File size: 2,769 Bytes
abee7a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import numpy as np
import pandas as pd


results = {
    'results-imagenet.csv': [
        'results-imagenet-real.csv',
        'results-imagenetv2-matched-frequency.csv',
        'results-sketch.csv'
    ],
    'results-imagenet-a-clean.csv': [
        'results-imagenet-a.csv',
    ],
    'results-imagenet-r-clean.csv': [
        'results-imagenet-r.csv',
    ],
}


def diff(base_df, test_csv):
    base_df['mi'] = base_df.model + '-' + base_df.img_size.astype('str')
    base_models = base_df['mi'].values
    test_df = pd.read_csv(test_csv)
    test_df['mi'] = test_df.model + '-' + test_df.img_size.astype('str')
    test_models = test_df['mi'].values

    rank_diff = np.zeros_like(test_models, dtype='object')
    top1_diff = np.zeros_like(test_models, dtype='object')
    top5_diff = np.zeros_like(test_models, dtype='object')
    
    for rank, model in enumerate(test_models):
        if model in base_models:            
            base_rank = int(np.where(base_models == model)[0])
            top1_d = test_df['top1'][rank] - base_df['top1'][base_rank]
            top5_d = test_df['top5'][rank] - base_df['top5'][base_rank]
            
            # rank_diff
            if rank == base_rank:
                rank_diff[rank] = f'0'
            elif rank > base_rank:
                rank_diff[rank] = f'-{rank - base_rank}'
            else:
                rank_diff[rank] = f'+{base_rank - rank}'
                
            # top1_diff
            if top1_d >= .0:
                top1_diff[rank] = f'+{top1_d:.3f}'
            else:
                top1_diff[rank] = f'-{abs(top1_d):.3f}'
            
            # top5_diff
            if top5_d >= .0:
                top5_diff[rank] = f'+{top5_d:.3f}'
            else:
                top5_diff[rank] = f'-{abs(top5_d):.3f}'
                
        else: 
            rank_diff[rank] = ''
            top1_diff[rank] = ''
            top5_diff[rank] = ''

    test_df['top1_diff'] = top1_diff
    test_df['top5_diff'] = top5_diff
    test_df['rank_diff'] = rank_diff

    test_df.drop('mi', axis=1, inplace=True)
    base_df.drop('mi', axis=1, inplace=True)
    test_df['param_count'] = test_df['param_count'].map('{:,.2f}'.format)
    test_df.sort_values(['top1', 'top5', 'model'], ascending=[False, False, True], inplace=True)
    test_df.to_csv(test_csv, index=False, float_format='%.3f')


for base_results, test_results in results.items():
    base_df = pd.read_csv(base_results)
    base_df.sort_values(['top1', 'top5', 'model'], ascending=[False, False, True], inplace=True)
    for test_csv in test_results:
        diff(base_df, test_csv)
    base_df['param_count'] = base_df['param_count'].map('{:,.2f}'.format)
    base_df.to_csv(base_results, index=False, float_format='%.3f')