""" Dataset reader for HF IterableDataset """ import math import os from itertools import repeat, chain from typing import Optional import torch import torch.distributed as dist from PIL import Image try: import datasets from datasets.distributed import split_dataset_by_node from datasets.splits import SplitInfo except ImportError as e: print("Please install Hugging Face datasets package `pip install datasets`.") raise e from .class_map import load_class_map from .reader import Reader from .shared_count import SharedCount SHUFFLE_SIZE = int(os.environ.get('HFIDS_SHUFFLE_SIZE', 4096)) class ReaderHfids(Reader): def __init__( self, name: str, root: Optional[str] = None, split: str = 'train', is_training: bool = False, batch_size: int = 1, download: bool = False, repeats: int = 0, seed: int = 42, class_map: Optional[dict] = None, input_key: str = 'image', input_img_mode: str = 'RGB', target_key: str = 'label', target_img_mode: str = '', shuffle_size: Optional[int] = None, num_samples: Optional[int] = None, trust_remote_code: bool = False ): super().__init__() self.root = root self.split = split self.is_training = is_training self.batch_size = batch_size self.download = download self.repeats = repeats self.common_seed = seed # a seed that's fixed across all worker / distributed instances self.shuffle_size = shuffle_size or SHUFFLE_SIZE self.input_key = input_key self.input_img_mode = input_img_mode self.target_key = target_key self.target_img_mode = target_img_mode self.builder = datasets.load_dataset_builder( name, cache_dir=root, trust_remote_code=trust_remote_code, ) if download: self.builder.download_and_prepare() split_info: Optional[SplitInfo] = None if self.builder.info.splits and split in self.builder.info.splits: if isinstance(self.builder.info.splits[split], SplitInfo): split_info: Optional[SplitInfo] = self.builder.info.splits[split] if num_samples: self.num_samples = num_samples elif split_info and split_info.num_examples: self.num_samples = split_info.num_examples else: raise ValueError( "Dataset length is unknown, please pass `num_samples` explicitely. " "The number of steps needs to be known in advance for the learning rate scheduler." ) self.remap_class = False if class_map: self.class_to_idx = load_class_map(class_map) self.remap_class = True else: self.class_to_idx = {} # Distributed world state self.dist_rank = 0 self.dist_num_replicas = 1 if dist.is_available() and dist.is_initialized() and dist.get_world_size() > 1: self.dist_rank = dist.get_rank() self.dist_num_replicas = dist.get_world_size() # Attributes that are updated in _lazy_init self.worker_info = None self.worker_id = 0 self.num_workers = 1 self.global_worker_id = 0 self.global_num_workers = 1 # Initialized lazily on each dataloader worker process self.ds: Optional[datasets.IterableDataset] = None self.epoch = SharedCount() def set_epoch(self, count): # to update the shuffling effective_seed = seed + epoch self.epoch.value = count def set_loader_cfg( self, num_workers: Optional[int] = None, ): if self.ds is not None: return if num_workers is not None: self.num_workers = num_workers self.global_num_workers = self.dist_num_replicas * self.num_workers def _lazy_init(self): """ Lazily initialize worker (in worker processes) """ if self.worker_info is None: worker_info = torch.utils.data.get_worker_info() if worker_info is not None: self.worker_info = worker_info self.worker_id = worker_info.id self.num_workers = worker_info.num_workers self.global_num_workers = self.dist_num_replicas * self.num_workers self.global_worker_id = self.dist_rank * self.num_workers + self.worker_id if self.download: dataset = self.builder.as_dataset(split=self.split) # to distribute evenly to workers ds = dataset.to_iterable_dataset(num_shards=self.global_num_workers) else: # in this case the number of shard is determined by the number of remote files ds = self.builder.as_streaming_dataset(split=self.split) if self.is_training: # will shuffle the list of shards and use a shuffle buffer ds = ds.shuffle(seed=self.common_seed, buffer_size=self.shuffle_size) # Distributed: # The dataset has a number of shards that is a factor of `dist_num_replicas` (i.e. if `ds.n_shards % dist_num_replicas == 0`), # so the shards are evenly assigned across the nodes. # If it's not the case for dataset streaming, each node keeps 1 example out of `dist_num_replicas`, skipping the other examples. # Workers: # In a node, datasets.IterableDataset assigns the shards assigned to the node as evenly as possible to workers. self.ds = split_dataset_by_node(ds, rank=self.dist_rank, world_size=self.dist_num_replicas) def _num_samples_per_worker(self): num_worker_samples = \ max(1, self.repeats) * self.num_samples / max(self.global_num_workers, self.dist_num_replicas) if self.is_training or self.dist_num_replicas > 1: num_worker_samples = math.ceil(num_worker_samples) if self.is_training and self.batch_size is not None: num_worker_samples = math.ceil(num_worker_samples / self.batch_size) * self.batch_size return int(num_worker_samples) def __iter__(self): if self.ds is None: self._lazy_init() self.ds.set_epoch(self.epoch.value) target_sample_count = self._num_samples_per_worker() sample_count = 0 if self.is_training: ds_iter = chain.from_iterable(repeat(self.ds)) else: ds_iter = iter(self.ds) for sample in ds_iter: input_data: Image.Image = sample[self.input_key] if self.input_img_mode and input_data.mode != self.input_img_mode: input_data = input_data.convert(self.input_img_mode) target_data = sample[self.target_key] if self.target_img_mode: assert isinstance(target_data, Image.Image), "target_img_mode is specified but target is not an image" if target_data.mode != self.target_img_mode: target_data = target_data.convert(self.target_img_mode) elif self.remap_class: target_data = self.class_to_idx[target_data] yield input_data, target_data sample_count += 1 if self.is_training and sample_count >= target_sample_count: break def __len__(self): num_samples = self._num_samples_per_worker() * self.num_workers return num_samples def _filename(self, index, basename=False, absolute=False): assert False, "Not supported" # no random access to examples def filenames(self, basename=False, absolute=False): """ Return all filenames in dataset, overrides base""" if self.ds is None: self._lazy_init() names = [] for sample in self.ds: if 'file_name' in sample: name = sample['file_name'] elif 'filename' in sample: name = sample['filename'] elif 'id' in sample: name = sample['id'] elif 'image_id' in sample: name = sample['image_id'] else: assert False, "No supported name field present" names.append(name) return names