File size: 17,415 Bytes
ad283e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import hashlib
import json
import logging
import os
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Iterable, List, Optional, Tuple, Union
import torch
from torch.hub import HASH_REGEX, download_url_to_file, urlparse
try:
from torch.hub import get_dir
except ImportError:
from torch.hub import _get_torch_home as get_dir
try:
import safetensors.torch
_has_safetensors = True
except ImportError:
_has_safetensors = False
try:
from typing import Literal
except ImportError:
from typing_extensions import Literal
from timm import __version__
from timm.models._pretrained import filter_pretrained_cfg
try:
from huggingface_hub import (
create_repo, get_hf_file_metadata,
hf_hub_download, hf_hub_url,
repo_type_and_id_from_hf_id, upload_folder)
from huggingface_hub.utils import EntryNotFoundError
hf_hub_download = partial(hf_hub_download, library_name="timm", library_version=__version__)
_has_hf_hub = True
except ImportError:
hf_hub_download = None
_has_hf_hub = False
_logger = logging.getLogger(__name__)
__all__ = ['get_cache_dir', 'download_cached_file', 'has_hf_hub', 'hf_split', 'load_model_config_from_hf',
'load_state_dict_from_hf', 'save_for_hf', 'push_to_hf_hub']
# Default name for a weights file hosted on the Huggingface Hub.
HF_WEIGHTS_NAME = "pytorch_model.bin" # default pytorch pkl
HF_SAFE_WEIGHTS_NAME = "model.safetensors" # safetensors version
HF_OPEN_CLIP_WEIGHTS_NAME = "open_clip_pytorch_model.bin" # default pytorch pkl
HF_OPEN_CLIP_SAFE_WEIGHTS_NAME = "open_clip_model.safetensors" # safetensors version
def get_cache_dir(child_dir: str = ''):
"""
Returns the location of the directory where models are cached (and creates it if necessary).
"""
# Issue warning to move data if old env is set
if os.getenv('TORCH_MODEL_ZOO'):
_logger.warning('TORCH_MODEL_ZOO is deprecated, please use env TORCH_HOME instead')
hub_dir = get_dir()
child_dir = () if not child_dir else (child_dir,)
model_dir = os.path.join(hub_dir, 'checkpoints', *child_dir)
os.makedirs(model_dir, exist_ok=True)
return model_dir
def download_cached_file(
url: Union[str, List[str], Tuple[str, str]],
check_hash: bool = True,
progress: bool = False,
cache_dir: Optional[Union[str, Path]] = None,
):
if isinstance(url, (list, tuple)):
url, filename = url
else:
parts = urlparse(url)
filename = os.path.basename(parts.path)
if cache_dir:
os.makedirs(cache_dir, exist_ok=True)
else:
cache_dir = get_cache_dir()
cached_file = os.path.join(cache_dir, filename)
if not os.path.exists(cached_file):
_logger.info('Downloading: "{}" to {}\n'.format(url, cached_file))
hash_prefix = None
if check_hash:
r = HASH_REGEX.search(filename) # r is Optional[Match[str]]
hash_prefix = r.group(1) if r else None
download_url_to_file(url, cached_file, hash_prefix, progress=progress)
return cached_file
def check_cached_file(
url: Union[str, List[str], Tuple[str, str]],
check_hash: bool = True,
cache_dir: Optional[Union[str, Path]] = None,
):
if isinstance(url, (list, tuple)):
url, filename = url
else:
parts = urlparse(url)
filename = os.path.basename(parts.path)
if not cache_dir:
cache_dir = get_cache_dir()
cached_file = os.path.join(cache_dir, filename)
if os.path.exists(cached_file):
if check_hash:
r = HASH_REGEX.search(filename) # r is Optional[Match[str]]
hash_prefix = r.group(1) if r else None
if hash_prefix:
with open(cached_file, 'rb') as f:
hd = hashlib.sha256(f.read()).hexdigest()
if hd[:len(hash_prefix)] != hash_prefix:
return False
return True
return False
def has_hf_hub(necessary: bool = False):
if not _has_hf_hub and necessary:
# if no HF Hub module installed, and it is necessary to continue, raise error
raise RuntimeError(
'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.')
return _has_hf_hub
def hf_split(hf_id: str):
# FIXME I may change @ -> # and be parsed as fragment in a URI model name scheme
rev_split = hf_id.split('@')
assert 0 < len(rev_split) <= 2, 'hf_hub id should only contain one @ character to identify revision.'
hf_model_id = rev_split[0]
hf_revision = rev_split[-1] if len(rev_split) > 1 else None
return hf_model_id, hf_revision
def load_cfg_from_json(json_file: Union[str, Path]):
with open(json_file, "r", encoding="utf-8") as reader:
text = reader.read()
return json.loads(text)
def download_from_hf(
model_id: str,
filename: str,
cache_dir: Optional[Union[str, Path]] = None,
):
hf_model_id, hf_revision = hf_split(model_id)
return hf_hub_download(
hf_model_id,
filename,
revision=hf_revision,
cache_dir=cache_dir,
)
def load_model_config_from_hf(
model_id: str,
cache_dir: Optional[Union[str, Path]] = None,
):
assert has_hf_hub(True)
cached_file = download_from_hf(model_id, 'config.json', cache_dir=cache_dir)
hf_config = load_cfg_from_json(cached_file)
if 'pretrained_cfg' not in hf_config:
# old form, pull pretrain_cfg out of the base dict
pretrained_cfg = hf_config
hf_config = {}
hf_config['architecture'] = pretrained_cfg.pop('architecture')
hf_config['num_features'] = pretrained_cfg.pop('num_features', None)
if 'labels' in pretrained_cfg: # deprecated name for 'label_names'
pretrained_cfg['label_names'] = pretrained_cfg.pop('labels')
hf_config['pretrained_cfg'] = pretrained_cfg
# NOTE currently discarding parent config as only arch name and pretrained_cfg used in timm right now
pretrained_cfg = hf_config['pretrained_cfg']
pretrained_cfg['hf_hub_id'] = model_id # insert hf_hub id for pretrained weight load during model creation
pretrained_cfg['source'] = 'hf-hub'
# model should be created with base config num_classes if its exist
if 'num_classes' in hf_config:
pretrained_cfg['num_classes'] = hf_config['num_classes']
# label meta-data in base config overrides saved pretrained_cfg on load
if 'label_names' in hf_config:
pretrained_cfg['label_names'] = hf_config.pop('label_names')
if 'label_descriptions' in hf_config:
pretrained_cfg['label_descriptions'] = hf_config.pop('label_descriptions')
model_args = hf_config.get('model_args', {})
model_name = hf_config['architecture']
return pretrained_cfg, model_name, model_args
def load_state_dict_from_hf(
model_id: str,
filename: str = HF_WEIGHTS_NAME,
weights_only: bool = False,
cache_dir: Optional[Union[str, Path]] = None,
):
assert has_hf_hub(True)
hf_model_id, hf_revision = hf_split(model_id)
# Look for .safetensors alternatives and load from it if it exists
if _has_safetensors:
for safe_filename in _get_safe_alternatives(filename):
try:
cached_safe_file = hf_hub_download(
repo_id=hf_model_id,
filename=safe_filename,
revision=hf_revision,
cache_dir=cache_dir,
)
_logger.info(
f"[{model_id}] Safe alternative available for '{filename}' "
f"(as '{safe_filename}'). Loading weights using safetensors.")
return safetensors.torch.load_file(cached_safe_file, device="cpu")
except EntryNotFoundError:
pass
# Otherwise, load using pytorch.load
cached_file = hf_hub_download(
hf_model_id,
filename=filename,
revision=hf_revision,
cache_dir=cache_dir,
)
_logger.debug(f"[{model_id}] Safe alternative not found for '{filename}'. Loading weights using default pytorch.")
try:
state_dict = torch.load(cached_file, map_location='cpu', weights_only=weights_only)
except TypeError:
state_dict = torch.load(cached_file, map_location='cpu')
return state_dict
def load_custom_from_hf(
model_id: str,
filename: str,
model: torch.nn.Module,
cache_dir: Optional[Union[str, Path]] = None,
):
assert has_hf_hub(True)
hf_model_id, hf_revision = hf_split(model_id)
cached_file = hf_hub_download(
hf_model_id,
filename=filename,
revision=hf_revision,
cache_dir=cache_dir,
)
return model.load_pretrained(cached_file)
def save_config_for_hf(
model: torch.nn.Module,
config_path: str,
model_config: Optional[dict] = None,
model_args: Optional[dict] = None
):
model_config = model_config or {}
hf_config = {}
pretrained_cfg = filter_pretrained_cfg(model.pretrained_cfg, remove_source=True, remove_null=True)
# set some values at root config level
hf_config['architecture'] = pretrained_cfg.pop('architecture')
hf_config['num_classes'] = model_config.pop('num_classes', model.num_classes)
# NOTE these attr saved for informational purposes, do not impact model build
hf_config['num_features'] = model_config.pop('num_features', model.num_features)
global_pool_type = model_config.pop('global_pool', getattr(model, 'global_pool', None))
if isinstance(global_pool_type, str) and global_pool_type:
hf_config['global_pool'] = global_pool_type
# Save class label info
if 'labels' in model_config:
_logger.warning(
"'labels' as a config field for is deprecated. Please use 'label_names' and 'label_descriptions'."
" Renaming provided 'labels' field to 'label_names'.")
model_config.setdefault('label_names', model_config.pop('labels'))
label_names = model_config.pop('label_names', None)
if label_names:
assert isinstance(label_names, (dict, list, tuple))
# map label id (classifier index) -> unique label name (ie synset for ImageNet, MID for OpenImages)
# can be a dict id: name if there are id gaps, or tuple/list if no gaps.
hf_config['label_names'] = label_names
label_descriptions = model_config.pop('label_descriptions', None)
if label_descriptions:
assert isinstance(label_descriptions, dict)
# maps label names -> descriptions
hf_config['label_descriptions'] = label_descriptions
if model_args:
hf_config['model_args'] = model_args
hf_config['pretrained_cfg'] = pretrained_cfg
hf_config.update(model_config)
with config_path.open('w') as f:
json.dump(hf_config, f, indent=2)
def save_for_hf(
model: torch.nn.Module,
save_directory: str,
model_config: Optional[dict] = None,
model_args: Optional[dict] = None,
safe_serialization: Union[bool, Literal["both"]] = False,
):
assert has_hf_hub(True)
save_directory = Path(save_directory)
save_directory.mkdir(exist_ok=True, parents=True)
# Save model weights, either safely (using safetensors), or using legacy pytorch approach or both.
tensors = model.state_dict()
if safe_serialization is True or safe_serialization == "both":
assert _has_safetensors, "`pip install safetensors` to use .safetensors"
safetensors.torch.save_file(tensors, save_directory / HF_SAFE_WEIGHTS_NAME)
if safe_serialization is False or safe_serialization == "both":
torch.save(tensors, save_directory / HF_WEIGHTS_NAME)
config_path = save_directory / 'config.json'
save_config_for_hf(
model,
config_path,
model_config=model_config,
model_args=model_args,
)
def push_to_hf_hub(
model: torch.nn.Module,
repo_id: str,
commit_message: str = 'Add model',
token: Optional[str] = None,
revision: Optional[str] = None,
private: bool = False,
create_pr: bool = False,
model_config: Optional[dict] = None,
model_card: Optional[dict] = None,
model_args: Optional[dict] = None,
safe_serialization: Union[bool, Literal["both"]] = 'both',
):
"""
Arguments:
(...)
safe_serialization (`bool` or `"both"`, *optional*, defaults to `False`):
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
Can be set to `"both"` in order to push both safe and unsafe weights.
"""
# Create repo if it doesn't exist yet
repo_url = create_repo(repo_id, token=token, private=private, exist_ok=True)
# Infer complete repo_id from repo_url
# Can be different from the input `repo_id` if repo_owner was implicit
_, repo_owner, repo_name = repo_type_and_id_from_hf_id(repo_url)
repo_id = f"{repo_owner}/{repo_name}"
# Check if README file already exist in repo
try:
get_hf_file_metadata(hf_hub_url(repo_id=repo_id, filename="README.md", revision=revision))
has_readme = True
except EntryNotFoundError:
has_readme = False
# Dump model and push to Hub
with TemporaryDirectory() as tmpdir:
# Save model weights and config.
save_for_hf(
model,
tmpdir,
model_config=model_config,
model_args=model_args,
safe_serialization=safe_serialization,
)
# Add readme if it does not exist
if not has_readme:
model_card = model_card or {}
model_name = repo_id.split('/')[-1]
readme_path = Path(tmpdir) / "README.md"
readme_text = generate_readme(model_card, model_name)
readme_path.write_text(readme_text)
# Upload model and return
return upload_folder(
repo_id=repo_id,
folder_path=tmpdir,
revision=revision,
create_pr=create_pr,
commit_message=commit_message,
)
def generate_readme(model_card: dict, model_name: str):
readme_text = "---\n"
readme_text += "tags:\n- image-classification\n- timm\n"
readme_text += "library_name: timm\n"
readme_text += f"license: {model_card.get('license', 'apache-2.0')}\n"
if 'details' in model_card and 'Dataset' in model_card['details']:
readme_text += 'datasets:\n'
if isinstance(model_card['details']['Dataset'], (tuple, list)):
for d in model_card['details']['Dataset']:
readme_text += f"- {d.lower()}\n"
else:
readme_text += f"- {model_card['details']['Dataset'].lower()}\n"
if 'Pretrain Dataset' in model_card['details']:
if isinstance(model_card['details']['Pretrain Dataset'], (tuple, list)):
for d in model_card['details']['Pretrain Dataset']:
readme_text += f"- {d.lower()}\n"
else:
readme_text += f"- {model_card['details']['Pretrain Dataset'].lower()}\n"
readme_text += "---\n"
readme_text += f"# Model card for {model_name}\n"
if 'description' in model_card:
readme_text += f"\n{model_card['description']}\n"
if 'details' in model_card:
readme_text += f"\n## Model Details\n"
for k, v in model_card['details'].items():
if isinstance(v, (list, tuple)):
readme_text += f"- **{k}:**\n"
for vi in v:
readme_text += f" - {vi}\n"
elif isinstance(v, dict):
readme_text += f"- **{k}:**\n"
for ki, vi in v.items():
readme_text += f" - {ki}: {vi}\n"
else:
readme_text += f"- **{k}:** {v}\n"
if 'usage' in model_card:
readme_text += f"\n## Model Usage\n"
readme_text += model_card['usage']
readme_text += '\n'
if 'comparison' in model_card:
readme_text += f"\n## Model Comparison\n"
readme_text += model_card['comparison']
readme_text += '\n'
if 'citation' in model_card:
readme_text += f"\n## Citation\n"
if not isinstance(model_card['citation'], (list, tuple)):
citations = [model_card['citation']]
else:
citations = model_card['citation']
for c in citations:
readme_text += f"```bibtex\n{c}\n```\n"
return readme_text
def _get_safe_alternatives(filename: str) -> Iterable[str]:
"""Returns potential safetensors alternatives for a given filename.
Use case:
When downloading a model from the Huggingface Hub, we first look if a .safetensors file exists and if yes, we use it.
Main use case is filename "pytorch_model.bin" => check for "model.safetensors" or "pytorch_model.safetensors".
"""
if filename == HF_WEIGHTS_NAME:
yield HF_SAFE_WEIGHTS_NAME
if filename == HF_OPEN_CLIP_WEIGHTS_NAME:
yield HF_OPEN_CLIP_SAFE_WEIGHTS_NAME
if filename not in (HF_WEIGHTS_NAME, HF_OPEN_CLIP_WEIGHTS_NAME) and filename.endswith(".bin"):
yield filename[:-4] + ".safetensors"
|