File size: 11,461 Bytes
c3fdff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
""" Image to Patch Embedding using Conv2d

A convolution based approach to patchifying a 2D image w/ embedding projection.

Based on code in:
  * https://github.com/google-research/vision_transformer
  * https://github.com/google-research/big_vision/tree/main/big_vision

Hacked together by / Copyright 2020 Ross Wightman
"""
import logging
import math
from typing import Callable, List, Optional, Tuple, Union

import torch
from torch import nn as nn
import torch.nn.functional as F

from .format import Format, nchw_to
from .helpers import to_2tuple
from .trace_utils import _assert

_logger = logging.getLogger(__name__)


class PatchEmbed(nn.Module):
    """ 2D Image to Patch Embedding
    """
    output_fmt: Format
    dynamic_img_pad: torch.jit.Final[bool]

    def __init__(
            self,
            img_size: Optional[int] = 224,
            patch_size: int = 16,
            in_chans: int = 3,
            embed_dim: int = 768,
            norm_layer: Optional[Callable] = None,
            flatten: bool = True,
            output_fmt: Optional[str] = None,
            bias: bool = True,
            strict_img_size: bool = True,
            dynamic_img_pad: bool = False,
    ):
        super().__init__()
        self.patch_size = to_2tuple(patch_size)
        self.img_size, self.grid_size, self.num_patches = self._init_img_size(img_size)

        if output_fmt is not None:
            self.flatten = False
            self.output_fmt = Format(output_fmt)
        else:
            # flatten spatial dim and transpose to channels last, kept for bwd compat
            self.flatten = flatten
            self.output_fmt = Format.NCHW
        self.strict_img_size = strict_img_size
        self.dynamic_img_pad = dynamic_img_pad

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def _init_img_size(self, img_size: Union[int, Tuple[int, int]]):
        assert self.patch_size
        if img_size is None:
            return None, None, None
        img_size = to_2tuple(img_size)
        grid_size = tuple([s // p for s, p in zip(img_size, self.patch_size)])
        num_patches = grid_size[0] * grid_size[1]
        return img_size, grid_size, num_patches

    def set_input_size(
            self,
            img_size: Optional[Union[int, Tuple[int, int]]] = None,
            patch_size: Optional[Union[int, Tuple[int, int]]] = None,
    ):
        new_patch_size = None
        if patch_size is not None:
            new_patch_size = to_2tuple(patch_size)
        if new_patch_size is not None and new_patch_size != self.patch_size:
            with torch.no_grad():
                new_proj = nn.Conv2d(
                    self.proj.in_channels,
                    self.proj.out_channels,
                    kernel_size=new_patch_size,
                    stride=new_patch_size,
                    bias=self.proj.bias is not None,
                )
                new_proj.weight.copy_(resample_patch_embed(self.proj.weight, new_patch_size, verbose=True))
                if self.proj.bias is not None:
                    new_proj.bias.copy_(self.proj.bias)
                self.proj = new_proj
            self.patch_size = new_patch_size
        img_size = img_size or self.img_size
        if img_size != self.img_size or new_patch_size is not None:
            self.img_size, self.grid_size, self.num_patches = self._init_img_size(img_size)

    def feat_ratio(self, as_scalar=True) -> Union[Tuple[int, int], int]:
        if as_scalar:
            return max(self.patch_size)
        else:
            return self.patch_size

    def dynamic_feat_size(self, img_size: Tuple[int, int]) -> Tuple[int, int]:
        """ Get grid (feature) size for given image size taking account of dynamic padding.
        NOTE: must be torchscript compatible so using fixed tuple indexing
        """
        if self.dynamic_img_pad:
            return math.ceil(img_size[0] / self.patch_size[0]), math.ceil(img_size[1] / self.patch_size[1])
        else:
            return img_size[0] // self.patch_size[0], img_size[1] // self.patch_size[1]

    def forward(self, x):
        B, C, H, W = x.shape
        if self.img_size is not None:
            if self.strict_img_size:
                _assert(H == self.img_size[0], f"Input height ({H}) doesn't match model ({self.img_size[0]}).")
                _assert(W == self.img_size[1], f"Input width ({W}) doesn't match model ({self.img_size[1]}).")
            elif not self.dynamic_img_pad:
                _assert(
                    H % self.patch_size[0] == 0,
                    f"Input height ({H}) should be divisible by patch size ({self.patch_size[0]})."
                )
                _assert(
                    W % self.patch_size[1] == 0,
                    f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})."
                )
        if self.dynamic_img_pad:
            pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0]
            pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1]
            x = F.pad(x, (0, pad_w, 0, pad_h))
        x = self.proj(x)
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # NCHW -> NLC
        elif self.output_fmt != Format.NCHW:
            x = nchw_to(x, self.output_fmt)
        x = self.norm(x)
        return x


class PatchEmbedWithSize(PatchEmbed):
    """ 2D Image to Patch Embedding
    """
    output_fmt: Format

    def __init__(
            self,
            img_size: Optional[int] = 224,
            patch_size: int = 16,
            in_chans: int = 3,
            embed_dim: int = 768,
            norm_layer: Optional[Callable] = None,
            flatten: bool = True,
            output_fmt: Optional[str] = None,
            bias: bool = True,
    ):
        super().__init__(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            norm_layer=norm_layer,
            flatten=flatten,
            output_fmt=output_fmt,
            bias=bias,
        )

    def forward(self, x) -> Tuple[torch.Tensor, List[int]]:
        B, C, H, W = x.shape
        if self.img_size is not None:
            _assert(H % self.patch_size[0] == 0, f"Input image height ({H}) must be divisible by patch size ({self.patch_size[0]}).")
            _assert(W % self.patch_size[1] == 0, f"Input image width ({W}) must be divisible by patch size ({self.patch_size[1]}).")

        x = self.proj(x)
        feat_size = x.shape[-2:]
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # NCHW -> NLC
        elif self.output_fmt != Format.NCHW:
            x = nchw_to(x, self.output_fmt)
        x = self.norm(x)
        return x, feat_size


def resample_patch_embed(
        patch_embed,
        new_size: List[int],
        interpolation: str = 'bicubic',
        antialias: bool = True,
        verbose: bool = False,
):
    """Resample the weights of the patch embedding kernel to target resolution.
    We resample the patch embedding kernel by approximately inverting the effect
    of patch resizing.

    Code based on:
      https://github.com/google-research/big_vision/blob/b00544b81f8694488d5f36295aeb7972f3755ffe/big_vision/models/proj/flexi/vit.py

    With this resizing, we can for example load a B/8 filter into a B/16 model
    and, on 2x larger input image, the result will match.

    Args:
        patch_embed: original parameter to be resized.
        new_size (tuple(int, int): target shape (height, width)-only.
        interpolation (str): interpolation for resize
        antialias (bool): use anti-aliasing filter in resize
        verbose (bool): log operation
    Returns:
        Resized patch embedding kernel.
    """
    import numpy as np
    try:
        from torch import vmap
    except ImportError:
        from functorch import vmap

    assert len(patch_embed.shape) == 4, "Four dimensions expected"
    assert len(new_size) == 2, "New shape should only be hw"
    old_size = patch_embed.shape[-2:]
    if tuple(old_size) == tuple(new_size):
        return patch_embed

    if verbose:
        _logger.info(f"Resize patch embedding {patch_embed.shape} to {new_size}, w/ {interpolation} interpolation.")

    def resize(x_np, _new_size):
        x_tf = torch.Tensor(x_np)[None, None, ...]
        x_upsampled = F.interpolate(
            x_tf, size=_new_size, mode=interpolation, antialias=antialias)[0, 0, ...].numpy()
        return x_upsampled

    def get_resize_mat(_old_size, _new_size):
        mat = []
        for i in range(np.prod(_old_size)):
            basis_vec = np.zeros(_old_size)
            basis_vec[np.unravel_index(i, _old_size)] = 1.
            mat.append(resize(basis_vec, _new_size).reshape(-1))
        return np.stack(mat).T

    resize_mat = get_resize_mat(old_size, new_size)
    resize_mat_pinv = torch.tensor(np.linalg.pinv(resize_mat.T), device=patch_embed.device)

    def resample_kernel(kernel):
        resampled_kernel = resize_mat_pinv @ kernel.reshape(-1)
        return resampled_kernel.reshape(new_size)

    v_resample_kernel = vmap(vmap(resample_kernel, 0, 0), 1, 1)
    orig_dtype = patch_embed.dtype
    patch_embed = patch_embed.float()
    patch_embed = v_resample_kernel(patch_embed)
    patch_embed = patch_embed.to(orig_dtype)
    return patch_embed


# def divs(n, m=None):
#     m = m or n // 2
#     if m == 1:
#         return [1]
#     if n % m == 0:
#         return [m] + divs(n, m - 1)
#     return divs(n, m - 1)
#
#
# class FlexiPatchEmbed(nn.Module):
#     """ 2D Image to Patch Embedding w/ Flexible Patch sizes (FlexiViT)
#     FIXME WIP
#     """
#     def __init__(
#             self,
#             img_size=240,
#             patch_size=16,
#             in_chans=3,
#             embed_dim=768,
#             base_img_size=240,
#             base_patch_size=32,
#             norm_layer=None,
#             flatten=True,
#             bias=True,
#     ):
#         super().__init__()
#         self.img_size = to_2tuple(img_size)
#         self.patch_size = to_2tuple(patch_size)
#         self.num_patches = 0
#
#         # full range for 240 = (5, 6, 8, 10, 12, 14, 15, 16, 20, 24, 30, 40, 48)
#         self.seqhw = (6, 8, 10, 12, 14, 15, 16, 20, 24, 30)
#
#         self.base_img_size = to_2tuple(base_img_size)
#         self.base_patch_size = to_2tuple(base_patch_size)
#         self.base_grid_size = tuple([i // p for i, p in zip(self.base_img_size, self.base_patch_size)])
#         self.base_num_patches = self.base_grid_size[0] * self.base_grid_size[1]
#
#         self.flatten = flatten
#         self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=bias)
#         self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
#
#     def forward(self, x):
#         B, C, H, W = x.shape
#
#         if self.patch_size == self.base_patch_size:
#             weight = self.proj.weight
#         else:
#             weight = resample_patch_embed(self.proj.weight, self.patch_size)
#         patch_size = self.patch_size
#         x = F.conv2d(x, weight, bias=self.proj.bias, stride=patch_size)
#         if self.flatten:
#             x = x.flatten(2).transpose(1, 2)  # BCHW -> BNC
#         x = self.norm(x)
#         return x