ImagenetTraining-imagenet-1k-random-20.0-frac-1over2
/
pytorch-image-models
/timm
/data
/imagenet_info.py
import csv | |
import os | |
import pkgutil | |
import re | |
from typing import Dict, List, Optional, Union | |
from .dataset_info import DatasetInfo | |
# NOTE no ambiguity wrt to mapping from # classes to ImageNet subset so far, but likely to change | |
_NUM_CLASSES_TO_SUBSET = { | |
1000: 'imagenet-1k', | |
11221: 'imagenet-21k-miil', # miil subset of fall11 | |
11821: 'imagenet-12k', # timm specific 12k subset of fall11 | |
21841: 'imagenet-22k', # as in fall11.tar | |
21842: 'imagenet-22k-ms', # a Microsoft (for FocalNet) remapping of 22k w/ moves ImageNet-1k classes to first 1000 | |
21843: 'imagenet-21k-goog', # Google's ImageNet full has two classes not in fall11 | |
} | |
_SUBSETS = { | |
'imagenet1k': 'imagenet_synsets.txt', | |
'imagenet12k': 'imagenet12k_synsets.txt', | |
'imagenet22k': 'imagenet22k_synsets.txt', | |
'imagenet21k': 'imagenet21k_goog_synsets.txt', | |
'imagenet21kgoog': 'imagenet21k_goog_synsets.txt', | |
'imagenet21kmiil': 'imagenet21k_miil_synsets.txt', | |
'imagenet22kms': 'imagenet22k_ms_synsets.txt', | |
} | |
_LEMMA_FILE = 'imagenet_synset_to_lemma.txt' | |
_DEFINITION_FILE = 'imagenet_synset_to_definition.txt' | |
def infer_imagenet_subset(model_or_cfg) -> Optional[str]: | |
if isinstance(model_or_cfg, dict): | |
num_classes = model_or_cfg.get('num_classes', None) | |
else: | |
num_classes = getattr(model_or_cfg, 'num_classes', None) | |
if not num_classes: | |
pretrained_cfg = getattr(model_or_cfg, 'pretrained_cfg', {}) | |
# FIXME at some point pretrained_cfg should include dataset-tag, | |
# which will be more robust than a guess based on num_classes | |
num_classes = pretrained_cfg.get('num_classes', None) | |
if not num_classes or num_classes not in _NUM_CLASSES_TO_SUBSET: | |
return None | |
return _NUM_CLASSES_TO_SUBSET[num_classes] | |
class ImageNetInfo(DatasetInfo): | |
def __init__(self, subset: str = 'imagenet-1k'): | |
super().__init__() | |
subset = re.sub(r'[-_\s]', '', subset.lower()) | |
assert subset in _SUBSETS, f'Unknown imagenet subset {subset}.' | |
# WordNet synsets (part-of-speach + offset) are the unique class label names for ImageNet classifiers | |
synset_file = _SUBSETS[subset] | |
synset_data = pkgutil.get_data(__name__, os.path.join('_info', synset_file)) | |
self._synsets = synset_data.decode('utf-8').splitlines() | |
# WordNet lemmas (canonical dictionary form of word) and definitions are used to build | |
# the class descriptions. If detailed=True both are used, otherwise just the lemmas. | |
lemma_data = pkgutil.get_data(__name__, os.path.join('_info', _LEMMA_FILE)) | |
reader = csv.reader(lemma_data.decode('utf-8').splitlines(), delimiter='\t') | |
self._lemmas = dict(reader) | |
definition_data = pkgutil.get_data(__name__, os.path.join('_info', _DEFINITION_FILE)) | |
reader = csv.reader(definition_data.decode('utf-8').splitlines(), delimiter='\t') | |
self._definitions = dict(reader) | |
def num_classes(self): | |
return len(self._synsets) | |
def label_names(self): | |
return self._synsets | |
def label_descriptions(self, detailed: bool = False, as_dict: bool = False) -> Union[List[str], Dict[str, str]]: | |
if as_dict: | |
return {label: self.label_name_to_description(label, detailed=detailed) for label in self._synsets} | |
else: | |
return [self.label_name_to_description(label, detailed=detailed) for label in self._synsets] | |
def index_to_label_name(self, index) -> str: | |
assert 0 <= index < len(self._synsets), \ | |
f'Index ({index}) out of range for dataset with {len(self._synsets)} classes.' | |
return self._synsets[index] | |
def index_to_description(self, index: int, detailed: bool = False) -> str: | |
label = self.index_to_label_name(index) | |
return self.label_name_to_description(label, detailed=detailed) | |
def label_name_to_description(self, label: str, detailed: bool = False) -> str: | |
if detailed: | |
description = f'{self._lemmas[label]}: {self._definitions[label]}' | |
else: | |
description = f'{self._lemmas[label]}' | |
return description | |