ImagenetTraining-imagenet-1k-random-20.0-frac-1over2
/
pytorch-image-models
/timm
/data
/transforms_factory.py
""" Transforms Factory | |
Factory methods for building image transforms for use with TIMM (PyTorch Image Models) | |
Hacked together by / Copyright 2019, Ross Wightman | |
""" | |
import math | |
from typing import Optional, Tuple, Union | |
import torch | |
from torchvision import transforms | |
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, DEFAULT_CROP_PCT | |
from timm.data.auto_augment import rand_augment_transform, augment_and_mix_transform, auto_augment_transform | |
from timm.data.transforms import str_to_interp_mode, str_to_pil_interp, RandomResizedCropAndInterpolation, \ | |
ResizeKeepRatio, CenterCropOrPad, RandomCropOrPad, TrimBorder, ToNumpy, MaybeToTensor, MaybePILToTensor | |
from timm.data.random_erasing import RandomErasing | |
def transforms_noaug_train( | |
img_size: Union[int, Tuple[int, int]] = 224, | |
interpolation: str = 'bilinear', | |
mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN, | |
std: Tuple[float, ...] = IMAGENET_DEFAULT_STD, | |
use_prefetcher: bool = False, | |
normalize: bool = True, | |
): | |
""" No-augmentation image transforms for training. | |
Args: | |
img_size: Target image size. | |
interpolation: Image interpolation mode. | |
mean: Image normalization mean. | |
std: Image normalization standard deviation. | |
use_prefetcher: Prefetcher enabled. Do not convert image to tensor or normalize. | |
normalize: Normalization tensor output w/ provided mean/std (if prefetcher not used). | |
Returns: | |
""" | |
if interpolation == 'random': | |
# random interpolation not supported with no-aug | |
interpolation = 'bilinear' | |
tfl = [ | |
transforms.Resize(img_size, interpolation=str_to_interp_mode(interpolation)), | |
transforms.CenterCrop(img_size) | |
] | |
if use_prefetcher: | |
# prefetcher and collate will handle tensor conversion and norm | |
tfl += [ToNumpy()] | |
elif not normalize: | |
# when normalize disabled, converted to tensor without scaling, keep original dtype | |
tfl += [MaybePILToTensor()] | |
else: | |
tfl += [ | |
MaybeToTensor(), | |
transforms.Normalize( | |
mean=torch.tensor(mean), | |
std=torch.tensor(std) | |
) | |
] | |
return transforms.Compose(tfl) | |
def transforms_imagenet_train( | |
img_size: Union[int, Tuple[int, int]] = 224, | |
scale: Optional[Tuple[float, float]] = None, | |
ratio: Optional[Tuple[float, float]] = None, | |
train_crop_mode: Optional[str] = None, | |
hflip: float = 0.5, | |
vflip: float = 0., | |
color_jitter: Union[float, Tuple[float, ...]] = 0.4, | |
color_jitter_prob: Optional[float] = None, | |
force_color_jitter: bool = False, | |
grayscale_prob: float = 0., | |
gaussian_blur_prob: float = 0., | |
auto_augment: Optional[str] = None, | |
interpolation: str = 'random', | |
mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN, | |
std: Tuple[float, ...] = IMAGENET_DEFAULT_STD, | |
re_prob: float = 0., | |
re_mode: str = 'const', | |
re_count: int = 1, | |
re_num_splits: int = 0, | |
use_prefetcher: bool = False, | |
normalize: bool = True, | |
separate: bool = False, | |
): | |
""" ImageNet-oriented image transforms for training. | |
Args: | |
img_size: Target image size. | |
train_crop_mode: Training random crop mode ('rrc', 'rkrc', 'rkrr'). | |
scale: Random resize scale range (crop area, < 1.0 => zoom in). | |
ratio: Random aspect ratio range (crop ratio for RRC, ratio adjustment factor for RKR). | |
hflip: Horizontal flip probability. | |
vflip: Vertical flip probability. | |
color_jitter: Random color jitter component factors (brightness, contrast, saturation, hue). | |
Scalar is applied as (scalar,) * 3 (no hue). | |
color_jitter_prob: Apply color jitter with this probability if not None (for SimlCLR-like aug). | |
force_color_jitter: Force color jitter where it is normally disabled (ie with RandAugment on). | |
grayscale_prob: Probability of converting image to grayscale (for SimCLR-like aug). | |
gaussian_blur_prob: Probability of applying gaussian blur (for SimCLR-like aug). | |
auto_augment: Auto augment configuration string (see auto_augment.py). | |
interpolation: Image interpolation mode. | |
mean: Image normalization mean. | |
std: Image normalization standard deviation. | |
re_prob: Random erasing probability. | |
re_mode: Random erasing fill mode. | |
re_count: Number of random erasing regions. | |
re_num_splits: Control split of random erasing across batch size. | |
use_prefetcher: Prefetcher enabled. Do not convert image to tensor or normalize. | |
normalize: Normalize tensor output w/ provided mean/std (if prefetcher not used). | |
separate: Output transforms in 3-stage tuple. | |
Returns: | |
If separate==True, the transforms are returned as a tuple of 3 separate transforms | |
for use in a mixing dataset that passes | |
* all data through the first (primary) transform, called the 'clean' data | |
* a portion of the data through the secondary transform | |
* normalizes and converts the branches above with the third, final transform | |
""" | |
train_crop_mode = train_crop_mode or 'rrc' | |
assert train_crop_mode in {'rrc', 'rkrc', 'rkrr'} | |
if train_crop_mode in ('rkrc', 'rkrr'): | |
# FIXME integration of RKR is a WIP | |
scale = tuple(scale or (0.8, 1.00)) | |
ratio = tuple(ratio or (0.9, 1/.9)) | |
primary_tfl = [ | |
ResizeKeepRatio( | |
img_size, | |
interpolation=interpolation, | |
random_scale_prob=0.5, | |
random_scale_range=scale, | |
random_scale_area=True, # scale compatible with RRC | |
random_aspect_prob=0.5, | |
random_aspect_range=ratio, | |
), | |
CenterCropOrPad(img_size, padding_mode='reflect') | |
if train_crop_mode == 'rkrc' else | |
RandomCropOrPad(img_size, padding_mode='reflect') | |
] | |
else: | |
scale = tuple(scale or (0.08, 1.0)) # default imagenet scale range | |
ratio = tuple(ratio or (3. / 4., 4. / 3.)) # default imagenet ratio range | |
primary_tfl = [ | |
RandomResizedCropAndInterpolation( | |
img_size, | |
scale=scale, | |
ratio=ratio, | |
interpolation=interpolation, | |
) | |
] | |
if hflip > 0.: | |
primary_tfl += [transforms.RandomHorizontalFlip(p=hflip)] | |
if vflip > 0.: | |
primary_tfl += [transforms.RandomVerticalFlip(p=vflip)] | |
secondary_tfl = [] | |
disable_color_jitter = False | |
if auto_augment: | |
assert isinstance(auto_augment, str) | |
# color jitter is typically disabled if AA/RA on, | |
# this allows override without breaking old hparm cfgs | |
disable_color_jitter = not (force_color_jitter or '3a' in auto_augment) | |
if isinstance(img_size, (tuple, list)): | |
img_size_min = min(img_size) | |
else: | |
img_size_min = img_size | |
aa_params = dict( | |
translate_const=int(img_size_min * 0.45), | |
img_mean=tuple([min(255, round(255 * x)) for x in mean]), | |
) | |
if interpolation and interpolation != 'random': | |
aa_params['interpolation'] = str_to_pil_interp(interpolation) | |
if auto_augment.startswith('rand'): | |
secondary_tfl += [rand_augment_transform(auto_augment, aa_params)] | |
elif auto_augment.startswith('augmix'): | |
aa_params['translate_pct'] = 0.3 | |
secondary_tfl += [augment_and_mix_transform(auto_augment, aa_params)] | |
else: | |
secondary_tfl += [auto_augment_transform(auto_augment, aa_params)] | |
if color_jitter is not None and not disable_color_jitter: | |
# color jitter is enabled when not using AA or when forced | |
if isinstance(color_jitter, (list, tuple)): | |
# color jitter should be a 3-tuple/list if spec brightness/contrast/saturation | |
# or 4 if also augmenting hue | |
assert len(color_jitter) in (3, 4) | |
else: | |
# if it's a scalar, duplicate for brightness, contrast, and saturation, no hue | |
color_jitter = (float(color_jitter),) * 3 | |
if color_jitter_prob is not None: | |
secondary_tfl += [ | |
transforms.RandomApply([ | |
transforms.ColorJitter(*color_jitter), | |
], | |
p=color_jitter_prob | |
) | |
] | |
else: | |
secondary_tfl += [transforms.ColorJitter(*color_jitter)] | |
if grayscale_prob: | |
secondary_tfl += [transforms.RandomGrayscale(p=grayscale_prob)] | |
if gaussian_blur_prob: | |
secondary_tfl += [ | |
transforms.RandomApply([ | |
transforms.GaussianBlur(kernel_size=23), # hardcoded for now | |
], | |
p=gaussian_blur_prob, | |
) | |
] | |
final_tfl = [] | |
if use_prefetcher: | |
# prefetcher and collate will handle tensor conversion and norm | |
final_tfl += [ToNumpy()] | |
elif not normalize: | |
# when normalize disable, converted to tensor without scaling, keeps original dtype | |
final_tfl += [MaybePILToTensor()] | |
else: | |
final_tfl += [ | |
MaybeToTensor(), | |
transforms.Normalize( | |
mean=torch.tensor(mean), | |
std=torch.tensor(std), | |
), | |
] | |
if re_prob > 0.: | |
final_tfl += [ | |
RandomErasing( | |
re_prob, | |
mode=re_mode, | |
max_count=re_count, | |
num_splits=re_num_splits, | |
device='cpu', | |
) | |
] | |
if separate: | |
return transforms.Compose(primary_tfl), transforms.Compose(secondary_tfl), transforms.Compose(final_tfl) | |
else: | |
return transforms.Compose(primary_tfl + secondary_tfl + final_tfl) | |
def transforms_imagenet_eval( | |
img_size: Union[int, Tuple[int, int]] = 224, | |
crop_pct: Optional[float] = None, | |
crop_mode: Optional[str] = None, | |
crop_border_pixels: Optional[int] = None, | |
interpolation: str = 'bilinear', | |
mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN, | |
std: Tuple[float, ...] = IMAGENET_DEFAULT_STD, | |
use_prefetcher: bool = False, | |
normalize: bool = True, | |
): | |
""" ImageNet-oriented image transform for evaluation and inference. | |
Args: | |
img_size: Target image size. | |
crop_pct: Crop percentage. Defaults to 0.875 when None. | |
crop_mode: Crop mode. One of ['squash', 'border', 'center']. Defaults to 'center' when None. | |
crop_border_pixels: Trim a border of specified # pixels around edge of original image. | |
interpolation: Image interpolation mode. | |
mean: Image normalization mean. | |
std: Image normalization standard deviation. | |
use_prefetcher: Prefetcher enabled. Do not convert image to tensor or normalize. | |
normalize: Normalize tensor output w/ provided mean/std (if prefetcher not used). | |
Returns: | |
Composed transform pipeline | |
""" | |
crop_pct = crop_pct or DEFAULT_CROP_PCT | |
if isinstance(img_size, (tuple, list)): | |
assert len(img_size) == 2 | |
scale_size = tuple([math.floor(x / crop_pct) for x in img_size]) | |
else: | |
scale_size = math.floor(img_size / crop_pct) | |
scale_size = (scale_size, scale_size) | |
tfl = [] | |
if crop_border_pixels: | |
tfl += [TrimBorder(crop_border_pixels)] | |
if crop_mode == 'squash': | |
# squash mode scales each edge to 1/pct of target, then crops | |
# aspect ratio is not preserved, no img lost if crop_pct == 1.0 | |
tfl += [ | |
transforms.Resize(scale_size, interpolation=str_to_interp_mode(interpolation)), | |
transforms.CenterCrop(img_size), | |
] | |
elif crop_mode == 'border': | |
# scale the longest edge of image to 1/pct of target edge, add borders to pad, then crop | |
# no image lost if crop_pct == 1.0 | |
fill = [round(255 * v) for v in mean] | |
tfl += [ | |
ResizeKeepRatio(scale_size, interpolation=interpolation, longest=1.0), | |
CenterCropOrPad(img_size, fill=fill), | |
] | |
else: | |
# default crop model is center | |
# aspect ratio is preserved, crops center within image, no borders are added, image is lost | |
if scale_size[0] == scale_size[1]: | |
# simple case, use torchvision built-in Resize w/ shortest edge mode (scalar size arg) | |
tfl += [ | |
transforms.Resize(scale_size[0], interpolation=str_to_interp_mode(interpolation)) | |
] | |
else: | |
# resize the shortest edge to matching target dim for non-square target | |
tfl += [ResizeKeepRatio(scale_size)] | |
tfl += [transforms.CenterCrop(img_size)] | |
if use_prefetcher: | |
# prefetcher and collate will handle tensor conversion and norm | |
tfl += [ToNumpy()] | |
elif not normalize: | |
# when normalize disabled, converted to tensor without scaling, keeps original dtype | |
tfl += [MaybePILToTensor()] | |
else: | |
tfl += [ | |
MaybeToTensor(), | |
transforms.Normalize( | |
mean=torch.tensor(mean), | |
std=torch.tensor(std), | |
), | |
] | |
return transforms.Compose(tfl) | |
def create_transform( | |
input_size: Union[int, Tuple[int, int], Tuple[int, int, int]] = 224, | |
is_training: bool = False, | |
no_aug: bool = False, | |
train_crop_mode: Optional[str] = None, | |
scale: Optional[Tuple[float, float]] = None, | |
ratio: Optional[Tuple[float, float]] = None, | |
hflip: float = 0.5, | |
vflip: float = 0., | |
color_jitter: Union[float, Tuple[float, ...]] = 0.4, | |
color_jitter_prob: Optional[float] = None, | |
grayscale_prob: float = 0., | |
gaussian_blur_prob: float = 0., | |
auto_augment: Optional[str] = None, | |
interpolation: str = 'bilinear', | |
mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN, | |
std: Tuple[float, ...] = IMAGENET_DEFAULT_STD, | |
re_prob: float = 0., | |
re_mode: str = 'const', | |
re_count: int = 1, | |
re_num_splits: int = 0, | |
crop_pct: Optional[float] = None, | |
crop_mode: Optional[str] = None, | |
crop_border_pixels: Optional[int] = None, | |
tf_preprocessing: bool = False, | |
use_prefetcher: bool = False, | |
normalize: bool = True, | |
separate: bool = False, | |
): | |
""" | |
Args: | |
input_size: Target input size (channels, height, width) tuple or size scalar. | |
is_training: Return training (random) transforms. | |
no_aug: Disable augmentation for training (useful for debug). | |
train_crop_mode: Training random crop mode ('rrc', 'rkrc', 'rkrr'). | |
scale: Random resize scale range (crop area, < 1.0 => zoom in). | |
ratio: Random aspect ratio range (crop ratio for RRC, ratio adjustment factor for RKR). | |
hflip: Horizontal flip probability. | |
vflip: Vertical flip probability. | |
color_jitter: Random color jitter component factors (brightness, contrast, saturation, hue). | |
Scalar is applied as (scalar,) * 3 (no hue). | |
color_jitter_prob: Apply color jitter with this probability if not None (for SimlCLR-like aug). | |
grayscale_prob: Probability of converting image to grayscale (for SimCLR-like aug). | |
gaussian_blur_prob: Probability of applying gaussian blur (for SimCLR-like aug). | |
auto_augment: Auto augment configuration string (see auto_augment.py). | |
interpolation: Image interpolation mode. | |
mean: Image normalization mean. | |
std: Image normalization standard deviation. | |
re_prob: Random erasing probability. | |
re_mode: Random erasing fill mode. | |
re_count: Number of random erasing regions. | |
re_num_splits: Control split of random erasing across batch size. | |
crop_pct: Inference crop percentage (output size / resize size). | |
crop_mode: Inference crop mode. One of ['squash', 'border', 'center']. Defaults to 'center' when None. | |
crop_border_pixels: Inference crop border of specified # pixels around edge of original image. | |
tf_preprocessing: Use TF 1.0 inference preprocessing for testing model ports | |
use_prefetcher: Pre-fetcher enabled. Do not convert image to tensor or normalize. | |
normalize: Normalization tensor output w/ provided mean/std (if prefetcher not used). | |
separate: Output transforms in 3-stage tuple. | |
Returns: | |
Composed transforms or tuple thereof | |
""" | |
if isinstance(input_size, (tuple, list)): | |
img_size = input_size[-2:] | |
else: | |
img_size = input_size | |
if tf_preprocessing and use_prefetcher: | |
assert not separate, "Separate transforms not supported for TF preprocessing" | |
from timm.data.tf_preprocessing import TfPreprocessTransform | |
transform = TfPreprocessTransform( | |
is_training=is_training, | |
size=img_size, | |
interpolation=interpolation, | |
) | |
else: | |
if is_training and no_aug: | |
assert not separate, "Cannot perform split augmentation with no_aug" | |
transform = transforms_noaug_train( | |
img_size, | |
interpolation=interpolation, | |
mean=mean, | |
std=std, | |
use_prefetcher=use_prefetcher, | |
normalize=normalize, | |
) | |
elif is_training: | |
transform = transforms_imagenet_train( | |
img_size, | |
train_crop_mode=train_crop_mode, | |
scale=scale, | |
ratio=ratio, | |
hflip=hflip, | |
vflip=vflip, | |
color_jitter=color_jitter, | |
color_jitter_prob=color_jitter_prob, | |
grayscale_prob=grayscale_prob, | |
gaussian_blur_prob=gaussian_blur_prob, | |
auto_augment=auto_augment, | |
interpolation=interpolation, | |
mean=mean, | |
std=std, | |
re_prob=re_prob, | |
re_mode=re_mode, | |
re_count=re_count, | |
re_num_splits=re_num_splits, | |
use_prefetcher=use_prefetcher, | |
normalize=normalize, | |
separate=separate, | |
) | |
else: | |
assert not separate, "Separate transforms not supported for validation preprocessing" | |
transform = transforms_imagenet_eval( | |
img_size, | |
interpolation=interpolation, | |
mean=mean, | |
std=std, | |
crop_pct=crop_pct, | |
crop_mode=crop_mode, | |
crop_border_pixels=crop_border_pixels, | |
use_prefetcher=use_prefetcher, | |
normalize=normalize, | |
) | |
return transform | |