|
import math |
|
import numbers |
|
import random |
|
import warnings |
|
from typing import List, Sequence, Tuple, Union |
|
|
|
import torch |
|
import torchvision.transforms as transforms |
|
import torchvision.transforms.functional as F |
|
try: |
|
from torchvision.transforms.functional import InterpolationMode |
|
has_interpolation_mode = True |
|
except ImportError: |
|
has_interpolation_mode = False |
|
from PIL import Image |
|
import numpy as np |
|
|
|
__all__ = [ |
|
"ToNumpy", "ToTensor", "str_to_interp_mode", "str_to_pil_interp", "interp_mode_to_str", |
|
"RandomResizedCropAndInterpolation", "CenterCropOrPad", "center_crop_or_pad", "crop_or_pad", |
|
"RandomCropOrPad", "RandomPad", "ResizeKeepRatio", "TrimBorder", "MaybeToTensor", "MaybePILToTensor" |
|
] |
|
|
|
|
|
class ToNumpy: |
|
|
|
def __call__(self, pil_img): |
|
np_img = np.array(pil_img, dtype=np.uint8) |
|
if np_img.ndim < 3: |
|
np_img = np.expand_dims(np_img, axis=-1) |
|
np_img = np.rollaxis(np_img, 2) |
|
return np_img |
|
|
|
|
|
class ToTensor: |
|
""" ToTensor with no rescaling of values""" |
|
def __init__(self, dtype=torch.float32): |
|
self.dtype = dtype |
|
|
|
def __call__(self, pil_img): |
|
return F.pil_to_tensor(pil_img).to(dtype=self.dtype) |
|
|
|
|
|
class MaybeToTensor(transforms.ToTensor): |
|
"""Convert a PIL Image or ndarray to tensor if it's not already one. |
|
""" |
|
|
|
def __init__(self) -> None: |
|
super().__init__() |
|
|
|
def __call__(self, pic) -> torch.Tensor: |
|
""" |
|
Args: |
|
pic (PIL Image or numpy.ndarray): Image to be converted to tensor. |
|
|
|
Returns: |
|
Tensor: Converted image. |
|
""" |
|
if isinstance(pic, torch.Tensor): |
|
return pic |
|
return F.to_tensor(pic) |
|
|
|
def __repr__(self) -> str: |
|
return f"{self.__class__.__name__}()" |
|
|
|
|
|
class MaybePILToTensor: |
|
"""Convert a PIL Image to a tensor of the same type - this does not scale values. |
|
""" |
|
|
|
def __init__(self) -> None: |
|
super().__init__() |
|
|
|
def __call__(self, pic): |
|
""" |
|
Note: A deep copy of the underlying array is performed. |
|
|
|
Args: |
|
pic (PIL Image): Image to be converted to tensor. |
|
|
|
Returns: |
|
Tensor: Converted image. |
|
""" |
|
if isinstance(pic, torch.Tensor): |
|
return pic |
|
return F.pil_to_tensor(pic) |
|
|
|
def __repr__(self) -> str: |
|
return f"{self.__class__.__name__}()" |
|
|
|
|
|
|
|
|
|
|
|
if hasattr(Image, "Resampling"): |
|
_pil_interpolation_to_str = { |
|
Image.Resampling.NEAREST: 'nearest', |
|
Image.Resampling.BILINEAR: 'bilinear', |
|
Image.Resampling.BICUBIC: 'bicubic', |
|
Image.Resampling.BOX: 'box', |
|
Image.Resampling.HAMMING: 'hamming', |
|
Image.Resampling.LANCZOS: 'lanczos', |
|
} |
|
else: |
|
_pil_interpolation_to_str = { |
|
Image.NEAREST: 'nearest', |
|
Image.BILINEAR: 'bilinear', |
|
Image.BICUBIC: 'bicubic', |
|
Image.BOX: 'box', |
|
Image.HAMMING: 'hamming', |
|
Image.LANCZOS: 'lanczos', |
|
} |
|
|
|
_str_to_pil_interpolation = {b: a for a, b in _pil_interpolation_to_str.items()} |
|
|
|
|
|
if has_interpolation_mode: |
|
_torch_interpolation_to_str = { |
|
InterpolationMode.NEAREST: 'nearest', |
|
InterpolationMode.BILINEAR: 'bilinear', |
|
InterpolationMode.BICUBIC: 'bicubic', |
|
InterpolationMode.BOX: 'box', |
|
InterpolationMode.HAMMING: 'hamming', |
|
InterpolationMode.LANCZOS: 'lanczos', |
|
} |
|
_str_to_torch_interpolation = {b: a for a, b in _torch_interpolation_to_str.items()} |
|
else: |
|
_pil_interpolation_to_torch = {} |
|
_torch_interpolation_to_str = {} |
|
|
|
|
|
def str_to_pil_interp(mode_str): |
|
return _str_to_pil_interpolation[mode_str] |
|
|
|
|
|
def str_to_interp_mode(mode_str): |
|
if has_interpolation_mode: |
|
return _str_to_torch_interpolation[mode_str] |
|
else: |
|
return _str_to_pil_interpolation[mode_str] |
|
|
|
|
|
def interp_mode_to_str(mode): |
|
if has_interpolation_mode: |
|
return _torch_interpolation_to_str[mode] |
|
else: |
|
return _pil_interpolation_to_str[mode] |
|
|
|
|
|
_RANDOM_INTERPOLATION = (str_to_interp_mode('bilinear'), str_to_interp_mode('bicubic')) |
|
|
|
|
|
def _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size."): |
|
if isinstance(size, numbers.Number): |
|
return int(size), int(size) |
|
|
|
if isinstance(size, Sequence) and len(size) == 1: |
|
return size[0], size[0] |
|
|
|
if len(size) != 2: |
|
raise ValueError(error_msg) |
|
|
|
return size |
|
|
|
|
|
class RandomResizedCropAndInterpolation: |
|
"""Crop the given PIL Image to random size and aspect ratio with random interpolation. |
|
|
|
A crop of random size (default: of 0.08 to 1.0) of the original size and a random |
|
aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop |
|
is finally resized to given size. |
|
This is popularly used to train the Inception networks. |
|
|
|
Args: |
|
size: expected output size of each edge |
|
scale: range of size of the origin size cropped |
|
ratio: range of aspect ratio of the origin aspect ratio cropped |
|
interpolation: Default: PIL.Image.BILINEAR |
|
""" |
|
|
|
def __init__( |
|
self, |
|
size, |
|
scale=(0.08, 1.0), |
|
ratio=(3. / 4., 4. / 3.), |
|
interpolation='bilinear', |
|
): |
|
if isinstance(size, (list, tuple)): |
|
self.size = tuple(size) |
|
else: |
|
self.size = (size, size) |
|
if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): |
|
warnings.warn("range should be of kind (min, max)") |
|
|
|
if interpolation == 'random': |
|
self.interpolation = _RANDOM_INTERPOLATION |
|
else: |
|
self.interpolation = str_to_interp_mode(interpolation) |
|
self.scale = scale |
|
self.ratio = ratio |
|
|
|
@staticmethod |
|
def get_params(img, scale, ratio): |
|
"""Get parameters for ``crop`` for a random sized crop. |
|
|
|
Args: |
|
img (PIL Image): Image to be cropped. |
|
scale (tuple): range of size of the origin size cropped |
|
ratio (tuple): range of aspect ratio of the origin aspect ratio cropped |
|
|
|
Returns: |
|
tuple: params (i, j, h, w) to be passed to ``crop`` for a random |
|
sized crop. |
|
""" |
|
img_w, img_h = F.get_image_size(img) |
|
area = img_w * img_h |
|
|
|
for attempt in range(10): |
|
target_area = random.uniform(*scale) * area |
|
log_ratio = (math.log(ratio[0]), math.log(ratio[1])) |
|
aspect_ratio = math.exp(random.uniform(*log_ratio)) |
|
|
|
target_w = int(round(math.sqrt(target_area * aspect_ratio))) |
|
target_h = int(round(math.sqrt(target_area / aspect_ratio))) |
|
if target_w <= img_w and target_h <= img_h: |
|
i = random.randint(0, img_h - target_h) |
|
j = random.randint(0, img_w - target_w) |
|
return i, j, target_h, target_w |
|
|
|
|
|
in_ratio = img_w / img_h |
|
if in_ratio < min(ratio): |
|
target_w = img_w |
|
target_h = int(round(target_w / min(ratio))) |
|
elif in_ratio > max(ratio): |
|
target_h = img_h |
|
target_w = int(round(target_h * max(ratio))) |
|
else: |
|
target_w = img_w |
|
target_h = img_h |
|
i = (img_h - target_h) // 2 |
|
j = (img_w - target_w) // 2 |
|
return i, j, target_h, target_w |
|
|
|
def __call__(self, img): |
|
""" |
|
Args: |
|
img (PIL Image): Image to be cropped and resized. |
|
|
|
Returns: |
|
PIL Image: Randomly cropped and resized image. |
|
""" |
|
i, j, h, w = self.get_params(img, self.scale, self.ratio) |
|
if isinstance(self.interpolation, (tuple, list)): |
|
interpolation = random.choice(self.interpolation) |
|
else: |
|
interpolation = self.interpolation |
|
return F.resized_crop(img, i, j, h, w, self.size, interpolation) |
|
|
|
def __repr__(self): |
|
if isinstance(self.interpolation, (tuple, list)): |
|
interpolate_str = ' '.join([interp_mode_to_str(x) for x in self.interpolation]) |
|
else: |
|
interpolate_str = interp_mode_to_str(self.interpolation) |
|
format_string = self.__class__.__name__ + '(size={0}'.format(self.size) |
|
format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale)) |
|
format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio)) |
|
format_string += ', interpolation={0})'.format(interpolate_str) |
|
return format_string |
|
|
|
|
|
def center_crop_or_pad( |
|
img: torch.Tensor, |
|
output_size: Union[int, List[int]], |
|
fill: Union[int, Tuple[int, int, int]] = 0, |
|
padding_mode: str = 'constant', |
|
) -> torch.Tensor: |
|
"""Center crops and/or pads the given image. |
|
|
|
If the image is torch Tensor, it is expected |
|
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions. |
|
If image size is smaller than output size along any edge, image is padded with 0 and then center cropped. |
|
|
|
Args: |
|
img (PIL Image or Tensor): Image to be cropped. |
|
output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int, |
|
it is used for both directions. |
|
fill (int, Tuple[int]): Padding color |
|
|
|
Returns: |
|
PIL Image or Tensor: Cropped image. |
|
""" |
|
output_size = _setup_size(output_size) |
|
crop_height, crop_width = output_size |
|
_, image_height, image_width = F.get_dimensions(img) |
|
|
|
if crop_width > image_width or crop_height > image_height: |
|
padding_ltrb = [ |
|
(crop_width - image_width) // 2 if crop_width > image_width else 0, |
|
(crop_height - image_height) // 2 if crop_height > image_height else 0, |
|
(crop_width - image_width + 1) // 2 if crop_width > image_width else 0, |
|
(crop_height - image_height + 1) // 2 if crop_height > image_height else 0, |
|
] |
|
img = F.pad(img, padding_ltrb, fill=fill, padding_mode=padding_mode) |
|
_, image_height, image_width = F.get_dimensions(img) |
|
if crop_width == image_width and crop_height == image_height: |
|
return img |
|
|
|
crop_top = int(round((image_height - crop_height) / 2.0)) |
|
crop_left = int(round((image_width - crop_width) / 2.0)) |
|
return F.crop(img, crop_top, crop_left, crop_height, crop_width) |
|
|
|
|
|
class CenterCropOrPad(torch.nn.Module): |
|
"""Crops the given image at the center. |
|
If the image is torch Tensor, it is expected |
|
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions. |
|
If image size is smaller than output size along any edge, image is padded with 0 and then center cropped. |
|
|
|
Args: |
|
size (sequence or int): Desired output size of the crop. If size is an |
|
int instead of sequence like (h, w), a square crop (size, size) is |
|
made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]). |
|
""" |
|
|
|
def __init__( |
|
self, |
|
size: Union[int, List[int]], |
|
fill: Union[int, Tuple[int, int, int]] = 0, |
|
padding_mode: str = 'constant', |
|
): |
|
super().__init__() |
|
self.size = _setup_size(size) |
|
self.fill = fill |
|
self.padding_mode = padding_mode |
|
|
|
def forward(self, img): |
|
""" |
|
Args: |
|
img (PIL Image or Tensor): Image to be cropped. |
|
|
|
Returns: |
|
PIL Image or Tensor: Cropped image. |
|
""" |
|
return center_crop_or_pad(img, self.size, fill=self.fill, padding_mode=self.padding_mode) |
|
|
|
def __repr__(self) -> str: |
|
return f"{self.__class__.__name__}(size={self.size})" |
|
|
|
|
|
def crop_or_pad( |
|
img: torch.Tensor, |
|
top: int, |
|
left: int, |
|
height: int, |
|
width: int, |
|
fill: Union[int, Tuple[int, int, int]] = 0, |
|
padding_mode: str = 'constant', |
|
) -> torch.Tensor: |
|
""" Crops and/or pads image to meet target size, with control over fill and padding_mode. |
|
""" |
|
_, image_height, image_width = F.get_dimensions(img) |
|
right = left + width |
|
bottom = top + height |
|
if left < 0 or top < 0 or right > image_width or bottom > image_height: |
|
padding_ltrb = [ |
|
max(-left + min(0, right), 0), |
|
max(-top + min(0, bottom), 0), |
|
max(right - max(image_width, left), 0), |
|
max(bottom - max(image_height, top), 0), |
|
] |
|
img = F.pad(img, padding_ltrb, fill=fill, padding_mode=padding_mode) |
|
|
|
top = max(top, 0) |
|
left = max(left, 0) |
|
return F.crop(img, top, left, height, width) |
|
|
|
|
|
class RandomCropOrPad(torch.nn.Module): |
|
""" Crop and/or pad image with random placement within the crop or pad margin. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
size: Union[int, List[int]], |
|
fill: Union[int, Tuple[int, int, int]] = 0, |
|
padding_mode: str = 'constant', |
|
): |
|
super().__init__() |
|
self.size = _setup_size(size) |
|
self.fill = fill |
|
self.padding_mode = padding_mode |
|
|
|
@staticmethod |
|
def get_params(img, size): |
|
_, image_height, image_width = F.get_dimensions(img) |
|
delta_height = image_height - size[0] |
|
delta_width = image_width - size[1] |
|
top = int(math.copysign(random.randint(0, abs(delta_height)), delta_height)) |
|
left = int(math.copysign(random.randint(0, abs(delta_width)), delta_width)) |
|
return top, left |
|
|
|
def forward(self, img): |
|
""" |
|
Args: |
|
img (PIL Image or Tensor): Image to be cropped. |
|
|
|
Returns: |
|
PIL Image or Tensor: Cropped image. |
|
""" |
|
top, left = self.get_params(img, self.size) |
|
return crop_or_pad( |
|
img, |
|
top=top, |
|
left=left, |
|
height=self.size[0], |
|
width=self.size[1], |
|
fill=self.fill, |
|
padding_mode=self.padding_mode, |
|
) |
|
|
|
def __repr__(self) -> str: |
|
return f"{self.__class__.__name__}(size={self.size})" |
|
|
|
|
|
class RandomPad: |
|
def __init__(self, input_size, fill=0): |
|
self.input_size = input_size |
|
self.fill = fill |
|
|
|
@staticmethod |
|
def get_params(img, input_size): |
|
width, height = F.get_image_size(img) |
|
delta_width = max(input_size[1] - width, 0) |
|
delta_height = max(input_size[0] - height, 0) |
|
pad_left = random.randint(0, delta_width) |
|
pad_top = random.randint(0, delta_height) |
|
pad_right = delta_width - pad_left |
|
pad_bottom = delta_height - pad_top |
|
return pad_left, pad_top, pad_right, pad_bottom |
|
|
|
def __call__(self, img): |
|
padding = self.get_params(img, self.input_size) |
|
img = F.pad(img, padding, self.fill) |
|
return img |
|
|
|
|
|
class ResizeKeepRatio: |
|
""" Resize and Keep Aspect Ratio |
|
""" |
|
|
|
def __init__( |
|
self, |
|
size, |
|
longest=0., |
|
interpolation='bilinear', |
|
random_scale_prob=0., |
|
random_scale_range=(0.85, 1.05), |
|
random_scale_area=False, |
|
random_aspect_prob=0., |
|
random_aspect_range=(0.9, 1.11), |
|
): |
|
""" |
|
|
|
Args: |
|
size: |
|
longest: |
|
interpolation: |
|
random_scale_prob: |
|
random_scale_range: |
|
random_scale_area: |
|
random_aspect_prob: |
|
random_aspect_range: |
|
""" |
|
if isinstance(size, (list, tuple)): |
|
self.size = tuple(size) |
|
else: |
|
self.size = (size, size) |
|
if interpolation == 'random': |
|
self.interpolation = _RANDOM_INTERPOLATION |
|
else: |
|
self.interpolation = str_to_interp_mode(interpolation) |
|
self.longest = float(longest) |
|
self.random_scale_prob = random_scale_prob |
|
self.random_scale_range = random_scale_range |
|
self.random_scale_area = random_scale_area |
|
self.random_aspect_prob = random_aspect_prob |
|
self.random_aspect_range = random_aspect_range |
|
|
|
@staticmethod |
|
def get_params( |
|
img, |
|
target_size, |
|
longest, |
|
random_scale_prob=0., |
|
random_scale_range=(1.0, 1.33), |
|
random_scale_area=False, |
|
random_aspect_prob=0., |
|
random_aspect_range=(0.9, 1.11) |
|
): |
|
"""Get parameters |
|
""" |
|
img_h, img_w = img_size = F.get_dimensions(img)[1:] |
|
target_h, target_w = target_size |
|
ratio_h = img_h / target_h |
|
ratio_w = img_w / target_w |
|
ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * (1. - longest) |
|
|
|
if random_scale_prob > 0 and random.random() < random_scale_prob: |
|
ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1]) |
|
if random_scale_area: |
|
|
|
|
|
ratio_factor = 1. / math.sqrt(ratio_factor) |
|
ratio_factor = (ratio_factor, ratio_factor) |
|
else: |
|
ratio_factor = (1., 1.) |
|
|
|
if random_aspect_prob > 0 and random.random() < random_aspect_prob: |
|
log_aspect = (math.log(random_aspect_range[0]), math.log(random_aspect_range[1])) |
|
aspect_factor = math.exp(random.uniform(*log_aspect)) |
|
aspect_factor = math.sqrt(aspect_factor) |
|
|
|
|
|
ratio_factor = (ratio_factor[0] / aspect_factor, ratio_factor[1] * aspect_factor) |
|
|
|
size = [round(x * f / ratio) for x, f in zip(img_size, ratio_factor)] |
|
return size |
|
|
|
def __call__(self, img): |
|
""" |
|
Args: |
|
img (PIL Image): Image to be cropped and resized. |
|
|
|
Returns: |
|
PIL Image: Resized, padded to at least target size, possibly cropped to exactly target size |
|
""" |
|
size = self.get_params( |
|
img, self.size, self.longest, |
|
self.random_scale_prob, self.random_scale_range, self.random_scale_area, |
|
self.random_aspect_prob, self.random_aspect_range |
|
) |
|
if isinstance(self.interpolation, (tuple, list)): |
|
interpolation = random.choice(self.interpolation) |
|
else: |
|
interpolation = self.interpolation |
|
img = F.resize(img, size, interpolation) |
|
return img |
|
|
|
def __repr__(self): |
|
if isinstance(self.interpolation, (tuple, list)): |
|
interpolate_str = ' '.join([interp_mode_to_str(x) for x in self.interpolation]) |
|
else: |
|
interpolate_str = interp_mode_to_str(self.interpolation) |
|
format_string = self.__class__.__name__ + '(size={0}'.format(self.size) |
|
format_string += f', interpolation={interpolate_str}' |
|
format_string += f', longest={self.longest:.3f}' |
|
format_string += f', random_scale_prob={self.random_scale_prob:.3f}' |
|
format_string += f', random_scale_range=(' \ |
|
f'{self.random_scale_range[0]:.3f}, {self.random_aspect_range[1]:.3f})' |
|
format_string += f', random_aspect_prob={self.random_aspect_prob:.3f}' |
|
format_string += f', random_aspect_range=(' \ |
|
f'{self.random_aspect_range[0]:.3f}, {self.random_aspect_range[1]:.3f}))' |
|
return format_string |
|
|
|
|
|
class TrimBorder(torch.nn.Module): |
|
|
|
def __init__( |
|
self, |
|
border_size: int, |
|
): |
|
super().__init__() |
|
self.border_size = border_size |
|
|
|
def forward(self, img): |
|
w, h = F.get_image_size(img) |
|
top = left = self.border_size |
|
top = min(top, h) |
|
left = min(left, h) |
|
height = max(0, h - 2 * self.border_size) |
|
width = max(0, w - 2 * self.border_size) |
|
return F.crop(img, top, left, height, width) |