ImagenetTraining-imagenet-1k-random-20.0-frac-1over2 / pytorch-image-models /results /benchmark-infer-amp-nhwc-pt210-cu121-rtx3090.csv
meg's picture
meg HF staff
Add files using upload-large-folder tool
abee7a4 verified
raw
history blame
72.3 kB
model,infer_img_size,infer_batch_size,infer_samples_per_sec,infer_step_time,infer_gmacs,infer_macts,param_count
tinynet_e,106,1024.0,75290.96,13.591,0.03,0.69,2.04
mobilenetv3_small_050,224,1024.0,56785.93,18.023,0.03,0.92,1.59
efficientvit_m0,224,1024.0,50656.23,20.205,0.08,0.91,2.35
lcnet_035,224,1024.0,48853.22,20.951,0.03,1.04,1.64
lcnet_050,224,1024.0,42147.98,24.285,0.05,1.26,1.88
mobilenetv3_small_075,224,1024.0,42002.46,24.369,0.05,1.3,2.04
mobilenetv3_small_100,224,1024.0,38516.23,26.573,0.06,1.42,2.54
tinynet_d,152,1024.0,37989.71,26.944,0.05,1.42,2.34
efficientvit_m1,224,1024.0,37486.44,27.306,0.17,1.33,2.98
tf_mobilenetv3_small_minimal_100,224,1024.0,33948.13,30.153,0.06,1.41,2.04
efficientvit_m2,224,1024.0,33551.67,30.51,0.2,1.47,4.19
tf_mobilenetv3_small_075,224,1024.0,33262.15,30.775,0.05,1.3,2.04
tf_mobilenetv3_small_100,224,1024.0,31002.71,33.019,0.06,1.42,2.54
lcnet_075,224,1024.0,30664.19,33.384,0.1,1.99,2.36
efficientvit_m3,224,1024.0,29423.78,34.792,0.27,1.62,6.9
efficientvit_m4,224,1024.0,27882.1,36.716,0.3,1.7,8.8
mnasnet_small,224,1024.0,25015.02,40.925,0.07,2.16,2.03
regnetx_002,224,1024.0,24564.71,41.67,0.2,2.16,2.68
lcnet_100,224,1024.0,24268.72,42.183,0.16,2.52,2.95
levit_128s,224,1024.0,22705.11,45.089,0.31,1.88,7.78
regnety_002,224,1024.0,22248.91,46.012,0.2,2.17,3.16
resnet10t,176,1024.0,22236.3,46.04,0.7,1.51,5.44
mobilenetv2_035,224,1024.0,22055.42,46.418,0.07,2.86,1.68
levit_conv_128s,224,1024.0,21863.15,46.826,0.31,1.88,7.78
ghostnet_050,224,1024.0,20782.95,49.261,0.05,1.77,2.59
mnasnet_050,224,1024.0,20672.17,49.525,0.11,3.07,2.22
repghostnet_050,224,1024.0,20617.05,49.657,0.05,2.02,2.31
efficientvit_m5,224,1024.0,19010.14,53.856,0.53,2.41,12.47
tinynet_c,184,1024.0,18737.07,54.641,0.11,2.87,2.46
efficientvit_b0,224,1024.0,18023.56,56.804,0.1,2.87,3.41
semnasnet_050,224,1024.0,17573.38,58.26,0.11,3.44,2.08
mobilenetv2_050,224,1024.0,17491.5,58.532,0.1,3.64,1.97
regnetx_004,224,1024.0,17164.74,59.647,0.4,3.14,5.16
repghostnet_058,224,1024.0,16947.81,60.41,0.07,2.59,2.55
regnetx_004_tv,224,1024.0,16485.73,62.101,0.42,3.17,5.5
vit_small_patch32_224,224,1024.0,16428.86,62.319,1.12,2.09,22.88
cs3darknet_focus_s,256,1024.0,16333.25,62.684,0.69,2.7,3.27
lcnet_150,224,1024.0,15841.02,64.632,0.34,3.79,4.5
gernet_s,224,1024.0,15617.62,65.556,0.75,2.65,8.17
cs3darknet_s,256,1024.0,15597.89,65.64,0.72,2.97,3.28
levit_128,224,1024.0,15372.6,66.601,0.41,2.71,9.21
vit_tiny_r_s16_p8_224,224,1024.0,15191.19,67.397,0.43,1.85,6.34
levit_conv_128,224,1024.0,14904.31,68.695,0.41,2.71,9.21
mobilenetv3_large_075,224,1024.0,14843.63,68.964,0.16,4.0,3.99
pit_ti_distilled_224,224,1024.0,14746.15,69.432,0.51,2.77,5.1
pit_ti_224,224,1024.0,14700.08,69.649,0.5,2.75,4.85
mixer_s32_224,224,1024.0,14362.24,71.288,1.0,2.28,19.1
resnet10t,224,1024.0,14254.88,71.825,1.1,2.43,5.44
repghostnet_080,224,1024.0,13967.84,73.293,0.1,3.22,3.28
tf_efficientnetv2_b0,192,1024.0,13629.52,75.121,0.54,3.51,7.14
mobilenetv3_rw,224,1024.0,13582.75,75.38,0.23,4.41,5.48
levit_192,224,1024.0,13511.34,75.778,0.66,3.2,10.95
mnasnet_075,224,1024.0,13417.36,76.309,0.23,4.77,3.17
mobilenetv3_large_100,224,1024.0,13322.79,76.851,0.23,4.41,5.48
hardcorenas_a,224,1024.0,13314.34,76.899,0.23,4.38,5.26
levit_conv_192,224,1024.0,12952.02,79.05,0.66,3.2,10.95
regnety_004,224,1024.0,12651.55,80.929,0.41,3.89,4.34
tf_mobilenetv3_large_075,224,1024.0,12636.69,81.023,0.16,4.0,3.99
nf_regnet_b0,192,1024.0,12264.41,83.481,0.37,3.15,8.76
tinynet_b,188,1024.0,12262.56,83.495,0.21,4.44,3.73
tf_mobilenetv3_large_minimal_100,224,1024.0,12182.74,84.043,0.22,4.4,3.92
hardcorenas_b,224,1024.0,12118.5,84.488,0.26,5.09,5.18
hardcorenas_c,224,1024.0,12088.28,84.699,0.28,5.01,5.52
resnet14t,176,1024.0,11843.82,86.448,1.07,3.61,10.08
mnasnet_100,224,1024.0,11686.43,87.612,0.33,5.46,4.38
regnety_006,224,1024.0,11675.48,87.69,0.61,4.33,6.06
ese_vovnet19b_slim_dw,224,1024.0,11663.91,87.781,0.4,5.28,1.9
repghostnet_100,224,1024.0,11508.79,88.956,0.15,3.98,4.07
tf_mobilenetv3_large_100,224,1024.0,11443.62,89.472,0.23,4.41,5.48
vit_tiny_patch16_224,224,1024.0,11342.82,90.267,1.08,4.12,5.72
hardcorenas_d,224,1024.0,11329.99,90.369,0.3,4.93,7.5
deit_tiny_distilled_patch16_224,224,1024.0,11311.9,90.514,1.09,4.15,5.91
deit_tiny_patch16_224,224,1024.0,11286.31,90.719,1.08,4.12,5.72
semnasnet_075,224,1024.0,11132.28,91.974,0.23,5.54,2.91
resnet18,224,1024.0,11101.69,92.228,1.82,2.48,11.69
ghostnet_100,224,1024.0,11039.87,92.744,0.15,3.55,5.18
mobilenetv2_075,224,1024.0,10984.87,93.208,0.22,5.86,2.64
spnasnet_100,224,1024.0,10557.11,96.986,0.35,6.03,4.42
tf_efficientnetv2_b1,192,1024.0,10473.04,97.765,0.76,4.59,8.14
regnetx_008,224,1024.0,10422.45,98.23,0.81,5.15,7.26
seresnet18,224,1024.0,10416.31,98.297,1.82,2.49,11.78
tf_efficientnetv2_b0,224,1024.0,10174.51,100.633,0.73,4.77,7.14
legacy_seresnet18,224,1024.0,10133.12,101.044,1.82,2.49,11.78
repghostnet_111,224,1024.0,10094.28,101.428,0.18,4.38,4.54
hardcorenas_f,224,1024.0,10012.95,102.257,0.35,5.57,8.2
tinynet_a,192,1024.0,9946.05,102.945,0.35,5.41,6.19
dla46_c,224,1024.0,9943.77,102.967,0.58,4.5,1.3
hardcorenas_e,224,1024.0,9851.75,103.931,0.35,5.65,8.07
semnasnet_100,224,1024.0,9823.16,104.233,0.32,6.23,3.89
levit_256,224,1024.0,9811.76,104.354,1.13,4.23,18.89
repvgg_a0,224,1024.0,9709.7,105.449,1.52,3.59,9.11
mobilenetv2_100,224,1024.0,9654.78,106.051,0.31,6.68,3.5
regnety_008,224,1024.0,9643.2,106.178,0.81,5.25,6.26
fbnetc_100,224,1024.0,9552.51,107.186,0.4,6.51,5.57
efficientnet_lite0,224,1024.0,9466.4,108.161,0.4,6.74,4.65
levit_conv_256,224,1024.0,9461.49,108.218,1.13,4.23,18.89
resnet18d,224,1024.0,9458.4,108.253,2.06,3.29,11.71
pit_xs_224,224,1024.0,9332.33,109.714,1.1,4.12,10.62
ese_vovnet19b_slim,224,1024.0,9277.16,110.369,1.69,3.52,3.17
regnety_008_tv,224,1024.0,9213.78,111.127,0.84,5.42,6.43
pit_xs_distilled_224,224,1024.0,9203.86,111.241,1.11,4.15,11.0
convnext_atto,224,1024.0,9104.06,112.467,0.55,3.81,3.7
repghostnet_130,224,1024.0,8873.05,115.395,0.25,5.24,5.48
ghostnet_130,224,1024.0,8870.81,115.424,0.24,4.6,7.36
convnext_atto_ols,224,1024.0,8829.55,115.964,0.58,4.11,3.7
regnetz_005,224,1024.0,8796.44,116.392,0.52,5.86,7.12
xcit_nano_12_p16_224,224,1024.0,8604.96,118.991,0.56,4.17,3.05
levit_256d,224,1024.0,8322.97,123.022,1.4,4.93,26.21
regnetx_006,224,1024.0,8320.1,123.064,0.61,3.98,6.2
tf_efficientnet_lite0,224,1024.0,8163.21,125.431,0.4,6.74,4.65
fbnetv3_b,224,1024.0,8152.31,125.598,0.42,6.97,8.6
efficientnet_b0,224,1024.0,8085.72,126.633,0.4,6.75,5.29
levit_conv_256d,224,1024.0,8055.13,127.113,1.4,4.93,26.21
edgenext_xx_small,256,1024.0,8014.51,127.757,0.26,3.33,1.33
mnasnet_140,224,1024.0,7984.3,128.241,0.6,7.71,7.12
convnext_femto,224,1024.0,7977.79,128.346,0.79,4.57,5.22
tf_efficientnetv2_b2,208,1024.0,7861.13,130.251,1.06,6.0,10.1
mobilevit_xxs,256,1024.0,7827.79,130.801,0.34,5.74,1.27
repghostnet_150,224,1024.0,7766.69,131.835,0.32,6.0,6.58
convnext_femto_ols,224,1024.0,7757.32,131.994,0.82,4.87,5.23
rexnetr_100,224,1024.0,7545.9,135.692,0.43,7.72,4.88
repvit_m1,224,1024.0,7543.44,135.728,0.83,7.45,5.49
resnet14t,224,1024.0,7466.4,137.137,1.69,5.8,10.08
mobilenetv2_110d,224,1024.0,7331.32,139.66,0.45,8.71,4.52
hrnet_w18_small,224,1024.0,7298.3,140.296,1.61,5.72,13.19
cs3darknet_focus_m,256,1024.0,7202.61,142.16,1.98,4.89,9.3
repvit_m0_9,224,1024.0,7165.5,142.888,0.83,7.45,5.49
crossvit_tiny_240,240,1024.0,7123.68,143.735,1.3,5.67,7.01
efficientvit_b1,224,1024.0,7109.59,144.02,0.53,7.25,9.1
tf_efficientnet_b0,224,1024.0,7104.21,144.129,0.4,6.75,5.29
crossvit_9_240,240,1024.0,7025.32,145.747,1.55,5.59,8.55
nf_regnet_b0,256,1024.0,6992.1,146.441,0.64,5.58,8.76
repvgg_a1,224,1024.0,6942.64,147.483,2.64,4.74,14.09
mobilevitv2_050,256,1024.0,6935.55,147.628,0.48,8.04,1.37
cs3darknet_m,256,1024.0,6929.59,147.762,2.08,5.28,9.31
efficientnet_b1_pruned,240,1024.0,6922.7,147.909,0.4,6.21,6.33
gernet_m,224,1024.0,6840.64,149.682,3.02,5.24,21.14
fbnetv3_d,224,1024.0,6784.35,150.925,0.52,8.5,10.31
semnasnet_140,224,1024.0,6771.35,151.215,0.6,8.87,6.11
crossvit_9_dagger_240,240,1024.0,6704.51,152.722,1.68,6.03,8.78
tf_efficientnetv2_b1,240,1024.0,6611.54,154.87,1.21,7.34,8.14
mobilenetv2_140,224,1024.0,6588.7,155.407,0.6,9.57,6.11
resnet34,224,1024.0,6504.25,157.425,3.67,3.74,21.8
ese_vovnet19b_dw,224,1024.0,6406.95,159.816,1.34,8.25,6.54
selecsls42,224,1024.0,6366.41,160.834,2.94,4.62,30.35
resnet18,288,1024.0,6354.7,161.13,3.01,4.11,11.69
selecsls42b,224,1024.0,6344.62,161.386,2.98,4.62,32.46
efficientnet_b0_g16_evos,224,1024.0,6342.4,161.442,1.01,7.42,8.11
edgenext_xx_small,288,1024.0,6334.97,161.631,0.33,4.21,1.33
efficientnet_lite1,240,1024.0,6268.15,163.355,0.62,10.14,5.42
pvt_v2_b0,224,1024.0,6254.52,163.711,0.53,7.01,3.67
visformer_tiny,224,1024.0,6218.29,164.665,1.27,5.72,10.32
convnext_pico,224,1024.0,6208.02,164.938,1.37,6.1,9.05
fbnetv3_b,256,1024.0,6192.25,165.357,0.55,9.1,8.6
efficientnet_es_pruned,224,1024.0,6175.39,165.809,1.81,8.73,5.44
efficientnet_es,224,1024.0,6170.12,165.95,1.81,8.73,5.44
rexnet_100,224,1024.0,6170.05,165.953,0.41,7.44,4.8
ghostnetv2_100,224,1024.0,6155.62,166.342,0.18,4.55,6.16
seresnet34,224,1024.0,6069.09,168.714,3.67,3.74,21.96
convnext_pico_ols,224,1024.0,6043.01,169.442,1.43,6.5,9.06
seresnet18,288,1024.0,5998.94,170.686,3.01,4.11,11.78
dla46x_c,224,1024.0,5992.19,170.877,0.54,5.66,1.07
dla34,224,1024.0,5954.72,171.952,3.07,5.02,15.74
repghostnet_200,224,1024.0,5934.75,172.524,0.54,7.96,9.8
resnet26,224,1024.0,5916.33,173.07,2.36,7.35,16.0
levit_384,224,1024.0,5897.4,173.625,2.36,6.26,39.13
resnet34d,224,1024.0,5884.13,174.017,3.91,4.54,21.82
cs3darknet_focus_m,288,1024.0,5878.89,174.173,2.51,6.19,9.3
legacy_seresnet34,224,1024.0,5873.4,174.335,3.67,3.74,21.96
repvit_m2,224,1024.0,5866.53,174.53,1.36,9.43,8.8
vit_base_patch32_224,224,1024.0,5866.04,174.553,4.37,4.19,88.22
vit_base_patch32_clip_224,224,1024.0,5864.79,174.59,4.37,4.19,88.22
repvit_m1_0,224,1024.0,5862.26,174.66,1.13,8.69,7.3
tf_efficientnet_es,224,1024.0,5831.76,175.58,1.81,8.73,5.44
rexnetr_130,224,1024.0,5827.09,175.72,0.68,9.81,7.61
resnetrs50,160,1024.0,5819.33,175.954,2.29,6.2,35.69
dla60x_c,224,1024.0,5709.85,179.326,0.59,6.01,1.32
vit_small_patch32_384,384,1024.0,5700.23,179.631,3.26,6.07,22.92
levit_conv_384,224,1024.0,5694.64,179.807,2.36,6.26,39.13
tiny_vit_5m_224,224,1024.0,5681.84,180.212,1.18,9.32,12.08
efficientnet_b1,224,1024.0,5671.54,180.54,0.59,9.36,7.79
cs3darknet_m,288,1024.0,5670.5,180.573,2.63,6.69,9.31
resnetblur18,224,1024.0,5631.98,181.808,2.34,3.39,11.69
tf_efficientnet_lite1,240,1024.0,5588.09,183.236,0.62,10.14,5.42
repvit_m1_1,224,1024.0,5584.25,183.355,1.36,9.43,8.8
mixnet_s,224,1024.0,5566.85,183.931,0.25,6.25,4.13
convnext_atto,288,1024.0,5556.64,184.274,0.91,6.3,3.7
darknet17,256,1024.0,5525.94,185.298,3.26,7.18,14.3
pit_s_224,224,1024.0,5520.06,185.491,2.42,6.18,23.46
resnet18d,288,1024.0,5497.35,186.262,3.41,5.43,11.71
selecsls60,224,1024.0,5496.69,186.283,3.59,5.52,30.67
pit_s_distilled_224,224,1024.0,5494.69,186.349,2.45,6.22,24.04
xcit_tiny_12_p16_224,224,1024.0,5472.11,187.12,1.24,6.29,6.72
selecsls60b,224,1024.0,5466.97,187.296,3.63,5.52,32.77
skresnet18,224,1024.0,5432.07,188.499,1.82,3.24,11.96
convnext_atto_ols,288,1024.0,5378.78,190.367,0.96,6.8,3.7
resmlp_12_224,224,1024.0,5371.14,190.637,3.01,5.5,15.35
regnetz_005,288,1024.0,5353.96,191.249,0.86,9.68,7.12
mobilenetv2_120d,224,1024.0,5347.39,191.484,0.69,11.97,5.83
convnextv2_atto,224,1024.0,5293.77,193.425,0.55,3.81,3.71
repvgg_b0,224,1024.0,5265.8,194.451,3.41,6.15,15.82
mixer_b32_224,224,1024.0,5245.72,195.191,3.24,6.29,60.29
vit_tiny_r_s16_p8_384,384,1024.0,5235.72,195.568,1.25,5.39,6.36
nf_regnet_b1,256,1024.0,5226.46,195.915,0.82,7.27,10.22
nf_regnet_b2,240,1024.0,5223.53,196.02,0.97,7.23,14.31
vit_base_patch32_clip_quickgelu_224,224,1024.0,5220.87,196.124,4.37,4.19,87.85
resnetaa34d,224,1024.0,5205.31,196.711,4.43,5.07,21.82
resnet26d,224,1024.0,5169.81,198.062,2.6,8.15,16.01
tf_mixnet_s,224,1024.0,5128.65,199.652,0.25,6.25,4.13
rexnetr_150,224,1024.0,5105.32,200.564,0.89,11.13,9.78
gmixer_12_224,224,1024.0,5083.79,201.414,2.67,7.26,12.7
fbnetv3_d,256,1024.0,5047.63,202.856,0.68,11.1,10.31
edgenext_x_small,256,1024.0,5018.94,204.014,0.54,5.93,2.34
mixer_s16_224,224,1024.0,5009.58,204.393,3.79,5.97,18.53
regnetz_b16,224,1024.0,5008.24,204.437,1.45,9.95,9.72
gmlp_ti16_224,224,1024.0,4999.44,204.811,1.34,7.55,5.87
darknet21,256,1024.0,4956.17,206.601,3.93,7.47,20.86
eva02_tiny_patch14_224,224,1024.0,4940.45,207.258,1.4,6.17,5.5
ghostnetv2_130,224,1024.0,4896.55,209.116,0.28,5.9,8.96
convnext_femto,288,1024.0,4844.52,211.362,1.3,7.56,5.22
nf_resnet26,224,1024.0,4822.21,212.339,2.41,7.35,16.0
efficientnet_lite2,260,1024.0,4817.66,212.541,0.89,12.9,6.09
tf_efficientnetv2_b2,260,1024.0,4797.27,213.444,1.72,9.84,10.1
efficientnet_cc_b0_8e,224,1024.0,4749.51,215.591,0.42,9.42,24.01
sedarknet21,256,1024.0,4747.46,215.684,3.93,7.47,20.95
efficientnet_cc_b0_4e,224,1024.0,4720.11,216.933,0.41,9.42,13.31
efficientnet_b2_pruned,260,1024.0,4716.64,217.093,0.73,9.13,8.31
convnext_femto_ols,288,1024.0,4709.5,217.422,1.35,8.06,5.23
resnext26ts,256,1024.0,4668.94,219.311,2.43,10.52,10.3
tiny_vit_11m_224,224,1024.0,4649.32,220.237,1.9,10.73,20.35
ecaresnet50d_pruned,224,1024.0,4636.78,220.832,2.53,6.43,19.94
deit_small_patch16_224,224,1024.0,4620.93,221.59,4.25,8.25,22.05
efficientformer_l1,224,1024.0,4616.64,221.795,1.3,5.53,12.29
vit_small_patch16_224,224,1024.0,4614.32,221.907,4.25,8.25,22.05
dpn48b,224,1024.0,4588.67,223.146,1.69,8.92,9.13
deit_small_distilled_patch16_224,224,1024.0,4587.3,223.214,4.27,8.29,22.44
vit_base_patch32_clip_256,256,1024.0,4547.51,225.168,5.68,5.44,87.86
convnextv2_femto,224,1024.0,4545.73,225.256,0.79,4.57,5.23
mobilevitv2_075,256,1024.0,4537.95,225.638,1.05,12.06,2.87
eca_resnext26ts,256,1024.0,4521.18,226.479,2.43,10.52,10.3
seresnext26ts,256,1024.0,4517.43,226.666,2.43,10.52,10.39
efficientnetv2_rw_t,224,1024.0,4511.98,226.94,1.93,9.94,13.65
legacy_seresnext26_32x4d,224,1024.0,4489.21,228.092,2.49,9.39,16.79
gernet_l,256,1024.0,4474.96,228.817,4.57,8.0,31.08
gcresnext26ts,256,1024.0,4472.11,228.964,2.43,10.53,10.48
rexnet_130,224,1024.0,4453.51,229.92,0.68,9.71,7.56
tf_efficientnet_b1,240,1024.0,4442.45,230.492,0.71,10.88,7.79
tf_efficientnet_cc_b0_8e,224,1024.0,4391.83,233.15,0.42,9.42,24.01
convnext_nano,224,1024.0,4389.78,233.258,2.46,8.37,15.59
gc_efficientnetv2_rw_t,224,1024.0,4373.41,234.132,1.94,9.97,13.68
tf_efficientnet_cc_b0_4e,224,1024.0,4373.37,234.134,0.41,9.42,13.31
tf_efficientnetv2_b3,240,1024.0,4372.06,234.204,1.93,9.95,14.36
tf_efficientnet_lite2,260,1024.0,4324.79,236.764,0.89,12.9,6.09
efficientnet_b1,256,1024.0,4298.75,238.198,0.77,12.22,7.79
deit3_small_patch16_224,224,1024.0,4270.38,239.779,4.25,8.25,22.06
cs3darknet_focus_l,256,1024.0,4230.07,242.066,4.66,8.03,21.15
nf_regnet_b1,288,1024.0,4135.98,247.568,1.02,9.2,10.22
convnext_nano_ols,224,1024.0,4118.16,248.644,2.65,9.38,15.65
nf_seresnet26,224,1024.0,4112.79,248.966,2.41,7.36,17.4
nf_ecaresnet26,224,1024.0,4107.39,249.292,2.41,7.36,16.0
efficientnet_b2,256,1024.0,4105.27,249.424,0.89,12.81,9.11
cs3darknet_l,256,1024.0,4101.41,249.66,4.86,8.55,21.16
nf_regnet_b2,272,1024.0,4097.18,249.913,1.22,9.27,14.31
ecaresnext50t_32x4d,224,1024.0,4074.12,251.332,2.7,10.09,15.41
ecaresnext26t_32x4d,224,1024.0,4072.14,251.454,2.7,10.09,15.41
seresnext26t_32x4d,224,1024.0,4061.05,252.141,2.7,10.09,16.81
repvgg_a2,224,1024.0,4049.32,252.867,5.7,6.26,28.21
poolformer_s12,224,1024.0,4047.55,252.981,1.82,5.53,11.92
seresnext26d_32x4d,224,1024.0,4037.54,253.609,2.73,10.19,16.81
regnetx_016,224,1024.0,4025.84,254.342,1.62,7.93,9.19
resnet26t,256,1024.0,4021.85,254.598,3.35,10.52,16.01
flexivit_small,240,1024.0,4011.8,255.236,4.88,9.46,22.06
edgenext_x_small,288,1024.0,3990.87,256.573,0.68,7.5,2.34
rexnet_150,224,1024.0,3983.48,257.051,0.9,11.21,9.73
vit_relpos_small_patch16_rpn_224,224,1024.0,3975.32,257.575,4.24,9.38,21.97
repvit_m3,224,1024.0,3966.18,258.164,1.89,13.94,10.68
vit_relpos_small_patch16_224,224,1024.0,3948.05,259.358,4.24,9.38,21.98
vit_srelpos_small_patch16_224,224,1024.0,3937.22,260.07,4.23,8.49,21.97
mobileone_s1,224,1024.0,3931.71,260.434,0.86,9.67,4.83
resnetv2_50,224,1024.0,3890.29,263.208,4.11,11.11,25.55
eca_botnext26ts_256,256,1024.0,3883.93,263.639,2.46,11.6,10.59
cs3sedarknet_l,256,1024.0,3835.91,266.94,4.86,8.56,21.91
ghostnetv2_160,224,1024.0,3826.79,267.576,0.42,7.23,12.39
resnet34,288,1024.0,3820.15,268.041,6.07,6.18,21.8
edgenext_small,256,1024.0,3794.31,269.865,1.26,9.07,5.59
dpn68,224,1024.0,3788.79,270.258,2.35,10.47,12.61
ese_vovnet19b_dw,288,1024.0,3782.88,270.682,2.22,13.63,6.54
fbnetv3_g,240,1024.0,3779.41,270.931,1.28,14.87,16.62
convnext_pico,288,1024.0,3777.8,271.046,2.27,10.08,9.05
ecaresnetlight,224,1024.0,3759.77,272.346,4.11,8.42,30.16
eca_halonext26ts,256,1024.0,3745.07,273.414,2.44,11.46,10.76
dpn68b,224,1024.0,3719.51,275.293,2.35,10.47,12.61
mixnet_m,224,1024.0,3687.37,277.689,0.36,8.19,5.01
resnet50,224,1024.0,3687.18,277.708,4.11,11.11,25.56
efficientnet_em,240,1024.0,3685.78,277.814,3.04,14.34,6.9
convnext_pico_ols,288,1024.0,3673.49,278.743,2.37,10.74,9.06
resnet32ts,256,1024.0,3641.96,281.156,4.63,11.58,17.96
bat_resnext26ts,256,1024.0,3638.35,281.435,2.53,12.51,10.73
efficientnet_b3_pruned,300,1024.0,3633.29,281.827,1.04,11.86,9.86
botnet26t_256,256,1024.0,3632.31,281.904,3.32,11.98,12.49
hrnet_w18_small_v2,224,1024.0,3631.33,281.979,2.62,9.65,15.6
ecaresnet101d_pruned,224,1024.0,3611.37,283.538,3.48,7.69,24.88
ecaresnet26t,256,1024.0,3599.02,284.511,3.35,10.53,16.01
regnetv_040,224,1024.0,3598.04,284.583,4.0,12.29,20.64
seresnet34,288,1024.0,3583.61,285.735,6.07,6.18,21.96
resnetv2_50t,224,1024.0,3573.26,286.561,4.32,11.82,25.57
pvt_v2_b1,224,1024.0,3571.19,286.726,2.04,14.01,14.01
regnety_016,224,1024.0,3567.37,287.031,1.63,8.04,11.2
resnext26ts,288,1024.0,3565.74,287.167,3.07,13.31,10.3
regnety_040,224,1024.0,3565.62,287.173,4.0,12.29,20.65
resnet33ts,256,1024.0,3563.66,287.335,4.76,11.66,19.68
resnetv2_50d,224,1024.0,3553.44,288.159,4.35,11.92,25.57
tf_efficientnet_em,240,1024.0,3544.42,288.894,3.04,14.34,6.9
halonet26t,256,1024.0,3541.55,289.129,3.19,11.69,12.48
dla60,224,1024.0,3527.55,290.275,4.26,10.16,22.04
tf_mixnet_m,224,1024.0,3524.0,290.567,0.36,8.19,5.01
resnet50c,224,1024.0,3521.04,290.812,4.35,11.92,25.58
edgenext_small_rw,256,1024.0,3501.76,292.411,1.58,9.51,7.83
resnet34d,288,1024.0,3491.3,293.29,6.47,7.51,21.82
convnextv2_pico,224,1024.0,3480.58,294.194,1.37,6.1,9.07
vit_small_resnet26d_224,224,1024.0,3476.26,294.557,5.04,10.65,63.61
convit_tiny,224,1024.0,3460.49,295.901,1.26,7.94,5.71
tresnet_m,224,1024.0,3457.69,296.14,5.75,7.31,31.39
resnet26,288,1024.0,3457.48,296.158,3.9,12.15,16.0
seresnext26ts,288,1024.0,3455.43,296.333,3.07,13.32,10.39
vit_relpos_base_patch32_plus_rpn_256,256,1024.0,3447.98,296.974,7.59,6.63,119.42
seresnet33ts,256,1024.0,3444.98,297.233,4.76,11.66,19.78
eca_resnext26ts,288,1024.0,3443.01,297.404,3.07,13.32,10.3
eca_resnet33ts,256,1024.0,3442.23,297.471,4.76,11.66,19.68
tf_efficientnet_b2,260,1024.0,3440.99,297.578,1.02,13.83,9.11
gcresnet33ts,256,1024.0,3424.64,298.998,4.76,11.68,19.88
gcresnext26ts,288,1024.0,3414.23,299.91,3.07,13.33,10.48
resnet50t,224,1024.0,3401.57,301.026,4.32,11.82,25.57
vovnet39a,224,1024.0,3395.56,301.56,7.09,6.73,22.6
resnet50d,224,1024.0,3380.59,302.894,4.35,11.92,25.58
efficientvit_b2,224,1024.0,3359.89,304.76,1.6,14.62,24.33
resnest14d,224,1024.0,3357.89,304.943,2.76,7.33,10.61
vit_base_patch32_plus_256,256,1024.0,3354.04,305.293,7.7,6.35,119.48
efficientnet_b0_gn,224,1024.0,3353.74,305.319,0.42,6.75,5.29
cs3darknet_focus_l,288,1024.0,3340.22,306.556,5.9,10.16,21.15
selecsls84,224,1024.0,3335.07,307.029,5.9,7.57,50.95
vit_tiny_patch16_384,384,1024.0,3332.37,307.277,3.16,12.08,5.79
legacy_seresnet50,224,1024.0,3325.14,307.946,3.88,10.6,28.09
coatnet_nano_cc_224,224,1024.0,3301.24,310.176,2.13,13.1,13.76
fastvit_t8,256,1024.0,3298.88,310.398,0.7,8.63,4.03
resnetblur18,288,1024.0,3292.39,311.01,3.87,5.6,11.69
repvit_m1_5,224,1024.0,3281.4,312.05,2.31,15.7,14.64
ese_vovnet39b,224,1024.0,3276.58,312.51,7.09,6.74,24.57
levit_512,224,1024.0,3274.29,312.728,5.64,10.22,95.17
haloregnetz_b,224,1024.0,3272.82,312.869,1.97,11.94,11.68
mobilevit_xs,256,1024.0,3272.76,312.87,0.93,13.62,2.32
coat_lite_tiny,224,1024.0,3257.39,314.352,1.6,11.65,5.72
coatnext_nano_rw_224,224,1024.0,3256.31,314.455,2.36,10.68,14.7
eca_vovnet39b,224,1024.0,3252.14,314.859,7.09,6.74,22.6
efficientnet_b2,288,1024.0,3249.31,315.132,1.12,16.2,9.11
resnetaa50,224,1024.0,3245.58,315.495,5.15,11.64,25.56
coatnet_nano_rw_224,224,1024.0,3238.25,316.209,2.29,13.29,15.14
cs3darknet_l,288,1024.0,3236.81,316.35,6.16,10.83,21.16
convnextv2_atto,288,1024.0,3226.1,317.401,0.91,6.3,3.71
mobileone_s2,224,1024.0,3211.19,318.869,1.34,11.55,7.88
seresnet50,224,1024.0,3200.07,319.981,4.11,11.13,28.09
nf_regnet_b3,288,1024.0,3185.16,321.477,1.67,11.84,18.59
crossvit_small_240,240,1024.0,3184.9,321.506,5.09,11.34,26.86
res2net50_48w_2s,224,1024.0,3168.87,323.132,4.18,11.72,25.29
resnetaa34d,288,1024.0,3155.87,324.463,7.33,8.38,21.82
vit_small_r26_s32_224,224,1024.0,3124.44,327.727,3.54,9.44,36.43
dla60x,224,1024.0,3106.99,329.567,3.54,13.8,17.35
efficientnet_b0_g8_gn,224,1024.0,3104.31,329.853,0.66,6.75,6.56
resnext50_32x4d,224,1024.0,3099.2,330.397,4.26,14.4,25.03
levit_conv_512,224,1024.0,3078.02,332.67,5.64,10.22,95.17
skresnet34,224,1024.0,3073.03,333.21,3.67,5.13,22.28
coat_lite_mini,224,1024.0,3058.66,334.777,2.0,12.25,11.01
resnet26d,288,1024.0,3053.73,335.317,4.29,13.48,16.01
mobileone_s0,224,1024.0,3053.01,335.391,1.09,15.48,5.29
levit_512d,224,1024.0,3045.04,336.274,5.85,11.3,92.5
cs3sedarknet_l,288,1024.0,3026.08,338.38,6.16,10.83,21.91
resnetaa50d,224,1024.0,3022.22,338.813,5.39,12.44,25.58
convnext_tiny,224,1024.0,3015.62,339.555,4.47,13.44,28.59
eca_nfnet_l0,224,1024.0,3011.21,340.052,4.35,10.47,24.14
xcit_nano_12_p16_384,384,1024.0,3011.18,340.055,1.64,12.14,3.05
nfnet_l0,224,1024.0,3000.78,341.23,4.36,10.47,35.07
resnetrs50,224,1024.0,2989.89,342.477,4.48,12.14,35.69
efficientnet_cc_b1_8e,240,1024.0,2988.69,342.615,0.75,15.44,39.72
regnetz_b16,288,1024.0,2987.05,342.79,2.39,16.43,9.72
seresnet50t,224,1024.0,2984.21,343.128,4.32,11.83,28.1
ecaresnet50d,224,1024.0,2975.54,344.128,4.35,11.93,25.58
regnetz_c16,256,1024.0,2971.35,344.607,2.51,16.57,13.46
densenet121,224,1024.0,2967.84,345.021,2.87,6.9,7.98
crossvit_15_240,240,1024.0,2967.06,345.11,5.17,12.01,27.53
resnet50s,224,1024.0,2958.0,346.169,5.47,13.52,25.68
rexnetr_200,224,1024.0,2955.32,346.483,1.59,15.11,16.52
mixnet_l,224,1024.0,2926.26,349.918,0.58,10.84,7.33
xcit_tiny_24_p16_224,224,1024.0,2925.33,350.035,2.34,11.82,12.12
levit_conv_512d,224,1024.0,2899.99,353.091,5.85,11.3,92.5
gcresnext50ts,256,1024.0,2897.54,353.393,3.75,15.46,15.67
lambda_resnet26rpt_256,256,1024.0,2887.51,354.621,3.16,11.87,10.99
resnext50d_32x4d,224,1024.0,2876.86,355.933,4.5,15.2,25.05
resnet32ts,288,1024.0,2868.64,356.953,5.86,14.65,17.96
crossvit_15_dagger_240,240,1024.0,2848.99,359.413,5.5,12.68,28.21
tiny_vit_21m_224,224,1024.0,2842.09,360.287,4.08,15.96,33.22
vit_base_resnet26d_224,224,1024.0,2837.87,360.821,6.93,12.34,101.4
tf_efficientnet_cc_b1_8e,240,1024.0,2835.77,361.09,0.75,15.44,39.72
cspresnet50,256,1024.0,2834.55,361.245,4.54,11.5,21.62
mobilevitv2_100,256,1024.0,2833.62,361.358,1.84,16.08,4.9
resnet33ts,288,1024.0,2829.43,361.9,6.02,14.75,19.68
vovnet57a,224,1024.0,2821.83,362.874,8.95,7.52,36.64
deit3_medium_patch16_224,224,1024.0,2805.09,365.038,7.53,10.99,38.85
inception_next_tiny,224,1024.0,2798.9,365.847,4.19,11.98,28.06
tf_mixnet_l,224,1024.0,2798.14,365.947,0.58,10.84,7.33
res2next50,224,1024.0,2797.04,366.091,4.2,13.71,24.67
dla60_res2next,224,1024.0,2795.54,366.285,3.49,13.17,17.03
coatnet_pico_rw_224,224,1024.0,2793.27,366.584,1.96,12.91,10.85
convnext_tiny_hnf,224,1024.0,2770.64,369.577,4.47,13.44,28.59
gcresnet50t,256,1024.0,2767.9,369.943,5.42,14.67,25.9
convnextv2_femto,288,1024.0,2762.62,370.652,1.3,7.56,5.23
tf_efficientnetv2_b3,300,1024.0,2757.15,371.387,3.04,15.74,14.36
legacy_seresnext50_32x4d,224,1024.0,2750.41,372.297,4.26,14.42,27.56
ecaresnet50d_pruned,288,1024.0,2749.78,372.383,4.19,10.61,19.94
res2net50_26w_4s,224,1024.0,2749.69,372.394,4.28,12.61,25.7
seresnext50_32x4d,224,1024.0,2749.17,372.464,4.26,14.42,27.56
vgg11_bn,224,1024.0,2746.28,372.857,7.62,7.44,132.87
resmlp_24_224,224,1024.0,2745.97,372.9,5.96,10.91,30.02
resnetv2_50x1_bit,224,1024.0,2742.41,373.383,4.23,11.11,25.55
eca_resnet33ts,288,1024.0,2737.24,374.089,6.02,14.76,19.68
efficientnetv2_rw_t,288,1024.0,2736.91,374.133,3.19,16.42,13.65
seresnet33ts,288,1024.0,2734.83,374.417,6.02,14.76,19.78
nfnet_f0,192,1024.0,2731.03,374.934,7.21,10.16,71.49
res2net50_14w_8s,224,1024.0,2724.75,375.804,4.21,13.28,25.06
visformer_small,224,1024.0,2720.95,376.328,4.88,11.43,40.22
ese_vovnet57b,224,1024.0,2711.8,377.598,8.95,7.52,38.61
gcresnet33ts,288,1024.0,2705.39,378.493,6.02,14.78,19.88
cspresnet50d,256,1024.0,2702.61,378.881,4.86,12.55,21.64
twins_svt_small,224,1024.0,2696.15,379.788,2.82,10.7,24.06
efficientvit_l1,224,1024.0,2692.51,380.303,5.27,15.85,52.65
resnetblur50,224,1024.0,2689.65,380.707,5.16,12.02,25.56
seresnetaa50d,224,1024.0,2682.26,381.757,5.4,12.46,28.11
fbnetv3_g,288,1024.0,2673.23,383.046,1.77,21.09,16.62
cspresnet50w,256,1024.0,2671.97,383.228,5.04,12.19,28.12
dla60_res2net,224,1024.0,2669.84,383.53,4.15,12.34,20.85
convnext_nano,288,1024.0,2669.05,383.645,4.06,13.84,15.59
gc_efficientnetv2_rw_t,288,1024.0,2659.37,385.042,3.2,16.45,13.68
gcvit_xxtiny,224,1024.0,2658.4,385.182,2.14,15.36,12.0
poolformerv2_s12,224,1024.0,2624.04,390.223,1.83,5.53,11.89
vit_relpos_medium_patch16_rpn_224,224,1024.0,2618.88,390.989,7.5,12.13,38.73
mobileone_s3,224,1024.0,2616.83,391.296,1.94,13.85,10.17
davit_tiny,224,1024.0,2612.7,391.92,4.47,17.08,28.36
vit_relpos_medium_patch16_224,224,1024.0,2603.89,393.246,7.5,12.13,38.75
resnet51q,256,1024.0,2602.52,393.454,6.38,16.55,35.7
gmixer_24_224,224,1024.0,2594.59,394.657,5.28,14.45,24.72
maxvit_pico_rw_256,256,768.0,2593.58,296.105,1.68,18.77,7.46
vit_srelpos_medium_patch16_224,224,1024.0,2591.17,395.176,7.49,11.32,38.74
vit_relpos_medium_patch16_cls_224,224,1024.0,2587.16,395.789,7.55,13.3,38.76
maxvit_rmlp_pico_rw_256,256,768.0,2587.02,296.857,1.69,21.32,7.52
nf_regnet_b3,320,1024.0,2582.41,396.514,2.05,14.61,18.59
res2net50d,224,1024.0,2577.65,397.25,4.52,13.41,25.72
cs3darknet_focus_x,256,1024.0,2569.33,398.536,8.03,10.69,35.02
densenetblur121d,224,1024.0,2559.52,400.063,3.11,7.9,8.0
inception_v3,299,1024.0,2546.29,402.143,5.73,8.97,23.83
coatnet_0_rw_224,224,1024.0,2545.57,402.256,4.23,15.1,27.44
repvgg_b1g4,224,1024.0,2545.06,402.332,8.15,10.64,39.97
regnetx_032,224,1024.0,2534.07,404.077,3.2,11.37,15.3
twins_pcpvt_small,224,1024.0,2533.92,404.104,3.68,15.51,24.11
resnetblur50d,224,1024.0,2528.9,404.909,5.4,12.82,25.58
rexnet_200,224,1024.0,2519.88,406.358,1.56,14.91,16.37
resnetrs101,192,1024.0,2505.12,408.751,6.04,12.7,63.62
resnet26t,320,1024.0,2502.87,409.119,5.24,16.44,16.01
nf_ecaresnet50,224,1024.0,2502.03,409.253,4.21,11.13,25.56
convnext_nano_ols,288,1024.0,2497.73,409.961,4.38,15.5,15.65
convnextv2_nano,224,1024.0,2497.72,409.963,2.46,8.37,15.62
nf_seresnet50,224,1024.0,2494.79,410.425,4.21,11.13,28.09
regnety_032,224,1024.0,2483.68,412.275,3.2,11.26,19.44
vit_medium_patch16_gap_240,240,1024.0,2477.36,413.332,8.6,12.57,44.4
cs3darknet_x,256,1024.0,2475.51,413.641,8.38,11.35,35.05
densenet169,224,1024.0,2463.83,415.603,3.4,7.3,14.15
xcit_small_12_p16_224,224,1024.0,2460.07,416.237,4.82,12.57,26.25
cspresnext50,256,1024.0,2452.36,417.546,4.05,15.86,20.57
mobilevit_s,256,1024.0,2447.35,418.395,1.86,17.03,5.58
darknet53,256,1024.0,2439.82,419.693,9.31,12.39,41.61
darknetaa53,256,1024.0,2432.07,421.03,7.97,12.39,36.02
edgenext_small,320,1024.0,2429.25,421.516,1.97,14.16,5.59
seresnext26t_32x4d,288,1024.0,2412.74,424.404,4.46,16.68,16.81
sehalonet33ts,256,1024.0,2403.77,425.986,3.55,14.7,13.69
seresnext26d_32x4d,288,1024.0,2391.16,428.231,4.51,16.85,16.81
resnet61q,256,1024.0,2368.17,432.39,7.8,17.01,36.85
fastvit_t12,256,1024.0,2356.34,434.562,1.42,12.42,7.55
vit_base_r26_s32_224,224,1024.0,2354.84,434.838,6.76,11.54,101.38
focalnet_tiny_srf,224,1024.0,2353.35,435.113,4.42,16.32,28.43
resnetv2_101,224,1024.0,2342.24,437.176,7.83,16.23,44.54
cs3sedarknet_x,256,1024.0,2329.01,439.66,8.38,11.35,35.4
nf_resnet50,256,1024.0,2318.52,441.645,5.46,14.52,25.56
xcit_nano_12_p8_224,224,1024.0,2310.67,443.15,2.16,15.71,3.05
resnest26d,224,1024.0,2309.28,443.418,3.64,9.97,17.07
coatnet_rmlp_nano_rw_224,224,1024.0,2308.34,443.598,2.51,18.21,15.15
resnetv2_50,288,1024.0,2302.9,444.644,6.79,18.37,25.55
ecaresnet50t,256,1024.0,2299.59,445.285,5.64,15.45,25.57
gmlp_s16_224,224,1024.0,2291.16,446.925,4.42,15.1,19.42
efficientnet_lite3,300,1024.0,2290.17,447.117,1.65,21.85,8.2
dm_nfnet_f0,192,1024.0,2271.28,450.836,7.21,10.16,71.49
resnet101,224,1024.0,2263.99,452.287,7.83,16.23,44.55
ecaresnet26t,320,1024.0,2258.47,453.393,5.24,16.44,16.01
edgenext_base,256,1024.0,2256.96,453.695,3.85,15.58,18.51
efficientnetv2_s,288,1024.0,2251.36,454.825,4.75,20.13,21.46
skresnet50,224,1024.0,2250.82,454.933,4.11,12.5,25.8
dla102,224,1024.0,2248.24,455.455,7.19,14.18,33.27
edgenext_small_rw,320,1024.0,2240.98,456.929,2.46,14.85,7.83
ecaresnetlight,288,1024.0,2235.21,458.11,6.79,13.91,30.16
dpn68b,288,1024.0,2234.13,458.331,3.89,17.3,12.61
gcresnext50ts,288,1024.0,2232.45,458.676,4.75,19.57,15.67
fastvit_s12,256,1024.0,2229.72,459.239,1.82,13.67,9.47
fastvit_sa12,256,1024.0,2225.03,460.206,1.96,13.83,11.58
focalnet_tiny_lrf,224,1024.0,2222.33,460.766,4.49,17.76,28.65
resnetv2_101d,224,1024.0,2216.51,461.976,8.07,17.04,44.56
resnet101c,224,1024.0,2202.12,464.995,8.08,17.04,44.57
vit_base_resnet50d_224,224,1024.0,2199.36,465.578,8.68,16.1,110.97
regnetv_040,288,1024.0,2190.89,467.375,6.6,20.3,20.64
vit_medium_patch16_gap_256,256,1024.0,2190.03,467.563,9.78,14.29,38.86
resnet50,288,1024.0,2185.5,468.532,6.8,18.37,25.56
gcresnet50t,288,1024.0,2180.99,469.5,6.86,18.57,25.9
regnety_040,288,1024.0,2169.28,472.031,6.61,20.3,20.65
vgg13,224,1024.0,2159.6,474.15,11.31,12.25,133.05
eva02_small_patch14_224,224,1024.0,2151.59,475.915,5.53,12.34,21.62
vit_medium_patch16_reg4_gap_256,256,1024.0,2149.02,476.485,9.93,14.51,38.87
efficientnetv2_rw_s,288,1024.0,2146.83,476.971,4.91,21.41,23.94
ecaresnet101d_pruned,288,1024.0,2141.83,478.084,5.75,12.71,24.88
mobilevitv2_125,256,1024.0,2139.71,478.555,2.86,20.1,7.48
vit_medium_patch16_reg4_256,256,1024.0,2136.17,479.352,9.97,14.56,38.87
skresnet50d,224,1024.0,2134.1,479.815,4.36,13.31,25.82
pvt_v2_b2,224,1024.0,2119.72,483.066,3.9,24.96,25.36
hrnet_w18_ssld,224,1024.0,2114.47,484.27,4.32,16.31,21.3
convnextv2_pico,288,1024.0,2113.62,484.464,2.27,10.08,9.07
eva02_tiny_patch14_336,336,1024.0,2113.11,484.582,3.14,13.85,5.76
efficientvit_l2,224,1024.0,2109.14,485.494,6.97,19.58,63.71
hrnet_w18,224,1024.0,2100.77,487.428,4.32,16.31,21.3
regnetx_040,224,1024.0,2099.85,487.636,3.99,12.2,22.12
tf_efficientnet_lite3,300,1024.0,2090.5,489.823,1.65,21.85,8.2
wide_resnet50_2,224,1024.0,2081.66,491.904,11.43,14.4,68.88
resnet51q,288,1024.0,2069.71,494.744,8.07,20.94,35.7
poolformer_s24,224,1024.0,2067.46,495.278,3.41,10.68,21.39
sebotnet33ts_256,256,512.0,2066.45,247.758,3.89,17.46,13.7
efficientformer_l3,224,1024.0,2064.62,495.963,3.93,12.01,31.41
resnest50d_1s4x24d,224,1024.0,2057.55,497.667,4.43,13.57,25.68
gcvit_xtiny,224,1024.0,2053.45,498.662,2.93,20.26,19.98
cspdarknet53,256,1024.0,2048.51,499.863,6.57,16.81,27.64
crossvit_18_240,240,1024.0,2029.53,504.539,8.21,16.14,43.27
mixnet_xl,224,1024.0,2029.05,504.653,0.93,14.57,11.9
vit_base_patch32_384,384,1024.0,2028.15,504.881,12.67,12.14,88.3
efficientnet_b3,288,1024.0,2027.72,504.989,1.63,21.49,12.23
vit_base_patch32_clip_384,384,1024.0,2026.31,505.34,12.67,12.14,88.3
resnet50t,288,1024.0,2024.16,505.879,7.14,19.53,25.57
dla102x,224,1024.0,2023.35,506.08,5.89,19.42,26.31
legacy_seresnet101,224,1024.0,2012.58,508.788,7.61,15.74,49.33
resnet50d,288,1024.0,2012.14,508.9,7.19,19.7,25.58
cs3edgenet_x,256,1024.0,2002.36,511.384,11.53,12.92,47.82
resnetaa101d,224,1024.0,1994.67,513.346,9.12,17.56,44.57
repvgg_b1,224,1024.0,1994.42,513.418,13.16,10.64,57.42
res2net50_26w_6s,224,1024.0,1979.48,517.295,6.33,15.28,37.05
regnetz_d32,256,1024.0,1978.14,517.642,5.98,23.74,27.58
cs3sedarknet_xdw,256,1024.0,1970.5,519.653,5.97,17.18,21.6
resnetaa50,288,1024.0,1968.61,520.152,8.52,19.24,25.56
seresnet101,224,1024.0,1966.15,520.803,7.84,16.27,49.33
resnet101s,224,1024.0,1964.56,521.226,9.19,18.64,44.67
cs3darknet_x,288,1024.0,1958.87,522.739,10.6,14.36,35.05
crossvit_18_dagger_240,240,1024.0,1955.55,523.625,8.65,16.91,44.27
swin_tiny_patch4_window7_224,224,1024.0,1951.67,524.668,4.51,17.06,28.29
tresnet_v2_l,224,1024.0,1947.69,525.738,8.85,16.34,46.17
ese_vovnet39b,288,1024.0,1941.03,527.543,11.71,11.13,24.57
regnetz_d8,256,1024.0,1940.13,527.785,3.97,23.74,23.37
tf_efficientnetv2_s,300,1024.0,1939.51,527.958,5.35,22.73,21.46
regnetz_c16,320,1024.0,1933.29,529.65,3.92,25.88,13.46
coatnet_bn_0_rw_224,224,1024.0,1926.49,531.525,4.48,18.41,27.44
darknet53,288,1024.0,1924.44,532.092,11.78,15.68,41.61
resnext101_32x4d,224,1024.0,1923.83,532.261,8.01,21.23,44.18
coatnet_rmlp_0_rw_224,224,1024.0,1920.22,533.259,4.52,21.26,27.45
xcit_tiny_12_p16_384,384,1024.0,1917.57,533.997,3.64,18.25,6.72
darknetaa53,288,1024.0,1915.93,534.454,10.08,15.68,36.02
mobileone_s4,224,1024.0,1915.84,534.474,3.04,17.74,14.95
maxxvit_rmlp_nano_rw_256,256,768.0,1913.61,401.326,4.17,21.53,16.78
nest_tiny,224,1024.0,1909.31,536.303,5.24,14.75,17.06
regnetz_040,256,1024.0,1906.99,536.946,4.06,24.19,27.12
nf_regnet_b4,320,1024.0,1906.99,536.957,3.29,19.88,30.21
seresnet50,288,1024.0,1902.22,538.306,6.8,18.39,28.09
pvt_v2_b2_li,224,1024.0,1897.86,539.539,3.77,25.04,22.55
regnetz_040_h,256,1024.0,1896.27,539.981,4.12,24.29,28.94
densenet201,224,1024.0,1895.14,540.319,4.34,7.85,20.01
halonet50ts,256,1024.0,1887.53,542.495,5.3,19.2,22.73
nest_tiny_jx,224,1024.0,1885.06,543.199,5.24,14.75,17.06
vgg13_bn,224,1024.0,1884.94,543.241,11.33,12.25,133.05
regnetx_080,224,1024.0,1883.47,543.661,8.02,14.06,39.57
vit_large_patch32_224,224,1024.0,1882.39,543.977,15.27,11.11,305.51
ecaresnet101d,224,1024.0,1880.92,544.404,8.08,17.07,44.57
resnet61q,288,1024.0,1874.14,546.373,9.87,21.52,36.85
nf_resnet101,224,1024.0,1864.42,549.218,8.01,16.23,44.55
cs3se_edgenet_x,256,1024.0,1859.86,550.568,11.53,12.94,50.72
repvit_m2_3,224,1024.0,1852.95,552.61,4.57,26.21,23.69
resmlp_36_224,224,1024.0,1843.66,555.406,8.91,16.33,44.69
cs3sedarknet_x,288,1024.0,1843.16,555.556,10.6,14.37,35.4
resnext50_32x4d,288,1024.0,1841.23,556.139,7.04,23.81,25.03
convnext_small,224,1024.0,1838.66,556.915,8.71,21.56,50.22
convnext_tiny,288,1024.0,1835.18,557.972,7.39,22.21,28.59
resnetv2_50d_gn,224,1024.0,1829.29,559.767,4.38,11.92,25.57
resnetaa50d,288,1024.0,1827.2,560.408,8.92,20.57,25.58
pit_b_224,224,1024.0,1823.77,561.458,10.56,16.6,73.76
eca_nfnet_l0,288,1024.0,1822.69,561.796,7.12,17.29,24.14
nfnet_l0,288,1024.0,1817.7,563.332,7.13,17.29,35.07
sequencer2d_s,224,1024.0,1816.41,563.738,4.96,11.31,27.65
pit_b_distilled_224,224,1024.0,1810.4,565.6,10.63,16.67,74.79
nf_resnet50,288,1024.0,1794.38,570.655,6.88,18.37,25.56
twins_pcpvt_base,224,1024.0,1790.37,571.935,6.46,21.35,43.83
rexnetr_200,288,768.0,1782.92,430.745,2.62,24.96,16.52
seresnet50t,288,1024.0,1780.59,575.079,7.14,19.55,28.1
cait_xxs24_224,224,1024.0,1779.24,575.513,2.53,20.29,11.96
swin_s3_tiny_224,224,1024.0,1777.31,576.139,4.64,19.13,28.33
resnet50_gn,224,1024.0,1776.88,576.279,4.14,11.11,25.56
ecaresnet50d,288,1024.0,1775.84,576.616,7.19,19.72,25.58
resnetblur101d,224,1024.0,1765.86,579.878,9.12,17.94,44.57
densenet121,288,1024.0,1761.12,581.437,4.74,11.41,7.98
coat_lite_small,224,1024.0,1760.12,581.767,3.96,22.09,19.84
mixer_b16_224,224,1024.0,1758.48,582.299,12.62,14.53,59.88
mobilevitv2_150,256,768.0,1748.31,439.266,4.09,24.11,10.59
efficientvit_b3,224,1024.0,1742.56,587.628,3.99,26.9,48.65
rexnetr_300,224,1024.0,1736.82,589.571,3.39,22.16,34.81
vgg16,224,1024.0,1730.88,591.595,15.47,13.56,138.36
maxxvitv2_nano_rw_256,256,768.0,1724.32,445.384,6.12,19.66,23.7
res2net101_26w_4s,224,1024.0,1723.01,594.296,8.1,18.45,45.21
resnext50d_32x4d,288,1024.0,1717.01,596.374,7.44,25.13,25.05
maxvit_nano_rw_256,256,768.0,1709.05,449.363,4.26,25.76,15.45
legacy_seresnext101_32x4d,224,1024.0,1707.02,599.865,8.02,21.26,48.96
seresnext101_32x4d,224,1024.0,1706.74,599.963,8.02,21.26,48.96
maxvit_rmlp_nano_rw_256,256,768.0,1705.93,450.183,4.28,27.4,15.5
resnetv2_50d_frn,224,1024.0,1703.71,601.028,4.33,11.92,25.59
mobilevitv2_175,256,512.0,1701.95,300.817,5.54,28.13,14.25
tf_efficientnet_b3,300,1024.0,1694.25,604.385,1.87,23.83,12.23
convnext_tiny_hnf,288,1024.0,1681.52,608.96,7.39,22.21,28.59
ese_vovnet39b_evos,224,1024.0,1671.22,612.716,7.07,6.74,24.58
res2net50_26w_8s,224,1024.0,1656.9,618.009,8.37,17.95,48.4
resnet101d,256,1024.0,1654.59,618.871,10.55,22.25,44.57
tresnet_l,224,1024.0,1652.13,619.794,10.9,11.9,55.99
res2net101d,224,1024.0,1652.09,619.808,8.35,19.25,45.23
mixer_l32_224,224,1024.0,1651.22,620.129,11.27,19.86,206.94
regnetz_b16_evos,224,1024.0,1648.87,621.016,1.43,9.95,9.74
botnet50ts_256,256,512.0,1645.51,311.14,5.54,22.23,22.74
efficientnet_b3,320,1024.0,1641.76,623.708,2.01,26.52,12.23
seresnext50_32x4d,288,1024.0,1638.34,625.012,7.04,23.82,27.56
coatnet_0_224,224,512.0,1634.58,313.22,4.43,21.14,25.04
swinv2_cr_tiny_224,224,1024.0,1629.27,628.491,4.66,28.45,28.33
inception_next_small,224,1024.0,1628.58,628.755,8.36,19.27,49.37
resnetv2_152,224,1024.0,1628.46,628.801,11.55,22.56,60.19
regnetx_064,224,1024.0,1628.2,628.898,6.49,16.37,26.21
hrnet_w32,224,1024.0,1627.55,629.157,8.97,22.02,41.23
convnextv2_tiny,224,1024.0,1627.26,629.266,4.47,13.44,28.64
seresnetaa50d,288,1024.0,1622.33,631.178,8.92,20.59,28.11
davit_small,224,1024.0,1614.32,634.313,8.69,27.54,49.75
regnety_040_sgn,224,1024.0,1612.57,634.996,4.03,12.29,20.65
legacy_xception,299,768.0,1604.43,478.663,8.4,35.83,22.86
swinv2_cr_tiny_ns_224,224,1024.0,1600.49,639.793,4.66,28.45,28.33
resnetblur50,288,1024.0,1598.7,640.511,8.52,19.87,25.56
efficientnet_el,300,1024.0,1595.26,641.889,8.0,30.7,10.59
efficientnet_el_pruned,300,1024.0,1592.53,642.988,8.0,30.7,10.59
resnet152,224,1024.0,1589.58,644.183,11.56,22.56,60.19
deit_base_patch16_224,224,1024.0,1581.19,647.603,16.87,16.49,86.57
cs3edgenet_x,288,1024.0,1577.26,649.216,14.59,16.36,47.82
deit_base_distilled_patch16_224,224,1024.0,1575.74,649.842,16.95,16.58,87.34
vit_base_patch16_224,224,1024.0,1574.94,650.173,16.87,16.49,86.57
vit_base_patch16_224_miil,224,1024.0,1574.63,650.301,16.88,16.5,94.4
vit_base_patch16_clip_224,224,1024.0,1574.46,650.371,16.87,16.49,86.57
vit_base_patch16_siglip_224,224,1024.0,1571.54,651.577,17.02,16.71,92.88
resnetv2_152d,224,1024.0,1564.52,654.501,11.8,23.36,60.2
vit_base_patch16_gap_224,224,1024.0,1563.13,655.085,16.78,16.41,86.57
halo2botnet50ts_256,256,1024.0,1562.09,655.52,5.02,21.78,22.64
resnet152c,224,1024.0,1558.11,657.195,11.8,23.36,60.21
ese_vovnet99b,224,1024.0,1554.99,658.512,16.51,11.27,63.2
vit_small_resnet50d_s16_224,224,1024.0,1551.97,659.792,13.0,21.12,57.53
nf_seresnet101,224,1024.0,1549.92,660.662,8.02,16.27,49.33
nf_ecaresnet101,224,1024.0,1549.88,660.683,8.01,16.27,44.55
tf_efficientnet_el,300,1024.0,1543.58,663.384,8.0,30.7,10.59
coatnet_rmlp_1_rw_224,224,1024.0,1542.97,663.643,7.44,28.08,41.69
nfnet_f0,256,1024.0,1541.8,664.144,12.62,18.05,71.49
vgg16_bn,224,1024.0,1533.25,667.85,15.5,13.56,138.37
resnest50d,224,1024.0,1530.42,669.084,5.4,14.36,27.48
caformer_s18,224,1024.0,1528.28,670.023,3.9,15.18,26.34
pvt_v2_b3,224,1024.0,1527.57,670.328,6.71,33.8,45.24
densenetblur121d,288,1024.0,1521.38,673.062,5.14,13.06,8.0
maxvit_tiny_rw_224,224,768.0,1520.98,504.928,4.93,28.54,29.06
mvitv2_tiny,224,1024.0,1518.09,674.509,4.7,21.16,24.17
vit_base_patch16_rpn_224,224,1024.0,1516.7,675.134,16.78,16.41,86.54
convnextv2_nano,288,768.0,1514.74,507.006,4.06,13.84,15.62
regnety_032,288,1024.0,1514.59,676.077,5.29,18.61,19.44
rexnet_300,224,1024.0,1508.74,678.701,3.44,22.4,34.71
resnetblur50d,288,1024.0,1506.45,679.732,8.92,21.19,25.58
deit3_base_patch16_224,224,1024.0,1497.14,683.959,16.87,16.49,86.59
convit_small,224,1024.0,1494.54,685.148,5.76,17.87,27.78
vit_base_patch32_clip_448,448,1024.0,1493.83,685.476,17.21,16.49,88.34
dla169,224,1024.0,1487.25,688.504,11.6,20.2,53.39
skresnext50_32x4d,224,1024.0,1470.99,696.12,4.5,17.18,27.48
xcit_tiny_12_p8_224,224,1024.0,1465.13,698.903,4.81,23.6,6.71
vit_small_patch16_36x1_224,224,1024.0,1460.65,701.044,12.63,24.59,64.67
ecaresnet50t,320,1024.0,1451.46,705.484,8.82,24.13,25.57
beitv2_base_patch16_224,224,1024.0,1448.02,707.161,16.87,16.49,86.53
vgg19,224,1024.0,1441.93,710.149,19.63,14.86,143.67
beit_base_patch16_224,224,1024.0,1440.48,710.862,16.87,16.49,86.53
hrnet_w30,224,1024.0,1436.17,712.996,8.15,21.21,37.71
edgenext_base,320,1024.0,1435.98,713.087,6.01,24.32,18.51
resnet152s,224,1024.0,1434.4,713.876,12.92,24.96,60.32
convformer_s18,224,1024.0,1427.19,717.481,3.96,15.82,26.77
resnetv2_50d_evos,224,1024.0,1426.57,717.793,4.33,11.92,25.59
focalnet_small_srf,224,1024.0,1426.35,717.904,8.62,26.26,49.89
sequencer2d_m,224,1024.0,1413.9,724.228,6.55,14.26,38.31
vit_relpos_base_patch16_rpn_224,224,1024.0,1408.36,727.069,16.8,17.63,86.41
volo_d1_224,224,1024.0,1407.83,727.348,6.94,24.43,26.63
regnety_080,224,1024.0,1407.5,727.512,8.0,17.97,39.18
vit_small_patch16_18x2_224,224,1024.0,1407.09,727.729,12.63,24.59,64.67
gcvit_tiny,224,1024.0,1405.32,728.65,4.79,29.82,28.22
dpn92,224,1024.0,1404.08,729.292,6.54,18.21,37.67
vit_relpos_base_patch16_224,224,1024.0,1402.98,729.864,16.8,17.63,86.43
resnetv2_101,288,1024.0,1402.28,730.227,12.94,26.83,44.54
regnetx_160,224,1024.0,1400.84,730.974,15.99,25.52,54.28
dla102x2,224,1024.0,1395.12,733.975,9.34,29.91,41.28
legacy_seresnet152,224,1024.0,1394.86,734.109,11.33,22.08,66.82
vit_relpos_base_patch16_clsgap_224,224,1024.0,1394.83,734.131,16.88,17.72,86.43
vit_relpos_base_patch16_cls_224,224,1024.0,1392.12,735.556,16.88,17.72,86.43
vit_small_patch16_384,384,1024.0,1390.73,736.291,12.45,24.15,22.2
poolformer_s36,224,1024.0,1388.46,737.493,5.0,15.82,30.86
vit_base_patch16_clip_quickgelu_224,224,1024.0,1388.13,737.672,16.87,16.49,86.19
densenet161,224,1024.0,1384.23,739.75,7.79,11.06,28.68
flexivit_base,240,1024.0,1380.45,741.777,19.35,18.92,86.59
efficientformerv2_s0,224,1024.0,1377.72,743.244,0.41,5.3,3.6
seresnet152,224,1024.0,1371.27,746.737,11.57,22.61,66.82
poolformerv2_s24,224,1024.0,1356.43,754.905,3.42,10.68,21.34
resnet101,288,1024.0,1354.29,756.102,12.95,26.83,44.55
focalnet_small_lrf,224,1024.0,1339.63,764.378,8.74,28.61,50.34
inception_v4,299,1024.0,1338.22,765.183,12.28,15.09,42.68
repvgg_b2,224,1024.0,1336.97,765.895,20.45,12.9,89.02
nf_regnet_b4,384,1024.0,1327.28,771.488,4.7,28.61,30.21
repvgg_b2g4,224,1024.0,1323.55,773.658,12.63,12.9,61.76
eca_nfnet_l1,256,1024.0,1319.97,775.763,9.62,22.04,41.41
fastvit_sa24,256,1024.0,1310.4,781.428,3.79,23.92,21.55
xcit_small_24_p16_224,224,1024.0,1307.21,783.335,9.1,23.63,47.67
twins_pcpvt_large,224,1024.0,1303.57,785.524,9.53,30.21,60.99
vit_base_patch16_xp_224,224,1024.0,1302.82,785.975,16.85,16.49,86.51
maxvit_tiny_tf_224,224,768.0,1301.05,590.28,5.42,31.21,30.92
deit3_small_patch16_384,384,1024.0,1298.34,788.686,12.45,24.15,22.21
coatnet_rmlp_1_rw2_224,224,1024.0,1296.36,789.892,7.71,32.74,41.72
coatnet_1_rw_224,224,1024.0,1295.8,790.234,7.63,27.22,41.72
regnety_080_tv,224,1024.0,1291.63,792.778,8.51,19.73,39.38
vgg19_bn,224,1024.0,1290.82,793.286,19.66,14.86,143.68
mixnet_xxl,224,768.0,1286.88,596.774,2.04,23.43,23.96
dm_nfnet_f0,256,1024.0,1286.75,795.79,12.62,18.05,71.49
efficientnet_b4,320,768.0,1280.17,599.91,3.13,34.76,19.34
hrnet_w18_ssld,288,1024.0,1279.49,800.308,7.14,26.96,21.3
maxxvit_rmlp_tiny_rw_256,256,768.0,1274.84,602.417,6.36,32.69,29.64
efficientformerv2_s1,224,1024.0,1271.59,805.28,0.67,7.66,6.19
convnext_base,224,1024.0,1268.86,807.011,15.38,28.75,88.59
mobilevitv2_200,256,512.0,1268.57,403.59,7.22,32.15,18.45
regnetz_d32,320,1024.0,1265.97,808.844,9.33,37.08,27.58
efficientnetv2_s,384,1024.0,1265.12,809.401,8.44,35.77,21.46
twins_svt_base,224,1024.0,1261.93,811.442,8.36,20.42,56.07
wide_resnet50_2,288,1024.0,1242.89,823.878,18.89,23.81,68.88
regnetz_d8,320,1024.0,1242.36,824.221,6.19,37.08,23.37
regnetz_040,320,512.0,1238.82,413.274,6.35,37.78,27.12
regnetz_040_h,320,512.0,1231.07,415.879,6.43,37.94,28.94
nest_small,224,1024.0,1230.37,832.252,9.41,22.88,38.35
tf_efficientnetv2_s,384,1024.0,1224.58,836.191,8.44,35.77,21.46
nest_small_jx,224,1024.0,1220.76,838.798,9.41,22.88,38.35
maxvit_tiny_rw_256,256,768.0,1213.37,632.937,6.44,37.27,29.07
maxvit_rmlp_tiny_rw_256,256,768.0,1210.44,634.468,6.47,39.84,29.15
vit_base_patch16_siglip_256,256,1024.0,1208.23,847.511,22.23,21.83,92.93
efficientnetv2_rw_s,384,1024.0,1208.22,847.514,8.72,38.03,23.94
resnetaa101d,288,1024.0,1207.75,847.844,15.07,29.03,44.57
swin_small_patch4_window7_224,224,1024.0,1206.81,848.507,8.77,27.47,49.61
dpn98,224,1024.0,1206.02,849.061,11.73,25.2,61.57
swinv2_tiny_window8_256,256,1024.0,1197.34,855.217,5.96,24.57,28.35
cs3se_edgenet_x,320,1024.0,1196.49,855.827,18.01,20.21,50.72
resnext101_64x4d,224,1024.0,1196.17,856.053,15.52,31.21,83.46
cait_xxs36_224,224,1024.0,1193.04,858.302,3.77,30.34,17.3
resnext101_32x8d,224,1024.0,1188.06,861.896,16.48,31.21,88.79
seresnet101,288,1024.0,1178.9,868.597,12.95,26.87,49.33
resnet152d,256,1024.0,1177.58,869.569,15.41,30.51,60.21
wide_resnet101_2,224,1024.0,1172.43,873.387,22.8,21.23,126.89
crossvit_base_240,240,1024.0,1171.25,874.269,20.13,22.67,105.03
resnet200,224,1024.0,1159.72,882.961,15.07,32.19,64.67
inception_resnet_v2,299,1024.0,1156.1,885.722,13.18,25.06,55.84
rexnetr_300,288,512.0,1153.3,443.932,5.59,36.61,34.81
resnetrs101,288,1024.0,1142.76,896.066,13.56,28.53,63.62
davit_base,224,1024.0,1141.57,896.996,15.36,36.72,87.95
tresnet_xl,224,1024.0,1136.08,901.333,15.2,15.34,78.44
coat_tiny,224,1024.0,1135.01,902.184,4.35,27.2,5.5
tnt_s_patch16_224,224,1024.0,1134.91,902.262,5.24,24.37,23.76
mvitv2_small,224,1024.0,1131.08,905.308,7.0,28.08,34.87
ecaresnet101d,288,1024.0,1130.54,905.749,13.35,28.19,44.57
vit_base_patch16_reg8_gap_256,256,1024.0,1124.62,910.517,22.6,22.09,86.62
maxvit_tiny_pm_256,256,768.0,1121.86,684.565,6.31,40.82,30.09
hrnet_w40,224,1024.0,1119.9,914.356,12.75,25.29,57.56
convnext_small,288,1024.0,1119.4,914.761,14.39,35.65,50.22
nfnet_f1,224,1024.0,1117.42,916.384,17.87,22.94,132.63
efficientnet_lite4,380,768.0,1117.23,687.403,4.04,45.66,13.01
pvt_v2_b4,224,1024.0,1107.81,924.328,9.83,48.14,62.56
seresnext101_64x4d,224,1024.0,1107.71,924.416,15.53,31.25,88.23
seresnext101_32x8d,224,1024.0,1101.53,929.602,16.48,31.25,93.57
resnetv2_50d_gn,288,1024.0,1100.54,930.437,7.24,19.7,25.57
coatnet_1_224,224,512.0,1098.68,466.003,8.28,31.3,42.23
repvgg_b3g4,224,1024.0,1097.61,932.923,17.89,15.1,83.83
samvit_base_patch16_224,224,1024.0,1097.38,933.118,16.83,17.2,86.46
eva02_base_patch16_clip_224,224,1024.0,1094.75,935.361,16.9,18.91,86.26
mvitv2_small_cls,224,1024.0,1086.56,942.407,7.04,28.17,34.87
vit_large_r50_s32_224,224,1024.0,1082.13,946.268,19.45,22.22,328.99
inception_next_base,224,1024.0,1079.66,948.435,14.85,25.69,86.67
resnet50_gn,288,1024.0,1076.3,951.4,6.85,18.37,25.56
pvt_v2_b5,224,1024.0,1073.94,953.474,11.39,44.23,81.96
seresnext101d_32x8d,224,1024.0,1071.41,955.74,16.72,32.05,93.59
efficientnetv2_m,320,1024.0,1070.2,956.818,11.01,39.97,54.14
vit_small_r26_s32_384,384,1024.0,1066.07,960.526,10.24,27.67,36.47
resnetblur101d,288,1024.0,1059.66,966.334,15.07,29.65,44.57
resnet101d,320,1024.0,1045.1,979.801,16.48,34.77,44.57
regnetz_e8,256,1024.0,1042.94,981.82,9.91,40.94,57.7
tf_efficientnet_lite4,380,768.0,1038.99,739.169,4.04,45.66,13.01
xception41p,299,768.0,1034.81,742.157,9.25,39.86,26.91
repvgg_b3,224,1024.0,1031.23,992.974,29.16,15.1,123.09
xcit_tiny_24_p16_384,384,1024.0,1026.84,997.227,6.87,34.29,12.12
resnetrs152,256,1024.0,1024.28,999.711,15.59,30.83,86.62
seresnet152d,256,1024.0,1022.13,1001.814,15.42,30.56,66.84
swinv2_cr_small_224,224,1024.0,1005.65,1018.232,9.07,50.27,49.7
vit_base_patch16_plus_240,240,1024.0,1004.91,1018.982,26.31,22.07,117.56
regnetz_b16_evos,288,768.0,997.65,769.796,2.36,16.43,9.74
focalnet_base_srf,224,1024.0,995.12,1029.007,15.28,35.01,88.15
swinv2_cr_small_ns_224,224,1024.0,993.65,1030.528,9.08,50.27,49.7
convnextv2_small,224,1024.0,992.07,1032.17,8.71,21.56,50.32
convnextv2_tiny,288,768.0,989.58,776.074,7.39,22.21,28.64
vit_small_patch8_224,224,1024.0,985.02,1039.56,16.76,32.86,21.67
regnety_040_sgn,288,1024.0,979.5,1045.407,6.67,20.3,20.65
regnetz_c16_evos,256,768.0,978.11,785.174,2.48,16.57,13.49
vit_base_r50_s16_224,224,1024.0,971.42,1054.108,20.94,27.88,97.89
hrnet_w44,224,1024.0,967.41,1058.48,14.94,26.92,67.06
efficientformer_l7,224,1024.0,966.26,1059.742,10.17,24.45,82.23
hrnet_w48_ssld,224,1024.0,963.59,1062.678,17.34,28.56,77.47
hrnet_w48,224,1024.0,962.72,1063.645,17.34,28.56,77.47
poolformer_m36,224,1024.0,959.97,1066.674,8.8,22.02,56.17
resnet152,288,1024.0,955.06,1072.17,19.11,37.28,60.19
cait_s24_224,224,1024.0,951.69,1075.97,9.35,40.58,46.92
tiny_vit_21m_384,384,512.0,946.04,541.193,11.94,46.84,21.23
focalnet_base_lrf,224,1024.0,946.02,1082.418,15.43,38.13,88.75
dm_nfnet_f1,224,1024.0,943.8,1084.958,17.87,22.94,132.63
efficientnet_b3_gn,288,512.0,943.58,542.602,1.74,23.35,11.73
efficientnetv2_rw_m,320,1024.0,934.42,1095.856,12.72,47.14,53.24
vit_relpos_base_patch16_plus_240,240,1024.0,933.99,1096.357,26.21,23.41,117.38
gmlp_b16_224,224,1024.0,931.13,1099.724,15.78,30.21,73.08
fastvit_sa36,256,1024.0,928.53,1102.809,5.62,34.02,31.53
xception41,299,768.0,927.7,827.842,9.28,39.86,26.97
eva02_small_patch14_336,336,1024.0,926.94,1104.696,12.41,27.7,22.13
maxvit_rmlp_small_rw_224,224,768.0,923.72,831.408,10.48,42.44,64.9
sequencer2d_l,224,1024.0,917.56,1115.991,9.74,22.12,54.3
poolformerv2_s36,224,1024.0,914.51,1119.704,5.01,15.82,30.79
xcit_medium_24_p16_224,224,1024.0,901.57,1135.786,16.13,31.71,84.4
coat_mini,224,1024.0,900.78,1136.787,6.82,33.68,10.34
coat_lite_medium,224,1024.0,898.48,1139.693,9.81,40.06,44.57
swin_s3_small_224,224,768.0,882.63,870.118,9.43,37.84,49.74
efficientnet_b3_g8_gn,288,512.0,882.63,580.072,2.59,23.35,14.25
dpn131,224,1024.0,878.67,1165.389,16.09,32.97,79.25
levit_384_s8,224,512.0,874.93,585.181,9.98,35.86,39.12
efficientnet_b4,384,512.0,874.47,585.489,4.51,50.04,19.34
vit_medium_patch16_gap_384,384,1024.0,873.17,1172.722,22.01,32.15,39.03
nest_base,224,1024.0,871.22,1175.339,16.71,30.51,67.72
nf_regnet_b5,384,1024.0,867.94,1179.793,7.95,42.9,49.74
resnet200d,256,1024.0,866.43,1181.848,20.0,43.09,64.69
maxvit_small_tf_224,224,512.0,864.97,591.915,11.39,46.31,68.93
nest_base_jx,224,1024.0,863.51,1185.835,16.71,30.51,67.72
xcit_small_12_p16_384,384,1024.0,860.6,1189.852,14.14,36.5,26.25
resnetv2_50d_evos,288,1024.0,857.98,1193.488,7.15,19.7,25.59
swin_base_patch4_window7_224,224,1024.0,857.23,1194.527,15.47,36.63,87.77
gcvit_small,224,1024.0,850.2,1204.416,8.57,41.61,51.09
crossvit_15_dagger_408,408,1024.0,849.94,1204.779,16.07,37.0,28.5
eca_nfnet_l1,320,1024.0,845.79,1210.693,14.92,34.42,41.41
tf_efficientnet_b4,380,512.0,836.31,612.204,4.49,49.49,19.34
regnety_080,288,1024.0,834.08,1227.682,13.22,29.69,39.18
levit_conv_384_s8,224,512.0,831.47,615.767,9.98,35.86,39.12
twins_svt_large,224,1024.0,829.67,1234.208,14.84,27.23,99.27
seresnet152,288,1024.0,826.68,1238.676,19.11,37.34,66.82
xception65p,299,768.0,826.46,929.251,13.91,52.48,39.82
eva02_base_patch14_224,224,1024.0,822.18,1245.459,22.0,24.67,85.76
caformer_s36,224,1024.0,811.28,1262.182,7.55,29.29,39.3
maxxvit_rmlp_small_rw_256,256,768.0,805.75,953.134,14.21,47.76,66.01
coatnet_2_rw_224,224,512.0,802.77,637.783,14.55,39.37,73.87
swinv2_base_window12_192,192,1024.0,801.77,1277.157,11.9,39.72,109.28
mvitv2_base,224,1024.0,789.29,1297.348,10.16,40.5,51.47
densenet264d,224,1024.0,784.72,1304.914,13.57,14.0,72.74
resnest50d_4s2x40d,224,1024.0,782.94,1307.879,4.4,17.94,30.42
swinv2_tiny_window16_256,256,512.0,779.51,656.811,6.68,39.02,28.35
volo_d2_224,224,1024.0,778.59,1315.191,14.34,41.34,58.68
dpn107,224,1024.0,773.9,1323.149,18.38,33.46,86.92
xcit_tiny_24_p8_224,224,1024.0,770.47,1329.042,9.21,45.38,12.11
convnext_base,288,1024.0,769.28,1331.103,25.43,47.53,88.59
coatnet_rmlp_2_rw_224,224,512.0,762.93,671.09,14.64,44.94,73.88
mvitv2_base_cls,224,1024.0,760.58,1346.32,10.23,40.65,65.44
convit_base,224,1024.0,757.3,1352.149,17.52,31.77,86.54
convformer_s36,224,1024.0,757.3,1352.161,7.67,30.5,40.01
coatnet_2_224,224,384.0,753.79,509.418,15.94,42.41,74.68
hrnet_w64,224,1024.0,748.82,1367.478,28.97,35.09,128.06
resnet152d,320,1024.0,747.67,1369.57,24.08,47.67,60.21
ecaresnet200d,256,1024.0,744.16,1376.037,20.0,43.15,64.69
seresnet200d,256,1024.0,743.64,1376.992,20.01,43.15,71.86
resnetrs200,256,1024.0,743.56,1377.137,20.18,43.42,93.21
swinv2_small_window8_256,256,1024.0,740.78,1382.313,11.58,40.14,49.73
xception65,299,768.0,738.05,1040.572,13.96,52.48,39.92
fastvit_ma36,256,1024.0,734.46,1394.207,7.85,40.39,44.07
swinv2_cr_small_ns_256,256,1024.0,733.6,1395.843,12.07,76.21,49.7
senet154,224,1024.0,731.81,1399.262,20.77,38.69,115.09
maxvit_rmlp_small_rw_256,256,768.0,731.54,1049.835,13.69,55.48,64.9
legacy_senet154,224,1024.0,730.99,1400.828,20.77,38.69,115.09
tf_efficientnetv2_m,384,1024.0,728.54,1405.529,15.85,57.52,54.14
xcit_nano_12_p8_384,384,1024.0,723.54,1415.249,6.34,46.06,3.05
poolformer_m48,224,1024.0,722.45,1417.374,11.59,29.17,73.47
tnt_b_patch16_224,224,1024.0,722.04,1418.187,14.09,39.01,65.41
efficientvit_l3,224,1024.0,720.55,1421.127,27.62,39.16,246.04
swinv2_cr_base_224,224,1024.0,719.69,1422.825,15.86,59.66,87.88
efficientnet_b3_g8_gn,320,512.0,718.69,712.395,3.2,28.83,14.25
resnest101e,256,1024.0,718.12,1425.925,13.38,28.66,48.28
swin_s3_base_224,224,1024.0,717.57,1427.034,13.69,48.26,71.13
resnext101_64x4d,288,1024.0,717.4,1427.37,25.66,51.59,83.46
swinv2_cr_base_ns_224,224,1024.0,713.5,1435.162,15.86,59.66,87.88
convnextv2_base,224,768.0,711.23,1079.807,15.38,28.75,88.72
resnet200,288,1024.0,697.53,1468.023,24.91,53.21,64.67
efficientnet_b3_gn,320,512.0,695.5,736.148,2.14,28.83,11.73
coat_small,224,1024.0,694.03,1475.431,12.61,44.25,21.69
convnext_large,224,1024.0,690.43,1483.117,34.4,43.13,197.77
regnetz_e8,320,1024.0,670.8,1526.503,15.46,63.94,57.7
efficientformerv2_s2,224,1024.0,670.26,1527.748,1.27,11.77,12.71
seresnext101_32x8d,288,1024.0,656.14,1560.626,27.24,51.63,93.57
resnetrs152,320,1024.0,655.8,1561.431,24.34,48.14,86.62
xcit_small_12_p8_224,224,1024.0,655.5,1562.148,18.69,47.19,26.21
maxxvitv2_rmlp_base_rw_224,224,768.0,651.85,1178.173,23.88,54.39,116.09
seresnet152d,320,1024.0,649.85,1575.74,24.09,47.72,66.84
vit_large_patch32_384,384,1024.0,647.57,1581.281,44.28,32.22,306.63
poolformerv2_m36,224,1024.0,646.73,1583.338,8.81,22.02,56.08
resnext101_32x16d,224,1024.0,641.29,1596.767,36.27,51.18,194.03
seresnext101d_32x8d,288,1024.0,639.61,1600.97,27.64,52.95,93.59
regnetz_d8_evos,256,1024.0,638.02,1604.938,4.5,24.92,23.46
davit_large,224,1024.0,634.07,1614.963,34.37,55.08,196.81
efficientnetv2_m,416,1024.0,633.12,1617.367,18.6,67.5,54.14
regnety_064,224,1024.0,632.1,1619.968,6.39,16.41,30.58
regnetv_064,224,1024.0,629.87,1625.704,6.39,16.41,30.58
regnetz_c16_evos,320,512.0,622.61,822.333,3.86,25.88,13.49
gcvit_base,224,1024.0,620.94,1649.111,14.87,55.48,90.32
nf_regnet_b5,456,512.0,602.97,849.111,11.7,61.95,49.74
seresnextaa101d_32x8d,288,1024.0,601.98,1701.035,28.51,56.44,93.59
xception71,299,768.0,600.76,1278.366,18.09,69.92,42.34
eca_nfnet_l2,320,1024.0,593.89,1724.216,20.95,47.43,56.72
nfnet_f2,256,1024.0,593.31,1725.904,33.76,41.85,193.78
crossvit_18_dagger_408,408,1024.0,585.92,1747.666,25.31,49.38,44.61
hrnet_w48_ssld,288,1024.0,585.32,1749.444,28.66,47.21,77.47
ecaresnet200d,288,1024.0,584.36,1752.321,25.31,54.59,64.69
seresnet200d,288,1024.0,583.25,1755.672,25.32,54.6,71.86
caformer_m36,224,1024.0,582.88,1756.773,12.75,40.61,56.2
levit_512_s8,224,256.0,582.77,439.271,21.82,52.28,74.05
maxvit_rmlp_base_rw_224,224,768.0,582.44,1318.589,22.63,79.3,116.14
seresnet269d,256,1024.0,581.62,1760.578,26.59,53.6,113.67
convmixer_768_32,224,1024.0,580.09,1765.235,19.55,25.95,21.11
resnetrs270,256,1024.0,565.62,1810.398,27.06,55.84,129.86
mixer_l16_224,224,1024.0,553.36,1850.484,44.6,41.69,208.2
levit_conv_512_s8,224,256.0,552.47,463.363,21.82,52.28,74.05
efficientnetv2_rw_m,416,1024.0,552.47,1853.491,21.49,79.62,53.24
resnet200d,320,1024.0,551.74,1855.93,31.25,67.33,64.69
nfnet_f1,320,1024.0,548.82,1865.795,35.97,46.77,132.63
convformer_m36,224,1024.0,548.78,1865.947,12.89,42.05,57.05
volo_d3_224,224,1024.0,541.9,1889.619,20.78,60.09,86.33
swinv2_base_window8_256,256,1024.0,530.42,1930.519,20.37,52.59,87.92
maxvit_base_tf_224,224,512.0,517.72,988.937,23.52,81.67,119.47
xcit_large_24_p16_224,224,1024.0,511.16,2003.26,35.86,47.26,189.1
convmixer_1024_20_ks9_p14,224,1024.0,510.74,2004.929,5.55,5.51,24.38
dm_nfnet_f2,256,1024.0,503.11,2035.325,33.76,41.85,193.78
swin_large_patch4_window7_224,224,768.0,494.53,1552.967,34.53,54.94,196.53
vit_base_patch16_18x2_224,224,1024.0,494.1,2072.443,50.37,49.17,256.73
deit_base_patch16_384,384,1024.0,493.77,2073.808,49.4,48.3,86.86
vit_base_patch16_384,384,1024.0,493.5,2074.946,49.4,48.3,86.86
deit_base_distilled_patch16_384,384,1024.0,493.31,2075.754,49.49,48.39,87.63
vit_base_patch16_clip_384,384,1024.0,492.52,2079.081,49.41,48.3,86.86
eva_large_patch14_196,196,1024.0,491.4,2083.813,59.66,43.77,304.14
vit_base_patch16_siglip_384,384,1024.0,490.82,2086.272,50.0,49.11,93.18
vit_large_patch16_224,224,1024.0,489.19,2093.231,59.7,43.77,304.33
halonet_h1,256,256.0,487.96,524.621,3.0,51.17,8.1
tiny_vit_21m_512,512,256.0,487.73,524.868,21.23,83.26,21.27
seresnextaa101d_32x8d,320,768.0,487.6,1575.053,35.19,69.67,93.59
swinv2_large_window12_192,192,768.0,487.6,1575.036,26.17,56.53,228.77
swinv2_small_window16_256,256,512.0,487.58,1050.071,12.82,66.29,49.73
poolformerv2_m48,224,1024.0,487.33,2101.208,11.59,29.17,73.35
resnetrs200,320,1024.0,476.69,2148.152,31.51,67.81,93.21
xcit_tiny_12_p8_384,384,1024.0,472.87,2165.479,14.12,69.12,6.71
vit_small_patch14_dinov2,518,1024.0,470.72,2175.374,29.46,57.34,22.06
deit3_base_patch16_384,384,1024.0,469.96,2178.883,49.4,48.3,86.88
vit_small_patch14_reg4_dinov2,518,1024.0,469.28,2182.048,29.55,57.51,22.06
deit3_large_patch16_224,224,1024.0,468.18,2187.162,59.7,43.77,304.37
tf_efficientnetv2_m,480,1024.0,466.8,2193.627,24.76,89.84,54.14
dm_nfnet_f1,320,1024.0,463.74,2208.099,35.97,46.77,132.63
xcit_small_24_p16_384,384,1024.0,458.11,2235.247,26.72,68.57,47.67
seresnet269d,288,1024.0,457.25,2239.451,33.65,67.81,113.67
beit_large_patch16_224,224,1024.0,453.95,2255.726,59.7,43.77,304.43
beitv2_large_patch16_224,224,1024.0,453.79,2256.515,59.7,43.77,304.43
regnetx_120,224,1024.0,452.56,2262.648,12.13,21.37,46.11
efficientnet_b5,448,512.0,444.06,1152.996,9.59,93.56,30.39
regnety_120,224,1024.0,444.03,2306.127,12.14,21.38,51.82
efficientformerv2_l,224,1024.0,441.81,2317.703,2.59,18.54,26.32
coatnet_3_rw_224,224,384.0,441.21,870.327,32.63,59.07,181.81
resnetv2_152x2_bit,224,1024.0,439.95,2327.532,46.95,45.11,236.34
convnext_xlarge,224,768.0,438.91,1749.766,60.98,57.5,350.2
coatnet_rmlp_3_rw_224,224,256.0,438.69,583.549,32.75,64.7,165.15
coatnet_3_224,224,256.0,431.52,593.24,35.72,63.61,166.97
convnextv2_base,288,512.0,430.66,1188.858,25.43,47.53,88.72
flexivit_large,240,1024.0,427.93,2392.897,68.48,50.22,304.36
convnextv2_large,224,512.0,424.61,1205.798,34.4,43.13,197.96
swinv2_cr_large_224,224,768.0,424.12,1810.813,35.1,78.42,196.68
swinv2_cr_tiny_384,384,256.0,420.98,608.099,15.34,161.01,28.33
caformer_b36,224,768.0,420.2,1827.698,22.5,54.14,98.75
maxvit_tiny_tf_384,384,256.0,419.78,609.84,16.0,94.22,30.98
convnext_large,288,768.0,417.93,1837.619,56.87,71.29,197.77
regnety_160,224,1024.0,417.09,2455.096,15.96,23.04,83.59
eca_nfnet_l2,384,1024.0,412.81,2480.539,30.05,68.28,56.72
maxxvitv2_rmlp_large_rw_224,224,768.0,411.22,1867.582,43.69,75.4,215.42
efficientnetv2_l,384,1024.0,409.83,2498.611,36.1,101.16,118.52
davit_huge,224,768.0,407.6,1884.205,60.93,73.44,348.92
tf_efficientnetv2_l,384,1024.0,405.08,2527.906,36.1,101.16,118.52
regnety_320,224,1024.0,403.27,2539.241,32.34,30.26,145.05
regnetz_d8_evos,320,768.0,403.13,1905.094,7.03,38.92,23.46
beit_base_patch16_384,384,1024.0,402.61,2543.386,49.4,48.3,86.74
convformer_b36,224,768.0,397.77,1930.749,22.69,56.06,99.88
tf_efficientnet_b5,456,384.0,394.74,972.77,10.46,98.86,30.39
eca_nfnet_l3,352,1024.0,378.23,2707.314,32.57,73.12,72.04
vit_large_patch16_siglip_256,256,1024.0,375.52,2726.866,78.12,57.42,315.96
ecaresnet269d,320,1024.0,372.48,2749.133,41.53,83.69,102.09
vit_large_r50_s32_384,384,1024.0,369.32,2772.633,56.4,64.88,329.09
maxvit_large_tf_224,224,384.0,359.98,1066.726,42.99,109.57,211.79
vit_large_patch14_224,224,1024.0,359.62,2847.449,77.83,57.11,304.2
vit_large_patch14_clip_224,224,1024.0,359.62,2847.409,77.83,57.11,304.2
swinv2_base_window16_256,256,384.0,359.2,1069.042,22.02,84.71,87.92
swinv2_base_window12to16_192to256,256,384.0,359.01,1069.609,22.02,84.71,87.92
nasnetalarge,331,384.0,356.97,1075.708,23.89,90.56,88.75
resnetrs350,288,1024.0,356.46,2872.642,43.67,87.09,163.96
vit_base_patch8_224,224,1024.0,351.76,2911.045,66.87,65.71,86.58
volo_d4_224,224,1024.0,343.2,2983.708,44.34,80.22,192.96
xcit_small_24_p8_224,224,1024.0,342.74,2987.714,35.81,90.77,47.63
volo_d1_384,384,512.0,340.3,1504.541,22.75,108.55,26.78
convnext_large_mlp,320,512.0,338.23,1513.736,70.21,88.02,200.13
repvgg_d2se,320,1024.0,335.87,3048.766,74.57,46.82,133.33
vit_large_patch14_clip_quickgelu_224,224,1024.0,324.37,3156.896,77.83,57.11,303.97
vit_base_r50_s16_384,384,1024.0,315.28,3247.919,61.29,81.77,98.95
nfnet_f2,352,1024.0,313.79,3263.314,63.22,79.06,193.78
xcit_medium_24_p16_384,384,1024.0,313.38,3267.626,47.39,91.63,84.4
vit_large_patch14_xp_224,224,1024.0,311.53,3287.018,77.77,57.11,304.06
ecaresnet269d,352,1024.0,307.84,3326.422,50.25,101.25,102.09
coat_lite_medium_384,384,512.0,301.48,1698.273,28.73,116.7,44.57
regnety_064,288,1024.0,298.91,3425.709,10.56,27.11,30.58
resnetrs270,352,1024.0,298.81,3426.892,51.13,105.48,129.86
regnetv_064,288,1024.0,298.12,3434.809,10.55,27.11,30.58
resnext101_32x32d,224,512.0,296.06,1729.362,87.29,91.12,468.53
nfnet_f3,320,1024.0,290.3,3527.352,68.77,83.93,254.92
efficientnetv2_xl,384,1024.0,290.02,3530.821,52.81,139.2,208.12
tf_efficientnetv2_xl,384,1024.0,287.47,3562.138,52.81,139.2,208.12
cait_xxs24_384,384,1024.0,284.02,3605.396,9.63,122.65,12.03
maxvit_small_tf_384,384,192.0,274.58,699.228,33.58,139.86,69.02
coatnet_4_224,224,256.0,274.31,933.246,60.81,98.85,275.43
convnext_xlarge,288,512.0,265.38,1929.279,100.8,95.05,350.2
dm_nfnet_f2,352,1024.0,265.36,3858.944,63.22,79.06,193.78
vit_base_patch16_siglip_512,512,512.0,263.16,1945.545,88.89,87.3,93.52
vit_so400m_patch14_siglip_224,224,1024.0,262.63,3898.968,106.18,70.45,427.68
efficientnetv2_l,480,512.0,261.08,1961.059,56.4,157.99,118.52
swinv2_cr_small_384,384,256.0,258.97,988.525,29.7,298.03,49.7
convnextv2_large,288,384.0,257.89,1488.981,56.87,71.29,197.96
tf_efficientnetv2_l,480,512.0,257.78,1986.206,56.4,157.99,118.52
eva02_large_patch14_224,224,1024.0,256.9,3985.935,77.9,65.52,303.27
eva02_large_patch14_clip_224,224,1024.0,253.93,4032.531,77.93,65.52,304.11
regnety_120,288,768.0,253.81,3025.924,20.06,35.34,51.82
xcit_tiny_24_p8_384,384,1024.0,248.2,4125.63,27.05,132.94,12.11
coatnet_rmlp_2_rw_384,384,192.0,247.61,775.41,43.04,132.57,73.88
dm_nfnet_f3,320,1024.0,247.07,4144.617,68.77,83.93,254.92
resnetrs420,320,1024.0,244.54,4187.355,64.2,126.56,191.89
mvitv2_large,224,512.0,243.6,2101.832,43.87,112.02,217.99
mvitv2_large_cls,224,512.0,241.75,2117.866,42.17,111.69,234.58
resmlp_big_24_224,224,1024.0,241.59,4238.519,100.23,87.31,129.14
regnety_160,288,768.0,237.71,3230.76,26.37,38.07,83.59
xcit_medium_24_p8_224,224,768.0,234.01,3281.941,63.52,121.22,84.32
eca_nfnet_l3,448,512.0,233.43,2193.322,52.55,118.4,72.04
volo_d5_224,224,1024.0,228.8,4475.542,72.4,118.11,295.46
swin_base_patch4_window12_384,384,256.0,227.46,1125.454,47.19,134.78,87.9
xcit_small_12_p8_384,384,384.0,223.23,1720.206,54.92,138.25,26.21
swinv2_large_window12to16_192to256,256,256.0,219.08,1168.537,47.81,121.53,196.74
maxxvitv2_rmlp_base_rw_384,384,384.0,217.17,1768.16,70.18,160.22,116.09
efficientnet_b6,528,256.0,205.22,1247.45,19.4,167.39,43.04
regnetx_320,224,768.0,200.5,3830.333,31.81,36.3,107.81
resnetrs350,384,1024.0,199.92,5122.143,77.59,154.74,163.96
cait_xs24_384,384,768.0,198.76,3863.971,19.28,183.98,26.67
maxvit_xlarge_tf_224,224,256.0,198.54,1289.412,96.49,164.37,506.99
tf_efficientnet_b6,528,192.0,198.54,967.028,19.4,167.39,43.04
focalnet_huge_fl3,224,512.0,191.39,2675.182,118.26,104.8,745.28
volo_d2_384,384,384.0,190.85,2012.066,46.17,184.51,58.87
cait_xxs36_384,384,1024.0,189.78,5395.721,14.35,183.7,17.37
eva02_base_patch14_448,448,512.0,189.58,2700.759,87.74,98.4,87.12
vit_huge_patch14_gap_224,224,1024.0,186.27,5497.294,161.36,94.7,630.76
swinv2_cr_base_384,384,256.0,185.05,1383.395,50.57,333.68,87.88
swinv2_cr_huge_224,224,384.0,182.04,2109.357,115.97,121.08,657.83
maxvit_rmlp_base_rw_384,384,384.0,179.65,2137.52,66.51,233.79,116.14
vit_huge_patch14_224,224,1024.0,179.6,5701.574,161.99,95.07,630.76
vit_huge_patch14_clip_224,224,1024.0,179.43,5706.842,161.99,95.07,632.05
xcit_large_24_p16_384,384,1024.0,177.48,5769.692,105.34,137.15,189.1
vit_base_patch14_dinov2,518,512.0,176.68,2897.828,117.11,114.68,86.58
vit_base_patch14_reg4_dinov2,518,512.0,175.98,2909.337,117.45,115.02,86.58
deit3_huge_patch14_224,224,1024.0,173.53,5900.889,161.99,95.07,632.13
nfnet_f3,416,768.0,171.77,4471.127,115.58,141.78,254.92
maxvit_tiny_tf_512,512,128.0,170.91,748.92,28.66,172.66,31.05
seresnextaa201d_32x8d,384,512.0,170.35,3005.583,101.11,199.72,149.39
maxvit_base_tf_384,384,192.0,166.63,1152.259,69.34,247.75,119.65
vit_huge_patch14_clip_quickgelu_224,224,1024.0,165.5,6187.275,161.99,95.07,632.08
efficientnetv2_xl,512,512.0,163.45,3132.529,93.85,247.32,208.12
nfnet_f4,384,768.0,163.26,4704.17,122.14,147.57,316.07
tf_efficientnetv2_xl,512,512.0,161.63,3167.699,93.85,247.32,208.12
vit_huge_patch14_xp_224,224,1024.0,159.72,6411.21,161.88,95.07,631.8
eva_large_patch14_336,336,768.0,155.72,4931.845,174.74,128.21,304.53
vit_large_patch14_clip_336,336,768.0,155.28,4945.947,174.74,128.21,304.53
vit_large_patch16_384,384,768.0,155.12,4950.906,174.85,128.21,304.72
vit_large_patch16_siglip_384,384,768.0,154.94,4956.619,175.76,129.18,316.28
convnext_xxlarge,256,384.0,153.59,2500.071,198.09,124.45,846.47
vit_giant_patch16_gap_224,224,1024.0,153.47,6672.363,198.14,103.64,1011.37
cait_s24_384,384,512.0,153.12,3343.821,32.17,245.3,47.06
davit_giant,224,384.0,152.05,2525.491,192.34,138.2,1406.47
deit3_large_patch16_384,384,1024.0,148.73,6884.872,174.85,128.21,304.76
coatnet_5_224,224,192.0,147.83,1298.762,142.72,143.69,687.47
dm_nfnet_f3,416,512.0,146.0,3506.787,115.58,141.78,254.92
resnetrs420,416,768.0,144.59,5311.727,108.45,213.79,191.89
vit_large_patch14_clip_quickgelu_336,336,768.0,141.12,5441.998,174.74,128.21,304.29
dm_nfnet_f4,384,768.0,139.13,5519.969,122.14,147.57,316.07
swin_large_patch4_window12_384,384,128.0,135.95,941.498,104.08,202.16,196.74
xcit_large_24_p8_224,224,512.0,131.73,3886.696,141.22,181.53,188.93
beit_large_patch16_384,384,768.0,129.79,5917.023,174.84,128.21,305.0
efficientnet_b7,600,192.0,128.05,1499.407,38.33,289.94,66.35
tf_efficientnet_b7,600,192.0,124.56,1541.433,38.33,289.94,66.35
focalnet_huge_fl4,224,512.0,123.26,4153.862,118.9,113.34,686.46
eva_giant_patch14_clip_224,224,1024.0,116.99,8753.07,259.74,135.89,1012.59
eva_giant_patch14_224,224,1024.0,116.91,8758.747,259.74,135.89,1012.56
nfnet_f5,416,768.0,116.91,6569.029,170.71,204.56,377.21
xcit_small_24_p8_384,384,384.0,116.73,3289.571,105.23,265.87,47.63
maxvit_large_tf_384,384,128.0,116.56,1098.144,126.61,332.3,212.03
vit_giant_patch14_224,224,1024.0,114.32,8957.604,259.74,135.89,1012.61
vit_giant_patch14_clip_224,224,1024.0,114.12,8973.257,259.74,135.89,1012.65
swinv2_cr_large_384,384,192.0,113.51,1691.47,108.96,404.96,196.68
eva02_large_patch14_clip_336,336,768.0,110.42,6955.361,174.97,147.1,304.43
mvitv2_huge_cls,224,384.0,105.54,3638.368,120.67,243.63,694.8
maxvit_small_tf_512,512,96.0,104.89,915.238,60.02,256.36,69.13
cait_s36_384,384,512.0,102.28,5005.663,47.99,367.39,68.37
dm_nfnet_f5,416,512.0,99.59,5141.209,170.71,204.56,377.21
swinv2_base_window12to24_192to384,384,96.0,96.5,994.841,55.25,280.36,87.92
focalnet_large_fl3,384,256.0,93.78,2729.925,105.06,168.04,239.13
nfnet_f4,512,512.0,91.69,5583.92,216.26,262.26,316.07
focalnet_large_fl4,384,256.0,90.64,2824.324,105.2,181.78,239.32
nfnet_f6,448,512.0,86.88,5893.345,229.7,273.62,438.36
efficientnet_b8,672,128.0,85.75,1492.768,63.48,442.89,87.41
tf_efficientnet_b8,672,128.0,83.71,1529.068,63.48,442.89,87.41
volo_d3_448,448,128.0,81.1,1578.235,96.33,446.83,86.63
vit_so400m_patch14_siglip_384,384,512.0,80.75,6340.618,302.34,200.62,428.23
xcit_medium_24_p8_384,384,256.0,80.25,3189.919,186.67,354.69,84.32
dm_nfnet_f4,512,384.0,78.23,4908.575,216.26,262.26,316.07
vit_huge_patch14_clip_336,336,512.0,75.44,6786.84,363.7,213.44,632.46
dm_nfnet_f6,448,512.0,74.17,6903.248,229.7,273.62,438.36
maxvit_base_tf_512,512,96.0,72.37,1326.47,123.93,456.26,119.88
nfnet_f5,544,384.0,68.39,5614.643,290.97,349.71,377.21
nfnet_f7,480,512.0,66.61,7686.561,300.08,355.86,499.5
vit_gigantic_patch14_224,224,512.0,66.24,7729.406,473.4,204.12,1844.44
vit_gigantic_patch14_clip_224,224,512.0,66.15,7739.524,473.41,204.12,1844.91
focalnet_xlarge_fl3,384,192.0,65.92,2912.463,185.61,223.99,408.79
maxvit_xlarge_tf_384,384,96.0,64.9,1479.208,283.86,498.45,475.32
focalnet_xlarge_fl4,384,192.0,63.63,3017.361,185.79,242.31,409.03
beit_large_patch16_512,512,256.0,61.48,4163.85,310.6,227.76,305.67
volo_d4_448,448,192.0,60.99,3147.895,197.13,527.35,193.41
regnety_640,384,192.0,60.97,3149.012,188.47,124.83,281.38
convnextv2_huge,384,96.0,60.92,1575.922,337.96,232.35,660.29
swinv2_large_window12to24_192to384,384,48.0,60.75,790.151,116.15,407.83,196.74
eva02_large_patch14_448,448,512.0,59.67,8581.221,310.69,261.32,305.08
dm_nfnet_f5,544,384.0,58.35,6580.773,290.97,349.71,377.21
vit_huge_patch14_clip_378,378,512.0,58.14,8806.389,460.13,270.04,632.68
convmixer_1536_20,224,1024.0,56.99,17967.01,48.68,33.03,51.63
vit_large_patch14_dinov2,518,384.0,56.83,6757.154,414.89,304.42,304.37
vit_large_patch14_reg4_dinov2,518,384.0,56.64,6779.944,416.1,305.31,304.37
maxvit_large_tf_512,512,64.0,54.68,1170.494,225.96,611.85,212.33
tf_efficientnet_l2,475,96.0,54.05,1776.14,172.11,609.89,480.31
vit_huge_patch14_clip_quickgelu_378,378,384.0,53.95,7117.573,460.13,270.04,632.68
vit_huge_patch16_gap_448,448,512.0,52.86,9685.108,494.35,290.02,631.67
nfnet_f6,576,384.0,52.55,7307.184,378.69,452.2,438.36
swinv2_cr_giant_224,224,192.0,52.45,3660.551,483.85,309.15,2598.76
eva_giant_patch14_336,336,512.0,49.65,10312.606,583.14,305.1,1013.01
swinv2_cr_huge_384,384,96.0,49.62,1934.539,352.04,583.18,657.94
xcit_large_24_p8_384,384,192.0,45.19,4249.177,415.0,531.74,188.93
dm_nfnet_f6,576,256.0,44.83,5710.109,378.69,452.2,438.36
volo_d5_448,448,192.0,42.49,4518.905,315.06,737.92,295.91
nfnet_f7,608,256.0,41.52,6165.283,480.39,570.85,499.5
cait_m36_384,384,256.0,33.1,7733.448,173.11,734.79,271.22
resnetv2_152x4_bit,480,96.0,32.12,2989.13,844.84,414.26,936.53
maxvit_xlarge_tf_512,512,48.0,30.41,1578.222,505.95,917.77,475.77
regnety_2560,384,128.0,30.25,4231.43,747.83,296.49,1282.6
volo_d5_512,512,128.0,29.54,4332.489,425.09,1105.37,296.09
samvit_base_patch16,1024,16.0,23.81,671.88,371.55,403.08,89.67
regnety_1280,384,128.0,22.93,5583.053,374.99,210.2,644.81
efficientnet_l2,800,48.0,19.03,2521.932,479.12,1707.39,480.31
vit_giant_patch14_dinov2,518,192.0,17.15,11193.542,1553.56,871.89,1136.48
vit_giant_patch14_reg4_dinov2,518,192.0,17.12,11212.072,1558.09,874.43,1136.48
swinv2_cr_giant_384,384,32.0,15.04,2127.877,1450.71,1394.86,2598.76
eva_giant_patch14_560,560,192.0,15.03,12771.913,1618.04,846.56,1014.45
cait_m48_448,448,128.0,13.96,9172.063,329.4,1708.21,356.46
samvit_large_patch16,1024,12.0,10.64,1127.934,1317.08,1055.58,308.28
samvit_huge_patch16,1024,8.0,6.61,1210.638,2741.59,1727.57,637.03