File size: 20,990 Bytes
ad283e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
""" EdgeNeXt

Paper: `EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for Mobile Vision Applications`
 - https://arxiv.org/abs/2206.10589

Original code and weights from https://github.com/mmaaz60/EdgeNeXt

Modifications and additions for timm by / Copyright 2022, Ross Wightman
"""
import math
from functools import partial
from typing import Optional, Tuple

import torch
import torch.nn.functional as F
from torch import nn

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import trunc_normal_tf_, DropPath, LayerNorm2d, Mlp, create_conv2d, \
    NormMlpClassifierHead, ClassifierHead
from ._builder import build_model_with_cfg
from ._features_fx import register_notrace_module
from ._manipulate import named_apply, checkpoint_seq
from ._registry import register_model, generate_default_cfgs

__all__ = ['EdgeNeXt']  # model_registry will add each entrypoint fn to this


@register_notrace_module  # reason: FX can't symbolically trace torch.arange in forward method
class PositionalEncodingFourier(nn.Module):
    def __init__(self, hidden_dim=32, dim=768, temperature=10000):
        super().__init__()
        self.token_projection = nn.Conv2d(hidden_dim * 2, dim, kernel_size=1)
        self.scale = 2 * math.pi
        self.temperature = temperature
        self.hidden_dim = hidden_dim
        self.dim = dim

    def forward(self, shape: Tuple[int, int, int]):
        device = self.token_projection.weight.device
        dtype = self.token_projection.weight.dtype
        inv_mask = ~torch.zeros(shape).to(device=device, dtype=torch.bool)
        y_embed = inv_mask.cumsum(1, dtype=torch.float32)
        x_embed = inv_mask.cumsum(2, dtype=torch.float32)
        eps = 1e-6
        y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
        x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale

        dim_t = torch.arange(self.hidden_dim, dtype=torch.int64, device=device).to(torch.float32)
        dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode='floor') / self.hidden_dim)

        pos_x = x_embed[:, :, :, None] / dim_t
        pos_y = y_embed[:, :, :, None] / dim_t
        pos_x = torch.stack(
            (pos_x[:, :, :, 0::2].sin(),
             pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos_y = torch.stack(
            (pos_y[:, :, :, 0::2].sin(),
             pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
        pos = self.token_projection(pos.to(dtype))

        return pos


class ConvBlock(nn.Module):
    def __init__(
            self,
            dim,
            dim_out=None,
            kernel_size=7,
            stride=1,
            conv_bias=True,
            expand_ratio=4,
            ls_init_value=1e-6,
            norm_layer=partial(nn.LayerNorm, eps=1e-6),
            act_layer=nn.GELU, drop_path=0.,
    ):
        super().__init__()
        dim_out = dim_out or dim
        self.shortcut_after_dw = stride > 1 or dim != dim_out

        self.conv_dw = create_conv2d(
            dim, dim_out, kernel_size=kernel_size, stride=stride, depthwise=True, bias=conv_bias)
        self.norm = norm_layer(dim_out)
        self.mlp = Mlp(dim_out, int(expand_ratio * dim_out), act_layer=act_layer)
        self.gamma = nn.Parameter(ls_init_value * torch.ones(dim_out)) if ls_init_value > 0 else None
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        shortcut = x
        x = self.conv_dw(x)
        if self.shortcut_after_dw:
            shortcut = x

        x = x.permute(0, 2, 3, 1)  # (N, C, H, W) -> (N, H, W, C)
        x = self.norm(x)
        x = self.mlp(x)
        if self.gamma is not None:
            x = self.gamma * x
        x = x.permute(0, 3, 1, 2)  # (N, H, W, C) -> (N, C, H, W)

        x = shortcut + self.drop_path(x)
        return x


class CrossCovarianceAttn(nn.Module):
    def __init__(
            self,
            dim,
            num_heads=8,
            qkv_bias=False,
            attn_drop=0.,
            proj_drop=0.
    ):
        super().__init__()
        self.num_heads = num_heads
        self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 4, 1)
        q, k, v = qkv.unbind(0)

        # NOTE, this is NOT spatial attn, q, k, v are B, num_heads, C, L -->  C x C attn map
        attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)) * self.temperature
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        x = (attn @ v)

        x = x.permute(0, 3, 1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'temperature'}


class SplitTransposeBlock(nn.Module):
    def __init__(
            self,
            dim,
            num_scales=1,
            num_heads=8,
            expand_ratio=4,
            use_pos_emb=True,
            conv_bias=True,
            qkv_bias=True,
            ls_init_value=1e-6,
            norm_layer=partial(nn.LayerNorm, eps=1e-6),
            act_layer=nn.GELU,
            drop_path=0.,
            attn_drop=0.,
            proj_drop=0.
    ):
        super().__init__()
        width = max(int(math.ceil(dim / num_scales)), int(math.floor(dim // num_scales)))
        self.width = width
        self.num_scales = max(1, num_scales - 1)

        convs = []
        for i in range(self.num_scales):
            convs.append(create_conv2d(width, width, kernel_size=3, depthwise=True, bias=conv_bias))
        self.convs = nn.ModuleList(convs)

        self.pos_embd = None
        if use_pos_emb:
            self.pos_embd = PositionalEncodingFourier(dim=dim)
        self.norm_xca = norm_layer(dim)
        self.gamma_xca = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value > 0 else None
        self.xca = CrossCovarianceAttn(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop)

        self.norm = norm_layer(dim, eps=1e-6)
        self.mlp = Mlp(dim, int(expand_ratio * dim), act_layer=act_layer)
        self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value > 0 else None
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        shortcut = x

        # scales code re-written for torchscript as per my res2net fixes -rw
        # NOTE torch.split(x, self.width, 1) causing issues with ONNX export
        spx = x.chunk(len(self.convs) + 1, dim=1)
        spo = []
        sp = spx[0]
        for i, conv in enumerate(self.convs):
            if i > 0:
                sp = sp + spx[i]
            sp = conv(sp)
            spo.append(sp)
        spo.append(spx[-1])
        x = torch.cat(spo, 1)

        # XCA
        B, C, H, W = x.shape
        x = x.reshape(B, C, H * W).permute(0, 2, 1)
        if self.pos_embd is not None:
            pos_encoding = self.pos_embd((B, H, W)).reshape(B, -1, x.shape[1]).permute(0, 2, 1)
            x = x + pos_encoding
        x = x + self.drop_path(self.gamma_xca * self.xca(self.norm_xca(x)))
        x = x.reshape(B, H, W, C)

        # Inverted Bottleneck
        x = self.norm(x)
        x = self.mlp(x)
        if self.gamma is not None:
            x = self.gamma * x
        x = x.permute(0, 3, 1, 2)  # (N, H, W, C) -> (N, C, H, W)

        x = shortcut + self.drop_path(x)
        return x


class EdgeNeXtStage(nn.Module):
    def __init__(
            self,
            in_chs,
            out_chs,
            stride=2,
            depth=2,
            num_global_blocks=1,
            num_heads=4,
            scales=2,
            kernel_size=7,
            expand_ratio=4,
            use_pos_emb=False,
            downsample_block=False,
            conv_bias=True,
            ls_init_value=1.0,
            drop_path_rates=None,
            norm_layer=LayerNorm2d,
            norm_layer_cl=partial(nn.LayerNorm, eps=1e-6),
            act_layer=nn.GELU
    ):
        super().__init__()
        self.grad_checkpointing = False

        if downsample_block or stride == 1:
            self.downsample = nn.Identity()
        else:
            self.downsample = nn.Sequential(
                norm_layer(in_chs),
                nn.Conv2d(in_chs, out_chs, kernel_size=2, stride=2, bias=conv_bias)
            )
            in_chs = out_chs

        stage_blocks = []
        for i in range(depth):
            if i < depth - num_global_blocks:
                stage_blocks.append(
                    ConvBlock(
                        dim=in_chs,
                        dim_out=out_chs,
                        stride=stride if downsample_block and i == 0 else 1,
                        conv_bias=conv_bias,
                        kernel_size=kernel_size,
                        expand_ratio=expand_ratio,
                        ls_init_value=ls_init_value,
                        drop_path=drop_path_rates[i],
                        norm_layer=norm_layer_cl,
                        act_layer=act_layer,
                    )
                )
            else:
                stage_blocks.append(
                    SplitTransposeBlock(
                        dim=in_chs,
                        num_scales=scales,
                        num_heads=num_heads,
                        expand_ratio=expand_ratio,
                        use_pos_emb=use_pos_emb,
                        conv_bias=conv_bias,
                        ls_init_value=ls_init_value,
                        drop_path=drop_path_rates[i],
                        norm_layer=norm_layer_cl,
                        act_layer=act_layer,
                    )
                )
            in_chs = out_chs
        self.blocks = nn.Sequential(*stage_blocks)

    def forward(self, x):
        x = self.downsample(x)
        if self.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.blocks, x)
        else:
            x = self.blocks(x)
        return x


class EdgeNeXt(nn.Module):
    def __init__(
            self,
            in_chans=3,
            num_classes=1000,
            global_pool='avg',
            dims=(24, 48, 88, 168),
            depths=(3, 3, 9, 3),
            global_block_counts=(0, 1, 1, 1),
            kernel_sizes=(3, 5, 7, 9),
            heads=(8, 8, 8, 8),
            d2_scales=(2, 2, 3, 4),
            use_pos_emb=(False, True, False, False),
            ls_init_value=1e-6,
            head_init_scale=1.,
            expand_ratio=4,
            downsample_block=False,
            conv_bias=True,
            stem_type='patch',
            head_norm_first=False,
            act_layer=nn.GELU,
            drop_path_rate=0.,
            drop_rate=0.,
    ):
        super().__init__()
        self.num_classes = num_classes
        self.global_pool = global_pool
        self.drop_rate = drop_rate
        norm_layer = partial(LayerNorm2d, eps=1e-6)
        norm_layer_cl = partial(nn.LayerNorm, eps=1e-6)
        self.feature_info = []

        assert stem_type in ('patch', 'overlap')
        if stem_type == 'patch':
            self.stem = nn.Sequential(
                nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4, bias=conv_bias),
                norm_layer(dims[0]),
            )
        else:
            self.stem = nn.Sequential(
                nn.Conv2d(in_chans, dims[0], kernel_size=9, stride=4, padding=9 // 2, bias=conv_bias),
                norm_layer(dims[0]),
            )

        curr_stride = 4
        stages = []
        dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
        in_chs = dims[0]
        for i in range(4):
            stride = 2 if curr_stride == 2 or i > 0 else 1
            # FIXME support dilation / output_stride
            curr_stride *= stride
            stages.append(EdgeNeXtStage(
                in_chs=in_chs,
                out_chs=dims[i],
                stride=stride,
                depth=depths[i],
                num_global_blocks=global_block_counts[i],
                num_heads=heads[i],
                drop_path_rates=dp_rates[i],
                scales=d2_scales[i],
                expand_ratio=expand_ratio,
                kernel_size=kernel_sizes[i],
                use_pos_emb=use_pos_emb[i],
                ls_init_value=ls_init_value,
                downsample_block=downsample_block,
                conv_bias=conv_bias,
                norm_layer=norm_layer,
                norm_layer_cl=norm_layer_cl,
                act_layer=act_layer,
            ))
            # NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2
            in_chs = dims[i]
            self.feature_info += [dict(num_chs=in_chs, reduction=curr_stride, module=f'stages.{i}')]

        self.stages = nn.Sequential(*stages)

        self.num_features = self.head_hidden_size = dims[-1]
        if head_norm_first:
            self.norm_pre = norm_layer(self.num_features)
            self.head = ClassifierHead(
                self.num_features,
                num_classes,
                pool_type=global_pool,
                drop_rate=self.drop_rate,
            )
        else:
            self.norm_pre = nn.Identity()
            self.head = NormMlpClassifierHead(
                self.num_features,
                num_classes,
                pool_type=global_pool,
                drop_rate=self.drop_rate,
                norm_layer=norm_layer,
            )

        named_apply(partial(_init_weights, head_init_scale=head_init_scale), self)

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        return dict(
            stem=r'^stem',
            blocks=r'^stages\.(\d+)' if coarse else [
                (r'^stages\.(\d+)\.downsample', (0,)),  # blocks
                (r'^stages\.(\d+)\.blocks\.(\d+)', None),
                (r'^norm_pre', (99999,))
            ]
        )

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        for s in self.stages:
            s.grad_checkpointing = enable

    @torch.jit.ignore
    def get_classifier(self) -> nn.Module:
        return self.head.fc

    def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
        self.num_classes = num_classes
        self.head.reset(num_classes, global_pool)

    def forward_features(self, x):
        x = self.stem(x)
        x = self.stages(x)
        x = self.norm_pre(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        return self.head(x, pre_logits=True) if pre_logits else self.head(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def _init_weights(module, name=None, head_init_scale=1.0):
    if isinstance(module, nn.Conv2d):
        trunc_normal_tf_(module.weight, std=.02)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Linear):
        trunc_normal_tf_(module.weight, std=.02)
        nn.init.zeros_(module.bias)
        if name and 'head.' in name:
            module.weight.data.mul_(head_init_scale)
            module.bias.data.mul_(head_init_scale)


def checkpoint_filter_fn(state_dict, model):
    """ Remap FB checkpoints -> timm """
    if 'head.norm.weight' in state_dict or 'norm_pre.weight' in state_dict:
        return state_dict  # non-FB checkpoint

    # models were released as train checkpoints... :/
    if 'model_ema' in state_dict:
        state_dict = state_dict['model_ema']
    elif 'model' in state_dict:
        state_dict = state_dict['model']
    elif 'state_dict' in state_dict:
        state_dict = state_dict['state_dict']

    out_dict = {}
    import re
    for k, v in state_dict.items():
        k = k.replace('downsample_layers.0.', 'stem.')
        k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k)
        k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k)
        k = k.replace('dwconv', 'conv_dw')
        k = k.replace('pwconv', 'mlp.fc')
        k = k.replace('head.', 'head.fc.')
        if k.startswith('norm.'):
            k = k.replace('norm', 'head.norm')
        if v.ndim == 2 and 'head' not in k:
            model_shape = model.state_dict()[k].shape
            v = v.reshape(model_shape)
        out_dict[k] = v
    return out_dict


def _create_edgenext(variant, pretrained=False, **kwargs):
    model = build_model_with_cfg(
        EdgeNeXt, variant, pretrained,
        pretrained_filter_fn=checkpoint_filter_fn,
        feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True),
        **kwargs)
    return model


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8),
        'crop_pct': 0.9, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'stem.0', 'classifier': 'head.fc',
        **kwargs
    }


default_cfgs = generate_default_cfgs({
    'edgenext_xx_small.in1k': _cfg(
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'edgenext_x_small.in1k': _cfg(
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'edgenext_small.usi_in1k': _cfg(  # USI weights
        hf_hub_id='timm/',
        crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0,
    ),
    'edgenext_base.usi_in1k': _cfg(  # USI weights
        hf_hub_id='timm/',
        crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0,
    ),
    'edgenext_base.in21k_ft_in1k': _cfg(  # USI weights
        hf_hub_id='timm/',
        crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0,
    ),
    'edgenext_small_rw.sw_in1k': _cfg(
        hf_hub_id='timm/',
        test_input_size=(3, 320, 320), test_crop_pct=1.0,
    ),
})


@register_model
def edgenext_xx_small(pretrained=False, **kwargs) -> EdgeNeXt:
    # 1.33M & 260.58M @ 256 resolution
    # 71.23% Top-1 accuracy
    # No AA, Color Jitter=0.4, No Mixup & Cutmix, DropPath=0.0, BS=4096, lr=0.006, multi-scale-sampler
    # Jetson FPS=51.66 versus 47.67 for MobileViT_XXS
    # For A100: FPS @ BS=1: 212.13 & @ BS=256: 7042.06 versus FPS @ BS=1: 96.68 & @ BS=256: 4624.71 for MobileViT_XXS
    model_args = dict(depths=(2, 2, 6, 2), dims=(24, 48, 88, 168), heads=(4, 4, 4, 4))
    return _create_edgenext('edgenext_xx_small', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def edgenext_x_small(pretrained=False, **kwargs) -> EdgeNeXt:
    # 2.34M & 538.0M @ 256 resolution
    # 75.00% Top-1 accuracy
    # No AA, No Mixup & Cutmix, DropPath=0.0, BS=4096, lr=0.006, multi-scale-sampler
    # Jetson FPS=31.61 versus 28.49 for MobileViT_XS
    # For A100: FPS @ BS=1: 179.55 & @ BS=256: 4404.95 versus FPS @ BS=1: 94.55 & @ BS=256: 2361.53 for MobileViT_XS
    model_args = dict(depths=(3, 3, 9, 3), dims=(32, 64, 100, 192), heads=(4, 4, 4, 4))
    return _create_edgenext('edgenext_x_small', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def edgenext_small(pretrained=False, **kwargs) -> EdgeNeXt:
    # 5.59M & 1260.59M @ 256 resolution
    # 79.43% Top-1 accuracy
    # AA=True, No Mixup & Cutmix, DropPath=0.1, BS=4096, lr=0.006, multi-scale-sampler
    # Jetson FPS=20.47 versus 18.86 for MobileViT_S
    # For A100: FPS @ BS=1: 172.33 & @ BS=256: 3010.25 versus FPS @ BS=1: 93.84 & @ BS=256: 1785.92 for MobileViT_S
    model_args = dict(depths=(3, 3, 9, 3), dims=(48, 96, 160, 304))
    return _create_edgenext('edgenext_small', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def edgenext_base(pretrained=False, **kwargs) -> EdgeNeXt:
    # 18.51M & 3840.93M @ 256 resolution
    # 82.5% (normal) 83.7% (USI) Top-1 accuracy
    # AA=True, Mixup & Cutmix, DropPath=0.1, BS=4096, lr=0.006, multi-scale-sampler
    # Jetson FPS=xx.xx versus xx.xx for MobileViT_S
    # For A100: FPS @ BS=1: xxx.xx & @ BS=256: xxxx.xx
    model_args = dict(depths=[3, 3, 9, 3], dims=[80, 160, 288, 584])
    return _create_edgenext('edgenext_base', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def edgenext_small_rw(pretrained=False, **kwargs) -> EdgeNeXt:
    model_args = dict(
        depths=(3, 3, 9, 3), dims=(48, 96, 192, 384),
        downsample_block=True, conv_bias=False, stem_type='overlap')
    return _create_edgenext('edgenext_small_rw', pretrained=pretrained, **dict(model_args, **kwargs))