""" Dataset Factory Hacked together by / Copyright 2021, Ross Wightman """ import os from typing import Optional from torchvision.datasets import CIFAR100, CIFAR10, MNIST, KMNIST, FashionMNIST, ImageFolder try: from torchvision.datasets import Places365 has_places365 = True except ImportError: has_places365 = False try: from torchvision.datasets import INaturalist has_inaturalist = True except ImportError: has_inaturalist = False try: from torchvision.datasets import QMNIST has_qmnist = True except ImportError: has_qmnist = False try: from torchvision.datasets import ImageNet has_imagenet = True except ImportError: has_imagenet = False from .dataset import IterableImageDataset, ImageDataset _TORCH_BASIC_DS = dict( cifar10=CIFAR10, cifar100=CIFAR100, mnist=MNIST, kmnist=KMNIST, fashion_mnist=FashionMNIST, ) _TRAIN_SYNONYM = dict(train=None, training=None) _EVAL_SYNONYM = dict(val=None, valid=None, validation=None, eval=None, evaluation=None) def _search_split(root, split): # look for sub-folder with name of split in root and use that if it exists split_name = split.split('[')[0] try_root = os.path.join(root, split_name) if os.path.exists(try_root): return try_root def _try(syn): for s in syn: try_root = os.path.join(root, s) if os.path.exists(try_root): return try_root return root if split_name in _TRAIN_SYNONYM: root = _try(_TRAIN_SYNONYM) elif split_name in _EVAL_SYNONYM: root = _try(_EVAL_SYNONYM) return root def create_dataset( name: str, root: Optional[str] = None, split: str = 'validation', search_split: bool = True, class_map: dict = None, load_bytes: bool = False, is_training: bool = False, download: bool = False, batch_size: int = 1, num_samples: Optional[int] = None, seed: int = 42, repeats: int = 0, input_img_mode: str = 'RGB', trust_remote_code: bool = False, **kwargs, ): """ Dataset factory method In parentheses after each arg are the type of dataset supported for each arg, one of: * Folder - default, timm folder (or tar) based ImageDataset * Torch - torchvision based datasets * HFDS - Hugging Face Datasets * HFIDS - Hugging Face Datasets Iterable (streaming mode, with IterableDataset) * TFDS - Tensorflow-datasets wrapper in IterabeDataset interface via IterableImageDataset * WDS - Webdataset * All - any of the above Args: name: Dataset name, empty is okay for folder based datasets root: Root folder of dataset (All) split: Dataset split (All) search_split: Search for split specific child fold from root so one can specify `imagenet/` instead of `/imagenet/val`, etc on cmd line / config. (Folder, Torch) class_map: Specify class -> index mapping via text file or dict (Folder) load_bytes: Load data, return images as undecoded bytes (Folder) download: Download dataset if not present and supported (HFIDS, TFDS, Torch) is_training: Create dataset in train mode, this is different from the split. For Iterable / TDFS it enables shuffle, ignored for other datasets. (TFDS, WDS, HFIDS) batch_size: Batch size hint for iterable datasets (TFDS, WDS, HFIDS) seed: Seed for iterable datasets (TFDS, WDS, HFIDS) repeats: Dataset repeats per iteration i.e. epoch (TFDS, WDS, HFIDS) input_img_mode: Input image color conversion mode e.g. 'RGB', 'L' (folder, TFDS, WDS, HFDS, HFIDS) trust_remote_code: Trust remote code in Hugging Face Datasets if True (HFDS, HFIDS) **kwargs: Other args to pass through to underlying Dataset and/or Reader classes Returns: Dataset object """ kwargs = {k: v for k, v in kwargs.items() if v is not None} name = name.lower() if name.startswith('torch/'): name = name.split('/', 2)[-1] torch_kwargs = dict(root=root, download=download, **kwargs) if name in _TORCH_BASIC_DS: ds_class = _TORCH_BASIC_DS[name] use_train = split in _TRAIN_SYNONYM ds = ds_class(train=use_train, **torch_kwargs) elif name == 'inaturalist' or name == 'inat': assert has_inaturalist, 'Please update to PyTorch 1.10, torchvision 0.11+ for Inaturalist' target_type = 'full' split_split = split.split('/') if len(split_split) > 1: target_type = split_split[0].split('_') if len(target_type) == 1: target_type = target_type[0] split = split_split[-1] if split in _TRAIN_SYNONYM: split = '2021_train' elif split in _EVAL_SYNONYM: split = '2021_valid' ds = INaturalist(version=split, target_type=target_type, **torch_kwargs) elif name == 'places365': assert has_places365, 'Please update to a newer PyTorch and torchvision for Places365 dataset.' if split in _TRAIN_SYNONYM: split = 'train-standard' elif split in _EVAL_SYNONYM: split = 'val' ds = Places365(split=split, **torch_kwargs) elif name == 'qmnist': assert has_qmnist, 'Please update to a newer PyTorch and torchvision for QMNIST dataset.' use_train = split in _TRAIN_SYNONYM ds = QMNIST(train=use_train, **torch_kwargs) elif name == 'imagenet': assert has_imagenet, 'Please update to a newer PyTorch and torchvision for ImageNet dataset.' if split in _EVAL_SYNONYM: split = 'val' ds = ImageNet(split=split, **torch_kwargs) elif name == 'image_folder' or name == 'folder': # in case torchvision ImageFolder is preferred over timm ImageDataset for some reason if search_split and os.path.isdir(root): # look for split specific sub-folder in root root = _search_split(root, split) ds = ImageFolder(root, **kwargs) else: assert False, f"Unknown torchvision dataset {name}" elif name.startswith('hfds/'): # NOTE right now, HF datasets default arrow format is a random-access Dataset, # There will be a IterableDataset variant too, TBD ds = ImageDataset( root, reader=name, split=split, class_map=class_map, input_img_mode=input_img_mode, trust_remote_code=trust_remote_code, **kwargs, ) elif name.startswith('hfids/'): ds = IterableImageDataset( root, reader=name, split=split, class_map=class_map, is_training=is_training, download=download, batch_size=batch_size, num_samples=num_samples, repeats=repeats, seed=seed, input_img_mode=input_img_mode, trust_remote_code=trust_remote_code, **kwargs, ) elif name.startswith('tfds/'): ds = IterableImageDataset( root, reader=name, split=split, class_map=class_map, is_training=is_training, download=download, batch_size=batch_size, num_samples=num_samples, repeats=repeats, seed=seed, input_img_mode=input_img_mode, **kwargs ) elif name.startswith('wds/'): ds = IterableImageDataset( root, reader=name, split=split, class_map=class_map, is_training=is_training, batch_size=batch_size, num_samples=num_samples, repeats=repeats, seed=seed, input_img_mode=input_img_mode, **kwargs ) else: # FIXME support more advance split cfg for ImageFolder/Tar datasets in the future if search_split and os.path.isdir(root): # look for split specific sub-folder in root root = _search_split(root, split) ds = ImageDataset( root, reader=name, class_map=class_map, load_bytes=load_bytes, input_img_mode=input_img_mode, **kwargs, ) return ds