meg's picture
meg HF staff
Add files using upload-large-folder tool
81d747c verified
raw
history blame
12.8 kB
from typing import List, Optional, Union
import torch
from torch import nn as nn
from torch.nn import functional as F
from .config import use_fused_attn
from .create_conv2d import create_conv2d
from .helpers import to_2tuple
from .pool2d_same import create_pool2d
class MultiQueryAttentionV2(nn.Module):
"""Multi Query Attention.
Fast Transformer Decoding: One Write-Head is All You Need
https://arxiv.org/pdf/1911.02150.pdf
This is an acceletor optimized version - removing multiple unneccessary
tensor transpose by re-arranging indices according to the following rules: 1)
contracted indices are at the end, 2) other indices have the same order in the
input and output tensores.
Compared to V1, this gives 3x speed up.
"""
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
num_heads: int = 8,
key_dim: int = 64,
value_dim: int = 64,
attn_drop: float = 0.,
proj_drop: float = 0.,
):
"""Initializer."""
super().__init__()
dim_out = dim_out or dim
self.num_heads = num_heads
self.key_dim = key_dim
self.value_dim = value_dim
self.scale = key_dim ** -0.5
self.query_proj = nn.Parameter(torch.randn([self.num_heads, self.key_dim, dim]))
self.key_proj = nn.Parameter(torch.randn([dim, self.key_dim]))
self.value_proj = nn.Parameter(torch.randn([dim, self.value_dim]))
self.attn_drop = nn.Dropout(attn_drop)
self.out_proj = nn.Parameter(torch.randn([dim_out, self.num_heads, self.value_dim]))
self.proj_drop = nn.Dropout(proj_drop)
def _reshape_input(self, t):
"""Reshapes a tensor to three dimensions, keeping the first and last."""
s = t.shape
# Propagate the shape statically where possible.
#num = t.shape[1:-1].numel()
#return t.reshape(s[0], num, s[-1])
return t.reshape(s[0], s[1], -1).transpose(1, 2)
def forward(self, x, m: Optional[torch.Tensor] = None):
"""Run layer computation."""
s = x.shape
m = m or x
reshaped_x = self._reshape_input(x)
reshaped_m = self._reshape_input(m)
q = torch.einsum('bnd,hkd->bnhk', reshaped_x, self.query_proj)
k = torch.einsum('bmd,dk->bmk', reshaped_m, self.key_proj)
attn = torch.einsum('bnhk,bmk->bnhm', q, k)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
v = torch.einsum('bmd,dv->bmv', reshaped_m, self.value_proj)
o = torch.einsum('bnhm,bmv->bnhv', attn, v)
result = torch.einsum('bnhv,dhv->bnd', o, self.out_proj)
result = self.proj_drop(result)
return result.reshape(s)
class MultiQueryAttention2d(nn.Module):
"""Multi Query Attention with spatial downsampling.
3 parameters are introduced for the spatial downsampling:
1. kv_stride: downsampling factor on Key and Values only.
2. query_strides: horizontal & vertical strides on Query only.
This is an optimized version.
1. Projections in Attention is explict written out as 1x1 Conv2D.
2. Additional reshapes are introduced to bring a up to 3x speed up.
"""
fused_attn: torch.jit.Final[bool]
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
num_heads: int = 8,
key_dim: Optional[int] = None,
value_dim: Optional[int] = None,
query_strides: int = 1,
kv_stride: int = 1,
dw_kernel_size: int = 3,
dilation: int = 1,
padding: Union[str, int, List[int]] = '',
attn_drop: float = 0.,
proj_drop: float = 0.,
norm_layer: nn.Module = nn.BatchNorm2d,
use_bias: bool = False,
):
"""Initializer.
Args:
num_heads: Number of attention heads.
key_dim: Size of the attention key dimension.
value_dim: Size of the attention value dimension.
query_strides: Vertical stride size for query only.
kv_stride: Key and value stride size.
dw_kernel_size: Spatial dimension of the depthwise kernel.
"""
super().__init__()
dim_out = dim_out or dim
self.num_heads = num_heads
self.key_dim = key_dim or dim // num_heads
self.value_dim = value_dim or dim // num_heads
self.query_strides = to_2tuple(query_strides)
self.kv_stride = kv_stride
self.has_query_strides = any([s > 1 for s in self.query_strides])
self.scale = self.key_dim ** -0.5
self.fused_attn = use_fused_attn()
self.drop = attn_drop
self.query = nn.Sequential()
if self.has_query_strides:
# FIXME dilation
if padding == 'same':
self.query.add_module('down_pool', create_pool2d(
'avg',
kernel_size=self.query_strides,
padding='same',
))
else:
# no pad if not 'same' as kern=stride=even
self.query.add_module('down_pool', nn.AvgPool2d(kernel_size=query_strides))
self.query.add_module('norm', norm_layer(dim))
self.query.add_module('proj', create_conv2d(
dim,
self.num_heads * self.key_dim,
kernel_size=1,
bias=use_bias,
))
self.key = nn.Sequential()
if kv_stride > 1:
self.key.add_module('down_conv', create_conv2d(
dim,
dim,
kernel_size=dw_kernel_size,
stride=kv_stride,
dilation=dilation,
padding=padding,
depthwise=True,
))
self.key.add_module('norm', norm_layer(dim))
self.key.add_module('proj', create_conv2d(
dim,
self.key_dim,
kernel_size=1,
padding=padding,
bias=use_bias,
))
self.value = nn.Sequential()
if kv_stride > 1:
self.value.add_module('down_conv', create_conv2d(
dim,
dim,
kernel_size=dw_kernel_size,
stride=kv_stride,
dilation=dilation,
padding=padding,
depthwise=True,
))
self.value.add_module('norm', norm_layer(dim))
self.value.add_module('proj', create_conv2d(
dim,
self.value_dim,
kernel_size=1,
bias=use_bias,
))
self.attn_drop = nn.Dropout(attn_drop)
self.output = nn.Sequential()
if self.has_query_strides:
self.output.add_module('upsample', nn.Upsample(scale_factor=self.query_strides, mode='bilinear', align_corners=False))
self.output.add_module('proj', create_conv2d(
self.value_dim * self.num_heads,
dim_out,
kernel_size=1,
bias=use_bias,
))
self.output.add_module('drop', nn.Dropout(proj_drop))
self.einsum = False
def init_weights(self):
# using xavier appeared to improve stability for mobilenetv4 hybrid w/ this layer
nn.init.xavier_uniform_(self.query.proj.weight)
nn.init.xavier_uniform_(self.key.proj.weight)
nn.init.xavier_uniform_(self.value.proj.weight)
if self.kv_stride > 1:
nn.init.xavier_uniform_(self.key.down_conv.weight)
nn.init.xavier_uniform_(self.value.down_conv.weight)
nn.init.xavier_uniform_(self.output.proj.weight)
def _reshape_input(self, t: torch.Tensor):
"""Reshapes a tensor to three dimensions, keeping the batch and channels."""
s = t.shape
t = t.reshape(s[0], s[1], -1).transpose(1, 2)
if self.einsum:
return t
else:
return t.unsqueeze(1).contiguous()
def _reshape_projected_query(self, t: torch.Tensor, num_heads: int, key_dim: int):
"""Reshapes projected query: [b, n, n, h x k] -> [b, n x n, h, k]."""
s = t.shape
t = t.reshape(s[0], num_heads, key_dim, -1)
if self.einsum:
return t.permute(0, 3, 1, 2).contiguous()
else:
return t.transpose(-1, -2).contiguous()
def _reshape_output(self, t: torch.Tensor, num_heads: int, h_px: int, w_px: int):
"""Reshape output:[b, n x n x h, k] -> [b, n, n, hk]."""
s = t.shape
feat_dim = s[-1] * num_heads
if not self.einsum:
t = t.transpose(1, 2)
return t.reshape(s[0], h_px, w_px, feat_dim).permute(0, 3, 1, 2).contiguous()
def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
"""Run layer computation."""
B, C, H, W = s = x.shape
q = self.query(x)
# desired q shape: [b, h, k, n x n] - [b, l, h, k]
q = self._reshape_projected_query(q, self.num_heads, self.key_dim)
k = self.key(x)
# output shape of k: [b, k, p], p = m x m
k = self._reshape_input(k)
v = self.value(x)
# output shape of v: [ b, p, k], p = m x m
v = self._reshape_input(v)
# desired q shape: [b, n x n, h, k]
# desired k shape: [b, m x m, k]
# desired logits shape: [b, n x n, h, m x m]
if self.einsum:
attn = torch.einsum('blhk,bpk->blhp', q, k) * self.scale
if attn_mask is not None:
# NOTE: assumes mask is float and in correct shape
attn = attn + attn_mask
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
o = torch.einsum('blhp,bpk->blhk', attn, v)
else:
if self.fused_attn:
o = F.scaled_dot_product_attention(
q, k, v,
attn_mask=attn_mask,
dropout_p=self.attn_drop.p if self.training else 0.
)
else:
q = q * self.scale
attn = q @ k.transpose(-1, -2)
if attn_mask is not None:
# NOTE: assumes mask is float and in correct shape
attn = attn + attn_mask
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
o = attn @ v
# reshape o into [b, hk, n, n,]
o = self._reshape_output(o, self.num_heads, H // self.query_strides[0], W // self.query_strides[1])
x = self.output(o)
return x
class Attention2d(nn.Module):
fused_attn: torch.jit.Final[bool]
""" multi-head attention for 2D NCHW tensors"""
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
num_heads: int = 32,
bias: bool = True,
expand_first: bool = False,
head_first: bool = False,
attn_drop: float = 0.,
proj_drop: float = 0.
):
super().__init__()
dim_out = dim_out or dim
dim_attn = dim_out if expand_first else dim
self.num_heads = num_heads
self.dim_head = dim_attn // num_heads
self.head_first = head_first
self.scale = num_heads ** -0.5
self.fused_attn = use_fused_attn()
self.qkv = nn.Conv2d(dim, dim_attn * 3, 1, bias=bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Conv2d(dim_attn, dim_out, 1, bias=bias)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
B, C, H, W = x.shape
if self.head_first:
q, k, v = self.qkv(x).view(B, self.num_heads, self.dim_head * 3, -1).chunk(3, dim=2)
else:
q, k, v = self.qkv(x).reshape(B, 3, self.num_heads, self.dim_head, -1).unbind(1)
if self.fused_attn:
x = torch.nn.functional.scaled_dot_product_attention(
q.transpose(-1, -2).contiguous(),
k.transpose(-1, -2).contiguous(),
v.transpose(-1, -2).contiguous(),
attn_mask=attn_mask,
dropout_p=self.attn_drop.p if self.training else 0.,
).transpose(-1, -2).reshape(B, -1, H, W)
else:
q = q * self.scale
attn = q.transpose(-2, -1) @ k
if attn_mask is not None:
# NOTE: assumes mask is float and in correct shape
attn = attn + attn_mask
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W)
x = self.proj(x)
x = self.proj_drop(x)
return x