import math import numbers import random import warnings from typing import List, Sequence, Tuple, Union import torch import torchvision.transforms as transforms import torchvision.transforms.functional as F try: from torchvision.transforms.functional import InterpolationMode has_interpolation_mode = True except ImportError: has_interpolation_mode = False from PIL import Image import numpy as np __all__ = [ "ToNumpy", "ToTensor", "str_to_interp_mode", "str_to_pil_interp", "interp_mode_to_str", "RandomResizedCropAndInterpolation", "CenterCropOrPad", "center_crop_or_pad", "crop_or_pad", "RandomCropOrPad", "RandomPad", "ResizeKeepRatio", "TrimBorder", "MaybeToTensor", "MaybePILToTensor" ] class ToNumpy: def __call__(self, pil_img): np_img = np.array(pil_img, dtype=np.uint8) if np_img.ndim < 3: np_img = np.expand_dims(np_img, axis=-1) np_img = np.rollaxis(np_img, 2) # HWC to CHW return np_img class ToTensor: """ ToTensor with no rescaling of values""" def __init__(self, dtype=torch.float32): self.dtype = dtype def __call__(self, pil_img): return F.pil_to_tensor(pil_img).to(dtype=self.dtype) class MaybeToTensor(transforms.ToTensor): """Convert a PIL Image or ndarray to tensor if it's not already one. """ def __init__(self) -> None: super().__init__() def __call__(self, pic) -> torch.Tensor: """ Args: pic (PIL Image or numpy.ndarray): Image to be converted to tensor. Returns: Tensor: Converted image. """ if isinstance(pic, torch.Tensor): return pic return F.to_tensor(pic) def __repr__(self) -> str: return f"{self.__class__.__name__}()" class MaybePILToTensor: """Convert a PIL Image to a tensor of the same type - this does not scale values. """ def __init__(self) -> None: super().__init__() def __call__(self, pic): """ Note: A deep copy of the underlying array is performed. Args: pic (PIL Image): Image to be converted to tensor. Returns: Tensor: Converted image. """ if isinstance(pic, torch.Tensor): return pic return F.pil_to_tensor(pic) def __repr__(self) -> str: return f"{self.__class__.__name__}()" # Pillow is deprecating the top-level resampling attributes (e.g., Image.BILINEAR) in # favor of the Image.Resampling enum. The top-level resampling attributes will be # removed in Pillow 10. if hasattr(Image, "Resampling"): _pil_interpolation_to_str = { Image.Resampling.NEAREST: 'nearest', Image.Resampling.BILINEAR: 'bilinear', Image.Resampling.BICUBIC: 'bicubic', Image.Resampling.BOX: 'box', Image.Resampling.HAMMING: 'hamming', Image.Resampling.LANCZOS: 'lanczos', } else: _pil_interpolation_to_str = { Image.NEAREST: 'nearest', Image.BILINEAR: 'bilinear', Image.BICUBIC: 'bicubic', Image.BOX: 'box', Image.HAMMING: 'hamming', Image.LANCZOS: 'lanczos', } _str_to_pil_interpolation = {b: a for a, b in _pil_interpolation_to_str.items()} if has_interpolation_mode: _torch_interpolation_to_str = { InterpolationMode.NEAREST: 'nearest', InterpolationMode.BILINEAR: 'bilinear', InterpolationMode.BICUBIC: 'bicubic', InterpolationMode.BOX: 'box', InterpolationMode.HAMMING: 'hamming', InterpolationMode.LANCZOS: 'lanczos', } _str_to_torch_interpolation = {b: a for a, b in _torch_interpolation_to_str.items()} else: _pil_interpolation_to_torch = {} _torch_interpolation_to_str = {} def str_to_pil_interp(mode_str): return _str_to_pil_interpolation[mode_str] def str_to_interp_mode(mode_str): if has_interpolation_mode: return _str_to_torch_interpolation[mode_str] else: return _str_to_pil_interpolation[mode_str] def interp_mode_to_str(mode): if has_interpolation_mode: return _torch_interpolation_to_str[mode] else: return _pil_interpolation_to_str[mode] _RANDOM_INTERPOLATION = (str_to_interp_mode('bilinear'), str_to_interp_mode('bicubic')) def _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size."): if isinstance(size, numbers.Number): return int(size), int(size) if isinstance(size, Sequence) and len(size) == 1: return size[0], size[0] if len(size) != 2: raise ValueError(error_msg) return size class RandomResizedCropAndInterpolation: """Crop the given PIL Image to random size and aspect ratio with random interpolation. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop is finally resized to given size. This is popularly used to train the Inception networks. Args: size: expected output size of each edge scale: range of size of the origin size cropped ratio: range of aspect ratio of the origin aspect ratio cropped interpolation: Default: PIL.Image.BILINEAR """ def __init__( self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation='bilinear', ): if isinstance(size, (list, tuple)): self.size = tuple(size) else: self.size = (size, size) if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): warnings.warn("range should be of kind (min, max)") if interpolation == 'random': self.interpolation = _RANDOM_INTERPOLATION else: self.interpolation = str_to_interp_mode(interpolation) self.scale = scale self.ratio = ratio @staticmethod def get_params(img, scale, ratio): """Get parameters for ``crop`` for a random sized crop. Args: img (PIL Image): Image to be cropped. scale (tuple): range of size of the origin size cropped ratio (tuple): range of aspect ratio of the origin aspect ratio cropped Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for a random sized crop. """ img_w, img_h = F.get_image_size(img) area = img_w * img_h for attempt in range(10): target_area = random.uniform(*scale) * area log_ratio = (math.log(ratio[0]), math.log(ratio[1])) aspect_ratio = math.exp(random.uniform(*log_ratio)) target_w = int(round(math.sqrt(target_area * aspect_ratio))) target_h = int(round(math.sqrt(target_area / aspect_ratio))) if target_w <= img_w and target_h <= img_h: i = random.randint(0, img_h - target_h) j = random.randint(0, img_w - target_w) return i, j, target_h, target_w # Fallback to central crop in_ratio = img_w / img_h if in_ratio < min(ratio): target_w = img_w target_h = int(round(target_w / min(ratio))) elif in_ratio > max(ratio): target_h = img_h target_w = int(round(target_h * max(ratio))) else: # whole image target_w = img_w target_h = img_h i = (img_h - target_h) // 2 j = (img_w - target_w) // 2 return i, j, target_h, target_w def __call__(self, img): """ Args: img (PIL Image): Image to be cropped and resized. Returns: PIL Image: Randomly cropped and resized image. """ i, j, h, w = self.get_params(img, self.scale, self.ratio) if isinstance(self.interpolation, (tuple, list)): interpolation = random.choice(self.interpolation) else: interpolation = self.interpolation return F.resized_crop(img, i, j, h, w, self.size, interpolation) def __repr__(self): if isinstance(self.interpolation, (tuple, list)): interpolate_str = ' '.join([interp_mode_to_str(x) for x in self.interpolation]) else: interpolate_str = interp_mode_to_str(self.interpolation) format_string = self.__class__.__name__ + '(size={0}'.format(self.size) format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale)) format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio)) format_string += ', interpolation={0})'.format(interpolate_str) return format_string def center_crop_or_pad( img: torch.Tensor, output_size: Union[int, List[int]], fill: Union[int, Tuple[int, int, int]] = 0, padding_mode: str = 'constant', ) -> torch.Tensor: """Center crops and/or pads the given image. If the image is torch Tensor, it is expected to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions. If image size is smaller than output size along any edge, image is padded with 0 and then center cropped. Args: img (PIL Image or Tensor): Image to be cropped. output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int, it is used for both directions. fill (int, Tuple[int]): Padding color Returns: PIL Image or Tensor: Cropped image. """ output_size = _setup_size(output_size) crop_height, crop_width = output_size _, image_height, image_width = F.get_dimensions(img) if crop_width > image_width or crop_height > image_height: padding_ltrb = [ (crop_width - image_width) // 2 if crop_width > image_width else 0, (crop_height - image_height) // 2 if crop_height > image_height else 0, (crop_width - image_width + 1) // 2 if crop_width > image_width else 0, (crop_height - image_height + 1) // 2 if crop_height > image_height else 0, ] img = F.pad(img, padding_ltrb, fill=fill, padding_mode=padding_mode) _, image_height, image_width = F.get_dimensions(img) if crop_width == image_width and crop_height == image_height: return img crop_top = int(round((image_height - crop_height) / 2.0)) crop_left = int(round((image_width - crop_width) / 2.0)) return F.crop(img, crop_top, crop_left, crop_height, crop_width) class CenterCropOrPad(torch.nn.Module): """Crops the given image at the center. If the image is torch Tensor, it is expected to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions. If image size is smaller than output size along any edge, image is padded with 0 and then center cropped. Args: size (sequence or int): Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]). """ def __init__( self, size: Union[int, List[int]], fill: Union[int, Tuple[int, int, int]] = 0, padding_mode: str = 'constant', ): super().__init__() self.size = _setup_size(size) self.fill = fill self.padding_mode = padding_mode def forward(self, img): """ Args: img (PIL Image or Tensor): Image to be cropped. Returns: PIL Image or Tensor: Cropped image. """ return center_crop_or_pad(img, self.size, fill=self.fill, padding_mode=self.padding_mode) def __repr__(self) -> str: return f"{self.__class__.__name__}(size={self.size})" def crop_or_pad( img: torch.Tensor, top: int, left: int, height: int, width: int, fill: Union[int, Tuple[int, int, int]] = 0, padding_mode: str = 'constant', ) -> torch.Tensor: """ Crops and/or pads image to meet target size, with control over fill and padding_mode. """ _, image_height, image_width = F.get_dimensions(img) right = left + width bottom = top + height if left < 0 or top < 0 or right > image_width or bottom > image_height: padding_ltrb = [ max(-left + min(0, right), 0), max(-top + min(0, bottom), 0), max(right - max(image_width, left), 0), max(bottom - max(image_height, top), 0), ] img = F.pad(img, padding_ltrb, fill=fill, padding_mode=padding_mode) top = max(top, 0) left = max(left, 0) return F.crop(img, top, left, height, width) class RandomCropOrPad(torch.nn.Module): """ Crop and/or pad image with random placement within the crop or pad margin. """ def __init__( self, size: Union[int, List[int]], fill: Union[int, Tuple[int, int, int]] = 0, padding_mode: str = 'constant', ): super().__init__() self.size = _setup_size(size) self.fill = fill self.padding_mode = padding_mode @staticmethod def get_params(img, size): _, image_height, image_width = F.get_dimensions(img) delta_height = image_height - size[0] delta_width = image_width - size[1] top = int(math.copysign(random.randint(0, abs(delta_height)), delta_height)) left = int(math.copysign(random.randint(0, abs(delta_width)), delta_width)) return top, left def forward(self, img): """ Args: img (PIL Image or Tensor): Image to be cropped. Returns: PIL Image or Tensor: Cropped image. """ top, left = self.get_params(img, self.size) return crop_or_pad( img, top=top, left=left, height=self.size[0], width=self.size[1], fill=self.fill, padding_mode=self.padding_mode, ) def __repr__(self) -> str: return f"{self.__class__.__name__}(size={self.size})" class RandomPad: def __init__(self, input_size, fill=0): self.input_size = input_size self.fill = fill @staticmethod def get_params(img, input_size): width, height = F.get_image_size(img) delta_width = max(input_size[1] - width, 0) delta_height = max(input_size[0] - height, 0) pad_left = random.randint(0, delta_width) pad_top = random.randint(0, delta_height) pad_right = delta_width - pad_left pad_bottom = delta_height - pad_top return pad_left, pad_top, pad_right, pad_bottom def __call__(self, img): padding = self.get_params(img, self.input_size) img = F.pad(img, padding, self.fill) return img class ResizeKeepRatio: """ Resize and Keep Aspect Ratio """ def __init__( self, size, longest=0., interpolation='bilinear', random_scale_prob=0., random_scale_range=(0.85, 1.05), random_scale_area=False, random_aspect_prob=0., random_aspect_range=(0.9, 1.11), ): """ Args: size: longest: interpolation: random_scale_prob: random_scale_range: random_scale_area: random_aspect_prob: random_aspect_range: """ if isinstance(size, (list, tuple)): self.size = tuple(size) else: self.size = (size, size) if interpolation == 'random': self.interpolation = _RANDOM_INTERPOLATION else: self.interpolation = str_to_interp_mode(interpolation) self.longest = float(longest) self.random_scale_prob = random_scale_prob self.random_scale_range = random_scale_range self.random_scale_area = random_scale_area self.random_aspect_prob = random_aspect_prob self.random_aspect_range = random_aspect_range @staticmethod def get_params( img, target_size, longest, random_scale_prob=0., random_scale_range=(1.0, 1.33), random_scale_area=False, random_aspect_prob=0., random_aspect_range=(0.9, 1.11) ): """Get parameters """ img_h, img_w = img_size = F.get_dimensions(img)[1:] target_h, target_w = target_size ratio_h = img_h / target_h ratio_w = img_w / target_w ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * (1. - longest) if random_scale_prob > 0 and random.random() < random_scale_prob: ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1]) if random_scale_area: # make ratio factor equivalent to RRC area crop where < 1.0 = area zoom, # otherwise like affine scale where < 1.0 = linear zoom out ratio_factor = 1. / math.sqrt(ratio_factor) ratio_factor = (ratio_factor, ratio_factor) else: ratio_factor = (1., 1.) if random_aspect_prob > 0 and random.random() < random_aspect_prob: log_aspect = (math.log(random_aspect_range[0]), math.log(random_aspect_range[1])) aspect_factor = math.exp(random.uniform(*log_aspect)) aspect_factor = math.sqrt(aspect_factor) # currently applying random aspect adjustment equally to both dims, # could change to keep output sizes above their target where possible ratio_factor = (ratio_factor[0] / aspect_factor, ratio_factor[1] * aspect_factor) size = [round(x * f / ratio) for x, f in zip(img_size, ratio_factor)] return size def __call__(self, img): """ Args: img (PIL Image): Image to be cropped and resized. Returns: PIL Image: Resized, padded to at least target size, possibly cropped to exactly target size """ size = self.get_params( img, self.size, self.longest, self.random_scale_prob, self.random_scale_range, self.random_scale_area, self.random_aspect_prob, self.random_aspect_range ) if isinstance(self.interpolation, (tuple, list)): interpolation = random.choice(self.interpolation) else: interpolation = self.interpolation img = F.resize(img, size, interpolation) return img def __repr__(self): if isinstance(self.interpolation, (tuple, list)): interpolate_str = ' '.join([interp_mode_to_str(x) for x in self.interpolation]) else: interpolate_str = interp_mode_to_str(self.interpolation) format_string = self.__class__.__name__ + '(size={0}'.format(self.size) format_string += f', interpolation={interpolate_str}' format_string += f', longest={self.longest:.3f}' format_string += f', random_scale_prob={self.random_scale_prob:.3f}' format_string += f', random_scale_range=(' \ f'{self.random_scale_range[0]:.3f}, {self.random_aspect_range[1]:.3f})' format_string += f', random_aspect_prob={self.random_aspect_prob:.3f}' format_string += f', random_aspect_range=(' \ f'{self.random_aspect_range[0]:.3f}, {self.random_aspect_range[1]:.3f}))' return format_string class TrimBorder(torch.nn.Module): def __init__( self, border_size: int, ): super().__init__() self.border_size = border_size def forward(self, img): w, h = F.get_image_size(img) top = left = self.border_size top = min(top, h) left = min(left, h) height = max(0, h - 2 * self.border_size) width = max(0, w - 2 * self.border_size) return F.crop(img, top, left, height, width)