ImagenetTraining-imagenet-1k-random-20.0-frac-1over2
/
pytorch-image-models
/timm
/data
/readers
/reader_hfids.py
""" Dataset reader for HF IterableDataset | |
""" | |
import math | |
import os | |
from itertools import repeat, chain | |
from typing import Optional | |
import torch | |
import torch.distributed as dist | |
from PIL import Image | |
try: | |
import datasets | |
from datasets.distributed import split_dataset_by_node | |
from datasets.splits import SplitInfo | |
except ImportError as e: | |
print("Please install Hugging Face datasets package `pip install datasets`.") | |
raise e | |
from .class_map import load_class_map | |
from .reader import Reader | |
from .shared_count import SharedCount | |
SHUFFLE_SIZE = int(os.environ.get('HFIDS_SHUFFLE_SIZE', 4096)) | |
class ReaderHfids(Reader): | |
def __init__( | |
self, | |
name: str, | |
root: Optional[str] = None, | |
split: str = 'train', | |
is_training: bool = False, | |
batch_size: int = 1, | |
download: bool = False, | |
repeats: int = 0, | |
seed: int = 42, | |
class_map: Optional[dict] = None, | |
input_key: str = 'image', | |
input_img_mode: str = 'RGB', | |
target_key: str = 'label', | |
target_img_mode: str = '', | |
shuffle_size: Optional[int] = None, | |
num_samples: Optional[int] = None, | |
trust_remote_code: bool = False | |
): | |
super().__init__() | |
self.root = root | |
self.split = split | |
self.is_training = is_training | |
self.batch_size = batch_size | |
self.download = download | |
self.repeats = repeats | |
self.common_seed = seed # a seed that's fixed across all worker / distributed instances | |
self.shuffle_size = shuffle_size or SHUFFLE_SIZE | |
self.input_key = input_key | |
self.input_img_mode = input_img_mode | |
self.target_key = target_key | |
self.target_img_mode = target_img_mode | |
self.builder = datasets.load_dataset_builder( | |
name, | |
cache_dir=root, | |
trust_remote_code=trust_remote_code, | |
) | |
if download: | |
self.builder.download_and_prepare() | |
split_info: Optional[SplitInfo] = None | |
if self.builder.info.splits and split in self.builder.info.splits: | |
if isinstance(self.builder.info.splits[split], SplitInfo): | |
split_info: Optional[SplitInfo] = self.builder.info.splits[split] | |
if num_samples: | |
self.num_samples = num_samples | |
elif split_info and split_info.num_examples: | |
self.num_samples = split_info.num_examples | |
else: | |
raise ValueError( | |
"Dataset length is unknown, please pass `num_samples` explicitely. " | |
"The number of steps needs to be known in advance for the learning rate scheduler." | |
) | |
self.remap_class = False | |
if class_map: | |
self.class_to_idx = load_class_map(class_map) | |
self.remap_class = True | |
else: | |
self.class_to_idx = {} | |
# Distributed world state | |
self.dist_rank = 0 | |
self.dist_num_replicas = 1 | |
if dist.is_available() and dist.is_initialized() and dist.get_world_size() > 1: | |
self.dist_rank = dist.get_rank() | |
self.dist_num_replicas = dist.get_world_size() | |
# Attributes that are updated in _lazy_init | |
self.worker_info = None | |
self.worker_id = 0 | |
self.num_workers = 1 | |
self.global_worker_id = 0 | |
self.global_num_workers = 1 | |
# Initialized lazily on each dataloader worker process | |
self.ds: Optional[datasets.IterableDataset] = None | |
self.epoch = SharedCount() | |
def set_epoch(self, count): | |
# to update the shuffling effective_seed = seed + epoch | |
self.epoch.value = count | |
def set_loader_cfg( | |
self, | |
num_workers: Optional[int] = None, | |
): | |
if self.ds is not None: | |
return | |
if num_workers is not None: | |
self.num_workers = num_workers | |
self.global_num_workers = self.dist_num_replicas * self.num_workers | |
def _lazy_init(self): | |
""" Lazily initialize worker (in worker processes) | |
""" | |
if self.worker_info is None: | |
worker_info = torch.utils.data.get_worker_info() | |
if worker_info is not None: | |
self.worker_info = worker_info | |
self.worker_id = worker_info.id | |
self.num_workers = worker_info.num_workers | |
self.global_num_workers = self.dist_num_replicas * self.num_workers | |
self.global_worker_id = self.dist_rank * self.num_workers + self.worker_id | |
if self.download: | |
dataset = self.builder.as_dataset(split=self.split) | |
# to distribute evenly to workers | |
ds = dataset.to_iterable_dataset(num_shards=self.global_num_workers) | |
else: | |
# in this case the number of shard is determined by the number of remote files | |
ds = self.builder.as_streaming_dataset(split=self.split) | |
if self.is_training: | |
# will shuffle the list of shards and use a shuffle buffer | |
ds = ds.shuffle(seed=self.common_seed, buffer_size=self.shuffle_size) | |
# Distributed: | |
# The dataset has a number of shards that is a factor of `dist_num_replicas` (i.e. if `ds.n_shards % dist_num_replicas == 0`), | |
# so the shards are evenly assigned across the nodes. | |
# If it's not the case for dataset streaming, each node keeps 1 example out of `dist_num_replicas`, skipping the other examples. | |
# Workers: | |
# In a node, datasets.IterableDataset assigns the shards assigned to the node as evenly as possible to workers. | |
self.ds = split_dataset_by_node(ds, rank=self.dist_rank, world_size=self.dist_num_replicas) | |
def _num_samples_per_worker(self): | |
num_worker_samples = \ | |
max(1, self.repeats) * self.num_samples / max(self.global_num_workers, self.dist_num_replicas) | |
if self.is_training or self.dist_num_replicas > 1: | |
num_worker_samples = math.ceil(num_worker_samples) | |
if self.is_training and self.batch_size is not None: | |
num_worker_samples = math.ceil(num_worker_samples / self.batch_size) * self.batch_size | |
return int(num_worker_samples) | |
def __iter__(self): | |
if self.ds is None: | |
self._lazy_init() | |
self.ds.set_epoch(self.epoch.value) | |
target_sample_count = self._num_samples_per_worker() | |
sample_count = 0 | |
if self.is_training: | |
ds_iter = chain.from_iterable(repeat(self.ds)) | |
else: | |
ds_iter = iter(self.ds) | |
for sample in ds_iter: | |
input_data: Image.Image = sample[self.input_key] | |
if self.input_img_mode and input_data.mode != self.input_img_mode: | |
input_data = input_data.convert(self.input_img_mode) | |
target_data = sample[self.target_key] | |
if self.target_img_mode: | |
assert isinstance(target_data, Image.Image), "target_img_mode is specified but target is not an image" | |
if target_data.mode != self.target_img_mode: | |
target_data = target_data.convert(self.target_img_mode) | |
elif self.remap_class: | |
target_data = self.class_to_idx[target_data] | |
yield input_data, target_data | |
sample_count += 1 | |
if self.is_training and sample_count >= target_sample_count: | |
break | |
def __len__(self): | |
num_samples = self._num_samples_per_worker() * self.num_workers | |
return num_samples | |
def _filename(self, index, basename=False, absolute=False): | |
assert False, "Not supported" # no random access to examples | |
def filenames(self, basename=False, absolute=False): | |
""" Return all filenames in dataset, overrides base""" | |
if self.ds is None: | |
self._lazy_init() | |
names = [] | |
for sample in self.ds: | |
if 'file_name' in sample: | |
name = sample['file_name'] | |
elif 'filename' in sample: | |
name = sample['filename'] | |
elif 'id' in sample: | |
name = sample['id'] | |
elif 'image_id' in sample: | |
name = sample['image_id'] | |
else: | |
assert False, "No supported name field present" | |
names.append(name) | |
return names |