|
""" Mixup and Cutmix |
|
|
|
Papers: |
|
mixup: Beyond Empirical Risk Minimization (https://arxiv.org/abs/1710.09412) |
|
|
|
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features (https://arxiv.org/abs/1905.04899) |
|
|
|
Code Reference: |
|
CutMix: https://github.com/clovaai/CutMix-PyTorch |
|
|
|
Hacked together by / Copyright 2019, Ross Wightman |
|
""" |
|
import numpy as np |
|
import torch |
|
|
|
|
|
def one_hot(x, num_classes, on_value=1., off_value=0.): |
|
x = x.long().view(-1, 1) |
|
return torch.full((x.size()[0], num_classes), off_value, device=x.device).scatter_(1, x, on_value) |
|
|
|
|
|
def mixup_target(target, num_classes, lam=1., smoothing=0.0): |
|
off_value = smoothing / num_classes |
|
on_value = 1. - smoothing + off_value |
|
y1 = one_hot(target, num_classes, on_value=on_value, off_value=off_value) |
|
y2 = one_hot(target.flip(0), num_classes, on_value=on_value, off_value=off_value) |
|
return y1 * lam + y2 * (1. - lam) |
|
|
|
|
|
def rand_bbox(img_shape, lam, margin=0., count=None): |
|
""" Standard CutMix bounding-box |
|
Generates a random square bbox based on lambda value. This impl includes |
|
support for enforcing a border margin as percent of bbox dimensions. |
|
|
|
Args: |
|
img_shape (tuple): Image shape as tuple |
|
lam (float): Cutmix lambda value |
|
margin (float): Percentage of bbox dimension to enforce as margin (reduce amount of box outside image) |
|
count (int): Number of bbox to generate |
|
""" |
|
ratio = np.sqrt(1 - lam) |
|
img_h, img_w = img_shape[-2:] |
|
cut_h, cut_w = int(img_h * ratio), int(img_w * ratio) |
|
margin_y, margin_x = int(margin * cut_h), int(margin * cut_w) |
|
cy = np.random.randint(0 + margin_y, img_h - margin_y, size=count) |
|
cx = np.random.randint(0 + margin_x, img_w - margin_x, size=count) |
|
yl = np.clip(cy - cut_h // 2, 0, img_h) |
|
yh = np.clip(cy + cut_h // 2, 0, img_h) |
|
xl = np.clip(cx - cut_w // 2, 0, img_w) |
|
xh = np.clip(cx + cut_w // 2, 0, img_w) |
|
return yl, yh, xl, xh |
|
|
|
|
|
def rand_bbox_minmax(img_shape, minmax, count=None): |
|
""" Min-Max CutMix bounding-box |
|
Inspired by Darknet cutmix impl, generates a random rectangular bbox |
|
based on min/max percent values applied to each dimension of the input image. |
|
|
|
Typical defaults for minmax are usually in the .2-.3 for min and .8-.9 range for max. |
|
|
|
Args: |
|
img_shape (tuple): Image shape as tuple |
|
minmax (tuple or list): Min and max bbox ratios (as percent of image size) |
|
count (int): Number of bbox to generate |
|
""" |
|
assert len(minmax) == 2 |
|
img_h, img_w = img_shape[-2:] |
|
cut_h = np.random.randint(int(img_h * minmax[0]), int(img_h * minmax[1]), size=count) |
|
cut_w = np.random.randint(int(img_w * minmax[0]), int(img_w * minmax[1]), size=count) |
|
yl = np.random.randint(0, img_h - cut_h, size=count) |
|
xl = np.random.randint(0, img_w - cut_w, size=count) |
|
yu = yl + cut_h |
|
xu = xl + cut_w |
|
return yl, yu, xl, xu |
|
|
|
|
|
def cutmix_bbox_and_lam(img_shape, lam, ratio_minmax=None, correct_lam=True, count=None): |
|
""" Generate bbox and apply lambda correction. |
|
""" |
|
if ratio_minmax is not None: |
|
yl, yu, xl, xu = rand_bbox_minmax(img_shape, ratio_minmax, count=count) |
|
else: |
|
yl, yu, xl, xu = rand_bbox(img_shape, lam, count=count) |
|
if correct_lam or ratio_minmax is not None: |
|
bbox_area = (yu - yl) * (xu - xl) |
|
lam = 1. - bbox_area / float(img_shape[-2] * img_shape[-1]) |
|
return (yl, yu, xl, xu), lam |
|
|
|
|
|
class Mixup: |
|
""" Mixup/Cutmix that applies different params to each element or whole batch |
|
|
|
Args: |
|
mixup_alpha (float): mixup alpha value, mixup is active if > 0. |
|
cutmix_alpha (float): cutmix alpha value, cutmix is active if > 0. |
|
cutmix_minmax (List[float]): cutmix min/max image ratio, cutmix is active and uses this vs alpha if not None. |
|
prob (float): probability of applying mixup or cutmix per batch or element |
|
switch_prob (float): probability of switching to cutmix instead of mixup when both are active |
|
mode (str): how to apply mixup/cutmix params (per 'batch', 'pair' (pair of elements), 'elem' (element) |
|
correct_lam (bool): apply lambda correction when cutmix bbox clipped by image borders |
|
label_smoothing (float): apply label smoothing to the mixed target tensor |
|
num_classes (int): number of classes for target |
|
""" |
|
def __init__(self, mixup_alpha=1., cutmix_alpha=0., cutmix_minmax=None, prob=1.0, switch_prob=0.5, |
|
mode='batch', correct_lam=True, label_smoothing=0.1, num_classes=1000): |
|
self.mixup_alpha = mixup_alpha |
|
self.cutmix_alpha = cutmix_alpha |
|
self.cutmix_minmax = cutmix_minmax |
|
if self.cutmix_minmax is not None: |
|
assert len(self.cutmix_minmax) == 2 |
|
|
|
self.cutmix_alpha = 1.0 |
|
self.mix_prob = prob |
|
self.switch_prob = switch_prob |
|
self.label_smoothing = label_smoothing |
|
self.num_classes = num_classes |
|
self.mode = mode |
|
self.correct_lam = correct_lam |
|
self.mixup_enabled = True |
|
|
|
def _params_per_elem(self, batch_size): |
|
lam = np.ones(batch_size, dtype=np.float32) |
|
use_cutmix = np.zeros(batch_size, dtype=bool) |
|
if self.mixup_enabled: |
|
if self.mixup_alpha > 0. and self.cutmix_alpha > 0.: |
|
use_cutmix = np.random.rand(batch_size) < self.switch_prob |
|
lam_mix = np.where( |
|
use_cutmix, |
|
np.random.beta(self.cutmix_alpha, self.cutmix_alpha, size=batch_size), |
|
np.random.beta(self.mixup_alpha, self.mixup_alpha, size=batch_size)) |
|
elif self.mixup_alpha > 0.: |
|
lam_mix = np.random.beta(self.mixup_alpha, self.mixup_alpha, size=batch_size) |
|
elif self.cutmix_alpha > 0.: |
|
use_cutmix = np.ones(batch_size, dtype=bool) |
|
lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha, size=batch_size) |
|
else: |
|
assert False, "One of mixup_alpha > 0., cutmix_alpha > 0., cutmix_minmax not None should be true." |
|
lam = np.where(np.random.rand(batch_size) < self.mix_prob, lam_mix.astype(np.float32), lam) |
|
return lam, use_cutmix |
|
|
|
def _params_per_batch(self): |
|
lam = 1. |
|
use_cutmix = False |
|
if self.mixup_enabled and np.random.rand() < self.mix_prob: |
|
if self.mixup_alpha > 0. and self.cutmix_alpha > 0.: |
|
use_cutmix = np.random.rand() < self.switch_prob |
|
lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha) if use_cutmix else \ |
|
np.random.beta(self.mixup_alpha, self.mixup_alpha) |
|
elif self.mixup_alpha > 0.: |
|
lam_mix = np.random.beta(self.mixup_alpha, self.mixup_alpha) |
|
elif self.cutmix_alpha > 0.: |
|
use_cutmix = True |
|
lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha) |
|
else: |
|
assert False, "One of mixup_alpha > 0., cutmix_alpha > 0., cutmix_minmax not None should be true." |
|
lam = float(lam_mix) |
|
return lam, use_cutmix |
|
|
|
def _mix_elem(self, x): |
|
batch_size = len(x) |
|
lam_batch, use_cutmix = self._params_per_elem(batch_size) |
|
x_orig = x.clone() |
|
for i in range(batch_size): |
|
j = batch_size - i - 1 |
|
lam = lam_batch[i] |
|
if lam != 1.: |
|
if use_cutmix[i]: |
|
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam( |
|
x[i].shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) |
|
x[i][:, yl:yh, xl:xh] = x_orig[j][:, yl:yh, xl:xh] |
|
lam_batch[i] = lam |
|
else: |
|
x[i] = x[i] * lam + x_orig[j] * (1 - lam) |
|
return torch.tensor(lam_batch, device=x.device, dtype=x.dtype).unsqueeze(1) |
|
|
|
def _mix_pair(self, x): |
|
batch_size = len(x) |
|
lam_batch, use_cutmix = self._params_per_elem(batch_size // 2) |
|
x_orig = x.clone() |
|
for i in range(batch_size // 2): |
|
j = batch_size - i - 1 |
|
lam = lam_batch[i] |
|
if lam != 1.: |
|
if use_cutmix[i]: |
|
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam( |
|
x[i].shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) |
|
x[i][:, yl:yh, xl:xh] = x_orig[j][:, yl:yh, xl:xh] |
|
x[j][:, yl:yh, xl:xh] = x_orig[i][:, yl:yh, xl:xh] |
|
lam_batch[i] = lam |
|
else: |
|
x[i] = x[i] * lam + x_orig[j] * (1 - lam) |
|
x[j] = x[j] * lam + x_orig[i] * (1 - lam) |
|
lam_batch = np.concatenate((lam_batch, lam_batch[::-1])) |
|
return torch.tensor(lam_batch, device=x.device, dtype=x.dtype).unsqueeze(1) |
|
|
|
def _mix_batch(self, x): |
|
lam, use_cutmix = self._params_per_batch() |
|
if lam == 1.: |
|
return 1. |
|
if use_cutmix: |
|
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam( |
|
x.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) |
|
x[:, :, yl:yh, xl:xh] = x.flip(0)[:, :, yl:yh, xl:xh] |
|
else: |
|
x_flipped = x.flip(0).mul_(1. - lam) |
|
x.mul_(lam).add_(x_flipped) |
|
return lam |
|
|
|
def __call__(self, x, target): |
|
assert len(x) % 2 == 0, 'Batch size should be even when using this' |
|
if self.mode == 'elem': |
|
lam = self._mix_elem(x) |
|
elif self.mode == 'pair': |
|
lam = self._mix_pair(x) |
|
else: |
|
lam = self._mix_batch(x) |
|
target = mixup_target(target, self.num_classes, lam, self.label_smoothing) |
|
return x, target |
|
|
|
|
|
class FastCollateMixup(Mixup): |
|
""" Fast Collate w/ Mixup/Cutmix that applies different params to each element or whole batch |
|
|
|
A Mixup impl that's performed while collating the batches. |
|
""" |
|
|
|
def _mix_elem_collate(self, output, batch, half=False): |
|
batch_size = len(batch) |
|
num_elem = batch_size // 2 if half else batch_size |
|
assert len(output) == num_elem |
|
lam_batch, use_cutmix = self._params_per_elem(num_elem) |
|
for i in range(num_elem): |
|
j = batch_size - i - 1 |
|
lam = lam_batch[i] |
|
mixed = batch[i][0] |
|
if lam != 1.: |
|
if use_cutmix[i]: |
|
if not half: |
|
mixed = mixed.copy() |
|
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam( |
|
output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) |
|
mixed[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh] |
|
lam_batch[i] = lam |
|
else: |
|
mixed = mixed.astype(np.float32) * lam + batch[j][0].astype(np.float32) * (1 - lam) |
|
np.rint(mixed, out=mixed) |
|
output[i] += torch.from_numpy(mixed.astype(np.uint8)) |
|
if half: |
|
lam_batch = np.concatenate((lam_batch, np.ones(num_elem))) |
|
return torch.tensor(lam_batch).unsqueeze(1) |
|
|
|
def _mix_pair_collate(self, output, batch): |
|
batch_size = len(batch) |
|
lam_batch, use_cutmix = self._params_per_elem(batch_size // 2) |
|
for i in range(batch_size // 2): |
|
j = batch_size - i - 1 |
|
lam = lam_batch[i] |
|
mixed_i = batch[i][0] |
|
mixed_j = batch[j][0] |
|
assert 0 <= lam <= 1.0 |
|
if lam < 1.: |
|
if use_cutmix[i]: |
|
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam( |
|
output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) |
|
patch_i = mixed_i[:, yl:yh, xl:xh].copy() |
|
mixed_i[:, yl:yh, xl:xh] = mixed_j[:, yl:yh, xl:xh] |
|
mixed_j[:, yl:yh, xl:xh] = patch_i |
|
lam_batch[i] = lam |
|
else: |
|
mixed_temp = mixed_i.astype(np.float32) * lam + mixed_j.astype(np.float32) * (1 - lam) |
|
mixed_j = mixed_j.astype(np.float32) * lam + mixed_i.astype(np.float32) * (1 - lam) |
|
mixed_i = mixed_temp |
|
np.rint(mixed_j, out=mixed_j) |
|
np.rint(mixed_i, out=mixed_i) |
|
output[i] += torch.from_numpy(mixed_i.astype(np.uint8)) |
|
output[j] += torch.from_numpy(mixed_j.astype(np.uint8)) |
|
lam_batch = np.concatenate((lam_batch, lam_batch[::-1])) |
|
return torch.tensor(lam_batch).unsqueeze(1) |
|
|
|
def _mix_batch_collate(self, output, batch): |
|
batch_size = len(batch) |
|
lam, use_cutmix = self._params_per_batch() |
|
if use_cutmix: |
|
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam( |
|
output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) |
|
for i in range(batch_size): |
|
j = batch_size - i - 1 |
|
mixed = batch[i][0] |
|
if lam != 1.: |
|
if use_cutmix: |
|
mixed = mixed.copy() |
|
mixed[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh] |
|
else: |
|
mixed = mixed.astype(np.float32) * lam + batch[j][0].astype(np.float32) * (1 - lam) |
|
np.rint(mixed, out=mixed) |
|
output[i] += torch.from_numpy(mixed.astype(np.uint8)) |
|
return lam |
|
|
|
def __call__(self, batch, _=None): |
|
batch_size = len(batch) |
|
assert batch_size % 2 == 0, 'Batch size should be even when using this' |
|
half = 'half' in self.mode |
|
if half: |
|
batch_size //= 2 |
|
output = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8) |
|
if self.mode == 'elem' or self.mode == 'half': |
|
lam = self._mix_elem_collate(output, batch, half=half) |
|
elif self.mode == 'pair': |
|
lam = self._mix_pair_collate(output, batch) |
|
else: |
|
lam = self._mix_batch_collate(output, batch) |
|
target = torch.tensor([b[1] for b in batch], dtype=torch.int64) |
|
target = mixup_target(target, self.num_classes, lam, self.label_smoothing) |
|
target = target[:batch_size] |
|
return output, target |
|
|
|
|