from typing import List, Optional, Union import torch from torch import nn as nn from torch.nn import functional as F from .config import use_fused_attn from .create_conv2d import create_conv2d from .helpers import to_2tuple from .pool2d_same import create_pool2d class MultiQueryAttentionV2(nn.Module): """Multi Query Attention. Fast Transformer Decoding: One Write-Head is All You Need https://arxiv.org/pdf/1911.02150.pdf This is an acceletor optimized version - removing multiple unneccessary tensor transpose by re-arranging indices according to the following rules: 1) contracted indices are at the end, 2) other indices have the same order in the input and output tensores. Compared to V1, this gives 3x speed up. """ def __init__( self, dim: int, dim_out: Optional[int] = None, num_heads: int = 8, key_dim: int = 64, value_dim: int = 64, attn_drop: float = 0., proj_drop: float = 0., ): """Initializer.""" super().__init__() dim_out = dim_out or dim self.num_heads = num_heads self.key_dim = key_dim self.value_dim = value_dim self.scale = key_dim ** -0.5 self.query_proj = nn.Parameter(torch.randn([self.num_heads, self.key_dim, dim])) self.key_proj = nn.Parameter(torch.randn([dim, self.key_dim])) self.value_proj = nn.Parameter(torch.randn([dim, self.value_dim])) self.attn_drop = nn.Dropout(attn_drop) self.out_proj = nn.Parameter(torch.randn([dim_out, self.num_heads, self.value_dim])) self.proj_drop = nn.Dropout(proj_drop) def _reshape_input(self, t): """Reshapes a tensor to three dimensions, keeping the first and last.""" s = t.shape # Propagate the shape statically where possible. #num = t.shape[1:-1].numel() #return t.reshape(s[0], num, s[-1]) return t.reshape(s[0], s[1], -1).transpose(1, 2) def forward(self, x, m: Optional[torch.Tensor] = None): """Run layer computation.""" s = x.shape m = m or x reshaped_x = self._reshape_input(x) reshaped_m = self._reshape_input(m) q = torch.einsum('bnd,hkd->bnhk', reshaped_x, self.query_proj) k = torch.einsum('bmd,dk->bmk', reshaped_m, self.key_proj) attn = torch.einsum('bnhk,bmk->bnhm', q, k) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) v = torch.einsum('bmd,dv->bmv', reshaped_m, self.value_proj) o = torch.einsum('bnhm,bmv->bnhv', attn, v) result = torch.einsum('bnhv,dhv->bnd', o, self.out_proj) result = self.proj_drop(result) return result.reshape(s) class MultiQueryAttention2d(nn.Module): """Multi Query Attention with spatial downsampling. 3 parameters are introduced for the spatial downsampling: 1. kv_stride: downsampling factor on Key and Values only. 2. query_strides: horizontal & vertical strides on Query only. This is an optimized version. 1. Projections in Attention is explict written out as 1x1 Conv2D. 2. Additional reshapes are introduced to bring a up to 3x speed up. """ fused_attn: torch.jit.Final[bool] def __init__( self, dim: int, dim_out: Optional[int] = None, num_heads: int = 8, key_dim: Optional[int] = None, value_dim: Optional[int] = None, query_strides: int = 1, kv_stride: int = 1, dw_kernel_size: int = 3, dilation: int = 1, padding: Union[str, int, List[int]] = '', attn_drop: float = 0., proj_drop: float = 0., norm_layer: nn.Module = nn.BatchNorm2d, use_bias: bool = False, ): """Initializer. Args: num_heads: Number of attention heads. key_dim: Size of the attention key dimension. value_dim: Size of the attention value dimension. query_strides: Vertical stride size for query only. kv_stride: Key and value stride size. dw_kernel_size: Spatial dimension of the depthwise kernel. """ super().__init__() dim_out = dim_out or dim self.num_heads = num_heads self.key_dim = key_dim or dim // num_heads self.value_dim = value_dim or dim // num_heads self.query_strides = to_2tuple(query_strides) self.kv_stride = kv_stride self.has_query_strides = any([s > 1 for s in self.query_strides]) self.scale = self.key_dim ** -0.5 self.fused_attn = use_fused_attn() self.drop = attn_drop self.query = nn.Sequential() if self.has_query_strides: # FIXME dilation if padding == 'same': self.query.add_module('down_pool', create_pool2d( 'avg', kernel_size=self.query_strides, padding='same', )) else: # no pad if not 'same' as kern=stride=even self.query.add_module('down_pool', nn.AvgPool2d(kernel_size=query_strides)) self.query.add_module('norm', norm_layer(dim)) self.query.add_module('proj', create_conv2d( dim, self.num_heads * self.key_dim, kernel_size=1, bias=use_bias, )) self.key = nn.Sequential() if kv_stride > 1: self.key.add_module('down_conv', create_conv2d( dim, dim, kernel_size=dw_kernel_size, stride=kv_stride, dilation=dilation, padding=padding, depthwise=True, )) self.key.add_module('norm', norm_layer(dim)) self.key.add_module('proj', create_conv2d( dim, self.key_dim, kernel_size=1, padding=padding, bias=use_bias, )) self.value = nn.Sequential() if kv_stride > 1: self.value.add_module('down_conv', create_conv2d( dim, dim, kernel_size=dw_kernel_size, stride=kv_stride, dilation=dilation, padding=padding, depthwise=True, )) self.value.add_module('norm', norm_layer(dim)) self.value.add_module('proj', create_conv2d( dim, self.value_dim, kernel_size=1, bias=use_bias, )) self.attn_drop = nn.Dropout(attn_drop) self.output = nn.Sequential() if self.has_query_strides: self.output.add_module('upsample', nn.Upsample(scale_factor=self.query_strides, mode='bilinear', align_corners=False)) self.output.add_module('proj', create_conv2d( self.value_dim * self.num_heads, dim_out, kernel_size=1, bias=use_bias, )) self.output.add_module('drop', nn.Dropout(proj_drop)) self.einsum = False def init_weights(self): # using xavier appeared to improve stability for mobilenetv4 hybrid w/ this layer nn.init.xavier_uniform_(self.query.proj.weight) nn.init.xavier_uniform_(self.key.proj.weight) nn.init.xavier_uniform_(self.value.proj.weight) if self.kv_stride > 1: nn.init.xavier_uniform_(self.key.down_conv.weight) nn.init.xavier_uniform_(self.value.down_conv.weight) nn.init.xavier_uniform_(self.output.proj.weight) def _reshape_input(self, t: torch.Tensor): """Reshapes a tensor to three dimensions, keeping the batch and channels.""" s = t.shape t = t.reshape(s[0], s[1], -1).transpose(1, 2) if self.einsum: return t else: return t.unsqueeze(1).contiguous() def _reshape_projected_query(self, t: torch.Tensor, num_heads: int, key_dim: int): """Reshapes projected query: [b, n, n, h x k] -> [b, n x n, h, k].""" s = t.shape t = t.reshape(s[0], num_heads, key_dim, -1) if self.einsum: return t.permute(0, 3, 1, 2).contiguous() else: return t.transpose(-1, -2).contiguous() def _reshape_output(self, t: torch.Tensor, num_heads: int, h_px: int, w_px: int): """Reshape output:[b, n x n x h, k] -> [b, n, n, hk].""" s = t.shape feat_dim = s[-1] * num_heads if not self.einsum: t = t.transpose(1, 2) return t.reshape(s[0], h_px, w_px, feat_dim).permute(0, 3, 1, 2).contiguous() def forward(self, x, attn_mask: Optional[torch.Tensor] = None): """Run layer computation.""" B, C, H, W = s = x.shape q = self.query(x) # desired q shape: [b, h, k, n x n] - [b, l, h, k] q = self._reshape_projected_query(q, self.num_heads, self.key_dim) k = self.key(x) # output shape of k: [b, k, p], p = m x m k = self._reshape_input(k) v = self.value(x) # output shape of v: [ b, p, k], p = m x m v = self._reshape_input(v) # desired q shape: [b, n x n, h, k] # desired k shape: [b, m x m, k] # desired logits shape: [b, n x n, h, m x m] if self.einsum: attn = torch.einsum('blhk,bpk->blhp', q, k) * self.scale if attn_mask is not None: # NOTE: assumes mask is float and in correct shape attn = attn + attn_mask attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) o = torch.einsum('blhp,bpk->blhk', attn, v) else: if self.fused_attn: o = F.scaled_dot_product_attention( q, k, v, attn_mask=attn_mask, dropout_p=self.attn_drop.p if self.training else 0. ) else: q = q * self.scale attn = q @ k.transpose(-1, -2) if attn_mask is not None: # NOTE: assumes mask is float and in correct shape attn = attn + attn_mask attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) o = attn @ v # reshape o into [b, hk, n, n,] o = self._reshape_output(o, self.num_heads, H // self.query_strides[0], W // self.query_strides[1]) x = self.output(o) return x class Attention2d(nn.Module): fused_attn: torch.jit.Final[bool] """ multi-head attention for 2D NCHW tensors""" def __init__( self, dim: int, dim_out: Optional[int] = None, num_heads: int = 32, bias: bool = True, expand_first: bool = False, head_first: bool = False, attn_drop: float = 0., proj_drop: float = 0. ): super().__init__() dim_out = dim_out or dim dim_attn = dim_out if expand_first else dim self.num_heads = num_heads self.dim_head = dim_attn // num_heads self.head_first = head_first self.scale = num_heads ** -0.5 self.fused_attn = use_fused_attn() self.qkv = nn.Conv2d(dim, dim_attn * 3, 1, bias=bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Conv2d(dim_attn, dim_out, 1, bias=bias) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, attn_mask: Optional[torch.Tensor] = None): B, C, H, W = x.shape if self.head_first: q, k, v = self.qkv(x).view(B, self.num_heads, self.dim_head * 3, -1).chunk(3, dim=2) else: q, k, v = self.qkv(x).reshape(B, 3, self.num_heads, self.dim_head, -1).unbind(1) if self.fused_attn: x = torch.nn.functional.scaled_dot_product_attention( q.transpose(-1, -2).contiguous(), k.transpose(-1, -2).contiguous(), v.transpose(-1, -2).contiguous(), attn_mask=attn_mask, dropout_p=self.attn_drop.p if self.training else 0., ).transpose(-1, -2).reshape(B, -1, H, W) else: q = q * self.scale attn = q.transpose(-2, -1) @ k if attn_mask is not None: # NOTE: assumes mask is float and in correct shape attn = attn + attn_mask attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W) x = self.proj(x) x = self.proj_drop(x) return x