ImagenetTraining-imagenet-1k-random-20.0-frac-1over2
/
pytorch-image-models
/timm
/data
/dataset_factory.py
""" Dataset Factory | |
Hacked together by / Copyright 2021, Ross Wightman | |
""" | |
import os | |
from typing import Optional | |
from torchvision.datasets import CIFAR100, CIFAR10, MNIST, KMNIST, FashionMNIST, ImageFolder | |
try: | |
from torchvision.datasets import Places365 | |
has_places365 = True | |
except ImportError: | |
has_places365 = False | |
try: | |
from torchvision.datasets import INaturalist | |
has_inaturalist = True | |
except ImportError: | |
has_inaturalist = False | |
try: | |
from torchvision.datasets import QMNIST | |
has_qmnist = True | |
except ImportError: | |
has_qmnist = False | |
try: | |
from torchvision.datasets import ImageNet | |
has_imagenet = True | |
except ImportError: | |
has_imagenet = False | |
from .dataset import IterableImageDataset, ImageDataset | |
_TORCH_BASIC_DS = dict( | |
cifar10=CIFAR10, | |
cifar100=CIFAR100, | |
mnist=MNIST, | |
kmnist=KMNIST, | |
fashion_mnist=FashionMNIST, | |
) | |
_TRAIN_SYNONYM = dict(train=None, training=None) | |
_EVAL_SYNONYM = dict(val=None, valid=None, validation=None, eval=None, evaluation=None) | |
def _search_split(root, split): | |
# look for sub-folder with name of split in root and use that if it exists | |
split_name = split.split('[')[0] | |
try_root = os.path.join(root, split_name) | |
if os.path.exists(try_root): | |
return try_root | |
def _try(syn): | |
for s in syn: | |
try_root = os.path.join(root, s) | |
if os.path.exists(try_root): | |
return try_root | |
return root | |
if split_name in _TRAIN_SYNONYM: | |
root = _try(_TRAIN_SYNONYM) | |
elif split_name in _EVAL_SYNONYM: | |
root = _try(_EVAL_SYNONYM) | |
return root | |
def create_dataset( | |
name: str, | |
root: Optional[str] = None, | |
split: str = 'validation', | |
search_split: bool = True, | |
class_map: dict = None, | |
load_bytes: bool = False, | |
is_training: bool = False, | |
download: bool = False, | |
batch_size: int = 1, | |
num_samples: Optional[int] = None, | |
seed: int = 42, | |
repeats: int = 0, | |
input_img_mode: str = 'RGB', | |
trust_remote_code: bool = False, | |
**kwargs, | |
): | |
""" Dataset factory method | |
In parentheses after each arg are the type of dataset supported for each arg, one of: | |
* Folder - default, timm folder (or tar) based ImageDataset | |
* Torch - torchvision based datasets | |
* HFDS - Hugging Face Datasets | |
* HFIDS - Hugging Face Datasets Iterable (streaming mode, with IterableDataset) | |
* TFDS - Tensorflow-datasets wrapper in IterabeDataset interface via IterableImageDataset | |
* WDS - Webdataset | |
* All - any of the above | |
Args: | |
name: Dataset name, empty is okay for folder based datasets | |
root: Root folder of dataset (All) | |
split: Dataset split (All) | |
search_split: Search for split specific child fold from root so one can specify | |
`imagenet/` instead of `/imagenet/val`, etc on cmd line / config. (Folder, Torch) | |
class_map: Specify class -> index mapping via text file or dict (Folder) | |
load_bytes: Load data, return images as undecoded bytes (Folder) | |
download: Download dataset if not present and supported (HFIDS, TFDS, Torch) | |
is_training: Create dataset in train mode, this is different from the split. | |
For Iterable / TDFS it enables shuffle, ignored for other datasets. (TFDS, WDS, HFIDS) | |
batch_size: Batch size hint for iterable datasets (TFDS, WDS, HFIDS) | |
seed: Seed for iterable datasets (TFDS, WDS, HFIDS) | |
repeats: Dataset repeats per iteration i.e. epoch (TFDS, WDS, HFIDS) | |
input_img_mode: Input image color conversion mode e.g. 'RGB', 'L' (folder, TFDS, WDS, HFDS, HFIDS) | |
trust_remote_code: Trust remote code in Hugging Face Datasets if True (HFDS, HFIDS) | |
**kwargs: Other args to pass through to underlying Dataset and/or Reader classes | |
Returns: | |
Dataset object | |
""" | |
kwargs = {k: v for k, v in kwargs.items() if v is not None} | |
name = name.lower() | |
if name.startswith('torch/'): | |
name = name.split('/', 2)[-1] | |
torch_kwargs = dict(root=root, download=download, **kwargs) | |
if name in _TORCH_BASIC_DS: | |
ds_class = _TORCH_BASIC_DS[name] | |
use_train = split in _TRAIN_SYNONYM | |
ds = ds_class(train=use_train, **torch_kwargs) | |
elif name == 'inaturalist' or name == 'inat': | |
assert has_inaturalist, 'Please update to PyTorch 1.10, torchvision 0.11+ for Inaturalist' | |
target_type = 'full' | |
split_split = split.split('/') | |
if len(split_split) > 1: | |
target_type = split_split[0].split('_') | |
if len(target_type) == 1: | |
target_type = target_type[0] | |
split = split_split[-1] | |
if split in _TRAIN_SYNONYM: | |
split = '2021_train' | |
elif split in _EVAL_SYNONYM: | |
split = '2021_valid' | |
ds = INaturalist(version=split, target_type=target_type, **torch_kwargs) | |
elif name == 'places365': | |
assert has_places365, 'Please update to a newer PyTorch and torchvision for Places365 dataset.' | |
if split in _TRAIN_SYNONYM: | |
split = 'train-standard' | |
elif split in _EVAL_SYNONYM: | |
split = 'val' | |
ds = Places365(split=split, **torch_kwargs) | |
elif name == 'qmnist': | |
assert has_qmnist, 'Please update to a newer PyTorch and torchvision for QMNIST dataset.' | |
use_train = split in _TRAIN_SYNONYM | |
ds = QMNIST(train=use_train, **torch_kwargs) | |
elif name == 'imagenet': | |
assert has_imagenet, 'Please update to a newer PyTorch and torchvision for ImageNet dataset.' | |
if split in _EVAL_SYNONYM: | |
split = 'val' | |
ds = ImageNet(split=split, **torch_kwargs) | |
elif name == 'image_folder' or name == 'folder': | |
# in case torchvision ImageFolder is preferred over timm ImageDataset for some reason | |
if search_split and os.path.isdir(root): | |
# look for split specific sub-folder in root | |
root = _search_split(root, split) | |
ds = ImageFolder(root, **kwargs) | |
else: | |
assert False, f"Unknown torchvision dataset {name}" | |
elif name.startswith('hfds/'): | |
# NOTE right now, HF datasets default arrow format is a random-access Dataset, | |
# There will be a IterableDataset variant too, TBD | |
ds = ImageDataset( | |
root, | |
reader=name, | |
split=split, | |
class_map=class_map, | |
input_img_mode=input_img_mode, | |
trust_remote_code=trust_remote_code, | |
**kwargs, | |
) | |
elif name.startswith('hfids/'): | |
ds = IterableImageDataset( | |
root, | |
reader=name, | |
split=split, | |
class_map=class_map, | |
is_training=is_training, | |
download=download, | |
batch_size=batch_size, | |
num_samples=num_samples, | |
repeats=repeats, | |
seed=seed, | |
input_img_mode=input_img_mode, | |
trust_remote_code=trust_remote_code, | |
**kwargs, | |
) | |
elif name.startswith('tfds/'): | |
ds = IterableImageDataset( | |
root, | |
reader=name, | |
split=split, | |
class_map=class_map, | |
is_training=is_training, | |
download=download, | |
batch_size=batch_size, | |
num_samples=num_samples, | |
repeats=repeats, | |
seed=seed, | |
input_img_mode=input_img_mode, | |
**kwargs | |
) | |
elif name.startswith('wds/'): | |
ds = IterableImageDataset( | |
root, | |
reader=name, | |
split=split, | |
class_map=class_map, | |
is_training=is_training, | |
batch_size=batch_size, | |
num_samples=num_samples, | |
repeats=repeats, | |
seed=seed, | |
input_img_mode=input_img_mode, | |
**kwargs | |
) | |
else: | |
# FIXME support more advance split cfg for ImageFolder/Tar datasets in the future | |
if search_split and os.path.isdir(root): | |
# look for split specific sub-folder in root | |
root = _search_split(root, split) | |
ds = ImageDataset( | |
root, | |
reader=name, | |
class_map=class_map, | |
load_bytes=load_bytes, | |
input_img_mode=input_img_mode, | |
**kwargs, | |
) | |
return ds | |