ImagenetTraining-imagenet-1k-random-20.0-frac-1over2
/
pytorch-image-models
/timm
/layers
/activations_me.py
""" Activations (memory-efficient w/ custom autograd) | |
A collection of activations fn and modules with a common interface so that they can | |
easily be swapped. All have an `inplace` arg even if not used. | |
These activations are not compatible with jit scripting or ONNX export of the model, please use | |
basic versions of the activations. | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import torch | |
from torch import nn as nn | |
from torch.nn import functional as F | |
def swish_fwd(x): | |
return x.mul(torch.sigmoid(x)) | |
def swish_bwd(x, grad_output): | |
x_sigmoid = torch.sigmoid(x) | |
return grad_output * (x_sigmoid * (1 + x * (1 - x_sigmoid))) | |
class SwishAutoFn(torch.autograd.Function): | |
""" optimised Swish w/ memory-efficient checkpoint | |
Inspired by conversation btw Jeremy Howard & Adam Pazske | |
https://twitter.com/jeremyphoward/status/1188251041835315200 | |
""" | |
def symbolic(g, x): | |
return g.op("Mul", x, g.op("Sigmoid", x)) | |
def forward(ctx, x): | |
ctx.save_for_backward(x) | |
return swish_fwd(x) | |
def backward(ctx, grad_output): | |
x = ctx.saved_tensors[0] | |
return swish_bwd(x, grad_output) | |
def swish_me(x, inplace=False): | |
return SwishAutoFn.apply(x) | |
class SwishMe(nn.Module): | |
def __init__(self, inplace: bool = False): | |
super(SwishMe, self).__init__() | |
def forward(self, x): | |
return SwishAutoFn.apply(x) | |
def mish_fwd(x): | |
return x.mul(torch.tanh(F.softplus(x))) | |
def mish_bwd(x, grad_output): | |
x_sigmoid = torch.sigmoid(x) | |
x_tanh_sp = F.softplus(x).tanh() | |
return grad_output.mul(x_tanh_sp + x * x_sigmoid * (1 - x_tanh_sp * x_tanh_sp)) | |
class MishAutoFn(torch.autograd.Function): | |
""" Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681 | |
A memory efficient variant of Mish | |
""" | |
def forward(ctx, x): | |
ctx.save_for_backward(x) | |
return mish_fwd(x) | |
def backward(ctx, grad_output): | |
x = ctx.saved_tensors[0] | |
return mish_bwd(x, grad_output) | |
def mish_me(x, inplace=False): | |
return MishAutoFn.apply(x) | |
class MishMe(nn.Module): | |
def __init__(self, inplace: bool = False): | |
super(MishMe, self).__init__() | |
def forward(self, x): | |
return MishAutoFn.apply(x) | |
def hard_sigmoid_fwd(x, inplace: bool = False): | |
return (x + 3).clamp(min=0, max=6).div(6.) | |
def hard_sigmoid_bwd(x, grad_output): | |
m = torch.ones_like(x) * ((x >= -3.) & (x <= 3.)) / 6. | |
return grad_output * m | |
class HardSigmoidAutoFn(torch.autograd.Function): | |
def forward(ctx, x): | |
ctx.save_for_backward(x) | |
return hard_sigmoid_fwd(x) | |
def backward(ctx, grad_output): | |
x = ctx.saved_tensors[0] | |
return hard_sigmoid_bwd(x, grad_output) | |
def hard_sigmoid_me(x, inplace: bool = False): | |
return HardSigmoidAutoFn.apply(x) | |
class HardSigmoidMe(nn.Module): | |
def __init__(self, inplace: bool = False): | |
super(HardSigmoidMe, self).__init__() | |
def forward(self, x): | |
return HardSigmoidAutoFn.apply(x) | |
def hard_swish_fwd(x): | |
return x * (x + 3).clamp(min=0, max=6).div(6.) | |
def hard_swish_bwd(x, grad_output): | |
m = torch.ones_like(x) * (x >= 3.) | |
m = torch.where((x >= -3.) & (x <= 3.), x / 3. + .5, m) | |
return grad_output * m | |
class HardSwishAutoFn(torch.autograd.Function): | |
"""A memory efficient HardSwish activation""" | |
def forward(ctx, x): | |
ctx.save_for_backward(x) | |
return hard_swish_fwd(x) | |
def backward(ctx, grad_output): | |
x = ctx.saved_tensors[0] | |
return hard_swish_bwd(x, grad_output) | |
def symbolic(g, self): | |
input = g.op("Add", self, g.op('Constant', value_t=torch.tensor(3, dtype=torch.float))) | |
hardtanh_ = g.op("Clip", input, g.op('Constant', value_t=torch.tensor(0, dtype=torch.float)), g.op('Constant', value_t=torch.tensor(6, dtype=torch.float))) | |
hardtanh_ = g.op("Div", hardtanh_, g.op('Constant', value_t=torch.tensor(6, dtype=torch.float))) | |
return g.op("Mul", self, hardtanh_) | |
def hard_swish_me(x, inplace=False): | |
return HardSwishAutoFn.apply(x) | |
class HardSwishMe(nn.Module): | |
def __init__(self, inplace: bool = False): | |
super(HardSwishMe, self).__init__() | |
def forward(self, x): | |
return HardSwishAutoFn.apply(x) | |
def hard_mish_fwd(x): | |
return 0.5 * x * (x + 2).clamp(min=0, max=2) | |
def hard_mish_bwd(x, grad_output): | |
m = torch.ones_like(x) * (x >= -2.) | |
m = torch.where((x >= -2.) & (x <= 0.), x + 1., m) | |
return grad_output * m | |
class HardMishAutoFn(torch.autograd.Function): | |
""" A memory efficient variant of Hard Mish | |
Experimental, based on notes by Mish author Diganta Misra at | |
https://github.com/digantamisra98/H-Mish/blob/0da20d4bc58e696b6803f2523c58d3c8a82782d0/README.md | |
""" | |
def forward(ctx, x): | |
ctx.save_for_backward(x) | |
return hard_mish_fwd(x) | |
def backward(ctx, grad_output): | |
x = ctx.saved_tensors[0] | |
return hard_mish_bwd(x, grad_output) | |
def hard_mish_me(x, inplace: bool = False): | |
return HardMishAutoFn.apply(x) | |
class HardMishMe(nn.Module): | |
def __init__(self, inplace: bool = False): | |
super(HardMishMe, self).__init__() | |
def forward(self, x): | |
return HardMishAutoFn.apply(x) | |