#!/usr/bin/env python3 """ Bulk Model Script Runner Run validation or benchmark script in separate process for each model Benchmark all 'vit*' models: python bulk_runner.py --model-list 'vit*' --results-file vit_bench.csv benchmark.py --amp -b 512 Validate all models: python bulk_runner.py --model-list all --results-file val.csv --pretrained validate.py --data-dir /imagenet/validation/ --amp -b 512 --retry Hacked together by Ross Wightman (https://github.com/rwightman) """ import argparse import os import sys import csv import json import subprocess import time from typing import Callable, List, Tuple, Union from timm.models import is_model, list_models, get_pretrained_cfg, get_arch_pretrained_cfgs parser = argparse.ArgumentParser(description='Per-model process launcher') # model and results args parser.add_argument( '--model-list', metavar='NAME', default='', help='txt file based list of model names to benchmark') parser.add_argument( '--results-file', default='', type=str, metavar='FILENAME', help='Output csv file for validation results (summary)') parser.add_argument( '--sort-key', default='', type=str, metavar='COL', help='Specify sort key for results csv') parser.add_argument( "--pretrained", action='store_true', help="only run models with pretrained weights") parser.add_argument( "--delay", type=float, default=0, help="Interval, in seconds, to delay between model invocations.", ) parser.add_argument( "--start_method", type=str, default="spawn", choices=["spawn", "fork", "forkserver"], help="Multiprocessing start method to use when creating workers.", ) parser.add_argument( "--no_python", help="Skip prepending the script with 'python' - just execute it directly. Useful " "when the script is not a Python script.", ) parser.add_argument( "-m", "--module", help="Change each process to interpret the launch script as a Python module, executing " "with the same behavior as 'python -m'.", ) # positional parser.add_argument( "script", type=str, help="Full path to the program/script to be launched for each model config.", ) parser.add_argument("script_args", nargs=argparse.REMAINDER) def cmd_from_args(args) -> Tuple[Union[Callable, str], List[str]]: # If ``args`` not passed, defaults to ``sys.argv[:1]`` with_python = not args.no_python cmd: Union[Callable, str] cmd_args = [] if with_python: cmd = os.getenv("PYTHON_EXEC", sys.executable) cmd_args.append("-u") if args.module: cmd_args.append("-m") cmd_args.append(args.script) else: if args.module: raise ValueError( "Don't use both the '--no_python' flag" " and the '--module' flag at the same time." ) cmd = args.script cmd_args.extend(args.script_args) return cmd, cmd_args def _get_model_cfgs( model_names, num_classes=None, expand_train_test=False, include_crop=True, expand_arch=False, ): model_cfgs = set() for name in model_names: if expand_arch: pt_cfgs = get_arch_pretrained_cfgs(name).values() else: pt_cfg = get_pretrained_cfg(name) pt_cfgs = [pt_cfg] if pt_cfg is not None else [] for cfg in pt_cfgs: if cfg.input_size is None: continue if num_classes is not None and getattr(cfg, 'num_classes', 0) != num_classes: continue # Add main configuration size = cfg.input_size[-1] if include_crop: model_cfgs.add((name, size, cfg.crop_pct)) else: model_cfgs.add((name, size)) # Add test configuration if required if expand_train_test and cfg.test_input_size is not None: test_size = cfg.test_input_size[-1] if include_crop: test_crop = cfg.test_crop_pct or cfg.crop_pct model_cfgs.add((name, test_size, test_crop)) else: model_cfgs.add((name, test_size)) # Format the output if include_crop: return [(n, {'img-size': r, 'crop-pct': cp}) for n, r, cp in sorted(model_cfgs)] else: return [(n, {'img-size': r}) for n, r in sorted(model_cfgs)] def main(): args = parser.parse_args() cmd, cmd_args = cmd_from_args(args) model_cfgs = [] if args.model_list == 'all': model_names = list_models( pretrained=args.pretrained, # only include models w/ pretrained checkpoints if set ) model_cfgs = [(n, None) for n in model_names] elif args.model_list == 'all_in1k': model_names = list_models(pretrained=True) model_cfgs = _get_model_cfgs(model_names, num_classes=1000, expand_train_test=True) elif args.model_list == 'all_res': model_names = list_models() model_cfgs = _get_model_cfgs(model_names, expand_train_test=True, include_crop=False, expand_arch=True) elif not is_model(args.model_list): # model name doesn't exist, try as wildcard filter model_names = list_models(args.model_list) model_cfgs = [(n, None) for n in model_names] if not model_cfgs and os.path.exists(args.model_list): with open(args.model_list) as f: model_names = [line.rstrip() for line in f] model_cfgs = _get_model_cfgs( model_names, #num_classes=1000, expand_train_test=True, #include_crop=False, ) if len(model_cfgs): results_file = args.results_file or './results.csv' results = [] errors = [] model_strings = '\n'.join([f'{x[0]}, {x[1]}' for x in model_cfgs]) print(f"Running script on these models:\n {model_strings}") if not args.sort_key: if 'benchmark' in args.script: if any(['train' in a for a in args.script_args]): sort_key = 'train_samples_per_sec' else: sort_key = 'infer_samples_per_sec' else: sort_key = 'top1' else: sort_key = args.sort_key print(f'Script: {args.script}, Args: {args.script_args}, Sort key: {sort_key}') try: for m, ax in model_cfgs: if not m: continue args_str = (cmd, *[str(e) for e in cmd_args], '--model', m) if ax is not None: extra_args = [(f'--{k}', str(v)) for k, v in ax.items()] extra_args = [i for t in extra_args for i in t] args_str += tuple(extra_args) try: o = subprocess.check_output(args=args_str).decode('utf-8').split('--result')[-1] r = json.loads(o) results.append(r) except Exception as e: # FIXME batch_size retry loop is currently done in either validation.py or benchmark.py # for further robustness (but more overhead), we may want to manage that by looping here... errors.append(dict(model=m, error=str(e))) if args.delay: time.sleep(args.delay) except KeyboardInterrupt as e: pass errors.extend(list(filter(lambda x: 'error' in x, results))) if errors: print(f'{len(errors)} models had errors during run.') for e in errors: if 'model' in e: print(f"\t {e['model']} ({e.get('error', 'Unknown')})") else: print(e) results = list(filter(lambda x: 'error' not in x, results)) no_sortkey = list(filter(lambda x: sort_key not in x, results)) if no_sortkey: print(f'{len(no_sortkey)} results missing sort key, skipping sort.') else: results = sorted(results, key=lambda x: x[sort_key], reverse=True) if len(results): print(f'{len(results)} models run successfully. Saving results to {results_file}.') write_results(results_file, results) def write_results(results_file, results): with open(results_file, mode='w') as cf: dw = csv.DictWriter(cf, fieldnames=results[0].keys()) dw.writeheader() for r in results: dw.writerow(r) cf.flush() if __name__ == '__main__': main()