File size: 6,716 Bytes
2c8d22f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
""" AdaHessian Optimizer

Lifted from https://github.com/davda54/ada-hessian/blob/master/ada_hessian.py
Originally licensed MIT, Copyright 2020, David Samuel
"""
import torch


class Adahessian(torch.optim.Optimizer):
    """
    Implements the AdaHessian algorithm from "ADAHESSIAN: An Adaptive Second OrderOptimizer for Machine Learning"

    Arguments:
        params (iterable): iterable of parameters to optimize or dicts defining parameter groups
        lr (float, optional): learning rate (default: 0.1)
        betas ((float, float), optional): coefficients used for computing running averages of gradient and the
            squared hessian trace (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0.0)
        hessian_power (float, optional): exponent of the hessian trace (default: 1.0)
        update_each (int, optional): compute the hessian trace approximation only after *this* number of steps
            (to save time) (default: 1)
        n_samples (int, optional): how many times to sample `z` for the approximation of the hessian trace (default: 1)
    """

    def __init__(
            self,
            params,
            lr=0.1,
            betas=(0.9, 0.999),
            eps=1e-8,
            weight_decay=0.0,
            hessian_power=1.0,
            update_each=1,
            n_samples=1,
            avg_conv_kernel=False,
    ):
        if not 0.0 <= lr:
            raise ValueError(f"Invalid learning rate: {lr}")
        if not 0.0 <= eps:
            raise ValueError(f"Invalid epsilon value: {eps}")
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
        if not 0.0 <= hessian_power <= 1.0:
            raise ValueError(f"Invalid Hessian power value: {hessian_power}")

        self.n_samples = n_samples
        self.update_each = update_each
        self.avg_conv_kernel = avg_conv_kernel

        # use a separate generator that deterministically generates the same `z`s across all GPUs in case of distributed training
        self.seed = 2147483647
        self.generator = torch.Generator().manual_seed(self.seed)

        defaults = dict(
            lr=lr,
            betas=betas,
            eps=eps,
            weight_decay=weight_decay,
            hessian_power=hessian_power,
        )
        super(Adahessian, self).__init__(params, defaults)

        for p in self.get_params():
            p.hess = 0.0
            self.state[p]["hessian step"] = 0

    @property
    def is_second_order(self):
        return True

    def get_params(self):
        """
        Gets all parameters in all param_groups with gradients
        """

        return (p for group in self.param_groups for p in group['params'] if p.requires_grad)

    def zero_hessian(self):
        """
        Zeros out the accumalated hessian traces.
        """

        for p in self.get_params():
            if not isinstance(p.hess, float) and self.state[p]["hessian step"] % self.update_each == 0:
                p.hess.zero_()

    @torch.no_grad()
    def set_hessian(self):
        """
        Computes the Hutchinson approximation of the hessian trace and accumulates it for each trainable parameter.
        """

        params = []
        for p in filter(lambda p: p.grad is not None, self.get_params()):
            if self.state[p]["hessian step"] % self.update_each == 0:  # compute the trace only each `update_each` step
                params.append(p)
            self.state[p]["hessian step"] += 1

        if len(params) == 0:
            return

        if self.generator.device != params[0].device:  # hackish way of casting the generator to the right device
            self.generator = torch.Generator(params[0].device).manual_seed(self.seed)

        grads = [p.grad for p in params]

        for i in range(self.n_samples):
            # Rademacher distribution {-1.0, 1.0}
            zs = [torch.randint(0, 2, p.size(), generator=self.generator, device=p.device) * 2.0 - 1.0 for p in params]
            h_zs = torch.autograd.grad(
                grads, params, grad_outputs=zs, only_inputs=True, retain_graph=i < self.n_samples - 1)
            for h_z, z, p in zip(h_zs, zs, params):
                p.hess += h_z * z / self.n_samples  # approximate the expected values of z*(H@z)

    @torch.no_grad()
    def step(self, closure=None):
        """
        Performs a single optimization step.
        Arguments:
            closure (callable, optional) -- a closure that reevaluates the model and returns the loss (default: None)
        """

        loss = None
        if closure is not None:
            loss = closure()

        self.zero_hessian()
        self.set_hessian()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None or p.hess is None:
                    continue

                if self.avg_conv_kernel and p.dim() == 4:
                    p.hess = torch.abs(p.hess).mean(dim=[2, 3], keepdim=True).expand_as(p.hess).clone()

                # Perform correct stepweight decay as in AdamW
                p.mul_(1 - group['lr'] * group['weight_decay'])

                state = self.state[p]

                # State initialization
                if len(state) == 1:
                    state['step'] = 0
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p)
                    # Exponential moving average of Hessian diagonal square values
                    state['exp_hessian_diag_sq'] = torch.zeros_like(p)

                exp_avg, exp_hessian_diag_sq = state['exp_avg'], state['exp_hessian_diag_sq']
                beta1, beta2 = group['betas']
                state['step'] += 1

                # Decay the first and second moment running average coefficient
                exp_avg.mul_(beta1).add_(p.grad, alpha=1 - beta1)
                exp_hessian_diag_sq.mul_(beta2).addcmul_(p.hess, p.hess, value=1 - beta2)

                bias_correction1 = 1 - beta1 ** state['step']
                bias_correction2 = 1 - beta2 ** state['step']

                k = group['hessian_power']
                denom = (exp_hessian_diag_sq / bias_correction2).pow_(k / 2).add_(group['eps'])

                # make update
                step_size = group['lr'] / bias_correction1
                p.addcdiv_(exp_avg, denom, value=-step_size)

        return loss