meg's picture
meg HF staff
Add files using upload-large-folder tool
81d747c verified
raw
history blame
19.1 kB
""" Transforms Factory
Factory methods for building image transforms for use with TIMM (PyTorch Image Models)
Hacked together by / Copyright 2019, Ross Wightman
"""
import math
from typing import Optional, Tuple, Union
import torch
from torchvision import transforms
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, DEFAULT_CROP_PCT
from timm.data.auto_augment import rand_augment_transform, augment_and_mix_transform, auto_augment_transform
from timm.data.transforms import str_to_interp_mode, str_to_pil_interp, RandomResizedCropAndInterpolation, \
ResizeKeepRatio, CenterCropOrPad, RandomCropOrPad, TrimBorder, ToNumpy, MaybeToTensor, MaybePILToTensor
from timm.data.random_erasing import RandomErasing
def transforms_noaug_train(
img_size: Union[int, Tuple[int, int]] = 224,
interpolation: str = 'bilinear',
mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN,
std: Tuple[float, ...] = IMAGENET_DEFAULT_STD,
use_prefetcher: bool = False,
normalize: bool = True,
):
""" No-augmentation image transforms for training.
Args:
img_size: Target image size.
interpolation: Image interpolation mode.
mean: Image normalization mean.
std: Image normalization standard deviation.
use_prefetcher: Prefetcher enabled. Do not convert image to tensor or normalize.
normalize: Normalization tensor output w/ provided mean/std (if prefetcher not used).
Returns:
"""
if interpolation == 'random':
# random interpolation not supported with no-aug
interpolation = 'bilinear'
tfl = [
transforms.Resize(img_size, interpolation=str_to_interp_mode(interpolation)),
transforms.CenterCrop(img_size)
]
if use_prefetcher:
# prefetcher and collate will handle tensor conversion and norm
tfl += [ToNumpy()]
elif not normalize:
# when normalize disabled, converted to tensor without scaling, keep original dtype
tfl += [MaybePILToTensor()]
else:
tfl += [
MaybeToTensor(),
transforms.Normalize(
mean=torch.tensor(mean),
std=torch.tensor(std)
)
]
return transforms.Compose(tfl)
def transforms_imagenet_train(
img_size: Union[int, Tuple[int, int]] = 224,
scale: Optional[Tuple[float, float]] = None,
ratio: Optional[Tuple[float, float]] = None,
train_crop_mode: Optional[str] = None,
hflip: float = 0.5,
vflip: float = 0.,
color_jitter: Union[float, Tuple[float, ...]] = 0.4,
color_jitter_prob: Optional[float] = None,
force_color_jitter: bool = False,
grayscale_prob: float = 0.,
gaussian_blur_prob: float = 0.,
auto_augment: Optional[str] = None,
interpolation: str = 'random',
mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN,
std: Tuple[float, ...] = IMAGENET_DEFAULT_STD,
re_prob: float = 0.,
re_mode: str = 'const',
re_count: int = 1,
re_num_splits: int = 0,
use_prefetcher: bool = False,
normalize: bool = True,
separate: bool = False,
):
""" ImageNet-oriented image transforms for training.
Args:
img_size: Target image size.
train_crop_mode: Training random crop mode ('rrc', 'rkrc', 'rkrr').
scale: Random resize scale range (crop area, < 1.0 => zoom in).
ratio: Random aspect ratio range (crop ratio for RRC, ratio adjustment factor for RKR).
hflip: Horizontal flip probability.
vflip: Vertical flip probability.
color_jitter: Random color jitter component factors (brightness, contrast, saturation, hue).
Scalar is applied as (scalar,) * 3 (no hue).
color_jitter_prob: Apply color jitter with this probability if not None (for SimlCLR-like aug).
force_color_jitter: Force color jitter where it is normally disabled (ie with RandAugment on).
grayscale_prob: Probability of converting image to grayscale (for SimCLR-like aug).
gaussian_blur_prob: Probability of applying gaussian blur (for SimCLR-like aug).
auto_augment: Auto augment configuration string (see auto_augment.py).
interpolation: Image interpolation mode.
mean: Image normalization mean.
std: Image normalization standard deviation.
re_prob: Random erasing probability.
re_mode: Random erasing fill mode.
re_count: Number of random erasing regions.
re_num_splits: Control split of random erasing across batch size.
use_prefetcher: Prefetcher enabled. Do not convert image to tensor or normalize.
normalize: Normalize tensor output w/ provided mean/std (if prefetcher not used).
separate: Output transforms in 3-stage tuple.
Returns:
If separate==True, the transforms are returned as a tuple of 3 separate transforms
for use in a mixing dataset that passes
* all data through the first (primary) transform, called the 'clean' data
* a portion of the data through the secondary transform
* normalizes and converts the branches above with the third, final transform
"""
train_crop_mode = train_crop_mode or 'rrc'
assert train_crop_mode in {'rrc', 'rkrc', 'rkrr'}
if train_crop_mode in ('rkrc', 'rkrr'):
# FIXME integration of RKR is a WIP
scale = tuple(scale or (0.8, 1.00))
ratio = tuple(ratio or (0.9, 1/.9))
primary_tfl = [
ResizeKeepRatio(
img_size,
interpolation=interpolation,
random_scale_prob=0.5,
random_scale_range=scale,
random_scale_area=True, # scale compatible with RRC
random_aspect_prob=0.5,
random_aspect_range=ratio,
),
CenterCropOrPad(img_size, padding_mode='reflect')
if train_crop_mode == 'rkrc' else
RandomCropOrPad(img_size, padding_mode='reflect')
]
else:
scale = tuple(scale or (0.08, 1.0)) # default imagenet scale range
ratio = tuple(ratio or (3. / 4., 4. / 3.)) # default imagenet ratio range
primary_tfl = [
RandomResizedCropAndInterpolation(
img_size,
scale=scale,
ratio=ratio,
interpolation=interpolation,
)
]
if hflip > 0.:
primary_tfl += [transforms.RandomHorizontalFlip(p=hflip)]
if vflip > 0.:
primary_tfl += [transforms.RandomVerticalFlip(p=vflip)]
secondary_tfl = []
disable_color_jitter = False
if auto_augment:
assert isinstance(auto_augment, str)
# color jitter is typically disabled if AA/RA on,
# this allows override without breaking old hparm cfgs
disable_color_jitter = not (force_color_jitter or '3a' in auto_augment)
if isinstance(img_size, (tuple, list)):
img_size_min = min(img_size)
else:
img_size_min = img_size
aa_params = dict(
translate_const=int(img_size_min * 0.45),
img_mean=tuple([min(255, round(255 * x)) for x in mean]),
)
if interpolation and interpolation != 'random':
aa_params['interpolation'] = str_to_pil_interp(interpolation)
if auto_augment.startswith('rand'):
secondary_tfl += [rand_augment_transform(auto_augment, aa_params)]
elif auto_augment.startswith('augmix'):
aa_params['translate_pct'] = 0.3
secondary_tfl += [augment_and_mix_transform(auto_augment, aa_params)]
else:
secondary_tfl += [auto_augment_transform(auto_augment, aa_params)]
if color_jitter is not None and not disable_color_jitter:
# color jitter is enabled when not using AA or when forced
if isinstance(color_jitter, (list, tuple)):
# color jitter should be a 3-tuple/list if spec brightness/contrast/saturation
# or 4 if also augmenting hue
assert len(color_jitter) in (3, 4)
else:
# if it's a scalar, duplicate for brightness, contrast, and saturation, no hue
color_jitter = (float(color_jitter),) * 3
if color_jitter_prob is not None:
secondary_tfl += [
transforms.RandomApply([
transforms.ColorJitter(*color_jitter),
],
p=color_jitter_prob
)
]
else:
secondary_tfl += [transforms.ColorJitter(*color_jitter)]
if grayscale_prob:
secondary_tfl += [transforms.RandomGrayscale(p=grayscale_prob)]
if gaussian_blur_prob:
secondary_tfl += [
transforms.RandomApply([
transforms.GaussianBlur(kernel_size=23), # hardcoded for now
],
p=gaussian_blur_prob,
)
]
final_tfl = []
if use_prefetcher:
# prefetcher and collate will handle tensor conversion and norm
final_tfl += [ToNumpy()]
elif not normalize:
# when normalize disable, converted to tensor without scaling, keeps original dtype
final_tfl += [MaybePILToTensor()]
else:
final_tfl += [
MaybeToTensor(),
transforms.Normalize(
mean=torch.tensor(mean),
std=torch.tensor(std),
),
]
if re_prob > 0.:
final_tfl += [
RandomErasing(
re_prob,
mode=re_mode,
max_count=re_count,
num_splits=re_num_splits,
device='cpu',
)
]
if separate:
return transforms.Compose(primary_tfl), transforms.Compose(secondary_tfl), transforms.Compose(final_tfl)
else:
return transforms.Compose(primary_tfl + secondary_tfl + final_tfl)
def transforms_imagenet_eval(
img_size: Union[int, Tuple[int, int]] = 224,
crop_pct: Optional[float] = None,
crop_mode: Optional[str] = None,
crop_border_pixels: Optional[int] = None,
interpolation: str = 'bilinear',
mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN,
std: Tuple[float, ...] = IMAGENET_DEFAULT_STD,
use_prefetcher: bool = False,
normalize: bool = True,
):
""" ImageNet-oriented image transform for evaluation and inference.
Args:
img_size: Target image size.
crop_pct: Crop percentage. Defaults to 0.875 when None.
crop_mode: Crop mode. One of ['squash', 'border', 'center']. Defaults to 'center' when None.
crop_border_pixels: Trim a border of specified # pixels around edge of original image.
interpolation: Image interpolation mode.
mean: Image normalization mean.
std: Image normalization standard deviation.
use_prefetcher: Prefetcher enabled. Do not convert image to tensor or normalize.
normalize: Normalize tensor output w/ provided mean/std (if prefetcher not used).
Returns:
Composed transform pipeline
"""
crop_pct = crop_pct or DEFAULT_CROP_PCT
if isinstance(img_size, (tuple, list)):
assert len(img_size) == 2
scale_size = tuple([math.floor(x / crop_pct) for x in img_size])
else:
scale_size = math.floor(img_size / crop_pct)
scale_size = (scale_size, scale_size)
tfl = []
if crop_border_pixels:
tfl += [TrimBorder(crop_border_pixels)]
if crop_mode == 'squash':
# squash mode scales each edge to 1/pct of target, then crops
# aspect ratio is not preserved, no img lost if crop_pct == 1.0
tfl += [
transforms.Resize(scale_size, interpolation=str_to_interp_mode(interpolation)),
transforms.CenterCrop(img_size),
]
elif crop_mode == 'border':
# scale the longest edge of image to 1/pct of target edge, add borders to pad, then crop
# no image lost if crop_pct == 1.0
fill = [round(255 * v) for v in mean]
tfl += [
ResizeKeepRatio(scale_size, interpolation=interpolation, longest=1.0),
CenterCropOrPad(img_size, fill=fill),
]
else:
# default crop model is center
# aspect ratio is preserved, crops center within image, no borders are added, image is lost
if scale_size[0] == scale_size[1]:
# simple case, use torchvision built-in Resize w/ shortest edge mode (scalar size arg)
tfl += [
transforms.Resize(scale_size[0], interpolation=str_to_interp_mode(interpolation))
]
else:
# resize the shortest edge to matching target dim for non-square target
tfl += [ResizeKeepRatio(scale_size)]
tfl += [transforms.CenterCrop(img_size)]
if use_prefetcher:
# prefetcher and collate will handle tensor conversion and norm
tfl += [ToNumpy()]
elif not normalize:
# when normalize disabled, converted to tensor without scaling, keeps original dtype
tfl += [MaybePILToTensor()]
else:
tfl += [
MaybeToTensor(),
transforms.Normalize(
mean=torch.tensor(mean),
std=torch.tensor(std),
),
]
return transforms.Compose(tfl)
def create_transform(
input_size: Union[int, Tuple[int, int], Tuple[int, int, int]] = 224,
is_training: bool = False,
no_aug: bool = False,
train_crop_mode: Optional[str] = None,
scale: Optional[Tuple[float, float]] = None,
ratio: Optional[Tuple[float, float]] = None,
hflip: float = 0.5,
vflip: float = 0.,
color_jitter: Union[float, Tuple[float, ...]] = 0.4,
color_jitter_prob: Optional[float] = None,
grayscale_prob: float = 0.,
gaussian_blur_prob: float = 0.,
auto_augment: Optional[str] = None,
interpolation: str = 'bilinear',
mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN,
std: Tuple[float, ...] = IMAGENET_DEFAULT_STD,
re_prob: float = 0.,
re_mode: str = 'const',
re_count: int = 1,
re_num_splits: int = 0,
crop_pct: Optional[float] = None,
crop_mode: Optional[str] = None,
crop_border_pixels: Optional[int] = None,
tf_preprocessing: bool = False,
use_prefetcher: bool = False,
normalize: bool = True,
separate: bool = False,
):
"""
Args:
input_size: Target input size (channels, height, width) tuple or size scalar.
is_training: Return training (random) transforms.
no_aug: Disable augmentation for training (useful for debug).
train_crop_mode: Training random crop mode ('rrc', 'rkrc', 'rkrr').
scale: Random resize scale range (crop area, < 1.0 => zoom in).
ratio: Random aspect ratio range (crop ratio for RRC, ratio adjustment factor for RKR).
hflip: Horizontal flip probability.
vflip: Vertical flip probability.
color_jitter: Random color jitter component factors (brightness, contrast, saturation, hue).
Scalar is applied as (scalar,) * 3 (no hue).
color_jitter_prob: Apply color jitter with this probability if not None (for SimlCLR-like aug).
grayscale_prob: Probability of converting image to grayscale (for SimCLR-like aug).
gaussian_blur_prob: Probability of applying gaussian blur (for SimCLR-like aug).
auto_augment: Auto augment configuration string (see auto_augment.py).
interpolation: Image interpolation mode.
mean: Image normalization mean.
std: Image normalization standard deviation.
re_prob: Random erasing probability.
re_mode: Random erasing fill mode.
re_count: Number of random erasing regions.
re_num_splits: Control split of random erasing across batch size.
crop_pct: Inference crop percentage (output size / resize size).
crop_mode: Inference crop mode. One of ['squash', 'border', 'center']. Defaults to 'center' when None.
crop_border_pixels: Inference crop border of specified # pixels around edge of original image.
tf_preprocessing: Use TF 1.0 inference preprocessing for testing model ports
use_prefetcher: Pre-fetcher enabled. Do not convert image to tensor or normalize.
normalize: Normalization tensor output w/ provided mean/std (if prefetcher not used).
separate: Output transforms in 3-stage tuple.
Returns:
Composed transforms or tuple thereof
"""
if isinstance(input_size, (tuple, list)):
img_size = input_size[-2:]
else:
img_size = input_size
if tf_preprocessing and use_prefetcher:
assert not separate, "Separate transforms not supported for TF preprocessing"
from timm.data.tf_preprocessing import TfPreprocessTransform
transform = TfPreprocessTransform(
is_training=is_training,
size=img_size,
interpolation=interpolation,
)
else:
if is_training and no_aug:
assert not separate, "Cannot perform split augmentation with no_aug"
transform = transforms_noaug_train(
img_size,
interpolation=interpolation,
mean=mean,
std=std,
use_prefetcher=use_prefetcher,
normalize=normalize,
)
elif is_training:
transform = transforms_imagenet_train(
img_size,
train_crop_mode=train_crop_mode,
scale=scale,
ratio=ratio,
hflip=hflip,
vflip=vflip,
color_jitter=color_jitter,
color_jitter_prob=color_jitter_prob,
grayscale_prob=grayscale_prob,
gaussian_blur_prob=gaussian_blur_prob,
auto_augment=auto_augment,
interpolation=interpolation,
mean=mean,
std=std,
re_prob=re_prob,
re_mode=re_mode,
re_count=re_count,
re_num_splits=re_num_splits,
use_prefetcher=use_prefetcher,
normalize=normalize,
separate=separate,
)
else:
assert not separate, "Separate transforms not supported for validation preprocessing"
transform = transforms_imagenet_eval(
img_size,
interpolation=interpolation,
mean=mean,
std=std,
crop_pct=crop_pct,
crop_mode=crop_mode,
crop_border_pixels=crop_border_pixels,
use_prefetcher=use_prefetcher,
normalize=normalize,
)
return transform