File size: 1,888 Bytes
847619e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import os
from fastapi import FastAPI
import wandb
from huggingface_hub import HfApi
TOKEN = os.environ.get("DATACOMP_TOKEN")
API = HfApi(token=TOKEN)
wandb_api_key = os.environ.get('wandb_api_key')
wandb.login(key=wandb_api_key)
EXPERIMENT = "imagenet-1k-random-20.0-frac-1over2"
# Input dataset
INPUT = f"datacomp/{EXPERIMENT}"
# Output for files and Space ID
OUTPUT = f"datacomp/ImagenetTraining-{EXPERIMENT}"
app = FastAPI()
@app.get("/")
def start_train():
os.system("echo 'Space started!'")
os.system("echo pwd")
os.system("pwd")
os.system("echo ls")
os.system("ls")
os.system("echo 'creating dataset for output files if it doesn't exist...'")
try:
API.create_repo(repo_id=OUTPUT, repo_type="dataset",)
except:
pass
#space_variables = API.get_space_variables(repo_id=SPACE_ID)
#if 'STATUS' not in space_variables or space_variables['STATUS'] != 'COMPUTING':
os.system("echo 'Beginning processing.'")
# API.add_space_variable(repo_id=SPACE_ID, key='STATUS', value='COMPUTING')
# Handles CUDA OOM errors.
os.system(f"export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True")
# Prints more informative CUDA errors (I think? I've forgotten now.)
os.system("export CUDA_LAUNCH_BLOCKING=1")
os.system("echo 'Okay, trying training.'")
os.system(f"cd pytorch-image-models; ./train.sh 4 --dataset hfds/{INPUT} --log-wandb --experiment {EXPERIMENT} --model seresnet34 --sched cosine --epochs 150 --warmup-epochs 5 --lr 0.4 --reprob 0.5 --remode pixel --batch-size 256 --amp -j 4")
os.system("echo ls")
os.system("ls")
os.system("echo 'trying to upload...'")
API.upload_large_folder(folder_path="/app", repo_id=OUTPUT, repo_type="dataset",)
#API.add_space_variable(repo_id=SPACE_ID, key='STATUS', value='NOT_COMPUTING')
#API.pause_space(SPACE_ID)
return {"Completed": "!"}
|