File size: 11,551 Bytes
c3fdff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
""" Attention Pool 2D

Implementations of 2D spatial feature pooling using multi-head attention instead of average pool.

Based on idea in CLIP by OpenAI, licensed Apache 2.0
https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py

Hacked together by / Copyright 2021 Ross Wightman
"""
from typing import Optional, Union, Tuple

import torch
import torch.nn as nn

from. config import use_fused_attn
from .helpers import to_2tuple
from .pos_embed import resample_abs_pos_embed
from .pos_embed_sincos import apply_rot_embed, RotaryEmbedding
from .weight_init import trunc_normal_


class RotAttentionPool2d(nn.Module):
    """ Attention based 2D feature pooling w/ rotary (relative) pos embedding.
    This is a multi-head attention based replacement for (spatial) average pooling in NN architectures.

    Adapted from the AttentionPool2d in CLIP w/ rotary embedding instead of learned embed.
    https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py

    NOTE: While this impl does not require a fixed feature size, performance at differeing resolutions from
    train varies widely and falls off dramatically. I'm not sure if there is a way around this... -RW
    """
    fused_attn: torch.jit.Final[bool]

    def __init__(
            self,
            in_features: int,
            out_features: Optional[int] = None,
            ref_feat_size: Union[int, Tuple[int, int]] = 7,
            embed_dim: Optional[int] = None,
            head_dim: Optional[int] = 64,
            num_heads: Optional[int] = None,
            qkv_bias: bool = True,
            qkv_separate: bool = False,
            pool_type: str = 'token',
            class_token: bool = False,
            drop_rate: float = 0.,
    ):
        super().__init__()
        assert pool_type in ('', 'token')
        self.embed_dim = embed_dim = embed_dim or in_features
        self.in_features = in_features
        self.out_features = out_features or in_features
        ref_feat_size = to_2tuple(ref_feat_size)
        if num_heads is not None:
            assert embed_dim % num_heads == 0
            head_dim = embed_dim // num_heads
        else:
            assert embed_dim % head_dim == 0
            num_heads = embed_dim // head_dim
        self.num_heads = num_heads
        self.head_dim = head_dim
        self.pool_type = pool_type.lower()
        self.scale = self.head_dim ** -0.5
        self.fused_attn = use_fused_attn()

        if class_token:
            self.cls_token = nn.Parameter(torch.zeros(1, embed_dim))
        else:
            self.cls_token = None

        if qkv_separate:
            self.q = nn.Linear(in_features, embed_dim, bias=qkv_bias)
            self.k = nn.Linear(in_features, embed_dim, bias=qkv_bias)
            self.v = nn.Linear(in_features, embed_dim, bias=qkv_bias)
            self.qkv = None
        else:
            self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias)
        self.drop = nn.Dropout(drop_rate)
        self.proj = nn.Linear(embed_dim, self.out_features)
        self.pos_embed = RotaryEmbedding(self.head_dim, in_pixels=False, ref_feat_shape=ref_feat_size)

    def init_weights(self, zero_init_last: bool = False):
        if self.qkv is None:
            in_features = self.q.in_features
            trunc_normal_(self.q.weight, std=in_features ** -0.5)
            nn.init.zeros_(self.q.bias)
            trunc_normal_(self.k.weight, std=in_features ** -0.5)
            nn.init.zeros_(self.k.bias)
            trunc_normal_(self.v.weight, std=in_features ** -0.5)
            nn.init.zeros_(self.v.bias)
        else:
            in_features = self.qkv.in_features
            trunc_normal_(self.qkv.weight, std=in_features ** -0.5)
            nn.init.zeros_(self.qkv.bias)

    def reset(self, num_classes: Optional[int] = None, pool_type: Optional[str] = None):
        # NOTE: this module is being used as a head, so need compatible reset()
        if pool_type is not None:
            assert pool_type in ('', 'token')
            self.pool_type = pool_type
        if num_classes is not None:
            self.proj = nn.Linear(self.in_features, num_classes) if num_classes > 0 else nn.Identity()
            self.out_features = num_classes if num_classes > 0 else self.embed_dim

    def _pool(self, x: torch.Tensor, H: int, W: int) -> torch.Tensor:
        if self.pool_type == 'token':
            x = x[:, 0]
        else:
            # if not pooled, return spatial output without token
            x = x[:, 1:].reshape(x.shape[0], H, W, -1).permute(0, 3, 1, 2)
        return x

    def forward(self, x, pre_logits: bool = False):
        B, _, H, W = x.shape
        N = H * W
        x = x.flatten(2).transpose(1, 2)
        if self.cls_token is None:
            x = torch.cat([x.mean(1, keepdim=True), x], dim=1)
        else:
            x = torch.cat([self.cls_token.expand(x.shape[0], -1, -1), x], dim=1)
        if self.qkv is None:
            q = self.q(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2)
            k = self.k(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2)
            v = self.v(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2)
        else:
            x = self.qkv(x).reshape(B, N + 1, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
            q, k, v = x.unbind(0)

        rse, rce = self.pos_embed.get_embed((H, W))
        q = torch.cat([q[:, :, :1, :], apply_rot_embed(q[:, :, 1:, :], rse, rce)], dim=2).type_as(v)
        k = torch.cat([k[:, :, :1, :], apply_rot_embed(k[:, :, 1:, :], rse, rce)], dim=2).type_as(v)

        if self.fused_attn:
            x = nn.functional.scaled_dot_product_attention(q, k, v)
        else:
            q = q * self.scale
            attn = q @ k.transpose(-2, -1)
            attn = attn.softmax(dim=-1)
            x = attn @ v
        x = x.transpose(1, 2).reshape(B, N + 1, -1)
        x = self.drop(x)
        if pre_logits:
            x = self._pool(x, H, W)
            return x
        x = self.proj(x)
        x = self._pool(x, H, W)
        return x


class AttentionPool2d(nn.Module):
    """ Attention based 2D feature pooling w/ learned (absolute) pos embedding.
    This is a multi-head attention based replacement for (spatial) average pooling in NN architectures.

    It was based on impl in CLIP by OpenAI
    https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py

    NOTE: This requires feature size upon construction and well prevent adaptive sizing of the network.
    """
    fused_attn: torch.jit.Final[bool]

    def __init__(
            self,
            in_features: int,
            feat_size: Union[int, Tuple[int, int]] = 7,
            out_features: Optional[int] = None,
            embed_dim: Optional[int] = None,
            head_dim: Optional[int] = 64,
            num_heads: Optional[int] = None,
            qkv_bias: bool = True,
            qkv_separate: bool = False,
            pool_type: str = 'token',
            class_token: bool = False,
            drop_rate: float = 0.,
    ):
        super().__init__()
        assert pool_type in ('', 'token')
        self.embed_dim = embed_dim = embed_dim or in_features
        self.in_features = in_features
        self.out_features = out_features or in_features
        if num_heads is not None:
            assert embed_dim % num_heads == 0
            head_dim = embed_dim // num_heads
        else:
            assert embed_dim % head_dim == 0
            num_heads = embed_dim // head_dim
        self.feat_size = to_2tuple(feat_size)
        self.seq_len = self.feat_size[0] * self.feat_size[1]
        self.num_heads = num_heads
        self.head_dim = head_dim
        self.pool_type = pool_type
        self.scale = self.head_dim ** -0.5
        self.fused_attn = use_fused_attn()

        if class_token:
            self.cls_token = nn.Parameter(torch.zeros(1, embed_dim))
        else:
            self.cls_token = None

        if qkv_separate:
            self.q = nn.Linear(in_features, embed_dim, bias=qkv_bias)
            self.k = nn.Linear(in_features, embed_dim, bias=qkv_bias)
            self.v = nn.Linear(in_features, embed_dim, bias=qkv_bias)
            self.qkv = None
        else:
            self.q = self.k = self.v = None
            self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias)
        self.drop = nn.Dropout(drop_rate)
        self.proj = nn.Linear(embed_dim, self.out_features)
        self.pos_embed = nn.Parameter(torch.zeros(self.seq_len + 1, in_features))

        self.init_weights()

    def init_weights(self, zero_init_last: bool = False):
        if self.qkv is None:
            in_features = self.q.in_features
            trunc_normal_(self.q.weight, std=in_features ** -0.5)
            nn.init.zeros_(self.q.bias)
            trunc_normal_(self.k.weight, std=in_features ** -0.5)
            nn.init.zeros_(self.k.bias)
            trunc_normal_(self.v.weight, std=in_features ** -0.5)
            nn.init.zeros_(self.v.bias)
        else:
            in_features = self.qkv.in_features
            trunc_normal_(self.qkv.weight, std=in_features ** -0.5)
            nn.init.zeros_(self.qkv.bias)
        trunc_normal_(self.pos_embed, std=in_features ** -0.5)

    def reset(self, num_classes: Optional[int] = None, pool_type: Optional[str] = None):
        # NOTE: this module is being used as a head, so need compatible reset()
        if pool_type is not None:
            assert pool_type in ('', 'token')
            self.pool_type = pool_type
        if num_classes is not None:
            self.proj = nn.Linear(self.in_features, num_classes) if num_classes > 0 else nn.Identity()
            self.out_features = num_classes if num_classes > 0 else self.embed_dim

    def _pool(self, x: torch.Tensor, H: int, W: int) -> torch.Tensor:
        if self.pool_type == 'token':
            x = x[:, 0]
        else:
            # if not pooled, return spatial output without token
            x = x[:, 1:].reshape(x.shape[0], H, W, -1).permute(0, 3, 1, 2)
        return x

    def forward(self, x, pre_logits: bool = False):
        B, _, H, W = x.shape
        N = H * W
        x = x.flatten(2).transpose(1, 2)
        if self.cls_token is None:
            x = torch.cat([x.mean(1, keepdim=True), x], dim=1)
        else:
            x = torch.cat([self.cls_token.expand(x.shape[0], -1, -1), x], dim=1)
        pos_embed = resample_abs_pos_embed(self.pos_embed.unsqueeze(0), (H, W), num_prefix_tokens=1)
        x = x + pos_embed

        if self.qkv is None:
            q = self.q(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2)
            k = self.k(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2)
            v = self.v(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2)
        else:
            x = self.qkv(x).reshape(B, -1, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
            q, k, v = x.unbind(0)

        if self.fused_attn:
            x = nn.functional.scaled_dot_product_attention(q, k, v)
        else:
            q = q * self.scale
            attn = q @ k.transpose(-2, -1)
            attn = attn.softmax(dim=-1)
            x = attn @ v
        x = x.transpose(1, 2).reshape(B, N + 1, -1)
        x = self.drop(x)
        if pre_logits:
            x = self._pool(x, H, W)
            return x
        x = self.proj(x)
        x = self._pool(x, H, W)
        return x