import csv import os import pkgutil import re from typing import Dict, List, Optional, Union from .dataset_info import DatasetInfo # NOTE no ambiguity wrt to mapping from # classes to ImageNet subset so far, but likely to change _NUM_CLASSES_TO_SUBSET = { 1000: 'imagenet-1k', 11221: 'imagenet-21k-miil', # miil subset of fall11 11821: 'imagenet-12k', # timm specific 12k subset of fall11 21841: 'imagenet-22k', # as in fall11.tar 21842: 'imagenet-22k-ms', # a Microsoft (for FocalNet) remapping of 22k w/ moves ImageNet-1k classes to first 1000 21843: 'imagenet-21k-goog', # Google's ImageNet full has two classes not in fall11 } _SUBSETS = { 'imagenet1k': 'imagenet_synsets.txt', 'imagenet12k': 'imagenet12k_synsets.txt', 'imagenet22k': 'imagenet22k_synsets.txt', 'imagenet21k': 'imagenet21k_goog_synsets.txt', 'imagenet21kgoog': 'imagenet21k_goog_synsets.txt', 'imagenet21kmiil': 'imagenet21k_miil_synsets.txt', 'imagenet22kms': 'imagenet22k_ms_synsets.txt', } _LEMMA_FILE = 'imagenet_synset_to_lemma.txt' _DEFINITION_FILE = 'imagenet_synset_to_definition.txt' def infer_imagenet_subset(model_or_cfg) -> Optional[str]: if isinstance(model_or_cfg, dict): num_classes = model_or_cfg.get('num_classes', None) else: num_classes = getattr(model_or_cfg, 'num_classes', None) if not num_classes: pretrained_cfg = getattr(model_or_cfg, 'pretrained_cfg', {}) # FIXME at some point pretrained_cfg should include dataset-tag, # which will be more robust than a guess based on num_classes num_classes = pretrained_cfg.get('num_classes', None) if not num_classes or num_classes not in _NUM_CLASSES_TO_SUBSET: return None return _NUM_CLASSES_TO_SUBSET[num_classes] class ImageNetInfo(DatasetInfo): def __init__(self, subset: str = 'imagenet-1k'): super().__init__() subset = re.sub(r'[-_\s]', '', subset.lower()) assert subset in _SUBSETS, f'Unknown imagenet subset {subset}.' # WordNet synsets (part-of-speach + offset) are the unique class label names for ImageNet classifiers synset_file = _SUBSETS[subset] synset_data = pkgutil.get_data(__name__, os.path.join('_info', synset_file)) self._synsets = synset_data.decode('utf-8').splitlines() # WordNet lemmas (canonical dictionary form of word) and definitions are used to build # the class descriptions. If detailed=True both are used, otherwise just the lemmas. lemma_data = pkgutil.get_data(__name__, os.path.join('_info', _LEMMA_FILE)) reader = csv.reader(lemma_data.decode('utf-8').splitlines(), delimiter='\t') self._lemmas = dict(reader) definition_data = pkgutil.get_data(__name__, os.path.join('_info', _DEFINITION_FILE)) reader = csv.reader(definition_data.decode('utf-8').splitlines(), delimiter='\t') self._definitions = dict(reader) def num_classes(self): return len(self._synsets) def label_names(self): return self._synsets def label_descriptions(self, detailed: bool = False, as_dict: bool = False) -> Union[List[str], Dict[str, str]]: if as_dict: return {label: self.label_name_to_description(label, detailed=detailed) for label in self._synsets} else: return [self.label_name_to_description(label, detailed=detailed) for label in self._synsets] def index_to_label_name(self, index) -> str: assert 0 <= index < len(self._synsets), \ f'Index ({index}) out of range for dataset with {len(self._synsets)} classes.' return self._synsets[index] def index_to_description(self, index: int, detailed: bool = False) -> str: label = self.index_to_label_name(index) return self.label_name_to_description(label, detailed=detailed) def label_name_to_description(self, label: str, detailed: bool = False) -> str: if detailed: description = f'{self._lemmas[label]}: {self._definitions[label]}' else: description = f'{self._lemmas[label]}' return description