import os from typing import Optional from .reader_image_folder import ReaderImageFolder from .reader_image_in_tar import ReaderImageInTar def create_reader( name: str, root: Optional[str] = None, split: str = 'train', **kwargs, ): kwargs = {k: v for k, v in kwargs.items() if v is not None} name = name.lower() name = name.split('/', 1) prefix = '' if len(name) > 1: prefix = name[0] name = name[-1] # FIXME improve the selection right now just tfds prefix or fallback path, will need options to # explicitly select other options shortly if prefix == 'hfds': from .reader_hfds import ReaderHfds # defer Hf datasets import reader = ReaderHfds(name=name, root=root, split=split, **kwargs) elif prefix == 'hfids': from .reader_hfids import ReaderHfids # defer HF datasets import reader = ReaderHfids(name=name, root=root, split=split, **kwargs) elif prefix == 'tfds': from .reader_tfds import ReaderTfds # defer tensorflow import reader = ReaderTfds(name=name, root=root, split=split, **kwargs) elif prefix == 'wds': from .reader_wds import ReaderWds kwargs.pop('download', False) reader = ReaderWds(root=root, name=name, split=split, **kwargs) else: assert os.path.exists(root) # default fallback path (backwards compat), use image tar if root is a .tar file, otherwise image folder # FIXME support split here or in reader? if os.path.isfile(root) and os.path.splitext(root)[1] == '.tar': reader = ReaderImageInTar(root, **kwargs) else: reader = ReaderImageFolder(root, **kwargs) return reader