Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- pytorch-image-models/timm/__pycache__/version.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/_efficientnet_builder.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/_features.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/_manipulate.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/_pretrained.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/_prune.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/_registry.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/deit.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/dla.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/dpn.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/efficientformer.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/efficientformer_v2.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/efficientvit_mit.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/efficientvit_msra.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/eva.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/fastvit.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/focalnet.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/hgnet.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/hiera.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/hieradet_sam2.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/inception_next.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/inception_resnet_v2.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/inception_v3.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/inception_v4.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/levit.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/mobilevit.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/mvitv2.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/nasnet.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/nest.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/nextvit.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/resnetv2.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/rexnet.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/selecsls.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/swin_transformer_v2_cr.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/tnt.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/tresnet.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/twins.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/vgg.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/vision_transformer_hybrid.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/vision_transformer_relpos.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/vision_transformer_sam.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/volo.cpython-39.pyc +0 -0
- pytorch-image-models/timm/models/__pycache__/vovnet.cpython-39.pyc +0 -0
- pytorch-image-models/timm/optim/__init__.py +34 -0
- pytorch-image-models/timm/optim/__pycache__/adabelief.cpython-39.pyc +0 -0
- pytorch-image-models/timm/optim/__pycache__/nadam.cpython-39.pyc +0 -0
- pytorch-image-models/timm/optim/_optim_factory.py +1081 -0
- pytorch-image-models/timm/optim/_param_groups.py +131 -0
- pytorch-image-models/timm/optim/adabelief.py +218 -0
- pytorch-image-models/timm/optim/adafactor.py +229 -0
pytorch-image-models/timm/__pycache__/version.cpython-39.pyc
ADDED
Binary file (159 Bytes). View file
|
|
pytorch-image-models/timm/models/__pycache__/_efficientnet_builder.cpython-39.pyc
ADDED
Binary file (15 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/_features.cpython-39.pyc
ADDED
Binary file (18.1 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/_manipulate.cpython-39.pyc
ADDED
Binary file (7.72 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/_pretrained.cpython-39.pyc
ADDED
Binary file (3.39 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/_prune.cpython-39.pyc
ADDED
Binary file (2.92 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/_registry.cpython-39.pyc
ADDED
Binary file (10.8 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/deit.cpython-39.pyc
ADDED
Binary file (14.8 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/dla.cpython-39.pyc
ADDED
Binary file (14.4 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/dpn.cpython-39.pyc
ADDED
Binary file (11.1 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/efficientformer.cpython-39.pyc
ADDED
Binary file (19.4 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/efficientformer_v2.cpython-39.pyc
ADDED
Binary file (20.5 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/efficientvit_mit.cpython-39.pyc
ADDED
Binary file (23.2 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/efficientvit_msra.cpython-39.pyc
ADDED
Binary file (18.8 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/eva.cpython-39.pyc
ADDED
Binary file (30.1 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/fastvit.cpython-39.pyc
ADDED
Binary file (40.5 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/focalnet.cpython-39.pyc
ADDED
Binary file (19.9 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/hgnet.cpython-39.pyc
ADDED
Binary file (18.1 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/hiera.cpython-39.pyc
ADDED
Binary file (27 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/hieradet_sam2.cpython-39.pyc
ADDED
Binary file (18.5 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/inception_next.cpython-39.pyc
ADDED
Binary file (13 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/inception_resnet_v2.cpython-39.pyc
ADDED
Binary file (11.3 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/inception_v3.cpython-39.pyc
ADDED
Binary file (13.6 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/inception_v4.cpython-39.pyc
ADDED
Binary file (10.6 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/levit.cpython-39.pyc
ADDED
Binary file (28.7 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/mobilevit.cpython-39.pyc
ADDED
Binary file (18 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/mvitv2.cpython-39.pyc
ADDED
Binary file (28.3 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/nasnet.cpython-39.pyc
ADDED
Binary file (16.1 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/nest.cpython-39.pyc
ADDED
Binary file (18.5 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/nextvit.cpython-39.pyc
ADDED
Binary file (17.7 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/resnetv2.cpython-39.pyc
ADDED
Binary file (25.2 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/rexnet.cpython-39.pyc
ADDED
Binary file (10.4 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/selecsls.cpython-39.pyc
ADDED
Binary file (10.8 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/swin_transformer_v2_cr.cpython-39.pyc
ADDED
Binary file (37.1 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/tnt.cpython-39.pyc
ADDED
Binary file (11 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/tresnet.cpython-39.pyc
ADDED
Binary file (10.7 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/twins.cpython-39.pyc
ADDED
Binary file (17.9 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/vgg.cpython-39.pyc
ADDED
Binary file (10.1 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/vision_transformer_hybrid.cpython-39.pyc
ADDED
Binary file (13.8 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/vision_transformer_relpos.cpython-39.pyc
ADDED
Binary file (23.3 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/vision_transformer_sam.cpython-39.pyc
ADDED
Binary file (21.9 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/volo.cpython-39.pyc
ADDED
Binary file (24.9 kB). View file
|
|
pytorch-image-models/timm/models/__pycache__/vovnet.cpython-39.pyc
ADDED
Binary file (11.8 kB). View file
|
|
pytorch-image-models/timm/optim/__init__.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .adabelief import AdaBelief
|
2 |
+
from .adafactor import Adafactor
|
3 |
+
from .adafactor_bv import AdafactorBigVision
|
4 |
+
from .adahessian import Adahessian
|
5 |
+
from .adamp import AdamP
|
6 |
+
from .adamw import AdamWLegacy
|
7 |
+
from .adan import Adan
|
8 |
+
from .adopt import Adopt
|
9 |
+
from .lamb import Lamb
|
10 |
+
from .laprop import LaProp
|
11 |
+
from .lars import Lars
|
12 |
+
from .lion import Lion
|
13 |
+
from .lookahead import Lookahead
|
14 |
+
from .madgrad import MADGRAD
|
15 |
+
from .mars import Mars
|
16 |
+
from .nadam import NAdamLegacy
|
17 |
+
from .nadamw import NAdamW
|
18 |
+
from .nvnovograd import NvNovoGrad
|
19 |
+
from .radam import RAdamLegacy
|
20 |
+
from .rmsprop_tf import RMSpropTF
|
21 |
+
from .sgdp import SGDP
|
22 |
+
from .sgdw import SGDW
|
23 |
+
|
24 |
+
# bring common torch.optim Optimizers into timm.optim namespace for consistency
|
25 |
+
from torch.optim import Adadelta, Adagrad, Adamax, Adam, AdamW, RMSprop, SGD
|
26 |
+
try:
|
27 |
+
# in case any very old torch versions being used
|
28 |
+
from torch.optim import NAdam, RAdam
|
29 |
+
except ImportError:
|
30 |
+
pass
|
31 |
+
|
32 |
+
from ._optim_factory import list_optimizers, get_optimizer_class, get_optimizer_info, OptimInfo, OptimizerRegistry, \
|
33 |
+
create_optimizer_v2, create_optimizer, optimizer_kwargs
|
34 |
+
from ._param_groups import param_groups_layer_decay, param_groups_weight_decay, auto_group_layers
|
pytorch-image-models/timm/optim/__pycache__/adabelief.cpython-39.pyc
ADDED
Binary file (6.53 kB). View file
|
|
pytorch-image-models/timm/optim/__pycache__/nadam.cpython-39.pyc
ADDED
Binary file (3.33 kB). View file
|
|
pytorch-image-models/timm/optim/_optim_factory.py
ADDED
@@ -0,0 +1,1081 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Optimizer Factory w/ custom Weight Decay & Layer Decay support
|
2 |
+
|
3 |
+
Hacked together by / Copyright 2021 Ross Wightman
|
4 |
+
"""
|
5 |
+
import logging
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from functools import partial
|
8 |
+
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Type, Union
|
9 |
+
from fnmatch import fnmatch
|
10 |
+
import importlib
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
import torch.optim
|
15 |
+
|
16 |
+
from ._param_groups import param_groups_layer_decay, param_groups_weight_decay
|
17 |
+
from ._types import ParamsT, OptimType, OptimizerCallable
|
18 |
+
from .adabelief import AdaBelief
|
19 |
+
from .adafactor import Adafactor
|
20 |
+
from .adafactor_bv import AdafactorBigVision
|
21 |
+
from .adahessian import Adahessian
|
22 |
+
from .adamp import AdamP
|
23 |
+
from .adamw import AdamWLegacy
|
24 |
+
from .adan import Adan
|
25 |
+
from .adopt import Adopt
|
26 |
+
from .lamb import Lamb
|
27 |
+
from .laprop import LaProp
|
28 |
+
from .lars import Lars
|
29 |
+
from .lion import Lion
|
30 |
+
from .lookahead import Lookahead
|
31 |
+
from .madgrad import MADGRAD
|
32 |
+
from .mars import Mars
|
33 |
+
from .nadam import NAdamLegacy
|
34 |
+
from .nadamw import NAdamW
|
35 |
+
from .nvnovograd import NvNovoGrad
|
36 |
+
from .radam import RAdamLegacy
|
37 |
+
from .rmsprop_tf import RMSpropTF
|
38 |
+
from .sgdp import SGDP
|
39 |
+
from .sgdw import SGDW
|
40 |
+
|
41 |
+
_logger = logging.getLogger(__name__)
|
42 |
+
|
43 |
+
|
44 |
+
def _import_class(class_string: str) -> Type:
|
45 |
+
"""Dynamically import a class from a string."""
|
46 |
+
try:
|
47 |
+
module_name, class_name = class_string.rsplit(".", 1)
|
48 |
+
module = importlib.import_module(module_name)
|
49 |
+
return getattr(module, class_name)
|
50 |
+
except (ImportError, AttributeError) as e:
|
51 |
+
raise ImportError(f"Could not import {class_string}: {e}")
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
@dataclass(frozen=True)
|
56 |
+
class OptimInfo:
|
57 |
+
"""Immutable configuration for an optimizer.
|
58 |
+
|
59 |
+
Attributes:
|
60 |
+
name: Unique identifier for the optimizer
|
61 |
+
opt_class: The optimizer class
|
62 |
+
description: Brief description of the optimizer's characteristics and behavior
|
63 |
+
has_eps: Whether the optimizer accepts epsilon parameter
|
64 |
+
has_momentum: Whether the optimizer accepts momentum parameter
|
65 |
+
has_betas: Whether the optimizer accepts a tuple of beta parameters
|
66 |
+
num_betas: number of betas in tuple (valid IFF has_betas = True)
|
67 |
+
defaults: Optional default parameters for the optimizer
|
68 |
+
"""
|
69 |
+
name: str
|
70 |
+
opt_class: Union[str, OptimType]
|
71 |
+
description: str = ''
|
72 |
+
has_eps: bool = True
|
73 |
+
has_momentum: bool = False
|
74 |
+
has_betas: bool = False
|
75 |
+
num_betas: int = 2
|
76 |
+
second_order: bool = False
|
77 |
+
defaults: Optional[Dict[str, Any]] = None
|
78 |
+
|
79 |
+
|
80 |
+
class OptimizerRegistry:
|
81 |
+
"""Registry managing optimizer configurations and instantiation.
|
82 |
+
|
83 |
+
This class provides a central registry for optimizer configurations and handles
|
84 |
+
their instantiation with appropriate parameter groups and settings.
|
85 |
+
"""
|
86 |
+
|
87 |
+
def __init__(self) -> None:
|
88 |
+
self._optimizers: Dict[str, OptimInfo] = {}
|
89 |
+
self._foreach_defaults: Set[str] = {'lion'}
|
90 |
+
|
91 |
+
def register(self, info: OptimInfo) -> None:
|
92 |
+
"""Register an optimizer configuration.
|
93 |
+
|
94 |
+
Args:
|
95 |
+
info: The OptimInfo configuration containing name, type and description
|
96 |
+
"""
|
97 |
+
name = info.name.lower()
|
98 |
+
if name in self._optimizers:
|
99 |
+
_logger.warning(f'Optimizer {name} already registered, overwriting')
|
100 |
+
self._optimizers[name] = info
|
101 |
+
|
102 |
+
def register_alias(self, alias: str, target: str) -> None:
|
103 |
+
"""Register an alias for an existing optimizer.
|
104 |
+
|
105 |
+
Args:
|
106 |
+
alias: The alias name
|
107 |
+
target: The target optimizer name
|
108 |
+
|
109 |
+
Raises:
|
110 |
+
KeyError: If target optimizer doesn't exist
|
111 |
+
"""
|
112 |
+
target = target.lower()
|
113 |
+
if target not in self._optimizers:
|
114 |
+
raise KeyError(f'Cannot create alias for non-existent optimizer {target}')
|
115 |
+
self._optimizers[alias.lower()] = self._optimizers[target]
|
116 |
+
|
117 |
+
def register_foreach_default(self, name: str) -> None:
|
118 |
+
"""Register an optimizer as defaulting to foreach=True."""
|
119 |
+
self._foreach_defaults.add(name.lower())
|
120 |
+
|
121 |
+
def list_optimizers(
|
122 |
+
self,
|
123 |
+
filter: Union[str, List[str]] = '',
|
124 |
+
exclude_filters: Optional[List[str]] = None,
|
125 |
+
with_description: bool = False
|
126 |
+
) -> List[Union[str, Tuple[str, str]]]:
|
127 |
+
"""List available optimizer names, optionally filtered.
|
128 |
+
|
129 |
+
Args:
|
130 |
+
filter: Wildcard style filter string (e.g., 'adam*')
|
131 |
+
exclude_filters: Optional list of wildcard patterns to exclude
|
132 |
+
with_description: If True, return tuples of (name, description)
|
133 |
+
|
134 |
+
Returns:
|
135 |
+
List of either optimizer names or (name, description) tuples
|
136 |
+
"""
|
137 |
+
names = sorted(self._optimizers.keys())
|
138 |
+
|
139 |
+
if filter:
|
140 |
+
if isinstance(filter, str):
|
141 |
+
filters = [filter]
|
142 |
+
else:
|
143 |
+
filters = filter
|
144 |
+
filtered_names = set()
|
145 |
+
for f in filters:
|
146 |
+
filtered_names.update(n for n in names if fnmatch(n, f))
|
147 |
+
names = sorted(filtered_names)
|
148 |
+
|
149 |
+
if exclude_filters:
|
150 |
+
for exclude_filter in exclude_filters:
|
151 |
+
names = [n for n in names if not fnmatch(n, exclude_filter)]
|
152 |
+
|
153 |
+
if with_description:
|
154 |
+
return [(name, self._optimizers[name].description) for name in names]
|
155 |
+
|
156 |
+
return names
|
157 |
+
|
158 |
+
def get_optimizer_info(self, name: str) -> OptimInfo:
|
159 |
+
"""Get the OptimInfo for an optimizer.
|
160 |
+
|
161 |
+
Args:
|
162 |
+
name: Name of the optimizer
|
163 |
+
|
164 |
+
Returns:
|
165 |
+
OptimInfo configuration
|
166 |
+
|
167 |
+
Raises:
|
168 |
+
ValueError: If optimizer is not found
|
169 |
+
"""
|
170 |
+
name = name.lower()
|
171 |
+
if name not in self._optimizers:
|
172 |
+
raise ValueError(f'Optimizer {name} not found in registry')
|
173 |
+
return self._optimizers[name]
|
174 |
+
|
175 |
+
def get_optimizer_class(
|
176 |
+
self,
|
177 |
+
name_or_info: Union[str, OptimInfo],
|
178 |
+
bind_defaults: bool = True,
|
179 |
+
) -> Union[OptimType, OptimizerCallable]:
|
180 |
+
"""Get the optimizer class with any default arguments applied.
|
181 |
+
|
182 |
+
This allows direct instantiation of optimizers with their default configs
|
183 |
+
without going through the full factory.
|
184 |
+
|
185 |
+
Args:
|
186 |
+
name_or_info: Name of the optimizer
|
187 |
+
bind_defaults: Bind default arguments to optimizer class via `partial` before returning
|
188 |
+
|
189 |
+
Returns:
|
190 |
+
Optimizer class or partial with defaults applied
|
191 |
+
|
192 |
+
Raises:
|
193 |
+
ValueError: If optimizer not found
|
194 |
+
"""
|
195 |
+
if isinstance(name_or_info, str):
|
196 |
+
opt_info = self.get_optimizer_info(name_or_info)
|
197 |
+
else:
|
198 |
+
assert isinstance(name_or_info, OptimInfo)
|
199 |
+
opt_info = name_or_info
|
200 |
+
|
201 |
+
if isinstance(opt_info.opt_class, str):
|
202 |
+
# Special handling for APEX and BNB optimizers
|
203 |
+
if opt_info.opt_class.startswith('apex.'):
|
204 |
+
assert torch.cuda.is_available(), 'CUDA required for APEX optimizers'
|
205 |
+
try:
|
206 |
+
opt_class = _import_class(opt_info.opt_class)
|
207 |
+
except ImportError as e:
|
208 |
+
raise ImportError('APEX optimizers require apex to be installed') from e
|
209 |
+
elif opt_info.opt_class.startswith('bitsandbytes.'):
|
210 |
+
assert torch.cuda.is_available(), 'CUDA required for bitsandbytes optimizers'
|
211 |
+
try:
|
212 |
+
opt_class = _import_class(opt_info.opt_class)
|
213 |
+
except ImportError as e:
|
214 |
+
raise ImportError('bitsandbytes optimizers require bitsandbytes to be installed') from e
|
215 |
+
else:
|
216 |
+
opt_class = _import_class(opt_info.opt_class)
|
217 |
+
else:
|
218 |
+
opt_class = opt_info.opt_class
|
219 |
+
|
220 |
+
# Return class or partial with defaults
|
221 |
+
if bind_defaults and opt_info.defaults:
|
222 |
+
opt_class = partial(opt_class, **opt_info.defaults)
|
223 |
+
|
224 |
+
return opt_class
|
225 |
+
|
226 |
+
def create_optimizer(
|
227 |
+
self,
|
228 |
+
model_or_params: Union[nn.Module, ParamsT],
|
229 |
+
opt: str,
|
230 |
+
lr: Optional[float] = None,
|
231 |
+
weight_decay: float = 0.,
|
232 |
+
momentum: float = 0.9,
|
233 |
+
foreach: Optional[bool] = None,
|
234 |
+
weight_decay_exclude_1d: bool = True,
|
235 |
+
layer_decay: Optional[float] = None,
|
236 |
+
param_group_fn: Optional[Callable[[nn.Module], ParamsT]] = None,
|
237 |
+
**kwargs: Any,
|
238 |
+
) -> torch.optim.Optimizer:
|
239 |
+
"""Create an optimizer instance.
|
240 |
+
|
241 |
+
Args:
|
242 |
+
model_or_params: Model or parameters to optimize
|
243 |
+
opt: Name of optimizer to create
|
244 |
+
lr: Learning rate
|
245 |
+
weight_decay: Weight decay factor
|
246 |
+
momentum: Momentum factor for applicable optimizers
|
247 |
+
foreach: Enable/disable foreach operation
|
248 |
+
weight_decay_exclude_1d: Whether to skip weight decay for 1d params (biases and norm affine)
|
249 |
+
layer_decay: Layer-wise learning rate decay
|
250 |
+
param_group_fn: Optional custom parameter grouping function
|
251 |
+
**kwargs: Additional optimizer-specific arguments
|
252 |
+
|
253 |
+
Returns:
|
254 |
+
Configured optimizer instance
|
255 |
+
|
256 |
+
Raises:
|
257 |
+
ValueError: If optimizer not found or configuration invalid
|
258 |
+
"""
|
259 |
+
|
260 |
+
# Get parameters to optimize
|
261 |
+
if isinstance(model_or_params, nn.Module):
|
262 |
+
# Extract parameters from a nn.Module, build param groups w/ weight-decay and/or layer-decay applied
|
263 |
+
no_weight_decay = getattr(model_or_params, 'no_weight_decay', lambda: set())()
|
264 |
+
|
265 |
+
if param_group_fn:
|
266 |
+
# run custom fn to generate param groups from nn.Module
|
267 |
+
params = param_group_fn(model_or_params)
|
268 |
+
elif layer_decay is not None:
|
269 |
+
params = param_groups_layer_decay(
|
270 |
+
model_or_params,
|
271 |
+
weight_decay=weight_decay,
|
272 |
+
layer_decay=layer_decay,
|
273 |
+
no_weight_decay_list=no_weight_decay,
|
274 |
+
weight_decay_exclude_1d=weight_decay_exclude_1d,
|
275 |
+
)
|
276 |
+
weight_decay = 0.
|
277 |
+
elif weight_decay and weight_decay_exclude_1d:
|
278 |
+
params = param_groups_weight_decay(
|
279 |
+
model_or_params,
|
280 |
+
weight_decay=weight_decay,
|
281 |
+
no_weight_decay_list=no_weight_decay,
|
282 |
+
)
|
283 |
+
weight_decay = 0.
|
284 |
+
else:
|
285 |
+
params = model_or_params.parameters()
|
286 |
+
else:
|
287 |
+
# pass parameters / parameter groups through to optimizer
|
288 |
+
params = model_or_params
|
289 |
+
|
290 |
+
# Parse optimizer name
|
291 |
+
opt_split = opt.lower().split('_')
|
292 |
+
opt_name = opt_split[-1]
|
293 |
+
use_lookahead = opt_split[0] == 'lookahead' if len(opt_split) > 1 else False
|
294 |
+
|
295 |
+
opt_info = self.get_optimizer_info(opt_name)
|
296 |
+
|
297 |
+
# Build optimizer arguments
|
298 |
+
opt_args: Dict[str, Any] = {'weight_decay': weight_decay, **kwargs}
|
299 |
+
|
300 |
+
# Add LR to args, if None optimizer default is used, some optimizers manage LR internally if None.
|
301 |
+
if lr is not None:
|
302 |
+
opt_args['lr'] = lr
|
303 |
+
|
304 |
+
# Apply optimizer-specific settings
|
305 |
+
if opt_info.defaults:
|
306 |
+
for k, v in opt_info.defaults.items():
|
307 |
+
opt_args.setdefault(k, v)
|
308 |
+
|
309 |
+
# timm has always defaulted momentum to 0.9 if optimizer supports momentum, keep for backward compat.
|
310 |
+
if opt_info.has_momentum:
|
311 |
+
opt_args.setdefault('momentum', momentum)
|
312 |
+
|
313 |
+
# Remove commonly used kwargs that aren't always supported
|
314 |
+
if not opt_info.has_eps:
|
315 |
+
opt_args.pop('eps', None)
|
316 |
+
if not opt_info.has_betas:
|
317 |
+
opt_args.pop('betas', None)
|
318 |
+
|
319 |
+
if foreach is not None:
|
320 |
+
# Explicitly activate or deactivate multi-tensor foreach impl.
|
321 |
+
# Not all optimizers support this, and those that do usually default to using
|
322 |
+
# multi-tensor impl if foreach is left as default 'None' and can be enabled.
|
323 |
+
opt_args.setdefault('foreach', foreach)
|
324 |
+
|
325 |
+
# Create optimizer
|
326 |
+
opt_class = self.get_optimizer_class(opt_info, bind_defaults=False)
|
327 |
+
optimizer = opt_class(params, **opt_args)
|
328 |
+
|
329 |
+
# Apply Lookahead if requested
|
330 |
+
if use_lookahead:
|
331 |
+
optimizer = Lookahead(optimizer)
|
332 |
+
|
333 |
+
return optimizer
|
334 |
+
|
335 |
+
|
336 |
+
def _register_sgd_variants(registry: OptimizerRegistry) -> None:
|
337 |
+
"""Register SGD-based optimizers"""
|
338 |
+
sgd_optimizers = [
|
339 |
+
OptimInfo(
|
340 |
+
name='sgd',
|
341 |
+
opt_class=torch.optim.SGD,
|
342 |
+
description='torch.Optim Stochastic Gradient Descent (SGD) with Nesterov momentum',
|
343 |
+
has_eps=False,
|
344 |
+
has_momentum=True,
|
345 |
+
defaults={'nesterov': True}
|
346 |
+
),
|
347 |
+
OptimInfo(
|
348 |
+
name='momentum',
|
349 |
+
opt_class=torch.optim.SGD,
|
350 |
+
description='torch.Optim Stochastic Gradient Descent (SGD) with classical momentum',
|
351 |
+
has_eps=False,
|
352 |
+
has_momentum=True,
|
353 |
+
defaults={'nesterov': False}
|
354 |
+
),
|
355 |
+
OptimInfo(
|
356 |
+
name='sgdp',
|
357 |
+
opt_class=SGDP,
|
358 |
+
description='SGD with built-in projection to unit norm sphere',
|
359 |
+
has_momentum=True,
|
360 |
+
defaults={'nesterov': True}
|
361 |
+
),
|
362 |
+
OptimInfo(
|
363 |
+
name='sgdw',
|
364 |
+
opt_class=SGDW,
|
365 |
+
description='SGD with decoupled weight decay and Nesterov momentum',
|
366 |
+
has_eps=False,
|
367 |
+
has_momentum=True,
|
368 |
+
defaults={'nesterov': True}
|
369 |
+
),
|
370 |
+
]
|
371 |
+
for opt in sgd_optimizers:
|
372 |
+
registry.register(opt)
|
373 |
+
|
374 |
+
|
375 |
+
def _register_adam_variants(registry: OptimizerRegistry) -> None:
|
376 |
+
"""Register Adam-based optimizers"""
|
377 |
+
adam_optimizers = [
|
378 |
+
OptimInfo(
|
379 |
+
name='adam',
|
380 |
+
opt_class=torch.optim.Adam,
|
381 |
+
description='torch.optim.Adam, Adaptive Moment Estimation',
|
382 |
+
has_betas=True
|
383 |
+
),
|
384 |
+
OptimInfo(
|
385 |
+
name='adamw',
|
386 |
+
opt_class=torch.optim.AdamW,
|
387 |
+
description='torch.optim.AdamW, Adam with decoupled weight decay',
|
388 |
+
has_betas=True
|
389 |
+
),
|
390 |
+
OptimInfo(
|
391 |
+
name='adamwlegacy',
|
392 |
+
opt_class=AdamWLegacy,
|
393 |
+
description='legacy impl of AdamW that pre-dates inclusion to torch.optim',
|
394 |
+
has_betas=True
|
395 |
+
),
|
396 |
+
OptimInfo(
|
397 |
+
name='adamp',
|
398 |
+
opt_class=AdamP,
|
399 |
+
description='Adam with built-in projection to unit norm sphere',
|
400 |
+
has_betas=True,
|
401 |
+
defaults={'wd_ratio': 0.01, 'nesterov': True}
|
402 |
+
),
|
403 |
+
OptimInfo(
|
404 |
+
name='nadam',
|
405 |
+
opt_class=torch.optim.NAdam,
|
406 |
+
description='torch.optim.NAdam, Adam with Nesterov momentum',
|
407 |
+
has_betas=True
|
408 |
+
),
|
409 |
+
OptimInfo(
|
410 |
+
name='nadamlegacy',
|
411 |
+
opt_class=NAdamLegacy,
|
412 |
+
description='legacy impl of NAdam that pre-dates inclusion in torch.optim',
|
413 |
+
has_betas=True
|
414 |
+
),
|
415 |
+
OptimInfo(
|
416 |
+
name='nadamw',
|
417 |
+
opt_class=NAdamW,
|
418 |
+
description='Adam with Nesterov momentum and decoupled weight decay, mlcommons/algorithmic-efficiency impl',
|
419 |
+
has_betas=True
|
420 |
+
),
|
421 |
+
OptimInfo(
|
422 |
+
name='radam',
|
423 |
+
opt_class=torch.optim.RAdam,
|
424 |
+
description='torch.optim.RAdam, Rectified Adam with variance adaptation',
|
425 |
+
has_betas=True
|
426 |
+
),
|
427 |
+
OptimInfo(
|
428 |
+
name='radamlegacy',
|
429 |
+
opt_class=RAdamLegacy,
|
430 |
+
description='legacy impl of RAdam that predates inclusion in torch.optim',
|
431 |
+
has_betas=True
|
432 |
+
),
|
433 |
+
OptimInfo(
|
434 |
+
name='radamw',
|
435 |
+
opt_class=torch.optim.RAdam,
|
436 |
+
description='torch.optim.RAdamW, Rectified Adam with variance adaptation and decoupled weight decay',
|
437 |
+
has_betas=True,
|
438 |
+
defaults={'decoupled_weight_decay': True}
|
439 |
+
),
|
440 |
+
OptimInfo(
|
441 |
+
name='adamax',
|
442 |
+
opt_class=torch.optim.Adamax,
|
443 |
+
description='torch.optim.Adamax, Adam with infinity norm for more stable updates',
|
444 |
+
has_betas=True
|
445 |
+
),
|
446 |
+
OptimInfo(
|
447 |
+
name='adafactor',
|
448 |
+
opt_class=Adafactor,
|
449 |
+
description='Memory-efficient implementation of Adam with factored gradients',
|
450 |
+
),
|
451 |
+
OptimInfo(
|
452 |
+
name='adafactorbv',
|
453 |
+
opt_class=AdafactorBigVision,
|
454 |
+
description='Big Vision variant of Adafactor with factored gradients, half precision momentum',
|
455 |
+
),
|
456 |
+
OptimInfo(
|
457 |
+
name='adopt',
|
458 |
+
opt_class=Adopt,
|
459 |
+
description='Modified Adam that can converge with any β2 with the optimal rate',
|
460 |
+
),
|
461 |
+
OptimInfo(
|
462 |
+
name='adoptw',
|
463 |
+
opt_class=Adopt,
|
464 |
+
description='Modified AdamW (decoupled decay) that can converge with any β2 with the optimal rate',
|
465 |
+
defaults={'decoupled': True}
|
466 |
+
),
|
467 |
+
]
|
468 |
+
for opt in adam_optimizers:
|
469 |
+
registry.register(opt)
|
470 |
+
|
471 |
+
|
472 |
+
def _register_lamb_lars(registry: OptimizerRegistry) -> None:
|
473 |
+
"""Register LAMB and LARS variants"""
|
474 |
+
lamb_lars_optimizers = [
|
475 |
+
OptimInfo(
|
476 |
+
name='lamb',
|
477 |
+
opt_class=Lamb,
|
478 |
+
description='Layer-wise Adaptive Moments for batch optimization',
|
479 |
+
has_betas=True
|
480 |
+
),
|
481 |
+
OptimInfo(
|
482 |
+
name='lambc',
|
483 |
+
opt_class=Lamb,
|
484 |
+
description='LAMB with trust ratio clipping for stability',
|
485 |
+
has_betas=True,
|
486 |
+
defaults={'trust_clip': True}
|
487 |
+
),
|
488 |
+
OptimInfo(
|
489 |
+
name='lars',
|
490 |
+
opt_class=Lars,
|
491 |
+
description='Layer-wise Adaptive Rate Scaling',
|
492 |
+
has_momentum=True
|
493 |
+
),
|
494 |
+
OptimInfo(
|
495 |
+
name='larc',
|
496 |
+
opt_class=Lars,
|
497 |
+
description='LARS with trust ratio clipping for stability',
|
498 |
+
has_momentum=True,
|
499 |
+
defaults={'trust_clip': True}
|
500 |
+
),
|
501 |
+
OptimInfo(
|
502 |
+
name='nlars',
|
503 |
+
opt_class=Lars,
|
504 |
+
description='LARS with Nesterov momentum',
|
505 |
+
has_momentum=True,
|
506 |
+
defaults={'nesterov': True}
|
507 |
+
),
|
508 |
+
OptimInfo(
|
509 |
+
name='nlarc',
|
510 |
+
opt_class=Lars,
|
511 |
+
description='LARS with Nesterov momentum & trust ratio clipping',
|
512 |
+
has_momentum=True,
|
513 |
+
defaults={'nesterov': True, 'trust_clip': True}
|
514 |
+
),
|
515 |
+
]
|
516 |
+
for opt in lamb_lars_optimizers:
|
517 |
+
registry.register(opt)
|
518 |
+
|
519 |
+
|
520 |
+
def _register_cautious_optimizers(registry: OptimizerRegistry) -> None:
|
521 |
+
cautious_optimizers = [
|
522 |
+
OptimInfo(
|
523 |
+
name='cadafactor',
|
524 |
+
opt_class=Adafactor,
|
525 |
+
description='Cautious Adafactor',
|
526 |
+
defaults={'caution': True}
|
527 |
+
),
|
528 |
+
OptimInfo(
|
529 |
+
name='cadafactorbv',
|
530 |
+
opt_class=AdafactorBigVision,
|
531 |
+
description='Cautious Big Vision Adafactor',
|
532 |
+
defaults={'caution': True}
|
533 |
+
),
|
534 |
+
OptimInfo(
|
535 |
+
name='cadamw',
|
536 |
+
opt_class=AdamWLegacy,
|
537 |
+
description='Cautious AdamW',
|
538 |
+
has_betas=True,
|
539 |
+
defaults={'caution': True}
|
540 |
+
),
|
541 |
+
OptimInfo(
|
542 |
+
name='cadopt',
|
543 |
+
opt_class=Adopt,
|
544 |
+
description='Cautious Adopt',
|
545 |
+
defaults={'caution': True}
|
546 |
+
),
|
547 |
+
OptimInfo(
|
548 |
+
name='cadoptw',
|
549 |
+
opt_class=Adopt,
|
550 |
+
description='Cautious AdoptW (decoupled decay)',
|
551 |
+
defaults={'decoupled': True, 'caution': True}
|
552 |
+
),
|
553 |
+
OptimInfo(
|
554 |
+
name='clamb',
|
555 |
+
opt_class=Lamb,
|
556 |
+
description='Cautious LAMB',
|
557 |
+
has_betas=True,
|
558 |
+
defaults={'caution': True}
|
559 |
+
),
|
560 |
+
OptimInfo(
|
561 |
+
name='claprop',
|
562 |
+
opt_class=LaProp,
|
563 |
+
description='Cautious LaProp',
|
564 |
+
has_betas=True,
|
565 |
+
defaults={'caution': True}
|
566 |
+
),
|
567 |
+
OptimInfo(
|
568 |
+
name='clion',
|
569 |
+
opt_class=Lion,
|
570 |
+
description='Cautious Lion',
|
571 |
+
has_eps=False,
|
572 |
+
has_betas=True,
|
573 |
+
defaults = {'caution': True}
|
574 |
+
),
|
575 |
+
OptimInfo(
|
576 |
+
name='cmars',
|
577 |
+
opt_class=Mars,
|
578 |
+
description='Cautious MARS',
|
579 |
+
has_betas=True,
|
580 |
+
defaults={'caution': True}
|
581 |
+
),
|
582 |
+
OptimInfo(
|
583 |
+
name='cnadamw',
|
584 |
+
opt_class=NAdamW,
|
585 |
+
description='Cautious NAdamW',
|
586 |
+
has_betas=True,
|
587 |
+
defaults={'caution': True}
|
588 |
+
),
|
589 |
+
OptimInfo(
|
590 |
+
name='crmsproptf',
|
591 |
+
opt_class=RMSpropTF,
|
592 |
+
description='Cautious TensorFlow-style RMSprop',
|
593 |
+
has_momentum=True,
|
594 |
+
defaults={'alpha': 0.9, 'caution': True}
|
595 |
+
),
|
596 |
+
OptimInfo(
|
597 |
+
name='csgdw',
|
598 |
+
opt_class=SGDW,
|
599 |
+
description='Cautious SGD with decoupled weight decay and Nesterov momentum',
|
600 |
+
has_eps=False,
|
601 |
+
has_momentum=True,
|
602 |
+
defaults={'nesterov': True, 'caution': True}
|
603 |
+
),
|
604 |
+
]
|
605 |
+
for opt in cautious_optimizers:
|
606 |
+
registry.register(opt)
|
607 |
+
|
608 |
+
def _register_other_optimizers(registry: OptimizerRegistry) -> None:
|
609 |
+
"""Register miscellaneous optimizers"""
|
610 |
+
other_optimizers = [
|
611 |
+
OptimInfo(
|
612 |
+
name='adabelief',
|
613 |
+
opt_class=AdaBelief,
|
614 |
+
description='Adapts learning rate based on gradient prediction error',
|
615 |
+
has_betas=True,
|
616 |
+
defaults={'rectify': False}
|
617 |
+
),
|
618 |
+
OptimInfo(
|
619 |
+
name='radabelief',
|
620 |
+
opt_class=AdaBelief,
|
621 |
+
description='Rectified AdaBelief with variance adaptation',
|
622 |
+
has_betas=True,
|
623 |
+
defaults={'rectify': True}
|
624 |
+
),
|
625 |
+
OptimInfo(
|
626 |
+
name='adadelta',
|
627 |
+
opt_class=torch.optim.Adadelta,
|
628 |
+
description='torch.optim.Adadelta, Adapts learning rates based on running windows of gradients'
|
629 |
+
),
|
630 |
+
OptimInfo(
|
631 |
+
name='adagrad',
|
632 |
+
opt_class=torch.optim.Adagrad,
|
633 |
+
description='torch.optim.Adagrad, Adapts learning rates using cumulative squared gradients',
|
634 |
+
defaults={'eps': 1e-8}
|
635 |
+
),
|
636 |
+
OptimInfo(
|
637 |
+
name='adan',
|
638 |
+
opt_class=Adan,
|
639 |
+
description='Adaptive Nesterov Momentum Algorithm',
|
640 |
+
defaults={'no_prox': False},
|
641 |
+
has_betas=True,
|
642 |
+
num_betas=3
|
643 |
+
),
|
644 |
+
OptimInfo(
|
645 |
+
name='adanw',
|
646 |
+
opt_class=Adan,
|
647 |
+
description='Adaptive Nesterov Momentum with decoupled weight decay',
|
648 |
+
defaults={'no_prox': True},
|
649 |
+
has_betas=True,
|
650 |
+
num_betas=3
|
651 |
+
),
|
652 |
+
OptimInfo(
|
653 |
+
name='adahessian',
|
654 |
+
opt_class=Adahessian,
|
655 |
+
description='An Adaptive Second Order Optimizer',
|
656 |
+
has_betas=True,
|
657 |
+
second_order=True,
|
658 |
+
),
|
659 |
+
OptimInfo(
|
660 |
+
name='laprop',
|
661 |
+
opt_class=LaProp,
|
662 |
+
description='Separating Momentum and Adaptivity in Adam',
|
663 |
+
has_betas=True,
|
664 |
+
),
|
665 |
+
OptimInfo(
|
666 |
+
name='lion',
|
667 |
+
opt_class=Lion,
|
668 |
+
description='Evolved Sign Momentum optimizer for improved convergence',
|
669 |
+
has_eps=False,
|
670 |
+
has_betas=True
|
671 |
+
),
|
672 |
+
OptimInfo(
|
673 |
+
name='madgrad',
|
674 |
+
opt_class=MADGRAD,
|
675 |
+
description='Momentum-based Adaptive gradient method',
|
676 |
+
has_momentum=True
|
677 |
+
),
|
678 |
+
OptimInfo(
|
679 |
+
name='madgradw',
|
680 |
+
opt_class=MADGRAD,
|
681 |
+
description='MADGRAD with decoupled weight decay',
|
682 |
+
has_momentum=True,
|
683 |
+
defaults={'decoupled_decay': True}
|
684 |
+
),
|
685 |
+
OptimInfo(
|
686 |
+
name='mars',
|
687 |
+
opt_class=Mars,
|
688 |
+
description='Unleashing the Power of Variance Reduction for Training Large Models',
|
689 |
+
has_betas=True,
|
690 |
+
),
|
691 |
+
OptimInfo(
|
692 |
+
name='novograd',
|
693 |
+
opt_class=NvNovoGrad,
|
694 |
+
description='Normalized Adam with L2 norm gradient normalization',
|
695 |
+
has_betas=True
|
696 |
+
),
|
697 |
+
OptimInfo(
|
698 |
+
name='rmsprop',
|
699 |
+
opt_class=torch.optim.RMSprop,
|
700 |
+
description='torch.optim.RMSprop, Root Mean Square Propagation',
|
701 |
+
has_momentum=True,
|
702 |
+
defaults={'alpha': 0.9}
|
703 |
+
),
|
704 |
+
OptimInfo(
|
705 |
+
name='rmsproptf',
|
706 |
+
opt_class=RMSpropTF,
|
707 |
+
description='TensorFlow-style RMSprop implementation, Root Mean Square Propagation',
|
708 |
+
has_momentum=True,
|
709 |
+
defaults={'alpha': 0.9}
|
710 |
+
),
|
711 |
+
]
|
712 |
+
for opt in other_optimizers:
|
713 |
+
registry.register(opt)
|
714 |
+
registry.register_foreach_default('lion')
|
715 |
+
|
716 |
+
|
717 |
+
def _register_apex_optimizers(registry: OptimizerRegistry) -> None:
|
718 |
+
"""Register APEX optimizers (lazy import)"""
|
719 |
+
apex_optimizers = [
|
720 |
+
OptimInfo(
|
721 |
+
name='fusedsgd',
|
722 |
+
opt_class='apex.optimizers.FusedSGD',
|
723 |
+
description='NVIDIA APEX fused SGD implementation for faster training',
|
724 |
+
has_eps=False,
|
725 |
+
has_momentum=True,
|
726 |
+
defaults={'nesterov': True}
|
727 |
+
),
|
728 |
+
OptimInfo(
|
729 |
+
name='fusedadam',
|
730 |
+
opt_class='apex.optimizers.FusedAdam',
|
731 |
+
description='NVIDIA APEX fused Adam implementation',
|
732 |
+
has_betas=True,
|
733 |
+
defaults={'adam_w_mode': False}
|
734 |
+
),
|
735 |
+
OptimInfo(
|
736 |
+
name='fusedadamw',
|
737 |
+
opt_class='apex.optimizers.FusedAdam',
|
738 |
+
description='NVIDIA APEX fused AdamW implementation',
|
739 |
+
has_betas=True,
|
740 |
+
defaults={'adam_w_mode': True}
|
741 |
+
),
|
742 |
+
OptimInfo(
|
743 |
+
name='fusedlamb',
|
744 |
+
opt_class='apex.optimizers.FusedLAMB',
|
745 |
+
description='NVIDIA APEX fused LAMB implementation',
|
746 |
+
has_betas=True
|
747 |
+
),
|
748 |
+
OptimInfo(
|
749 |
+
name='fusednovograd',
|
750 |
+
opt_class='apex.optimizers.FusedNovoGrad',
|
751 |
+
description='NVIDIA APEX fused NovoGrad implementation',
|
752 |
+
has_betas=True,
|
753 |
+
defaults={'betas': (0.95, 0.98)}
|
754 |
+
),
|
755 |
+
]
|
756 |
+
for opt in apex_optimizers:
|
757 |
+
registry.register(opt)
|
758 |
+
|
759 |
+
|
760 |
+
def _register_bnb_optimizers(registry: OptimizerRegistry) -> None:
|
761 |
+
"""Register bitsandbytes optimizers (lazy import)"""
|
762 |
+
bnb_optimizers = [
|
763 |
+
OptimInfo(
|
764 |
+
name='bnbsgd',
|
765 |
+
opt_class='bitsandbytes.optim.SGD',
|
766 |
+
description='bitsandbytes SGD',
|
767 |
+
has_eps=False,
|
768 |
+
has_momentum=True,
|
769 |
+
defaults={'nesterov': True}
|
770 |
+
),
|
771 |
+
OptimInfo(
|
772 |
+
name='bnbsgd8bit',
|
773 |
+
opt_class='bitsandbytes.optim.SGD8bit',
|
774 |
+
description='bitsandbytes 8-bit SGD with dynamic quantization',
|
775 |
+
has_eps=False,
|
776 |
+
has_momentum=True,
|
777 |
+
defaults={'nesterov': True}
|
778 |
+
),
|
779 |
+
OptimInfo(
|
780 |
+
name='bnbadam',
|
781 |
+
opt_class='bitsandbytes.optim.Adam',
|
782 |
+
description='bitsandbytes Adam',
|
783 |
+
has_betas=True
|
784 |
+
),
|
785 |
+
OptimInfo(
|
786 |
+
name='bnbadam8bit',
|
787 |
+
opt_class='bitsandbytes.optim.Adam',
|
788 |
+
description='bitsandbytes 8-bit Adam with dynamic quantization',
|
789 |
+
has_betas=True
|
790 |
+
),
|
791 |
+
OptimInfo(
|
792 |
+
name='bnbadamw',
|
793 |
+
opt_class='bitsandbytes.optim.AdamW',
|
794 |
+
description='bitsandbytes AdamW',
|
795 |
+
has_betas=True
|
796 |
+
),
|
797 |
+
OptimInfo(
|
798 |
+
name='bnbadamw8bit',
|
799 |
+
opt_class='bitsandbytes.optim.AdamW',
|
800 |
+
description='bitsandbytes 8-bit AdamW with dynamic quantization',
|
801 |
+
has_betas=True
|
802 |
+
),
|
803 |
+
OptimInfo(
|
804 |
+
'bnblion',
|
805 |
+
'bitsandbytes.optim.Lion',
|
806 |
+
description='bitsandbytes Lion',
|
807 |
+
has_eps=False,
|
808 |
+
has_betas=True
|
809 |
+
),
|
810 |
+
OptimInfo(
|
811 |
+
'bnblion8bit',
|
812 |
+
'bitsandbytes.optim.Lion8bit',
|
813 |
+
description='bitsandbytes 8-bit Lion with dynamic quantization',
|
814 |
+
has_eps=False,
|
815 |
+
has_betas=True
|
816 |
+
),
|
817 |
+
OptimInfo(
|
818 |
+
'bnbademamix',
|
819 |
+
'bitsandbytes.optim.AdEMAMix',
|
820 |
+
description='bitsandbytes AdEMAMix',
|
821 |
+
has_betas=True,
|
822 |
+
num_betas=3,
|
823 |
+
),
|
824 |
+
OptimInfo(
|
825 |
+
'bnbademamix8bit',
|
826 |
+
'bitsandbytes.optim.AdEMAMix8bit',
|
827 |
+
description='bitsandbytes 8-bit AdEMAMix with dynamic quantization',
|
828 |
+
has_betas=True,
|
829 |
+
num_betas=3,
|
830 |
+
),
|
831 |
+
]
|
832 |
+
for opt in bnb_optimizers:
|
833 |
+
registry.register(opt)
|
834 |
+
|
835 |
+
|
836 |
+
default_registry = OptimizerRegistry()
|
837 |
+
|
838 |
+
def _register_default_optimizers() -> None:
|
839 |
+
"""Register all default optimizers to the global registry."""
|
840 |
+
# Register all optimizer groups
|
841 |
+
_register_sgd_variants(default_registry)
|
842 |
+
_register_adam_variants(default_registry)
|
843 |
+
_register_lamb_lars(default_registry)
|
844 |
+
_register_other_optimizers(default_registry)
|
845 |
+
_register_apex_optimizers(default_registry)
|
846 |
+
_register_bnb_optimizers(default_registry)
|
847 |
+
_register_cautious_optimizers(default_registry)
|
848 |
+
|
849 |
+
# Register aliases
|
850 |
+
default_registry.register_alias('nesterov', 'sgd')
|
851 |
+
default_registry.register_alias('nesterovw', 'sgdw')
|
852 |
+
|
853 |
+
|
854 |
+
# Initialize default registry
|
855 |
+
_register_default_optimizers()
|
856 |
+
|
857 |
+
# Public API
|
858 |
+
|
859 |
+
def list_optimizers(
|
860 |
+
filter: Union[str, List[str]] = '',
|
861 |
+
exclude_filters: Optional[List[str]] = None,
|
862 |
+
with_description: bool = False,
|
863 |
+
) -> List[Union[str, Tuple[str, str]]]:
|
864 |
+
"""List available optimizer names, optionally filtered.
|
865 |
+
|
866 |
+
List all registered optimizers, with optional filtering using wildcard patterns.
|
867 |
+
Optimizers can be filtered using include and exclude patterns, and can optionally
|
868 |
+
return descriptions with each optimizer name.
|
869 |
+
|
870 |
+
Args:
|
871 |
+
filter: Wildcard style filter string or list of filter strings
|
872 |
+
(e.g., 'adam*' for all Adam variants, or ['adam*', '*8bit'] for
|
873 |
+
Adam variants and 8-bit optimizers). Empty string means no filtering.
|
874 |
+
exclude_filters: Optional list of wildcard patterns to exclude. For example,
|
875 |
+
['*8bit', 'fused*'] would exclude 8-bit and fused implementations.
|
876 |
+
with_description: If True, returns tuples of (name, description) instead of
|
877 |
+
just names. Descriptions provide brief explanations of optimizer characteristics.
|
878 |
+
|
879 |
+
Returns:
|
880 |
+
If with_description is False:
|
881 |
+
List of optimizer names as strings (e.g., ['adam', 'adamw', ...])
|
882 |
+
If with_description is True:
|
883 |
+
List of tuples of (name, description) (e.g., [('adam', 'Adaptive Moment...'), ...])
|
884 |
+
|
885 |
+
Examples:
|
886 |
+
>>> list_optimizers()
|
887 |
+
['adam', 'adamw', 'sgd', ...]
|
888 |
+
|
889 |
+
>>> list_optimizers(['la*', 'nla*']) # List lamb & lars
|
890 |
+
['lamb', 'lambc', 'larc', 'lars', 'nlarc', 'nlars']
|
891 |
+
|
892 |
+
>>> list_optimizers('*adam*', exclude_filters=['bnb*', 'fused*']) # Exclude bnb & apex adam optimizers
|
893 |
+
['adam', 'adamax', 'adamp', 'adamw', 'nadam', 'nadamw', 'radam']
|
894 |
+
|
895 |
+
>>> list_optimizers(with_description=True) # Get descriptions
|
896 |
+
[('adabelief', 'Adapts learning rate based on gradient prediction error'),
|
897 |
+
('adadelta', 'torch.optim Adadelta, Adapts learning rates based on running windows of gradients'),
|
898 |
+
('adafactor', 'Memory-efficient implementation of Adam with factored gradients'),
|
899 |
+
...]
|
900 |
+
"""
|
901 |
+
return default_registry.list_optimizers(filter, exclude_filters, with_description)
|
902 |
+
|
903 |
+
|
904 |
+
def get_optimizer_info(name: str) -> OptimInfo:
|
905 |
+
"""Get the OptimInfo for an optimizer.
|
906 |
+
|
907 |
+
Args:
|
908 |
+
name: Name of the optimizer
|
909 |
+
|
910 |
+
Returns:
|
911 |
+
OptimInfo configuration
|
912 |
+
|
913 |
+
Raises:
|
914 |
+
ValueError: If optimizer is not found
|
915 |
+
"""
|
916 |
+
return default_registry.get_optimizer_info(name)
|
917 |
+
|
918 |
+
|
919 |
+
def get_optimizer_class(
|
920 |
+
name: str,
|
921 |
+
bind_defaults: bool = True,
|
922 |
+
) -> Union[OptimType, OptimizerCallable]:
|
923 |
+
"""Get optimizer class by name with option to bind default arguments.
|
924 |
+
|
925 |
+
Retrieves the optimizer class or a partial function with default arguments bound.
|
926 |
+
This allows direct instantiation of optimizers with their default configurations
|
927 |
+
without going through the full factory.
|
928 |
+
|
929 |
+
Args:
|
930 |
+
name: Name of the optimizer to retrieve (e.g., 'adam', 'sgd')
|
931 |
+
bind_defaults: If True, returns a partial function with default arguments from OptimInfo bound.
|
932 |
+
If False, returns the raw optimizer class.
|
933 |
+
|
934 |
+
Returns:
|
935 |
+
If bind_defaults is False:
|
936 |
+
The optimizer class (e.g., torch.optim.Adam)
|
937 |
+
If bind_defaults is True:
|
938 |
+
A partial function with default arguments bound
|
939 |
+
|
940 |
+
Raises:
|
941 |
+
ValueError: If optimizer name is not found in registry
|
942 |
+
|
943 |
+
Examples:
|
944 |
+
>>> # Get SGD with nesterov momentum default
|
945 |
+
>>> SGD = get_optimizer_class('sgd') # nesterov=True bound
|
946 |
+
>>> opt = SGD(model.parameters(), lr=0.1, momentum=0.9)
|
947 |
+
|
948 |
+
>>> # Get raw optimizer class
|
949 |
+
>>> SGD = get_optimizer_class('sgd')
|
950 |
+
>>> opt = SGD(model.parameters(), lr=1e-3, momentum=0.9)
|
951 |
+
|
952 |
+
"""
|
953 |
+
return default_registry.get_optimizer_class(name, bind_defaults=bind_defaults)
|
954 |
+
|
955 |
+
|
956 |
+
def create_optimizer_v2(
|
957 |
+
model_or_params: Union[nn.Module, ParamsT],
|
958 |
+
opt: str = 'sgd',
|
959 |
+
lr: Optional[float] = None,
|
960 |
+
weight_decay: float = 0.,
|
961 |
+
momentum: float = 0.9,
|
962 |
+
foreach: Optional[bool] = None,
|
963 |
+
filter_bias_and_bn: bool = True,
|
964 |
+
layer_decay: Optional[float] = None,
|
965 |
+
param_group_fn: Optional[Callable[[nn.Module], ParamsT]] = None,
|
966 |
+
**kwargs: Any,
|
967 |
+
) -> torch.optim.Optimizer:
|
968 |
+
"""Create an optimizer instance via timm registry.
|
969 |
+
|
970 |
+
Creates and configures an optimizer with appropriate parameter groups and settings.
|
971 |
+
Supports automatic parameter group creation for weight decay and layer-wise learning
|
972 |
+
rates, as well as custom parameter grouping.
|
973 |
+
|
974 |
+
Args:
|
975 |
+
model_or_params: A PyTorch model or an iterable of parameters/parameter groups.
|
976 |
+
If a model is provided, parameters will be automatically extracted and grouped
|
977 |
+
based on the other arguments.
|
978 |
+
opt: Name of the optimizer to create (e.g., 'adam', 'adamw', 'sgd').
|
979 |
+
Use list_optimizers() to see available options.
|
980 |
+
lr: Learning rate. If None, will use the optimizer's default.
|
981 |
+
weight_decay: Weight decay factor. Will be used to create param groups if model_or_params is a model.
|
982 |
+
momentum: Momentum factor for optimizers that support it. Only used if the
|
983 |
+
chosen optimizer accepts a momentum parameter.
|
984 |
+
foreach: Enable/disable foreach (multi-tensor) implementation if available.
|
985 |
+
If None, will use optimizer-specific defaults.
|
986 |
+
filter_bias_and_bn: If True, bias, norm layer parameters (all 1d params) will not have
|
987 |
+
weight decay applied. Only used when model_or_params is a model and
|
988 |
+
weight_decay > 0.
|
989 |
+
layer_decay: Optional layer-wise learning rate decay factor. If provided,
|
990 |
+
learning rates will be scaled by layer_decay^(max_depth - layer_depth).
|
991 |
+
Only used when model_or_params is a model.
|
992 |
+
param_group_fn: Optional function to create custom parameter groups.
|
993 |
+
If provided, other parameter grouping options will be ignored.
|
994 |
+
**kwargs: Additional optimizer-specific arguments (e.g., betas for Adam).
|
995 |
+
|
996 |
+
Returns:
|
997 |
+
Configured optimizer instance.
|
998 |
+
|
999 |
+
Examples:
|
1000 |
+
>>> # Basic usage with a model
|
1001 |
+
>>> optimizer = create_optimizer_v2(model, 'adamw', lr=1e-3)
|
1002 |
+
|
1003 |
+
>>> # SGD with momentum and weight decay
|
1004 |
+
>>> optimizer = create_optimizer_v2(
|
1005 |
+
... model, 'sgd', lr=0.1, momentum=0.9, weight_decay=1e-4
|
1006 |
+
... )
|
1007 |
+
|
1008 |
+
>>> # Adam with layer-wise learning rate decay
|
1009 |
+
>>> optimizer = create_optimizer_v2(
|
1010 |
+
... model, 'adam', lr=1e-3, layer_decay=0.7
|
1011 |
+
... )
|
1012 |
+
|
1013 |
+
>>> # Custom parameter groups
|
1014 |
+
>>> def group_fn(model):
|
1015 |
+
... return [
|
1016 |
+
... {'params': model.backbone.parameters(), 'lr': 1e-4},
|
1017 |
+
... {'params': model.head.parameters(), 'lr': 1e-3}
|
1018 |
+
... ]
|
1019 |
+
>>> optimizer = create_optimizer_v2(
|
1020 |
+
... model, 'sgd', param_group_fn=group_fn
|
1021 |
+
... )
|
1022 |
+
|
1023 |
+
Note:
|
1024 |
+
Parameter group handling precedence:
|
1025 |
+
1. If param_group_fn is provided, it will be used exclusively
|
1026 |
+
2. If layer_decay is provided, layer-wise groups will be created
|
1027 |
+
3. If weight_decay > 0 and filter_bias_and_bn is True, weight decay groups will be created
|
1028 |
+
4. Otherwise, all parameters will be in a single group
|
1029 |
+
"""
|
1030 |
+
|
1031 |
+
return default_registry.create_optimizer(
|
1032 |
+
model_or_params,
|
1033 |
+
opt=opt,
|
1034 |
+
lr=lr,
|
1035 |
+
weight_decay=weight_decay,
|
1036 |
+
momentum=momentum,
|
1037 |
+
foreach=foreach,
|
1038 |
+
weight_decay_exclude_1d=filter_bias_and_bn,
|
1039 |
+
layer_decay=layer_decay,
|
1040 |
+
param_group_fn=param_group_fn,
|
1041 |
+
**kwargs
|
1042 |
+
)
|
1043 |
+
|
1044 |
+
|
1045 |
+
def optimizer_kwargs(cfg):
|
1046 |
+
""" cfg/argparse to kwargs helper
|
1047 |
+
Convert optimizer args in argparse args or cfg like object to keyword args for updated create fn.
|
1048 |
+
"""
|
1049 |
+
kwargs = dict(
|
1050 |
+
opt=cfg.opt,
|
1051 |
+
lr=cfg.lr,
|
1052 |
+
weight_decay=cfg.weight_decay,
|
1053 |
+
momentum=cfg.momentum,
|
1054 |
+
)
|
1055 |
+
if getattr(cfg, 'opt_eps', None) is not None:
|
1056 |
+
kwargs['eps'] = cfg.opt_eps
|
1057 |
+
if getattr(cfg, 'opt_betas', None) is not None:
|
1058 |
+
kwargs['betas'] = cfg.opt_betas
|
1059 |
+
if getattr(cfg, 'layer_decay', None) is not None:
|
1060 |
+
kwargs['layer_decay'] = cfg.layer_decay
|
1061 |
+
if getattr(cfg, 'opt_args', None) is not None:
|
1062 |
+
kwargs.update(cfg.opt_args)
|
1063 |
+
if getattr(cfg, 'opt_foreach', None) is not None:
|
1064 |
+
kwargs['foreach'] = cfg.opt_foreach
|
1065 |
+
return kwargs
|
1066 |
+
|
1067 |
+
|
1068 |
+
def create_optimizer(
|
1069 |
+
args,
|
1070 |
+
model: Union[nn.Module, ParamsT],
|
1071 |
+
filter_bias_and_bn: bool = True,
|
1072 |
+
) -> torch.optim.Optimizer:
|
1073 |
+
""" Legacy optimizer factory for backwards compatibility.
|
1074 |
+
NOTE: Use create_optimizer_v2 for new code.
|
1075 |
+
"""
|
1076 |
+
return create_optimizer_v2(
|
1077 |
+
model,
|
1078 |
+
**optimizer_kwargs(cfg=args),
|
1079 |
+
filter_bias_and_bn=filter_bias_and_bn,
|
1080 |
+
)
|
1081 |
+
|
pytorch-image-models/timm/optim/_param_groups.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from itertools import islice
|
3 |
+
from typing import Collection, Optional
|
4 |
+
|
5 |
+
from torch import nn as nn
|
6 |
+
|
7 |
+
from timm.models import group_parameters
|
8 |
+
|
9 |
+
|
10 |
+
_logger = logging.getLogger(__name__)
|
11 |
+
|
12 |
+
|
13 |
+
def param_groups_weight_decay(
|
14 |
+
model: nn.Module,
|
15 |
+
weight_decay: float = 1e-5,
|
16 |
+
no_weight_decay_list: Collection[str] = (),
|
17 |
+
):
|
18 |
+
no_weight_decay_list = set(no_weight_decay_list)
|
19 |
+
decay = []
|
20 |
+
no_decay = []
|
21 |
+
for name, param in model.named_parameters():
|
22 |
+
if not param.requires_grad:
|
23 |
+
continue
|
24 |
+
|
25 |
+
if param.ndim <= 1 or name.endswith(".bias") or name in no_weight_decay_list:
|
26 |
+
no_decay.append(param)
|
27 |
+
else:
|
28 |
+
decay.append(param)
|
29 |
+
|
30 |
+
return [
|
31 |
+
{'params': no_decay, 'weight_decay': 0.},
|
32 |
+
{'params': decay, 'weight_decay': weight_decay}]
|
33 |
+
|
34 |
+
|
35 |
+
def _group(it, size):
|
36 |
+
it = iter(it)
|
37 |
+
return iter(lambda: tuple(islice(it, size)), ())
|
38 |
+
|
39 |
+
|
40 |
+
def auto_group_layers(model, layers_per_group=12, num_groups=None):
|
41 |
+
def _in_head(n, hp):
|
42 |
+
if not hp:
|
43 |
+
return True
|
44 |
+
elif isinstance(hp, (tuple, list)):
|
45 |
+
return any([n.startswith(hpi) for hpi in hp])
|
46 |
+
else:
|
47 |
+
return n.startswith(hp)
|
48 |
+
|
49 |
+
head_prefix = getattr(model, 'pretrained_cfg', {}).get('classifier', None)
|
50 |
+
names_trunk = []
|
51 |
+
names_head = []
|
52 |
+
for n, _ in model.named_parameters():
|
53 |
+
names_head.append(n) if _in_head(n, head_prefix) else names_trunk.append(n)
|
54 |
+
|
55 |
+
# group non-head layers
|
56 |
+
num_trunk_layers = len(names_trunk)
|
57 |
+
if num_groups is not None:
|
58 |
+
layers_per_group = -(num_trunk_layers // -num_groups)
|
59 |
+
names_trunk = list(_group(names_trunk, layers_per_group))
|
60 |
+
|
61 |
+
num_trunk_groups = len(names_trunk)
|
62 |
+
layer_map = {n: i for i, l in enumerate(names_trunk) for n in l}
|
63 |
+
layer_map.update({n: num_trunk_groups for n in names_head})
|
64 |
+
return layer_map
|
65 |
+
|
66 |
+
_layer_map = auto_group_layers # backward compat
|
67 |
+
|
68 |
+
|
69 |
+
def param_groups_layer_decay(
|
70 |
+
model: nn.Module,
|
71 |
+
weight_decay: float = 0.05,
|
72 |
+
no_weight_decay_list: Collection[str] = (),
|
73 |
+
weight_decay_exclude_1d: bool = True,
|
74 |
+
layer_decay: float = .75,
|
75 |
+
end_layer_decay: Optional[float] = None,
|
76 |
+
verbose: bool = False,
|
77 |
+
):
|
78 |
+
"""
|
79 |
+
Parameter groups for layer-wise lr decay & weight decay
|
80 |
+
Based on BEiT: https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L58
|
81 |
+
"""
|
82 |
+
no_weight_decay_list = set(no_weight_decay_list)
|
83 |
+
param_group_names = {} # NOTE for debugging
|
84 |
+
param_groups = {}
|
85 |
+
|
86 |
+
if hasattr(model, 'group_matcher'):
|
87 |
+
# FIXME interface needs more work
|
88 |
+
layer_map = group_parameters(model, model.group_matcher(coarse=False), reverse=True)
|
89 |
+
else:
|
90 |
+
# fallback
|
91 |
+
layer_map = auto_group_layers(model)
|
92 |
+
num_layers = max(layer_map.values()) + 1
|
93 |
+
layer_max = num_layers - 1
|
94 |
+
layer_scales = list(layer_decay ** (layer_max - i) for i in range(num_layers))
|
95 |
+
|
96 |
+
for name, param in model.named_parameters():
|
97 |
+
if not param.requires_grad:
|
98 |
+
continue
|
99 |
+
|
100 |
+
# no decay: all 1D parameters and model specific ones
|
101 |
+
if (weight_decay_exclude_1d and param.ndim <= 1) or name in no_weight_decay_list:
|
102 |
+
g_decay = "no_decay"
|
103 |
+
this_decay = 0.
|
104 |
+
else:
|
105 |
+
g_decay = "decay"
|
106 |
+
this_decay = weight_decay
|
107 |
+
|
108 |
+
layer_id = layer_map.get(name, layer_max)
|
109 |
+
group_name = "layer_%d_%s" % (layer_id, g_decay)
|
110 |
+
|
111 |
+
if group_name not in param_groups:
|
112 |
+
this_scale = layer_scales[layer_id]
|
113 |
+
param_group_names[group_name] = {
|
114 |
+
"lr_scale": this_scale,
|
115 |
+
"weight_decay": this_decay,
|
116 |
+
"param_names": [],
|
117 |
+
}
|
118 |
+
param_groups[group_name] = {
|
119 |
+
"lr_scale": this_scale,
|
120 |
+
"weight_decay": this_decay,
|
121 |
+
"params": [],
|
122 |
+
}
|
123 |
+
|
124 |
+
param_group_names[group_name]["param_names"].append(name)
|
125 |
+
param_groups[group_name]["params"].append(param)
|
126 |
+
|
127 |
+
if verbose:
|
128 |
+
import json
|
129 |
+
_logger.info("parameter groups: \n%s" % json.dumps(param_group_names, indent=2))
|
130 |
+
|
131 |
+
return list(param_groups.values())
|
pytorch-image-models/timm/optim/adabelief.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch.optim.optimizer import Optimizer
|
4 |
+
|
5 |
+
|
6 |
+
class AdaBelief(Optimizer):
|
7 |
+
r"""Implements AdaBelief algorithm. Modified from Adam in PyTorch
|
8 |
+
|
9 |
+
Arguments:
|
10 |
+
params (iterable): iterable of parameters to optimize or dicts defining
|
11 |
+
parameter groups
|
12 |
+
lr (float, optional): learning rate (default: 1e-3)
|
13 |
+
betas (Tuple[float, float], optional): coefficients used for computing
|
14 |
+
running averages of gradient and its square (default: (0.9, 0.999))
|
15 |
+
eps (float, optional): term added to the denominator to improve
|
16 |
+
numerical stability (default: 1e-16)
|
17 |
+
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
18 |
+
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
|
19 |
+
algorithm from the paper `On the Convergence of Adam and Beyond`_
|
20 |
+
(default: False)
|
21 |
+
decoupled_decay (boolean, optional): (default: True) If set as True, then
|
22 |
+
the optimizer uses decoupled weight decay as in AdamW
|
23 |
+
fixed_decay (boolean, optional): (default: False) This is used when weight_decouple
|
24 |
+
is set as True.
|
25 |
+
When fixed_decay == True, the weight decay is performed as
|
26 |
+
$W_{new} = W_{old} - W_{old} \times decay$.
|
27 |
+
When fixed_decay == False, the weight decay is performed as
|
28 |
+
$W_{new} = W_{old} - W_{old} \times decay \times lr$. Note that in this case, the
|
29 |
+
weight decay ratio decreases with learning rate (lr).
|
30 |
+
rectify (boolean, optional): (default: True) If set as True, then perform the rectified
|
31 |
+
update similar to RAdam
|
32 |
+
degenerated_to_sgd (boolean, optional) (default:True) If set as True, then perform SGD update
|
33 |
+
when variance of gradient is high
|
34 |
+
reference: AdaBelief Optimizer, adapting stepsizes by the belief in observed gradients, NeurIPS 2020
|
35 |
+
|
36 |
+
For a complete table of recommended hyperparameters, see https://github.com/juntang-zhuang/Adabelief-Optimizer'
|
37 |
+
For example train/args for EfficientNet see these gists
|
38 |
+
- link to train_scipt: https://gist.github.com/juntang-zhuang/0a501dd51c02278d952cf159bc233037
|
39 |
+
- link to args.yaml: https://gist.github.com/juntang-zhuang/517ce3c27022b908bb93f78e4f786dc3
|
40 |
+
"""
|
41 |
+
|
42 |
+
def __init__(
|
43 |
+
self,
|
44 |
+
params,
|
45 |
+
lr=1e-3,
|
46 |
+
betas=(0.9, 0.999),
|
47 |
+
eps=1e-16,
|
48 |
+
weight_decay=0,
|
49 |
+
amsgrad=False,
|
50 |
+
decoupled_decay=True,
|
51 |
+
fixed_decay=False,
|
52 |
+
rectify=True,
|
53 |
+
degenerated_to_sgd=True,
|
54 |
+
):
|
55 |
+
if not 0.0 <= lr:
|
56 |
+
raise ValueError("Invalid learning rate: {}".format(lr))
|
57 |
+
if not 0.0 <= eps:
|
58 |
+
raise ValueError("Invalid epsilon value: {}".format(eps))
|
59 |
+
if not 0.0 <= betas[0] < 1.0:
|
60 |
+
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
61 |
+
if not 0.0 <= betas[1] < 1.0:
|
62 |
+
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
63 |
+
|
64 |
+
if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict):
|
65 |
+
for param in params:
|
66 |
+
if 'betas' in param and (param['betas'][0] != betas[0] or param['betas'][1] != betas[1]):
|
67 |
+
param['buffer'] = [[None, None, None] for _ in range(10)]
|
68 |
+
|
69 |
+
defaults = dict(
|
70 |
+
lr=lr,
|
71 |
+
betas=betas,
|
72 |
+
eps=eps,
|
73 |
+
weight_decay=weight_decay,
|
74 |
+
amsgrad=amsgrad,
|
75 |
+
degenerated_to_sgd=degenerated_to_sgd,
|
76 |
+
decoupled_decay=decoupled_decay,
|
77 |
+
rectify=rectify,
|
78 |
+
fixed_decay=fixed_decay,
|
79 |
+
buffer=[[None, None, None] for _ in range(10)]
|
80 |
+
)
|
81 |
+
super(AdaBelief, self).__init__(params, defaults)
|
82 |
+
|
83 |
+
def __setstate__(self, state):
|
84 |
+
super(AdaBelief, self).__setstate__(state)
|
85 |
+
for group in self.param_groups:
|
86 |
+
group.setdefault('amsgrad', False)
|
87 |
+
|
88 |
+
@torch.no_grad()
|
89 |
+
def reset(self):
|
90 |
+
for group in self.param_groups:
|
91 |
+
for p in group['params']:
|
92 |
+
state = self.state[p]
|
93 |
+
amsgrad = group['amsgrad']
|
94 |
+
|
95 |
+
# State initialization
|
96 |
+
state['step'] = 0
|
97 |
+
# Exponential moving average of gradient values
|
98 |
+
state['exp_avg'] = torch.zeros_like(p)
|
99 |
+
|
100 |
+
# Exponential moving average of squared gradient values
|
101 |
+
state['exp_avg_var'] = torch.zeros_like(p)
|
102 |
+
if amsgrad:
|
103 |
+
# Maintains max of all exp. moving avg. of sq. grad. values
|
104 |
+
state['max_exp_avg_var'] = torch.zeros_like(p)
|
105 |
+
|
106 |
+
@torch.no_grad()
|
107 |
+
def step(self, closure=None):
|
108 |
+
"""Performs a single optimization step.
|
109 |
+
Arguments:
|
110 |
+
closure (callable, optional): A closure that reevaluates the model
|
111 |
+
and returns the loss.
|
112 |
+
"""
|
113 |
+
loss = None
|
114 |
+
if closure is not None:
|
115 |
+
with torch.enable_grad():
|
116 |
+
loss = closure()
|
117 |
+
|
118 |
+
for group in self.param_groups:
|
119 |
+
for p in group['params']:
|
120 |
+
if p.grad is None:
|
121 |
+
continue
|
122 |
+
grad = p.grad
|
123 |
+
if grad.dtype in {torch.float16, torch.bfloat16}:
|
124 |
+
grad = grad.float()
|
125 |
+
if grad.is_sparse:
|
126 |
+
raise RuntimeError(
|
127 |
+
'AdaBelief does not support sparse gradients, please consider SparseAdam instead')
|
128 |
+
|
129 |
+
p_fp32 = p
|
130 |
+
if p.dtype in {torch.float16, torch.bfloat16}:
|
131 |
+
p_fp32 = p_fp32.float()
|
132 |
+
|
133 |
+
amsgrad = group['amsgrad']
|
134 |
+
beta1, beta2 = group['betas']
|
135 |
+
state = self.state[p]
|
136 |
+
# State initialization
|
137 |
+
if len(state) == 0:
|
138 |
+
state['step'] = 0
|
139 |
+
# Exponential moving average of gradient values
|
140 |
+
state['exp_avg'] = torch.zeros_like(p_fp32)
|
141 |
+
# Exponential moving average of squared gradient values
|
142 |
+
state['exp_avg_var'] = torch.zeros_like(p_fp32)
|
143 |
+
if amsgrad:
|
144 |
+
# Maintains max of all exp. moving avg. of sq. grad. values
|
145 |
+
state['max_exp_avg_var'] = torch.zeros_like(p_fp32)
|
146 |
+
|
147 |
+
# perform weight decay, check if decoupled weight decay
|
148 |
+
if group['decoupled_decay']:
|
149 |
+
if not group['fixed_decay']:
|
150 |
+
p_fp32.mul_(1.0 - group['lr'] * group['weight_decay'])
|
151 |
+
else:
|
152 |
+
p_fp32.mul_(1.0 - group['weight_decay'])
|
153 |
+
else:
|
154 |
+
if group['weight_decay'] != 0:
|
155 |
+
grad.add_(p_fp32, alpha=group['weight_decay'])
|
156 |
+
|
157 |
+
# get current state variable
|
158 |
+
exp_avg, exp_avg_var = state['exp_avg'], state['exp_avg_var']
|
159 |
+
|
160 |
+
state['step'] += 1
|
161 |
+
bias_correction1 = 1 - beta1 ** state['step']
|
162 |
+
bias_correction2 = 1 - beta2 ** state['step']
|
163 |
+
|
164 |
+
# Update first and second moment running average
|
165 |
+
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
|
166 |
+
grad_residual = grad - exp_avg
|
167 |
+
exp_avg_var.mul_(beta2).addcmul_(grad_residual, grad_residual, value=1 - beta2)
|
168 |
+
|
169 |
+
if amsgrad:
|
170 |
+
max_exp_avg_var = state['max_exp_avg_var']
|
171 |
+
# Maintains the maximum of all 2nd moment running avg. till now
|
172 |
+
torch.max(max_exp_avg_var, exp_avg_var.add_(group['eps']), out=max_exp_avg_var)
|
173 |
+
|
174 |
+
# Use the max. for normalizing running avg. of gradient
|
175 |
+
denom = (max_exp_avg_var.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
|
176 |
+
else:
|
177 |
+
denom = (exp_avg_var.add_(group['eps']).sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
|
178 |
+
|
179 |
+
# update
|
180 |
+
if not group['rectify']:
|
181 |
+
# Default update
|
182 |
+
step_size = group['lr'] / bias_correction1
|
183 |
+
p_fp32.addcdiv_(exp_avg, denom, value=-step_size)
|
184 |
+
else:
|
185 |
+
# Rectified update, forked from RAdam
|
186 |
+
buffered = group['buffer'][int(state['step'] % 10)]
|
187 |
+
if state['step'] == buffered[0]:
|
188 |
+
num_sma, step_size = buffered[1], buffered[2]
|
189 |
+
else:
|
190 |
+
buffered[0] = state['step']
|
191 |
+
beta2_t = beta2 ** state['step']
|
192 |
+
num_sma_max = 2 / (1 - beta2) - 1
|
193 |
+
num_sma = num_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
|
194 |
+
buffered[1] = num_sma
|
195 |
+
|
196 |
+
# more conservative since it's an approximated value
|
197 |
+
if num_sma >= 5:
|
198 |
+
step_size = math.sqrt(
|
199 |
+
(1 - beta2_t) *
|
200 |
+
(num_sma - 4) / (num_sma_max - 4) *
|
201 |
+
(num_sma - 2) / num_sma *
|
202 |
+
num_sma_max / (num_sma_max - 2)) / (1 - beta1 ** state['step'])
|
203 |
+
elif group['degenerated_to_sgd']:
|
204 |
+
step_size = 1.0 / (1 - beta1 ** state['step'])
|
205 |
+
else:
|
206 |
+
step_size = -1
|
207 |
+
buffered[2] = step_size
|
208 |
+
|
209 |
+
if num_sma >= 5:
|
210 |
+
denom = exp_avg_var.sqrt().add_(group['eps'])
|
211 |
+
p_fp32.addcdiv_(exp_avg, denom, value=-step_size * group['lr'])
|
212 |
+
elif step_size > 0:
|
213 |
+
p_fp32.add_(exp_avg, alpha=-step_size * group['lr'])
|
214 |
+
|
215 |
+
if p.dtype in {torch.float16, torch.bfloat16}:
|
216 |
+
p.copy_(p_fp32)
|
217 |
+
|
218 |
+
return loss
|
pytorch-image-models/timm/optim/adafactor.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Adafactor Optimizer
|
2 |
+
|
3 |
+
Lifted from https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py
|
4 |
+
|
5 |
+
Modified by Ross Wightman to fix some issues with factorization dims for non nn.Linear layers
|
6 |
+
|
7 |
+
Original header/copyright below.
|
8 |
+
"""
|
9 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
10 |
+
#
|
11 |
+
# This source code is licensed under the MIT license found in the
|
12 |
+
# LICENSE file in the root directory of this source tree.
|
13 |
+
import math
|
14 |
+
from typing import Optional, Tuple
|
15 |
+
|
16 |
+
import torch
|
17 |
+
|
18 |
+
from ._types import ParamsT
|
19 |
+
|
20 |
+
|
21 |
+
class Adafactor(torch.optim.Optimizer):
|
22 |
+
"""Implements Adafactor algorithm.
|
23 |
+
|
24 |
+
This implementation is based on: `Adafactor: Adaptive Learning Rates with Sublinear Memory Cost`
|
25 |
+
(see https://arxiv.org/abs/1804.04235)
|
26 |
+
|
27 |
+
Note that this optimizer internally adjusts the learning rate depending on the
|
28 |
+
*scale_parameter*, *relative_step* and *warmup_init* options.
|
29 |
+
|
30 |
+
To use a manual (external) learning rate schedule you should set `scale_parameter=False` and
|
31 |
+
`relative_step=False`.
|
32 |
+
|
33 |
+
Ags:
|
34 |
+
params: iterable of parameters to optimize or dicts defining parameter groups
|
35 |
+
lr: external learning rate
|
36 |
+
eps: regularization constants for square gradient and parameter scale respectively
|
37 |
+
eps_scale: regularization constants for parameter scale respectively
|
38 |
+
clip_threshold: threshold of root-mean-square of final gradient update
|
39 |
+
decay_rate: coefficient used to compute running averages of square gradient
|
40 |
+
beta1: coefficient used for computing running averages of gradient
|
41 |
+
weight_decay: weight decay
|
42 |
+
scale_parameter: if True, learning rate is scaled by root-mean-square of parameter
|
43 |
+
warmup_init: time-dependent learning rate computation depends on whether warm-up initialization is being used
|
44 |
+
"""
|
45 |
+
|
46 |
+
def __init__(
|
47 |
+
self,
|
48 |
+
params: ParamsT,
|
49 |
+
lr: Optional[float] = None,
|
50 |
+
eps: float = 1e-30,
|
51 |
+
eps_scale: float = 1e-3,
|
52 |
+
clip_threshold: float = 1.0,
|
53 |
+
decay_rate: float = -0.8,
|
54 |
+
betas: Optional[Tuple[float, float]] = None,
|
55 |
+
weight_decay: float = 0.0,
|
56 |
+
scale_parameter: bool = True,
|
57 |
+
warmup_init: bool = False,
|
58 |
+
min_dim_size_to_factor: int = 16,
|
59 |
+
caution: bool = False,
|
60 |
+
):
|
61 |
+
relative_step = not lr
|
62 |
+
if warmup_init and not relative_step:
|
63 |
+
raise ValueError('warmup_init requires relative_step=True')
|
64 |
+
|
65 |
+
beta1 = None if betas is None else betas[0] # make it compat with standard betas arg
|
66 |
+
defaults = dict(
|
67 |
+
lr=lr,
|
68 |
+
eps=eps,
|
69 |
+
eps_scale=eps_scale,
|
70 |
+
clip_threshold=clip_threshold,
|
71 |
+
decay_rate=decay_rate,
|
72 |
+
beta1=beta1,
|
73 |
+
weight_decay=weight_decay,
|
74 |
+
scale_parameter=scale_parameter,
|
75 |
+
relative_step=relative_step,
|
76 |
+
warmup_init=warmup_init,
|
77 |
+
min_dim_size_to_factor=min_dim_size_to_factor,
|
78 |
+
caution=caution,
|
79 |
+
)
|
80 |
+
super(Adafactor, self).__init__(params, defaults)
|
81 |
+
|
82 |
+
def __setstate__(self, state):
|
83 |
+
super().__setstate__(state)
|
84 |
+
for group in self.param_groups:
|
85 |
+
group.setdefault('caution', False)
|
86 |
+
group.setdefault('min_dim_size_to_factor', 16)
|
87 |
+
|
88 |
+
@staticmethod
|
89 |
+
def _get_lr(param_group, param_state):
|
90 |
+
if param_group['relative_step']:
|
91 |
+
min_step = 1e-6 * param_state['step'] if param_group['warmup_init'] else 1e-2
|
92 |
+
lr_t = min(min_step, 1.0 / math.sqrt(param_state['step']))
|
93 |
+
param_scale = 1.0
|
94 |
+
if param_group['scale_parameter']:
|
95 |
+
param_scale = max(param_group['eps_scale'], param_state['RMS'])
|
96 |
+
param_group['lr'] = lr_t * param_scale
|
97 |
+
return param_group['lr']
|
98 |
+
|
99 |
+
@staticmethod
|
100 |
+
def _get_options(param_group, param_shape, min_size_to_factor=16):
|
101 |
+
use_first_moment = param_group['beta1'] is not None
|
102 |
+
factored = None
|
103 |
+
ndim = len(param_shape)
|
104 |
+
# Use a simple heuristic to pick factorization row & col, note other PyTorch impl tend to
|
105 |
+
# always use -2, -1 BUT this will not pick correct dims for convolutions. This is a simple
|
106 |
+
# approach that should work in most cases, compare to the slightly more involved approach
|
107 |
+
# in AdafactorBigVision that sorts dims by size, please report if wrong dims chosen.
|
108 |
+
if ndim > 2 and param_shape[0] > min_size_to_factor and param_shape[1] > min_size_to_factor:
|
109 |
+
# nD convs in torch are ND + 2 dim weights with leading in/out chs
|
110 |
+
factored = 0, 1
|
111 |
+
elif ndim >= 2 and param_shape[-2] > min_size_to_factor and param_shape[-1] > min_size_to_factor:
|
112 |
+
# if the criteria above didn't match, test trailing dims for eligibility as per original impl
|
113 |
+
factored = ndim - 2, ndim - 1
|
114 |
+
|
115 |
+
return factored, use_first_moment
|
116 |
+
|
117 |
+
@staticmethod
|
118 |
+
def _rms(tensor):
|
119 |
+
return tensor.norm(2) / (tensor.numel() ** 0.5)
|
120 |
+
|
121 |
+
def _approx_sq_grad(self, exp_avg_sq_row, exp_avg_sq_col, dim_col, dim_row):
|
122 |
+
# from our dim heuristic, always dim_col < dim_row, so col reduction dim for factored row = dim_col
|
123 |
+
r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=dim_col, keepdim=True)).rsqrt_().unsqueeze(dim_row)
|
124 |
+
c_factor = exp_avg_sq_col.unsqueeze(dim_col).rsqrt()
|
125 |
+
return torch.mul(r_factor, c_factor)
|
126 |
+
|
127 |
+
@torch.no_grad()
|
128 |
+
def step(self, closure=None):
|
129 |
+
"""Performs a single optimization step.
|
130 |
+
Arguments:
|
131 |
+
closure (callable, optional): A closure that reevaluates the model and returns the loss.
|
132 |
+
"""
|
133 |
+
loss = None
|
134 |
+
if closure is not None:
|
135 |
+
with torch.enable_grad():
|
136 |
+
loss = closure()
|
137 |
+
|
138 |
+
for group in self.param_groups:
|
139 |
+
for p in group['params']:
|
140 |
+
if p.grad is None:
|
141 |
+
continue
|
142 |
+
grad = p.grad
|
143 |
+
if grad.dtype in {torch.float16, torch.bfloat16}:
|
144 |
+
grad = grad.float()
|
145 |
+
if grad.is_sparse:
|
146 |
+
raise RuntimeError('Adafactor does not support sparse gradients.')
|
147 |
+
|
148 |
+
state = self.state[p]
|
149 |
+
|
150 |
+
factored_dims, use_first_moment = self._get_options(
|
151 |
+
group,
|
152 |
+
grad.shape,
|
153 |
+
min_size_to_factor=group['min_dim_size_to_factor'],
|
154 |
+
)
|
155 |
+
# State Initialization
|
156 |
+
if len(state) == 0:
|
157 |
+
state['step'] = 0
|
158 |
+
|
159 |
+
if use_first_moment:
|
160 |
+
# Exponential moving average of gradient values
|
161 |
+
state['exp_avg'] = torch.zeros_like(grad)
|
162 |
+
if factored_dims is not None:
|
163 |
+
dim_col, dim_row = factored_dims
|
164 |
+
def _remove_dim(shape, dim):
|
165 |
+
return shape[:dim] + shape[dim + 1:]
|
166 |
+
state['exp_avg_sq_row'] = torch.zeros(_remove_dim(grad.shape, dim_row)).to(grad)
|
167 |
+
state['exp_avg_sq_col'] = torch.zeros(_remove_dim(grad.shape, dim_col)).to(grad)
|
168 |
+
else:
|
169 |
+
state['exp_avg_sq'] = torch.zeros_like(grad)
|
170 |
+
|
171 |
+
state['RMS'] = 0
|
172 |
+
else:
|
173 |
+
if use_first_moment:
|
174 |
+
state['exp_avg'] = state['exp_avg'].to(grad)
|
175 |
+
if factored_dims is not None:
|
176 |
+
state['exp_avg_sq_row'] = state['exp_avg_sq_row'].to(grad)
|
177 |
+
state['exp_avg_sq_col'] = state['exp_avg_sq_col'].to(grad)
|
178 |
+
else:
|
179 |
+
state['exp_avg_sq'] = state['exp_avg_sq'].to(grad)
|
180 |
+
|
181 |
+
p_fp32 = p
|
182 |
+
if p.dtype in {torch.float16, torch.bfloat16}:
|
183 |
+
p_fp32 = p_fp32.float()
|
184 |
+
|
185 |
+
state['step'] += 1
|
186 |
+
state['RMS'] = self._rms(p_fp32)
|
187 |
+
lr_t = self._get_lr(group, state)
|
188 |
+
|
189 |
+
beta2t = 1.0 - math.pow(state['step'], group['decay_rate'])
|
190 |
+
update = grad ** 2 + group['eps']
|
191 |
+
if factored_dims is not None:
|
192 |
+
dim_col, dim_row = factored_dims
|
193 |
+
exp_avg_sq_row = state['exp_avg_sq_row']
|
194 |
+
exp_avg_sq_col = state['exp_avg_sq_col']
|
195 |
+
|
196 |
+
exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=dim_row), alpha=1.0 - beta2t)
|
197 |
+
exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=dim_col), alpha=1.0 - beta2t)
|
198 |
+
|
199 |
+
# Approximation of exponential moving average of square of gradient
|
200 |
+
update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col, dim_col, dim_row)
|
201 |
+
update.mul_(grad)
|
202 |
+
else:
|
203 |
+
exp_avg_sq = state['exp_avg_sq']
|
204 |
+
|
205 |
+
exp_avg_sq.mul_(beta2t).add_(update, alpha=1.0 - beta2t)
|
206 |
+
update = exp_avg_sq.rsqrt().mul_(grad)
|
207 |
+
|
208 |
+
update.div_((self._rms(update) / group['clip_threshold']).clamp_(min=1.0))
|
209 |
+
update.mul_(lr_t)
|
210 |
+
|
211 |
+
if use_first_moment:
|
212 |
+
exp_avg = state['exp_avg']
|
213 |
+
exp_avg.mul_(group['beta1']).add_(update, alpha=1 - group['beta1'])
|
214 |
+
if group['caution']:
|
215 |
+
# Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
|
216 |
+
mask = (exp_avg * grad > 0).to(grad.dtype)
|
217 |
+
mask.div_(mask.mean().clamp_(min=1e-3))
|
218 |
+
update = exp_avg * mask
|
219 |
+
else:
|
220 |
+
update = exp_avg
|
221 |
+
|
222 |
+
if group['weight_decay'] != 0:
|
223 |
+
p_fp32.add_(p_fp32, alpha=-group['weight_decay'] * lr_t)
|
224 |
+
|
225 |
+
p_fp32.add_(-update)
|
226 |
+
if p.dtype in {torch.float16, torch.bfloat16}:
|
227 |
+
p.copy_(p_fp32)
|
228 |
+
|
229 |
+
return loss
|