webdataset as wds
    from webdataset.filters import _shuffle, getfirst
    from webdataset.shardlists import expand_urls
    from webdataset.tariterators import base_plus_ext, url_opener, tar_file_expander, valid_sample
except ImportError:
    wds = None
    expand_urls = None

from .class_map import load_class_map
from .reader import Reader
from .shared_count import SharedCount

_logger = logging.getLogger(__name__)

SAMPLE_SHUFFLE_SIZE = int(os.environ.get('WDS_SHUFFLE_SIZE', 8192))
SAMPLE_INITIAL_SIZE = int(os.environ.get('WDS_INITIAL_SIZE', 2048))


def _load_info(root, names=('_info.json', 'info.json')):
    if isinstance(names, str):
        names = (names,)
    tried = []
    err_str = ''
    for n in names:
        full_path = os.path.join(root, n)
        try:
            tried.append(full_path)
            with wds.gopen(full_path) as f:
                if n.endswith('.json'):
                    info_dict = json.load(f)
                else:
                    info_dict = yaml.safe_load(f)
            return info_dict
        except Exception as e:
            err_str = str(e)

    _logger.warning(
        f'Dataset info file not found at {tried}. Error: {err_str}. '
        'Falling back to provided split and size arg.')
    return {}


@dataclass
class SplitInfo:
    num_samples: int
    filenames: Tuple[str]
    shard_lengths: Tuple[int] = ()
    alt_label: str = ''
    name: str = ''


def _parse_split_info(split: str, info: Dict):
    def _info_convert(dict_info):
        return SplitInfo(
            num_samples=dict_info['num_samples'],
            filenames=tuple(dict_info['filenames']),
            shard_lengths=tuple(dict_info['shard_lengths']),
            alt_label=dict_info.get('alt_label', ''),
            name=dict_info['name'],
        )

    if 'tar' in split or '..' in split:
        # split in WDS string braceexpand format, sample count can be included with a | separator
        # ex: `dataset-split-{0000..9999}.tar|100000` for 9999 shards, covering 100,000 samples
        split = split.split('|')
        num_samples = 0
        split_name = ''
        if len(split) > 1:
            num_samples = int(split[1])
        split = split[0]
        if '::' not in split:
            split_parts = split.split('-', 3)
            split_idx = len(split_parts) - 1
            if split_idx and 'splits' in info and split_parts[split_idx] in info['splits']:
                split_name = split_parts[split_idx]

        split_filenames = expand_urls(split)
        if split_name:
            split_info = info['splits'][split_name]
            if not num_samples:
                _fc = {f: c for f, c in zip(split_info['filenames'], split_info['shard_lengths'])}
                num_samples = sum(_fc[f] for f in split_filenames)
                split_info['filenames'] = tuple(_fc.keys())
                split_info['shard_lengths'] = tuple(_fc.values())
                split_info['num_samples'] = num_samples
            split_info = _info_convert(split_info)
        else:
            split_info = SplitInfo(
                name=split_name,
                num_samples=num_samples,
                filenames=split_filenames,
            )
    else:
        if 'splits' not in info or split not in info['splits']:
            raise RuntimeError(f"split {split} not found in info ({info.get('splits', {}).keys()})")
        split = split
        split_info = info['splits'][split]
        split_info = _info_convert(split_info)

    return split_info


def log_and_continue(exn):
    """Call in an exception handler to ignore exceptions, isssue a warning, and continue."""
    _logger.warning(f'Handling webdataset error ({repr(exn)}). Ignoring.')
    # NOTE: try force an exit on errors that are clearly code / config and not transient
    if isinstance(exn, TypeError):
        raise exn
    return True


def _decode(
        sample,
        image_key='jpg',
        image_mode='RGB',
        target_key='cls',
        alt_label=''
):
    """ Custom sample decode
    * decode and convert PIL Image
    * cls byte string label to int
    * pass through JSON byte string (if it exists) without parse
    """
    # decode class label, skip if alternate label not valid
    if alt_label:
        # alternative labels are encoded in json metadata
        meta = json.loads(sample['json'])
        class_label = int(meta[alt_label])
        if class_label < 0:
            # skipped labels currently encoded as -1, may change to a null/None value
            return None
    else:
        class_label = int(sample[target_key])

    # decode image
    img = getfirst(sample, image_key)
    with io.BytesIO(img) as b:
        img = Image.open(b)
        img.load()
    if image_mode:
        img = img.convert(image_mode)

    # json passed through in undecoded state
    decoded = dict(jpg=img, cls=class_label, json=sample.get('json', None))
    return decoded


def pytorch_worker_seed():
    """get dataloader worker seed from pytorch"""
    worker_info = get_worker_info()
    if worker_info is not None:
        # favour the seed already created for pytorch dataloader workers if it exists
        return worker_info.seed
    # fallback to wds rank based seed
    return wds.utils.pytorch_worker_seed()


if wds is not None:
    # conditional to avoid mandatory wds import (via inheritance of wds.PipelineStage)

    class detshuffle2(wds.PipelineStage):
        def __init__(
                self,
                bufsize=1000,
                initial=100,
                seed=0,
                epoch=-1,
        ):
            self.bufsize = bufsize
            self.initial = initial
            self.seed = seed
            self.epoch = epoch

        def run(self, src):
            if isinstance(self.epoch, SharedCount):
                epoch = self.epoch.value
            else:
                # NOTE: this is epoch tracking is problematic in a multiprocess (dataloader workers or train)
                # situation as different workers may wrap at different times (or not at all).
                self.epoch += 1
                epoch = self.epoch

            if self.seed < 0:
                seed = pytorch_worker_seed() + epoch
            else:
                seed = self.seed + epoch
            # _logger.info(f'shuffle seed: {self.seed}, {seed}, epoch: {epoch}')  # FIXME temporary
            rng = random.Random(seed)
            return _shuffle(src, self.bufsize, self.initial, rng)

else:
    detshuffle2 = None


class ResampledShards2(IterableDataset):
    """An iterable dataset yielding a list of urls."""

    def __init__(
        self,
        urls,
        nshards=sys.maxsize,
        worker_seed=None,
        deterministic=True,
        epoch=-1,
    ):
        """Sample shards from the shard list with replacement.

        :param urls: a list of URLs as a Python list or brace notation string
        """
        super().__init__()
        urls = wds.shardlists.expand_urls(urls)
        self.urls = urls
        assert isinstance(self.urls[0], str)
        self.nshards = nshards
        self.rng = random.Random()
        self.worker_seed = pytorch_worker_seed if worker_seed is None else worker_seed
        self.deterministic = deterministic
        self.epoch = epoch

    def __iter__(self):
        """Return an iterator over the shards."""
        if isinstance(self.epoch, SharedCount):
            epoch = self.epoch.value
        else:
            # NOTE: this is epoch tracking is problematic in a multiprocess (dataloader workers or train)
            # situation as different workers may wrap at different times (or not at all).
            self.epoch += 1
            epoch = self.epoch

        if self.deterministic:
            # reset seed w/ epoch if deterministic, worker seed should be deterministic due to arg.seed
            self.rng = random.Random(self.worker_seed() + epoch)

        for _ in range(self.nshards):
            index = self.rng.randint(0, len(self.urls) - 1)
            yield dict(url=self.urls[index])


class ReaderWds(Reader):
    def __init__(
            self,
            root: str,
            name: Optional[str] = None,
            split: str = 'train',
            is_training: bool = False,
            num_samples: Optional[int] = None,
            batch_size: int = 1,
            repeats: int = 0,
            seed: int = 42,
            class_map: Optional[dict] = None,
            input_key: str = 'jpg;png;webp',
            input_img_mode: str = 'RGB',
            target_key: str = 'cls',
            target_img_mode: str = '',
            filename_key: str = 'filename',
            sample_shuffle_size: Optional[int] = None,
            smaple_initial_size: Optional[int] = None,
    ):
        super().__init__()
        if wds is None:
            raise RuntimeError(
                'Please install webdataset 0.2.x package `pip install git+https://github.com/webdataset/webdataset`.')
        self.root = root
        self.is_training = is_training
        self.batch_size = batch_size
        self.repeats = repeats
        self.common_seed = seed  # a seed that's fixed across all worker / distributed instances
        self.shard_shuffle_size = 500
        self.sample_shuffle_size = sample_shuffle_size or SAMPLE_SHUFFLE_SIZE
        self.sample_initial_size = smaple_initial_size or SAMPLE_INITIAL_SIZE

        self.input_key = input_key
        self.input_img_mode = input_img_mode
        self.target_key = target_key
        self.filename_key = filename_key
        self.key_ext = '.JPEG'  # extension to add to key for original filenames (DS specific, default ImageNet)

        self.info = _load_info(self.root)
        self.split_info = _parse_split_info(split, self.info)
        if num_samples is not None:
            self.num_samples = num_samples
        else:
            self.num_samples = self.split_info.num_samples
        if is_training and not self.num_samples:
            raise RuntimeError(f'Invalid split definition, num_samples not specified in train mode.')
        self.remap_class = False
        if class_map:
            self.class_to_idx = load_class_map(class_map)
            self.remap_class = True
        else:
            self.class_to_idx = {}

        # Distributed world state
        self.dist_rank = 0
        self.dist_num_replicas = 1
        if dist.is_available() and dist.is_initialized() and dist.get_world_size() > 1:
            self.dist_rank = dist.get_rank()
            self.dist_num_replicas = dist.get_world_size()

        # Attributes that are updated in _lazy_init
        self.worker_info = None
        self.worker_id = 0
        self.worker_seed = seed  # seed unique to each worker instance
        self.num_workers = 1
        self.global_worker_id = 0
        self.global_num_workers = 1
        self.init_count = 0
        self.epoch_count = SharedCount()

        # DataPipeline is lazy init, the majority of WDS DataPipeline could be init here, BUT, shuffle seed
        # is not handled in manner where it can be deterministic for each worker AND initialized up front
        self.ds = None

    def set_epoch(self, count):
        self.epoch_count.value = count

    def set_loader_cfg(
            self,
            num_workers: Optional[int] = None,
    ):
        if self.ds is not None:
            return
        if num_workers is not None:
            self.num_workers = num_workers
            self.global_num_workers = self.dist_num_replicas * self.num_workers

    def _lazy_init(self):
        """ Lazily initialize worker (in worker processes)
        """
        if self.worker_info is None:
            worker_info = torch.utils.data.get_worker_info()
            if worker_info is not None:
                self.worker_info = worker_info
                self.worker_id = worker_info.id
                self.worker_seed = worker_info.seed
                self.num_workers = worker_info.num_workers
            self.global_num_workers = self.dist_num_replicas * self.num_workers
            self.global_worker_id = self.dist_rank * self.num_workers + self.worker_id

        # init data pipeline
        abs_shard_filenames = [os.path.join(self.root, f) for f in self.split_info.filenames]
        pipeline = [wds.SimpleShardList(abs_shard_filenames)]
        # at this point we have an iterator over all the shards
        if self.is_training:
            pipeline.extend([
                detshuffle2(
                    self.shard_shuffle_size,
                    seed=self.common_seed,
                    epoch=self.epoch_count,
                ),
                self._split_by_node_and_worker,
                # at this point, we have an iterator over the shards assigned to each worker
                wds.tarfile_to_samples(handler=log_and_continue),
                wds.shuffle(
                    bufsize=self.sample_shuffle_size,
                    initial=self.sample_initial_size,
                    rng=random.Random(self.worker_seed) # this is why we lazy-init whole DataPipeline
                ),
            ])
        else:
            pipeline.extend([
                self._split_by_node_and_worker,
                # at this point, we have an iterator over the shards assigned to each worker
                wds.tarfile_to_samples(handler=log_and_continue),
            ])
        pipeline.extend([
            wds.map(
                partial(
                    _decode,
                    image_key=self.input_key,
                    image_mode=self.input_img_mode,
                    alt_label=self.split_info.alt_label,
                ),
                handler=log_and_continue,
            ),
            wds.rename(image=self.input_key, target=self.target_key)
        ])
        self.ds = wds.DataPipeline(*pipeline)

    def _split_by_node_and_worker(self, src):
        if self.global_num_workers > 1:
            for s in islice(src, self.global_worker_id, None, self.global_num_workers):
                yield s
        else:
            for s in src:
                yield s

    def _num_samples_per_worker(self):
        num_worker_samples = self.num_samples / max(self.global_num_workers, self.dist_num_replicas)
        if self.is_training or self.dist_num_replicas > 1:
            num_worker_samples = math.ceil(num_worker_samples)
        if self.is_training:
            num_worker_samples = math.ceil(num_worker_samples / self.batch_size) * self.batch_size
        return int(num_worker_samples)

    def __iter__(self):
        if self.ds is None:
            self._lazy_init()

        num_worker_samples = self._num_samples_per_worker()
        if self.is_training or self.dist_num_replicas > 1:
            # NOTE: doing distributed validation w/ WDS is messy, hard to meet constraints that
            # same # of batches needed across all replicas w/ seeing each sample once.
            # with_epoch() is simple but could miss a shard's worth of samples in some workers,
            # and duplicate in others. Best to keep num DL workers low and a divisor of #val shards.
            ds = self.ds.with_epoch(num_worker_samples)
        else:
            ds = self.ds

        i = 0
        # _logger.info(f'start {i}, {self.worker_id}')  # FIXME temporary debug
        for sample in ds:
            target = sample['target']
            if self.remap_class:
                target = self.class_to_idx[target]
            yield sample['image'], target
            i += 1
        # _logger.info(f'end {i}, {self.worker_id}')  # FIXME temporary debug

    def __len__(self):
        num_samples = self._num_samples_per_worker() * self.num_workers
        return num_samples

    def _filename(self, index, basename=False, absolute=False):
        assert False, "Not supported"  # no random access to examples

    def filenames(self, basename=False, absolute=False):
        """ Return all filenames in dataset, overrides base"""
        if self.ds is None:
            self._lazy_init()

        names = []
        for sample in self.ds:
            if self.filename_key in sample:
                name = sample[self.filename_key]
            elif '__key__' in sample:
                name = sample['__key__'] + self.key_ext
            else:
                assert False, "No supported name field present"
            names.append(name)
            if len(names) >= self.num_samples:
                break  # safety for ds.repeat() case
        return names