File size: 6,716 Bytes
2c8d22f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
""" AdaHessian Optimizer
Lifted from https://github.com/davda54/ada-hessian/blob/master/ada_hessian.py
Originally licensed MIT, Copyright 2020, David Samuel
"""
import torch
class Adahessian(torch.optim.Optimizer):
"""
Implements the AdaHessian algorithm from "ADAHESSIAN: An Adaptive Second OrderOptimizer for Machine Learning"
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining parameter groups
lr (float, optional): learning rate (default: 0.1)
betas ((float, float), optional): coefficients used for computing running averages of gradient and the
squared hessian trace (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0.0)
hessian_power (float, optional): exponent of the hessian trace (default: 1.0)
update_each (int, optional): compute the hessian trace approximation only after *this* number of steps
(to save time) (default: 1)
n_samples (int, optional): how many times to sample `z` for the approximation of the hessian trace (default: 1)
"""
def __init__(
self,
params,
lr=0.1,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
hessian_power=1.0,
update_each=1,
n_samples=1,
avg_conv_kernel=False,
):
if not 0.0 <= lr:
raise ValueError(f"Invalid learning rate: {lr}")
if not 0.0 <= eps:
raise ValueError(f"Invalid epsilon value: {eps}")
if not 0.0 <= betas[0] < 1.0:
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
if not 0.0 <= betas[1] < 1.0:
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
if not 0.0 <= hessian_power <= 1.0:
raise ValueError(f"Invalid Hessian power value: {hessian_power}")
self.n_samples = n_samples
self.update_each = update_each
self.avg_conv_kernel = avg_conv_kernel
# use a separate generator that deterministically generates the same `z`s across all GPUs in case of distributed training
self.seed = 2147483647
self.generator = torch.Generator().manual_seed(self.seed)
defaults = dict(
lr=lr,
betas=betas,
eps=eps,
weight_decay=weight_decay,
hessian_power=hessian_power,
)
super(Adahessian, self).__init__(params, defaults)
for p in self.get_params():
p.hess = 0.0
self.state[p]["hessian step"] = 0
@property
def is_second_order(self):
return True
def get_params(self):
"""
Gets all parameters in all param_groups with gradients
"""
return (p for group in self.param_groups for p in group['params'] if p.requires_grad)
def zero_hessian(self):
"""
Zeros out the accumalated hessian traces.
"""
for p in self.get_params():
if not isinstance(p.hess, float) and self.state[p]["hessian step"] % self.update_each == 0:
p.hess.zero_()
@torch.no_grad()
def set_hessian(self):
"""
Computes the Hutchinson approximation of the hessian trace and accumulates it for each trainable parameter.
"""
params = []
for p in filter(lambda p: p.grad is not None, self.get_params()):
if self.state[p]["hessian step"] % self.update_each == 0: # compute the trace only each `update_each` step
params.append(p)
self.state[p]["hessian step"] += 1
if len(params) == 0:
return
if self.generator.device != params[0].device: # hackish way of casting the generator to the right device
self.generator = torch.Generator(params[0].device).manual_seed(self.seed)
grads = [p.grad for p in params]
for i in range(self.n_samples):
# Rademacher distribution {-1.0, 1.0}
zs = [torch.randint(0, 2, p.size(), generator=self.generator, device=p.device) * 2.0 - 1.0 for p in params]
h_zs = torch.autograd.grad(
grads, params, grad_outputs=zs, only_inputs=True, retain_graph=i < self.n_samples - 1)
for h_z, z, p in zip(h_zs, zs, params):
p.hess += h_z * z / self.n_samples # approximate the expected values of z*(H@z)
@torch.no_grad()
def step(self, closure=None):
"""
Performs a single optimization step.
Arguments:
closure (callable, optional) -- a closure that reevaluates the model and returns the loss (default: None)
"""
loss = None
if closure is not None:
loss = closure()
self.zero_hessian()
self.set_hessian()
for group in self.param_groups:
for p in group['params']:
if p.grad is None or p.hess is None:
continue
if self.avg_conv_kernel and p.dim() == 4:
p.hess = torch.abs(p.hess).mean(dim=[2, 3], keepdim=True).expand_as(p.hess).clone()
# Perform correct stepweight decay as in AdamW
p.mul_(1 - group['lr'] * group['weight_decay'])
state = self.state[p]
# State initialization
if len(state) == 1:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p)
# Exponential moving average of Hessian diagonal square values
state['exp_hessian_diag_sq'] = torch.zeros_like(p)
exp_avg, exp_hessian_diag_sq = state['exp_avg'], state['exp_hessian_diag_sq']
beta1, beta2 = group['betas']
state['step'] += 1
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(p.grad, alpha=1 - beta1)
exp_hessian_diag_sq.mul_(beta2).addcmul_(p.hess, p.hess, value=1 - beta2)
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
k = group['hessian_power']
denom = (exp_hessian_diag_sq / bias_correction2).pow_(k / 2).add_(group['eps'])
# make update
step_size = group['lr'] / bias_correction1
p.addcdiv_(exp_avg, denom, value=-step_size)
return loss
|