File size: 8,608 Bytes
847619e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#!/usr/bin/env python3
""" Bulk Model Script Runner

Run validation or benchmark script in separate process for each model

Benchmark all 'vit*' models:
python bulk_runner.py  --model-list 'vit*' --results-file vit_bench.csv benchmark.py --amp -b 512

Validate all models:
python bulk_runner.py  --model-list all --results-file val.csv --pretrained validate.py --data-dir /imagenet/validation/ --amp -b 512 --retry

Hacked together by Ross Wightman (https://github.com/rwightman)
"""
import argparse
import os
import sys
import csv
import json
import subprocess
import time
from typing import Callable, List, Tuple, Union


from timm.models import is_model, list_models, get_pretrained_cfg, get_arch_pretrained_cfgs


parser = argparse.ArgumentParser(description='Per-model process launcher')

# model and results args
parser.add_argument(
    '--model-list', metavar='NAME', default='',
    help='txt file based list of model names to benchmark')
parser.add_argument(
    '--results-file', default='', type=str, metavar='FILENAME',
    help='Output csv file for validation results (summary)')
parser.add_argument(
    '--sort-key', default='', type=str, metavar='COL',
    help='Specify sort key for results csv')
parser.add_argument(
    "--pretrained", action='store_true',
    help="only run models with pretrained weights")

parser.add_argument(
    "--delay",
    type=float,
    default=0,
    help="Interval, in seconds, to delay between model invocations.",
)
parser.add_argument(
    "--start_method", type=str, default="spawn", choices=["spawn", "fork", "forkserver"],
    help="Multiprocessing start method to use when creating workers.",
)
parser.add_argument(
    "--no_python",
    help="Skip prepending the script with 'python' - just execute it directly. Useful "
         "when the script is not a Python script.",
)
parser.add_argument(
    "-m",
    "--module",
    help="Change each process to interpret the launch script as a Python module, executing "
         "with the same behavior as 'python -m'.",
)

# positional
parser.add_argument(
    "script", type=str,
    help="Full path to the program/script to be launched for each model config.",
)
parser.add_argument("script_args", nargs=argparse.REMAINDER)


def cmd_from_args(args) -> Tuple[Union[Callable, str], List[str]]:
    # If ``args`` not passed, defaults to ``sys.argv[:1]``
    with_python = not args.no_python
    cmd: Union[Callable, str]
    cmd_args = []
    if with_python:
        cmd = os.getenv("PYTHON_EXEC", sys.executable)
        cmd_args.append("-u")
        if args.module:
            cmd_args.append("-m")
        cmd_args.append(args.script)
    else:
        if args.module:
            raise ValueError(
                "Don't use both the '--no_python' flag"
                " and the '--module' flag at the same time."
            )
        cmd = args.script
    cmd_args.extend(args.script_args)

    return cmd, cmd_args


def _get_model_cfgs(
        model_names,
        num_classes=None,
        expand_train_test=False,
        include_crop=True,
        expand_arch=False,
):
    model_cfgs = set()

    for name in model_names:
        if expand_arch:
            pt_cfgs = get_arch_pretrained_cfgs(name).values()
        else:
            pt_cfg = get_pretrained_cfg(name)
            pt_cfgs = [pt_cfg] if pt_cfg is not None else []

        for cfg in pt_cfgs:
            if cfg.input_size is None:
                continue
            if num_classes is not None and getattr(cfg, 'num_classes', 0) != num_classes:
                continue

            # Add main configuration
            size = cfg.input_size[-1]
            if include_crop:
                model_cfgs.add((name, size, cfg.crop_pct))
            else:
                model_cfgs.add((name, size))

            # Add test configuration if required
            if expand_train_test and cfg.test_input_size is not None:
                test_size = cfg.test_input_size[-1]
                if include_crop:
                    test_crop = cfg.test_crop_pct or cfg.crop_pct
                    model_cfgs.add((name, test_size, test_crop))
                else:
                    model_cfgs.add((name, test_size))

    # Format the output
    if include_crop:
        return [(n, {'img-size': r, 'crop-pct': cp}) for n, r, cp in sorted(model_cfgs)]
    else:
        return [(n, {'img-size': r}) for n, r in sorted(model_cfgs)]


def main():
    args = parser.parse_args()
    cmd, cmd_args = cmd_from_args(args)

    model_cfgs = []
    if args.model_list == 'all':
        model_names = list_models(
            pretrained=args.pretrained,  # only include models w/ pretrained checkpoints if set
        )
        model_cfgs = [(n, None) for n in model_names]
    elif args.model_list == 'all_in1k':
        model_names = list_models(pretrained=True)
        model_cfgs = _get_model_cfgs(model_names, num_classes=1000, expand_train_test=True)
    elif args.model_list == 'all_res':
        model_names = list_models()
        model_cfgs = _get_model_cfgs(model_names, expand_train_test=True, include_crop=False, expand_arch=True)
    elif not is_model(args.model_list):
        # model name doesn't exist, try as wildcard filter
        model_names = list_models(args.model_list)
        model_cfgs = [(n, None) for n in model_names]

    if not model_cfgs and os.path.exists(args.model_list):
        with open(args.model_list) as f:
            model_names = [line.rstrip() for line in f]
            model_cfgs = _get_model_cfgs(
                model_names,
                #num_classes=1000,
                expand_train_test=True,
                #include_crop=False,
            )

    if len(model_cfgs):
        results_file = args.results_file or './results.csv'
        results = []
        errors = []
        model_strings = '\n'.join([f'{x[0]}, {x[1]}' for x in model_cfgs])
        print(f"Running script on these models:\n {model_strings}")
        if not args.sort_key:
            if 'benchmark' in args.script:
                if any(['train' in a for a in args.script_args]):
                    sort_key = 'train_samples_per_sec'
                else:
                    sort_key = 'infer_samples_per_sec'
            else:
                sort_key = 'top1'
        else:
            sort_key = args.sort_key
        print(f'Script: {args.script}, Args: {args.script_args}, Sort key: {sort_key}')

        try:
            for m, ax in model_cfgs:
                if not m:
                    continue
                args_str = (cmd, *[str(e) for e in cmd_args], '--model', m)
                if ax is not None:
                    extra_args = [(f'--{k}', str(v)) for k, v in ax.items()]
                    extra_args = [i for t in extra_args for i in t]
                    args_str += tuple(extra_args)
                try:
                    o = subprocess.check_output(args=args_str).decode('utf-8').split('--result')[-1]
                    r = json.loads(o)
                    results.append(r)
                except Exception as e:
                    # FIXME batch_size retry loop is currently done in either validation.py or benchmark.py
                    # for further robustness (but more overhead), we may want to manage that by looping here...
                    errors.append(dict(model=m, error=str(e)))
                if args.delay:
                    time.sleep(args.delay)
        except KeyboardInterrupt as e:
            pass

        errors.extend(list(filter(lambda x: 'error' in x, results)))
        if errors:
            print(f'{len(errors)} models had errors during run.')
            for e in errors:
                if 'model' in e:
                    print(f"\t {e['model']} ({e.get('error', 'Unknown')})")
                else:
                    print(e)

        results = list(filter(lambda x: 'error' not in x, results))

        no_sortkey = list(filter(lambda x: sort_key not in x, results))
        if no_sortkey:
            print(f'{len(no_sortkey)} results missing sort key, skipping sort.')
        else:
            results = sorted(results, key=lambda x: x[sort_key], reverse=True)

        if len(results):
            print(f'{len(results)} models run successfully. Saving results to {results_file}.')
            write_results(results_file, results)


def write_results(results_file, results):
    with open(results_file, mode='w') as cf:
        dw = csv.DictWriter(cf, fieldnames=results[0].keys())
        dw.writeheader()
        for r in results:
            dw.writerow(r)
        cf.flush()


if __name__ == '__main__':
    main()