File size: 21,389 Bytes
ad283e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
""" Class-Attention in Image Transformers (CaiT)

Paper: 'Going deeper with Image Transformers' - https://arxiv.org/abs/2103.17239

Original code and weights from https://github.com/facebookresearch/deit, copyright below

Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman
"""
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
from functools import partial
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import PatchEmbed, Mlp, DropPath, trunc_normal_, use_fused_attn
from ._builder import build_model_with_cfg
from ._features import feature_take_indices
from ._manipulate import checkpoint_seq
from ._registry import register_model, generate_default_cfgs

__all__ = ['Cait', 'ClassAttn', 'LayerScaleBlockClassAttn', 'LayerScaleBlock', 'TalkingHeadAttn']


class ClassAttn(nn.Module):
    # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
    # with slight modifications to do CA
    fused_attn: torch.jit.Final[bool]

    def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5
        self.fused_attn = use_fused_attn()

        self.q = nn.Linear(dim, dim, bias=qkv_bias)
        self.k = nn.Linear(dim, dim, bias=qkv_bias)
        self.v = nn.Linear(dim, dim, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        q = self.q(x[:, 0]).unsqueeze(1).reshape(B, 1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
        k = self.k(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
        v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)

        if self.fused_attn:
            x_cls = torch.nn.functional.scaled_dot_product_attention(
                q, k, v,
                dropout_p=self.attn_drop.p if self.training else 0.,
            )
        else:
            q = q * self.scale
            attn = q @ k.transpose(-2, -1)
            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)
            x_cls = attn @ v

        x_cls = x_cls.transpose(1, 2).reshape(B, 1, C)
        x_cls = self.proj(x_cls)
        x_cls = self.proj_drop(x_cls)

        return x_cls


class LayerScaleBlockClassAttn(nn.Module):
    # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
    # with slight modifications to add CA and LayerScale
    def __init__(
            self,
            dim,
            num_heads,
            mlp_ratio=4.,
            qkv_bias=False,
            proj_drop=0.,
            attn_drop=0.,
            drop_path=0.,
            act_layer=nn.GELU,
            norm_layer=nn.LayerNorm,
            attn_block=ClassAttn,
            mlp_block=Mlp,
            init_values=1e-4,
    ):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = attn_block(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
        )
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = mlp_block(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=proj_drop,
        )
        self.gamma_1 = nn.Parameter(init_values * torch.ones(dim))
        self.gamma_2 = nn.Parameter(init_values * torch.ones(dim))

    def forward(self, x, x_cls):
        u = torch.cat((x_cls, x), dim=1)
        x_cls = x_cls + self.drop_path(self.gamma_1 * self.attn(self.norm1(u)))
        x_cls = x_cls + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x_cls)))
        return x_cls


class TalkingHeadAttn(nn.Module):
    # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
    # with slight modifications to add Talking Heads Attention (https://arxiv.org/pdf/2003.02436v1.pdf)
    def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
        super().__init__()

        self.num_heads = num_heads

        head_dim = dim // num_heads

        self.scale = head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)

        self.proj = nn.Linear(dim, dim)

        self.proj_l = nn.Linear(num_heads, num_heads)
        self.proj_w = nn.Linear(num_heads, num_heads)

        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]

        attn = q @ k.transpose(-2, -1)

        attn = self.proj_l(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)

        attn = attn.softmax(dim=-1)

        attn = self.proj_w(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class LayerScaleBlock(nn.Module):
    # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
    # with slight modifications to add layerScale
    def __init__(
            self,
            dim,
            num_heads,
            mlp_ratio=4.,
            qkv_bias=False,
            proj_drop=0.,
            attn_drop=0.,
            drop_path=0.,
            act_layer=nn.GELU,
            norm_layer=nn.LayerNorm,
            attn_block=TalkingHeadAttn,
            mlp_block=Mlp,
            init_values=1e-4,
    ):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = attn_block(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
        )
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = mlp_block(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=proj_drop,
        )
        self.gamma_1 = nn.Parameter(init_values * torch.ones(dim))
        self.gamma_2 = nn.Parameter(init_values * torch.ones(dim))

    def forward(self, x):
        x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
        x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
        return x


class Cait(nn.Module):
    # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
    # with slight modifications to adapt to our cait models
    def __init__(
            self,
            img_size=224,
            patch_size=16,
            in_chans=3,
            num_classes=1000,
            global_pool='token',
            embed_dim=768,
            depth=12,
            num_heads=12,
            mlp_ratio=4.,
            qkv_bias=True,
            drop_rate=0.,
            pos_drop_rate=0.,
            proj_drop_rate=0.,
            attn_drop_rate=0.,
            drop_path_rate=0.,
            block_layers=LayerScaleBlock,
            block_layers_token=LayerScaleBlockClassAttn,
            patch_layer=PatchEmbed,
            norm_layer=partial(nn.LayerNorm, eps=1e-6),
            act_layer=nn.GELU,
            attn_block=TalkingHeadAttn,
            mlp_block=Mlp,
            init_values=1e-4,
            attn_block_token_only=ClassAttn,
            mlp_block_token_only=Mlp,
            depth_token_only=2,
            mlp_ratio_token_only=4.0
    ):
        super().__init__()
        assert global_pool in ('', 'token', 'avg')

        self.num_classes = num_classes
        self.global_pool = global_pool
        self.num_features = self.head_hidden_size = self.embed_dim = embed_dim
        self.grad_checkpointing = False

        self.patch_embed = patch_layer(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
        )
        num_patches = self.patch_embed.num_patches
        r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
        self.pos_drop = nn.Dropout(p=pos_drop_rate)

        dpr = [drop_path_rate for i in range(depth)]
        self.blocks = nn.Sequential(*[block_layers(
            dim=embed_dim,
            num_heads=num_heads,
            mlp_ratio=mlp_ratio,
            qkv_bias=qkv_bias,
            proj_drop=proj_drop_rate,
            attn_drop=attn_drop_rate,
            drop_path=dpr[i],
            norm_layer=norm_layer,
            act_layer=act_layer,
            attn_block=attn_block,
            mlp_block=mlp_block,
            init_values=init_values,
        ) for i in range(depth)])
        self.feature_info = [dict(num_chs=embed_dim, reduction=r, module=f'blocks.{i}') for i in range(depth)]

        self.blocks_token_only = nn.ModuleList([block_layers_token(
            dim=embed_dim,
            num_heads=num_heads,
            mlp_ratio=mlp_ratio_token_only,
            qkv_bias=qkv_bias,
            norm_layer=norm_layer,
            act_layer=act_layer,
            attn_block=attn_block_token_only,
            mlp_block=mlp_block_token_only,
            init_values=init_values,
        ) for _ in range(depth_token_only)])

        self.norm = norm_layer(embed_dim)

        self.head_drop = nn.Dropout(drop_rate)
        self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()

        trunc_normal_(self.pos_embed, std=.02)
        trunc_normal_(self.cls_token, std=.02)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.grad_checkpointing = enable

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        def _matcher(name):
            if any([name.startswith(n) for n in ('cls_token', 'pos_embed', 'patch_embed')]):
                return 0
            elif name.startswith('blocks.'):
                return int(name.split('.')[1]) + 1
            elif name.startswith('blocks_token_only.'):
                # overlap token only blocks with last blocks
                to_offset = len(self.blocks) - len(self.blocks_token_only) + 1
                return int(name.split('.')[1]) + to_offset
            elif name.startswith('norm.'):
                return len(self.blocks)
            else:
                return float('inf')
        return _matcher

    @torch.jit.ignore
    def get_classifier(self) -> nn.Module:
        return self.head

    def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
        self.num_classes = num_classes
        if global_pool is not None:
            assert global_pool in ('', 'token', 'avg')
            self.global_pool = global_pool
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

    def forward_intermediates(
            self,
            x: torch.Tensor,
            indices: Optional[Union[int, List[int]]] = None,
            norm: bool = False,
            stop_early: bool = False,
            output_fmt: str = 'NCHW',
            intermediates_only: bool = False,
    ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
        """ Forward features that returns intermediates.

        Args:
            x: Input image tensor
            indices: Take last n blocks if int, all if None, select matching indices if sequence
            norm: Apply norm layer to all intermediates
            stop_early: Stop iterating over blocks when last desired intermediate hit
            output_fmt: Shape of intermediate feature outputs
            intermediates_only: Only return intermediate features
        """
        assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.'
        reshape = output_fmt == 'NCHW'
        intermediates = []
        take_indices, max_index = feature_take_indices(len(self.blocks), indices)

        # forward pass
        B, _, height, width = x.shape
        x = self.patch_embed(x)
        x = x + self.pos_embed
        x = self.pos_drop(x)

        if torch.jit.is_scripting() or not stop_early:  # can't slice blocks in torchscript
            blocks = self.blocks
        else:
            blocks = self.blocks[:max_index + 1]
        for i, blk in enumerate(blocks):
            x = blk(x)
            if i in take_indices:
                # normalize intermediates with final norm layer if enabled
                intermediates.append(self.norm(x) if norm else x)

        # process intermediates
        if reshape:
            # reshape to BCHW output format
            H, W = self.patch_embed.dynamic_feat_size((height, width))
            intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates]

        if intermediates_only:
            return intermediates

        # NOTE not supporting return of class tokens
        cls_tokens = self.cls_token.expand(x.shape[0], -1, -1)
        for i, blk in enumerate(self.blocks_token_only):
            cls_tokens = blk(x, cls_tokens)
        x = torch.cat((cls_tokens, x), dim=1)
        x = self.norm(x)

        return x, intermediates

    def prune_intermediate_layers(
            self,
            indices: Union[int, List[int]] = 1,
            prune_norm: bool = False,
            prune_head: bool = True,
    ):
        """ Prune layers not required for specified intermediates.
        """
        take_indices, max_index = feature_take_indices(len(self.blocks), indices)
        self.blocks = self.blocks[:max_index + 1]  # truncate blocks
        if prune_norm:
            self.norm = nn.Identity()
        if prune_head:
            self.blocks_token_only = nn.ModuleList()  # prune token blocks with head
            self.reset_classifier(0, '')
        return take_indices

    def forward_features(self, x):
        x = self.patch_embed(x)
        x = x + self.pos_embed
        x = self.pos_drop(x)
        if self.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.blocks, x)
        else:
            x = self.blocks(x)
        cls_tokens = self.cls_token.expand(x.shape[0], -1, -1)
        for i, blk in enumerate(self.blocks_token_only):
            cls_tokens = blk(x, cls_tokens)
        x = torch.cat((cls_tokens, x), dim=1)
        x = self.norm(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        if self.global_pool:
            x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
        x = self.head_drop(x)
        return x if pre_logits else self.head(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def checkpoint_filter_fn(state_dict, model=None):
    if 'model' in state_dict:
        state_dict = state_dict['model']
    checkpoint_no_module = {}
    for k, v in state_dict.items():
        checkpoint_no_module[k.replace('module.', '')] = v
    return checkpoint_no_module


def _create_cait(variant, pretrained=False, **kwargs):
    out_indices = kwargs.pop('out_indices', 3)
    model = build_model_with_cfg(
        Cait,
        variant,
        pretrained,
        pretrained_filter_fn=checkpoint_filter_fn,
        feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
        **kwargs,
    )
    return model


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 384, 384), 'pool_size': None,
        'crop_pct': 1.0, 'interpolation': 'bicubic', 'fixed_input_size': True,
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'patch_embed.proj', 'classifier': 'head',
        **kwargs
    }


default_cfgs = generate_default_cfgs({
    'cait_xxs24_224.fb_dist_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://dl.fbaipublicfiles.com/deit/XXS24_224.pth',
        input_size=(3, 224, 224),
    ),
    'cait_xxs24_384.fb_dist_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://dl.fbaipublicfiles.com/deit/XXS24_384.pth',
    ),
    'cait_xxs36_224.fb_dist_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://dl.fbaipublicfiles.com/deit/XXS36_224.pth',
        input_size=(3, 224, 224),
    ),
    'cait_xxs36_384.fb_dist_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://dl.fbaipublicfiles.com/deit/XXS36_384.pth',
    ),
    'cait_xs24_384.fb_dist_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://dl.fbaipublicfiles.com/deit/XS24_384.pth',
    ),
    'cait_s24_224.fb_dist_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://dl.fbaipublicfiles.com/deit/S24_224.pth',
        input_size=(3, 224, 224),
    ),
    'cait_s24_384.fb_dist_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://dl.fbaipublicfiles.com/deit/S24_384.pth',
    ),
    'cait_s36_384.fb_dist_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://dl.fbaipublicfiles.com/deit/S36_384.pth',
    ),
    'cait_m36_384.fb_dist_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://dl.fbaipublicfiles.com/deit/M36_384.pth',
    ),
    'cait_m48_448.fb_dist_in1k': _cfg(
        hf_hub_id='timm/',
        url='https://dl.fbaipublicfiles.com/deit/M48_448.pth',
        input_size=(3, 448, 448),
    ),
})


@register_model
def cait_xxs24_224(pretrained=False, **kwargs) -> Cait:
    model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, init_values=1e-5)
    model = _create_cait('cait_xxs24_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def cait_xxs24_384(pretrained=False, **kwargs) -> Cait:
    model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, init_values=1e-5)
    model = _create_cait('cait_xxs24_384', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def cait_xxs36_224(pretrained=False, **kwargs) -> Cait:
    model_args = dict(patch_size=16, embed_dim=192, depth=36, num_heads=4, init_values=1e-5)
    model = _create_cait('cait_xxs36_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def cait_xxs36_384(pretrained=False, **kwargs) -> Cait:
    model_args = dict(patch_size=16, embed_dim=192, depth=36, num_heads=4, init_values=1e-5)
    model = _create_cait('cait_xxs36_384', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def cait_xs24_384(pretrained=False, **kwargs) -> Cait:
    model_args = dict(patch_size=16, embed_dim=288, depth=24, num_heads=6, init_values=1e-5)
    model = _create_cait('cait_xs24_384', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def cait_s24_224(pretrained=False, **kwargs) -> Cait:
    model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, init_values=1e-5)
    model = _create_cait('cait_s24_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def cait_s24_384(pretrained=False, **kwargs) -> Cait:
    model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, init_values=1e-5)
    model = _create_cait('cait_s24_384', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def cait_s36_384(pretrained=False, **kwargs) -> Cait:
    model_args = dict(patch_size=16, embed_dim=384, depth=36, num_heads=8, init_values=1e-6)
    model = _create_cait('cait_s36_384', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def cait_m36_384(pretrained=False, **kwargs) -> Cait:
    model_args = dict(patch_size=16, embed_dim=768, depth=36, num_heads=16, init_values=1e-6)
    model = _create_cait('cait_m36_384', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def cait_m48_448(pretrained=False, **kwargs) -> Cait:
    model_args = dict(patch_size=16, embed_dim=768, depth=48, num_heads=16, init_values=1e-6)
    model = _create_cait('cait_m48_448', pretrained=pretrained, **dict(model_args, **kwargs))
    return model