File size: 12,849 Bytes
2f47fdc 81d747c 2f47fdc 81d747c 2f47fdc 81d747c 2f47fdc 81d747c 2f47fdc 81d747c 2f47fdc 81d747c 2f47fdc 81d747c 2f47fdc 81d747c 2f47fdc 81d747c 2f47fdc 81d747c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
from typing import List, Optional, Type, Union
import torch
from torch import nn as nn
from torch.nn import functional as F
from .config import use_fused_attn
from .create_conv2d import create_conv2d
from .helpers import to_2tuple
from .pool2d_same import create_pool2d
class MultiQueryAttentionV2(nn.Module):
"""Multi Query Attention.
Fast Transformer Decoding: One Write-Head is All You Need
https://arxiv.org/pdf/1911.02150.pdf
This is an acceletor optimized version - removing multiple unnecessary
tensor transpose by re-arranging indices according to the following rules: 1)
contracted indices are at the end, 2) other indices have the same order in the
input and output tensores.
Compared to V1, this gives 3x speed up.
"""
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
num_heads: int = 8,
key_dim: int = 64,
value_dim: int = 64,
attn_drop: float = 0.,
proj_drop: float = 0.,
):
"""Initializer."""
super().__init__()
dim_out = dim_out or dim
self.num_heads = num_heads
self.key_dim = key_dim
self.value_dim = value_dim
self.scale = key_dim ** -0.5
self.query_proj = nn.Parameter(torch.randn([self.num_heads, self.key_dim, dim]))
self.key_proj = nn.Parameter(torch.randn([dim, self.key_dim]))
self.value_proj = nn.Parameter(torch.randn([dim, self.value_dim]))
self.attn_drop = nn.Dropout(attn_drop)
self.out_proj = nn.Parameter(torch.randn([dim_out, self.num_heads, self.value_dim]))
self.proj_drop = nn.Dropout(proj_drop)
def _reshape_input(self, t):
"""Reshapes a tensor to three dimensions, keeping the first and last."""
s = t.shape
# Propagate the shape statically where possible.
#num = t.shape[1:-1].numel()
#return t.reshape(s[0], num, s[-1])
return t.reshape(s[0], s[1], -1).transpose(1, 2)
def forward(self, x, m: Optional[torch.Tensor] = None):
"""Run layer computation."""
b, _, h, w = x.shape
m = m if m is not None else x
reshaped_x = self._reshape_input(x)
reshaped_m = self._reshape_input(m)
q = torch.einsum('bnd,hkd->bnhk', reshaped_x, self.query_proj)
k = torch.einsum('bmd,dk->bmk', reshaped_m, self.key_proj)
attn = torch.einsum('bnhk,bmk->bnhm', q, k) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
v = torch.einsum('bmd,dv->bmv', reshaped_m, self.value_proj)
o = torch.einsum('bnhm,bmv->bnhv', attn, v)
result = torch.einsum('bnhv,dhv->bdn', o, self.out_proj)
result = self.proj_drop(result)
return result.reshape(b, -1, h, w)
class MultiQueryAttention2d(nn.Module):
"""Multi Query Attention with spatial downsampling.
3 parameters are introduced for the spatial downsampling:
1. kv_stride: downsampling factor on Key and Values only.
2. query_strides: horizontal & vertical strides on Query only.
This is an optimized version.
1. Projections in Attention is explicit written out as 1x1 Conv2D.
2. Additional reshapes are introduced to bring a up to 3x speed up.
"""
fused_attn: torch.jit.Final[bool]
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
num_heads: int = 8,
key_dim: Optional[int] = None,
value_dim: Optional[int] = None,
query_strides: int = 1,
kv_stride: int = 1,
dw_kernel_size: int = 3,
dilation: int = 1,
padding: Union[str, int, List[int]] = '',
attn_drop: float = 0.,
proj_drop: float = 0.,
norm_layer: Type[nn.Module] = nn.BatchNorm2d,
use_bias: bool = False,
):
"""Initializer.
Args:
num_heads: Number of attention heads.
key_dim: Size of the attention key dimension.
value_dim: Size of the attention value dimension.
query_strides: Vertical stride size for query only.
kv_stride: Key and value stride size.
dw_kernel_size: Spatial dimension of the depthwise kernel.
"""
super().__init__()
dim_out = dim_out or dim
self.num_heads = num_heads
self.key_dim = key_dim or dim // num_heads
self.value_dim = value_dim or dim // num_heads
self.query_strides = to_2tuple(query_strides)
self.kv_stride = kv_stride
self.has_query_strides = any([s > 1 for s in self.query_strides])
self.scale = self.key_dim ** -0.5
self.fused_attn = use_fused_attn()
self.drop = attn_drop
self.query = nn.Sequential()
if self.has_query_strides:
# FIXME dilation
if padding == 'same':
self.query.add_module('down_pool', create_pool2d(
'avg',
kernel_size=self.query_strides,
padding='same',
))
else:
# no pad if not 'same' as kern=stride=even
self.query.add_module('down_pool', nn.AvgPool2d(kernel_size=query_strides))
self.query.add_module('norm', norm_layer(dim))
self.query.add_module('proj', create_conv2d(
dim,
self.num_heads * self.key_dim,
kernel_size=1,
bias=use_bias,
))
self.key = nn.Sequential()
if kv_stride > 1:
self.key.add_module('down_conv', create_conv2d(
dim,
dim,
kernel_size=dw_kernel_size,
stride=kv_stride,
dilation=dilation,
padding=padding,
depthwise=True,
))
self.key.add_module('norm', norm_layer(dim))
self.key.add_module('proj', create_conv2d(
dim,
self.key_dim,
kernel_size=1,
padding=padding,
bias=use_bias,
))
self.value = nn.Sequential()
if kv_stride > 1:
self.value.add_module('down_conv', create_conv2d(
dim,
dim,
kernel_size=dw_kernel_size,
stride=kv_stride,
dilation=dilation,
padding=padding,
depthwise=True,
))
self.value.add_module('norm', norm_layer(dim))
self.value.add_module('proj', create_conv2d(
dim,
self.value_dim,
kernel_size=1,
bias=use_bias,
))
self.attn_drop = nn.Dropout(attn_drop)
self.output = nn.Sequential()
if self.has_query_strides:
self.output.add_module('upsample', nn.Upsample(scale_factor=self.query_strides, mode='bilinear', align_corners=False))
self.output.add_module('proj', create_conv2d(
self.value_dim * self.num_heads,
dim_out,
kernel_size=1,
bias=use_bias,
))
self.output.add_module('drop', nn.Dropout(proj_drop))
self.einsum = False
def init_weights(self):
# using xavier appeared to improve stability for mobilenetv4 hybrid w/ this layer
nn.init.xavier_uniform_(self.query.proj.weight)
nn.init.xavier_uniform_(self.key.proj.weight)
nn.init.xavier_uniform_(self.value.proj.weight)
if self.kv_stride > 1:
nn.init.xavier_uniform_(self.key.down_conv.weight)
nn.init.xavier_uniform_(self.value.down_conv.weight)
nn.init.xavier_uniform_(self.output.proj.weight)
def _reshape_input(self, t: torch.Tensor):
"""Reshapes a tensor to three dimensions, keeping the batch and channels."""
s = t.shape
t = t.reshape(s[0], s[1], -1).transpose(1, 2)
if self.einsum:
return t
else:
return t.unsqueeze(1).contiguous()
def _reshape_projected_query(self, t: torch.Tensor, num_heads: int, key_dim: int):
"""Reshapes projected query: [b, n, n, h x k] -> [b, n x n, h, k]."""
s = t.shape
t = t.reshape(s[0], num_heads, key_dim, -1)
if self.einsum:
return t.permute(0, 3, 1, 2).contiguous()
else:
return t.transpose(-1, -2).contiguous()
def _reshape_output(self, t: torch.Tensor, num_heads: int, h_px: int, w_px: int):
"""Reshape output:[b, n x n x h, k] -> [b, n, n, hk]."""
s = t.shape
feat_dim = s[-1] * num_heads
if not self.einsum:
t = t.transpose(1, 2)
return t.reshape(s[0], h_px, w_px, feat_dim).permute(0, 3, 1, 2).contiguous()
def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
"""Run layer computation."""
B, C, H, W = s = x.shape
q = self.query(x)
# desired q shape: [b, h, k, n x n] - [b, l, h, k]
q = self._reshape_projected_query(q, self.num_heads, self.key_dim)
k = self.key(x)
# output shape of k: [b, k, p], p = m x m
k = self._reshape_input(k)
v = self.value(x)
# output shape of v: [ b, p, k], p = m x m
v = self._reshape_input(v)
# desired q shape: [b, n x n, h, k]
# desired k shape: [b, m x m, k]
# desired logits shape: [b, n x n, h, m x m]
if self.einsum:
attn = torch.einsum('blhk,bpk->blhp', q, k) * self.scale
if attn_mask is not None:
# NOTE: assumes mask is float and in correct shape
attn = attn + attn_mask
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
o = torch.einsum('blhp,bpk->blhk', attn, v)
else:
if self.fused_attn:
o = F.scaled_dot_product_attention(
q, k, v,
attn_mask=attn_mask,
dropout_p=self.attn_drop.p if self.training else 0.
)
else:
q = q * self.scale
attn = q @ k.transpose(-1, -2)
if attn_mask is not None:
# NOTE: assumes mask is float and in correct shape
attn = attn + attn_mask
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
o = attn @ v
# reshape o into [b, hk, n, n,]
o = self._reshape_output(o, self.num_heads, H // self.query_strides[0], W // self.query_strides[1])
x = self.output(o)
return x
class Attention2d(nn.Module):
fused_attn: torch.jit.Final[bool]
""" multi-head attention for 2D NCHW tensors"""
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
num_heads: int = 32,
bias: bool = True,
expand_first: bool = False,
head_first: bool = False,
attn_drop: float = 0.,
proj_drop: float = 0.
):
super().__init__()
dim_out = dim_out or dim
dim_attn = dim_out if expand_first else dim
self.num_heads = num_heads
self.dim_head = dim_attn // num_heads
self.head_first = head_first
self.fused_attn = use_fused_attn()
self.qkv = nn.Conv2d(dim, dim_attn * 3, 1, bias=bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Conv2d(dim_attn, dim_out, 1, bias=bias)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
B, C, H, W = x.shape
if self.head_first:
q, k, v = self.qkv(x).view(B, self.num_heads, self.dim_head * 3, -1).chunk(3, dim=2)
else:
q, k, v = self.qkv(x).reshape(B, 3, self.num_heads, self.dim_head, -1).unbind(1)
if self.fused_attn:
x = torch.nn.functional.scaled_dot_product_attention(
q.transpose(-1, -2).contiguous(),
k.transpose(-1, -2).contiguous(),
v.transpose(-1, -2).contiguous(),
attn_mask=attn_mask,
dropout_p=self.attn_drop.p if self.training else 0.,
).transpose(-1, -2).reshape(B, -1, H, W)
else:
q = q.transpose(-1, -2)
v = v.transpose(-1, -2)
attn = q @ k * q.size(-1) ** -0.5
if attn_mask is not None:
# NOTE: assumes mask is float and in correct shape
attn = attn + attn_mask
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(-1, -2).reshape(B, -1, H, W)
x = self.proj(x)
x = self.proj_drop(x)
return x
|