File size: 18,631 Bytes
ad283e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
""" DeiT - Data-efficient Image Transformers
DeiT model defs and weights from https://github.com/facebookresearch/deit, original copyright below
paper: `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877
paper: `DeiT III: Revenge of the ViT` - https://arxiv.org/abs/2204.07118
Modifications copyright 2021, Ross Wightman
"""
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
from functools import partial
from typing import Optional
import torch
from torch import nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import resample_abs_pos_embed
from timm.models.vision_transformer import VisionTransformer, trunc_normal_, checkpoint_filter_fn
from ._builder import build_model_with_cfg
from ._registry import generate_default_cfgs, register_model, register_model_deprecations
__all__ = ['VisionTransformerDistilled'] # model_registry will add each entrypoint fn to this
class VisionTransformerDistilled(VisionTransformer):
""" Vision Transformer w/ Distillation Token and Head
Distillation token & head support for `DeiT: Data-efficient Image Transformers`
- https://arxiv.org/abs/2012.12877
"""
def __init__(self, *args, **kwargs):
weight_init = kwargs.pop('weight_init', '')
super().__init__(*args, **kwargs, weight_init='skip')
assert self.global_pool in ('token',)
self.num_prefix_tokens = 2
self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
self.pos_embed = nn.Parameter(
torch.zeros(1, self.patch_embed.num_patches + self.num_prefix_tokens, self.embed_dim))
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if self.num_classes > 0 else nn.Identity()
self.distilled_training = False # must set this True to train w/ distillation token
self.init_weights(weight_init)
def init_weights(self, mode=''):
trunc_normal_(self.dist_token, std=.02)
super().init_weights(mode=mode)
@torch.jit.ignore
def group_matcher(self, coarse=False):
return dict(
stem=r'^cls_token|pos_embed|patch_embed|dist_token',
blocks=[
(r'^blocks\.(\d+)', None),
(r'^norm', (99999,))] # final norm w/ last block
)
@torch.jit.ignore
def get_classifier(self) -> nn.Module:
return self.head, self.head_dist
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()
@torch.jit.ignore
def set_distilled_training(self, enable=True):
self.distilled_training = enable
def _pos_embed(self, x):
if self.dynamic_img_size:
B, H, W, C = x.shape
prev_grid_size = self.patch_embed.grid_size
pos_embed = resample_abs_pos_embed(
self.pos_embed,
new_size=(H, W),
old_size=prev_grid_size,
num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens,
)
x = x.view(B, -1, C)
else:
pos_embed = self.pos_embed
if self.no_embed_class:
# deit-3, updated JAX (big vision)
# position embedding does not overlap with class token, add then concat
x = x + pos_embed
x = torch.cat((
self.cls_token.expand(x.shape[0], -1, -1),
self.dist_token.expand(x.shape[0], -1, -1),
x),
dim=1)
else:
# original timm, JAX, and deit vit impl
# pos_embed has entry for class token, concat then add
x = torch.cat((
self.cls_token.expand(x.shape[0], -1, -1),
self.dist_token.expand(x.shape[0], -1, -1),
x),
dim=1)
x = x + pos_embed
return self.pos_drop(x)
def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor:
x, x_dist = x[:, 0], x[:, 1]
if pre_logits:
return (x + x_dist) / 2
x = self.head(x)
x_dist = self.head_dist(x_dist)
if self.distilled_training and self.training and not torch.jit.is_scripting():
# only return separate classification predictions when training in distilled mode
return x, x_dist
else:
# during standard train / finetune, inference average the classifier predictions
return (x + x_dist) / 2
def _create_deit(variant, pretrained=False, distilled=False, **kwargs):
out_indices = kwargs.pop('out_indices', 3)
model_cls = VisionTransformerDistilled if distilled else VisionTransformer
model = build_model_with_cfg(
model_cls,
variant,
pretrained,
pretrained_filter_fn=partial(checkpoint_filter_fn, adapt_layer_scale=True),
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
**kwargs,
)
return model
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = generate_default_cfgs({
# deit models (FB weights)
'deit_tiny_patch16_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth'),
'deit_small_patch16_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth'),
'deit_base_patch16_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth'),
'deit_base_patch16_384.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth',
input_size=(3, 384, 384), crop_pct=1.0),
'deit_tiny_distilled_patch16_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth',
classifier=('head', 'head_dist')),
'deit_small_distilled_patch16_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth',
classifier=('head', 'head_dist')),
'deit_base_distilled_patch16_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth',
classifier=('head', 'head_dist')),
'deit_base_distilled_patch16_384.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth',
input_size=(3, 384, 384), crop_pct=1.0,
classifier=('head', 'head_dist')),
'deit3_small_patch16_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_3_small_224_1k.pth'),
'deit3_small_patch16_384.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_3_small_384_1k.pth',
input_size=(3, 384, 384), crop_pct=1.0),
'deit3_medium_patch16_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_3_medium_224_1k.pth'),
'deit3_base_patch16_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_3_base_224_1k.pth'),
'deit3_base_patch16_384.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_3_base_384_1k.pth',
input_size=(3, 384, 384), crop_pct=1.0),
'deit3_large_patch16_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_3_large_224_1k.pth'),
'deit3_large_patch16_384.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_3_large_384_1k.pth',
input_size=(3, 384, 384), crop_pct=1.0),
'deit3_huge_patch14_224.fb_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_3_huge_224_1k.pth'),
'deit3_small_patch16_224.fb_in22k_ft_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_3_small_224_21k.pth',
crop_pct=1.0),
'deit3_small_patch16_384.fb_in22k_ft_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_3_small_384_21k.pth',
input_size=(3, 384, 384), crop_pct=1.0),
'deit3_medium_patch16_224.fb_in22k_ft_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_3_medium_224_21k.pth',
crop_pct=1.0),
'deit3_base_patch16_224.fb_in22k_ft_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_3_base_224_21k.pth',
crop_pct=1.0),
'deit3_base_patch16_384.fb_in22k_ft_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_3_base_384_21k.pth',
input_size=(3, 384, 384), crop_pct=1.0),
'deit3_large_patch16_224.fb_in22k_ft_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_3_large_224_21k.pth',
crop_pct=1.0),
'deit3_large_patch16_384.fb_in22k_ft_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_3_large_384_21k.pth',
input_size=(3, 384, 384), crop_pct=1.0),
'deit3_huge_patch14_224.fb_in22k_ft_in1k': _cfg(
hf_hub_id='timm/',
url='https://dl.fbaipublicfiles.com/deit/deit_3_huge_224_21k_v1.pth',
crop_pct=1.0),
})
@register_model
def deit_tiny_patch16_224(pretrained=False, **kwargs) -> VisionTransformer:
""" DeiT-tiny model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_args = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3)
model = _create_deit('deit_tiny_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def deit_small_patch16_224(pretrained=False, **kwargs) -> VisionTransformer:
""" DeiT-small model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6)
model = _create_deit('deit_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def deit_base_patch16_224(pretrained=False, **kwargs) -> VisionTransformer:
""" DeiT base model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12)
model = _create_deit('deit_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def deit_base_patch16_384(pretrained=False, **kwargs) -> VisionTransformer:
""" DeiT base model @ 384x384 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12)
model = _create_deit('deit_base_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def deit_tiny_distilled_patch16_224(pretrained=False, **kwargs) -> VisionTransformerDistilled:
""" DeiT-tiny distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_args = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3)
model = _create_deit(
'deit_tiny_distilled_patch16_224', pretrained=pretrained, distilled=True, **dict(model_args, **kwargs))
return model
@register_model
def deit_small_distilled_patch16_224(pretrained=False, **kwargs) -> VisionTransformerDistilled:
""" DeiT-small distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6)
model = _create_deit(
'deit_small_distilled_patch16_224', pretrained=pretrained, distilled=True, **dict(model_args, **kwargs))
return model
@register_model
def deit_base_distilled_patch16_224(pretrained=False, **kwargs) -> VisionTransformerDistilled:
""" DeiT-base distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12)
model = _create_deit(
'deit_base_distilled_patch16_224', pretrained=pretrained, distilled=True, **dict(model_args, **kwargs))
return model
@register_model
def deit_base_distilled_patch16_384(pretrained=False, **kwargs) -> VisionTransformerDistilled:
""" DeiT-base distilled model @ 384x384 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12)
model = _create_deit(
'deit_base_distilled_patch16_384', pretrained=pretrained, distilled=True, **dict(model_args, **kwargs))
return model
@register_model
def deit3_small_patch16_224(pretrained=False, **kwargs) -> VisionTransformer:
""" DeiT-3 small model @ 224x224 from paper (https://arxiv.org/abs/2204.07118).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, no_embed_class=True, init_values=1e-6)
model = _create_deit('deit3_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def deit3_small_patch16_384(pretrained=False, **kwargs) -> VisionTransformer:
""" DeiT-3 small model @ 384x384 from paper (https://arxiv.org/abs/2204.07118).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, no_embed_class=True, init_values=1e-6)
model = _create_deit('deit3_small_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def deit3_medium_patch16_224(pretrained=False, **kwargs) -> VisionTransformer:
""" DeiT-3 medium model @ 224x224 (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_args = dict(patch_size=16, embed_dim=512, depth=12, num_heads=8, no_embed_class=True, init_values=1e-6)
model = _create_deit('deit3_medium_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def deit3_base_patch16_224(pretrained=False, **kwargs) -> VisionTransformer:
""" DeiT-3 base model @ 224x224 from paper (https://arxiv.org/abs/2204.07118).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, no_embed_class=True, init_values=1e-6)
model = _create_deit('deit3_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def deit3_base_patch16_384(pretrained=False, **kwargs) -> VisionTransformer:
""" DeiT-3 base model @ 384x384 from paper (https://arxiv.org/abs/2204.07118).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, no_embed_class=True, init_values=1e-6)
model = _create_deit('deit3_base_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def deit3_large_patch16_224(pretrained=False, **kwargs) -> VisionTransformer:
""" DeiT-3 large model @ 224x224 from paper (https://arxiv.org/abs/2204.07118).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, no_embed_class=True, init_values=1e-6)
model = _create_deit('deit3_large_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def deit3_large_patch16_384(pretrained=False, **kwargs) -> VisionTransformer:
""" DeiT-3 large model @ 384x384 from paper (https://arxiv.org/abs/2204.07118).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, no_embed_class=True, init_values=1e-6)
model = _create_deit('deit3_large_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def deit3_huge_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
""" DeiT-3 base model @ 384x384 from paper (https://arxiv.org/abs/2204.07118).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_args = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, no_embed_class=True, init_values=1e-6)
model = _create_deit('deit3_huge_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
register_model_deprecations(__name__, {
'deit3_small_patch16_224_in21ft1k': 'deit3_small_patch16_224.fb_in22k_ft_in1k',
'deit3_small_patch16_384_in21ft1k': 'deit3_small_patch16_384.fb_in22k_ft_in1k',
'deit3_medium_patch16_224_in21ft1k': 'deit3_medium_patch16_224.fb_in22k_ft_in1k',
'deit3_base_patch16_224_in21ft1k': 'deit3_base_patch16_224.fb_in22k_ft_in1k',
'deit3_base_patch16_384_in21ft1k': 'deit3_base_patch16_384.fb_in22k_ft_in1k',
'deit3_large_patch16_224_in21ft1k': 'deit3_large_patch16_224.fb_in22k_ft_in1k',
'deit3_large_patch16_384_in21ft1k': 'deit3_large_patch16_384.fb_in22k_ft_in1k',
'deit3_huge_patch14_224_in21ft1k': 'deit3_huge_patch14_224.fb_in22k_ft_in1k'
})
|