ImagenetTraining-imagenet-1k-random-20.0-frac-1over2
/
pytorch-image-models
/timm
/layers
/attention2d.py
from typing import List, Optional, Union | |
import torch | |
from torch import nn as nn | |
from torch.nn import functional as F | |
from .config import use_fused_attn | |
from .create_conv2d import create_conv2d | |
from .helpers import to_2tuple | |
from .pool2d_same import create_pool2d | |
class MultiQueryAttentionV2(nn.Module): | |
"""Multi Query Attention. | |
Fast Transformer Decoding: One Write-Head is All You Need | |
https://arxiv.org/pdf/1911.02150.pdf | |
This is an acceletor optimized version - removing multiple unneccessary | |
tensor transpose by re-arranging indices according to the following rules: 1) | |
contracted indices are at the end, 2) other indices have the same order in the | |
input and output tensores. | |
Compared to V1, this gives 3x speed up. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
num_heads: int = 8, | |
key_dim: int = 64, | |
value_dim: int = 64, | |
attn_drop: float = 0., | |
proj_drop: float = 0., | |
): | |
"""Initializer.""" | |
super().__init__() | |
dim_out = dim_out or dim | |
self.num_heads = num_heads | |
self.key_dim = key_dim | |
self.value_dim = value_dim | |
self.scale = key_dim ** -0.5 | |
self.query_proj = nn.Parameter(torch.randn([self.num_heads, self.key_dim, dim])) | |
self.key_proj = nn.Parameter(torch.randn([dim, self.key_dim])) | |
self.value_proj = nn.Parameter(torch.randn([dim, self.value_dim])) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.out_proj = nn.Parameter(torch.randn([dim_out, self.num_heads, self.value_dim])) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def _reshape_input(self, t): | |
"""Reshapes a tensor to three dimensions, keeping the first and last.""" | |
s = t.shape | |
# Propagate the shape statically where possible. | |
#num = t.shape[1:-1].numel() | |
#return t.reshape(s[0], num, s[-1]) | |
return t.reshape(s[0], s[1], -1).transpose(1, 2) | |
def forward(self, x, m: Optional[torch.Tensor] = None): | |
"""Run layer computation.""" | |
s = x.shape | |
m = m or x | |
reshaped_x = self._reshape_input(x) | |
reshaped_m = self._reshape_input(m) | |
q = torch.einsum('bnd,hkd->bnhk', reshaped_x, self.query_proj) | |
k = torch.einsum('bmd,dk->bmk', reshaped_m, self.key_proj) | |
attn = torch.einsum('bnhk,bmk->bnhm', q, k) | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
v = torch.einsum('bmd,dv->bmv', reshaped_m, self.value_proj) | |
o = torch.einsum('bnhm,bmv->bnhv', attn, v) | |
result = torch.einsum('bnhv,dhv->bnd', o, self.out_proj) | |
result = self.proj_drop(result) | |
return result.reshape(s) | |
class MultiQueryAttention2d(nn.Module): | |
"""Multi Query Attention with spatial downsampling. | |
3 parameters are introduced for the spatial downsampling: | |
1. kv_stride: downsampling factor on Key and Values only. | |
2. query_strides: horizontal & vertical strides on Query only. | |
This is an optimized version. | |
1. Projections in Attention is explict written out as 1x1 Conv2D. | |
2. Additional reshapes are introduced to bring a up to 3x speed up. | |
""" | |
fused_attn: torch.jit.Final[bool] | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
num_heads: int = 8, | |
key_dim: Optional[int] = None, | |
value_dim: Optional[int] = None, | |
query_strides: int = 1, | |
kv_stride: int = 1, | |
dw_kernel_size: int = 3, | |
dilation: int = 1, | |
padding: Union[str, int, List[int]] = '', | |
attn_drop: float = 0., | |
proj_drop: float = 0., | |
norm_layer: nn.Module = nn.BatchNorm2d, | |
use_bias: bool = False, | |
): | |
"""Initializer. | |
Args: | |
num_heads: Number of attention heads. | |
key_dim: Size of the attention key dimension. | |
value_dim: Size of the attention value dimension. | |
query_strides: Vertical stride size for query only. | |
kv_stride: Key and value stride size. | |
dw_kernel_size: Spatial dimension of the depthwise kernel. | |
""" | |
super().__init__() | |
dim_out = dim_out or dim | |
self.num_heads = num_heads | |
self.key_dim = key_dim or dim // num_heads | |
self.value_dim = value_dim or dim // num_heads | |
self.query_strides = to_2tuple(query_strides) | |
self.kv_stride = kv_stride | |
self.has_query_strides = any([s > 1 for s in self.query_strides]) | |
self.scale = self.key_dim ** -0.5 | |
self.fused_attn = use_fused_attn() | |
self.drop = attn_drop | |
self.query = nn.Sequential() | |
if self.has_query_strides: | |
# FIXME dilation | |
if padding == 'same': | |
self.query.add_module('down_pool', create_pool2d( | |
'avg', | |
kernel_size=self.query_strides, | |
padding='same', | |
)) | |
else: | |
# no pad if not 'same' as kern=stride=even | |
self.query.add_module('down_pool', nn.AvgPool2d(kernel_size=query_strides)) | |
self.query.add_module('norm', norm_layer(dim)) | |
self.query.add_module('proj', create_conv2d( | |
dim, | |
self.num_heads * self.key_dim, | |
kernel_size=1, | |
bias=use_bias, | |
)) | |
self.key = nn.Sequential() | |
if kv_stride > 1: | |
self.key.add_module('down_conv', create_conv2d( | |
dim, | |
dim, | |
kernel_size=dw_kernel_size, | |
stride=kv_stride, | |
dilation=dilation, | |
padding=padding, | |
depthwise=True, | |
)) | |
self.key.add_module('norm', norm_layer(dim)) | |
self.key.add_module('proj', create_conv2d( | |
dim, | |
self.key_dim, | |
kernel_size=1, | |
padding=padding, | |
bias=use_bias, | |
)) | |
self.value = nn.Sequential() | |
if kv_stride > 1: | |
self.value.add_module('down_conv', create_conv2d( | |
dim, | |
dim, | |
kernel_size=dw_kernel_size, | |
stride=kv_stride, | |
dilation=dilation, | |
padding=padding, | |
depthwise=True, | |
)) | |
self.value.add_module('norm', norm_layer(dim)) | |
self.value.add_module('proj', create_conv2d( | |
dim, | |
self.value_dim, | |
kernel_size=1, | |
bias=use_bias, | |
)) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.output = nn.Sequential() | |
if self.has_query_strides: | |
self.output.add_module('upsample', nn.Upsample(scale_factor=self.query_strides, mode='bilinear', align_corners=False)) | |
self.output.add_module('proj', create_conv2d( | |
self.value_dim * self.num_heads, | |
dim_out, | |
kernel_size=1, | |
bias=use_bias, | |
)) | |
self.output.add_module('drop', nn.Dropout(proj_drop)) | |
self.einsum = False | |
def init_weights(self): | |
# using xavier appeared to improve stability for mobilenetv4 hybrid w/ this layer | |
nn.init.xavier_uniform_(self.query.proj.weight) | |
nn.init.xavier_uniform_(self.key.proj.weight) | |
nn.init.xavier_uniform_(self.value.proj.weight) | |
if self.kv_stride > 1: | |
nn.init.xavier_uniform_(self.key.down_conv.weight) | |
nn.init.xavier_uniform_(self.value.down_conv.weight) | |
nn.init.xavier_uniform_(self.output.proj.weight) | |
def _reshape_input(self, t: torch.Tensor): | |
"""Reshapes a tensor to three dimensions, keeping the batch and channels.""" | |
s = t.shape | |
t = t.reshape(s[0], s[1], -1).transpose(1, 2) | |
if self.einsum: | |
return t | |
else: | |
return t.unsqueeze(1).contiguous() | |
def _reshape_projected_query(self, t: torch.Tensor, num_heads: int, key_dim: int): | |
"""Reshapes projected query: [b, n, n, h x k] -> [b, n x n, h, k].""" | |
s = t.shape | |
t = t.reshape(s[0], num_heads, key_dim, -1) | |
if self.einsum: | |
return t.permute(0, 3, 1, 2).contiguous() | |
else: | |
return t.transpose(-1, -2).contiguous() | |
def _reshape_output(self, t: torch.Tensor, num_heads: int, h_px: int, w_px: int): | |
"""Reshape output:[b, n x n x h, k] -> [b, n, n, hk].""" | |
s = t.shape | |
feat_dim = s[-1] * num_heads | |
if not self.einsum: | |
t = t.transpose(1, 2) | |
return t.reshape(s[0], h_px, w_px, feat_dim).permute(0, 3, 1, 2).contiguous() | |
def forward(self, x, attn_mask: Optional[torch.Tensor] = None): | |
"""Run layer computation.""" | |
B, C, H, W = s = x.shape | |
q = self.query(x) | |
# desired q shape: [b, h, k, n x n] - [b, l, h, k] | |
q = self._reshape_projected_query(q, self.num_heads, self.key_dim) | |
k = self.key(x) | |
# output shape of k: [b, k, p], p = m x m | |
k = self._reshape_input(k) | |
v = self.value(x) | |
# output shape of v: [ b, p, k], p = m x m | |
v = self._reshape_input(v) | |
# desired q shape: [b, n x n, h, k] | |
# desired k shape: [b, m x m, k] | |
# desired logits shape: [b, n x n, h, m x m] | |
if self.einsum: | |
attn = torch.einsum('blhk,bpk->blhp', q, k) * self.scale | |
if attn_mask is not None: | |
# NOTE: assumes mask is float and in correct shape | |
attn = attn + attn_mask | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
o = torch.einsum('blhp,bpk->blhk', attn, v) | |
else: | |
if self.fused_attn: | |
o = F.scaled_dot_product_attention( | |
q, k, v, | |
attn_mask=attn_mask, | |
dropout_p=self.attn_drop.p if self.training else 0. | |
) | |
else: | |
q = q * self.scale | |
attn = q @ k.transpose(-1, -2) | |
if attn_mask is not None: | |
# NOTE: assumes mask is float and in correct shape | |
attn = attn + attn_mask | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
o = attn @ v | |
# reshape o into [b, hk, n, n,] | |
o = self._reshape_output(o, self.num_heads, H // self.query_strides[0], W // self.query_strides[1]) | |
x = self.output(o) | |
return x | |
class Attention2d(nn.Module): | |
fused_attn: torch.jit.Final[bool] | |
""" multi-head attention for 2D NCHW tensors""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
num_heads: int = 32, | |
bias: bool = True, | |
expand_first: bool = False, | |
head_first: bool = False, | |
attn_drop: float = 0., | |
proj_drop: float = 0. | |
): | |
super().__init__() | |
dim_out = dim_out or dim | |
dim_attn = dim_out if expand_first else dim | |
self.num_heads = num_heads | |
self.dim_head = dim_attn // num_heads | |
self.head_first = head_first | |
self.scale = num_heads ** -0.5 | |
self.fused_attn = use_fused_attn() | |
self.qkv = nn.Conv2d(dim, dim_attn * 3, 1, bias=bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Conv2d(dim_attn, dim_out, 1, bias=bias) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x, attn_mask: Optional[torch.Tensor] = None): | |
B, C, H, W = x.shape | |
if self.head_first: | |
q, k, v = self.qkv(x).view(B, self.num_heads, self.dim_head * 3, -1).chunk(3, dim=2) | |
else: | |
q, k, v = self.qkv(x).reshape(B, 3, self.num_heads, self.dim_head, -1).unbind(1) | |
if self.fused_attn: | |
x = torch.nn.functional.scaled_dot_product_attention( | |
q.transpose(-1, -2).contiguous(), | |
k.transpose(-1, -2).contiguous(), | |
v.transpose(-1, -2).contiguous(), | |
attn_mask=attn_mask, | |
dropout_p=self.attn_drop.p if self.training else 0., | |
).transpose(-1, -2).reshape(B, -1, H, W) | |
else: | |
q = q * self.scale | |
attn = q.transpose(-2, -1) @ k | |
if attn_mask is not None: | |
# NOTE: assumes mask is float and in correct shape | |
attn = attn + attn_mask | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |