File size: 5,930 Bytes
847619e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#!/usr/bin/env python3
""" Checkpoint Averaging Script

This script averages all model weights for checkpoints in specified path that match
the specified filter wildcard. All checkpoints must be from the exact same model.

For any hope of decent results, the checkpoints should be from the same or child
(via resumes) training session. This can be viewed as similar to maintaining running
EMA (exponential moving average) of the model weights or performing SWA (stochastic
weight averaging), but post-training.

Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman)
"""
import torch
import argparse
import os
import glob
import hashlib
from timm.models import load_state_dict
try:
    import safetensors.torch
    _has_safetensors = True
except ImportError:
    _has_safetensors = False

DEFAULT_OUTPUT = "./averaged.pth"
DEFAULT_SAFE_OUTPUT = "./averaged.safetensors"

parser = argparse.ArgumentParser(description='PyTorch Checkpoint Averager')
parser.add_argument('--input', default='', type=str, metavar='PATH',
                    help='path to base input folder containing checkpoints')
parser.add_argument('--filter', default='*.pth.tar', type=str, metavar='WILDCARD',
                    help='checkpoint filter (path wildcard)')
parser.add_argument('--output', default=DEFAULT_OUTPUT, type=str, metavar='PATH',
                    help=f'Output filename. Defaults to {DEFAULT_SAFE_OUTPUT} when passing --safetensors.')
parser.add_argument('--no-use-ema', dest='no_use_ema', action='store_true',
                    help='Force not using ema version of weights (if present)')
parser.add_argument('--no-sort', dest='no_sort', action='store_true',
                    help='Do not sort and select by checkpoint metric, also makes "n" argument irrelevant')
parser.add_argument('-n', type=int, default=10, metavar='N',
                    help='Number of checkpoints to average')
parser.add_argument('--safetensors', action='store_true',
                    help='Save weights using safetensors instead of the default torch way (pickle).')


def checkpoint_metric(checkpoint_path):
    if not checkpoint_path or not os.path.isfile(checkpoint_path):
        return {}
    print("=> Extracting metric from checkpoint '{}'".format(checkpoint_path))
    checkpoint = torch.load(checkpoint_path, map_location='cpu')
    metric = None
    if 'metric' in checkpoint:
        metric = checkpoint['metric']
    elif 'metrics' in checkpoint and 'metric_name' in checkpoint:
        metrics = checkpoint['metrics']
        print(metrics)
        metric = metrics[checkpoint['metric_name']]
    return metric


def main():
    args = parser.parse_args()
    # by default use the EMA weights (if present)
    args.use_ema = not args.no_use_ema
    # by default sort by checkpoint metric (if present) and avg top n checkpoints
    args.sort = not args.no_sort

    if args.safetensors and args.output == DEFAULT_OUTPUT:
        # Default path changes if using safetensors
        args.output = DEFAULT_SAFE_OUTPUT

    output, output_ext = os.path.splitext(args.output)
    if not output_ext:
        output_ext = ('.safetensors' if args.safetensors else '.pth')
    output = output + output_ext

    if args.safetensors and not output_ext == ".safetensors":
        print(
            "Warning: saving weights as safetensors but output file extension is not "
            f"set to '.safetensors': {args.output}"
        )

    if os.path.exists(output):
        print("Error: Output filename ({}) already exists.".format(output))
        exit(1)

    pattern = args.input
    if not args.input.endswith(os.path.sep) and not args.filter.startswith(os.path.sep):
        pattern += os.path.sep
    pattern += args.filter
    checkpoints = glob.glob(pattern, recursive=True)

    if args.sort:
        checkpoint_metrics = []
        for c in checkpoints:
            metric = checkpoint_metric(c)
            if metric is not None:
                checkpoint_metrics.append((metric, c))
        checkpoint_metrics = list(sorted(checkpoint_metrics))
        checkpoint_metrics = checkpoint_metrics[-args.n:]
        if checkpoint_metrics:
            print("Selected checkpoints:")
            [print(m, c) for m, c in checkpoint_metrics]
        avg_checkpoints = [c for m, c in checkpoint_metrics]
    else:
        avg_checkpoints = checkpoints
        if avg_checkpoints:
            print("Selected checkpoints:")
            [print(c) for c in checkpoints]

    if not avg_checkpoints:
        print('Error: No checkpoints found to average.')
        exit(1)

    avg_state_dict = {}
    avg_counts = {}
    for c in avg_checkpoints:
        new_state_dict = load_state_dict(c, args.use_ema)
        if not new_state_dict:
            print(f"Error: Checkpoint ({c}) doesn't exist")
            continue
        for k, v in new_state_dict.items():
            if k not in avg_state_dict:
                avg_state_dict[k] = v.clone().to(dtype=torch.float64)
                avg_counts[k] = 1
            else:
                avg_state_dict[k] += v.to(dtype=torch.float64)
                avg_counts[k] += 1

    for k, v in avg_state_dict.items():
        v.div_(avg_counts[k])

    # float32 overflow seems unlikely based on weights seen to date, but who knows
    float32_info = torch.finfo(torch.float32)
    final_state_dict = {}
    for k, v in avg_state_dict.items():
        v = v.clamp(float32_info.min, float32_info.max)
        final_state_dict[k] = v.to(dtype=torch.float32)

    if args.safetensors:
        assert _has_safetensors, "`pip install safetensors` to use .safetensors"
        safetensors.torch.save_file(final_state_dict, output)
    else:
        torch.save(final_state_dict, output)

    with open(output, 'rb') as f:
        sha_hash = hashlib.sha256(f.read()).hexdigest()
    print(f"=> Saved state_dict to '{output}, SHA256: {sha_hash}'")


if __name__ == '__main__':
    main()