ImagenetTraining-imagenet-1k-random-20.0-frac-1over2
/
pytorch-image-models
/timm
/data
/readers
/reader_image_folder.py
""" A dataset reader that extracts images from folders | |
Folders are scanned recursively to find image files. Labels are based | |
on the folder hierarchy, just leaf folders by default. | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import os | |
from typing import Dict, List, Optional, Set, Tuple, Union | |
from timm.utils.misc import natural_key | |
from .class_map import load_class_map | |
from .img_extensions import get_img_extensions | |
from .reader import Reader | |
def find_images_and_targets( | |
folder: str, | |
types: Optional[Union[List, Tuple, Set]] = None, | |
class_to_idx: Optional[Dict] = None, | |
leaf_name_only: bool = True, | |
sort: bool = True | |
): | |
""" Walk folder recursively to discover images and map them to classes by folder names. | |
Args: | |
folder: root of folder to recrusively search | |
types: types (file extensions) to search for in path | |
class_to_idx: specify mapping for class (folder name) to class index if set | |
leaf_name_only: use only leaf-name of folder walk for class names | |
sort: re-sort found images by name (for consistent ordering) | |
Returns: | |
A list of image and target tuples, class_to_idx mapping | |
""" | |
types = get_img_extensions(as_set=True) if not types else set(types) | |
labels = [] | |
filenames = [] | |
for root, subdirs, files in os.walk(folder, topdown=False, followlinks=True): | |
rel_path = os.path.relpath(root, folder) if (root != folder) else '' | |
label = os.path.basename(rel_path) if leaf_name_only else rel_path.replace(os.path.sep, '_') | |
for f in files: | |
base, ext = os.path.splitext(f) | |
if ext.lower() in types: | |
filenames.append(os.path.join(root, f)) | |
labels.append(label) | |
if class_to_idx is None: | |
# building class index | |
unique_labels = set(labels) | |
sorted_labels = list(sorted(unique_labels, key=natural_key)) | |
class_to_idx = {c: idx for idx, c in enumerate(sorted_labels)} | |
images_and_targets = [(f, class_to_idx[l]) for f, l in zip(filenames, labels) if l in class_to_idx] | |
if sort: | |
images_and_targets = sorted(images_and_targets, key=lambda k: natural_key(k[0])) | |
return images_and_targets, class_to_idx | |
class ReaderImageFolder(Reader): | |
def __init__( | |
self, | |
root, | |
class_map='', | |
input_key=None, | |
): | |
super().__init__() | |
self.root = root | |
class_to_idx = None | |
if class_map: | |
class_to_idx = load_class_map(class_map, root) | |
find_types = None | |
if input_key: | |
find_types = input_key.split(';') | |
self.samples, self.class_to_idx = find_images_and_targets( | |
root, | |
class_to_idx=class_to_idx, | |
types=find_types, | |
) | |
if len(self.samples) == 0: | |
raise RuntimeError( | |
f'Found 0 images in subfolders of {root}. ' | |
f'Supported image extensions are {", ".join(get_img_extensions())}') | |
def __getitem__(self, index): | |
path, target = self.samples[index] | |
return open(path, 'rb'), target | |
def __len__(self): | |
return len(self.samples) | |
def _filename(self, index, basename=False, absolute=False): | |
filename = self.samples[index][0] | |
if basename: | |
filename = os.path.basename(filename) | |
elif not absolute: | |
filename = os.path.relpath(filename, self.root) | |
return filename | |