import numpy as np import pandas as pd results = { 'results-imagenet.csv': [ 'results-imagenet-real.csv', 'results-imagenetv2-matched-frequency.csv', 'results-sketch.csv' ], 'results-imagenet-a-clean.csv': [ 'results-imagenet-a.csv', ], 'results-imagenet-r-clean.csv': [ 'results-imagenet-r.csv', ], } def diff(base_df, test_csv): base_df['mi'] = base_df.model + '-' + base_df.img_size.astype('str') base_models = base_df['mi'].values test_df = pd.read_csv(test_csv) test_df['mi'] = test_df.model + '-' + test_df.img_size.astype('str') test_models = test_df['mi'].values rank_diff = np.zeros_like(test_models, dtype='object') top1_diff = np.zeros_like(test_models, dtype='object') top5_diff = np.zeros_like(test_models, dtype='object') for rank, model in enumerate(test_models): if model in base_models: base_rank = int(np.where(base_models == model)[0]) top1_d = test_df['top1'][rank] - base_df['top1'][base_rank] top5_d = test_df['top5'][rank] - base_df['top5'][base_rank] # rank_diff if rank == base_rank: rank_diff[rank] = f'0' elif rank > base_rank: rank_diff[rank] = f'-{rank - base_rank}' else: rank_diff[rank] = f'+{base_rank - rank}' # top1_diff if top1_d >= .0: top1_diff[rank] = f'+{top1_d:.3f}' else: top1_diff[rank] = f'-{abs(top1_d):.3f}' # top5_diff if top5_d >= .0: top5_diff[rank] = f'+{top5_d:.3f}' else: top5_diff[rank] = f'-{abs(top5_d):.3f}' else: rank_diff[rank] = '' top1_diff[rank] = '' top5_diff[rank] = '' test_df['top1_diff'] = top1_diff test_df['top5_diff'] = top5_diff test_df['rank_diff'] = rank_diff test_df.drop('mi', axis=1, inplace=True) base_df.drop('mi', axis=1, inplace=True) test_df['param_count'] = test_df['param_count'].map('{:,.2f}'.format) test_df.sort_values(['top1', 'top5', 'model'], ascending=[False, False, True], inplace=True) test_df.to_csv(test_csv, index=False, float_format='%.3f') for base_results, test_results in results.items(): base_df = pd.read_csv(base_results) base_df.sort_values(['top1', 'top5', 'model'], ascending=[False, False, True], inplace=True) for test_csv in test_results: diff(base_df, test_csv) base_df['param_count'] = base_df['param_count'].map('{:,.2f}'.format) base_df.to_csv(base_results, index=False, float_format='%.3f')