File size: 14,261 Bytes
2c8d22f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
""" NAdamW Optimizer

Based on simplified algorithm in https://github.com/mlcommons/algorithmic-efficiency/tree/main/baselines/nadamw

Added multi-tensor (foreach) path.
"""
import math
from typing import List, Optional, Tuple

import torch
from torch import Tensor

from ._types import ParamsT


# Modified from github.com/pytorch/pytorch/blob/v1.12.1/torch/optim/adamw.py.
class NAdamW(torch.optim.Optimizer):
    """ Implements NAdamW algorithm.

    See Table 1 in https://arxiv.org/abs/1910.05446 for the implementation of
    the NAdam algorithm (there is also a comment in the code which highlights
    the only difference of NAdamW and AdamW).

    For further details regarding the algorithm we refer to
        - Decoupled Weight Decay Regularization: https://arxiv.org/abs/1711.05101
        - On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ

    Args:
        params: iterable of parameters to optimize or dicts defining parameter groups
        lr: learning rate
        betas: coefficients used for computing running averages of gradient and its square
        eps: term added to the denominator to improve numerical stability
        weight_decay: weight decay coefficient
        caution: enable caution
    """

    def __init__(
            self,
            params: ParamsT,
            lr: float = 1e-3,
            betas: Tuple[float, float] = (0.9, 0.999),
            eps: float = 1e-8,
            weight_decay: float = 1e-2,
            caution: bool = False,
            maximize: bool = False,
            foreach: Optional[bool] = None,
            capturable: bool = False,
    ):
        if not 0.0 <= lr:
            raise ValueError(f'Invalid learning rate: {lr}')
        if not 0.0 <= eps:
            raise ValueError(f'Invalid epsilon value: {eps}')
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError(f'Invalid beta parameter at index 0: {betas[0]}')
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError(f'Invalid beta parameter at index 1: {betas[1]}')
        if not 0.0 <= weight_decay:
            raise ValueError(f'Invalid weight_decay value: {weight_decay}')
        defaults = dict(
            lr=lr,
            betas=betas,
            eps=eps,
            weight_decay=weight_decay,
            caution=caution,
            foreach=foreach,
            maximize=maximize,
            capturable=capturable,
        )
        super().__init__(params, defaults)

    def __setstate__(self, state):
        super().__setstate__(state)
        state_values = list(self.state.values())
        step_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['step'])
        if not step_is_tensor:
            for s in state_values:
                s['step'] = torch.tensor(float(s['step']))
        for group in self.param_groups:
            group.setdefault('caution', False)

    @torch.no_grad()
    def step(self, closure=None):
        """Performs a single optimization step.

            Args:
              closure (callable, optional): A closure that reevaluates the model
                  and returns the loss.
        """
        self._cuda_graph_capture_health_check()

        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            params_with_grad = []
            grads = []
            exp_avgs = []
            exp_avg_sqs = []
            state_steps = []
            beta1, beta2 = group['betas']

            for p in group['params']:
                if p.grad is None:
                    continue
                params_with_grad.append(p)
                if p.grad.is_sparse:
                    raise RuntimeError('NAdamW does not support sparse gradients')
                grads.append(p.grad)

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = torch.tensor(0.)
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)

                exp_avgs.append(state['exp_avg'])
                exp_avg_sqs.append(state['exp_avg_sq'])
                state_steps.append(state['step'])

            nadamw(
                params_with_grad,
                grads,
                exp_avgs,
                exp_avg_sqs,
                state_steps,
                beta1=beta1,
                beta2=beta2,
                lr=group['lr'],
                weight_decay=group['weight_decay'],
                eps=group['eps'],
                caution=group['caution'],
                maximize=group['maximize'],
                capturable=group['capturable'],
            )

        return loss


def nadamw(
        params: List[Tensor],
        grads: List[Tensor],
        exp_avgs: List[Tensor],
        exp_avg_sqs: List[Tensor],
        state_steps: List[Tensor],
        foreach: Optional[bool] = None,
        capturable: bool = False,
        *,
        beta1: float,
        beta2: float,
        lr: float,
        weight_decay: float,
        eps: float,
        caution: bool,
        maximize: bool,
) -> None:
    r"""Functional API that performs NAdamW algorithm computation.
      See NAdamW class for details.
    """

    if not all(isinstance(t, torch.Tensor) for t in state_steps):
        raise RuntimeError(
            'API has changed, `state_steps` argument must contain a list of' +
            ' singleton tensors')

    if foreach is None:
        try:
            # cannot do foreach if this overload doesn't exist when caution enabled
            foreach = not caution or 'Scalar' in torch.ops.aten._foreach_maximum_.overloads()
        except:
            foreach = False

    if foreach and not torch.jit.is_scripting():
        func = _multi_tensor_nadamw
    else:
        func = _single_tensor_nadamw

    func(
        params,
        grads,
        exp_avgs,
        exp_avg_sqs,
        state_steps,
        beta1=beta1,
        beta2=beta2,
        lr=lr,
        weight_decay=weight_decay,
        eps=eps,
        caution=caution,
        maximize=maximize,
        capturable=capturable,
    )


def _single_tensor_nadamw(
        params: List[Tensor],
        grads: List[Tensor],
        exp_avgs: List[Tensor],
        exp_avg_sqs: List[Tensor],
        state_steps: List[Tensor],
        *,
        beta1: float,
        beta2: float,
        lr: float,
        weight_decay: float,
        eps: float,
        caution: bool,
        maximize: bool,
        capturable: bool
):

    for i, param in enumerate(params):
        grad = grads[i] if not maximize else -grads[i]
        exp_avg = exp_avgs[i]
        exp_avg_sq = exp_avg_sqs[i]
        step_t = state_steps[i]

        # Update step.
        step_t += 1

        # Perform stepweight decay.
        param.mul_(1. - lr * weight_decay)

        # Decay the first and second moment running average coefficient.
        exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
        exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)

        if capturable:
            step = step_t

            # 1 - beta1 ** step can't be captured in a CUDA graph, even if step is a CUDA tensor
            # (incurs "RuntimeError: CUDA error: operation not permitted when stream is capturing")
            bias_correction1 = 1 - torch.pow(beta1, step)
            bias_correction2 = 1 - torch.pow(beta2, step)

            step_size = lr / bias_correction1
            step_size_neg = step_size.neg()

            bias_correction2_sqrt = bias_correction2.sqrt()

            # Only difference between NAdamW and AdamW in this implementation.
            # The official PyTorch implementation of NAdam uses a different algorithm.
            exp_avg = exp_avg.mul(beta1).add_(grad, alpha=1 - beta1)

            denom = (exp_avg_sq.sqrt() / (bias_correction2_sqrt * step_size_neg)).add_(eps / step_size_neg)

            if caution:
                # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
                # FIXME not 100% sure if this remains capturable?
                mask = (exp_avg * grad > 0).to(grad.dtype)
                mask.div_(mask.mean().clamp_(min=1e-3))
                exp_avg.mul_(mask)

            param.addcdiv_(exp_avg, denom)
        else:
            step = step_t.item()
            bias_correction1 = 1 - beta1 ** step
            bias_correction2 = 1 - beta2 ** step
            step_size = lr / bias_correction1
            bias_correction2_sqrt = math.sqrt(bias_correction2)

            # Apply Nesterov. Only difference between NAdamW and AdamW in this implementation.
            # The official PyTorch implementation of NAdam uses a different algorithm.
            exp_avg = exp_avg.mul(beta1).add_(grad, alpha=1 - beta1)
            denom = (exp_avg_sq.sqrt() / bias_correction2_sqrt).add_(eps)

            if caution:
                # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
                mask = (exp_avg * grad > 0).to(grad.dtype)
                mask.div_(mask.mean().clamp_(min=1e-3))
                exp_avg.mul_(mask)

            param.addcdiv_(exp_avg, denom, value=-step_size)


def _multi_tensor_nadamw(
        params: List[Tensor],
        grads: List[Tensor],
        exp_avgs: List[Tensor],
        exp_avg_sqs: List[Tensor],
        state_steps: List[Tensor],
        *,
        beta1: float,
        beta2: float,
        lr: float,
        weight_decay: float,
        eps: float,
        caution: bool,
        maximize: bool,
        capturable: bool,
):
    if len(params) == 0:
        return

    if capturable:
        assert all(
            p.is_cuda and step.is_cuda for p, step in zip(params, state_steps)
        ), "If capturable=True, params and state_steps must be CUDA tensors."

    if maximize:
        grads = torch._foreach_neg(tuple(grads))  # type: ignore[assignment]

    grads = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grads]
    exp_avgs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in exp_avgs]
    exp_avg_sqs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in exp_avg_sqs]
    params = [torch.view_as_real(x) if torch.is_complex(x) else x for x in params]

    # update steps
    torch._foreach_add_(state_steps, 1)

    # Perform stepweight decay
    torch._foreach_mul_(params, 1 - lr * weight_decay)

    # Decay the first and second moment running average coefficient
    torch._foreach_mul_(exp_avgs, beta1)
    torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1)

    torch._foreach_mul_(exp_avg_sqs, beta2)
    torch._foreach_addcmul_(exp_avg_sqs, grads, grads, 1 - beta2)

    if capturable:
        # TODO: use foreach_pow if/when foreach_pow is added
        bias_correction1 = [torch.pow(beta1, step) for step in state_steps]
        bias_correction2 = [torch.pow(beta2, step) for step in state_steps]
        # foreach_sub doesn't allow a scalar as the first arg
        torch._foreach_sub_(bias_correction1, 1)
        torch._foreach_sub_(bias_correction2, 1)
        torch._foreach_neg_(bias_correction1)
        torch._foreach_neg_(bias_correction2)

        # foreach_div doesn't allow a scalar as the first arg
        step_size = torch._foreach_div(bias_correction1, lr)
        torch._foreach_reciprocal_(step_size)
        torch._foreach_neg_(step_size)

        bias_correction2_sqrt = torch._foreach_sqrt(bias_correction2)

        # Only difference between NAdamW and AdamW in this implementation.
        # The official PyTorch implementation of NAdam uses a different algorithm.
        exp_avgs = torch._foreach_mul(exp_avgs, beta1)
        torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1)

        exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs)
        torch._foreach_div_(
            exp_avg_sq_sqrt,
            torch._foreach_mul(bias_correction2_sqrt, step_size)
        )
        eps_over_step_size = torch._foreach_div(step_size, eps)
        torch._foreach_reciprocal_(eps_over_step_size)
        denom = torch._foreach_add(exp_avg_sq_sqrt, eps_over_step_size)

        if caution:
            # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
            masks = torch._foreach_mul(exp_avgs, grads)
            masks = [(m > 0).to(g.dtype) for m, g in zip(masks, grads)]  # capturable?
            mask_scale = [m.mean() for m in masks]
            torch._foreach_maximum_(mask_scale, 1e-3)
            torch._foreach_div_(masks, mask_scale)
            torch._foreach_mul_(exp_avgs, masks)

        torch._foreach_addcdiv_(params, exp_avgs, denom)
    else:
        bias_correction1 = [1 - beta1 ** step.item() for step in state_steps]
        bias_correction2 = [1 - beta2 ** step.item() for step in state_steps]

        step_size = [(lr / bc) * -1 for bc in bias_correction1]

        bias_correction2_sqrt = [math.sqrt(bc) for bc in bias_correction2]

        # Apply Nesterov. Only difference between NAdamW and AdamW in this implementation.
        # The official PyTorch implementation of NAdam uses a different algorithm.
        exp_avgs = torch._foreach_mul(exp_avgs, beta1)
        torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1)

        exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs)
        torch._foreach_div_(exp_avg_sq_sqrt, bias_correction2_sqrt)
        denom = torch._foreach_add(exp_avg_sq_sqrt, eps)

        if caution:
            # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
            masks = torch._foreach_mul(exp_avgs, grads)
            masks = [(m > 0).to(g.dtype) for m, g in zip(masks, grads)]
            mask_scale = [m.mean() for m in masks]
            torch._foreach_maximum_(mask_scale, 1e-3)
            torch._foreach_div_(masks, mask_scale)
            torch._foreach_mul_(exp_avgs, masks)

        torch._foreach_addcdiv_(params, exp_avgs, denom, step_size)