File size: 12,849 Bytes
2f47fdc
81d747c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f47fdc
81d747c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f47fdc
 
81d747c
 
 
 
 
 
 
2f47fdc
81d747c
 
 
 
 
2f47fdc
81d747c
2f47fdc
81d747c
 
 
 
 
 
 
 
 
 
2f47fdc
81d747c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f47fdc
81d747c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f47fdc
 
 
81d747c
 
 
 
 
2f47fdc
81d747c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
from typing import List, Optional, Type, Union

import torch
from torch import nn as nn
from torch.nn import functional as F

from .config import use_fused_attn
from .create_conv2d import create_conv2d
from .helpers import to_2tuple
from .pool2d_same import create_pool2d


class MultiQueryAttentionV2(nn.Module):
    """Multi Query Attention.

    Fast Transformer Decoding: One Write-Head is All You Need
    https://arxiv.org/pdf/1911.02150.pdf

    This is an acceletor optimized version - removing multiple unnecessary
    tensor transpose by re-arranging indices according to the following rules: 1)
    contracted indices are at the end, 2) other indices have the same order in the
    input and output tensores.

    Compared to V1, this gives 3x speed up.
    """

    def __init__(
            self,
            dim: int,
            dim_out: Optional[int] = None,
            num_heads: int = 8,
            key_dim: int = 64,
            value_dim: int = 64,
            attn_drop: float = 0.,
            proj_drop: float = 0.,
    ):
        """Initializer."""
        super().__init__()
        dim_out = dim_out or dim
        self.num_heads = num_heads
        self.key_dim = key_dim
        self.value_dim = value_dim
        self.scale = key_dim ** -0.5

        self.query_proj = nn.Parameter(torch.randn([self.num_heads, self.key_dim, dim]))
        self.key_proj = nn.Parameter(torch.randn([dim, self.key_dim]))
        self.value_proj = nn.Parameter(torch.randn([dim, self.value_dim]))
        self.attn_drop = nn.Dropout(attn_drop)
        self.out_proj = nn.Parameter(torch.randn([dim_out, self.num_heads, self.value_dim]))
        self.proj_drop = nn.Dropout(proj_drop)

    def _reshape_input(self, t):
        """Reshapes a tensor to three dimensions, keeping the first and last."""
        s = t.shape
        # Propagate the shape statically where possible.
        #num = t.shape[1:-1].numel()
        #return t.reshape(s[0], num, s[-1])
        return t.reshape(s[0], s[1], -1).transpose(1, 2)

    def forward(self, x, m: Optional[torch.Tensor] = None):
        """Run layer computation."""
        b, _, h, w = x.shape
        m = m if m is not None else x

        reshaped_x = self._reshape_input(x)
        reshaped_m = self._reshape_input(m)

        q = torch.einsum('bnd,hkd->bnhk', reshaped_x, self.query_proj)
        k = torch.einsum('bmd,dk->bmk', reshaped_m, self.key_proj)

        attn = torch.einsum('bnhk,bmk->bnhm', q, k) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        v = torch.einsum('bmd,dv->bmv', reshaped_m, self.value_proj)
        o = torch.einsum('bnhm,bmv->bnhv', attn, v)
        result = torch.einsum('bnhv,dhv->bdn', o, self.out_proj)
        result = self.proj_drop(result)
        return result.reshape(b, -1, h, w)


class MultiQueryAttention2d(nn.Module):
    """Multi Query Attention with spatial downsampling.

     3 parameters are introduced for the spatial downsampling:
     1. kv_stride: downsampling factor on Key and Values only.
     2. query_strides: horizontal & vertical strides on Query only.

    This is an optimized version.
    1. Projections in Attention is explicit written out as 1x1 Conv2D.
    2. Additional reshapes are introduced to bring a up to 3x speed up.
    """
    fused_attn: torch.jit.Final[bool]

    def __init__(
            self,
            dim: int,
            dim_out: Optional[int] = None,
            num_heads: int = 8,
            key_dim: Optional[int] = None,
            value_dim: Optional[int] = None,
            query_strides: int = 1,
            kv_stride: int = 1,
            dw_kernel_size: int = 3,
            dilation: int = 1,
            padding: Union[str, int, List[int]] = '',
            attn_drop: float = 0.,
            proj_drop: float = 0.,
            norm_layer: Type[nn.Module] = nn.BatchNorm2d,
            use_bias: bool = False,
    ):
        """Initializer.

        Args:
          num_heads: Number of attention heads.
          key_dim: Size of the attention key dimension.
          value_dim: Size of the attention value dimension.
          query_strides: Vertical stride size for query only.
          kv_stride: Key and value stride size.
          dw_kernel_size: Spatial dimension of the depthwise kernel.
        """
        super().__init__()
        dim_out = dim_out or dim
        self.num_heads = num_heads
        self.key_dim = key_dim or dim // num_heads
        self.value_dim = value_dim or dim // num_heads
        self.query_strides = to_2tuple(query_strides)
        self.kv_stride = kv_stride
        self.has_query_strides = any([s > 1 for s in self.query_strides])
        self.scale = self.key_dim ** -0.5
        self.fused_attn = use_fused_attn()
        self.drop = attn_drop

        self.query = nn.Sequential()
        if self.has_query_strides:
            # FIXME dilation
            if padding == 'same':
                self.query.add_module('down_pool', create_pool2d(
                        'avg',
                        kernel_size=self.query_strides,
                        padding='same',
                ))
            else:
                # no pad if not 'same' as kern=stride=even
                self.query.add_module('down_pool', nn.AvgPool2d(kernel_size=query_strides))
            self.query.add_module('norm', norm_layer(dim))
        self.query.add_module('proj', create_conv2d(
            dim,
            self.num_heads * self.key_dim,
            kernel_size=1,
            bias=use_bias,
        ))

        self.key = nn.Sequential()
        if kv_stride > 1:
            self.key.add_module('down_conv', create_conv2d(
                dim,
                dim,
                kernel_size=dw_kernel_size,
                stride=kv_stride,
                dilation=dilation,
                padding=padding,
                depthwise=True,
            ))
            self.key.add_module('norm', norm_layer(dim))
        self.key.add_module('proj', create_conv2d(
            dim,
            self.key_dim,
            kernel_size=1,
            padding=padding,
            bias=use_bias,
        ))

        self.value = nn.Sequential()
        if kv_stride > 1:
            self.value.add_module('down_conv', create_conv2d(
                dim,
                dim,
                kernel_size=dw_kernel_size,
                stride=kv_stride,
                dilation=dilation,
                padding=padding,
                depthwise=True,
            ))
            self.value.add_module('norm', norm_layer(dim))
        self.value.add_module('proj', create_conv2d(
            dim,
            self.value_dim,
            kernel_size=1,
            bias=use_bias,
        ))

        self.attn_drop = nn.Dropout(attn_drop)

        self.output = nn.Sequential()
        if self.has_query_strides:
            self.output.add_module('upsample', nn.Upsample(scale_factor=self.query_strides, mode='bilinear', align_corners=False))
        self.output.add_module('proj', create_conv2d(
            self.value_dim * self.num_heads,
            dim_out,
            kernel_size=1,
            bias=use_bias,
        ))
        self.output.add_module('drop',  nn.Dropout(proj_drop))

        self.einsum = False

    def init_weights(self):
        # using xavier appeared to improve stability for mobilenetv4 hybrid w/ this layer
        nn.init.xavier_uniform_(self.query.proj.weight)
        nn.init.xavier_uniform_(self.key.proj.weight)
        nn.init.xavier_uniform_(self.value.proj.weight)
        if self.kv_stride > 1:
            nn.init.xavier_uniform_(self.key.down_conv.weight)
            nn.init.xavier_uniform_(self.value.down_conv.weight)
        nn.init.xavier_uniform_(self.output.proj.weight)

    def _reshape_input(self, t: torch.Tensor):
        """Reshapes a tensor to three dimensions, keeping the batch and channels."""
        s = t.shape
        t = t.reshape(s[0], s[1], -1).transpose(1, 2)
        if self.einsum:
            return t
        else:
            return t.unsqueeze(1).contiguous()

    def _reshape_projected_query(self, t: torch.Tensor, num_heads: int, key_dim: int):
        """Reshapes projected query: [b, n, n, h x k] -> [b, n x n, h, k]."""
        s = t.shape
        t = t.reshape(s[0], num_heads, key_dim, -1)
        if self.einsum:
            return t.permute(0, 3, 1, 2).contiguous()
        else:
            return t.transpose(-1, -2).contiguous()

    def _reshape_output(self, t: torch.Tensor, num_heads: int, h_px: int, w_px: int):
        """Reshape output:[b, n x n x h, k] -> [b, n, n, hk]."""
        s = t.shape
        feat_dim = s[-1] * num_heads
        if not self.einsum:
            t = t.transpose(1, 2)
        return t.reshape(s[0], h_px, w_px, feat_dim).permute(0, 3, 1, 2).contiguous()

    def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
        """Run layer computation."""
        B, C, H, W = s = x.shape

        q = self.query(x)
        # desired q shape: [b, h, k, n x n] - [b, l, h, k]
        q = self._reshape_projected_query(q, self.num_heads, self.key_dim)

        k = self.key(x)
        # output shape of k: [b, k, p], p = m x m
        k = self._reshape_input(k)

        v = self.value(x)
        # output shape of v: [ b, p, k], p = m x m
        v = self._reshape_input(v)

        # desired q shape: [b, n x n, h, k]
        # desired k shape: [b, m x m, k]
        # desired logits shape: [b, n x n, h, m x m]
        if self.einsum:
            attn = torch.einsum('blhk,bpk->blhp', q, k) * self.scale
            if attn_mask is not None:
                # NOTE: assumes mask is float and in correct shape
                attn = attn + attn_mask
            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)
            o = torch.einsum('blhp,bpk->blhk', attn, v)
        else:
            if self.fused_attn:
                o = F.scaled_dot_product_attention(
                    q, k, v,
                    attn_mask=attn_mask,
                    dropout_p=self.attn_drop.p if self.training else 0.
                )
            else:
                q = q * self.scale
                attn = q @ k.transpose(-1, -2)
                if attn_mask is not None:
                    # NOTE: assumes mask is float and in correct shape
                    attn = attn + attn_mask
                attn = attn.softmax(dim=-1)
                attn = self.attn_drop(attn)
                o = attn @ v

        # reshape o into [b, hk, n, n,]
        o = self._reshape_output(o, self.num_heads, H // self.query_strides[0], W // self.query_strides[1])
        x = self.output(o)
        return x


class Attention2d(nn.Module):
    fused_attn: torch.jit.Final[bool]

    """ multi-head attention for 2D NCHW tensors"""
    def __init__(
            self,
            dim: int,
            dim_out: Optional[int] = None,
            num_heads: int = 32,
            bias: bool = True,
            expand_first: bool = False,
            head_first: bool = False,
            attn_drop: float = 0.,
            proj_drop: float = 0.
    ):
        super().__init__()
        dim_out = dim_out or dim
        dim_attn = dim_out if expand_first else dim
        self.num_heads = num_heads
        self.dim_head = dim_attn // num_heads
        self.head_first = head_first
        self.fused_attn = use_fused_attn()

        self.qkv = nn.Conv2d(dim, dim_attn * 3, 1, bias=bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Conv2d(dim_attn, dim_out, 1, bias=bias)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
        B, C, H, W = x.shape

        if self.head_first:
            q, k, v = self.qkv(x).view(B, self.num_heads, self.dim_head * 3, -1).chunk(3, dim=2)
        else:
            q, k, v = self.qkv(x).reshape(B, 3, self.num_heads, self.dim_head, -1).unbind(1)

        if self.fused_attn:
            x = torch.nn.functional.scaled_dot_product_attention(
                q.transpose(-1, -2).contiguous(),
                k.transpose(-1, -2).contiguous(),
                v.transpose(-1, -2).contiguous(),
                attn_mask=attn_mask,
                dropout_p=self.attn_drop.p if self.training else 0.,
            ).transpose(-1, -2).reshape(B, -1, H, W)
        else:
            q = q.transpose(-1, -2)
            v = v.transpose(-1, -2)
            attn = q @ k * q.size(-1) ** -0.5
            if attn_mask is not None:
                # NOTE: assumes mask is float and in correct shape
                attn = attn + attn_mask
            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)
            x = (attn @ v).transpose(-1, -2).reshape(B, -1, H, W)

        x = self.proj(x)
        x = self.proj_drop(x)
        return x