ImagenetTraining-imagenet-1k-random-20.0-frac-1over2
/
pytorch-image-models
/timm
/layers
/activations.py
""" Activations | |
A collection of activations fn and modules with a common interface so that they can | |
easily be swapped. All have an `inplace` arg even if not used. | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import torch | |
from torch import nn as nn | |
from torch.nn import functional as F | |
def swish(x, inplace: bool = False): | |
"""Swish - Described in: https://arxiv.org/abs/1710.05941 | |
""" | |
return x.mul_(x.sigmoid()) if inplace else x.mul(x.sigmoid()) | |
class Swish(nn.Module): | |
def __init__(self, inplace: bool = False): | |
super(Swish, self).__init__() | |
self.inplace = inplace | |
def forward(self, x): | |
return swish(x, self.inplace) | |
def mish(x, inplace: bool = False): | |
"""Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681 | |
NOTE: I don't have a working inplace variant | |
""" | |
return x.mul(F.softplus(x).tanh()) | |
class Mish(nn.Module): | |
"""Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681 | |
""" | |
def __init__(self, inplace: bool = False): | |
super(Mish, self).__init__() | |
def forward(self, x): | |
return mish(x) | |
def sigmoid(x, inplace: bool = False): | |
return x.sigmoid_() if inplace else x.sigmoid() | |
# PyTorch has this, but not with a consistent inplace argmument interface | |
class Sigmoid(nn.Module): | |
def __init__(self, inplace: bool = False): | |
super(Sigmoid, self).__init__() | |
self.inplace = inplace | |
def forward(self, x): | |
return x.sigmoid_() if self.inplace else x.sigmoid() | |
def tanh(x, inplace: bool = False): | |
return x.tanh_() if inplace else x.tanh() | |
# PyTorch has this, but not with a consistent inplace argmument interface | |
class Tanh(nn.Module): | |
def __init__(self, inplace: bool = False): | |
super(Tanh, self).__init__() | |
self.inplace = inplace | |
def forward(self, x): | |
return x.tanh_() if self.inplace else x.tanh() | |
def hard_swish(x, inplace: bool = False): | |
inner = F.relu6(x + 3.).div_(6.) | |
return x.mul_(inner) if inplace else x.mul(inner) | |
class HardSwish(nn.Module): | |
def __init__(self, inplace: bool = False): | |
super(HardSwish, self).__init__() | |
self.inplace = inplace | |
def forward(self, x): | |
return hard_swish(x, self.inplace) | |
def hard_sigmoid(x, inplace: bool = False): | |
if inplace: | |
return x.add_(3.).clamp_(0., 6.).div_(6.) | |
else: | |
return F.relu6(x + 3.) / 6. | |
class HardSigmoid(nn.Module): | |
def __init__(self, inplace: bool = False): | |
super(HardSigmoid, self).__init__() | |
self.inplace = inplace | |
def forward(self, x): | |
return hard_sigmoid(x, self.inplace) | |
def hard_mish(x, inplace: bool = False): | |
""" Hard Mish | |
Experimental, based on notes by Mish author Diganta Misra at | |
https://github.com/digantamisra98/H-Mish/blob/0da20d4bc58e696b6803f2523c58d3c8a82782d0/README.md | |
""" | |
if inplace: | |
return x.mul_(0.5 * (x + 2).clamp(min=0, max=2)) | |
else: | |
return 0.5 * x * (x + 2).clamp(min=0, max=2) | |
class HardMish(nn.Module): | |
def __init__(self, inplace: bool = False): | |
super(HardMish, self).__init__() | |
self.inplace = inplace | |
def forward(self, x): | |
return hard_mish(x, self.inplace) | |
class PReLU(nn.PReLU): | |
"""Applies PReLU (w/ dummy inplace arg) | |
""" | |
def __init__(self, num_parameters: int = 1, init: float = 0.25, inplace: bool = False) -> None: | |
super(PReLU, self).__init__(num_parameters=num_parameters, init=init) | |
def forward(self, input: torch.Tensor) -> torch.Tensor: | |
return F.prelu(input, self.weight) | |
def gelu(x: torch.Tensor, inplace: bool = False) -> torch.Tensor: | |
return F.gelu(x) | |
class GELU(nn.Module): | |
"""Applies the Gaussian Error Linear Units function (w/ dummy inplace arg) | |
""" | |
def __init__(self, inplace: bool = False): | |
super(GELU, self).__init__() | |
def forward(self, input: torch.Tensor) -> torch.Tensor: | |
return F.gelu(input) | |
def gelu_tanh(x: torch.Tensor, inplace: bool = False) -> torch.Tensor: | |
return F.gelu(x, approximate='tanh') | |
class GELUTanh(nn.Module): | |
"""Applies the Gaussian Error Linear Units function (w/ dummy inplace arg) | |
""" | |
def __init__(self, inplace: bool = False): | |
super(GELUTanh, self).__init__() | |
def forward(self, input: torch.Tensor) -> torch.Tensor: | |
return F.gelu(input, approximate='tanh') | |
def quick_gelu(x: torch.Tensor, inplace: bool = False) -> torch.Tensor: | |
return x * torch.sigmoid(1.702 * x) | |
class QuickGELU(nn.Module): | |
"""Applies the Gaussian Error Linear Units function (w/ dummy inplace arg) | |
""" | |
def __init__(self, inplace: bool = False): | |
super(QuickGELU, self).__init__() | |
def forward(self, input: torch.Tensor) -> torch.Tensor: | |
return quick_gelu(input) | |