File size: 9,169 Bytes
abee7a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
""" Tensorflow Preprocessing Adapter

Allows use of Tensorflow preprocessing pipeline in PyTorch Transform

Copyright of original Tensorflow code below.

Hacked together by / Copyright 2020 Ross Wightman
"""

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""ImageNet preprocessing for MnasNet."""
import tensorflow.compat.v1 as tf
import numpy as np

IMAGE_SIZE = 224
CROP_PADDING = 32

tf.compat.v1.disable_eager_execution()

def distorted_bounding_box_crop(image_bytes,
                                bbox,
                                min_object_covered=0.1,
                                aspect_ratio_range=(0.75, 1.33),
                                area_range=(0.05, 1.0),
                                max_attempts=100,
                                scope=None):
    """Generates cropped_image using one of the bboxes randomly distorted.

    See `tf.image.sample_distorted_bounding_box` for more documentation.

    Args:
      image_bytes: `Tensor` of binary image data.
      bbox: `Tensor` of bounding boxes arranged `[1, num_boxes, coords]`
          where each coordinate is [0, 1) and the coordinates are arranged
          as `[ymin, xmin, ymax, xmax]`. If num_boxes is 0 then use the whole
          image.
      min_object_covered: An optional `float`. Defaults to `0.1`. The cropped
          area of the image must contain at least this fraction of any bounding
          box supplied.
      aspect_ratio_range: An optional list of `float`s. The cropped area of the
          image must have an aspect ratio = width / height within this range.
      area_range: An optional list of `float`s. The cropped area of the image
          must contain a fraction of the supplied image within in this range.
      max_attempts: An optional `int`. Number of attempts at generating a cropped
          region of the image of the specified constraints. After `max_attempts`
          failures, return the entire image.
      scope: Optional `str` for name scope.
    Returns:
      cropped image `Tensor`
    """
    with tf.name_scope(scope, 'distorted_bounding_box_crop', [image_bytes, bbox]):
        shape = tf.image.extract_jpeg_shape(image_bytes)
        sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box(
            shape,
            bounding_boxes=bbox,
            min_object_covered=min_object_covered,
            aspect_ratio_range=aspect_ratio_range,
            area_range=area_range,
            max_attempts=max_attempts,
            use_image_if_no_bounding_boxes=True)
        bbox_begin, bbox_size, _ = sample_distorted_bounding_box

        # Crop the image to the specified bounding box.
        offset_y, offset_x, _ = tf.unstack(bbox_begin)
        target_height, target_width, _ = tf.unstack(bbox_size)
        crop_window = tf.stack([offset_y, offset_x, target_height, target_width])
        image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3)

        return image


def _at_least_x_are_equal(a, b, x):
    """At least `x` of `a` and `b` `Tensors` are equal."""
    match = tf.equal(a, b)
    match = tf.cast(match, tf.int32)
    return tf.greater_equal(tf.reduce_sum(match), x)


def _decode_and_random_crop(image_bytes, image_size, resize_method):
    """Make a random crop of image_size."""
    bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4])
    image = distorted_bounding_box_crop(
        image_bytes,
        bbox,
        min_object_covered=0.1,
        aspect_ratio_range=(3. / 4, 4. / 3.),
        area_range=(0.08, 1.0),
        max_attempts=10,
        scope=None)
    original_shape = tf.image.extract_jpeg_shape(image_bytes)
    bad = _at_least_x_are_equal(original_shape, tf.shape(image), 3)

    image = tf.cond(
        bad,
        lambda: _decode_and_center_crop(image_bytes, image_size),
        lambda: tf.image.resize([image], [image_size, image_size], resize_method)[0])

    return image


def _decode_and_center_crop(image_bytes, image_size, resize_method):
    """Crops to center of image with padding then scales image_size."""
    shape = tf.image.extract_jpeg_shape(image_bytes)
    image_height = shape[0]
    image_width = shape[1]

    padded_center_crop_size = tf.cast(
        ((image_size / (image_size + CROP_PADDING)) *
         tf.cast(tf.minimum(image_height, image_width), tf.float32)),
        tf.int32)

    offset_height = ((image_height - padded_center_crop_size) + 1) // 2
    offset_width = ((image_width - padded_center_crop_size) + 1) // 2
    crop_window = tf.stack([offset_height, offset_width,
                            padded_center_crop_size, padded_center_crop_size])
    image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3)
    image = tf.image.resize([image], [image_size, image_size], resize_method)[0]

    return image


def _flip(image):
    """Random horizontal image flip."""
    image = tf.image.random_flip_left_right(image)
    return image


def preprocess_for_train(image_bytes, use_bfloat16, image_size=IMAGE_SIZE, interpolation='bicubic'):
    """Preprocesses the given image for evaluation.

    Args:
      image_bytes: `Tensor` representing an image binary of arbitrary size.
      use_bfloat16: `bool` for whether to use bfloat16.
      image_size: image size.
      interpolation: image interpolation method

    Returns:
      A preprocessed image `Tensor`.
    """
    resize_method = tf.image.ResizeMethod.BICUBIC if interpolation == 'bicubic' else tf.image.ResizeMethod.BILINEAR
    image = _decode_and_random_crop(image_bytes, image_size, resize_method)
    image = _flip(image)
    image = tf.reshape(image, [image_size, image_size, 3])
    image = tf.image.convert_image_dtype(
        image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32)
    return image


def preprocess_for_eval(image_bytes, use_bfloat16, image_size=IMAGE_SIZE, interpolation='bicubic'):
    """Preprocesses the given image for evaluation.

    Args:
      image_bytes: `Tensor` representing an image binary of arbitrary size.
      use_bfloat16: `bool` for whether to use bfloat16.
      image_size: image size.
      interpolation: image interpolation method

    Returns:
      A preprocessed image `Tensor`.
    """
    resize_method = tf.image.ResizeMethod.BICUBIC if interpolation == 'bicubic' else tf.image.ResizeMethod.BILINEAR
    image = _decode_and_center_crop(image_bytes, image_size, resize_method)
    image = tf.reshape(image, [image_size, image_size, 3])
    image = tf.image.convert_image_dtype(
        image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32)
    return image


def preprocess_image(image_bytes,
                     is_training=False,
                     use_bfloat16=False,
                     image_size=IMAGE_SIZE,
                     interpolation='bicubic'):
    """Preprocesses the given image.

    Args:
      image_bytes: `Tensor` representing an image binary of arbitrary size.
      is_training: `bool` for whether the preprocessing is for training.
      use_bfloat16: `bool` for whether to use bfloat16.
      image_size: image size.
      interpolation: image interpolation method

    Returns:
      A preprocessed image `Tensor` with value range of [0, 255].
    """
    if is_training:
        return preprocess_for_train(image_bytes, use_bfloat16, image_size, interpolation)
    else:
        return preprocess_for_eval(image_bytes, use_bfloat16, image_size, interpolation)


class TfPreprocessTransform:

    def __init__(self, is_training=False, size=224, interpolation='bicubic'):
        self.is_training = is_training
        self.size = size[0] if isinstance(size, tuple) else size
        self.interpolation = interpolation
        self._image_bytes = None
        self.process_image = self._build_tf_graph()
        self.sess = None

    def _build_tf_graph(self):
        with tf.device('/cpu:0'):
            self._image_bytes = tf.placeholder(
                shape=[],
                dtype=tf.string,
            )
            img = preprocess_image(
                self._image_bytes, self.is_training, False, self.size, self.interpolation)
        return img

    def __call__(self, image_bytes):
        if self.sess is None:
            self.sess = tf.Session()
        img = self.sess.run(self.process_image, feed_dict={self._image_bytes: image_bytes})
        img = img.round().clip(0, 255).astype(np.uint8)
        if img.ndim < 3:
            img = np.expand_dims(img, axis=-1)
        img = np.rollaxis(img, 2)  # HWC to CHW
        return img