File size: 26,272 Bytes
ad283e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 |
""" EfficientNet, MobileNetV3, etc Blocks
Hacked together by / Copyright 2019, Ross Wightman
"""
from typing import Callable, Dict, Optional, Type
import torch
import torch.nn as nn
from torch.nn import functional as F
from timm.layers import create_conv2d, DropPath, make_divisible, create_act_layer, create_aa, to_2tuple, LayerType,\
ConvNormAct, get_norm_act_layer, MultiQueryAttention2d, Attention2d
__all__ = [
'SqueezeExcite', 'ConvBnAct', 'DepthwiseSeparableConv', 'InvertedResidual', 'CondConvResidual', 'EdgeResidual',
'UniversalInvertedResidual', 'MobileAttention'
]
ModuleType = Type[nn.Module]
def num_groups(group_size: Optional[int], channels: int):
if not group_size: # 0 or None
return 1 # normal conv with 1 group
else:
# NOTE group_size == 1 -> depthwise conv
assert channels % group_size == 0
return channels // group_size
class SqueezeExcite(nn.Module):
""" Squeeze-and-Excitation w/ specific features for EfficientNet/MobileNet family
Args:
in_chs (int): input channels to layer
rd_ratio (float): ratio of squeeze reduction
act_layer (nn.Module): activation layer of containing block
gate_layer (Callable): attention gate function
force_act_layer (nn.Module): override block's activation fn if this is set/bound
rd_round_fn (Callable): specify a fn to calculate rounding of reduced chs
"""
def __init__(
self,
in_chs: int,
rd_ratio: float = 0.25,
rd_channels: Optional[int] = None,
act_layer: LayerType = nn.ReLU,
gate_layer: LayerType = nn.Sigmoid,
force_act_layer: Optional[LayerType] = None,
rd_round_fn: Optional[Callable] = None,
):
super(SqueezeExcite, self).__init__()
if rd_channels is None:
rd_round_fn = rd_round_fn or round
rd_channels = rd_round_fn(in_chs * rd_ratio)
act_layer = force_act_layer or act_layer
self.conv_reduce = nn.Conv2d(in_chs, rd_channels, 1, bias=True)
self.act1 = create_act_layer(act_layer, inplace=True)
self.conv_expand = nn.Conv2d(rd_channels, in_chs, 1, bias=True)
self.gate = create_act_layer(gate_layer)
def forward(self, x):
x_se = x.mean((2, 3), keepdim=True)
x_se = self.conv_reduce(x_se)
x_se = self.act1(x_se)
x_se = self.conv_expand(x_se)
return x * self.gate(x_se)
class ConvBnAct(nn.Module):
""" Conv + Norm Layer + Activation w/ optional skip connection
"""
def __init__(
self,
in_chs: int,
out_chs: int,
kernel_size: int,
stride: int = 1,
dilation: int = 1,
group_size: int = 0,
pad_type: str = '',
skip: bool = False,
act_layer: LayerType = nn.ReLU,
norm_layer: LayerType = nn.BatchNorm2d,
aa_layer: Optional[LayerType] = None,
drop_path_rate: float = 0.,
):
super(ConvBnAct, self).__init__()
norm_act_layer = get_norm_act_layer(norm_layer, act_layer)
groups = num_groups(group_size, in_chs)
self.has_skip = skip and stride == 1 and in_chs == out_chs
use_aa = aa_layer is not None and stride > 1 # FIXME handle dilation
self.conv = create_conv2d(
in_chs, out_chs, kernel_size,
stride=1 if use_aa else stride,
dilation=dilation, groups=groups, padding=pad_type)
self.bn1 = norm_act_layer(out_chs, inplace=True)
self.aa = create_aa(aa_layer, channels=out_chs, stride=stride, enable=use_aa)
self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity()
def feature_info(self, location):
if location == 'expansion': # output of conv after act, same as block coutput
return dict(module='bn1', hook_type='forward', num_chs=self.conv.out_channels)
else: # location == 'bottleneck', block output
return dict(module='', num_chs=self.conv.out_channels)
def forward(self, x):
shortcut = x
x = self.conv(x)
x = self.bn1(x)
x = self.aa(x)
if self.has_skip:
x = self.drop_path(x) + shortcut
return x
class DepthwiseSeparableConv(nn.Module):
""" Depthwise-separable block
Used for DS convs in MobileNet-V1 and in the place of IR blocks that have no expansion
(factor of 1.0). This is an alternative to having a IR with an optional first pw conv.
"""
def __init__(
self,
in_chs: int,
out_chs: int,
dw_kernel_size: int = 3,
stride: int = 1,
dilation: int = 1,
group_size: int = 1,
pad_type: str = '',
noskip: bool = False,
pw_kernel_size: int = 1,
pw_act: bool = False,
s2d: int = 0,
act_layer: LayerType = nn.ReLU,
norm_layer: LayerType = nn.BatchNorm2d,
aa_layer: Optional[LayerType] = None,
se_layer: Optional[ModuleType] = None,
drop_path_rate: float = 0.,
):
super(DepthwiseSeparableConv, self).__init__()
norm_act_layer = get_norm_act_layer(norm_layer, act_layer)
self.has_skip = (stride == 1 and in_chs == out_chs) and not noskip
self.has_pw_act = pw_act # activation after point-wise conv
use_aa = aa_layer is not None and stride > 1 # FIXME handle dilation
# Space to depth
if s2d == 1:
sd_chs = int(in_chs * 4)
self.conv_s2d = create_conv2d(in_chs, sd_chs, kernel_size=2, stride=2, padding='same')
self.bn_s2d = norm_act_layer(sd_chs, sd_chs)
dw_kernel_size = (dw_kernel_size + 1) // 2
dw_pad_type = 'same' if dw_kernel_size == 2 else pad_type
in_chs = sd_chs
use_aa = False # disable AA
else:
self.conv_s2d = None
self.bn_s2d = None
dw_pad_type = pad_type
groups = num_groups(group_size, in_chs)
self.conv_dw = create_conv2d(
in_chs, in_chs, dw_kernel_size,
stride=1 if use_aa else stride,
dilation=dilation, padding=dw_pad_type, groups=groups)
self.bn1 = norm_act_layer(in_chs, inplace=True)
self.aa = create_aa(aa_layer, channels=out_chs, stride=stride, enable=use_aa)
# Squeeze-and-excitation
self.se = se_layer(in_chs, act_layer=act_layer) if se_layer else nn.Identity()
self.conv_pw = create_conv2d(in_chs, out_chs, pw_kernel_size, padding=pad_type)
self.bn2 = norm_act_layer(out_chs, inplace=True, apply_act=self.has_pw_act)
self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity()
def feature_info(self, location):
if location == 'expansion': # after SE, input to PW
return dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels)
else: # location == 'bottleneck', block output
return dict(module='', num_chs=self.conv_pw.out_channels)
def forward(self, x):
shortcut = x
if self.conv_s2d is not None:
x = self.conv_s2d(x)
x = self.bn_s2d(x)
x = self.conv_dw(x)
x = self.bn1(x)
x = self.aa(x)
x = self.se(x)
x = self.conv_pw(x)
x = self.bn2(x)
if self.has_skip:
x = self.drop_path(x) + shortcut
return x
class InvertedResidual(nn.Module):
""" Inverted residual block w/ optional SE
Originally used in MobileNet-V2 - https://arxiv.org/abs/1801.04381v4, this layer is often
referred to as 'MBConv' for (Mobile inverted bottleneck conv) and is also used in
* MNasNet - https://arxiv.org/abs/1807.11626
* EfficientNet - https://arxiv.org/abs/1905.11946
* MobileNet-V3 - https://arxiv.org/abs/1905.02244
"""
def __init__(
self,
in_chs: int,
out_chs: int,
dw_kernel_size: int = 3,
stride: int = 1,
dilation: int = 1,
group_size: int = 1,
pad_type: str = '',
noskip: bool = False,
exp_ratio: float = 1.0,
exp_kernel_size: int = 1,
pw_kernel_size: int = 1,
s2d: int = 0,
act_layer: LayerType = nn.ReLU,
norm_layer: LayerType = nn.BatchNorm2d,
aa_layer: Optional[LayerType] = None,
se_layer: Optional[ModuleType] = None,
conv_kwargs: Optional[Dict] = None,
drop_path_rate: float = 0.,
):
super(InvertedResidual, self).__init__()
norm_act_layer = get_norm_act_layer(norm_layer, act_layer)
conv_kwargs = conv_kwargs or {}
self.has_skip = (in_chs == out_chs and stride == 1) and not noskip
use_aa = aa_layer is not None and stride > 1 # FIXME handle dilation
# Space to depth
if s2d == 1:
sd_chs = int(in_chs * 4)
self.conv_s2d = create_conv2d(in_chs, sd_chs, kernel_size=2, stride=2, padding='same')
self.bn_s2d = norm_act_layer(sd_chs, sd_chs)
dw_kernel_size = (dw_kernel_size + 1) // 2
dw_pad_type = 'same' if dw_kernel_size == 2 else pad_type
in_chs = sd_chs
use_aa = False # disable AA
else:
self.conv_s2d = None
self.bn_s2d = None
dw_pad_type = pad_type
mid_chs = make_divisible(in_chs * exp_ratio)
groups = num_groups(group_size, mid_chs)
# Point-wise expansion
self.conv_pw = create_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type, **conv_kwargs)
self.bn1 = norm_act_layer(mid_chs, inplace=True)
# Depth-wise convolution
self.conv_dw = create_conv2d(
mid_chs, mid_chs, dw_kernel_size,
stride=1 if use_aa else stride,
dilation=dilation, groups=groups, padding=dw_pad_type, **conv_kwargs)
self.bn2 = norm_act_layer(mid_chs, inplace=True)
self.aa = create_aa(aa_layer, channels=mid_chs, stride=stride, enable=use_aa)
# Squeeze-and-excitation
self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity()
# Point-wise linear projection
self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type, **conv_kwargs)
self.bn3 = norm_act_layer(out_chs, apply_act=False)
self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity()
def feature_info(self, location):
if location == 'expansion': # after SE, input to PWL
return dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels)
else: # location == 'bottleneck', block output
return dict(module='', num_chs=self.conv_pwl.out_channels)
def forward(self, x):
shortcut = x
if self.conv_s2d is not None:
x = self.conv_s2d(x)
x = self.bn_s2d(x)
x = self.conv_pw(x)
x = self.bn1(x)
x = self.conv_dw(x)
x = self.bn2(x)
x = self.aa(x)
x = self.se(x)
x = self.conv_pwl(x)
x = self.bn3(x)
if self.has_skip:
x = self.drop_path(x) + shortcut
return x
class LayerScale2d(nn.Module):
def __init__(self, dim: int, init_values: float = 1e-5, inplace: bool = False):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
gamma = self.gamma.view(1, -1, 1, 1)
return x.mul_(gamma) if self.inplace else x * gamma
class UniversalInvertedResidual(nn.Module):
""" Universal Inverted Residual Block (aka Universal Inverted Bottleneck, UIB)
For MobileNetV4 - https://arxiv.org/abs/, referenced from
https://github.com/tensorflow/models/blob/d93c7e932de27522b2fa3b115f58d06d6f640537/official/vision/modeling/layers/nn_blocks.py#L778
"""
def __init__(
self,
in_chs: int,
out_chs: int,
dw_kernel_size_start: int = 0,
dw_kernel_size_mid: int = 3,
dw_kernel_size_end: int = 0,
stride: int = 1,
dilation: int = 1,
group_size: int = 1,
pad_type: str = '',
noskip: bool = False,
exp_ratio: float = 1.0,
act_layer: LayerType = nn.ReLU,
norm_layer: LayerType = nn.BatchNorm2d,
aa_layer: Optional[LayerType] = None,
se_layer: Optional[ModuleType] = None,
conv_kwargs: Optional[Dict] = None,
drop_path_rate: float = 0.,
layer_scale_init_value: Optional[float] = 1e-5,
):
super(UniversalInvertedResidual, self).__init__()
conv_kwargs = conv_kwargs or {}
self.has_skip = (in_chs == out_chs and stride == 1) and not noskip
if stride > 1:
assert dw_kernel_size_start or dw_kernel_size_mid or dw_kernel_size_end
# FIXME dilation isn't right w/ extra ks > 1 convs
if dw_kernel_size_start:
dw_start_stride = stride if not dw_kernel_size_mid else 1
dw_start_groups = num_groups(group_size, in_chs)
self.dw_start = ConvNormAct(
in_chs, in_chs, dw_kernel_size_start,
stride=dw_start_stride,
dilation=dilation, # FIXME
groups=dw_start_groups,
padding=pad_type,
apply_act=False,
act_layer=act_layer,
norm_layer=norm_layer,
aa_layer=aa_layer,
**conv_kwargs,
)
else:
self.dw_start = nn.Identity()
# Point-wise expansion
mid_chs = make_divisible(in_chs * exp_ratio)
self.pw_exp = ConvNormAct(
in_chs, mid_chs, 1,
padding=pad_type,
act_layer=act_layer,
norm_layer=norm_layer,
**conv_kwargs,
)
# Middle depth-wise convolution
if dw_kernel_size_mid:
groups = num_groups(group_size, mid_chs)
self.dw_mid = ConvNormAct(
mid_chs, mid_chs, dw_kernel_size_mid,
stride=stride,
dilation=dilation, # FIXME
groups=groups,
padding=pad_type,
act_layer=act_layer,
norm_layer=norm_layer,
aa_layer=aa_layer,
**conv_kwargs,
)
else:
# keeping mid as identity so it can be hooked more easily for features
self.dw_mid = nn.Identity()
# Squeeze-and-excitation
self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity()
# Point-wise linear projection
self.pw_proj = ConvNormAct(
mid_chs, out_chs, 1,
padding=pad_type,
apply_act=False,
act_layer=act_layer,
norm_layer=norm_layer,
**conv_kwargs,
)
if dw_kernel_size_end:
dw_end_stride = stride if not dw_kernel_size_start and not dw_kernel_size_mid else 1
dw_end_groups = num_groups(group_size, out_chs)
if dw_end_stride > 1:
assert not aa_layer
self.dw_end = ConvNormAct(
out_chs, out_chs, dw_kernel_size_end,
stride=dw_end_stride,
dilation=dilation,
groups=dw_end_groups,
padding=pad_type,
apply_act=False,
act_layer=act_layer,
norm_layer=norm_layer,
**conv_kwargs,
)
else:
self.dw_end = nn.Identity()
if layer_scale_init_value is not None:
self.layer_scale = LayerScale2d(out_chs, layer_scale_init_value)
else:
self.layer_scale = nn.Identity()
self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity()
def feature_info(self, location):
if location == 'expansion': # after SE, input to PWL
return dict(module='pw_proj.conv', hook_type='forward_pre', num_chs=self.pw_proj.conv.in_channels)
else: # location == 'bottleneck', block output
return dict(module='', num_chs=self.pw_proj.conv.out_channels)
def forward(self, x):
shortcut = x
x = self.dw_start(x)
x = self.pw_exp(x)
x = self.dw_mid(x)
x = self.se(x)
x = self.pw_proj(x)
x = self.dw_end(x)
x = self.layer_scale(x)
if self.has_skip:
x = self.drop_path(x) + shortcut
return x
class MobileAttention(nn.Module):
""" Mobile Attention Block
For MobileNetV4 - https://arxiv.org/abs/, referenced from
https://github.com/tensorflow/models/blob/d93c7e932de27522b2fa3b115f58d06d6f640537/official/vision/modeling/layers/nn_blocks.py#L1504
"""
def __init__(
self,
in_chs: int,
out_chs: int,
stride: int = 1,
dw_kernel_size: int = 3,
dilation: int = 1,
group_size: int = 1,
pad_type: str = '',
num_heads: int = 8,
key_dim: int = 64,
value_dim: int = 64,
use_multi_query: bool = False,
query_strides: int = (1, 1),
kv_stride: int = 1,
cpe_dw_kernel_size: int = 3,
noskip: bool = False,
act_layer: LayerType = nn.ReLU,
norm_layer: LayerType = nn.BatchNorm2d,
aa_layer: Optional[LayerType] = None,
drop_path_rate: float = 0.,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
layer_scale_init_value: Optional[float] = 1e-5,
use_bias: bool = False,
use_cpe: bool = False,
):
super(MobileAttention, self).__init__()
norm_act_layer = get_norm_act_layer(norm_layer, act_layer)
self.has_skip = (stride == 1 and in_chs == out_chs) and not noskip
self.query_strides = to_2tuple(query_strides)
self.kv_stride = kv_stride
self.has_query_stride = any([s > 1 for s in self.query_strides])
# This CPE is different than the one suggested in the original paper.
# https://arxiv.org/abs/2102.10882
# 1. Rather than adding one CPE before the attention blocks, we add a CPE
# into every attention block.
# 2. We replace the expensive Conv2D by a Seperable DW Conv.
if use_cpe:
self.conv_cpe_dw = create_conv2d(
in_chs, in_chs,
kernel_size=cpe_dw_kernel_size,
dilation=dilation,
depthwise=True,
bias=True,
)
else:
self.conv_cpe_dw = None
self.norm = norm_act_layer(in_chs, apply_act=False)
if num_heads is None:
assert in_chs % key_dim == 0
num_heads = in_chs // key_dim
if use_multi_query:
self.attn = MultiQueryAttention2d(
in_chs,
dim_out=out_chs,
num_heads=num_heads,
key_dim=key_dim,
value_dim=value_dim,
query_strides=query_strides,
kv_stride=kv_stride,
dilation=dilation,
padding=pad_type,
dw_kernel_size=dw_kernel_size,
attn_drop=attn_drop,
proj_drop=proj_drop,
#bias=use_bias, # why not here if used w/ mhsa?
)
else:
self.attn = Attention2d(
in_chs,
dim_out=out_chs,
num_heads=num_heads,
attn_drop=attn_drop,
proj_drop=proj_drop,
bias=use_bias,
)
if layer_scale_init_value is not None:
self.layer_scale = LayerScale2d(out_chs, layer_scale_init_value)
else:
self.layer_scale = nn.Identity()
self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity()
def feature_info(self, location):
if location == 'expansion': # after SE, input to PW
return dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels)
else: # location == 'bottleneck', block output
return dict(module='', num_chs=self.conv_pw.out_channels)
def forward(self, x):
if self.conv_cpe_dw is not None:
x_cpe = self.conv_cpe_dw(x)
x = x + x_cpe
shortcut = x
x = self.norm(x)
x = self.attn(x)
x = self.layer_scale(x)
if self.has_skip:
x = self.drop_path(x) + shortcut
return x
class CondConvResidual(InvertedResidual):
""" Inverted residual block w/ CondConv routing"""
def __init__(
self,
in_chs: int,
out_chs: int,
dw_kernel_size: int = 3,
stride: int = 1,
dilation: int = 1,
group_size: int = 1,
pad_type: str = '',
noskip: bool = False,
exp_ratio: float = 1.0,
exp_kernel_size: int = 1,
pw_kernel_size: int = 1,
act_layer: LayerType = nn.ReLU,
norm_layer: LayerType = nn.BatchNorm2d,
aa_layer: Optional[LayerType] = None,
se_layer: Optional[ModuleType] = None,
num_experts: int = 0,
drop_path_rate: float = 0.,
):
self.num_experts = num_experts
conv_kwargs = dict(num_experts=self.num_experts)
super(CondConvResidual, self).__init__(
in_chs,
out_chs,
dw_kernel_size=dw_kernel_size,
stride=stride,
dilation=dilation,
group_size=group_size,
pad_type=pad_type,
noskip=noskip,
exp_ratio=exp_ratio,
exp_kernel_size=exp_kernel_size,
pw_kernel_size=pw_kernel_size,
act_layer=act_layer,
norm_layer=norm_layer,
aa_layer=aa_layer,
se_layer=se_layer,
conv_kwargs=conv_kwargs,
drop_path_rate=drop_path_rate,
)
self.routing_fn = nn.Linear(in_chs, self.num_experts)
def forward(self, x):
shortcut = x
pooled_inputs = F.adaptive_avg_pool2d(x, 1).flatten(1) # CondConv routing
routing_weights = torch.sigmoid(self.routing_fn(pooled_inputs))
x = self.conv_pw(x, routing_weights)
x = self.bn1(x)
x = self.conv_dw(x, routing_weights)
x = self.bn2(x)
x = self.se(x)
x = self.conv_pwl(x, routing_weights)
x = self.bn3(x)
if self.has_skip:
x = self.drop_path(x) + shortcut
return x
class EdgeResidual(nn.Module):
""" Residual block with expansion convolution followed by pointwise-linear w/ stride
Originally introduced in `EfficientNet-EdgeTPU: Creating Accelerator-Optimized Neural Networks with AutoML`
- https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
This layer is also called FusedMBConv in the MobileDet, EfficientNet-X, and EfficientNet-V2 papers
* MobileDet - https://arxiv.org/abs/2004.14525
* EfficientNet-X - https://arxiv.org/abs/2102.05610
* EfficientNet-V2 - https://arxiv.org/abs/2104.00298
"""
def __init__(
self,
in_chs: int,
out_chs: int,
exp_kernel_size: int = 3,
stride: int = 1,
dilation: int = 1,
group_size: int = 0,
pad_type: str = '',
force_in_chs: int = 0,
noskip: bool = False,
exp_ratio: float = 1.0,
pw_kernel_size: int = 1,
act_layer: LayerType = nn.ReLU,
norm_layer: LayerType = nn.BatchNorm2d,
aa_layer: Optional[LayerType] = None,
se_layer: Optional[ModuleType] = None,
drop_path_rate: float = 0.,
):
super(EdgeResidual, self).__init__()
norm_act_layer = get_norm_act_layer(norm_layer, act_layer)
if force_in_chs > 0:
mid_chs = make_divisible(force_in_chs * exp_ratio)
else:
mid_chs = make_divisible(in_chs * exp_ratio)
groups = num_groups(group_size, mid_chs) # NOTE: Using out_chs of conv_exp for groups calc
self.has_skip = (in_chs == out_chs and stride == 1) and not noskip
use_aa = aa_layer is not None and stride > 1 # FIXME handle dilation
# Expansion convolution
self.conv_exp = create_conv2d(
in_chs, mid_chs, exp_kernel_size,
stride=1 if use_aa else stride,
dilation=dilation, groups=groups, padding=pad_type)
self.bn1 = norm_act_layer(mid_chs, inplace=True)
self.aa = create_aa(aa_layer, channels=mid_chs, stride=stride, enable=use_aa)
# Squeeze-and-excitation
self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity()
# Point-wise linear projection
self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type)
self.bn2 = norm_act_layer(out_chs, apply_act=False)
self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity()
def feature_info(self, location):
if location == 'expansion': # after SE, before PWL
return dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels)
else: # location == 'bottleneck', block output
return dict(module='', num_chs=self.conv_pwl.out_channels)
def forward(self, x):
shortcut = x
x = self.conv_exp(x)
x = self.bn1(x)
x = self.aa(x)
x = self.se(x)
x = self.conv_pwl(x)
x = self.bn2(x)
if self.has_skip:
x = self.drop_path(x) + shortcut
return x
|