meg's picture
meg HF staff
Add files using upload-large-folder tool
abee7a4 verified
raw
history blame
20.1 kB
import math
import numbers
import random
import warnings
from typing import List, Sequence, Tuple, Union
import torch
import torchvision.transforms as transforms
import torchvision.transforms.functional as F
try:
from torchvision.transforms.functional import InterpolationMode
has_interpolation_mode = True
except ImportError:
has_interpolation_mode = False
from PIL import Image
import numpy as np
__all__ = [
"ToNumpy", "ToTensor", "str_to_interp_mode", "str_to_pil_interp", "interp_mode_to_str",
"RandomResizedCropAndInterpolation", "CenterCropOrPad", "center_crop_or_pad", "crop_or_pad",
"RandomCropOrPad", "RandomPad", "ResizeKeepRatio", "TrimBorder", "MaybeToTensor", "MaybePILToTensor"
]
class ToNumpy:
def __call__(self, pil_img):
np_img = np.array(pil_img, dtype=np.uint8)
if np_img.ndim < 3:
np_img = np.expand_dims(np_img, axis=-1)
np_img = np.rollaxis(np_img, 2) # HWC to CHW
return np_img
class ToTensor:
""" ToTensor with no rescaling of values"""
def __init__(self, dtype=torch.float32):
self.dtype = dtype
def __call__(self, pil_img):
return F.pil_to_tensor(pil_img).to(dtype=self.dtype)
class MaybeToTensor(transforms.ToTensor):
"""Convert a PIL Image or ndarray to tensor if it's not already one.
"""
def __init__(self) -> None:
super().__init__()
def __call__(self, pic) -> torch.Tensor:
"""
Args:
pic (PIL Image or numpy.ndarray): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
if isinstance(pic, torch.Tensor):
return pic
return F.to_tensor(pic)
def __repr__(self) -> str:
return f"{self.__class__.__name__}()"
class MaybePILToTensor:
"""Convert a PIL Image to a tensor of the same type - this does not scale values.
"""
def __init__(self) -> None:
super().__init__()
def __call__(self, pic):
"""
Note: A deep copy of the underlying array is performed.
Args:
pic (PIL Image): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
if isinstance(pic, torch.Tensor):
return pic
return F.pil_to_tensor(pic)
def __repr__(self) -> str:
return f"{self.__class__.__name__}()"
# Pillow is deprecating the top-level resampling attributes (e.g., Image.BILINEAR) in
# favor of the Image.Resampling enum. The top-level resampling attributes will be
# removed in Pillow 10.
if hasattr(Image, "Resampling"):
_pil_interpolation_to_str = {
Image.Resampling.NEAREST: 'nearest',
Image.Resampling.BILINEAR: 'bilinear',
Image.Resampling.BICUBIC: 'bicubic',
Image.Resampling.BOX: 'box',
Image.Resampling.HAMMING: 'hamming',
Image.Resampling.LANCZOS: 'lanczos',
}
else:
_pil_interpolation_to_str = {
Image.NEAREST: 'nearest',
Image.BILINEAR: 'bilinear',
Image.BICUBIC: 'bicubic',
Image.BOX: 'box',
Image.HAMMING: 'hamming',
Image.LANCZOS: 'lanczos',
}
_str_to_pil_interpolation = {b: a for a, b in _pil_interpolation_to_str.items()}
if has_interpolation_mode:
_torch_interpolation_to_str = {
InterpolationMode.NEAREST: 'nearest',
InterpolationMode.BILINEAR: 'bilinear',
InterpolationMode.BICUBIC: 'bicubic',
InterpolationMode.BOX: 'box',
InterpolationMode.HAMMING: 'hamming',
InterpolationMode.LANCZOS: 'lanczos',
}
_str_to_torch_interpolation = {b: a for a, b in _torch_interpolation_to_str.items()}
else:
_pil_interpolation_to_torch = {}
_torch_interpolation_to_str = {}
def str_to_pil_interp(mode_str):
return _str_to_pil_interpolation[mode_str]
def str_to_interp_mode(mode_str):
if has_interpolation_mode:
return _str_to_torch_interpolation[mode_str]
else:
return _str_to_pil_interpolation[mode_str]
def interp_mode_to_str(mode):
if has_interpolation_mode:
return _torch_interpolation_to_str[mode]
else:
return _pil_interpolation_to_str[mode]
_RANDOM_INTERPOLATION = (str_to_interp_mode('bilinear'), str_to_interp_mode('bicubic'))
def _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size."):
if isinstance(size, numbers.Number):
return int(size), int(size)
if isinstance(size, Sequence) and len(size) == 1:
return size[0], size[0]
if len(size) != 2:
raise ValueError(error_msg)
return size
class RandomResizedCropAndInterpolation:
"""Crop the given PIL Image to random size and aspect ratio with random interpolation.
A crop of random size (default: of 0.08 to 1.0) of the original size and a random
aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
is finally resized to given size.
This is popularly used to train the Inception networks.
Args:
size: expected output size of each edge
scale: range of size of the origin size cropped
ratio: range of aspect ratio of the origin aspect ratio cropped
interpolation: Default: PIL.Image.BILINEAR
"""
def __init__(
self,
size,
scale=(0.08, 1.0),
ratio=(3. / 4., 4. / 3.),
interpolation='bilinear',
):
if isinstance(size, (list, tuple)):
self.size = tuple(size)
else:
self.size = (size, size)
if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
warnings.warn("range should be of kind (min, max)")
if interpolation == 'random':
self.interpolation = _RANDOM_INTERPOLATION
else:
self.interpolation = str_to_interp_mode(interpolation)
self.scale = scale
self.ratio = ratio
@staticmethod
def get_params(img, scale, ratio):
"""Get parameters for ``crop`` for a random sized crop.
Args:
img (PIL Image): Image to be cropped.
scale (tuple): range of size of the origin size cropped
ratio (tuple): range of aspect ratio of the origin aspect ratio cropped
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for a random
sized crop.
"""
img_w, img_h = F.get_image_size(img)
area = img_w * img_h
for attempt in range(10):
target_area = random.uniform(*scale) * area
log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
aspect_ratio = math.exp(random.uniform(*log_ratio))
target_w = int(round(math.sqrt(target_area * aspect_ratio)))
target_h = int(round(math.sqrt(target_area / aspect_ratio)))
if target_w <= img_w and target_h <= img_h:
i = random.randint(0, img_h - target_h)
j = random.randint(0, img_w - target_w)
return i, j, target_h, target_w
# Fallback to central crop
in_ratio = img_w / img_h
if in_ratio < min(ratio):
target_w = img_w
target_h = int(round(target_w / min(ratio)))
elif in_ratio > max(ratio):
target_h = img_h
target_w = int(round(target_h * max(ratio)))
else: # whole image
target_w = img_w
target_h = img_h
i = (img_h - target_h) // 2
j = (img_w - target_w) // 2
return i, j, target_h, target_w
def __call__(self, img):
"""
Args:
img (PIL Image): Image to be cropped and resized.
Returns:
PIL Image: Randomly cropped and resized image.
"""
i, j, h, w = self.get_params(img, self.scale, self.ratio)
if isinstance(self.interpolation, (tuple, list)):
interpolation = random.choice(self.interpolation)
else:
interpolation = self.interpolation
return F.resized_crop(img, i, j, h, w, self.size, interpolation)
def __repr__(self):
if isinstance(self.interpolation, (tuple, list)):
interpolate_str = ' '.join([interp_mode_to_str(x) for x in self.interpolation])
else:
interpolate_str = interp_mode_to_str(self.interpolation)
format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
format_string += ', interpolation={0})'.format(interpolate_str)
return format_string
def center_crop_or_pad(
img: torch.Tensor,
output_size: Union[int, List[int]],
fill: Union[int, Tuple[int, int, int]] = 0,
padding_mode: str = 'constant',
) -> torch.Tensor:
"""Center crops and/or pads the given image.
If the image is torch Tensor, it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
Args:
img (PIL Image or Tensor): Image to be cropped.
output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
it is used for both directions.
fill (int, Tuple[int]): Padding color
Returns:
PIL Image or Tensor: Cropped image.
"""
output_size = _setup_size(output_size)
crop_height, crop_width = output_size
_, image_height, image_width = F.get_dimensions(img)
if crop_width > image_width or crop_height > image_height:
padding_ltrb = [
(crop_width - image_width) // 2 if crop_width > image_width else 0,
(crop_height - image_height) // 2 if crop_height > image_height else 0,
(crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
(crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
]
img = F.pad(img, padding_ltrb, fill=fill, padding_mode=padding_mode)
_, image_height, image_width = F.get_dimensions(img)
if crop_width == image_width and crop_height == image_height:
return img
crop_top = int(round((image_height - crop_height) / 2.0))
crop_left = int(round((image_width - crop_width) / 2.0))
return F.crop(img, crop_top, crop_left, crop_height, crop_width)
class CenterCropOrPad(torch.nn.Module):
"""Crops the given image at the center.
If the image is torch Tensor, it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
"""
def __init__(
self,
size: Union[int, List[int]],
fill: Union[int, Tuple[int, int, int]] = 0,
padding_mode: str = 'constant',
):
super().__init__()
self.size = _setup_size(size)
self.fill = fill
self.padding_mode = padding_mode
def forward(self, img):
"""
Args:
img (PIL Image or Tensor): Image to be cropped.
Returns:
PIL Image or Tensor: Cropped image.
"""
return center_crop_or_pad(img, self.size, fill=self.fill, padding_mode=self.padding_mode)
def __repr__(self) -> str:
return f"{self.__class__.__name__}(size={self.size})"
def crop_or_pad(
img: torch.Tensor,
top: int,
left: int,
height: int,
width: int,
fill: Union[int, Tuple[int, int, int]] = 0,
padding_mode: str = 'constant',
) -> torch.Tensor:
""" Crops and/or pads image to meet target size, with control over fill and padding_mode.
"""
_, image_height, image_width = F.get_dimensions(img)
right = left + width
bottom = top + height
if left < 0 or top < 0 or right > image_width or bottom > image_height:
padding_ltrb = [
max(-left + min(0, right), 0),
max(-top + min(0, bottom), 0),
max(right - max(image_width, left), 0),
max(bottom - max(image_height, top), 0),
]
img = F.pad(img, padding_ltrb, fill=fill, padding_mode=padding_mode)
top = max(top, 0)
left = max(left, 0)
return F.crop(img, top, left, height, width)
class RandomCropOrPad(torch.nn.Module):
""" Crop and/or pad image with random placement within the crop or pad margin.
"""
def __init__(
self,
size: Union[int, List[int]],
fill: Union[int, Tuple[int, int, int]] = 0,
padding_mode: str = 'constant',
):
super().__init__()
self.size = _setup_size(size)
self.fill = fill
self.padding_mode = padding_mode
@staticmethod
def get_params(img, size):
_, image_height, image_width = F.get_dimensions(img)
delta_height = image_height - size[0]
delta_width = image_width - size[1]
top = int(math.copysign(random.randint(0, abs(delta_height)), delta_height))
left = int(math.copysign(random.randint(0, abs(delta_width)), delta_width))
return top, left
def forward(self, img):
"""
Args:
img (PIL Image or Tensor): Image to be cropped.
Returns:
PIL Image or Tensor: Cropped image.
"""
top, left = self.get_params(img, self.size)
return crop_or_pad(
img,
top=top,
left=left,
height=self.size[0],
width=self.size[1],
fill=self.fill,
padding_mode=self.padding_mode,
)
def __repr__(self) -> str:
return f"{self.__class__.__name__}(size={self.size})"
class RandomPad:
def __init__(self, input_size, fill=0):
self.input_size = input_size
self.fill = fill
@staticmethod
def get_params(img, input_size):
width, height = F.get_image_size(img)
delta_width = max(input_size[1] - width, 0)
delta_height = max(input_size[0] - height, 0)
pad_left = random.randint(0, delta_width)
pad_top = random.randint(0, delta_height)
pad_right = delta_width - pad_left
pad_bottom = delta_height - pad_top
return pad_left, pad_top, pad_right, pad_bottom
def __call__(self, img):
padding = self.get_params(img, self.input_size)
img = F.pad(img, padding, self.fill)
return img
class ResizeKeepRatio:
""" Resize and Keep Aspect Ratio
"""
def __init__(
self,
size,
longest=0.,
interpolation='bilinear',
random_scale_prob=0.,
random_scale_range=(0.85, 1.05),
random_scale_area=False,
random_aspect_prob=0.,
random_aspect_range=(0.9, 1.11),
):
"""
Args:
size:
longest:
interpolation:
random_scale_prob:
random_scale_range:
random_scale_area:
random_aspect_prob:
random_aspect_range:
"""
if isinstance(size, (list, tuple)):
self.size = tuple(size)
else:
self.size = (size, size)
if interpolation == 'random':
self.interpolation = _RANDOM_INTERPOLATION
else:
self.interpolation = str_to_interp_mode(interpolation)
self.longest = float(longest)
self.random_scale_prob = random_scale_prob
self.random_scale_range = random_scale_range
self.random_scale_area = random_scale_area
self.random_aspect_prob = random_aspect_prob
self.random_aspect_range = random_aspect_range
@staticmethod
def get_params(
img,
target_size,
longest,
random_scale_prob=0.,
random_scale_range=(1.0, 1.33),
random_scale_area=False,
random_aspect_prob=0.,
random_aspect_range=(0.9, 1.11)
):
"""Get parameters
"""
img_h, img_w = img_size = F.get_dimensions(img)[1:]
target_h, target_w = target_size
ratio_h = img_h / target_h
ratio_w = img_w / target_w
ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * (1. - longest)
if random_scale_prob > 0 and random.random() < random_scale_prob:
ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1])
if random_scale_area:
# make ratio factor equivalent to RRC area crop where < 1.0 = area zoom,
# otherwise like affine scale where < 1.0 = linear zoom out
ratio_factor = 1. / math.sqrt(ratio_factor)
ratio_factor = (ratio_factor, ratio_factor)
else:
ratio_factor = (1., 1.)
if random_aspect_prob > 0 and random.random() < random_aspect_prob:
log_aspect = (math.log(random_aspect_range[0]), math.log(random_aspect_range[1]))
aspect_factor = math.exp(random.uniform(*log_aspect))
aspect_factor = math.sqrt(aspect_factor)
# currently applying random aspect adjustment equally to both dims,
# could change to keep output sizes above their target where possible
ratio_factor = (ratio_factor[0] / aspect_factor, ratio_factor[1] * aspect_factor)
size = [round(x * f / ratio) for x, f in zip(img_size, ratio_factor)]
return size
def __call__(self, img):
"""
Args:
img (PIL Image): Image to be cropped and resized.
Returns:
PIL Image: Resized, padded to at least target size, possibly cropped to exactly target size
"""
size = self.get_params(
img, self.size, self.longest,
self.random_scale_prob, self.random_scale_range, self.random_scale_area,
self.random_aspect_prob, self.random_aspect_range
)
if isinstance(self.interpolation, (tuple, list)):
interpolation = random.choice(self.interpolation)
else:
interpolation = self.interpolation
img = F.resize(img, size, interpolation)
return img
def __repr__(self):
if isinstance(self.interpolation, (tuple, list)):
interpolate_str = ' '.join([interp_mode_to_str(x) for x in self.interpolation])
else:
interpolate_str = interp_mode_to_str(self.interpolation)
format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
format_string += f', interpolation={interpolate_str}'
format_string += f', longest={self.longest:.3f}'
format_string += f', random_scale_prob={self.random_scale_prob:.3f}'
format_string += f', random_scale_range=(' \
f'{self.random_scale_range[0]:.3f}, {self.random_aspect_range[1]:.3f})'
format_string += f', random_aspect_prob={self.random_aspect_prob:.3f}'
format_string += f', random_aspect_range=(' \
f'{self.random_aspect_range[0]:.3f}, {self.random_aspect_range[1]:.3f}))'
return format_string
class TrimBorder(torch.nn.Module):
def __init__(
self,
border_size: int,
):
super().__init__()
self.border_size = border_size
def forward(self, img):
w, h = F.get_image_size(img)
top = left = self.border_size
top = min(top, h)
left = min(left, h)
height = max(0, h - 2 * self.border_size)
width = max(0, w - 2 * self.border_size)
return F.crop(img, top, left, height, width)