|
""" ONNX-runtime validation script |
|
|
|
This script was created to verify accuracy and performance of exported ONNX |
|
models running with the onnxruntime. It utilizes the PyTorch dataloader/processing |
|
pipeline for a fair comparison against the originals. |
|
|
|
Copyright 2020 Ross Wightman |
|
""" |
|
import argparse |
|
import numpy as np |
|
import onnxruntime |
|
from timm.data import create_loader, resolve_data_config, create_dataset |
|
from timm.utils import AverageMeter |
|
import time |
|
|
|
parser = argparse.ArgumentParser(description='ONNX Validation') |
|
parser.add_argument('data', metavar='DIR', |
|
help='path to dataset') |
|
parser.add_argument('--onnx-input', default='', type=str, metavar='PATH', |
|
help='path to onnx model/weights file') |
|
parser.add_argument('--onnx-output-opt', default='', type=str, metavar='PATH', |
|
help='path to output optimized onnx graph') |
|
parser.add_argument('--profile', action='store_true', default=False, |
|
help='Enable profiler output.') |
|
parser.add_argument('-j', '--workers', default=2, type=int, metavar='N', |
|
help='number of data loading workers (default: 2)') |
|
parser.add_argument('-b', '--batch-size', default=256, type=int, |
|
metavar='N', help='mini-batch size (default: 256)') |
|
parser.add_argument('--img-size', default=None, type=int, |
|
metavar='N', help='Input image dimension, uses model default if empty') |
|
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', |
|
help='Override mean pixel value of dataset') |
|
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', |
|
help='Override std deviation of of dataset') |
|
parser.add_argument('--crop-pct', type=float, default=None, metavar='PCT', |
|
help='Override default crop pct of 0.875') |
|
parser.add_argument('--interpolation', default='', type=str, metavar='NAME', |
|
help='Image resize interpolation type (overrides model)') |
|
parser.add_argument('--print-freq', '-p', default=10, type=int, |
|
metavar='N', help='print frequency (default: 10)') |
|
|
|
|
|
def main(): |
|
args = parser.parse_args() |
|
args.gpu_id = 0 |
|
|
|
|
|
sess_options = onnxruntime.SessionOptions() |
|
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL |
|
if args.profile: |
|
sess_options.enable_profiling = True |
|
if args.onnx_output_opt: |
|
sess_options.optimized_model_filepath = args.onnx_output_opt |
|
|
|
session = onnxruntime.InferenceSession(args.onnx_input, sess_options) |
|
|
|
data_config = resolve_data_config(vars(args)) |
|
loader = create_loader( |
|
create_dataset('', args.data), |
|
input_size=data_config['input_size'], |
|
batch_size=args.batch_size, |
|
use_prefetcher=False, |
|
interpolation=data_config['interpolation'], |
|
mean=data_config['mean'], |
|
std=data_config['std'], |
|
num_workers=args.workers, |
|
crop_pct=data_config['crop_pct'] |
|
) |
|
|
|
input_name = session.get_inputs()[0].name |
|
|
|
batch_time = AverageMeter() |
|
top1 = AverageMeter() |
|
top5 = AverageMeter() |
|
end = time.time() |
|
for i, (input, target) in enumerate(loader): |
|
|
|
output = session.run([], {input_name: input.data.numpy()}) |
|
output = output[0] |
|
|
|
|
|
prec1, prec5 = accuracy_np(output, target.numpy()) |
|
top1.update(prec1.item(), input.size(0)) |
|
top5.update(prec5.item(), input.size(0)) |
|
|
|
|
|
batch_time.update(time.time() - end) |
|
end = time.time() |
|
|
|
if i % args.print_freq == 0: |
|
print( |
|
f'Test: [{i}/{len(loader)}]\t' |
|
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f}, {input.size(0) / batch_time.avg:.3f}/s, ' |
|
f'{100 * batch_time.avg / input.size(0):.3f} ms/sample) \t' |
|
f'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' |
|
f'Prec@5 {top5.val:.3f} ({top5.avg:.3f})' |
|
) |
|
|
|
print(f' * Prec@1 {top1.avg:.3f} ({100-top1.avg:.3f}) Prec@5 {top5.avg:.3f} ({100.-top5.avg:.3f})') |
|
|
|
|
|
def accuracy_np(output, target): |
|
max_indices = np.argsort(output, axis=1)[:, ::-1] |
|
top5 = 100 * np.equal(max_indices[:, :5], target[:, np.newaxis]).sum(axis=1).mean() |
|
top1 = 100 * np.equal(max_indices[:, 0], target).mean() |
|
return top1, top5 |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|