|
import logging |
|
from .constants import * |
|
|
|
|
|
_logger = logging.getLogger(__name__) |
|
|
|
|
|
def resolve_data_config( |
|
args=None, |
|
pretrained_cfg=None, |
|
model=None, |
|
use_test_size=False, |
|
verbose=False |
|
): |
|
assert model or args or pretrained_cfg, "At least one of model, args, or pretrained_cfg required for data config." |
|
args = args or {} |
|
pretrained_cfg = pretrained_cfg or {} |
|
if not pretrained_cfg and model is not None and hasattr(model, 'pretrained_cfg'): |
|
pretrained_cfg = model.pretrained_cfg |
|
data_config = {} |
|
|
|
|
|
in_chans = 3 |
|
if args.get('in_chans', None) is not None: |
|
in_chans = args['in_chans'] |
|
elif args.get('chans', None) is not None: |
|
in_chans = args['chans'] |
|
|
|
input_size = (in_chans, 224, 224) |
|
if args.get('input_size', None) is not None: |
|
assert isinstance(args['input_size'], (tuple, list)) |
|
assert len(args['input_size']) == 3 |
|
input_size = tuple(args['input_size']) |
|
in_chans = input_size[0] |
|
elif args.get('img_size', None) is not None: |
|
assert isinstance(args['img_size'], int) |
|
input_size = (in_chans, args['img_size'], args['img_size']) |
|
else: |
|
if use_test_size and pretrained_cfg.get('test_input_size', None) is not None: |
|
input_size = pretrained_cfg['test_input_size'] |
|
elif pretrained_cfg.get('input_size', None) is not None: |
|
input_size = pretrained_cfg['input_size'] |
|
data_config['input_size'] = input_size |
|
|
|
|
|
data_config['interpolation'] = 'bicubic' |
|
if args.get('interpolation', None): |
|
data_config['interpolation'] = args['interpolation'] |
|
elif pretrained_cfg.get('interpolation', None): |
|
data_config['interpolation'] = pretrained_cfg['interpolation'] |
|
|
|
|
|
data_config['mean'] = IMAGENET_DEFAULT_MEAN |
|
if args.get('mean', None) is not None: |
|
mean = tuple(args['mean']) |
|
if len(mean) == 1: |
|
mean = tuple(list(mean) * in_chans) |
|
else: |
|
assert len(mean) == in_chans |
|
data_config['mean'] = mean |
|
elif pretrained_cfg.get('mean', None): |
|
data_config['mean'] = pretrained_cfg['mean'] |
|
|
|
|
|
data_config['std'] = IMAGENET_DEFAULT_STD |
|
if args.get('std', None) is not None: |
|
std = tuple(args['std']) |
|
if len(std) == 1: |
|
std = tuple(list(std) * in_chans) |
|
else: |
|
assert len(std) == in_chans |
|
data_config['std'] = std |
|
elif pretrained_cfg.get('std', None): |
|
data_config['std'] = pretrained_cfg['std'] |
|
|
|
|
|
crop_pct = DEFAULT_CROP_PCT |
|
if args.get('crop_pct', None): |
|
crop_pct = args['crop_pct'] |
|
else: |
|
if use_test_size and pretrained_cfg.get('test_crop_pct', None): |
|
crop_pct = pretrained_cfg['test_crop_pct'] |
|
elif pretrained_cfg.get('crop_pct', None): |
|
crop_pct = pretrained_cfg['crop_pct'] |
|
data_config['crop_pct'] = crop_pct |
|
|
|
|
|
crop_mode = DEFAULT_CROP_MODE |
|
if args.get('crop_mode', None): |
|
crop_mode = args['crop_mode'] |
|
elif pretrained_cfg.get('crop_mode', None): |
|
crop_mode = pretrained_cfg['crop_mode'] |
|
data_config['crop_mode'] = crop_mode |
|
|
|
if verbose: |
|
_logger.info('Data processing configuration for current model + dataset:') |
|
for n, v in data_config.items(): |
|
_logger.info('\t%s: %s' % (n, str(v))) |
|
|
|
return data_config |
|
|
|
|
|
def resolve_model_data_config( |
|
model, |
|
args=None, |
|
pretrained_cfg=None, |
|
use_test_size=False, |
|
verbose=False, |
|
): |
|
""" Resolve Model Data Config |
|
This is equivalent to resolve_data_config() but with arguments re-ordered to put model first. |
|
|
|
Args: |
|
model (nn.Module): the model instance |
|
args (dict): command line arguments / configuration in dict form (overrides pretrained_cfg) |
|
pretrained_cfg (dict): pretrained model config (overrides pretrained_cfg attached to model) |
|
use_test_size (bool): use the test time input resolution (if one exists) instead of default train resolution |
|
verbose (bool): enable extra logging of resolved values |
|
|
|
Returns: |
|
dictionary of config |
|
""" |
|
return resolve_data_config( |
|
args=args, |
|
pretrained_cfg=pretrained_cfg, |
|
model=model, |
|
use_test_size=use_test_size, |
|
verbose=verbose, |
|
) |
|
|